理科数学十年高考真题(2010-2019)专项训练-专题八 立体几何 第二十二讲 空间几何体的三视图、表面积体积
10年高考真题汇总—(立体几何高考试题汇编)
立体几何分类汇编一、异面直线夹角(2007全国理I)如图,正四棱柱1111-ABCD A B C D 中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为A.51B.52C.53D.54(2008全国理II)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为()A.13B.23D.23(2009全国理I)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为111A B C 的中点,则异面直线AB 与1CC 所成的角的余弦值为D.34(2009全国理II)已知正四棱柱1111ABCD A B C D -中,12AA AB =,E 为1AA 中点,则异面直线BE 与1CD 所成的角的余弦值为A.10B.15C.10D.35(2012全国理I)三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ∠=∠= ,则异面直线1AB 与1BC 所成角的余弦值为____________。
(2013全国理I)如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。
(2014全国理II)直三棱柱111ABC A B C -中,90BCA ∠= ,,M N 分别是1111,A B A C 的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为()A.110B.25C.D.二、线面夹角(2007全国理II)已知正三棱ABC A B C -111的侧棱长是底面边长相等,则AB 1与侧面ACC A 1所成角的正弦等于A.64B.104C.22D.32(2008全国理I)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于()A.13B.23C.33D.23(2010全国理I)正方体1111ABCD A B C D -中,1BB 与平面1ACD 所成角的余弦值为(A)23(B)33(C)23(D)63(2016全国理I)平面α过正方体1111ABCD A B C D -的顶点A ,α 平面11CB D ,α 平面ABCD m =,α 平面11ABA B n =,则,m n 所成角的正弦值为A.32 B.22C.33D.13(2007全国理I)四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD 已知45ABC ∠= ,2,22,3AB BC SA SB ====(Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD与平面SAB所成角的大小。
十年高考真题分类汇编立体几何
十年高考真题分类汇编(2010—2019)数学专题10立体几何2.(2019·全国1·理T12)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.8√6πB.4√6πC.2√6πD.√6π【答案】D3.(2019·全国2·理T7文T7)设α,β为两个平面,则α∥β的充要条件是( )A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面【答案】B4.(2019·全国3·理T8文T8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M 是线段ED的中点,则( )A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【答案】B6.(2018·全国3·理T10文T12)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9√3,则三棱锥D-ABC体积的最大值为( )A.12√3B.18√3C.24√3D.54√3【答案】B7.(2018·全国1·理T7文T9)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为( )A.2√17B.2√5C.3D.2【答案】B10.(2018·上海·T15)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图.若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4B.8C.12D.16【答案】D11.(2018·全国1·文T10)在长方体ABCD-A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为( )A.8B.6√2C.8√2D.8√3【答案】C12.(2018·全国2·理T9)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=√3,则异面直线AD1与DB1所成角的余弦值为( )A.15B.√56C.√55D.√22【答案】C13.(2018·全国2·文T9)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为( )A.√22B.√32C.√52D.√72【答案】C14.(2018·全国1·文T5)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A.12√2πB.12πC.8√2πD.10π【答案】B【解析】过直线O1O2的平面截该圆柱所得的截面为圆柱的轴截面,设底面半径为r,母线长为l,因为轴截面是面积为8的正方形,所以2r=l=2√2,r=√2,所以圆柱的表面积为2πrl+2πr2=8π+4π=12π.18.(2017·全国2·理T10)已知直三棱柱ABC-A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为( )A.√3B.√15C.√10D.√3【答案】C20.(2017·全国3·理T8文T9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A.πB.3π4C.π2D.π4【答案】B21.(2017·全国1·文T6)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )【答案】A4.(2016·浙江·理T2文T2)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n【答案】C23.(2016·全国3·理T10文T11)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是( )A.4πB.9π2C.6π D.32π3【答案】B24.(2016·全国1·文T4)体积为8的正方体的顶点都在同一球面上,则该球的表面积为( )A.12πB. πC.8πD.4π【答案】A25.(2016·全国1·理T11文T11)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )A.√32B.√22C.√33D.13【答案】A29.(2016·山东·理T5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为( )A.1+2πB.1+√2πC.1+√2πD.1+√2π【答案】C35.(2015·山东·理T7)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D.2π【答案】C40.(2015·浙江·理T8)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD翻折成△A'CD,所成二面角A'-CD-B的平面角为α,则( )A.∠A'DB≤αB.∠A'DB≥αC.∠A'CB≤αD.∠A'CB≥α【答案】B41.(2015·全国2·理T9文T10)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为 ( )A.36πB.64πC.144πD.256π【答案】C42.(2015·安徽·理T5)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行...与β平行的直线...,则在α内不存在D.若m,n不平行...垂直于同一平面...,则m与n不可能【答案】D43.(2015·浙江·文T4)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β.( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m【答案】A44.(2015·广东·文T6)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是( )A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交【答案】D47.(2014·辽宁·理T4文T4)已知m,n表示两条不同直线,α表示平面.下列说法正确的是( )A.若m∥α,n∥α,则m∥nB.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α【答案】B48.(2014·广东·理T7)在空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【答案】D49.(2014·浙江·文T6)设m,n是两条不同的直线,α,β是两个不同的平面.( )A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α,则m⊥αC.若m ⊥β,n ⊥β,n ⊥α,则m ⊥αD.若m ⊥n,n ⊥β,β⊥α,则m ⊥α 【答案】C50.(2014·陕西·理T5)已知底面边长为1,侧棱长为√2的正四棱柱的各顶点均在同一个球面上,则该球的体积为( ) A.32π3B.4πC.2πD.4π3【答案】D51.(2014·大纲全国·理T8)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81πB.16πC.9πD.27π【答案】A56.(2014·大纲全国·理T11)已知二面角α-l-β为60°,AB ⊂α,AB ⊥l,A 为垂足,CD ⊂β,C ∈l,∠ACD=135°,则异面直线AB 与CD 所成角的余弦值为( ) A.14 B.√24C.√34D.12【答案】B57.(2014·大纲全国·文T4)已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A.16 B.√36C.13D.√33【答案】B66.(2013·辽宁·理T10)已知直三棱柱ABC-A 1B 1C 1的6个顶点都在球O 的球面上.若AB=3,AC=4,AB ⊥AC,AA 1=12,则球O 的半径为( ) A.3√172 B.2√10C.132D.3√10【答案】C【解析】过C 点作AB 的平行线,过B 点作AC 的平行线,交点为D,同理过C 1作A 1B 1的平行线,过B 1作A 1C 1的平行线,交点为D 1,连接DD 1,则ABCD-A 1B 1C 1D 1恰好成为球的一个内接长方体,故球的半径r=√32+42+1222=132.67.(2013·全国2·理T4)已知m,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m,l ⊥n,l ⊄α,l ⊄β,则( ) A.α∥β且l ∥α B.α⊥β且l ⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l 【答案】D【解析】因为m ⊥α,l ⊥m,l ⊄α,所以l ∥α.同理可得l ∥β.又因为m,n 为异面直线,所以α与β相交,且l 平行于它们的交线.故选D.68.(2013·广东·理T6)设m,n 是两条不同的直线,α,β是两个不同的平面.下列命题中正确的是 ( ) A.若α⊥β,m ⊂α,n ⊂β,则m ⊥n B.若α∥β,m ⊂α,n ⊂β,则m ∥n C.若m ⊥n,m ⊂α,n ⊂β,则α⊥β D.若m ⊥α,m ∥n,n ∥β,则α⊥β 【答案】D【解析】选项A 中, m 与n 还可能平行或异面,故不正确; 选项B 中,m 与n 还可能异面,故不正确; 选项C 中,α与β还可能平行或相交,故不正确; 选项D 中,∵m ⊥α,m ∥n,∴n ⊥α. 又n ∥β,∴α⊥β.故选D.69.(2012·全国·理T11)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC=2,则此棱锥的体积为 ( ) A.√26 B.√36C.√23D.√22【答案】A【解析】∵SC 是球O 的直径,∴∠CAS=∠CBS=90°. ∵BA=BC=AC=1,SC=2,∴AS=BS=√3.取AB 的中点D,显然AB ⊥CD,AB ⊥SD,∴AB ⊥平面SCD. 在△CDS 中,CD=√32,DS=√112,SC=2,利用余弦定理可得cos ∠CDS=CD 2+SD 2-SC 22CD ·SD =-√33, ∴sin ∠√2√33∴S △CDS =12×√32×√112×√2√33=√22,∴V=V B-CDS +V A-CDS =13×S △CDS ×BD+13S △CDS ×AD=13S △CDS ×BA=13×√22×1=√26.70.(2012·全国·文T8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为√2,则此球的体积为( )A.√6πB.4√3πC.4√6πD.6√3π【答案】B【解析】设球O的半径为R,则R=√12+(√2)2=√3,故V球=43πR3=4√3π.71.(2012·全国·理T7文T7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【答案】B【解析】由三视图可推知,几何体的直观图如图所示,可知AB=6,CD=3,PC=3,CD垂直平分AB,且PC⊥平面ACB,故所求几何体的体积为13×(12×6×3)×3=9.72.(2012·大纲全国·理T4文T8)已知正四棱柱ABCD-A1B1C1D1中,AB=2,CC1=2√2,E为CC1的中点,则直线AC1与平面BED的距离为( )A.2B.√3C.√2D.1【答案】D【解析】连接AC交BD于点O,连接OE,∵AB=2,∴AC=2√2.又CC1=2√2,则AC=CC1.作CH⊥AC1于点H,交OE于点M.由OE为△ACC1的中位线知,CM⊥OE,M为CH的中点.由BD⊥AC,EC⊥BD知,BD⊥面EOC,∴CM⊥BD.∴CM⊥面BDE.∴HM为直线AC1到平面BDE的距离.又△ACC 1为等腰直角三角形,∴CH=2.∴HM=1.73.(2011·陕西·文T5)某几何体的三视图如图所示,则它的体积为( ) A.8-2π3B.8-π3C.8-2πD.2π3【答案】A【解析】由几何体的三视图可知,原几何体是一个棱长为2的正方体且内部挖掉一个底面与正方体上底面内切,高等于正方体棱长的圆锥.正方体的体积为8,圆锥的体积为13πr 2h=2π3,所以所求几何体的体积为8-2π3. 74.(2011·全国·理T6文T8)在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【答案】D【解析】由题目所给的几何体的正视图和俯视图,可知该几何体为半圆锥和三棱锥的组合体,如图所示: 可知侧视图为等腰三角形,且轮廓线为实线,故选D.75.(2011·重庆·理T9)高为√24的四棱锥S-ABCD 的底面是边长为1的正方形,点S,A,B,C,D 均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为( )A.√24B.√22C.1D.√2【答案】C【解析】如图所示,过S点作SE⊥AC,交AC的延长线于E点,则SE⊥面ABCD,故SE=√24.设球心为O,A,B,C,D 所在圆的圆心为O 1,则O1为AC,BD的交点.在Rt△OAO1中,AO1=√22,AO=1,故OO1=√1-(√22)2=√22.故OO1=2SE.过S点作SO2⊥O1O于点O2,则O2为OO1的中点.故△OSO1为等腰三角形,则有O1S=SO=1.76.(2011·辽宁·理T8)如图,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是( )A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【答案】D【解析】∵SD⊥面ABCD,AC⊂面ABCD,∴SD⊥AC,又∵ABCD为正方形,∴AC⊥BD,又SD∩BD=D,∴AC⊥面SBD,AC⊥SB,故A对;∵AB∥CD,CD⊂面CDS,AB在面CDS外,∴AB∥平面SCD,故B对;设AC∩BD=O,由上面的分析知,∠ASO与∠CSO分别是SA与平面SBD,SC与平面SBD所成的角,易知∠ASO与∠CSO相等,故C对;∵CD⊥SD,CD⊥AD,AD∩SD=D,∴CD⊥平面SAD,∴DC⊥SA,DC与SA所成角为90°.又∵AB∥CD,∴AB与SC所成的角即为∠SCD,是锐角,故D错.77.(2010·浙江·理T6)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( )A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m【答案】B【解析】对于A:若l⊥m,m⊂α,则l⊂α可能成立,l⊥α不一定成立,A错误;对于B:若l⊥α,l∥m,则m⊥α,B正确;对于C,若l∥α,m⊂α,l∥m或l与m异面,故C错误;对于D,若l∥α,m∥α,则l∥m或l与m 相交或l与m异面,故D错误.78.(2010·山东·文T4)在空间,下列命题正确的是( )A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D【解析】对于A,平行直线的平行投影也可能平行或为两个点,故A错误;对于B,平行于同一直线的两个平面也可能相交,故B错误;对于C,垂直于同一平面的两个平面也可能相交,故C错误;由线面垂直的性质知D正确.故选D.79.(2010·全国·理T10)设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为( )A.πa2B.7πa2C.11πa2D.5πa2【答案】B【解析】如图,O1,O分别为上、下底面的中心,D为O1O的中点,则DB为球的半径r,有r=DB=√OD2+OB2=√a2 4+a23=√7a212,∴S表=4πr2=4π×7a 212=73πa2.80.(2010·全国·文T7)设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为( )A.3πa2B.6πa2C.12πa2D.24πa2【答案】B【解析】长方体体对角线长等于球的直径,2R=√a 2+a 2+(2a )2=√6a,R=√62a,S=4πR 2=4π·6a 24=6πa 2.81.(2010·大纲全国·理T12,难度)已知在半径为2的球面上有A,B,C,D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( ) A.2√33 B.4√33 C.2√3 D.8√33【答案】B【解析】过CD 作平面PCD,使AB ⊥平面PCD,交AB 于P.设点P 到CD 的距离为h,则有 V 四面体ABCD =13×2×12×2×h=23h.当直径通过AB 与CD 的中点时,h max =2√22-12=2√3.故V max =4√33.82.(2019·全国3·理T16文T16)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD-A 1B 1C 1D 1挖去四棱锥O-EFGH 后所得的几何体,其中O 为长方体的中心,E,F,G,H 分别为所在棱的中点,AB=BC=6 cm,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g.【答案】118.8【解析】由题意得,四棱锥O-EFGH 的底面积为4×6-4×12×2×3=12(cm 2),点O 到平面BB 1C 1C 的距离为3 cm,则此四棱锥的体积为V 1=13×12×3=12(cm 3).又长方体ABCD-A 1B 1C 1D 1的体积为V 2=4×6×6=144(cm 3), 则该模型的体积为V=V 2-V 1=144-12=132(cm 3). 故其质量为0.9×132=118.8(g).83.(2019·天津·理T11文T12)已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该 圆柱的体积为 . 【答案】π4【解析】由底面边长为√2,可得OC=1.设M 为VC 的中点,O 1M=12OC=12, O 1O=12VO,VO=√VC 2-OC 2=2, ∴O 1O=1.V 柱=π·O 1M 2·O 1O=π×122×1=π4.84.(2019·江苏·T9)如图,长方体ABCD-A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E-BCD 的体积是 .【答案】10【解析】∵长方体ABCD-A 1B 1C 1D 1的体积为120, ∴AB ·BC ·CC 1=120.∵E 为CC 1的中点,CC 1⊥底面ABCD,∴CE 为三棱锥E-BCD 的底面BCD 上的高,CE=12CC 1, ∴V E-BCD =13×12AB ·BC ·CE =13×12AB ·BC ·12CC 1=112AB ·BC ·CC 1=112×120=10.85.(2019·全国2·理T16文T16)中国有悠久的金石文T 化,印信是金石文T 化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1,则该半正多面体共有 个面,其棱长为 .【答案】26 -1【解析】由题图2可知第一层与第三层各有9个面,共计18个面,第二层共有8个面,所以该半正多面体共有18+8=26个面.如图,设该半正多面体的棱长为x,则AB=BE=x,延长CB 与FE 的延长线交于点G,延长BC 交正方体的另一条棱于点H.由半正多面体的对称性可知,△BGE 为等腰直角三角形,所以BG=GE=CH=√2x,所以GH=2×√22x+x=(√2+1)x=1,解得x=√2+1=√2-1,即该半正多面体的棱长为√2-1.86.(2019·全国1·文T16)已知∠ACB=90°,P 为平面ABC 外一点,PC=2,点P 到∠ACB 两边AC,BC 的距离均为√3,那么P 到平面ABC 的距离为 . 【答案】√2【解析】作PD,PE 分别垂直于AC,BC,PO ⊥平面ABC.