用逐项微分法求函数项级数的和
无穷级数求和问题的几种方法-无穷级数求和的方法
⽆穷级数求和问题的⼏种⽅法-⽆穷级数求和的⽅法⽬录摘要 (2)1⽆穷级数求和问题的⼏种⽅法 (2)利⽤级数和的定义求和 (2)利⽤函数的幂级数展开式求和 (3)利⽤逐项求积和逐项求导定理求和 (4)逐项求极限 (5)利⽤Flourier级数求和 (7)构建微分⽅程 (9)拆项法 (9)'将⼀般项写成某数列相邻项之差 (10)2总结 (12)3参考⽂献 (12)$⽆穷级数求和问题的⼏种⽅法摘要:⽆穷级数是数学分析中的⼀个重要内容,同时⽆穷级数求和问题,也是学⽣学习级数过程中较难掌握的部分.然⽽,⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 关键词:数项级数;幂级数;级数求和⽆穷级数是数学分析中的⼀个重要内容,它是以极限理论为基础,⽤以表⽰函数,研究函数的性质以及进⾏数值计算的⼀种重要⼯具.然⽽数学分析中注重函数的敛散问题,却对⽆穷级数求和问题的⽅法介绍的⽐较少,所以求和问题是学⽣学习级数过程中较难掌握的部分.⽆穷级数求和没有⼀个固定的⽅法可循.本⽂结合具体例⼦,根据不同的⽆穷级数的不同特点,介绍⼏种常⽤的求⽆穷级数的和的⽅法和技巧. 1利⽤级数和的定义求和定义[1]若级数1n n u ∞=∑的部分和数列{}n S 收敛于有限值S ,即1lim lim n n n n n S u S ∞→∞→∞===∑,则称级数1n n u ∞=∑收敛,记为1n n u S ∞==∑,此时S 称为级数的和数;若部分和数数列{}n S 发散,则称级数1n n u ∞=∑发散.例1 /例2求级数()∑∞=--1112n n q n ,1≤q 的和 .解: 2311357(21)n n S q q q n q -=+++++- (1) 2341357(23)(21)n n n qS q q q q n q n q -=+++++-+- (2)(1)-(2)得:11(1)12(21)1n n n q q S q n q q ---=+---12112(21)1(1)1n nn q q S q n q q q--=+-----212lim 1(1)n n qS q q →∞=+--即级数和2121(1)q S q q =+--. 2利⽤函数的幂级数展开式求和利⽤函数的幂级数展开式可以解决某些级数的求和问题.下⾯是⼏个重要的幂级数展开式:例(01,!xnn e x x n ∞==-∞<<+∞∑1,111n n x x x ∞==-<<-∑ 01ln(1),11!n x x x n ∞=-=--≤<∑3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-等等. 例2 求0(1)(21)!nn nn ∞=-+∑的和.解 : 0(1)(21)!nn n n ∞=-+∑0(21)11(1)(21)!2n n n n ∞=+-=-?+∑ 0111(1)2(2)!(21)!n n n n ∞=??=--??+??∑=001111(1)(1)2(2)!2(21)!n n n n n n ∞∞==---+∑∑ 注意到3521sin (1),()3!5!(21)!n nx x x x x x n -=-+-+-+-∞<+∞-242cos 1(1),()2!4!(2)!nx x x x x n =-+-+-+-∞<+∞>得1(1)(cos1sin1)(21)!2nn n n ∞=-=-+∑.3利⽤逐项求积和逐项求导定理求和定理[2]设幂级数()nnn a x x ∞=-∑的收敛半径为R ,其和函数为()x S ,则在00(,)x R x R -+内幂级数可以逐项积分和逐项微分.即:对00(,)x R x R -+内任意⼀点x ,有:10000()()()1xx nn nn x x N n a a x x x x S x dx n ∞∞+==-=-=+∑∑10000()()()n n n n n n d d a x x na x x S x dx dx ∞-==??-=-=??∑∑并且逐项积分和逐项求导后的级数(显然是幂级数),其收敛半径仍为R . 例3[]3 计算⽆穷级数()() +-++?-+--14534231215432n n x xxxxnn之和(1)x <.解:对于级数()xxnn n+=∑-∞=111(1)x <. ^两边从0积分到x 得()()x nx n n n+=++∞=∑-1ln 11,(1)x <,两边从0积分到x 得()()()()()()x x x x dt t n n xn n nx++-+=+=++?∑-+∞=1ln 1ln 1ln 21021,(1)x <上式右边是原级数. 故级数和()()x x x x S ++-+=1ln 1ln ,(1)x <.例4 求幂级数()()x nn n n n 2112111??-+∑-∞=的和函数()x S .解:令2t x =,幂函数()11111(21)n n n t n n ∞-=??-+??-??∑的收敛半径 '11(21)lim 11(1)(21)n n n R n n →∞+-=+++故原函数的收敛半径1R ==,从⽽收敛区间为(1,1)-,⽽知级数2122211(1)(),(1,1)1n nnn n x xx x x ∞∞-==-=--=∈-+∑∑,记1211()(1),(0)0(21)n n n x x n n ??∞-==-=-∑,'121'12()(1),(0)021n n n x x n ??∞--==-=-∑且''12212212()(1)22(1),(1,1)1n n n n n n x xx x x∞∞---===-?=-?=∈-+∑∑ 于是(1,1)x ∈-,对上式,从0到x 作积分得'''0 ()()()2arctan x x x d x x ??==?,'()()()2arctan xxx x d x xdx ??==??=122012(arctan 2arctan ln(1)1x x dx x x x x -=-++?因此222()2tan ln(1),(1,1)1x f x x x x x x=+-+∈-+. 4逐项求极限如果函数在端点处⽆定义,那么可⽤求极限的⽅法讨论在端点处的和函数. 例5 []4 求幂级数121(1)1n nn x n +∞=--∑的和函数.,解:(1)容易验证该幂级数的收敛域为[]1,1-.(2)再求幂级数在其收敛区间(1,1)-上的和函数,下⾯⽤逐项求导的⽅法求解.设1122()(1)1n n n x f x n +∞-==--∑,(1,1)x ∈- 则有1'12()(1)1n n n x f x n +∞-==--∑ 1n x x n ∞==-∑再设1()(1)nnn x g x n ∞==-∑,(1,1)x ∈-⼜有1'11()(1)1n nn x g x n x -∞==-=-+∑-于是对上式两边进⾏积分,得1()()(0)1xg x dt g t=-++?ln(1)x =-+ 并有'()()ln(1)f x xg x x x ==-+.再进⾏积分,⼜得0()ln(1)(0)xf x t t dt f =-++?221ln(1)224x x x x -=+-+(3)最后讨论幂级数在其收敛域上的和函数.因为函数221()ln(1)224x x x f x x -=+-+在1x =处左连续,⽽幂级数在1x =处收敛,所以等式》21(1)ln(1),1224n n n x x x x x n +∞-=--=+-+-∑ 在1x =处也成⽴.但因()f x 在1x =-处⽆定义,故要改⽤逐项求极限来确定该幂级数在1x =-处的值,即由22111lim ()lim ln(1)224x x x x x f x x ++→-→-??