七年级数学下::平方差、完全平方公式专项练习题
初中数学平方差完全平方公式练习题(附答案)
初中数学平方差完全平方公式练习题(附答案)初中数学平方差完全平方公式练题一、单选题1.下列各式添括号正确的是(。
)A.x y(y x)B.x y(x y)C.10m5(2m)D.32a(2a3)2.(1y)(1y)(。
)A.1+y2B.1y2C.1y2D.1y23.下列计算结果为2ab a2b2的是(。
)A.(a b)2B.(a b)2C.(a b)2D.(a b)24.5a24b2=()25a416b4,括号内应填(。
)A.5a24b2B.5a24b2C.5a24b2D.5a24b25.下列计算正确的是(。
)A.(x y)2x22xy y2B.(m2n)2m24n2C.(3x y)2=9x2-6xy+y2D.x5x25x25/46.多项式15m3n25m2n20m2n3各项的公因式是(。
)A.5mnB.5m2n2C.5m2nD.5mn27.下列多项式中,能用平方差公式分解因式的是(。
)A.a2b 2B.5m220mnC.x2y2D.x298.化简(x3)2x(x6)的结果为(。
)A.6x9B.12x9C.9D.3x99.下列多项式能用完全平方公式分解的是(。
)A.x2x 1B.12x x2C.a2a1/2D.a2b22ab10.计算(3a bc)(bc3a)的结果是(。
)A.b2c29a2B.b2c23a2C.b2c29a2D.9a2b2c211.如果x2(m1)x9是一个完全平方式,那么m的值是(。
)A.7B.7C.5或7D.5或512.若a,b,c是三角形的三边之长,则代数式a22bc c2b2的值(。
)A.小于0B.大于0C.等于0D.以上三种情况均有可能二、解答题13.计算:1)-3x2-5y/(x2-5y);2)9x2+1(1-3x)(-3x-1)。
解:(1)-3x2-5y/(x2-5y)= -3x2/(x2-5y) - 5y/(x2-5y) = -3 - 5y/(x2-5y)。
2)9x2+1(1-3x)(-3x-1) = 9x2+1(9x2+3x-x-1) = (3x+1)(3x-1)。
(完整版)七年级数学下---平方差、完全平方公式专项练习题
七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题: 5、(a+b-1)(a-b+1)=(_____)2-(_____)2.6.(-2x+y)(-2x-y)=______.7.(-3x2+2y2)(______)=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113. 10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.式计算:2009×2007-20082. 3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).(1)计算:22007200720082006-⨯.(2)计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是() A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=_____ _.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______ . ②(a -b )(a 2+ab+b 2)=_____ _. ③(a -b )(a 3+a 2b+ab 2+b 3)=____ __.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(; bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差公式与完全平方公式试题含答案
仁(2-1 )解:(2+1) (22+1) (24+1) =2=16102420482 +1) +12048(2 +1) +1乘法公式的复习一、复习:(a+b)(a-b)=a 2-b2 (a+b) 2=a2+2ab+b2 (a-b) 2=a2-2ab+b2归纳小结公式的变式,准确灵活运用公式:① 位置变化,(X4y y+X px2_y2 ② 符号变化,(以+y X4_y”_x j_y2= x 2_y2③ 指数变化,(X2*y2)(x2-y2尸x4y ④ 系数变化,(2a+b[2a—b)=4a2_b2⑤换式变化,Ry 飞z+m p[xy_(z+m)H xy)-(z+m j= X2y2-( z2+2zm+m)=x2y2—z2—2zmn^⑥增项变化,(x-y+z 胚―y—z R X—y j_z2以2-2xy +y2-z2⑦连用公式变化,x y x_y x2 y2 = x2_y2 x2 y2 =x^y4⑧逆用公式变化,(X-y+z 匚(X4y-Z $=[[x-y+z)飞x+y-z 卩耿-y+z 卜(x+y-z)]=2x(_2y +2z)一 4xy +4xz例1已知a • b = 2,ab =1,求a2 b2的值。
解:T (a b)2 =a22ab b2二a2b2 = (a b)2-2abI a b = 2, ab =1二a2b2=22_2 1 = 2例2•已知a=8,ab =2,求(a -b)2的值。
解:••• (a b)2=a22ab b2(a -b)2二a2-2ab b22 2 2 2(a b) 「(a -b) = 4ab 二(a b) - 4ab = (a -b)2 2■/ a b=8,ab = 2 • (a-b)2= 82- 4 2 =56例3:计算199*2000 X 1998〖解析〗此题中2000=1999+1, 1998=1999-1,正好符合平方差公式。
解:19992-2000 X 1998 =1999 2- (1999+1)X( 1999-1 )=1999 2- (19992-1 2) =199口19992+1 =1例4:已知a+b=2, ab=1,求a2+b2和(a-b) 2的值。
初中数学平方差完全平方公式练习题(附答案)
初中数学平方差完全平方公式练习题一、单选题1.下列各式添括号正确的是( )A.()x y y x --=--B.()x y x y -=-+C.105(2)m m -=-D.32(23)a a -=--2.(1)(1)y y +-=( )A.21+ yB.21y --C.21 y -D.21y -+ 3.下列计算结果为222ab a b --的是( )A.2()a b -B.2()a b --C.2()a b -+D.2()a b -- 4.()224454()2516a b a b -+=-,括号内应填( )A.2254a b +B.2254a b -C.2254a b --D.2254a b -+ 5.下列计算正确的是( )A.222()2x y x xy y --=---B.222(2)4m n m n +=+C.222(3)36x y x xy y -+=-+D.2211552524x x x ⎛⎫+=++ ⎪⎝⎭ 6.多项式3222315520m n m n m n +-各项的公因式是( )A.5mnB.225m nC.25m nD.25mn7.下列多项式中,能用平方差公式分解因式的是( )A.()22a b +-B.2520m mn -C.22x y --D.29x -+8.化简2(3)(6)x x x ---的结果为( )A.69x -B.129x -+C.9D.39x +9.下列多项式能用完全平方公式分解的是( )A.21x x -+B.212x x -+C.212a a ++D.222a b ab -+-10.计算(3)(3)a bc bc a ---的结果是( )A.2229b c a +B.2223b c a -C.2229b c a --D.2229a b c -+11.