连接CO,OD,知CD ⊥PD,CD ⊥PO,PD ∩PO=P, ∴CD ⊥平面PDO,OD ⊂平面PDO,∴CD ⊥OD. ∵PD=PE=√3,PC=2,∴sin ∠PCE=sin ∠PCD=√32,∴∠PCB=∠PCA=60°.∴PO ⊥CO,CO 为∠ACB 平分线, ∴∠OCD=45°,∴OD=CD=1,OC=√2. 又PC=2,∴PO=√4-2=√2.87.(2018·全国2·文T16)已知圆锥的顶点为S,母线SA,SB 互相垂直,SA 与圆锥底面所成角为30°.若△SAB 的面积为8.则该圆锥的体积为 .【答案】8π 【解析】∵SA ⊥SB, ∴S △SAB =12·SA ·SB=8.∴SA=4.过点S 连接底面圆心O,则∠SAO=30°. ∴SO=2,OA=2√3.∴V=13πr 2h=13×π×(2√3)2×2=8π.88.(2018·天津·理T11)已知正方体ABCD-A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH 的体积为 . 【答案】112【解析】由题意可知,四棱锥M-EFGH 的底面EFGH 为正方形且边长为√22,其高为12, 所以V 四棱锥M-EFGH =1×(√2)2×1=1. 89.(2018·江苏·T10)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .【答案】43【解析】由题图可知,该多面体为两个全等的正四棱锥的组合体,且正四棱锥的高为1,底面正方形的边长为√2,所以该多面体的体积为2×13×1×(√2)2=43.90.(2018·全国2·理T16)已知圆锥的顶点为S,母线SA,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°.若△SAB 的面积为5√15.则该圆锥的侧面积为_____________. 【答案】40√2π【解析】如图,设O 为底面圆圆心. ∵SA 与底面成45°角, ∴△SAO 为等腰直角三角形. 设OA=r,则SO=r,SA=SB=√2r. ∵在△SAB 中,cos ∠ASB=78, ∴sin ∠ASB=√158,∴S △SAB =12SA ·SB ·sin ∠ASB=12(√2r)2·√158=5√15, 解得r=2√10,∴SA=√2r=4√5,即母线长l=4√5, ∴S 圆锥侧=πrl=π×2√10×4√5=40√2π.91.(2017·全国1·理T16)如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC 的中心为O.D,E,F 为圆O 上的点,△DBC,△ECA,△FAB 分别是以BC,CA,AB 为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB 为折痕折起△DBC,△ECA,△FAB,使得D,E,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【答案】4【解析】如图所示,连接OD,交BC 于点G. 由题意知OD ⊥BC,OG=√36BC. 设OG=x,则BC=2√3x,DG=5-x, 三棱锥的高h=√DG 2-OG 2= √25-10x +x 2-x 2=√25-10x .因为S △ABC =12×2√3x ×3x=3√3x 2,所以三棱锥的体积V=13S △ABC ·h=√3x 2·√25-10x =√3·√25x 4-10x 5.令f(x)=25x 4-10x 5,x ∈(0,52),则f'(x)=100x 3-50x 4.令f'(x)=0,可得x=2,则f(x)在(0,2)单调递增,在(2,52)单调递减, 所以f(x)max =f(2)=80.所以V≤√3×√80=4√15,所以三棱锥体积的最大值为4√15.92.(2017·全国2·文T15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 【答案】14π【解析】由题意可知长方体的体对角线长等于其外接球O 的直径2R,即2R=2+22+12=√14,所以球O 的表面积S=4πR 2=14π.93.(2017·全国1·文T16)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC 的体积为9,则球O 的表面积为 . 【答案】36π【解析】取SC 的中点O,连接OA,OB. 因为SA=AC,SB=BC,所以OA ⊥SC,OB ⊥SC. 因为平面SAC ⊥平面SBC,且OA ⊂平面SAC,所以OA ⊥平面SBC.设OA=r,则V A-SBC =13×S △SBC ×OA=13×12×2r ×r ×r=13r 3, 所以13r 3=9,解得r=3.所以球O 的表面积为4πr 2=36π.94.(2017·天津·理T10文T11)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】9π2.【解析】 设正方体的棱长为a,外接球的半径为R,则2R=√3a.∵正方体的表面积为18,∴6a 2=18. ∴a=√3,R=32.∴该球的体积为V=43πR 3=4π3×278=9π2.95.(2017·江苏·T6)如图,在圆柱O 1O 2内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V1V 2的值是________________.【答案】32【解析】设球O的半径为r,则圆柱O1O2的高为2r,故V1V2=πr2·2r43πr3=32,答案为32.96.(2017·全国3·理T16)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是.(填写所有正确结论的编号)【答案】②③【解析】由题意,AB是以AC为轴,BC为底面半径的圆锥的母线,由AC⊥a,AC⊥b,得AC⊥圆锥底面,在底面内可以过点B,作BD∥a,交底面圆C于点D,如图所示,连接DE,则DE⊥BD,∴DE∥b.连接AD,在等腰三角形ABD 中,设AB=AD=√2,当直线AB与a成60°角时,∠ABD=60°,故BD=√2.又在Rt△BDE中,BE=2,∴DE=√2,过点B作BF∥DE,交圆C于点F,连接AF,由圆的对称性可知BF=DE=√2,∴△ABF为等边三角形,∴∠ABF=60°,即AB与b成60°角,②正确,①错误.由最小角定理可知③正确;很明显,可以满足直线a⊥平面ABC,直线AB与a所成的最大角为90°,④错误.故正确的说法为②③.97.(2016·全国2·理T14)α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,m⊂α,那么m∥β.④如果m ∥n,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有 .(填写所有正确命题的编号) 【答案】②③④【解析】对于①,若m ⊥n,m ⊥α,n ∥β,则α,β的位置关系无法确定,故错误;对于②,因为n ∥α,所以过直线n 作平面γ与平面α相交于直线c,则n ∥c.因为m ⊥α,所以m ⊥c,所以m ⊥n,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,故正确命题的编号有②③④.98.(2016·天津·理T11)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m),则该四棱锥的体积为 m 3.【答案】2【解析】由三视图知四棱锥高为3,底面平行四边形的底为2,高为1,因此该四棱锥的体积为V=13×(2×1)×3=2.故答案为2.99.(2016·四川·理T13)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .【答案】√33【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长分别为2√3,2,2,所以底面三角形的高为√22-(√3)2=1,所以,三棱锥的体积为V=13×12×2√3×1×1=√33.100.(2015·浙江·理T13)如图,在三棱锥A-BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M,N 分别为AD,BC 的中点,则异面直线AN,CM 所成的角的余弦值是 .【答案】78【解析】连接DN,取DN 的中点P,连接PM,CP,因为M 是AD 的中点, 故PM ∥AN,则∠CMP 即为异面直线AN,CM 所成的角, 因为AB=AC=BD=CD=3,AD=BC=2,可得AN=CM=DN=2√2, 故MP=PN=√2. 在Rt △PCN中,CP=√PN 2+CN 2=√2+1=√3,由余弦定理,可得cos ∠CMP=CM 2+MP 2-CP 22·CM ·MP=2×22×2=78,故异面直线AN,CM 所成的角的余弦值为78.101.(2014·山东·理T13)三棱锥P-ABC 中,D,E 分别为PB,PC 的中点,记三棱锥D-ABE 的体积为V 1,P-ABC 的体积为V 2,则V 1V 2=________________. 【答案】1【解析】由题意,知V D-ABE =V A-BDE =V 1,V P-ABC =V A-PBC =V 2.因为D,E 分别为PB,PC 中点, 所以S△BDES △PBC=14.设点A 到平面PBC 的距离为d,则V 12=13S △BDE ·d 13S △PBC ·d=S△BDE△PBC=1. 102.(2014·山东·文T13)一个六棱锥的体积为2√3,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 【答案】12【解析】根据题意知该六棱锥为正六棱锥,底面正六边形面积为6√3,设六棱锥的高为h,则V=13×6√3h=2√3,解得h=1.设侧面高为h',则h 2+(√3)2=h'2,∴h'=2.所以正六棱锥的侧面积为6×12×2×2=12.103.(2013·北京·理T14)如图,在棱长为2的正方体ABCD-A 1B 1C 1D 1中,E 为BC 的中点,点P 在线段D 1E 上,点P 到直线CC 1的距离的最小值为 .【答案】2√55【解析】如图,过E 点作EE 1垂直底面A 1B 1C 1D 1,交B 1C 1于点E 1,连接D 1E 1,过P 点作PH 垂直于底面A 1B 1C 1D 1,交D 1E 1于点H,P 点到直线CC 1的距离就是C 1H,故当C 1H 垂直于D 1E 1时,P 点到直线CC 1距离最小,此时,在Rt △D 1C 1E 1中,C 1H ⊥D 1E 1,D 1E 1·C 1H=C 1D 1·C 1E 1,∴C 1H=√5=2√55.104.(2013·全国2·文T15)已知正四棱锥O-ABCD 的体积为3√22,底面边长为√3,则以O 为球心,OA 为半径的球的表面积为 .【答案】24π【解析】如图所示,∵V O-ABCD =13×(√3)2×|OO 1|=3√22,∴|OO 1|=3√22, 在Rt △OO 1A 中,|AO 1|=√62,|OA|=√(3√22)2+(√62)2=√6, 即R=√6,∴S 球=4πR 2=24π.105.(2013·全国1·文T15)已知H 是球O 的直径AB 上一点,AH ∶HB=1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为 .【答案】9π2【解析】如图,设球O 的半径为R,则AH=2R 3,OH=R 3.又∵π·EH 2=π,∴EH=1.∵在Rt △OEH 中,R 2=(R 3)2+12,∴R 2=98.∴S 球=4πR 2=9π2.106.(2013·福建·理T12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是 .【答案】12π【解析】由题意知该几何体是一个正方体内接于球构成的组合体,球的直径等于正方体体对角线长,即2r=√22+22+22=√12,所以r=√3,故该球的表面积为S 球=4πr 2=4π×3=12π. 107.(2012·辽宁·理T16)已知正三棱锥P-ABC,点P,A,B,C 都在半径为√3的球面上,若PA,PB,PC 两两相互垂直,则球心到截面ABC 的距离为 .【答案】√33 【解析】正三棱锥P-ABC 可看作由正方体PADC-BEFG 截得,如图所示,PF 为三棱锥P-ABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a,则3a 2=12,a=2,AB=AC=BC=2√2.S △ABC =1×2√2×2√2×√3=2√3.由V P-ABC =V B-PAC ,得1·h ·S △ABC =1×1×2×2×2,所以h=2√33,因此球心到平面ABC 的距离为√33. 108.(2012·安徽·理T12)某几何体的三视图如图所示,该几何体的表面积是 .【答案】92【解析】由三视图可知,该几何体为底面是直角梯形且侧棱垂直于底面的棱柱,该几何体的表面积为S=2×12×(2+5)×4+[2+5+4+√42+(5-2)2]×4=92. 109.(2011·全国·理T15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB=6,BC=2√3,则棱锥O-ABCD 的体积为 .【答案】8【解析】如图所示,OO'垂直于矩形ABCD 所在的平面,垂足为O',连接O'B,OB,则在Rt △OO'B 中,由OB=4,O'B=2√3,可得OO'=2,故V O-ABCD =13S 矩形ABCD ·OO'=13×6×2√3×2=8√3.110.(2010·全国·理T14文T15)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 .(填入所有可能的几何体前的编号)①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱【答案】①②③⑤【解析】只要判断正视图是不是正三角形就行了.111.(2011·全国·文T16)已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .【答案】13【解析】设球面半径为R,圆锥底面半径为r.由题意知,πr 2=316×4πR 2,即r 2=34R 2.如图所示,设体积较小者的圆锥为A-CO 1D,其高为AO 1.体积较大的圆锥为B-CO 1D,其高为O 1B.在Rt △O 1CO中,CO 1=r,CO=R,则OO 1=√R 2-r 2=12R.又∵AO=R,∴AO 1=R 2.又∵O 1B=O 1O+OB=12R+R=32R,∴AO 1BO 1=R 232R =13. 112.(2019·全国1·文T19)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E,M,N 分别是BC,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE;(2)求点C 到平面C 1DE 的距离.【解析】(1)证明连接B 1C,ME.因为M,E 分别为BB 1,BC 的中点,所以ME ∥B 1C,且ME=12B 1C.又因为N 为A 1D 的中点,所以ND=12A 1D.由题设知A 1B 1 DC,可得B 1C A 1D,故ME ND,因此四边形MNDE 为平行四边形,MN ∥ED.又MN ⊄平面C 1DE,所以MN ∥平面C 1DE.(2)解过C 作C 1E 的垂线,垂足为H.由已知可得DE ⊥BC,DE ⊥C 1C,所以DE ⊥平面C 1CE,故DE ⊥CH.从而CH ⊥平面C 1DE,故CH 的长即为C 到平面C 1DE 的距离.由已知可得CE=1,C 1C=4,所以C 1E=√17,故CH=4√1717.从而点C 到平面C 1DE 的距离为4√1717.113.(2019·天津·文T17)如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC ⊥平面PCD,PA⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.【解析】(1)证明连接BD,易知AC∩BD=H,BH=DH.又由BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明取棱PC的中点N,连接DN,依题意,得DN⊥PC,又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA.又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)解连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=√3,又DN⊥AN,在Rt△AND中,sin∠DAN=DNAD =√33.所以,直线AD与平面PAC所成角的正弦值为√33.114.(2019·全国2·文T17)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB 1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.【解析】(1)证明由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.(2)解由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以,四棱锥E-BB1C1C的体积V=13×3×6×3=18.115.(2019·江苏·T16)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.116.(2019·全国3·文T19)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.【解析】(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)解取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=√3,故DM=2.所以四边形ACGD的面积为4.117.(2018·全国1·文T18)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.【解析】(1)由已知可得,∠BAC=90°,BA⊥AC.又BA⊥AD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3√2.又BP=DQ=23DA,所以BP=2√2.作QE⊥AC,垂足为E,则QE 13DC.由已知及(1)可得DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-APB的体积为V Q-ABP=13×QE×S△ABP=13×1×12×3×2√2sin 45°=1.118.(2018·全国3·文T19)如图,矩形ABCD所在平面与半⏜所在平面垂直,M是CD⏜上异于C,D的点.圆弧CD(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故⏜上异于C,D的点,且DC为直径,所以DM⊥CM.BC⊥DM.因为M为CD又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.119.(2018·北京·文T18)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.【解析】证明(1)∵PA=PD,且E为AD的中点,∴PE⊥AD.∵底面ABCD为矩形,∴BC∥AD,∴PE⊥BC.(2)∵底面ABCD为矩形,∴AB⊥AD.∵平面PAD⊥平面ABCD,∴AB⊥平面PAD.∴AB⊥PD.又PA⊥PD,PA∩AB=A,∴PD⊥平面PAB.∵PD⊂平面PCD,∴平面PAB⊥平面PCD.(3)如图,取PC的中点G,连接FG,GD.∵F,G分别为PB和PC的中点,。
(完整)十年真题_解析几何_全国高考理科数学.doc
十年真题 _解析几何 _全国高考理科数学真题2008-21 .(12 分)双曲线的中心为原点O ,焦点在 x 轴上,两条渐近线分别为 l 1, l 2 ,经过右焦点 F 垂直于 l 1uuur uuur uuur uuur uuur的直线分别交 l 1, l 2 于 A , B 两点.已知 OA 、 、 成等差数列,且 BF 与 FA 同向.AB OB(Ⅰ)求双曲线的离心率;(Ⅱ)设 AB 被双曲线所截得的线段的长为4 ,求双曲线的方程.2009-21 .(12 分)如图,已知抛物线 E : y 2x 与圆 M : ( x 4)2y 2 r 2 (r > 0)相交于 A 、B 、C 、D 四个点。
(I )求 r 的取值范围:(II)当四边形 ABCD 的面积最大时,求对角线A 、B 、C 、D 的交点 p 的坐标。
2010-21 (12分 )已知抛物线 C : y 24x 的焦点为 F ,过点 K ( 1,0) 的直线 l 与 C 相交于 A 、 B 两点,点 A 关于 x 轴的对称点为 D .(Ⅰ)证明:点 F 在直线 BD 上;uuur uuur8(Ⅱ)设 FAgFBBDK 的内切圆 M 的方程 .,求91 / 132011-20 (12 分)在平面直角坐标系 xOy 中,已知点 A(0,-1) , B 点在直线 y = -3 上, M 点满足 MB//OA , MA?AB = MB?BA , M 点的轨迹为曲线 C 。
(Ⅰ)求 C 的方程;(Ⅱ) P 为 C 上的动点, l 为 C 在 P 点处得切线,求 O 点到 l 距离的最小值。
2012-20 (12 分)设抛物线 C : x 2 2 py( p 0) 的焦点为 F ,准 线为 l , AC , 已知以 F 为圆心,FA 为半径的圆 F 交 l 于 B, D 两点;(1)若BFD90 0 , ABD 的面积为 4 2 ;求 p 的值及圆 F 的方程;(2)若 A, B, F 三点在同一直线m 上,直线 n 与 m 平行,且 n 与 C 只有一个公共点,求坐标原点到 m, n 距离的比值。
2010-2019“十年高考”数学真题 立体几何解析版专项汇总(理数 可下载)
因为 E,F 分别是 PA,AB 的中点,所以 EF P PB .又 CEF 90 ,即 EF⊥CE,
所以 PB⊥CE,得 PB⊥平面 PAC.所以 PB⊥PA,PB⊥PC. 又因为 PA PB PC ,△ABC 是正三角形, 所以 △PAC≌△PBC≌△PAB ,故 PA PC ,所以正三棱锥 P ABC 的三
【解析】如图所示,联结 BE , BD .因为点 N 为正方形 ABCD 的中心, △ECD 为正三角形,平面 ECD 平面 ABCD , M 是线段 ED 的中点,所以 BM 平面 BDE , EN 平面 BDE ,因为 BM 是△BDE 中 DE 边上的中线, EN 是△BDE 中 BD 边上的中线, 直线 BM , EN 是相交直线,设 DE a ,则
则点 D 到平面 ABC 的最大距离 d1 d 4 6 ,
所以三棱锥
D
ABC
体积的最大值 Vmax
1 3
S
ABC
6
19 3
3 6 18
3.