-=+-+ 11ln(1)3lim 1241x x x x +→-??-+=?++?12131lim 14(1)x x x +→-+=+-+34= 得到112123lim ((1))41n n x n x n ++∞-→-==--∑11212lim ((1))1n n x n x n ++∞-→-==--∑ 1122(1)(1)1n n n n +∞-=-=--∑2211n n ∞==-∑ %所以原幂级数的和函数为221ln(1),(1,1]224()3,14x x x x x S x x ?-+-+∈-??=??=-??.5利⽤Flourier 级数求和求某些数值级数的和可选择某个特殊的函数在[]0,2π或[],ππ-上展成傅⾥叶级数,然后再去适当的x 值或逐项积分即可.例6[5]求21(1)nn n ∞=-∑的和.解:21(1)n n n ∞=-∑可以看作是余弦函数21(1)cos nn nx n∞=-∑在0x =时的值,因此可以考虑适当选取⼀个偶函数()f x ,满⾜21(1)()cos nf x nxdx nπππ--=?对于上式左端利⽤分部积分,得到'''22111()cos ()cos ()cos f x nxdx f x nx f x nxdx n n πππππππππ---??=-='''(3)233111()cos ()sin ()f x nx f x nx f x n n nπππππππππ---??-+ 注意到$cos cos()(1)nn n ππ=-=-有1(1)1()cos ()()()sin n f x nxdx f f f x nxdx n n πππππππππ---??=--+?取21()4f x x =,则21(1)()cos nf x nxdx nπππ--=?同时211()6f x dx n πππ-=?,这样21()4f x x =在[],ππ-上的Flourier 级数为 222111(1)cos 412n n x nx nπ∞=-==+∑ `令0x =,得2=-=∑ 例7[4]证明: 441190k k π∞==∑.证明:将函数2()()2xf x π-=展成傅⾥叶级数222001()26xa dx ππππ-==22211()cos 2k xa kxdx k πππ-=, 0k b =是2221cos ()(),02212k xkxf x x k πππ∞=-==+≤≤∑由柏塞⽡尔等式(函数2()( )2xf x π-=连续)2224040111()()22k k k a xa b dx k πππ∞=-++=∑?,有2422444011111ππππππππ∞-=-+===∑?即441190k k π∞==∑. 6构建微分⽅程如果某些级数的⼀般项的分母类似于阶乘的级数时,可以利⽤经过逐项积分或逐项积分后得到的级数之和函数与原级数的和函数构成微分⽅程,然后解微分⽅程来求其和.例8 求级数11112242462468-+-+之和.解:设幂级数246821()(1)2242462468(2)!!nn x x x x x S x n -=-+-++-+则3572'1()(1)224246(2(1))!!nn x x x x S x x n -=-+-++-+24681()2242462468x x x x x ??=--+-+(1())x S x =-于是所得⼀阶微分⽅程:'()(1())S x x S x =-,其通解为22()1,x S x Ce-=+由(0)0S =得1C =- 因此得22121()(1)1(2)!!x nn N xS x Ce n ∞--==-=-∑从⽽121111(1)12242462468S e --+-+==-.7拆项法⽆穷级数求和时,有时根据⼀般项的特点,将⼀般项进⾏拆分来简化运算过程.例9 求幂级数121(1)n n n n x ∞-=-∑的和函数.解:先求幂级数的收敛域.因为1n =,且级数121(1)n n n ∞-=-∑与21所以幂级数的收敛域为(1,1)-. 由于2(1)(2)3(1)1n n n n =++-++因此12111111(1)(1)(1)(2)3(1)(1)(1)n nn nnnn n n n n n n x n n x n x x ∞∞∞∞---====-=-++--++-∑∑∑∑12''11'11(1)()3(1)()1n n n n n n x xx x ∞∞-+-+===---++∑∑ 12''11'1())3((1)())1n n n n n n x xx x∞∞-+-+===---++∑∑ 32'''()3()111x x x x x x=-++++ 【23(1)x x x -=+,(1,1)x ∈-因为幂级数的收敛域为,所以所求和函数为23()(1)x x S x x -=+,(1,1)x ∈-.8将⼀般项写成某数列相邻项之差⽤这⼀⽅法求⽆穷级数的和,⾸先需要解决:已知1n n u ∞=∑,如何求n v当111n n n n m u b b b ++-=,其中(1,2,)i b i =形成公差为d 的等差数列时,1111n n n n m v md b b b ++-=-(m 为待定因⼦).于常数项级数1n n u ∞=∑,如果能将⼀般项写某数列{}n v 的相邻两项之差:1n n n u v v +=-且极限lim n n u v ∞→∞=存在,则21321111()()()n k n n n n S u v v v v v v v v ∞++===-+-+。
关于级数求和方法的探讨
关于级数求和方法的探讨摘要:无穷级数包括常数项级数和函数项级数,常数项级数在其收敛时可以求和,函数项级数在其收敛域内可以求和。
本文对常数项级数讨论了利用级数定义求和的常用方法:等差数列求和公式法、等比数列求和公式法、裂项相消法、错位相消法;对函数项级数则选取特殊的幂级数讨论了其求和方法:幂级数性质法、转化成微分方程法;最后利用幂级数的有关知识,求一些特殊类型级数的和。
其中定义法与幂级数性质法是基础,其他方法的应用需要掌握技巧。
关键词:无穷级数幂级数收敛Calculating Sums of SeriesAbstract: Infinite series including constants of series and function of series, constant of series in its convergence can be summed when series of function to the summation in its convergence region. This article discusses the constant of series including the following methods: arithmetic series summation formula method cancellation of splitting method, dislocation destructive method. Then series of function selects the specific power series to discuss its summation: such as power series properties method, into the calculus equation method. Finally, via the use of the knowledge of power series to seek the summation of some special types. Among these methods, the definition method and the power series properties method is the basis and the application of other methods needs master skills.Keywords: infinite series power series convergence1.引言无穷级数的概念是在极限概念形成的基础上形成的,无穷级数的理论是伴随着微积分理论的发展而发展起来的。