如果2(1)9x m x +-+是一个完全平方式,那么m 的值是( )A.7B.7-C.5-或7D.5-或512.若,,a b c 是三角形的三边之长,则代数式2222a bc c b +--的值( )A.小于0B.大于0C.等于0D.以上三种情况均有可能 二、解答题13.计算:(1)()()223535x y x y ---;(2)()291(13)(31)x x x +---.14.因式分解.(1) 2()3()m x y n x y ---(2)3218122a a a -+-15.用提公因式法将下列各式分解因式:(1)3224124a b a b ab -+-;(2)()2()a ab c a b -+-;(3)(34)(78)(1112)(78)a b a b a b a b --+--.16.分解因式:(1)2441x x -+;(2)2242025a ab b -+;(3)29()42()49a b a b -+-+;(4)2(2)8x y xy -+.17.分解因式:(1)22()()a a b b b a -+-;(2)2222x y x y -+-;(3)4416x y -.18.先化简,再求值:a(a ﹣2)﹣(a+1)(a ﹣1),其中12a =- 19.先阅读下列因式分解的过程,再回答所提出的问题:21(1)(1)x x x x x +++++23(1)[1(1)](1)(1(1).)x x x x x x x =++++=++=+(1)上述分解因式的方法是________,共应用__________了次;(2)若分解220181(1)(1)(1)x x x x x x x ++++++++,则需应用上述方法________次,结果是___________;(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++(n 为正整数). 三、填空题20.已知32xy x y =-+=,,则代数式22x y xy +的值是_________.21.2210b b -+=,则a = ,b = .22.已知22()40,()4000m n m n -=+=,则22m n +的值是___________.23.已知4,2a b ab -==-,则224a ab b ++的值为 .24.计算(44的结果等于 .25.计算:()()()22a b a b a b -++= .参考答案1.答案:D解析:()x y x y --=-+,故A 错误;()x y x y -=--+,故B 错误;易知C 错误.故选D.2.答案:C解析:本题考查平方差公式.由平方差公式可得222(1)(1)11y y y y +-=-=-,故选C.3.答案:D解析:222222()2,()()a b a ab b a b a b a -=-+--=+=+22222222,()2,()2ab b a b a ab b a b a ab b +-+=-----=-+-.故选D.4.答案:C解析:()()()(22222225454545a b a b a b a -+--=-+)24442516,b a b =-∴括号内应填2254a b --.故选C.5.答案:D解析:222()2x y x xy y --=++,故A 错误;222(2)44m n m mn n +=++,故B 错误;222(3)96x y x xy y -+=-+,故C 错误;2211552524x x x ⎛⎫+=++ ⎪⎝⎭,故D 正确.故选D. 6.答案:C解析:多项式3222315520m n m n m n +-中,各项系数的最大公约数是5,各项都含有的相同字母是,m n ,字母m 的最低次数是2,字母n 的最低次数是1,所以各项的公因式是25m n .故选C.7.答案:D解析:A 选项,2a 与()2b -符号相同,不能用平方差公式分解因式,故A 选项错误;B 选项,2520m mn -()54m m n =-,不能用平方差公式分解因式,故B 选项错误;C 选项,2x 与2y 符号相同,不能用平方差公式分解因式,故C 选项错误;D 选项,22293x x -+=-+,两项符号相反,能用平方差公式分解因式,故D 选项正确.故选D.8.答案:C解析:222(3)(6)6969x x x x x x x ---=-+-+=.故选C.9.答案:B解析:A,C,D 项不符合完全平方式的形式,故不能用完全平方公式分解因式;B 项,2212(1)x x x -+=-,能用完全平方公式分解因式.故选B.10.答案:D解析:(3)(3)(3)(3)a bc bc a a bc a bc ---=--+=2229a b c -+.故选D.11.答案:C解析:2(1)9x m x +-+是一个完全平方式,(1)23m x x ∴-=±⋅⋅,16m ∴-=±,57m ∴=-或,故选:C.12.答案:B解析:()2222222222()a bc c b a b bc c a b c +--=--+=--=[()][()]()()a b c a b c a b c a c b +---=+-+-,因为三角形的任意两边之和大于第三边,所以00a b c a c b +->+->,,因此原式大于0.故选B.13.答案:(1)()()223535x y x y ---()()()22222245353(5).3259y x y x y x y x =---+=--=- (2)()291(13)(31)x x x +---()()()()()2222222224(31)(31)91(3)19191919181 1.x x x x x x x x x =-+--+⎡⎤=--+⎣⎦=-+=-=- 解析:14.答案:(1)()(23)x y m n -+(2)略解析:15.答案:(1)3224124a b a b ab -+-()()224434431.ab a b ab a abab a b a =-⋅-⋅+=--+(2)()2()a ab c a b -+-()()()().a abc a b a b a c =-+-=-+ (3)(34)(78)(1112)(78)a b a b a b a b --+--2(78)(341112)(78)(1416)2(78)(78)2(78).a b a b a b a b a b a b a b a b =--+-=--=--=- 解析:16.答案:(1)22441(21)x x x -+=-.(2)22242025(25)a ab b a b -+=-.(3)29()42()49a b a b -+-+22[3()7](3.37)a b a b =-+=-+(4)2(2)8x y xy -+2222244844(.2)x xy y xyx xy y x y =-++=++=+ 解析:17.答案:(1)22()()a a b b b a -+-()22222()()()()()()()().a a b b a b a b a b a b a b a b a b a b =---=--=--+=-+(2)2222x y x y -+-()22(22)()()2()()(2).x y x y x y x y x y x y x y =-+-=+-+-=-++(3)4416x y - ()()()()()22222222224444(2)(2).x y x y x y x y x y x y =-=+-=++- 解析:18.答案:化简得-2a+1;2解析:19.答案:(1)提公因式法;2(2)2018;2019(1)x +(3)21(1)(1)(1)n x x x x x x x ++++++++212221(1)1(1)(1)(1)(1)1(1)(1)(1)(.1)n n n x x x x x x x x x x x x x x x x x --+⎡⎤=+++++++++⎣⎦⎡⎤=+++++++++⎣⎦=+解析:20.答案:-6解析:因为32x x y =-+=,,所以22()326x y xy xy x y +=+=-⨯=-.21.答案:-2 1 解析:22(1)0a b ++-=,∴ 20,10a b +=-=,2,1a b =-=22.答案:2020解析:22222()240,()m n m mn n m n m -=-+=+=+224000mn n +=,两等式相加,得()2224040m n +=,所以222020m n +=.23.答案:4解析:4,2a b ab -==-,()2222a b a b ab ∴+=-+()242212=+⨯-=,224a ab b ∴++()12424=+⨯-=.故答案为4.24.答案:9解析:根据平方差公式得,原式2241679=-=-=.25.答案:44a b -解析:原式()()222244a b a b a b =-+=-.。