故选 B.
8.(2018 北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为
对于 B, 内有两条相交直线与 平行,则∥ ;
对于 C, , 平行于同一条直线,则 与 相交或∥ ,排除;
对于 D, , 垂直于同一平面,则 与 相交或∥ ,排除.故选 B.
2.(2019 全国Ⅲ理 8)如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥ 平面 ABCD,M 是线段 ED 的中点,则 A.BM=EN,且直线 BM、EN 是相交直线 B.BM≠EN,且直线 BM,EN 是相交直线 C.BM=EN,且直线 BM、EN 是异面直线 D.BM≠EN,且直线 BM,EN 是异面直线 【答案】B.
【精品】立体几何十年高考题(带详细解析)
【精品】立体几何十年高考题(带详细解析) ●考点阐释高考试卷中,立体几何考查的立足点放在空间图形上,突出对空间观念和空间想象能力的考查.立体几何的基础是对点、线、面的各种位置关系的讨论和研究,进而讨论几何体,而且采用了公理化体系的方法,在中学数学教育中,通过这部分内容培养学生空间观念和公理化体系处理数学问题的思想方法,这又是考生进入高校所必须具备的一项重要的数学基础,因此高考命题时,突出空间图形的特点,侧重于直线与直线、直线与平面、平面与平面的各种位置关系的考查,以便审核考生立体几何的知识水平和能力.多面体和旋转体是在空间直线与平面的理论基础上,研究以柱、锥、台、球为代表的最基本的几何体的概念、性质、各主要元素间的关系、直观图画法、侧面展开图以及表面和体积的求法等问题.它是“直线和平面”问题的延续和深化.在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题.近些年来即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解.本章主要考查平面的性质、空间两直线、直线和平面、两个平面的位置关系以及空间角和距离面积及体积.●试题类编一、选择题1.(2003京春文11,理8)如图9—1,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点.将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为( )A.90°B.60°C.45°D.0°2.(2003上海春,13)关于直线a 、b 、l 及平面M 、N ,下列命题中正确的是( )A.若a ∥M ,b ∥M ,则a ∥bB.若a ∥M ,b ⊥a ,则b ⊥MC.若a M ,b M ,且l ⊥a ,l ⊥b ,则l ⊥MD.若a ⊥M ,a ∥N ,则M ⊥N3.(2002北京春,2)已知三条直线m 、n 、l ,三个平面α、β、γ.下面四个命题中,正确的是( )A.⇒⎭⎬⎫⊥⊥γβγαα∥β B.⇒⎭⎬⎫⊥m l m β//l ⊥βC.⇒⎭⎬⎫γγ////n m m ∥n D.⇒⎭⎬⎫⊥⊥γγn m m ∥n4.(2002北京文,4)在下列四个正方体中,能得出AB ⊥CD 的是( ) 图9—15.(2002上海,14)已知直线l 、m ,平面α、β,且l ⊥α,m β,给出下列四个命题:(1)若α∥β,则l ⊥m (2)若l ⊥m ,则α∥β(3)若α⊥β,则l ∥m(4)若l ∥m ,则α⊥β其中正确命题的个数是( )A.1B.2C.3D.46.(2002京皖春,7)在△ABC 中,AB =2,BC =1.5,∠ABC =120°(如图9—2),若将△ABC 绕直线BC 旋转一周,则所形成的旋转体的体积是( ) A.29π B.27π C.25π D.23π 7.(2002京、皖、春,12)用一张钢板制作一个容积为4 m 3的无盖长方体水箱.可用的长方形钢板有四种不同的规格(长×宽的尺寸如选项所示,单位均为m )若既要够用,又要所剩最少,则应选择钢板的规格是( )A.2×5B.2×5.5C.2×6.1D.3×58.(2002全国文8,理7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )A.43 B.54 C.53 D.-53 9.(2002北京文5,理4)64个直径都为4a 的球,记它们的体积之和为V 甲,表面积之和为S 甲;一个直径为a 的球,记其体积为V 乙,表面积为S 乙,则( )A.V 甲>V 乙且S 甲>S 乙B.V 甲<V 乙且S 甲<S 乙C.V 甲=V 乙且S 甲>S 乙D.V 甲=V 乙且S 甲=S 乙10.(2002北京理,10)设命题甲:“直四棱柱ABCD -A 1B 1C 1D 1中,平面ACB 1与对角面BB 1D 1D 垂直”;命题乙:“直四棱柱ABCD -A 1B 1C 1D 1是正方体”.那么,甲是乙的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件11.(2002全国理,8)正六棱柱ABCDEF —A 1B 1C 1D 1E 1F 1的底面边长为1,侧棱长为2,则这个棱柱的侧面对角线E 1D 与BC 1所成的角是( )A.90°B.60°C.45°D.30° 图9—212.(2001上海,15)已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α, b⊥β,则下列命题中的假命题...是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a、b相交,则α、β相交D.若α、β相交,则a、b相交13.(2001京皖春,11)图9—3是正方体的平面展开图.在这个正方体...中,①BM与ED平行②CN与BE是异面直线③CN与BM成60°角④DM与BN垂直以上四个命题中,正确命题的序号是()A.①②③B.②④C.③④D.②③④14.(2001全国文,3)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积是()A.3πB.33πC.6πD.9π15.(2001全国,11)一间民房的屋顶有如图9—4三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.图9—4若屋顶斜面与水平面所成的角都是α,则()A.P3>P2>P1B.P3>P2=P1C.P3=P2>P1D.P3=P2=P116.(2001全国,9)在正三棱柱ABC—A1B1C1中,若AB=2BB1,则AB1与C1B 所成的角的大小为()A.60°B.90°C.105°D.75°17.(2001京皖春,9)如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.30°B.45°C.60°D.90°18.(2000上海,14)设有不同的直线a、b和不同的平面α、β、γ,给出下列三个命题:(1)若a∥α,b∥α,则a∥b.(2)若a∥α,a∥β,则α∥β.(3)若α⊥γ,β⊥γ,则α∥β.其中正确的个数是()A.0 B.1 C.2 D.319.(2000京皖春,5)一个圆锥的底面直径和高都同一个球的直径相等,那么圆锥与球的体积之比是()图9—3A.1∶3B.2∶3C.1∶2D.2∶920.(2000全国,3)一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A.23 B.32 C.6 D.621.(2000全国文,12)如图9—5,OA 是圆锥底面中心O 到母线的垂线,OA 绕轴旋转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为( )A.321B.21C.21D.421 22.(2000全国理,9)一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A.ππ221+B.ππ441+C.ππ21+D.ππ241+ 23.(1999全国,7)若干毫升水倒入底面半径为2 cm 的圆柱形器皿中,量得水面的高度为6 cm.若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( )A.63cm B .6 cm C.2318cm D.3312cm24.(1999全国,12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1∶2,那么R 等于( )A.10B.15C.20D.2525.(1999全国理,10)如图9—6,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF =23,EF 与面AC 的距离为2,则该多面体的体积是( )A.29B.5C.6D.215 26.(1998全国,7)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为( )A.120°B.150°C.180°D.240°27.(1998全国,9)如果棱台的两底面积分别是S 、S ′,中截面的面积是S 0,那么( )A.S S S '+=02B.S S S '=0C.2S 0=S +S ′D.S 02=2S ′S图9—5图9—628.(1998全国,13)球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么这个球的半径为( ) A.43 B.23 C.2 D. 329.(1998上海)在下列命题中,假命题是( )A.若平面α内的一条直线垂直于平面β内的任一直线,则α⊥βB.若平面α内任一直线平行于平面β,则α∥βC.若平面α⊥平面β,任取直线l α,则必有l ⊥βD.若平面α∥平面β,任取直线l α,则必有l ∥β30.(1997全国,8)长方体一个顶点上三条棱的长分别是3、4、5,且它的八个顶点都在同一个球面上,这个球的表面积是( )A.202πB.252πC.50πD.200π31.(1997全国,12)圆台上、下底面积分别为π、4π,侧面积为6π,这个圆台的体积是( )A.332πB.23πC.637πD.337π 32.(1996全国理,14)母线长为1的圆锥体积最大时,其侧面展开图圆心角ϕ等于( ) A.322π B.332π C.2π D.362π 33.(1996全国文12,理9)将边长为a 的正方体ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC 的体积为( )A.63aB.123aC.3123aD.3122a 34.(1996全国文7,理5)如果直线l 、m 与平面α、β、γ满足:l =β∩γ,l ∥α,m ⊂α和m ⊥γ,那么必有( )A.α⊥γ且l ⊥mB.α⊥γ且m ∥βC.m ∥β且l ⊥mD.α∥β且α⊥γ35.(1996上海,4)在下列命题中,真命题是( )A.若直线m 、n 都平行于平面α,则m ∥nB.设α—l —β是直二面角,若直线m ⊥l ,则m ⊥βC.若直线m 、n 在平面α内的射影依次是一个点和一条直线,且m ⊥n ,则n 在α内或n 与α平行D.设m 、n 是异面直线,若m 与平面α平行,则n 与α相交36.(1996全国文,10)圆锥母线长为1,侧面展开图的圆心角为240°,该圆锥的体积等于( )A.8122πB.818πC.8154π D.8110π 37.(1995全国文,10)如图9—7,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A ,则BE 1与DF 1所成角的余弦值是( ) A.1715 B.21 C.178 D.23 38.(1995全国,4)正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是( )A.32a π B.22a π C.2πa 2 D.3πa 239.(1995上海,4)设棱锥的底面面积为8 cm 2,那么这个棱锥的中截面(过棱锥高的中点且平行于底面的截面)的面积是( )A.4 cm 2B.22 cm 2C.2 cm 2D. 2 cm 240.(1995全国理,10)已知直线l ⊥平面α,直线m 平面β,有下面四个命题: ①α∥β⇒l ⊥m ; ②α⊥β⇒l ∥m ; ③l ∥m ⇒α⊥β;④l ⊥m ⇒α∥β 其中正确的两个命题是( )A.①②B.③④C.②④D.①③41.(1995全国理,15)如图9—8,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.1030B.21C.1530D.1015 42.(1994全国,11)对于直线m 、n 和平面α、β,α⊥β的一个充分条件是( )A.m ⊥n ,m ∥α,n ∥βB.m ⊥n ,α∩β=m ,n ⊂αC.m ∥n ,n ⊥β,m ⊂αD.m ∥n ,m ⊥α,n ⊥β43.(1994上海,14)已知a 、b 是异面直线,直线c 平行于直线a ,那么c 与b ( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线44.(1994全国,7)已知正六棱台的上、下底面边长分别为2和4,高为2,则其体积为( )A.323B.283C.243D.20345.(1994全国,13)已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是( )A.916πB.38π C.4π D.964π 二、填空题46.(2003京春理13,文14)如图9—9,一个底面半径为R 的圆柱形量杯中装有适量图9—8的水.若放入一个半径为r 的实心铁球,水面高度恰好升高r,则r R =.图9—947.(2003上海春,10)若正三棱锥底面边长为4,体积为1,则侧面和底面所成二面角的大小等于 (结果用反三角函数值表示).48.(2002上海春,12)如图9—10,若从点O 所作的两条射线OM 、ON 上分别有点 M 1、M 2与点N 1、N 2,则三角形面积之比21212211ON ON OM OM S S N OM N OM ⋅=∆∆.若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上,分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为 .图9—10 图9—1149.(2002京皖春,15)正方形ABCD 的边长是2,E 、F 分别是AB 和CD 的中点,将正方形沿EF 折成直二面角(如图9—11所示).M 为矩形AEFD 内一点,如果∠MBE =∠MBC ,MB 和平面BCF 所成角的正切值为21,那么点M 到直线EF 的距离为 . 50.(2002北京,15)关于直角AOB 在定平面α内的射影有如下判断:①可能是0°的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是180°的角.其中正确判断的序号是 (注:把你认为是正确判断的序号都填上).51.(2002上海春,10)图9—12表示一个正方体表面的一种展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有 对.图9—1252.(2002上海,4)若正四棱锥的底面边长为23cm,体积为4 cm3,则它的侧面与底面所成的二面角的大小是.53.(2001京皖春,16)已知m、n是直线,α、β、γ是平面,给出下列命题:①若α⊥β,α∩β=m,n⊥m,则n ⊥α或n⊥β;②若α∥β,α∩γ=m,β∩γ=n,则m∥n;③若m不垂直于α,则m不可能垂直于α内的无数条直线;④若α∩β=m,n∥m且n⊄α,n⊄β,则n∥α且n∥β.其中正确的命题序号是(注:把你认为正确的命题的序号都.填上).54.(2001春季北京、安徽,13)已知球内接正方体的表面积为S,那么球体积等于.55.(2001全国理,13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是.56.(2000上海春,9)若两个长方体的长、宽、高分别为5 cm、4 cm、3 cm,把它们两个全等的面重合在一起组成大长方体,则大长方体的对角线最长为_____cm.57.(2000上海春,8)如图9—13,∠BAD=90°的等腰直角三角形ABD与正三角形CBD所在平面互相垂直,E是BC的中点,则AE与平面BCD所成角的大小为_____.58.(2000年春季北京、安微,18)在空间,下列命题正确的是_____(注:把你认为正确的命题的序号都填上).①如果两直线a、b分别与直线l平行,那么a∥b.②如果直线a与平面β内的一条直线b平行,那么a∥β.③如果直线a与平面β内的两条直线b、c都垂直,那么a⊥β.④如果平面β内的一条直线a垂直平面γ,那么β⊥γ.59.(2000春季北京、安徽,16)如图9—14是一体积为72的正四面体,连结两个面的重心E、F,则线段EF的长是_____.60.(2000全国,16)如图9—15(1),E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是图9—15(2)的(要求:把可能的图的序号都.填上).图9—1 图9—15(1)图9—15(2)61.(2000上海,7)命题A:底面为正三角形,且顶点在底面的射影为底面中心的三棱锥是正三棱锥.图9—13命题A 的等价命题B可以是:底面为正三角形,且 的三棱锥是正三棱锥.62.(1999全国,18)α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线.给出四个论断:①m ⊥n ②α⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: . 63.(1998全国,18)如图9—16,在直四棱柱A 1B 1C 1D 1—ABCD中,当底面四边形ABCD 满足条件 (或任何能推导出这个条件的其他条件,例如ABCD 是正方形、菱形等)时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形).64.(1998上海)棱长为2的正四面体的体积为 .65.(1997全国,19)已知m 、l 是直线,α、β是平面,给出下列命题①若l 垂直于α内的两条相交直线,则l ⊥α②若l 平行于α,则l 平行于α内的所有直线③若m ⊂α,l ⊂β,且l ⊥m ,则α⊥β④若l ⊂β,且l ⊥α,则α⊥β⑤若m ⊂α,l ⊂β,且α∥β,则m ∥l其中正确的命题的序号是_____(注:把你认为正确的命题的序号都填上).66.