常微分方程在级数求和中的应用
常微分方程在级数求和中的应用
级数:数项级数,函数项级数,幂级数,泰勒级数,傅里叶级数
级数求和:
一.函数项级数求和的方法
利用傅里叶理论求和,逐项微分求和,逐项积分求和,将原级数分解转化为已知级数在求和,微分方程式法
1.常系数齐次线性微分方程解法(特征值法{Euler待定指数函数法})基本思想是:微分方程的求解问题转化为代数方程求根问题
2.一阶常系数线性方程组的解法分析
常用方法:特征值法;常熟变易法;比较系数法;
二.数项级数求和的方法
根据定义用极限法求和,数学运算巧求和,根据幂级数理论求和(亚伯尔方法),三角级数求和(欧拉公式,棣莫弗公式),原级数转化为子序列求和,原级数分解为子序列求和,两端逼近法。
幂级数求和方法总结
幂级数求和方法总结关于幂级数求和的探讨例1 求幂级数∑∞[]n=0_n[]n+1的和函数。
解先求收敛域。
由limn→∞an+1[]an=limn→∞n+1[]n+2=1得收敛半径R=1。
在端点_=—1处,幂级数成为∑∞[]n=0(—1)n[]n+1,是收敛的交错级数;在端点_=1处,幂级数成为∑∞[]n=01[]n+1,是发散的。
因此收敛域为I=[—1,1]。
设和函数为s(_),即s(_)=∑∞[]n=0_n[]n+1,_∈[—1,1)。
(1)于是_s(_)=∑∞[]n=0_n+1[]n+1。
(2)利用性质3,逐项求导,并由1[]1—_=1+_+_2+…+_n+…,(—1 得[_s(_)]′=∑∞[]n=0_n+1[]n+1=∑∞[]n=0_n=1[]1—_,(|_|对上式从0到_积分,得_s(_)=∫_01[]1—_d_=—ln(1—_),(—1≤_≤1)。
(5)于是,当_≠0时,有s(_)=—1[]_ln(1—_),而s(0)可由s(0)=a0=1得出,故s(_)=—1[]_ln(1—_),_∈[—1,0)∪(0,1),1,_=0。
(6)一、错误及原因分析1.忽略幂级数的起始项例如在求解幂级数∑∞[]n=1_n的和函数时,有学生就很容易将其和函数写为s(_)=1[]1—_,而事实上其和应该为s(_)=_[]1—_。
该错误产生的原因在于学生忽略了幂级数的起始项,习惯性的把第一项默认为1。
2.忽略和函数的定义域产生该错误的原因,主要是学生对和函数的概念理解不透彻,无穷多项求和其和并不总是存在的,即不总是收敛的,所以在求和函数时,首先要判断在哪些点处和是存在的,这些点的集合就是和函数的定义域,即幂级数的收敛域。
3.错误地给出和函数的定义域,即幂级数的收敛域该错误的产生主要源于利用和函数的分析性质求解和函数时,忽略了收敛域的变化。
上述例子中的(5)式就出现了这方面的错误。
4.忽略了收敛域中的特殊点在上述例子式中,利用(5)求s(_)时,需要在等式两边同时除以_。
601《数学分析》考试大纲
601《数学阐发》测验大纲一、大纲综述数学阐发是大学数学系本科学生的最根本课程之一,也是大都理工科专业学生的必修根底课。
为帮忙考生明确测验范围和有关要求,特制订《数学阐发》测验大纲。
《数学阐发》测验大纲按照北京林业大学数学与应用数学本科《数学阐发》教学大纲编制而成,适用于报考北京林业大学数学学科各专业〔根底数学、概率论与数理统计、计算数学、应用数学〕硕士学位研究生的考生。
参考书目以华东师范大学数学系编写的教材为主,其他两个参考书目为辅。
二、测验内容1.实数集与函数〔1〕确界概念,确界道理〔2〕函数概念与运算,初等函数2.数列极限〔1〕数列极限的ε一N定义〔2〕收敛数列的性质〔3〕数列的单调有界法那么,柯西收敛准那么,重要极限3.函数极限(1) 函数极限的ε一M定义和ε一δ定义,单侧极限(2) 函数极限的性质(3) 海涅定理〔归结原那么〕,柯西收敛准那么,两个重要极限(4) 无穷小量与无穷大量的定义、性质,无穷小〔大〕量阶的比拟4.函数的持续性(1) 函数在一点持续,单侧持续和在区间上持续的定义,间断点的类型(2) 持续函数的局部性质。
复合函数的持续性,反函数的持续性。
闭区间上持续函数的性质。
(3) 一致持续的定义,初等函数的持续性5.导数与微分(1) 导数的定义,导数的几何意义(2) 导数四那么运算、反函数导数、复合函数导数,求导法那么与求导公式(3) 参数方程所确定的函数的导数,高阶导数(4) 微分概念、微分根本公式,微分法那么,一阶微分形式的不变性。
微分在近似计算中的应用,高阶微分6.微分中值定理及其应用(1) 费马定理,罗尔定理,拉格朗日定理(2) 柯西中值定理,罗比达法那么,不定式极限(3) 泰勒公式(4) 函数的单调性、凸性与拐点、极值与最值(5)渐近线,函数作图。
7.实数的完备性〔1〕区间套定理,柯西收敛准那么,聚点定理,有限覆盖定理,致密性定理〔2〕闭区间上持续函数的性质及证明8.不定积分〔1〕原函数与不定积分的概念,根本积分表,线性运算法那么〔2〕换元积分法,分部积分法〔3〕有理函数的积分法。
函数幂级数的展开和应用
函数幂级数的展开和应用我们称形如200102000()()()()nn nn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的级数为幂级数,它是一类最简单的函数项级数.从某种意义上说,它也可以看作是多项式函数的延伸.幂级数在理论和实际上都有很多应用,特别在应用它表示函数方面,又由于函数幂级数的逐项求导和逐项可积等好的运算性质,为函数的研究和应用提供了便利的条件.1 函数幂级数展开的条件函数()f x 可以在点0x x =作幂级数展开,是指存在0x x =,使得在(r x r x +-00,)上,00()()n n n f x a x x ∞==-∑ (1) 其中()f x 是此幂级数的和函数.根据幂级数的逐项可积性,若函数()f x 能表示成幂级数()nnn a x x ∞=-∑且其收敛半径0r >,则函数()f x 在区间(,)r r -上有任意阶导数,且1'1()()n nn f x na x x -∞==-∑,'01()f x a = ,,()()00()()!,!n n n f x fx n a n ==因此自然会提出下述问题,是否每一个在区间(,)r r -上有任意阶导数的函数()f x 一定能在区间上展成形如()nnn a x x ∞=-∑的幂级数呢?回答是不一定的.例1 在),(+∞-∞上具有任意阶导数的函数21()0x e f x -⎧⎪=⎨⎪⎩ 00x x ≠=,易验证当0x ≠时,21'32()x f x e x -= , 2211''4664()x x f x e e x x--=-+ ,一般来说,有21()1()()n x n fx P e x -= (0x ≠),其中1()n P x 是关于1x的某个多项式.令21t x =,易得21201lim lim 0mx m t x t te x e-→→+∞==.由此可知21()()0001lim ()lim ()lim ()0n n x n x x x fx f x P e x-+-→→→=== ),2,1,0( =n ,又因为()f x 在0x =处连续,所以有'(0)0f =.