七年级完全平方公式、平方差公式经典习题
平方差公式经典习题一、选择题1.下列各式能用平方差公式计算的是:( )A .)23)(32(a b b a --B .)32)(32(b a b a --+-C .)23)(32(a b b a +--D .)23)(32(b a b a +- 2.下列式子中,不成立的是:( )A.22)())((z y x z y x z y x --=--+- B .22)())((z y x z y x z y x --=---+ C .22)())((y z x z y x z y x --=-+-- D .22)())((z y x z y x z y x +-=++--3.()4422916)43(x y y x -=-- ,括号内应填入下式中的( ). A .)43(22y x - B .2234x y - C .2243y x -- D .2243y x +4.对于任意整数n ,能整除代数式)2)(2()3)(3(-+--+n n n n 的整数是( ). A .4 B .3 C .5 D .25.在))((b a y x b a y x ++--++ 的计算中,第一步正确的是( ).A .22)()(a y b x --+B .))((2222b a y x --C .22)()(b y a x --+D .22)()(a y b x +-- 6.计算)1)(1)(1)(1(24-+++x x x x 的结果是( ). A .18+x B .14+x C .8)1(+x D .18-x 7.)1)(1)(1(222++-+c b a abc abc 的结果是( ).A .1444-c b aB .4441c b a -C .4441c b a --D .4441c b a +二、填空题1.()()22)4)(4(-=+-x x . 2.=-+++)1)(1(b a b a ( )2-( )2.3.=-+)68)(68(n m n m ______________. 4.=---)34)(34(ba b a _______________ . 5.=+-+))()((22b ab a b a _______________ .6.=-+++)2)(2(y x y x _______________ .7.)3(y x +( )=229x y - . 8.( )21)1(a a -=- .9.22916)4)(3(a b n b m a -=++- ,则._______________,==n m 10..________99.001.1=⨯ . 三、判断题1.226449)87)(87(n m m n n m -=-+ .( ) 2.116)14)(14(22-=-+b a ab ab .( ) 3.229)23)(23(x x x -=-+ .( ) 4.22))((b a b a b a -=-- .( ) 5.224)2)(2(y x y x y x -=+-- .( ) 6.6)6)(6(2-=+-x x x .( )7.22251)15)(15(y x xy xy -=+-+ .( )四、解答题1.用平方差公式计算:(1))231)(312(a b b a --- (2)))((y x y x n n -+ ;(3))3)(9)(3(2++-a a a ;(4)))((y x y x --- (5))23)(23()32)(32(n m n m n m n m +---+ ;(6))()())((2222a a b a b a -⋅---+ ;(7))23)(23(+--+b a b a ;(8))543)(534(c b a c a b +--+;(9)9288⨯ (10)76247125⨯ . 2.计算:(1)1999199719982⨯- ;(2))54)(2516)(54(2++-x x x ;(3))32)(32(c b a c b a -++- ; (4))65)(32)(56)(23(a b a b b a b a +--+ ;(5))161)(14)(12)(12(16142+++-x x x x ;(6)1)12()12)(12)(12)(12(64842++++++ .3、计算:(1)若,12,322=-=+y x y x 求y x -的值。
平方差、完全平方公式专项练习题
平方差公式专项练习题A卷:基础题一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数B.只能是单项式C.只能是多项式D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a)B.(-a+b)(a-b)C.(13a+b)(b-13a)D.(a2-b)(b2+a)3.下列计算中,错误的有()①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.A.1个B.2个C.3个D.4个4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题5.(-2x+y)(-2x-y)=______.6.(-3x2+2y2)(______)=9x4-4y4.7.(a+b-1)(a-b+1)=(_____)2-(_____)2.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113.10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题一、七彩题1.(多题-思路题)计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.(一题多变题)利用平方差公式计算:2009×2007-20082.(1)一变:利用平方差公式计算:22007200720082006-⨯.(2)二变:利用平方差公式计算:22007 200820061⨯+.二、知识交叉题3.(科内交叉题)解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).三、实际应用题4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?四、经典中考题5.(2007,,3分)下列运算正确的是()A.a3+a3=3a6B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3D.(-13a-4b)(13a-4b)=16b2-19a26.(2008,,3分)计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=______.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a-b)(a+b)=_______.②(a-b)(a2+ab+b2)=______.③(a-b)(a3+a2b+ab2+b3)=______.2.(结论开放题)请写出一个平方差公式,使其中含有字母m,n和数字4.3.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形纸板后,•将剩下的纸板沿虚线裁成四个相同的等腰梯形,如图1-7-1所示,然后拼成一个平行四边形,如图1-7-2所示,分别计算这两个图形阴影部分的面积,结果验证了什么公式?请将结果与同伴交流一下.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