(1997上海)圆柱形容器的内壁底半径为5 cm ,两个直径为5 cm 的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器的水面将下降_____ cm.67.(1996上海,18)把半径为3 cm 、中心角为32π的扇形卷成一个圆锥形容器,这个容器的容积为 cm 3(结果保留π).68.(1996上海,18)如图9—17,在正三角形ABC 中,E 、F 依次是AB 、AC 的中点,AD ⊥BC ,EH ⊥BC ,F G⊥BC ,D 、H 、G 为垂足,若将正三角形ABC 绕AD 旋转一周所得的圆锥的体积为V ,则其中由阴影部分所产生的旋转体的体积与V 的比值是 .图9—17 图9—1869.(1996全国,19)如图9—18,正方形ABCD 所在平面与正方形ABEF 所在平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值是_____.70.(1995全国,17)已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的角为3π,则圆台的体积与球体积之比为_____.71.(1995上海理)把圆心角为216°,半径为5分米的扇形铁皮焊成一个圆锥形容器(不计焊缝),那么容器的容积是_____.72.(1994全国,19)设圆锥底面圆周上两点A 、B 间的距离为2,圆锥顶点到直线AB图9—16的距离为3,AB和圆锥的轴的距离为1,则该圆锥的体积为_____.73.(1994上海)有一个实心圆锥体的零部件,它的轴截面是边长为10 cm的等边三角形,现在要在其整个表面上镀一层防腐材料,已知每平方厘米的工料价为0.10元,则需要的费用为_____元(π取3.2).三、解答题74.(2003京春文,19)如图9—19,ABCD—A1B1C1D1是正四棱柱,侧棱长为1,底面边长为2,E是棱BC的中点.(Ⅰ)求三棱锥D1—DBC的体积;(Ⅱ)证明BD1∥平面C1DE;(Ⅲ)求面C1DE与面CDE所成二面角的正切值.图9—1 图9—2075.(2003京春理,19)如图9—20,正四棱柱ABCD—A1B1C1D1中,底面边长为22,侧棱长为4.E,F分别为棱AB,BC的中点,EF∩BD=G.(Ⅰ)求证:平面B1EF⊥平面BDD1B1;(Ⅱ)求点D1到平面B1EF的距离d;(Ⅲ)求三棱锥B1—EFD1的体积V.76.(2002京皖春文,19)在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,且AC=BC=5,SB=55.(如图9—21)(Ⅰ)证明:SC⊥BC;(Ⅱ)求侧面SBC与底面ABC所成二面角的大小;(Ⅲ)求三棱锥的体积V S-AB C.77.(2002京皖春理,19)在三棱锥S—ABC中,∠SAB=∠SAC=∠ACB=90°,AC=2,BC=13,SB=29.(Ⅰ)证明:SC⊥BC;(Ⅱ)求侧面SBC与底面ABC所成二面角的大小;(Ⅲ)求异面直线SC与AB所成的角的大小(用反三角函数表示).图9—22 图9—2378.(2002全国文,19)四棱锥P—ABCD的底面是边长为a的正方形,PB⊥面ABCD,图9—21如图9—22所示.(Ⅰ)若面P AD 与面ABCD 所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明无论四棱锥的高怎样变化,面P AD 与面PCD 所成的二面角恒大于90°. 79.(2002北京文,18)如图9—23,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h .(Ⅰ)求侧面ABB 1A 1与底面ABCD 所成二面角的正切值;(Ⅱ)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是V=6h(S 上底面+4S 中截面+S 下底面),试判断V 估与V 的大小关系,并加以证明. (注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面) 80.(2002北京理,18)如图9—24,在多面体ABCD —A 1B 1C 1D 1中,上、下底面平行且均为矩形,相对的侧面与同一底面所成的二面角大小相等,侧棱延长后相交于E ,F 两点,上、下底面矩形的长、宽分别为c ,d 与a ,b ,且a >c ,b >d ,两底面间的距离为h .(Ⅰ)求侧面ABB 1A 1与底面ABCD 所成二面角的大小; (Ⅱ)证明:EF ∥面ABCD ;(Ⅲ)在估测该多面体的体积时,经常运用近似公式V 估=S 中截面·h 来计算.已知它的体积公式是V =6h(S 上底面+4S 中截面+S 下底面), 试判断V 估与V 的大小关系,并加以证明.(注:与两个底面平行,且到两个底面距离相等的截面称为该多面体的中截面) 81.(2002全国文,22)(Ⅰ)给出两块相同的正三角形纸片(如图(1),图(2)),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图(1)、图(2),并作简要说明;(Ⅱ)试比较你剪拼的正三棱锥与正三棱柱的体积的大小;图9—2582.(2002全国理,18)如图9—26,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a (0<a <2).(Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小;(Ⅲ)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.图9—24图9—26 图9—2783.(2001春季北京、安徽,19)如图9—27,已知VC 是△ABC 所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且在△ABC 的高CD 上.AB =a ,VC 与AB 之间的距离为h ,点M ∈V C.(Ⅰ)证明∠MDC 是二面角M —AB —C 的平面角; (Ⅱ)当∠MDC =∠CVN 时,证明VC ⊥平面AMB ;(Ⅲ)若∠MDC =∠CVN =θ(0<θ<2),求四面体MABC 的体积.84.(2001上海,19)在棱长为a 的正方体OABC —O ′A ′B ′C ′中,E 、F 分别是棱AB 、BC 上的动点,且AE =BF .(Ⅰ)求证:A ′F ⊥C ′E ;(Ⅱ)当三棱锥B ′—BEF 的体积取得最大值时,求二面角B ′—EF —B 的大小(结果用反三角函数表示).85.(2001全国理17,文18)如图9—28,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21. (Ⅰ)求四棱锥S —ABCD 的体积; (Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.86.(2000京皖春理20,文21)在直角梯形ABCD 中,如图9—29,∠D =∠BAD =90°,AD =21AB =a (如图(1)),将△ADC 沿AC 折起,使D 到D ′,记面ACD ′为α,面ABC 为β,面BCD ′为γ.图9—29(Ⅰ)若二面角α—AC —β为直二面角(如图(2)),求二面角β—BC —γ的大小; (Ⅱ)若二面角α—AB —β为60°(如图(3)),求三棱锥D ′—ABC 的体积.87.(2000全国理,18)如图9—30,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.(Ⅰ)证明:C 1C ⊥BD ;图9—28(Ⅱ)假定CD =2,CC 1=23,记面C 1BD 为α,面CBD 为β,求二面角α—BD —β的平面角的余弦值;(Ⅲ)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明.图9—30 图9—3188.(2000全国文,19)如图9—31,已知平行六面体ABCD —A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD .(Ⅰ)证明:C 1C ⊥BD ;(Ⅱ)当1CC CD的值为多少时,能使A 1C ⊥平面C 1BD ?请给出证明. 89.(2000上海,18)如图9—32所示四面体ABCD 中,AB 、BC 、BD 两两互相垂直,且AB =BC =2,E 是AC 中点,异面直线AD 与BE 所成的角大小为arccos 1010,求四面体ABCD 的体积.图9—32 图9—3390.(1999全国文22,理21)如图9—33,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC ∥D 1B ,且面EAC 与底面ABCD 所成的角为45°,AB =a .(Ⅰ)求截面EAC 的面积;(Ⅱ)求异面直线A 1B 1与AC 之间的距离; (Ⅲ)求三棱锥B 1-EAC 的体积.91.(1998全国理,23)已知如图9—34,斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直,∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C.(Ⅰ)求侧棱A 1A 与底面ABC 所成角的大小;(Ⅱ)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (Ⅲ)求顶点C 到侧面A 1ABB 1的距离.图9—34 图9—3592.(1998全国文,23)已知如图9—35,斜三棱柱ABC —A 1B 1C 1的侧面A 1ACC 1与底面ABC 垂直,∠ABC =90°,BC =2,AC =23,且AA 1⊥A 1C ,AA 1=A 1C.(Ⅰ)求侧棱A 1A 与底面ABC 所成角的大小;(Ⅱ)求侧面A 1ABB 1与底面ABC 所成二面角的大小; (Ⅲ)求侧棱B 1B 和侧面A 1ACC 1的距离.93.(1997全国,23)如图9—36,正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是BB 1、CD 的中点.(Ⅰ)证明:AD ⊥D 1F ;(Ⅱ)求AE 与D 1F 所成的角; (Ⅲ)证明:面AED ⊥面A 1FD 1;(Ⅳ)(理)设AA 1=2,求三棱锥F —A 1ED 1的体积11ED A F V -. (文)设AA 1=2,求三棱锥E —AA 1F 的体积F AA E V 1-.图9—36图9—3794.(1997上海理)如图9—37在三棱柱ABC —A ′B ′C ′中,四边形A ′ABB ′是菱形,四边形BCC ′B ′是矩形,C ′B ′⊥A B.(1)求证:平面CA ′B ⊥平面A ′AB ; (2)若C ′B ′=3,AB =4,∠ABB ′=60°,求AC ′与平面BCC ′所成的角的大小(用反三角函数表示).95.(1996上海,21)如图9—38,在二面角α—l —β中,A 、B ∈α,C 、D ∈l ,ABCD为矩形,P ∈β,P A ⊥α,且P A =AD ,M 、N 依次是AB 、PC 的中点.(1)求二面角α—l —β的大小; (2)求证:MN ⊥AB ;(3)求异面直线P A 与MN 所成角的大小.图9—38 图9—3996.(1995全国文24,理23)如图9—39,圆柱的轴截面ABCD 是正方形,点E 在底面的圆周上,AF ⊥DE ,F 是垂足.(Ⅰ)求证:AF ⊥DB ; (Ⅱ)(理)如果圆柱与三棱锥D —ABE 的体积比等于3π,求直线DE 与平面ABCD 所成的角.(文)求点E 到截面ABCD 的距离.97.(1995上海,23)如图9—40,四棱锥P —ABCD 中,底面是一个矩形,AB =3,AD =1,又P A ⊥AB ,P A =4,∠P AD =60°.(Ⅰ)求四棱锥P —ABCD 的体积;(Ⅱ)求二面角P —BC —D 的大小(用反三角函数表示).图9—40 图9—4198.(1994全国,23)如图9—41,已知A 1B 1C 1—ABC 是正三棱柱,D 是AC 中点. (Ⅰ)证明:AB 1∥平面DBC 1; (Ⅱ)(理)假设AB 1⊥BC 1,求以BC 1为棱的DBC 1与CBC 1为面的二面角α的度数. (文)假设AB 1⊥BC 1,BC =2,求线段AB 1在侧面B 1BCC 1上的射影长. 99.(1994上海,23)如图9—42在梯形ABCD 中,AD ∥BC , ∠ABC =2,AB =a ,AD =3a ,且∠ADC =arcsin55,又P A ⊥平面ABCD ,P A =a .求(1)二面角P —CD —A 的大小(用反三角函数表示).(2)点A 到平面PBC 的距离. ●答案解析 1.答案:B解析:将三角形折成三棱锥如图9—43所示.HG 与IJ 为一对异面直线.过点D 分别图9—42图9—43作HG 与IJ 的平行线,即DF 与AD .所以∠ADF 即为所求.因此,HG 与IJ 所成角为60°.评述:本题通过对折叠问题处理考查空间直线与直线的位置关系,在画图过程中正确理解已知图形的关系是关键.通过识图、想图、画图的角度考查了空间想象能力.而对空间图形的处理能力是空间想象力深化的标志,是高考从深层上考查空间想象能力的主要方向.2.答案:D解析:A 选项中,若a ∥M ,b ∥M ,则有a ∥b 或a 与b 相交或a 与b 异面.B 选项中,b 可能在M 内,b 可能与M 平行,b 可能与M 相交.C 选项中须增加a 与b 相交,则l ⊥M . D 选项证明如下:∵a ∥N ,过a 作平面α与N 交于c ,则c ∥a ,∴c ⊥M .故M ⊥N .评述:本题考查直线与直线、直线与平面、平面与平面的基本性质. 3.答案:D解析:垂直于同一平面的两直线必平行,因此选D.评述:判断元素之间的位置关系问题,也可以从元素之间所有关系分析入手,再否定若干选项.如A ,因为α、β有两种位置关系,在α与β相交情况下,仍有α⊥r ,β⊥r .因此,α∥β是错误的.4.答案:A解析:∵CD 在平面BCD 内,AB 是平面BCD 的斜线,由三垂线定理可得A. 5.答案:B 解析:(1)、(4)是正确命题.因为α∥β,l ⊥α,∴l ⊥β. 又m ⊂β,∴l ⊥m .因为l ∥m ,l ⊥α,∴m ⊥α,∴β⊥α. 6.答案:D解析:如图9—44,该旋转体的体积为圆锥C —ADE 与圆锥B —ADE 体积之差又∵求得AB =1∴23133125331πππ=⋅⋅⋅-⋅⋅⋅=-=--ADE B ADE C V V V7.答案:C解析:设该长方体水箱的长、宽、高分别为x 、y 、z ,∴x ·y ·z =4 ∴原长方形中用于制作水箱的部分的长、宽应分别为x +2z ,y +2z (如图9—45中(2)所示)从而通过对各选项的考查,确定C 答案.图9—458.答案:C解析:如图9—46,作出轴截面,设公共底面圆的半径为R ,圆锥的高为h∴V 锥=31πR 2h ,V 半球=21·43πR 3图9—44图9—47∵V 锥=V 半球,∴h =2R ∴tan α=21 ∴cos θ=53411411tan 1tan 122=+-=+-αα 9.答案:C 解析:V 甲=64·34π·(4a ·21)3=61πa 3, S 甲=64·4π·(4a ·21)2=4πa 2 V 乙=34π(a ·21)3=61πa 3,S 乙=4π(a ·21)2=πa 2 ∴V 甲=V 乙,S 甲>S 乙. 10.答案:C解析:若命题甲成立,命题乙不一定成立,如底面为菱形时. 若命题乙成立,命题甲一定成立. 11.答案:B解析:连结FE 1、FD ,则由正六棱柱相关性质得FE 1∥BC 1. 在△EFD 中,EF =ED =1,∠FED =120°,∴FD =3.在Rt △EFE 1和Rt △EE 1D 中,易得E 1F =E 1D =3.∴△E 1FD 是等边三角形.∴∠FE 1D =60°. ∴BC 1与DE 1所成的角为60°.评述:本题主要考查正六棱柱的性质及异面直线所成的角的求法. 12.答案:D解析:①∵a ∥b ,a ⊥α,∴b ⊥α,又∵b ⊥β,∴α∥β ②∵a ⊥α,α⊥β ∴a ∥β或a ∈β 又∵b ⊥β ∴b ⊥a ③若α∥β,则a ∥b④若α、β相交,则a 、b 可能相交也可能异面,显然D 不对. 13.答案:C解析:展开图可以折成如图9—47的正方体,由图可知①②不正确. ∴③④正确. 14.答案:A 解析:∵S =21ab sin θ 图9—47∴21a 2sin60°=3 ∴a 2=4,a =2,a =2r ∴r = 1 S 全=2πr +πr 2=2π+π=3π 15.答案:D解析:由S 底=S 侧cos θ可得P 1=P 2 而P 3=θθθcos )(2)cos sin (22121S S S S +=+ 又∵2(S 1+S 2)=S 底 ∴P 1=P 2=P 316.答案:B解析:如图9—48,D 1、D 分别为B 1C 1、BC 中点,连结AD 、D 1C ,设BB 1=1,则AB =2,则AD 为AB 1在平面BC 1上的射影,又32cos ,22,3311====BC BC BC C BD BE∴DE 2=BE 2+BD 2-2BE ·BD ·cos C 1BC =6132223322131=⋅⋅⋅-+ 而BE 2+DE 2=216131=+=BD 2 ∴∠BED =90° ∴AB 1与C 1B 垂直 17.答案:C解析:设圆锥底面半径为r ,母线长为l ,依条件则有2πr =πl ,如图9—49∴21=l r ,即∠ASO =30°,因此圆锥顶角为60°. 18.答案:A解析:(1)如果a ,b 是平面M 中的两条相交直线,面M ∥α, ∴有a ∥α,b ∥α,但a b ,所以(1)错.(2)如果α∩β=b ,而a ∥b ,∴有a ∥α,a ∥β,但αβ,所以(2)错. (3)如果α∩β=b ,而b ⊥γ,∴有β⊥γ,α⊥γ,但αβ,(3)错. 19.答案:C解析:设圆锥的底面半径为R ,则V 圆锥=32πR 3,V 球=34πR 3, ∴V 圆锥∶V 球=1∶2. 20.答案:D解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为图9—48图9—49l =6222=++c b a .21.答案:D解析:如图9—50,由题意知,31πr 2h =61πR 2h , ∴r =2R. 又△ABO ∽△CAO ,∴R OA OA r =,∴OA 2=r ·R =422,2R OA R =, ∴cos θ=421=R OA . 22.