类似逐次可推得()(0)0n f = ),3,2( =n 所以()f x 在0x =的幂级数为200002!!nx x n +⨯+++显然它在),(+∞-∞上收敛,且其和函数()0s x =. 但是,()f x 只在0x =处为零值.0x ∀≠,都有 ()()f x s x ≠.上述例子告诉我们:具有任意阶导数的函数,其幂级数(泰勒级数)并不是都收敛于函数本身.那么具备什么条件的函数()f x ,它的幂级数(泰勒级数)才能收敛于()f x 本身呢?定理1 设()f x 在点0x x =具有任意阶导数,那么()f x 在区间00(,)x r x r -+内等于它的泰勒级数的和函数的充分必要条件是:对一切满足不等式0x x r -<的x ,都有lim ()0n n R x →∞=.这里()n R x 是()f x 在0x 的泰勒公式余项.应用定理1 判别一个函数是否可以展成泰勒级数常常是不方便的,我们有如下充分条件: 定理2 设()f x 在00(,)x r x r -+内有任意阶导数,若存在0M >,使得00(,)x x r x r ∀∈-+,及 ,2,1,0=∀n , 有 ()()n n f x M ≤ (2) 则 ()000()()()!n n n f x f x x x n ∞==-∑(3) 证明 由条件(2)得,00(,)x x r x r ∀∈-+有()0()()0!!n n n nf M r x x n n ξ-≤→ ()n →∞ 即得所证. 若()f x 在0x 这一邻域内可以展开成泰勒级数,即+-++-+-+=n n x x n x f x x x f x x x f x f x f )(!)()(!2)())(()()(00)(200''00'0(4) 则(4)的右边为()f x 在0x x =处的泰勒展开式,或称幂级数展开式.在实际应用中,主要讨论函数在00x =处的展开式,这时(4)式可以写作+++++=nn x n f x f x f f x f !)0(!2)0()0()0()()(2''',称为麦克劳林级数,简称幂级数.2 函数幂级数的展开一般说来,可以将一个函数展成幂级数的方法分为直接展开法和间接展开法,下面就这两种方法做一一介绍.2.1 直接展开法这种方法也可以称其为余项估算法.设()f x 在0x x =处任意次可导,记()000()()()()!k nk n k f x R x f x x x k ==--∑()k N +∈,若()000()()()!n n n f x f x x x n ∞==-∑,只需0()x U x ∀∈,有lim ()0n n R x →∞=.当00x =时,()n R x 的各种表达式:()()n n R x x ο= (佩亚诺型余项);(1)1()()(1)!n n n f R x x n ξ++=+,ξ在0与x 之间 (拉格朗日型余项);(1)01()()()!x n n n R x x t f t dt n +=-⎰(积分型余项); (1)1()()(1)!n n n n f x R x x n θθ++=-,01θ≤≤(柯西型余项);佩亚诺型余项只是定性的描述了余项的性态不利于具体估算误差,所以我们常用其它三种余项形式.用直接展开法可得[1](5457)P -:201111!1!2!!n xnn x e x x x n n ∞===+++++∑ ,(,)x ∈-∞+∞;213210(1)11sin (1)(21)!3!(21)!n n nn n x x x x x n n ∞++=-==-++-+++∑ ,(,)x ∈-∞+∞;2220(1)11cos 1(1)(2)!2!(2)!n n nn n x x x x n n ∞=-==-++-+∑ ,(,)x ∈-∞+∞;12311(1)111ln(1)(1)23n n n nn x x x x x x n n-∞-=-+==-+-+-+∑ ,(1,1]x ∈-;2(1)(1)(1)(1)12!!nn x x x x n ααααααα---++=+++++,(1,1)x ∈-;arctan x =3521210(1)(1)213521n n n nn x x x x x n n +∞+=-=-+-+-+++∑ ,[1,1]x ∈-;211(21)!!arcsin (2)!!21n n n x x x n n +∞=-=++∑ ,[1,1]x ∈-;例2 求函数23()3247f x x x x =+-+在1x =处的幂级数展开式.解 由于'21(1)8,(1)(2821)15,x f f x x ===-+=''1(1)(842)34x f x ==-+=,'''()(1)42,,(1)0n f f ==,(3n >),从而总有 lim ()0n n R x →∞=(其中(1)1()(),(1)!n n n f R x x n ξ++=+ξ在0与x 之间),所以23233442()815(1)(1)(1)815(1)17(1)7(1)2!3!f x x x x x x x =+-+-+-=+-+-+- 例3 求2()sin f x x =的幂级数展式.解 由于'''00(0)0,(0)(sin 2)0,(0)(2cos 2)2,x x f f x f x ======='''(4)00(0)(4sin 2)0,()(8cos 2)8x x f x f x x ===-==-=-,,(21)(2)121(0)0,(0)(1)2,n n n n f f ---==- ,因此2122412282sin (1)(,)2!4!(2)!n n nx x x x n --=-++-+-∞+∞;x ∀,级数的拉格朗日余项2212()(21)!n n n R x x n +≤+,显然有lim ()0n n R x →∞=. 所以上述展式成立.2.2 间接展开法上面讨论的几个函数展开都是采用直接展开法.一般说来,求函数的各阶导数比较麻烦,尤其要检验余项是否趋向于零,往往不是一件容易的事.因此,在可能的情况下,我们总是尽可能不用直接方法,而采用间接方法把已给函数展成幂级数,所谓间接展开法指的是,利用已知的函数展开式作为出发点,把给定函数展开成幂级数.由于函数展成幂级数的唯一性,用这种方法展开的结果应与直接方法展开的结果完全一致.在实际的练习中,将初等函数展开为幂级数,要用到多种方法,现将其常用的方法归结如下: 2.2.1通过变形,利用已知的展开式例4 将下列函数展成x 的幂级数.1)241()(1)(1)(1)f x x x x =+++ 解 241()(1)(1)(1)f x x x x =+++811x x -==- 8898810(1)1n n n n x x x x x x x ∞+=-=-+-++-+∑ ,(11)x -<<.2)3()sin x x ϕ=解 2121300313(1)1(1)(3)sin sin sin 3444(21)!4(21)!n n n n n n x x x x x n n ++∞∞==--=-=-++∑∑34=2210(1)(13)(21)!nn n n x n ∞+=--+∑ , (,)x ∈-∞+∞. 例5 设0x >,求证:㏑x =2[ ++-++-++-53)11(51)11(3111x x x x x x ] 证明 令11x t x -=+即11tx t+=-,从而 121111ln ln ln(1)ln(1)(1)(1)1n n n n n n t t t x t t t n n ∞∞--==+==+--=----∑∑ 1211211111[(1)(1)][(1)(1)]()1nn n n n n n n t x n n x ∞∞----==-=---=---+∑∑ 35111112[()()]13151x x x x x x ---=++++++例6 求函数2()(1)(1)xf x x x =--的麦克劳林展式. 