平方差与完全平方公式专练
整式的运算专练【平方差专练】:【基础训练】: 一、填空题:1、()()___________11x =-+x2、()()__________11x =--+-x3、(a +3)(a -3)=______4、(-a -b )(a -b )=____________5、(a -6)(6+a)=( )2-( )26、(4x +y)( )=16x 2-y 27、(m +n)( )=m 2-n 28、( )(1-a)=1-a 29、(-x-y)(x-y)=( )2-( )210、(m +4)(______)=m 2-16. 11、16x 2-9y 2=(4x +3y )(_________). 二、选择题:1、在下列多项式的乘法中,并不能用平方差公式计算的是( )A 、()()b a b a ---B 、()()2222c d d c +-C 、()()3333y x y x +-D 、()()n m n m +--2、下列多项式乘法中,可以用平方差公式计算的是( ) ()()x y A ++y x . ()()y x y x B 2332.+- ()()y x y x C +--. ()()b x b x D ++-22.3、下列各式的计算结果,正确的是( )()()842x .2-=-+x x A ()()131313.22-=+-y x xy xy B ()()22933.y x y x y x C -=++- ()()2x 164x 4x .-=+--D4、下列两个多项式相乘,哪些不可以用平方差公式( ) A .2m)3n)(3n (2m --; B.)5xz 4y 4z)(5xy (--+-;C .c)b a)(a c (b --++; D.)8x y x 31)(xy 31(8x 3223+-.5、在下列多项式的乘法中,可以用平方差公式计算的是( )A.(x+1)(1+x)B.(21a+b)(b-21a) C.(-a+b)(a-b)D.(x 2-y)(x+y 2)6、计算++,结果等于( )、用平方差公式计算(x-1)(x+1)(x 2+1)的结果正确的是( ) +1 C.(x-1)4 D.(x+1)4 8、在下列各式中,运算结果是x 2-36y 2的是( )A.(-6y+x)(-6y-x)B.(-6y+x)(6y-x)C.(x+4y)(x-9y)D.(-6y-x)(6y-x)9、下列各式能用平方差公式的是( ) A .(a +3)(a +4) B .(a -b )(a -b ) C .(c +2)(c +2) D .(4d -1)(-4d -1)10、下列各式,计算正确的是( ) A .(a +4)(a -4)=a 2-4 B .(2a +3)(2a -3)=2a 2-9 C .(5ab +1)(5ab -1)=25a 2b 2-1 D .(a +2)(a -4)=a 2-811、等式(-3x 2-4y 2)( )=16y 4-9x 4中,括号内应填入( ) A .3x 2-4y 2 B .4y 2-3x 2 C .-3x 2-4y 2 D .3x 2+4y 2 12、计算(2a -5)(-5-2a )的结果是( )A .4a 2-5 B .4a 2-25 C .25-4a 2 D .4a 2+25 13、下列各式中,结果等于36-x 2的是( ) A .(x +6)(x -6) B .(x +6)(-x -6) C .(-x -6)(x -6) D .(-x +6)(-x -6)14、若x 2-y 2=20,且x +y =-5,则x -y 的值是( ) A .5 B .4 C .-4 D .以上都不对 三、判断(正确的在括号内打“√”,错误的在括号内打“×”)(1)(2b+3a)(2b-3a)=4b 2-3a( ) (2)(2x 2-y)(-2x 2-y)=4x 2-y 2( )(3)(31p-21q)(21p+31q)=91p 2-41q 2( ) (4)(71x 2+5y 2)(71x 2-5y 2)=49x 2-25y 2( )四、应用平方差公式计算: 1、(1)(2x -y)(-2x -y) (2)(2x 2+3y)(2x 2-3y) (3)(3m+2n )(3m-2n )(4)(b+2a )(2a-b ) (5))221)(221(y x y x --+- (6)(-4a-1)(4a-1)(7)(2m +3n )(2m -3n ); (8)(-3+2x )(-3-2x ); (9)(3a +4b )(4b -3a );(10)(2a 2+3b )(2a 2-3b ); (11))31)(31(a b b a --- (12)(a -3)(a+3)(a 2+9)(13)65( 65(14)(x +y)(x -y)+(2x +y)(2x -y) (15))x )(y y x (2332---2.简便计算(1)× (2)88×92 (3)418437⨯ (4)132×128【能力提升】: 1、填空题(1)()()2949_________73x x -=-- ( )(—2x+3y)=9y 2—4x 2 (2)(21x+32y)(-32y+21x)= (3)计算______________12()12)(12)(12(242=++++)n(4)______________12979899100222222=-+⋯⋯+-+- (5)已知()()__________________y -x ,42222=+=-y x y x 那么(6)()()()()___________4422=++-+b aba b a b a2、已知x -y =2,y -z =2,x +z =14.求x 2-z 2的值.3、已知(a +b -3)2+(a -b +5)2=0.求a 2-b 2的值.【完全平方公式】【基础知识精讲】1.完全平方公式的结构特征:公式的左边是两个数的和(或差)的平方,右边是一个二次三项式,其中的两项是这两个数的平方和,另一项是这两个数的乘积的2倍,并且符号与左边两数间的符号一致,即左边是两数的和,右边就加上两数乘积的2倍,左边是两数的差,右边就减去两数乘积的2倍.2.在应用完全平方公式的过程中,常有以下几种变化形式: (1)a 2+b 2=(a +b )2-2ab ; (2)a 2+b 2=(a -b )2+2ab ; (3)2ab =(a +b )2-(a 2+b 2);(4)2ab =(a 2+b 2)-(a -b )2; (5)(a +b )2=(a -b )2+4ab ; (6)(a -b )2=(a +b )2-4ab .3.公式中的字母a 、b 既可以表示一个具体的数,也可以表示一个单项式或者一个多项式. 【基础练习】 一、填空题:1、(1)()__________12=-x (2) ()()_________11=++x x (3)(-21m -1)2=_________.2、(1)=+2)2(n m ________; (2)=--2)13(x ________;(3)=⎪⎭⎫ ⎝⎛-23243n m ________;(4)=+-2)32(y x ________; (5)=⎪⎭⎫⎝⎛+-223.032a a ________; (6)=⎪⎭⎫ ⎝⎛--2261z y x ________;(7)[]=--227)3(a ________; (8)=-2)1(c b a n m ________; (9)=-2n )32(y x m ________;3、(1)22216____________)3(y x x +-=-; (2)a 2-4ab+( )=(a-2b)2(3)( -2)2= -21x+ (4)(3a 2-2a+1)(3a 2+2a+1)=(5)( )-24a 2c 2+( )=( -4c 2)2 (6)x 2+(____________)+4y 2=(x -2y )2.