答案:A解析:设圆柱的底面半径为r ,高为h ,则由题设知h =2πr . ∴S 全=2πr 2+(2πr )2=2πr 2(1+2π).S侧=h 2=4π2r 2,∴ππ221+=侧全S S . 评述:本题考查圆柱的侧面展开图、侧面积和全面积等知识.23.答案:B解析:设水面半径为x cm , 则水面高度为3x cm则由已知得:π·22·6=31πx 2·3x (3x )3=63,3x =6.评述:本题重点考查柱体、锥体的体积公式及灵活的运算能力. 24.答案:D解析:由已知得中截面圆的半径r ′=25+R . 设圆台的母线长为l ,则中截面截圆台所得上面小圆台的母线长l ′=2l,且上面小圆台的侧面积S ′与圆台侧面积S 之比为1∶3,由圆台侧面积公式得:31)5(21)255(=+⋅++='l R R S S ππ,解得R =25 评述:本题主要考查圆台及其侧面积公式,立足课本,属送分题.图9—5025.答案:D解析:连EB 、E C.四棱锥E —ABCD 的体积V E —ABCD =31·32·2=6.由于AB =2EF ,EF ∥AB ,所以S △EAB =2S △BEF∴V F —EBC =V C —EFB =21V C —ABE =21V E —ABC =21·21V E —ABCD =23 ∴多面体EF —ABCD 的体积V EF —ABCD =V E —ABCD +V F —EBC =6+21523=. 此题也可利用V EF —ABCD >V E —ABCD =6.故选D.评述:本题考查多面体体积的计算以及空间想象能力和运算能力. 26.答案:C解析:设圆锥底面半径为r ,母线长为l ,由已知得:πr 2+πrl =3πr 221=⇒l r , ∴θ=lr×2π=π. 评述:本小题考查圆锥的概念、性质及侧面积公式.侧面展开是立体问题平面化的重要手段应引起广大考生的注意. 27.答案:A解析:设该棱台为正棱台来解即可.评述:本题考查棱台的中截面问题.根据选择题的特点本题选用“特例法”来解,此种解法在解选择题时很普遍,如选用特殊值、特殊点、特殊曲线、特殊图形等等.28.答案:B 解析:设球心为O ,由题设知三棱锥O —ABC 是正四面体,且△ABC 的外接圆半径是2,设球半径为R ,则33R =2,∴R =23. 29.答案:C解析:A 中直线l ⊥β,l α,所以α⊥β,A 为真命题.B 中,在α内取两相交直线,则此二直线平行于β,则α∥β,B 为真命题.D 为两平面平行的性质,为真命题.C 为假命题,l 只有在垂直交线时才有l ⊥β,否则l 不垂直β.故选C.评述:本题考查平面与平面垂直、直线与平面平行的判定和性质. 30.答案:C解析:长方体的对角线长等于球的直径,于是(2R )2=32+42+52,R 2=225, 则S 球=4πR 2=4π·225=50π. 评述:本题考查长方体、球的有关概念和性质.。
十年高考数学试卷汇编(10~19年 解答题部分)
全国卷•十年高考(解答题部分)2019年全国统一高考数学试卷(理科)(新课标Ⅰ) (2)2018年全国统一高考数学试卷(理科)(新课标Ⅰ) (6)2017年全国统一高考数学试卷(理科)(新课标Ⅰ) (10)2016年全国统一高考数学试卷(理科)(新课标Ⅰ) (15)2015年全国统一高考数学试卷(理科)(新课标Ⅰ) (20)2014年全国统一高考数学试卷(理科)(新课标Ⅰ) (25)2013年全国统一高考数学试卷(理科)(新课标Ⅰ) (31)2012年全国统一高考数学试卷(理科)(新课标) (36)2011年全国统一高考数学试卷(理科)(新课标) (41)2010年全国统一高考数学试卷(理科)(新课标) (46)2019年全国统一高考数学试卷(理科)(新课标Ⅰ)三、解答题:共60分。
17.(2019•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.设(sinB﹣sinC)2=sin2A﹣sinBsin C.(1)求A;(2)若a+b=2c,求sinC.18.(2019•新课标Ⅰ)如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.19.(2019•新课标Ⅰ)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;(2)若=3,求|AB|.20.(2019•新课标Ⅰ)已知函数f(x)=sinx﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.21.(2019•新课标Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1(i=1,2,…,7),其中a=P(X=﹣1),b=P(X=0),c=P(X=1).假设α=0.5,β=0.8.(i)证明:{p i+1﹣p i}(i=0,1,2,…,7)为等比数列;(ii)求p4,并根据p4的值解释这种试验方案的合理性.(二)选考题:共10分。
高考数学(理)十年真题(2010-2019)专题10 立体几何与空间向量解答题(新课标Ⅰ卷)(解析版)
专题10立体几何与空间向量解答题历年考题细目表历年高考真题汇编1.【2019年新课标1理科18】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.【解答】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且,又MB∥AA1,MB,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(,,2),M(,1,2),A1(,﹣1,4),,,设平面A1MN的一个法向量为,由,取x,得,又平面MAA1的一个法向量为,∴cos.∴二面角A﹣MA1﹣N的正弦值为.2.【2018年新课标1理科18】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.【解答】(1)证明:由题意,点E、F分别是AD、BC的中点,则,,由于四边形ABCD为正方形,所以EF⊥BC.由于PF⊥BF,EF∩PF=F,则BF⊥平面PEF.又因为BF⊂平面ABFD,所以:平面PEF⊥平面ABFD.(2)在平面PEF中,过P作PH⊥EF于点H,连接DH,由于EF为面ABCD和面PEF的交线,PH⊥EF,则PH⊥面ABFD,故PH⊥DH.在三棱锥P﹣DEF中,可以利用等体积法求PH,因为DE∥BF且PF⊥BF,所以PF⊥DE,又因为△PDF≌△CDF,所以∠FPD=∠FCD=90°,所以PF⊥PD,由于DE∩PD=D,则PF⊥平面PDE,故V F﹣PDE,因为BF∥DA且BF⊥面PEF,所以DA⊥面PEF,所以DE⊥EP.设正方形边长为2a,则PD=2a,DE=a在△PDE中,,所以,故V F﹣PDE,又因为,所以PH,所以在△PHD中,sin∠PDH,即∠PDH为DP与平面ABFD所成角的正弦值为:.3.【2017年新课标1理科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP =90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴P A⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵P A∩PD=P,且P A⊂平面P AD,PD⊂平面P AD,∴AB⊥平面P AD,又AB⊂平面P AB,∴平面P AB⊥平面P AD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面P AD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由P A=PD,∠APD=90°,可得△P AD为等腰直角三角形,设P A=AB=2a,则AD.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面P AD,AD⊂平面P AD,∴AB⊥PD,又PD⊥P A,P A∩AB=A,∴PD⊥平面P AB,则为平面P AB的一个法向量,.∴cos.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.4.【2016年新课标1理科18】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.【解答】(Ⅰ)证明:∵ABEF为正方形,∴AF⊥EF.∵∠AFD=90°,∴AF⊥DF,∵DF∩EF=F,∴AF⊥平面EFDC,∵AF⊂平面ABEF,∴平面ABEF⊥平面EFDC;(Ⅱ)解:由AF⊥DF,AF⊥EF,可得∠DFE为二面角D﹣AF﹣E的平面角;由ABEF为正方形,AF⊥平面EFDC,∵BE⊥EF,∴BE⊥平面EFDC即有CE⊥BE,可得∠CEF为二面角C﹣BE﹣F的平面角.可得∠DFE=∠CEF=60°.∵AB∥EF,AB⊄平面EFDC,EF⊂平面EFDC,∴AB∥平面EFDC,∵平面EFDC∩平面ABCD=CD,AB⊂平面ABCD,∴AB∥CD,∴CD∥EF,∴四边形EFDC为等腰梯形.以E为原点,建立如图所示的坐标系,设FD=a,则E(0,0,0),B(0,2a,0),C(,0,a),A(2a,2a,0),∴(0,2a,0),(,﹣2a,a),(﹣2a,0,0)设平面BEC的法向量为(x1,y1,z1),则,则,取(,0,﹣1).设平面ABC的法向量为(x2,y2,z2),则,则,取(0,,4).设二面角E﹣BC﹣A的大小为θ,则cosθ,则二面角E﹣BC﹣A的余弦值为.5.【2015年新课标1理科18】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG,且EG⊥AC,在直角△EBG中,可得BE,故DF,在直角三角形FDG中,可得FG,在直角梯形BDFE中,由BD=2,BE,FD,可得EF,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD••1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,,0),E(1,0,),F(﹣1,0,),C(0,,0),即有(1,,),(﹣1,,),故cos,.则有直线AE与直线CF所成角的余弦值为.6.【2014年新课标1理科19】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB ⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.【解答】解:(1)连结BC1,交B1C于点O,连结AO,∵侧面BB1C1C为菱形,∴BC1⊥B1C,且O为BC1和B1C的中点,又∵AB⊥B1C,∴B1C⊥平面ABO,∵AO⊂平面ABO,∴B1C⊥AO,又B10=CO,∴AC=AB1,(2)∵AC⊥AB1,且O为B1C的中点,∴AO=CO,又∵AB=BC,∴△BOA≌△BOC,∴OA⊥OB,∴OA,OB,OB1两两垂直,以O为坐标原点,的方向为x轴的正方向,||为单位长度,的方向为y轴的正方向,的方向为z轴的正方向建立空间直角坐标系,∵∠CBB1=60°,∴△CBB1为正三角形,又AB=BC,∴A(0,0,),B(1,0,0,),B1(0,,0),C(0,,0)∴(0,,),(1,0,),(﹣1,,0),设向量(x,y,z)是平面AA1B1的法向量,则,可取(1,,),同理可得平面A1B1C1的一个法向量(1,,),∴cos,,∴二面角A﹣A1B1﹣C1的余弦值为7.【2013年新课标1理科18】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.【解答】解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则(1,0,),(﹣1,,0),(0,,),设(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得(,1,﹣1),故cos,,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.8.【2012年新课标1理科19】如图,直三棱柱ABC﹣A1B1C1中,AC=BC AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°9.【2011年新课标1理科18】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.【解答】(Ⅰ)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD,从而BD2+AD2=AB2,故BD⊥AD又PD⊥底面ABCD,可得BD⊥PD所以BD⊥平面P AD.故P A⊥BD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz,则A(1,0,0),B(0,,0),C(﹣1,,0),P(0,0,1).(﹣1,,0),(0,,﹣1),(﹣1,0,0),设平面P AB的法向量为(x,y,z),则即,因此可取(,1,)设平面PBC的法向量为(x,y,z),则,即:可取(0,1,),cos故二面角A﹣PB﹣C的余弦值为:.10.【2010年新课标1理科18】如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(Ⅰ)证明:PE⊥BC(Ⅱ)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角的正弦值.【解答】解:以H为原点,HA,HB,HP分别为x,y,z轴,线段HA的长为单位长,建立空间直角坐标系如图,则A(1,0,0),B(0,1,0)(Ⅰ)设C(m,0,0),P(0,0,n)(m<0,n>0)则.可得.因为所以PE⊥BC.(Ⅱ)由已知条件可得m ,n =1,故C (),设(x ,y ,z )为平面PEH 的法向量则即因此可以取,由,可得所以直线P A 与平面PEH 所成角的正弦值为.考题分析与复习建议本专题考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以解答题题型出现,重点考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A --的余弦值. 【答案】(1)详见解析;(2. 【解析】解:(1)连接1AB 交1A E 于点G ,连接FG . 因为11AGA B GE ∆∆,所以1112AA AG GB EB ==,又因为2AF FC=,所以1AF AG FC GB =,所以1//FG CB ,又1CB ⊄面1A EF ,FG ⊂面1A EF ,所以1//CB 面1A EF .(2)过C 作CO AB ⊥于O ,因为CA CB =,所以O 是线段AB 的中点. 因为面CAB ⊥面11ABB A ,面CAB面11ABB A AB =,所以CO ⊥面1ABA .连接1OA ,因为1ABA ∆是等边三角形,O 是线段AB 的中点,所以1OA AB ⊥.如图以O 为原点,OA ,1OA ,OC 分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标,不妨设2AB =,则(1,0,0)A,1A ,(0,0,1)C ,(1,0,0)B -,12(,0,)33F ,由11AA BB =,得(B -,1BB的中点3(2E -,13(,2A E =-,112(,)33A F =-.设面1A FE 的一个法向量为1111(,,)n x y z =,则111100A E n A F n ⎧⋅=⎪⎨⋅=⎪⎩,即11112033302x z x y ⎧-+=⎪⎪⎨⎪-=⎪⎩,得方程的一组解为11115x y z =-⎧⎪=⎨⎪=⎩1(1n =-.面1ABA 的一个法向量为2(0,0,1)n =,则121212529cos ,n n n n n n⋅<>==, 所以二面角1F A E A --的余弦值为29.2.如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF 平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若60CBA ∠=︒,求二面角A BC F --的大小. 【答案】(1)见证明;(2) 4π 【解析】(1)∵菱形ABCD ,∴AC BD ⊥, ∵FD ⊥平面ABCD ,∴FD AC ⊥, ∵BD FD D ⋂=,∴AC ⊥平面BDF , ∵AC ⊂平面ACF ,∴平面ACF ⊥平面BDF . (2)设ACBD O =,以O 为原点,OB 为x 轴,OA 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则B ,()0,1,0C -,(F ,(1,0)BC =-,(BF =-,设平面BCF 的法向量(,,)n x y z =,则3020n BC y n BF ⎧⋅=--=⎪⎨⋅=-+=⎪⎩,取1x =,得(1,3,2)n =-, 平面ABC 的法向量(0,0,1)m =, 设二面角A BC F --的大小为θ, 则||cos ||||28m n m n θ⋅===⋅ ∴4πθ=.∴二面角A BC F --的大小为4π. 3.如图,在几何体1111ACD A B C D -中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.【答案】(Ⅰ)证明见解析;. 【解析】(Ⅰ)因为11B A ⊥平面11ADD A , 所以111B A DD ⊥,又11111111DD D A B A D A A ⊥⋂=,, 所以1DD ⊥平面1111D C B A , 又因为11//DD CC ,所以1CC ⊥平面1111D C B A ,11B C ⊂平面1111D C B A ,所以111CC B C ⊥,因为平面11ADD A ⊥平面11CDD C , 平面11ADD A ⋂平面111CDD C DD =,111C D DD ⊥,所以11C D ⊥平面11ADD A ,经计算可得1111B E BC EC 从而2221111B E B C EC =+,所以在11B EC 中,111B C C E ⊥,又11CC C E ⊂,平面1111CC E CC C E C ⋂=,,所以11B C ⊥平面1CC E .(Ⅱ)如图,以点A 为原点建立空间直角坐标系,依题意得()()()10001,0,00,2,2A C B ,,,,,()()11,2,10,1,0C E ,.∵1(1,1,1)(1,2,1)CE B C =--=--,,设平面1B CE 的一个法向量(,,)m x y z =则100m B C m CE ⎧⋅=⎨⋅=⎩,, 即200x y z x y z --=⎧⎨-+-=⎩,,消去x 得20y z +=, 不妨设1z =,可得()3,2,1m =--,又()111,0,1B C =-, 设直线11B C 与平面1B CE 所成角为θ,于是111111sin cos ,14||m B C m B C m B C θ⋅====⋅,故直线11B C 与平面1B CE . 4.如图,在四凌锥P ABCD -中,PC ABCD ⊥底面,底面ABCD 是直角梯形,AB AD ⊥,AB CD ∥,222AB AD CD ===,4PC =,E 为线段PB 上一点(1)求证:EAC PBC ⊥平面平面;(2)若二面角P AC E --,求BE BP 的值【答案】(1)见解析(2)13BE BP = 【解析】(1)如图,由题意,得AC BC ==2AB =,∴BC AC ⊥∵ABCD PC ⊥底面,∴PC AC ⊥又∵PC BC C ⋂=,∴AC ⊥底面PBC∵AC ⊂平面EAC ,∴平面EAC ⊥平面PBC(2)如图,以C 为原点,取AB 中点M ,以CM ,CD ,CP 所在直线为,,x y z 轴建立空间直角坐标系则()1,1,0B -,()0,0,4P ,()1,1,0A ,设(),,E x y z ,且()01BE BP λλ=<<,得 ()()1,1,1,1,4x y z λ-+=-,即()1,1,4E λλλ--()()1,1,0,1,1,4CA CE λλλ==--,设平面EAC 的法向量为(),,n x y z =,由00CE n CA n ⎧⋅=⎪⎨⋅=⎪⎩即()()11400x y z x y λλλ⎧-+-+=⎨+=⎩,令1x =,得11,1,2n λλ-⎛⎫=- ⎪⎝⎭ 又BC AC ⊥,且BC PC ⊥,所以BC ⊥平面PAC故平面PAC 的法向量为()1,1,0m BC ==-,由二面角P AC E --cos ,m n m n m n⋅===⋅,解得1λ=-或13,由01λ<<得13λ=,即13BE BP = 5.如图,在三棱锥P ABC -中,20{ 28x x ->-≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值。