解 设222(1)(1)(1)(1)11(1)x x A B C x x x x x x x ==++--+-+--得111,,,442A B C =-=-=又221(1)(1)(1)n n x n x x ∞-==-=+-∑,01(1)1n n n x x ∞==-+∑,011nn x x ∞==-∑ (11x -<<) 所以20011(1)11(1)((1))()(1)(1)2222n n n nn n x n x n x x x ∞∞==+---=+-=+--∑∑,(11x -<<) 2.2.2 利用逐项积分或逐项微分法 例7 求2()xt F x e dt -=⎰的幂级数展开式.解 将2x -代替xe 展式中的x ,得+-+++-=-nn x x n x x e242!)1(!21!1112,()x -∞<<+∞.再逐项求积分就得到()F x 在(,-∞+∞)展开式2357210111(1)()1!32!53!7!21n n xt x x x x F x e dt x n n +--==-+-++++⎰ .例8 试求22()arctan2xf x x =-的幂级数展开式. 解 2''22000221()()(arctan )(1)221()2xxx t t f x f x dt dt dt t t ===+-+⎰⎰⎰ =2400(1)(1)()24nxn n t t dt ∞=+-∑⎰ (t < 2222222234500[1()()()()](1)()222222n xx nn t t t t tt dt dt ⎡⎤∞⎢⎥⎣⎦==+--++-=-∑⎰⎰2120(1)2(21)n n n n x n⎡⎤+∞⎢⎥⎣⎦==-+∑,(t <当x =2122011111(1)(1))2(21)21357911n n nnn n n n ⎡⎤⎡⎤+∞∞⎢⎥⎢⎥⎣⎦⎣⎦==-=-=+--++-++∑∑001111111(1)()()2((1)(1))3579114143n nn n n n ∞∞==⎤=+-+++-=-+-⎥++⎦∑∑可见x=x =22()arctan2xf x x=-在x =所以上面展式在⎡⎣上成立.2.2.3 利用待定系数法 例9 求2sin 12cos x x xαα-+ (1)x <的幂级数展式. 解 设2sin 12cos n n n x a x x x αα∞==-+∑,则20sin (12cos )nn n x x x a x αα∞==-+∑232323012301201(2cos )(2cos )(2cos )a a x a x a x a x a x a x a x a x ααα=++++---++++比较等式两边同次幂的系数,得0120,sin ,sin 2,,sin n a a a a n ααα====,这里用到三角恒等式sin(1)2sin cos sin(1)n n n αααα+=⋅-- (2,3,)n =,所以 原式= ++++nx n x x αααsin 2sin sin 22.2.4 利用级数的运算(加,减,乘,复合) 例10 求2()ln (1)f x x =-的幂级数展开式.解 由于10ln(1)1n n x x n +∞=-=-+∑在[1,1)-上内闭一致收敛,故[1,1)-上可用级数乘法2321111111111()()23121321n n x x f x x x n n n n ∞+=⎡⎤=----=++++⎢⎥--⎣⎦∑ =()()111111111()()(1)11nn n n n k n k k n k x x k n k n k n k ∞∞++====++-⎡⎤⎣⎦=+-++-∑∑∑∑ 111111111112111n n n n n k n k x x n n k k n k ∞∞++====⎡⎤⎛⎫⎛⎫=+= ⎪ ⎪⎢⎥++-+⎝⎭⎝⎭⎣⎦∑∑∑∑ 1111121231n n x n n +∞=⎛⎫=++++ ⎪+⎝⎭∑ 上面的展式在[1,1)-内成立.例11 求()()111x f x x e =+按x 的幂的展开式至三次项.解 ()()111x f x x e=+()()111111ln 11nn n x x x nxee∞-=--+-∑== (1)x <= +-+-43232x x x e23232323111()()()23422346234x x x x x x x x x =+-+-++-+-++-+-+)11(,167241121132<<-+-+-=x x x x 2.2.5 其它方法举例例 12 求函数()sin xf x e x =的麦克劳林级数的前四项. 解23521111111sin (1)((1))1!2!!3!5!(21)!x nnn e x x x x x x x x n n +=+++++-+++-++233441111()()3!2!3!3!x x x x x x =++-++-++ 2313x x x =+++3 幂级数的应用3.1 计算积分 例13 计算积分120ln 1xdx x -⎰ 解 11112222220000ln 1ln ln ln 111x x x x dx xdx xdx xdx x x x -+==+---⎰⎰⎰⎰ 因为10ln 1xdx =-⎰,及2221ln ln 1nn x x x x x ∞==-∑,故 原式=12101ln n n x xdx ∞=-+∑⎰. 又知级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可在(0,1]上逐项积分①,因此原式12011ln nn x xdx ∞==-+∑⎰()()2211112121n n n n ∞∞===--=-++∑∑()()22220111111()2212n n n n n n ∞∞∞====-+++∑∑∑2222221111126248n n nnπππ∞∞===-+=-+=-∑∑ 例14 计算22cos(sin )x x d πθπ⎰解 因()()21(sin )cos sin 11(2)!k kk x x k θθ∞==+-∑ ()()221sin 112!k k kk x k θ∞==+-∑ , (,)x ∈-∞+∞故2222222001122(1)(1)cos(sin )sin 12(2)!(!)2k k k k kk k k xx x d d k k πππθθθθππ∞∞==⎡⎤--=+=+⎢⎥⎣⎦∑∑⎰⎰ 3.2 证明不等式幂级数是表达函数的重要工具,因此也可应用于证明函数不等式. 例15 证明不等式222,(,)x x x e e e x -+≤∈-∞+∞ 证明 因2022(2)!n xxn x e echx n ∞-=+==∑,222022(2)!!x nn x e n ∞==∑,而22(2)!(2)!!n n x x n n ≤,故222,xx xe e e -+≤ 例16 确定λ的值,使得22,(,)x x x e e e x λ-+≤∈-∞+∞解1)若上述不等式成立,则有222220001110()()2!2!2!2!x x n n n n n x n nn n n n n n n e e x x x x e n n n n λλλλ-∞∞∞∞====+≤-=-=-=-∑∑∑∑ 两端除以2x ,再令0x =,可得12λ≥.2)若12λ≥ ,则有22222002(2)!2!x x x n nx n n n e e x x e e n n λ-∞∞==+===≤∑∑3.3 近似计算幂级数常常用于近似计算. 