(7)(2a +b )2=(2a -b )2+(________). (8)(4a +_______)2=16a 2+4a +_______.4、(1)()()______22=--+b a b a (2)()________222-+=+b a b a(3)(x -y )2=(x +y )2-(____________). (4)(a+b)2-( )=(a-b)25、若(2)2222n m n m +=-+t ,则t =________. 二、选择题:1、下列等式能够成立的是( ).A .222121⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-x xB .222121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-x x C .412122-=⎪⎭⎫ ⎝⎛-x x D .412122+=⎪⎭⎫ ⎝⎛+x x 2、下列等式能够成立的是( ).A .222)(y xy x y x +-=-B .2229)3(y x y x +=+C .2224121y xy x y x +-=⎪⎭⎫ ⎝⎛- D .9)9)(9(2-=+-m m m3、在括号 内选入适当的代数式使等式2241525)(215y xy x y x +-=⎪⎭⎫ ⎝⎛-成立,是( ). A .y x 215-B .y x 215+C .y x 215+-D .y x 215-- 4、22)(b a --等于( ).A .222b ab a +--B .2242b b a a +--C .2242b b a a ++D .442b ab a --5、下列各式计算正确的是( ).A .222414212y xy x y x +-=⎪⎭⎫ ⎝⎛-B .1054152122++=⎪⎭⎫⎝⎛+x x xC .2244)2(y xy x y x +-=-D .44)2(22+-=--x x x 6、计算:=+2)(bc a ( ).A .222c b a +B .222b ab a ++C .222bc abc a ++D .2222c b abc a ++7、乘法公式中a 、b 可表示( ).A .数B .多项式C .单项式D .单项式、多项式都行8、计算:=2501( ).A .250501B .251001C .251001D .以上结果都不对9、2121⎪⎭⎫⎝⎛--+n n ab b a 的运算结果是( ).A .122222241++++-n n n n b a b a b aB .122222241+++++n n n n b a b a b aC .122222241++++--n n n n b a b a b aD .12222241+++-+-n n n n b a b a a10、在222)(2)()(b b c b a ++=++中,两个括号内应填( ).A .b a +B .c b +C .c a +D .c b a ++11、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-912、在括号内选入适当的代数式使等式(5x-21y)·( )=25x 2-5xy+41y 2成立.21 +21y +21y 21 13、(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( ).+40x 2y 2-16y 2 +16y 214、边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )+n 215、如图,长方形的长为a ,宽为b ,横向阴影部分为长方形, 另一阴影部分为平行四边形,它们的宽都为c,则空白部分的面积是…. ( ) A 、ab -bc +ac -c 2 B 、ab -bc -ac +c 2 C 、ab - ac -bc D 、ab - ac -bc -c 2 三、解答题: 1、计算:(1)(2a +1)2; (2)(23x -32y )2; (3)(-4a -3b )2; (4)2b)a (--(5)(3a +2b )2 (6)(mn -n 2)2 (7)(2y-1)2 (8)(1-2y)2(9)(-5a -2)(5a +2) (10)2221⎪⎭⎫⎝⎛-y x ; (11)(-2a-b)2(12)2231⎪⎭⎫ ⎝⎛--n m ; (13)2241⎪⎭⎫ ⎝⎛+-xy x ; (14)(3y+2x)22、计算:(1)(x +2y )2-(x -2y )2 (2) ()()2222b a b a ---+3、计算:(1)=-+22)1()1(x x ________; (2)=2)9.99(________; (3)=⎪⎭⎫⎝⎛2219________; (5)22__)(_________9)63(=+x ; (6)22__)(_________31814=⎪⎭⎫ ⎝⎛+x .4、计算: (1)982 (2)9992; (3)1022. (4)20012 (5)23130⎪⎭⎫⎝⎛5、列方程解应用题:(1)正方形的边长增大5cm ,面积增大2cm 75.求原正方形的边长及面积. (2)正方形的一边增加4厘米,邻边减少4厘米,所得的矩形面积与这个正方形的边长减少2厘米所得的正方形的面积相等,求原正方形的边长. 6、已知12,3-==+ab b a ,求下列各式的值.(1)a 2+b 2 (2)22b ab a +-(3)2)(b a -.7、已知(a +b )2=7,(a -b )2=4,求a 2+b 2和ab 的值.【能力提高】: 一、选择题:1、化简:223232⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+x x 的值是( )A 、4x B 、5x C 、6x D 、8x2、如果42++mx x 是一个完全平方式,那么m 的值是( ) A 、4 B 、-4 C 、4± D 、8±3、如果多项式92+-mx x 是一个完全平方式,则m 的值是( ) A 、±3 B 、3 C 、±6 D 、64、如果多项式k x x ++82是一个完全平方式,则k 的值是( ) A 、-4 B 、4 C 、-16 D 、165、如果x 2+kx+81是一个完全平方式,那么k 的值是( ). 或-9 或-186、22)1(++x x 的展开式化简后共有( )项.A .9项B .6项C .5项D .4项7、(a+3b)2-(3a+b)2计算的结果是( ). (a-b)2 (a+b)2【中考真题演练】1.选择题(1)若(2x -3)2=4x 2+2kx +9,则k 的值为( )A .12B .-12C .6D .-6(2)若a 2+2ab +b 2=(a -b )2+A ,则A 的值为( )A .2abB .-abC .4abD .-4ab (3)(m +3)(-m -3)等于( )A .-m 2-6m -9 B .-m 2+6m +9 C .m 2-6m +9D .-m 2+6m -9(4)已知a -b =3,ab =10,那么a 2+b 2的值为( )A .27B .28C .29D .30A .2B .-2C .2或-2D .1或-1A .25B .23C .12D .11 2.计算:(1))213)(321(x y y x -- (2)(x -3)(3-x ); (3)(-4x-3y )2;(4)(2a +1)2(2a -1)2; (5)(x 2+y 2)2(x+y)2(x-y)23.已知x +y =m ,xy =n ,求(x -y )2和x 2+y 2的值.4、已知a+b=7,a 2+b 2=25,求(1)ab ,(2)(a-b)2的值。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