高考数学专题20 立体几何大题(解析版)
专题20 立体几何大题(解析版)立体几何解答题高考中的必考题,占12分,一般考察立体几何知识掌握情况及解答技巧。
如线面垂直、面面垂直、线面平行,线面角、二面角等问题。
立体几何解答题中的易错和易混点易错点1:求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法;易错点2:线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为"一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行"而导致证明过程跨步太大;易错点3:作出二面角的平面角主要方法是什么?(定义法、三垂线法、垂面法)三垂线法:一定平面,二作垂线,三作斜线,射影可见;易错点4:求点到面的距离的常规方法是什么?(直接法、等体积法、换点法、向量法) 易错点5:求多面体体积的常规方法是什么?(割补法、等积变换法) 易错点6: 两条异面直线所成的角的范围:0°<α≤90° 直线与平面所成的角的范围:0o ≤α≤90°二面角的平面角的取值范围:0°≤α≤180°易错点7:用向量法求线面角得的是正弦值,而不是余弦值;易错点8:用向量法求二面角时,最后一步忘了判断二面角的平面角是钝角还是锐角,导致结果错误。
题组一 1.(2015新课标Ⅱ)如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8, 点E ,F 分别在A 1B 1,D 1C 1上,A 1E = D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。
(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值。
【解析】(Ⅰ)交线围成的正方形EHGF 如图: (Ⅱ)作EM AB ⊥,垂足为M , 则114,8AM A E EM AA ==== 因为EHGF 为正方形,所以10EH EF BC ===于是226MH EH EM =-=,所以10AH =以D 为坐标原点,DA 的方向为x 轴正方向, 建立如图所以的空间直角坐标系D xyz -,则(10,0,0),(10,10,0),(10,4,8),(0,4,8),(10,0,0),(0,6,8)A H E F FE HE ==- 设(,,)n x y z =是平面EHGF 的法向量,则0,0,n FE n HE ⎧=⎪⎨=⎪⎩即100,680,x y z =⎧⎨-+=⎩所以可取(0,4,3)n =又(10,4,8)AF =-, 故||45|cos ,|15||||n AF n AF n AF <>==所以AF 与平面EHGF 所成角的正弦值为41515所以直线PA 与平面PEH 所成角的正弦值为24. 2.(2016全国III )如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,AD BC ,=3AB AD AC ==,4PA BC ==,M 为线段AD 上一点,2AM MD =, N 为PC 的中点.(Ⅰ)证明MN 平面PAB ;(Ⅱ)求直线AN 与平面PMN 所成角的正弦值.【解析】(Ⅰ)由已知得232==AD AM ,取BP 的中点T ,连接TN AT ,.由N 为PC 中点知BC TN //,221==BC TN .又BC AD //,故TN 平行且等于AM ,四边形AMNT 为平行四边形,于是AT MN //.因为⊂AT 平面PAB ,⊄MN 平面PAB ,所以//MN 平面PAB .(Ⅱ)取BC 的中点E ,连结AE ,由AC AB =得BC AE ⊥,从而AD AE ⊥,且5)2(2222=-=-=BC AB BE AB AE . 以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系xyz A -,由题意知,)4,0,0(P ,)0,2,0(M ,)0,2,5(C ,)2,1,25(N , (0,2,4)PM =-,)2,1,25(-=PN , )2,1,25(=AN . 设(,,)x y z =n 为平面PMN 的法向量,则00PM PN ⎧⋅=⎪⎨⋅=⎪⎩n n ,即⎪⎩⎪⎨⎧=-+=-0225042z y x z x ,可取(0,2,1)n =,于是||85|cos ,|25||||n AN n AN n AN ⋅<>==. 所以直线AN 与平面PMN 所成角的正弦值为8525题组二3.(2013新课标Ⅱ)如图,直三棱柱111ABC A B C -中,122AA AC CB AB ===EDCBAA 1B 1C 1PAB DC N M(Ⅰ)证明:1BC //平面1A CD ;(Ⅱ)求二面角1D A C E --的正弦值.【解析】(Ⅰ)连结1AC ,交,D E 分别是1,AB BB 的中点,1A C 于点O ,连结DO ,则O 为1AC 的中点,因为D 为AB 的中点,所以OD ∥1BC ,又因为OD ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1BC //平面1A CD ;(Ⅱ)由1AA=AC=CB=2AB 可设:AB=2a ,则1AA, 所以AC ⊥BC ,又因为直棱柱,所以以点C 为坐标原点,分别以直线CA 、CB 、1CC 为x 轴、y 轴、z 轴,建立空间直角坐标系如图, 则(0,0,0)C、1)A 、D、E ,1(2)CA a =,2(2CD =,(0,CE =, 1(,A E =-,设平面1A CD 的法向量为(,,)n x y z =,则0n CD ⋅=且10n CA ⋅=,可解得y x z =-=,令1x =,得平面1A CD 的一个法向量为(1,1,1)n =--,同理可得平面1A CE 的一个法向量为(2,1,2)m =-,则cos ,n m <>=,所以6sin ,3n m <>= 所以二面角D-1A C -E4.(2012新课标)如图,直三棱柱111C B A ABC -中,112AC BC AA ==,D 是棱1AA 的中点,BD DC ⊥1. (Ⅰ)证明:BC DC ⊥1;(Ⅱ)求二面角11C BD A --的大小.【解析】(Ⅰ)在Rt DAC ∆中,AD AC =,得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (Ⅱ)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥ 取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合ACB1B 1A D1C 1且1C DO ∠是二面角11C BD A --的平面角设AC a =,则122aC O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒传统法求二面角的大小:作出二面角的平面角并通过解三角形计算。
十年(2010-2019)高考数学真题分类汇编(试卷版+解析版): 复数
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
1
42.(2014·全国 1·文 T3)设 z=1+ +i,则|z|=( )
1
√2
√3
A.2
B. 2
C. 2
D.2
43.(2013·全国 1·理 T2)若复数 z 满足(3-4i)z=|4+3i|,则 z 的虚部为( )
A.-4
4
B.-5
4
C.4
D.√2
1+2i
8.(2018·全国 2·理 T1) =( )
1-2i
4
A.-5
−
3
5i
4
B.-5
+
3
5i
3
C.-5
−
4
5i
3
D.-5
+
4
5i
9.(2018·全国 2·文 T1)i(2+3i)=( )
A.3-2i
B.3+2i
1
C.-3-2i
D.-3+2i
10.(2018·全国 3·理 T2 文 T2)(1+i)(2-i)=( )
A.√3
B.√5
C.3
D.5
4.(2019·全国 2·文 T2)设 z=i(2+i),则 =( )
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
5.(2019·全国 1·理 T2)设复数 z 满足|z-i|=1,z 在复平面内对应的点为(x,y),则( )
A.(x+1)2+y2=1
B.(x-1)2+y2=1
历年全国理科数学高考试题立体几何部分精选(含答案)
1。
在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为2。
已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23AB BC==,则棱锥-的体积为。
O ABCD3。
如图,四棱锥P—ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD;(Ⅱ)若PD=AD,求二面角A—PB-C的余弦值。
1.D2.833。
解:(Ⅰ)因为60,2DAB AB AD ∠=︒=, 由余弦定理得3BD AD =从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD(Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz ,则()1,0,0A ,()03,0B ,,()1,3,0C -,()0,0,1P .(1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{n AB n PB ⋅=⋅=即 3030x y y z -+=-=因此可取n=(3,1,3)设平面PBC 的法向量为m,则m 0,m 0,{PB BC ⋅=⋅=可取m=(0,—1,3-) 427cos ,727m n -==- 故二面角A-PB-C 的余弦值为 277-1。
正方体ABCD —1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为A23 B 33 C 23D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB •的最小值为(A ) 42-+ (B)32-+ (C ) 422-+ (D )322-+3。
已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A )233 (B)433 (C ) 23 (D) 8334. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .(Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A —DE —C 的大小 .1. D 2。
2010—2019“十年高考”数学真题分类汇总 复数部分 理数(附参考答案)
17.(2016 年全国 I)设 (1 i)x 1 yi ,其中 x, y 是实数,则 x yi =
A.1
B. 2
C. 3
D.2
【答案】B. 18.(2016 年全国 II)已知 z (m 3) (m 1)i 在复平面内对应的点在第四象限,则实数 m
的取值范围是
A. 3,1
B.第二象限
C.第三象限
D.第四象限
【答案】B.
23.(2015
山东)若复数
z
z
满足
1i
i
,其中 i
为虚数单位,则
z
=
A.1 i
B.1 i
C. 1 i
D. 1 i
【答案】A.
24.(2015 四川)设 i 是虚数单位,则复数 i3 2 = i
A. i
B. 3i
C. i
D. 3i
57.(2011 山东)复数 z = 2 i ( i 为虚数单位)在复平面内对应的点所在象限为 2i
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】D.
58.(2011 安徽)设 i 是虚数单位,复数 ai 为纯虚数,则实数 a 为 i
A.2
B. 2
C.
D.
B. 1,3
C. 1 , +
D. - , 3
【答案】A.
19.(2016 年全国 III)若 z 1 2i ,则 4i zz 1
A.1
B. 1
C.i
D. i
【答案】C.
20.(2015
新课标
1)设复数
z
1
满足
2010-2019年十年高考数学真题分类汇编.docx
A.1
B.2
C.3
D.4
31(. 2017Ⅲ理 1)已知集合 A = (x, y) x2 + y2 = 1 ,B = (x, y) y = x ,则 A I B 中元素的个数为( )
A.3
B.2
C.1
D.0
32.(2018Ⅰ文 1)已知集合 A = 0,2 , B = -2,-1,0,1,2 ,则 A I B = ( )
A.(-14,16)
B.(-14,20)
C.(-12,18)
D.(-12,20)
x-3 2.(2010Ⅱ文 2)不等式 0 的解集为( )
x+2
A.{x|-2< x<3} B.{ x|x<-2}
C.{ x|x<-2,或 x>3} D.{ x∣x>3}
x -1
3.(2010Ⅱ文
5
理
3)若变量
x,y
1.集合
1.(2010Ⅰ文理 1)已知集合 A = x | x 2,x R,B = x | x 4,x Z ,则 A I B =( )
A.(0,2)
B.[0,2]
C.{0,2}
D.{0,1,2}
2.(2010Ⅱ文 1)设全集 U= x N * | x 6 ,集合 A={1,3},B={3,5},则 CU A U B =( )
A.{-1,0}
B.{0,1}
C.{-1,0,1}
D.{0,1,2}
20.(2016Ⅰ文 1)设集合 A={1,3,5,7},B={x| 2 x 5},则 A∩B=( )
A.{1,3}
B.{3,5}
C.{5,7}
D.{1,7}
21.(2016Ⅰ理 1)设集合 A={x|x2-4x+3<0},B={x|2x-3>0},则 A I B = ( )
立体几何十年高考题(带详细解析)
D.若 a⊥M,a∥N,则 M⊥N
3.(2002 北京春,2)已知三条直线 m、n、l,三个平面α、β、γ.下面四个命题中,
正确的是( )
α ⊥γ ⎫
A.
β
⊥γ
⎬ ⎭
⇒ α∥β
m // β ⎫
B.
l
⊥
m
⎬ ⎭
⇒
l⊥β
m //γ ⎫
m ⊥γ⎫
C.
n // γ
⎬ ⇒ m∥n ⎭
D.
n ⊥γ
⎬ ⇒ m∥n ⎭
A.1∶3
B.2∶3
C.1∶2
D.2∶9
20.(2000 全国,3)一个长方体共一顶点的三个面的面积分别是 2 , 3, 6 ,这个长
方体对角线的长是( )
A.2 3
B.3 2
C.6
D. 6
图 9—5
21.(2000 全国文,12)如图 9—5,OA 是圆锥底面中心 O 到母线的垂线,OA 绕轴旋 转一周所得曲面将圆锥分成相等的两部分,则母线与轴的夹角的余弦值为( )
2
A.
2π
B. 8 π
4
C.
5π
D. 10 π
81
81
81
81
图 9—7
37.(1995 全国文,10)如图 9—7,ABCD—A1B1C1D1 是正方体,B1E1=D1F1= A1 B1 , 4
则 BE1 与 DF1 所成角的余弦值是( )15A.17183
B.
C.
D.
2
17
2
38.(1995 全国,4)正方体的全面积是 a2,它的顶点都在球面上,这个球的表面积是 ()
A.2×5 B.2×5.5 C.2×6.1 D.3×5 8.(2002 全国文 8,理 7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半 球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )
十年高考真题分类汇编2010-2019数学专题08数列+Word版含解析
17 an+1>2n-1, 则
16
an+1≥
(
17
2
)
-1
16
(n≥4),
则
a10≥
(
17 ) 26
16
=
(1+ 1
16
)64=1+64
16
+
64×63 2
×
1162+…>1+4+7>10,故选
A.