例17 求下列各值的近似值: (1)e ,使误差小于0.001;解 在xe 的展开式中令1x =,得111112!3!!e n =++++++ 若取上述级数的前(1)n +项作为e 的近似值,即设111112!3!!e n ≈+++++则误差11(1)!(2)!n R n n =++++ 111[1](1)!2(2)(3)n n n n =+++++++2111111[1]1(1)!1(1)(1)!!11n n n n n nn <+++==++++-+ 所以要使0.001n R <,只要!1000n n >,可算出当6n =时就满足要求.因而可取前七位即可,即11111 2.7182!3!6!e ≈+++++= (2)6π,使误差小于0.001;解 在arcsin x 的展开式中令12x =,得3521111131(21)!!1622322452(2)!!(21)2n n n n π+⨯-≈+++++⨯⨯⨯+若取前(1)n +项作为6π的近似值,误差2325(21)!!1(23)!!1(22)!!(23)2(24)!!(25)2n n n n n R n n n n ++++=++++++2324(21)!!111(1)(22)!!(23)222n n n n ++<+++++234(21)!!13(22)!!(23)2n n n n ++=++要使0.001n R <,只要使上式右端小于0.001即可,不难算出当2n =时即满足要求,因而取前三项即可,即45111310.52362322452π⨯≈++=⨯⨯⨯ 3.4 应用幂级数性质求下列级数的和 例18()11!n nn ∞=+∑ 分析 ()11!n n n ∞=+∑是幂级数()111!n n nx n ∞+=+∑的和函数在1x =处的值.解 设()()111!n n nf x x n ∞+==+∑ ()x -∞<<+∞, 则()1110'()1!(1)!!n n nx n n n x x x f x x x xe n n n -∞∞∞=======--∑∑∑ ()x -∞<<+∞,所以0()(0)'()1xxtxxf x f f t dt te dt xe e =+==-+⎰⎰,从而()1(1)11!n nf n ∞===+∑.3.5 利用函数的幂级数展开式求下列不定式极限 例19 21lim ln 1x x x x →∞⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦解 因为23311111ln 123o x x x x x ⎛⎫⎛⎫+=-++ ⎪ ⎪⎝⎭⎝⎭,所以 原式223311111111lim lim 23232x x x x x x x x x x x x οο→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫=--++=-+-+=⎨⎬ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭ 例20 3arcsin limsin x x x x→∞-解 因为()()331arcsin ,sin 6x x x o x x x o x =++=+,所以原式=()()()()()333333311166lim lim 6x x x x x o x x o x x o x x o x →∞→∞⎛⎫-++-+ ⎪⎝⎭==-++ 3.6 求幂级数的和函数例21 +++++++12531253n x x x x n 解 设2121n n x n μ+=+,因21lim n x nu x u +→∞=,故原级数的收敛半径1R =,又当1x =±时,原级数可化为0121n n ∞=⎛⎫± ⎪+⎝⎭∑发散,从而得收敛域为(1,1)-. 设()()21021n n x S x n +∞==+∑ ()()1,1x ∈-,在()1,1x ∈-内逐项求导,得()2201'1nn S x x x ∞===-∑, 故和函数()()()2011'0ln 121xxdt xS x S t dt S t x +==+=--⎰⎰ ()1,1x ∈-. 例22 求幂级数()()211nn n x n n ∞=--∑的和函数. 解 易知原级数的收敛域为[1,1]-.记()()21()1nn n F x x n n ∞=-=-∑,则()()()()()1222111'()()'()'111nnnn nn n n n F x x x x n n n n n ∞∞∞-===---===---∑∑∑,()()()()21122222111''()()'()'1111nnn n n n n n n n F x xxnxx n n x ∞∞∞∞----====--===-==--+∑∑∑∑故()001'()''()ln 11xxF x F t dt dt x t ===++⎰⎰, ()()()0()'()ln 11ln 1xxF x F t dt t dt x x x ==+=++-⎰⎰,所以()()()()211ln 11n n x x x x n n ∞=-=++--∑ ,(1,1)-.注释: ① 求证级数21ln nn xx ∞=∑虽然在(0,1]上不一致收敛,但仍可以在(0,1]上逐项积分证 1当1x =时级数通项()211ln |0nn x u x x ===.当01x <<,21nn xlnx ∞=∑为等比级数,所以和22ln ()10x x S x x⎧⎪=-⎨⎪⎩, 011x x <<= 时,可见211(10)lim ln(1(1))(1).(1)(1)2x x S x S x x -→-=--=≠+- 故 该级数非一致收敛(根据和函数连续定理).2(证明能逐项积分)因22222221ln ()ln ln ,11n kn n k n x x x R x x x x x x x +∞=+===⋅--∑其中220ln lim 1x x xx +→-及221ln lim 1x x x x -→-都有有限极限,且22ln 1x x x -在(0,1)内连续,所以22ln 1x x x -在(0,1)内有界,即0M ∃>,使得22ln ||1x xM x ≤-,故 2|()|n n R x M x ≤⋅, 11120|()||()|0().21n n n MR x dx R x dx M x dx n n ≤≤=→→∞+⎰⎰⎰ 此即表明1lim ()0.n n R x dx →∞=⎰级数可以逐项取积分.。
级数求和常用方法