平方差公式与完全平方公式试题含答案
乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2归纳小结公式的变式,准确灵活运用公式:① 位置变化,?x ?y ???y ?x ??x 2?y 2 ② 符号变化,??x ?y ???x ?y ????x ?2?y 2? x 2?y 2 ③ 指数变化,?x 2?y 2??x 2?y 2??x 4?y 4 ④ 系数变化,?2a ?b ??2a ?b ??4a 2?b 2⑤ 换式变化,?xy ??z ?m ???xy ??z ?m ????xy ?2??z ?m ?2? x 2y 2??z 2?2zm +m 2??x 2y 2?z 2?2zm ?m 2 ⑥ 增项变化,?x ?y ?z ??x ?y ?z ???x ?y ?2?z 2 ?x 2?2xy ?y 2?z 2⑦ 连用公式变化,?x ?y ??x ?y ??x 2?y 2???x 2?y 2??x 2?y 2??x 4?y 4⑧ 逆用公式变化,?x ?y ?z ?2??x ?y ?z ?2???x ?y ?z ???x ?y ?z ????x ?y ?z ???x ?y ?z ???2x ??2y ?2z ? ??4xy ?4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a 222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+b a ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +-∴-+2)(b a =-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+b a ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
(完整版)完全平方公式专项练习题(最新整理)
A.5
B. 1
C.- 1
5
5
D.-5
11.下列四个算式:①4x2y4÷ 1 xy=xy3;②16a6b4c÷8a3b2=2a2b2c;③ 4
9x8y2÷3x3y=3x5y;
④(12m3+8m2-4m)÷(-2m)=-6m2+4m+2,其
中正确的有(我眼睛不行了,看不到上标)
A.0 个
B.1 个 C.2 个
试比较 M 与 N 的大小 略
5、已知 a 2 a 1 0 ,求 a3 2a 2 2007 的值.
已知条件知:a2+a=1 a3+2a2+2007=a(a2+2a)+2007=a(a2+a+a)+2007=a(1+a)+2007 =a2+a+2007+1+2007=2008
Commented [焦文灿 7]: 自己计算
Commented [焦文灿 8]: 和第一页的提高题完全一样,又 一次出现,再次提醒归纳此类类型于重点题本上!! Commented [焦文灿 10]: 和第一题类似,此类题目均无 所复杂的解的 x 数值,整体代换即可,也建议将此题作为 一个类型归纳!!
去较小的正方形的面积,差是__10___.
2007 (1)利用平方差公式计算: 20072 2008 2006 .
已解决
20072
(2)利用平方差公式计算:
.
2008 2006 1
已解决 3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).
-1-
Commented [焦文灿 1]: 此三题一个类型,已给予详细解 析。此题应给予重点标记(最好记录在重点题本),时常拿 出来看下。 中考卷参考
平方差公式与完全平方公式练习题含答案
平方差公式一、填空题 1.(x+6)(6-x)= ,11()()22x x -+--= . 2.⋅--)52(b a ( )22254b a -=3.(x-1)(2x +1)( )=4x -1.4.(a+b+c)(a-b-c)=[a+( )][a-( )].5. 18201999⨯= ,403×397= . 二、选择题1.下列式中能用平方差公式计算的有( )①(x-12y)(x+12y), ②(3a-bc)(-bc-3a), ③(3-x+y)(3+x+y), ④(100+1)-(100-1)A.1个B.2个C.3个D.4个2、下列式中,运算正确的是( )①222(2)4a a =, ②2111(1)(1)1339x x x -++=-, ③235(1)(1)(1)m m m --=-, ④232482a b a b ++⨯⨯=.A.①②B.②③C.②④D.③④3.乘法公式中的字母a 、b 表示( )A.只能是数B.只能是单项式C.只能是多项式D.数字、单项式、•多项式都可以二、解答题1、(2x+3y)(2x-3y)2、a(a -5)-(a+6)(a -6)3、 ( x+y)( x -y)( x 2+y 2)4、 9982-4完全平方公式一、填空1. (a +2b )2=a 2+ +4b 2.2. (3a -5)2=9a 2+25- .3. a 2-4ab+( )=(a-2b)24. (a+b)2-( )=(a-b)25. (3x+2y)2-(3x-2y)2=6. 49a 2- +81b 2=( +9b )2.7. (-2m -3n )2= .8. (a -b +c )2= .二、选择题1、在括号内选入适当的代数式使等式(5x-y)·( )=25x 2-5xy+y 2成立.A.5x-yB.5x+yC.-5x+yD.-5x-y2、下列等式能成立的是( ).A.(a-b)2=a 2-ab+b 2B.(a+3b)2=a 2+9b 2C.(a+b)2=a 2+2ab+b 2D.(x+9)(x-9)=x 2-93、如果x 2+kx+81是一个完全平方式,那么k 的值是( ).A.9B.18C.9或-9D.18或-184、边长为m 的正方形边长减少n(m >n)以后,所得较小正方形的面积比原正方形面积减少了( )A.n 2B.2mnC.2mn-n 2D.2mn+n 2三、解答题1.(1)(-2a +5b )2; (2)(x -3y -2)(x +3y -2);(3)(2a +3)2+(3a -2)2;2.用简便方法计算:(1)972; (2)20022;(3)992-98×100; (4)49×51-2499214121212121平方差公式参考答案一.填空题1、236x -2、b a 52+-3、1+x4、)(c b +,)(c b +5、8180399,159991 二、选择题1-3 DCD三、解答题(1)2294y x - (2)、a 536- (3)44y x - (4)、996000 完全平方公式参考答案一、填空1、ab 42、a 303、24b4、ab 45、xy 246、ab 126- ,a 77、229124n mn m ++8、bc ab ac c b a 222222--+++二、选择题 1-4 ACDC三、解答题1、(1)2225204b ab a +- (2) 49422++-y x x (3) 13132+a2、(1)9409 (2)4008004 (3)1 (4)0。
(完整)七年级数学下---平方差、完全平方公式专项练习题