3.(2018·全国 1·理 T4)记 Sn 为等差数列{an}的前 n 项和,若 3S3=S2+S4,a1=2,则 a5=( )
A.7 B.5 C.-5 D.-7
【答案】D
【解析】∵{an}为等比数列,∴a5a6=a4a7=-8.
联立
4 4
+
7
7
=
= -8
2,可解得ห้องสมุดไป่ตู้
当
4 7
= =
4-2,时,q3=-12,
4 7
= =
4, -2
或
4 = -2, 7 = 4,
故 a1+a10= 34+a7q3=-7;
3a1 2
·
a1 2
·
5 12
a1·
7 12
a1
=
105 24
a12,显然
S3>S2.
5
19.(2013·全国 1·理 T7)设等差数列{an}的前 n 项和为 Sn,若 Sm-1=-2,Sm=0,Sm+1=3,则 m= ( ) A.3 B.4 C.5 D.6
【答案】C
【解析】∵Sm-1=-2,Sm=0,Sm+1=3,
十年真题(2010-2019)高考数学(理)分类汇编专题08 不等式(新课标Ⅰ卷)(原卷版)
专题08不等式历年考题细目表题型年份考点试题位置单选题2014 线性规划2014年新课标1理科09填空题2018 线性规划2018年新课标1理科13填空题2017 线性规划2017年新课标1理科14填空题2016 线性规划2016年新课标1理科16填空题2015 线性规划2015年新课标1理科15填空题2012 线性规划2012年新课标1理科14填空题2011 线性规划2011年新课标1理科13历年高考真题汇编1.【2014年新课标1理科09】不等式组的解集记为D,有下列四个命题:p1:∀(,y)∈D,+2y≥﹣2 p2:∃(,y)∈D,+2y≥2p3:∀(,y)∈D,+2y≤3p4:∃(,y)∈D,+2y≤﹣1其中真命题是()A.p2,p3B.p1,p4C.p1,p2D.p1,p32.【2018年新课标1理科13】若,y满足约束条件,则=3+2y的最大值为.3.【2017年新课标1理科14】设,y满足约束条件,则=3﹣2y的最小值为.4.【2016年新课标1理科16】某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5g ,乙材料1g ,用5个工时;生产一件产品B 需要甲材料0.5g ,乙材料0.3g ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150g ,乙材料90g ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 216000 元. 5.【2015年新课标1理科15】若,y 满足约束条件.则的最大值为 .6.【2012年新课标1理科14】设,y 满足约束条件:;则=﹣2y 的取值范围为 .7.【2011年新课标1理科13】若变量,y 满足约束条件,则=+2y 的最小值为 .考题分析与复习建议本专题考查的知识点为:不等关系与不等式,一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等.历年考题主要以选择填空题型出现,重点考查的知识点为:一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等,预测明年本考点题目会比较稳定,备考方向以知识点一元二次不等式及其解法,二元一次不等式组与简单的线性规划问题,基本不等式及其应用等为重点较佳.最新高考模拟试题1.已知11x y -≤+≤,13x y ≤-≤,则182yx⎛⎫⋅ ⎪⎝⎭的取值范围是( )A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦2.已知点()2,1A ,动点(),B x y 的坐标满足不等式组2023603260x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设为向量OB uuu v 在向量OA u u u v 方向上的投影,则的取值范围为( )A.⎣⎦ B.⎣⎦ C .[]2,18D .[]4,183.已知实数x ,y ,满足约束条件13260x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩,若2z x y =-+的最大值为( )A .-6B .-4C .2D .34.若直线()1y k x =+与不等式组243322y x x y x y -≤⎧⎪-≤⎨⎪+≥⎩表示的平面区域有公共点,则实数k 的取值范围是( )A .(],1-∞B .[]0,2C .[]2,1-D .(]2,2-5.已知,x y 满足约束条件20,20,20,x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,则2z x y =+ 的最大值与最小值之和为( )A .4B .6C .8D .106.设0.231log 0.6,log 20.6m n ==,则( ) A .m n mn m n ->>+ B .m n m n mn ->+> C .mn m n m n >->+D .m n m n mn +>->7.若x ,y 满足约束条件42y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2z x y =+的最大值是( )A .8B .4C .2D .68.“2a =”是“0x ∀>,1x a x+≥成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件9.已知函数()ln(1)f x x =-,若f (a )=f (b ),则a+2b 的取值范围为( ) A .(4,+∞)B.[3)++∞C .[6,+∞)D.(4,3+10.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m 、a n ,使得a m a n =16a 12,则1m +9n的最小值为( )A .32B .83C .114D .不存在11.若正数,m n 满足21m n +=,则11m n+的最小值为( ) A .322+ B .32+C .222+D .312.若实数满足,则的最大值是( )A .-4B .-2C .2D .4 13.已知,则取到最小值时( ) A .B .C .D . 14.已知函数,若,则的最小值为( )A .B .C .D .15.在平面直角坐标系中,分别是轴正半轴和图像上的两个动点,且,则的最大值是A .B .C .4D .16.定义:区间的长度均为,若不等式的解集是互不相交区间的并集,设该不等式的解集中所有区间的长度之和为,则( )A .当时,B .当时,C .当时,D .当时,17.关于的不等式的解集为,则的取值范围为 ( )A .B .C .D .18.若关于的不等式上恒成立,则实数a 的取值范围是A .B .C .D .19.已知函数的导函数为的解集为,若的极小值等于-98,则a 的值是( ) A .- B . C .2 D .520.在R 上定义运算⊗:(1)x y x y ⊗=-,若不等式()()1x a x a -⊗+<对任意实数x 恒成立,则实数a 的取值范围为( ) A .11a -<<B .1322a -<< C .3122a -<< D .02a <<21.在ABC ∆中,,,a b c 分别为角,,A B C 所对边的长,S 为ABC ∆的面积.若不等式22233kS b c a ≤+-恒成立,则实数k 的最大值为______.22.已知实数,x y 满足约束条件2020x y x y x a +-≥⎧⎪-+≥⎨⎪≤⎩,若2(0)z ax y a =->的最大值为1-,则实数a 的值是______23.已知实数,x y 满足不等式组201030y x y x y -≤⎧⎪--≤⎨⎪+-≥⎩,则yx 的取值范围为__________.24.若x ,y 均为正实数,则221(2)x y x y+++的最小值为_______.25.点(),M x y 在曲线C :224210x x y -+-=上运动,22+1212150t x y x y a =+---,且t 的最大值为b ,若,a b R +∈,则111a b++的最小值为_____. 26.已知实数,x y 满足约束条件222020x x y x y ≤⎧⎪-+≥⎨⎪++≥⎩,则3xz y =-+的最大值为_____27.已知实数x ,y 满足342y x x y x ≥⎧⎪+≤⎨⎪≥⎩,则3z x y =+的最大值是__________.28.设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的值是最大值为12,则23a b+的最小值为______.29.若,x y 满足约束条件40,20,20,x y x x y -+≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最小值为__________.30.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,若222a b ab c ++=,且ABC ∆,则ab 最小值为_______.。
专题10 立体几何与空间向量解答题-高考数学(理)十年真题(2010-2019)深度思考(新课标Ⅰ卷)(原卷版)
专题10立体几何与空间向量解答题历年考题细目表历年高考真题汇编1.【2019年新课标1理科18】如图,直四棱柱ABCD﹣A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD =60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A﹣MA1﹣N的正弦值.2.【2018年新课标1理科18】如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.3.【2017年新课标1理科18】如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面P AB⊥平面P AD;(2)若P A=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.4.【2016年新课标1理科18】如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF =2FD,∠AFD=90°,且二面角D﹣AF﹣E与二面角C﹣BE﹣F都是60°.(Ⅰ)证明平面ABEF⊥平面EFDC;(Ⅱ)求二面角E﹣BC﹣A的余弦值.5.【2015年新课标1理科18】如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(Ⅰ)证明:平面AEC⊥平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.6.【2014年新课标1理科19】如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.(Ⅰ)证明:AC=AB1;(Ⅱ)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.7.【2013年新课标1理科18】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB=2,求直线A1C与平面BB1C1C所成角的正弦值.8.【2012年新课标1理科19】如图,直三棱柱ABC﹣A1B1C1中,AC=BC AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.9.【2011年新课标1理科18】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB =2AD,PD⊥底面ABCD.(Ⅰ)证明:P A⊥BD;(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.10.【2010年新课标1理科18】如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD中点(Ⅰ)证明:PE⊥BC(Ⅱ)若∠APB=∠ADB=60°,求直线P A与平面PEH所成角的正弦值.考题分析与复习建议本专题考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以解答题题型出现,重点考查的知识点为:直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.预测明年本考点题目会比较稳定,备考方向以知识点直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等为重点较佳.最新高考模拟试题1.如图,在三棱柱111ABC A B C -中,侧面11ABB A 是菱形,160BAA ∠=︒,E 是棱1BB 的中点,CA CB =,F 在线段AC 上,且2AF FC =.(1)证明:1//CB 面1A EF ;(2)若CA CB ⊥,面CAB ⊥面11ABB A ,求二面角1F A E A --的余弦值.2.如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若60CBA ∠=︒,求二面角A BC F --的大小.3.如图,在几何体1111ACD A B C D -中,四边形1111ADD A CDD C ,为矩形,平面11ADD A ⊥平面11CDD C ,11B A ⊥平面11ADD A ,1111,2AD CD AA A B ====,E 为棱1AA 的中点.(Ⅰ)证明:11B C ⊥平面1CC E ;(Ⅱ)求直线11B C 与平面1B CE 所成角的正弦值.4.如图,在四凌锥P ABCD -中,PC ABCD ⊥底面,底面ABCD 是直角梯形,AB AD ⊥,AB CD ∥,222AB AD CD ===,4PC =,E 为线段PB 上一点(1)求证:EAC PBC ⊥平面平面;(2)若二面角P AC E --,求BE BP 的值5.如图,在三棱锥P ABC -中,20{28x x ->-≥,2AB BC =,D 为线段AB 上一点,且3AD DB =,PD ⊥平面ABC ,PA 与平面ABC 所成的角为45.(1)求证:平面PAB ⊥平面PCD ;(2)求二面角P AC D --的平面角的余弦值。
十年真题(2010-2019)高考数学(理)分类汇编专题09 立体几何与空间向量选择填空题(新课标Ⅰ卷)(解析版
专题09立体几何与空间向量选择填空题历年考题细目表填空题2010 三视图与直观图2010年新课标1理科14历年高考真题汇编1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为()A.8πB.4πC.2πD.π【解答】解:如图,由P A=PB=PC,△ABC是边长为2的正三角形,可知三棱锥P﹣ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心,连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC,∵E,F分别是P A,AB的中点,∴EF∥PB,又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面P AC,∴正三棱锥P﹣ABC的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D.半径为,则球O的体积为.故选:D.2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()A.2B.2C.3 D.2【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,直观图以及侧面展开图如图:圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:2.故选:B.3.【2018年新课标1理科12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为()A.B.C.D.【解答】解:正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长,α截此正方体所得截面最大值为:6.故选:A.4.【2017年新课标1理科07】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.5.【2016年新课标1理科06】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:,R=2.它的表面积是:4π•2217π.故选:A.6.【2016年新课标1理科11】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD =m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.7.【2015年新课标1理科06】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【解答】解:设圆锥的底面半径为r,则r=8,解得r,故米堆的体积为π×()2×5,∵1斛米的体积约为1.62立方,∴ 1.62≈22,故选:B.8.【2015年新课标1理科11】圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:4πr2πr22r×2πr+2r×2rπr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.9.【2014年新课标1理科12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6B.6 C.4D.4【解答】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC6,AD=4,显然AC最长.长为6.故选:B.10.【2013年新课标1理科06】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.【解答】解:设正方体上底面所在平面截球得小圆M,则圆心M为正方体上底面正方形的中心.如图.设球的半径为R,根据题意得球心到上底面的距离等于(R﹣2)cm,而圆M的半径为4,由球的截面圆性质,得R2=(R﹣2)2+42,解出R=5,∴根据球的体积公式,该球的体积V.故选:A.11.【2013年新课标1理科08】某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【解答】解:三视图复原的几何体是一个长方体与半个圆柱的组合体,如图,其中长方体长、宽、高分别是:4,2,2,半个圆柱的底面半径为2,母线长为4.∴长方体的体积=4×2×2=16,半个圆柱的体积22×π×4=8π所以这个几何体的体积是16+8π;故选:A.12.【2012年新课标1理科07】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.18【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V6×3×3=9.故选:B.13.【2012年新课标1理科11】已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为()A.B.C.D.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1,∴OO1,∴高SD=2OO1,∵△ABC是边长为1的正三角形,∴S△ABC,∴V三棱锥S﹣ABC.故选:C.14.【2011年新课标1理科06】在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选:D.15.【2010年新课标1理科10】设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点都在一个球面上,则该球的表面积为()A.πa2B.C.D.5πa2【解答】解:根据题意条件可知三棱柱是棱长都为a的正三棱柱,上下底面中心连线的中点就是球心,则其外接球的半径为,球的表面积为,故选:B.16.【2017年新课标1理科16】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△F AB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△F AB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG BC,即OG的长度与BC的长度成正比,设OG=,则BC=2,DG=5﹣,三棱锥的高h,3,则V,令f()=254﹣105,∈(0,),f′()=1003﹣504,令f′()≥0,即4﹣23≤0,解得≤2,则f()≤f(2)=80,∴V4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为,则OG,∴FG=SG=5,SO=h,∴三棱锥的体积V,令b()=54,则,令b′()=0,则430,解得=4,∴(cm3).故答案为:4cm3.17.【2011年新课标1理科15】已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的体积为.【解答】解:矩形的对角线的长为:,所以球心到矩形的距离为:2,所以棱锥O﹣ABCD的体积为:8.故答案为:818.【2010年新课标1理科14】正视图为一个三角形的几何体可以是(写出三种)【解答】解:正视图为一个三角形的几何体可以是三棱锥、三棱柱(放倒的情形)、圆锥、四棱锥等等.故答案为:三棱锥、圆锥、三棱柱.考题分析与复习建议本专题考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质,空间向量及其运算,立体几何中的向量方法(证明平行与垂直、求空间角和距离)等.历年考题主要以选择填空题型出现,重点考查的知识点为:空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等.预测明年本考点题目会比较稳定,备考方向以知识点空间几何体的结构、三视图和直观图,空间几何体的表面积与体积,空间点、直线、平面之间的位置关系,直线、平面平行、垂直的判定与性质等为重点较佳.最新高考模拟试题1.在四棱锥P ABCD -中,所有侧棱都为42,底面是边长为26的正方形,O 是P 在平面ABCD 内的射影,M 是PC 的中点,则异面直线OP 与BM 所成角为( ) A .30o B .45oC .60oD .90o【答案】C 【解析】由题可知O 是正方形ABCD 的中心, 取N 为OC 的中点,所以OP MN P , 则BMN ∠是异面直线OP 与BM 所成的角. 因为OP ⊥平面ABCD , 所以MN ⊥平面ABCD ,因为在四棱锥P ABCD -中,所有侧棱都为42,底面是边长为26的正方形, 所以23OC =,所以321225OP =-=,因此5MN =,又在PBC ∆中,2223232245cos 22328PB PC BC BPC PB PC +-+-∠===•⨯,所以22252cos 32824222208BM PB PM PB PM BPC =+-••∠=+-⨯⨯⨯=, 即25BM =, 所以1cos 2MN BMN MB ∠==, 则异面直线OP 与BM 所成的角为60o . 故选C2.已知,m n 是两条不重合的直线,,αβ是两个不重合的平面,下列命题正确的是( )A .若m αP ,m βP ,n α∥,n β∥,则αβPB .