级数求和的常用方法摘要级数理论及应用无论对数学学科本身还是在其他科学技术及理论的发展中都有极为重要的影响和作用,而级数求和是级数理论及应用的主要内容之一.由于级数求和的方法比较多,技巧性很强,一般很难掌握其规律,是学习的一个难点,因此掌握一些常用的级数求和方法就显得尤为重要.通过例题,分别针对常用的数项级数和函数项级数求和进行分析和讨论,试图通过对例题的分析和解决,展示级数求和的常用方法和思想,进而探索级数求和的规律,理解级数理论即合理应用,打下良好的基础,为学习者起到抛砖引玉的方法.关键词:数项级数;函数项级数;求和;常用方法Summation of series method in common useAbstractProgression theory and application still are having the most important effect and function on the development of science and technology and theory disregarding logarithmic discipline per se, but summation of series is one of progression theory and applicative main content. Method of summation of series is comparatively many, the dexterity is very strong, in general very difficult to have its law in hand, be a difficult point studying, have some summation of series in common use method in hand therefore appearing especially important right away. Carry out analysis and discuss that by the fact that the example , difference are aimed at several progression and function item summation of series in common use, try to pass the analysis checking an example and solve, show summation of series method and thought in common use , probe and then the summation of series law , understand that progression theory is that reasonableness applies , lays down fine basis, in order the learner gets the method arriving at a modest spur to induce someone to come forward with his valuable contributions.Key words: Count progression; function series; Sue for peace; Method in common use目录引言................................................ 错误!未定义书签。
级数求和的若干方法
级数求和的若干方法级数求和是高等数学中的一个重要内容。
本文主要分为数项级数求和与函数项级数求和两部分。
在数项级数求和的若干方法中,主要讨论了级数收敛定义求和法,傅里叶级数求和法,阿贝耳定理法,利用幂级数求数项级数的和。
其中,用级数收敛定义法是基础,包括裂项相消,错位相减等九种常见方法。
在函数项级数求和的若干方法中,则选取特殊的幂级数与三角函数项级数,讨论了幂级数性质法,逐项求导法与逐项积分法,转换成微分方程法等。
并采用讲述和举例相结合的方式,选取一些典型题目进行分析,体会理解方法。
无穷级数理论是高等数学中的一个重要组成部分。
它是研究函数的性质,函数的表达,进行数值计算的有力工具,其应用是随着微积分理论的发展而发展起来的,无论是在数学学科还是在其他科学技术中都有广泛的应用,其理论的发展也起到了极其重要的影响和作用。
求收敛级数的和是研究级数的任务之一。
无穷级数求和是一个综合性的问题,涉及到的数学理论知识和方法很多,技巧性也比较强,一般很难掌握遵循的规律和解题的要领,是学习的重点也是难点,所以归纳总结一些级数求和的常用方法显得尤为重要。
在大多数教材或者其他数学书籍中,大量的介绍了级数的有关概念以及判断级数敛散性的定理,级数求和的常用方法,并且很多文献对级数求和进行了深层的探讨,数项级数求和法一般归纳为三类:一是基本方法,包括利用等比数列的求和公式,裂项,组合及错位相减等方法;二是常用方法,包括逐项微分和逐项积分法,利用初等函数的幂级数展开式,利用函数的傅里叶级数展开式等;三是特殊方法,包括交换求和顺序等;幂级数求和法归纳为两类:一是利用幂级数的性质法,包括幂级数的运算,逐项微分与逐项积分;二是把幂级数转化成微分方程法。
这些方法之间是相互联系的。
例如,待定系数法中,把待定的系数求出后再用裂项相消法。
多数方法所解决的一类题目都是有共同特点的,比如说求部分和子序列法对非正项级数常常是行之有效的。
但并不是每一道题目,只能用那一种方法,很多题目可以有多种不同的解法。
数学分析练习题
练习题11. 0lim ()x x f x A →= 等价于以下 ( ).(A )00,0,0<|x-x |εδδ∀>∃><当时,有|()|f x A ε-≥; (B )00,0,0<|x-x |εδδ∃>∀><当时,有|()|f x A ε-<; (C )00,0,0<|x-x |εδδ∃>∀><当时,有|()|f x A ε-≥; (D )00,0,0<|x-x |εδδ∀>∃><当时,有|()|f x A ε-<; 2.下列等式成立的是( ).(A )11sinlim =∞→x x x ; (B )11sin lim 0=→x x x ;(C )1sin lim =∞→x x x ; (D )11sin 1lim 0=→xx x .3. a a n n =∞→lim ,它等价于( ).A.,0,0>∃>∀εN 当ε<->||,a a N n n 时;B.,0>∀ε在{}n a 中除有限个项以外,其余所有项都落在邻域);(εa U 之内;C. {}{}k k a a 212,-都收敛;D. {}n a 中有无穷多个子列都收敛于a .4. 设{}n a 为单调数列,若存在一收敛子列{}j n a ,这时有( ). A. j n j n n a a ∞→∞→=lim lim ; B. {}n a 不一定收敛; C. {}n a 不一定有界;D. 当且仅当预先假设了{}n a 为有界数列时,才有A成立. 5.设)(x f 在0x 可导,则=∆∆--∆+→∆xx x f x x f x )()(lim000( ). A. )(20x f '- B. )(0x f ' C. )(20x f ' D. )(0x f '-6. 下列结论中正确的是( ).A.若)(x f 在点0x 有极限,则在点0x 可导.B. 若)(x f 在点0x 连续,则在点0x 可导.C. 若)(x f 在点0x 可导,则在点0x 有极限.D. 若)(x f 在点0x 有极限,则在点0x 连续.7.若0x 是函数()y f x =的间断点,则( ) A. 0x 是跳跃间断点,或者是可去间断点.B .当0x 是()f x 的跳跃间断点时,0lim ()x x f x +→和0lim ()x x f x -→都不存在. C .极限0lim ()x x f x →必不存在.D .当0lim ()x x f x +→和0lim ()x x f x -→都存在时,0x 是第一类间断点. 8. =)(x f ⎪⎪⎩⎪⎪⎨⎧>+=<,0 ,2 ,0 ,0,,sin x x x k x x kx(k 为常数),函数)(x f 在点00=x 必( ) A.左连续; B. 右连续 C. 连续 D. 不连续 9. )(lim )(lim 0x f x f x x x x +-→→=是)(x f 在0x x =处连续的( ).A. 充分条件;B. 必要条件;C. 充要条件;D. 无关条件.10. 函数|sin |y x =在点0x =处的导数是( )A. 不存在;B. 1;C. 0;D. 1-.11. 函数53()35f x x x =-在R 有( ).A. 