七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题: 5、(a+b-1)(a-b+1)=(_____)2-(_____)2.6.(-2x+y)(-2x-y)=______.7.(-3x2+2y2)(______)=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113. 10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.式计算:2009×2007-20082. 3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).(1)计算:22007200720082006-⨯.(2)计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是() A.a3+a3=3a6 B.(-a)3·(-a)5=-a8C.(-2a2b)·4a=-24a6b3 D.(-13a-4b)(13a-4b)=16b2-19a26.计算:(a+1)(a-1)=______.C卷:课标新型题1.(规律探究题)已知x≠1,计算(1+x)(1-x)=1-x2,(1-x)(1+x+x2)=1-x3,(1-x)(•1+x+x2+x3)=1-x4.(1)观察以上各式并猜想:(1-x)(1+x+x2+…+x n)=_____ _.(n为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______.②2+22+23+…+2n=______(n为正整数).③(x-1)(x99+x98+x97+…+x2+x+1)=_______.(3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______ . ②(a -b )(a 2+ab+b 2)=_____ _. ③(a -b )(a 3+a 2b+ab 2+b 3)=____ __.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(; bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
实用版平方差完全平方公式专项练习题精品
平方差与完全平方式一、平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方之差。
2、即:(a+b)(a-b) = 相同符号项的平方 - 相反符号项的平方3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
3、能否运用平方差公式的判定①有两数和与两数差的积即:(a+b)(a-b)或(a+b)(b-a)②有两数和的相反数与两数差的积即:(-a-b)(a-b)或(a+b)(b-a)③有两数的平方差即:a2-b2 或-b2+a2二、完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()caba-+(2)()()xyyx+-+(3)()()abxxab---33(4)()()nmnm+--2.判断:(1)()()22422baabba-=-+()(2)1211211212-=⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+xxx()(3)()()22933yxyxyx-=+--()(4)()()22422yxyxyx-=+---()(5)()()6322-=-+aaa()(6)()()933-=-+xyyx()3、计算:(1))4)(1()3)(3(+---+aaaa(2)22)1()1(--+xyxy(3))4)(12(3)32(2+--+aaa(4))3)(3(+---baba(5)22)3(xx-+(6)22)(yxy+-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。
实用版平方差完全平方公式专项练习题精品
平方差与完全平方式一、平方差公式:(a+b)(a-b)=a2-b2两数和与这两数差的积,等于它们的平方之差。
2、即:(a+b)(a-b) = 相同符号项的平方 - 相反符号项的平方3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。
3、能否运用平方差公式的判定①有两数和与两数差的积即:(a+b)(a-b)或(a+b)(b-a)②有两数和的相反数与两数差的积即:(-a-b)(a-b)或(a+b)(b-a)③有两数的平方差即:a2-b2 或-b2+a2二、完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或(a-b)2或(-a-b)2或(-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a2+2ab+b2或a2-2ab+b2-a2-2ab-b2或-a2+2ab-b2随堂练习:1.下列各式中哪些可以运用平方差公式计算(1)()()caba-+(2)()()xyyx+-+(3)()()abxxab---33(4)()()nmnm+--2.判断:(1)()()22422baabba-=-+()(2)1211211212-=⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛+xxx()(3)()()22933yxyxyx-=+--()(4)()()22422yxyxyx-=+---()(5)()()6322-=-+aaa()(6)()()933-=-+xyyx()3、计算:(1))4)(1()3)(3(+---+aaaa(2)22)1()1(--+xyxy(3))4)(12(3)32(2+--+aaa(4))3)(3(+---baba(5)22)3(xx-+(6)22)(yxy+-4.先化简,再求值:⑴(x+2)2-(x+1)(x-1),其中x=1.5(3) )2)(2(2))(2()2(2b a b a b a b a b a +--+--+,其中2,21-==b a .(4) (2a -3b)(3b +2a)-(a -2b )2,其中:a=-2,b=35..有这样一道题,计算:2(x+y )(x -y)+[(x+y )2-xy]+ [(x -y )2+xy]的值,其中x=2006,y=2007;某同学把“y=2007”错抄成“y=2070”但他的计算结果是正确的,请回答这是怎么回事?试说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下---平方差、完全平方公式专项练习题平方差:一、选择题1.平方差公式(a+b)(a-b)=a2-b2中字母a,b表示()A.只能是数 B.只能是单项式 C.只能是多项式 D.以上都可以2.下列多项式的乘法中,可以用平方差公式计算的是()A.(a+b)(b+a) B.(-a+b)(a-b C.(13a+b)(b-13a) D.(a2-b)(b2+a)3.下列计算中,错误的有() A.1个 B.2个 C.3个 D.4个①(3a+4)(3a-4)=9a2-4;②(2a2-b)(2a2+b)=4a2-b2;③(3-x)(x+3)=x2-9;④(-x+y)·(x+y)=-(x-y)(x+y)=-x2-y2.4.若x2-y2=30,且x-y=-5,则x+y的值是()A.5 B.6 C.-6 D.-5二、填空题: 5、(a+b-1)(a-b+1)=(_____)2-(_____)2.6.(-2x+y)(-2x-y)=______.7.(-3x2+2y2)(______)=9x4-4y4.8.两个正方形的边长之和为5,边长之差为2,那么用较大的正方形的面积减去较小的正方形的面积,差是_____.三、计算题9.利用平方差公式计算:2023×2113. 10.计算:(a+2)(a2+4)(a4+16)(a-2).B卷:提高题1.