若m n ∥,m α⊥,n β⊥,则αβPC .若m n ⊥,m α⊂,n β⊂,则αβ⊥D .若m n ⊥,m αP ,n β⊥,则αβ⊥ 【答案】B 【解析】A 选项,若m αP ,m βP ,n α∥,n β∥,则αβP 或α与β相交;故A 错;B 选项,若m n ∥,m α⊥,则n α⊥,又n β⊥,,αβ是两个不重合的平面,则αβP ,故B 正确;C 选项,若m n ⊥,m α⊂,则n α⊂或n α∥或n 与α相交,又n β⊂,,αβ是两个不重合的平面,则αβP 或α与β相交;故C 错;D 选项,若m n ⊥,m αP ,则n α⊂或n α∥或n 与α相交,又n β⊥,,αβ是两个不重合的平面,则αβP 或α与β相交;故D 错; 故选B3.已知正方体1111ABCD A B C D -的棱长为1,在对角线1A D 上取点M ,在1CD 上取点N ,使得线段MN平行于对角面11A ACC ,则||MN 的最小值为( ) A .1 B .2C .2D .3 【答案】D 【解析】作1MM AD ⊥,垂足为1M ,作1NN CD ⊥,垂足为1N ,如下图所示:在正方体1111ABCD A B C D -中,根据面面垂直的性质定理,可得11,MM NN ,都垂直于平面ABCD ,由线面垂直的性质,可知11MM NN P ,易知:1111//M M A N N ACC 平面,由面面平行的性质定理可知://11M N AC ,设11DM DN x ==,在直角梯形11MM N N 中,222211(2)(12)633MN x x x ⎛⎫=-+-=-+ ⎪⎝⎭,当13x =时,||MN 的最小值为33, 故本题选D.4.如图,某几何体的三视图如图所示,则此几何体的体积为( )A .3B .23C .3D .3【答案】A 【解析】解:根据几何体得三视图转换为几何体为:故:V 11321332=⨯⨯⨯=. 故选:A .5.已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,2PA AB ==,则球O 的表面积为( )A .2πB .4πC .8πD .16π【答案】C 【解析】解:∵正四棱锥P ﹣ABCD 的所有顶点都在球O 的球面上,P A =AB =2, ∴连结AC ,BD ,交于点O ,连结PO , 则PO ⊥面ABCD ,OA =OB =OC =OD 221122222AC ==+=, OP 22422PB OB =-=-=,∴O 是球心,球O 的半径r 2=,∴球O 的表面积为S =4πr 2=8π. 故选:C .6.已知长方体全部棱长的和为36,表面积为52,则其体对角线的长为( ) A .4 B 29C .223D .17【答案】B 【解析】设长方体的三条棱的长分别为:,,x y z , 则2()524()36xy yz zx x y z ++=⎧⎨++=⎩,22222()2()95229x y z x y z xy yz zx ++=++-++=-=.故选:B .7.如图所示,边长为a 的空间四边形ABCD 中,∠BCD=90°,平面ABD⊥平面BCD ,则异面直线AD 与BC所成角的大小为()A.30°B.45°C.60°D.90°【答案】C【解析】由题意得BC=CD=a,∠BCD=90°,∴BD=2a,∴∠BAD=90°,取BD中点O,连结AO,CO,∵AB=BC=CD=DA=a,∴AO⊥BD,CO⊥BD,且AO=BO=OD=OC=22a,又∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊥BD,∴AO⊥平面BCD,延长CO至点E,使CO=OE,连结ED,EA,EB,则四边形BCDE为正方形,即有BC∥DE,∴∠ADE(或其补角)即为异面直线AD与BC所成角,由题意得AE=a,ED=a,∴△AED为正三角形,∴∠ADE=60°,∴异面直线AD与BC所成角的大小为60°.故选:C.8.鲁班锁起于中国古代建筑中首创的榫卯结构,相传由春秋时代鲁国工匠鲁班所作. 下图是经典的六柱鲁班锁及六个构件的图片,下图是其中一个构件的三视图,则此构件的体积为A .334000mmB .333000mmC .332000mmD .330000mm【答案】C 【解析】由三视图得鲁班锁的其中一个零件是:长为100,宽为20,高为20的长方体的上面的中间部分去掉一个长为40,宽为20,高为10的小长体的一个几何体,如图,∴该零件的体积:V =100×20×20﹣40×20×10=32000(mm 3).故选:C .9.在正方体1111ABCD A B C D -中,动点E 在棱1BB 上,动点F 在线段11A C 上,O 为底面ABCD 的中心,若1,BE x A F y ==,则四面体O AEF -的体积( )A .与,x y 都有关B .与,x y 都无关C .与x 有关,与y 无关D .与y 有关,与x 无关【答案】B 【解析】因为V O -AEF =V E -OAF ,所以,考察△AOF 的面积和点E 到平面AOF 的距离的值, 因为BB 1∥平面ACC 1A 1,所以,点E 到平面AOE 的距离为定值, 又AO∥A 1C 1,所以,OA 为定值,点F 到直线AO 的距离也为定值, 即△AOF 的面积是定值,所以,四面体O AEF -的体积与,x y 都无关,选B 。
2010-2019北京理科立体几何及答案
2010-2019北京理科立体几何及答案(2019北京理)16.(14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD CD ⊥,//AD BC ,2PA AD CD ===,3BC =.E 为PD 的中点,点F 在PC 上,且13PF PC =.(Ⅰ)求证:CD ⊥平面PAD ;(Ⅱ)求二面角F AE P --的余弦值;(Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【思路分析】(Ⅰ)推导出PA CD ⊥,AD CD ⊥,由此能证明CD ⊥平面PAD .(Ⅱ)以A 为原点,在平面ABCD 内过A 作CD 的平行线为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法能求出二面角F AE P --的余弦值.(Ⅲ)求出4(3AG =u u u r ,0,2)3,平面AEF 的法向量(1m =r ,1,1)-,4220333m AG =-=≠u u ur r g ,从而直线AG 不在平面AEF 内.【解答】证明:(Ⅰ)PA ⊥Q 平面ABCD ,PA CD ∴⊥, AD CD ⊥Q ,PA AD A =I , CD ∴⊥平面PAD .解:(Ⅱ)以A 为原点,在平面ABCD 内过A 作CD 的平行线为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,(0A ,0,0),(1E ,0,1),2(3F ,23,4)3,(0P ,0,2),(1AE =u u u r ,0,1),224(,,)333AF =u u u r ,平面AEP 的法向量(1n =r,0,0),设平面AEF 的法向量(m x =r,y ,)z ,则02240333m AE x z m AF x y z ⎧=+=⎪⎨=++=⎪⎩u u u r r g u u u r r g ,取1x =,得(1m =r ,1,1)-, 设二面角F AE P --的平面角为θ,则||cos ||||m n m n θ===r r g r r g∴二面角F AE P --. (Ⅲ)直线AG 不在平面AEF 内,理由如下:Q 点G 在PB 上,且23PG PB =.4(3G ∴,0,2)3,∴4(3AG =u u u r ,0,2)3,Q 平面AEF 的法向量(1m =r,1,1)-,4220333m AG =-=≠u u ur r g ,故直线AG 不在平面AEF 内.【归纳与总结】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查直线是否在已知平面内的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理能力与计算能力,属于中档题.(2018北京理)16.(14分)如图,在三棱柱ABC ﹣A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB=BC=,AC=AA 1=2.(Ⅰ)求证:AC ⊥平面BEF ;(Ⅱ)求二面角B ﹣CD ﹣C 1的余弦值; (Ⅲ)证明:直线FG 与平面BCD 相交.【分析】(I )证明AC ⊥BE ,AC ⊥EF 即可得出AC ⊥平面BEF ; (II )建立坐标系,求出平面BCD 的法向量,通过计算与的夹角得出二面角的大小; (III )计算与的数量积即可得出结论.【解答】(I)证明:∵E,F分别是AC,A1C1的中点,∴EF∥CC1,∵CC1⊥平面ABC,∴EF⊥平面ABC,又AC⊂平面ABC,∴EF⊥AC,∵AB=BC,E是AC的中点,∴BE⊥AC,又BE∩EF=E,BE⊂平面BEF,EF⊂平面BEF,∴AC⊥平面BEF.(II)解:以E为原点,以EB,EC,EF为坐标轴建立空间直角坐标系如图所示:则B(2,0,0),C(0,1,0),D(0,﹣1,1),∴=(﹣2,1,0),=(0,﹣2,1),设平面BCD的法向量为=(x,y,z),则,即,令y=2可得=(1,2,4),又EB⊥平面ACC1A1,∴=(2,0,0)为平面CD﹣C1的一个法向量,∴cos<,>===.由图形可知二面角B﹣CD﹣C1为钝二面角,∴二面角B﹣CD﹣C1的余弦值为﹣.(III)证明:F(0,0,2),(2,0,1),∴=(2,0,﹣1),∴•=2+0﹣4=﹣2≠0,∴与不垂直,∴FG与平面BCD不平行,又FG⊄平面BCD,∴FG与平面BCD相交.【点评】本题考查了线面垂直的判定,二面角的计算与空间向量的应用,属于中档题.(2017北京理)(16)(共14分)如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD//平面MAC ,PA =PD,AB=4.(I)求证:M 为PB 的中点; (II)求二面角B-PD-A 的大小;(III)求直线MC 与平面BDP 所成角的正炫值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020高考冲刺 提分必备 2010-2019十年高考真题专项训练专题八 立体几何初步第二十二讲 空间几何体的三视图、表面积和体积一、选择题1.(2018北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为俯视图侧(左)视图正(主)视图A .1B .2C .3D .42.(2018全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为BAA .172B .52C .3D .23.(2018全国卷Ⅲ)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.(2018全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为3,则三棱锥D ABC -体积的最大值为 A .3B .3C .3D .35.(2018上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设1AA 是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以1AA 为底面矩形的一边,则这样的阳马的个数是( )A 1AA .4B .8C .12D .166.(2018浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是俯视图正视图2211A .2B .4C .6D .87.(2017新课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为A.90πB.63πC.42πD.36π9.(2017新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.34πC.2πD.4π10.(2017浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:3cm)是俯视图11311A.12π+B.32π+C.312π+D.332π+11.(2017北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A.2B.3C.2D.212.(2016山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为A .1233+π B .1233+π C .1236+π D .216+π 13.(2016全国I )如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径,若该几何体的体积是28π3,则它的表面积是A .17πB .18πC .20πD .28π 14.(2016全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为A .20πB .24πC .28πD .32π15.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A .185+B .54185+C .90D .8116.(2015浙江)某几何体的三视图如图所示(单位:cm ),则该几何体的体积是A .38cm B .312cm C .3323cm D .3403cm 17.(2015陕西)一个几何体的三视图如图所示,则该几何体的表面积为A .3πB .4πC .24π+D .34π+ 18.(2015重庆)某几何体的三视图如图所示,则该几何体的体积为A .13π+ B .23π+ C .123π+ D .223π+ 19.(2015新课标)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为A .81 B .71 C .61 D .51 20.(2015安徽)一个四面体的三视图如图所示,则该四面体的表面积是A .13+B .23+C .122+D .2221.(2015湖南)某工件的三视图如图3所示,现将该工件通过切割,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)A .89πB .169πC .34(21)πD .312(21)π22.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r =A.1 B.2 C.4 D.823.(2014新课标Ⅰ)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为A.62B.6 C.42D.424.(2014新课标Ⅱ)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A.1727B.59C.1027D.1325.(2014安徽)一个多面体的三视图如图所示,则该多面体的表面积为A.213+B.183+C.21D.1826.(2014福建)某空间几何体的正视图是三角形,则该几何体不可能是A.圆柱B.圆锥C.四面体D.三棱柱27.(2014浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是俯视图侧视图正视图3333344A.902cm B.1292cm C.1322cm D.1382cm28.(2014新课标Ⅱ)正三棱柱111ABC A B C-的底面边长为23D为BC中点,则三棱锥11A B DC-的体积为A.3 B.32C.1 D329.(2014福建)以边长为1的正方形的一边所在直线为旋转轴,将该正方形旋转一周所得圆柱的侧面积等于A.2πB.πC.2 D.130.(2014辽宁)某几何体三视图如图所示,则该几何体的体积为主(正)视左(侧)视俯视俯视图左视图主视图122122211A .82π-B .8π-C .82π-D .84π-31.(2014陕西)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积为A .4πB .3πC .2πD .π32.(2014江西)一几何体的直观图如右图,下列给出的四个俯视图中正确的是ABCD33.(2013新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为A .168π+B .88π+C .1616π+D .816π+ 34.(2013江西)一几何体的三视图如右所示,则该几何体的体积为俯视图侧视图正视图A .200+9πB .200+18πC .140+9πD .140+18π 35.(2012广东)某几何体的三视图如图所示,它的体积为A .12πB .45πC .57πD .81π36.(2012湖北)已知某几何体的三视图如图所示,则该几何体的体积为俯视图正视图A .8π3 B .3π C .10π3D .6π 37.(2011新课标)在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为俯视图正视图DCB A38.(2011安徽)一个空间几何体的三视图如图所示,则该几何体的表面积为侧视图A .48B .C .D .8039.(2011辽宁)如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是 BCASDA .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角40.(2010安徽)一个几何体的三视图如图,该几何体的表面积为A.280 B.292 C.360 D.372 41.(2010浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是侧视图正视图A.3523cm3B.3203cm3 C.2243cm3D.1603cm3二、填空题42.(2018天津)已知正方体1111ABCD A B C D-的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M EFGH-的体积为.1ACA43.(2018江苏)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 .44.(2017新课标Ⅰ)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC的中心为O .D 、E 、F 为圆O 上的点,DBC ∆,ECA ∆,FAB ∆分别是以BC ,CA ,AB 为底边的等腰三角形。
沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D 、E 、F 重合,得到三棱锥。
当ABC ∆的边长变化时,所得三棱锥体积(单位:3cm )的最大值为_______。
F45.(2017天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 .46.(2017山东)由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为 .俯视图侧视图(左视图)正视图(主视图)47.(2017江苏)如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切。
记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .48.(2016天津)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______3m .俯视图侧视图正视图1111349.(2015天津)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为 3m .50.(2014山东)一个六棱锥的体积为3其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 .51.(2014北京)某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为 .侧(左)视图正(主)视图1112252.(2014江苏)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 . 53.(2013天津)已知一个正方体的所有顶点在一个球面上,若球的体积为92π,则正方体的棱长为 .54.(2013江苏)如图,在三棱柱ABC C B A -111中,F E D ,,分别是1,,AA AC AB 的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .55.(2012辽宁)一个几何体的三视图如图所示,则该几何体的表面积为 .56.(2012安徽)某几何体的三视图如图所示,该几何体的表面积是_____.ABC1ADE F1B1C452俯视图侧(左)视图正(主)视图57.(2011福建)三棱锥P ABC -中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P ABC -的体积等于______.58.(2011新课标)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 . 三、解答题59.(2014广东)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==,作如图3折叠,折痕EF ∥DC .其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF . (Ⅰ)证明:CF ⊥平面MDF ; (Ⅱ)求三棱锥M -CDE 的体积.60.(2014辽宁)如图,ABC ∆和BCD ∆所在平面互相垂直,且2AB BC BD ===,0120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点.(Ⅰ)求证:EF ⊥平面BCG ; (Ⅱ)求三棱锥D BCG -的体积. 附:锥体的体积公式13V Sh =,其中S 为底面面积,h 为高.GBCDAFE61.(2013新课标Ⅱ)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.ED B 1C 1A CB A 1(Ⅰ)证明:1BC ∥平面1A CD ;(Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.62.(2013安徽) 如图,四棱锥P ABCD -的底面ABCD 是边长为2的菱形,60BAD ∠=o .已知2,6PB PD PA ===.(Ⅰ)证明:PC BD ⊥;(Ⅱ)若E 为PA 的中点,求三棱锥P BCE -的体积.63.(2012江西)如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB =12,AD =5,BC 2,DE =4,现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG .(1)求证:平面DEG⊥平面CFG;(2)求多面体CDEFG的体积.64.(2011辽宁)如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=12 PD.(I)证明:PQ⊥平面DCQ;(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.。