计算:(1)(2+1)(22+1)(24+1)…(22n+1)+1(n是正整数);(2)(3+1)(32+1)(34+1)…(32008+1)-401632.2.式计算:2009×2007-20082. 3.解方程:x(x+2)+(2x+1)(2x-1)=5(x2+3).(1)计算:22007200720082006-⨯.(2)计算:22007200820061⨯+.4.广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?5.下列运算正确的是( ) A .a 3+a 3=3a 6 B .(-a )3·(-a )5=-a 8C .(-2a 2b )·4a=-24a 6b 3D .(-13a -4b )(13a -4b )=16b 2-19a 26.计算:(a+1)(a -1)=______. C 卷:课标新型题1.(规律探究题)已知x ≠1,计算(1+x )(1-x )=1-x 2,(1-x )(1+x+x 2)=1-x 3,(1-x )(•1+x+x 2+x 3)=1-x 4.(1)观察以上各式并猜想:(1-x )(1+x+x 2+…+x n)=_____ _.(n 为正整数)(2)根据你的猜想计算:①(1-2)(1+2+22+23+24+25)=______. ②2+22+23+ (2)=______(n 为正整数).③(x -1)(x 99+x 98+x 97+…+x 2+x+1)=_______. (3)通过以上规律请你进行下面的探索:①(a -b )(a+b )=_______ . ②(a -b )(a 2+ab+b 2)=_____ _. ③(a -b )(a 3+a 2b+ab 2+b 3)=____ __.2.(结论开放题)请写出一个平方差公式,使其中含有字母m ,n 和数字4.完全平方公式变形的应用完全平方式常见的变形有:ab b a b a 2)(222-+=+;ab b a b a 2)(222+-=+ab b a b a 4)(22=--+)(; bc ac ab c b a c b a 222)(2222---++=++1、已知m 2+n 2-6m+10n+34=0,求m+n 的值2、已知0136422=+-++y x y x ,y x 、都是有理数,求y x 的值。
3、已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
练一练 A 组:1.已知()5,3a b ab -==求2()a b +与223()a b +的值。
2.已知6,4a b a b +=-=求ab 与22a b +的值。
3、已知224,4a b a b +=+=求22a b 与2()a b -的值。
4、已知(a +b)2=60,(a -b)2=80,求a 2+b 2及a b 的值。
B 组:5、已知6,4a b ab +==,求22223a b a b ab ++的值。
6、已知16x x-=,求221x x +的值。
7、已知222450x y x y +--+=,求21(1)2x xy --的值。
8、0132=++x x ,求(1)221x x +(2)441xx +9、试说明不论x,y 取何值,代数式226415x y x y ++-+的值总是正数。
10、已知三角形ABC的三边长分别为a,b,c且a,b,c满足等式22223()()a b c a b c ++=++,请说明该三角形是什么三角形?整式的乘法、平方差公式、完全平方公式、整式的除法综合题一、请准确填空1、若a 2+b 2-2a +2b +2=0,则a 2004+b 2005=________.2、一个长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为________.3、5-(a -b )2的最大值是________,当5-(a -b )2取最大值时,a 与b 的关系是________. 4.要使式子0.36x 2+41y 2成为一个完全平方式,则应加上________. 5.(4a m+1-6a m)÷2am -1=________ . 6.29×31×(302+1)=________.7.已知x 2-5x +1=0,则x 2+21x =________. 8.已知(2005-a )(2003-a )=1000,请你猜想(2005-a )2+(2003-a )2=________. 二、相信你的选择9.若x 2-x -m =(x -m )(x +1)且x ≠0,则m 等于( )A.-1B.0C.1D.210.(x +q )与(x +51)的积不含x 的一次项,猜测q 应是( )A.5B.51C.-51D.-511. 下列四个算式:①4x 2y 4÷41xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 2b 2c ; ③9x 8y 2÷3x 3y =3x 5y ;12. ④(12m 3+8m 2-4m )÷(-2m )=-6m 2+4m +2,其中正确的有( ) A.0个B.1个C.2个D.3个13.设(x m -1y n +2)·(x 5m y -2)=x 5y 3,则m n 的值为( )A.1 B.-1 C.3D.-314.计算[(a 2-b 2)(a 2+b 2)]2等于( ) A.a 4-2a 2b 2+b 4B.a 6+2a 4b 4+b 6C.a 6-2a 4b 4+b 6D.a 8-2a 4b 4+b 815.已知(a +b )2=11,ab =2,则(a -b )2的值是( )A.11 B.3C.5D.1916.若x 2-7xy +M 是一个完全平方式,那么M 是( ) A.27y 2B.249y 2C.449y 2D.49y 217.若x ,y 互为不等于0的相反数,n 为正整数,你认为正确的是( ) A.x n 、y n 一定是互为相反数 B.(x1)n 、(y1)n 一定是互为相反数C.x 2n 、y 2n 一定是互为相反数D.x 2n -1、-y 2n -1一定相等 三、考查你的基本功:18.计算(1)(a -2b +3c )2-(a +2b -3c )2; (2)[ab (3-b )-2a (b -21b 2)](-3a 2b 3); (3)-2100×0.5100×(-1)2005÷(-1)-5;(4)[(x +2y )(x -2y )+4(x -y )2-6x ]÷6x . 19.解方程x (9x -5)-(3x -1)(3x +1)=5.四、探究拓展与应用:20.计算.(2+1)(22+1)(24+1)=(2-1)(2+1)(22+1)(24+1)=(22-1)(22+1)(24+1)=(24-1)(24+1)=(28-1).根据上式的计算方法,请计算:(3+1)(32+1)(34+1)…(332+1)-2364的值.练习:1.计算(a+1)(a-1)(2a +1)(4a +1)(8a +1). 2、计算:2481511111(1)(1)(1)(1)22222+++++.3、计算:22222110099989721-+-++- ; 3、计算:2222211111(1)(1)(1)(1)(1)23499100-----. 五、“整体思想”在整式运算中的运用1、当代数式532++x x 的值为7时,求代数式2932-+x x 的值.2、已知2083-=x a ,1883-=x b ,1683-=x c ,求:代数式bc ac ab c b a ---++222的值。
3、已知4=+y x ,1=xy ,求代数式)1)(1(22++y x 的值。
4、已知2=x 时,代数式10835=-++cx bx ax ,求当2-=x 时,代数式835-++cx bx ax 的值。
5、若123456786123456789⨯=M ,123456787123456788⨯=N ;试比较M 与N 的大小。
6、已知012=-+a a ,求2007223++a a 的值.7、。