四个极值点B. 三个极值点C. 二个极值点D. 一个极值点 12. 若()2sin 2xf x dx C =+⎰,则()f x =( ). A. cos 2x C + B. cos 2x C. 2cos 2x C + D. 2sin 2x13. 设()f x 的一个原函数为()F x ,则(21)f x +的一个原函数为( ). A. (21)F x + B.1(21)2F x + C. 2(21)F x + D. 2()1F x + 14. 若()f x 的一个原函数为()F x ,则(ln )F x 为( )的一个原函数. A.1(ln )f x xB. (ln )f xC. 1()f x x D. ()f x15. 对[,]a b 一个分法T ,增加某些新分点构成[,]a b 一个新分法T ',则有( ).A. ()()()()s T s T S T S T ''≤≤≤B. ()(), ()()s T s T S T S T ''≤≤C. ()()()()s T s T S T S T ''≤≤≤D. ()(), ()()s T s T S T S T ''≤≤ 16. 函数()f x 在区间[,]a b 上的不定积分()f x dx ⎰和定积分()baf x dx ⎰分别是( ).A. 一族函数和一个函数B. 一个函数和一个定数C. 一个原函数和一个定数D. 一族函数和一个定数 17.设)(x f 在],[b a 上可导,则)(x f 在],[b a 上必定为( ).A.既存在最大值,又存在最小值; B.不能同时存在最大值和最小值; C.在0)(='x f 的点处必取极值; D.以上A、B、C都不一定成立.18. .下列反常积分中发散的是( ). A.211d x x +∞⎰B. 10x ⎰C. 10x ⎰D. 101d 1x x -⎰ 19. 若函数()f x 在R 连续,则()d f x dx dx ⎰, ()d f x dx dx ⎰, 10()d f t dt dx⎰, 0()xd f t dt dx ⎰ 依次为( ). A. ()f x C +, )(x f , 0, )(x f B. )(x f , ()f x C +, 0, )(x f C. )(x f , ()f x C +, )(x f , 0 D. )(x f , )(x f , 0, ()f x C + 20. 下列叙述正确的是( ).A .若)(x f 在闭区间[, ]a b 上有界,则()baf x dx ⎰一定存在.B .若)(x f 在闭区间[, ]a b 上只有有限个间断点,则()baf x dx ⎰一定存在.C .若)(x f 在闭区间[, ]a b 上有界且有无限个间断点,则()baf x dx ⎰一定存在.D .若)(x f 在闭区间[, ]a b 上单调,则()baf x dx ⎰一定存在.21.若函数)(x f y =在) , ( b a 满足0)(>'x f 且0)(<''x f ,则)(x f 在) , ( b a 上是( ) . A. 严格增加且是上凸的 B. 严格减少且是上凸的 C. 严格增加且是下凸的 D. 严格减少且是下凸的 22.对于瑕积分⎰-1032)1(x x dx 下列叙述正确的是( ).A. 0和1都是瑕点,积分发散;B. 只有0是瑕点,积分收敛;C. 只有1是瑕点,积分发散;D. 0和1都是瑕点,积分收敛.23. 关于22222(,)()x y f x y x y x y =+-在点(0,0)的重极限及累次极限,说法正确的是( )A .重极限存在,但累次极限都不存在; B. 重极限不存在,但累次极限都存在; C. 重极限和累次极限都存在; D. 重极限和累次极限都不存在. 24. 下列说法正确的是( )A .0000(,),(,)x y f x y f x y 都存在则(,)f x y 在00(,)x y 处必定可微;B .(,)f x y 在点00(,)x y 可微的充要条件是偏导函数,x y f f 在00(,)x y 连续;C .(,)f x y 在点00(,)x y 可微的充分条件是偏导函数,x y f f 在00(,)x y 连续;D .(,)f x y 在点00(,)x y 可微的必要条件是偏导函数,x y f f 在00(,)x y 连续. 25. 下列说法正确的是( )A .点P 是集合E 的内点,则存在P 的一个邻域完全的包含在E 中;B .点P 是集合E 的内点,则P 可能是E 的聚点也可能不是E 的聚点;C .点P 如果不是集合E 的内点,则P 必定是E 的外点;D .集合E 的孤立点不一定是E 的边界点. 26. 下列说法错误的是( ) A .对于积分(,)d (,)d LI P x y x Q x y y =+⎰Ñ,只要P Qx y∂∂=∂∂,则0I =; B .如果在单连通闭区域D 中处处有P Q y x ∂∂=∂∂,则D 中任意的曲线积分d d LP x Q y +⎰与路径无关,只与起点和终点有关;C .如果D 中任意光滑闭曲线L ,有0LPdx Qdy +=⎰Ñ,则若在D 中有(,)u x y 使d d d u P x Q y =+;D .如果D 中任意光滑闭曲线L ,有0LPdx Qdy +=⎰Ñ,则D 中曲线积分与路径无关.27. 关于级数1nn u∞=∑的收敛性下列说法正确的是( )A .级数要么条件收敛,要么绝对收敛; B.绝对收敛则必定条件收敛 C .收敛而不绝对收敛, 则必定条件收敛;D.有可能nnu∑收敛,但nnu∑发散.28. 关于幂级数nn n a x∞=∑下列说法正确的是( )A .如果收敛半径为r ,则级数的收敛域为(,)r r -;B. 如果在1x =处级数收敛,则在区间(1,1)-内每个点都收敛;C .如果0n =,则收敛半径0r =;D .以上说法都是错的. 二、填空题 1. 设e xk xx =+∞→2)1(lim ,则=k __________. 2.=-+→114sin limx x x _________.3.arctan limx xx→∞=_________.4. =-+→114sin limx x x _______.5.函数3234()2x f x x x+=-的渐近线是:_______________________.6.设⎩⎨⎧≥+<=0)(x xa x e x f x,若要使f (x )在x = 0处连续,则a = . 7. 函数x y sgn = 的间断点是________属于第_____类间断点.8.函数x x y cos sin +=,则22d d yx=___________________.9.函数)(x f 在点a 的泰勒公式中,佩亚诺型余项为()n R x = ;拉格朗日型余项为()n R x = . 10.24413x dx x x +=-+⎰ .11. 函数2()2ln f x x x =-的单调增加区间是 ;凸区间是.12.=⎰dx x d sin ;⎰=10 sin dx x d .13.=⎰;arctan xdx =⎰ .14. 2()cos f x x =的麦克劳林公式是(到6x 项)__________________________________.15.25613x dx x x +=-+⎰ .16. a 是函数)(x f 的瑕点⇔.17.设()f x 有连续导数()f x ',且满足20[()cos ()sin ]3f x x f x x dx π'+=⎰,则()2f π=___.18. 曲线2y x =在区间[0, 1]绕x 轴旋转一周所得旋转体的体积V = .19.⎰+∞+1d )1ln(1cos sin x x x x 是 .(填“收敛”或“发散”) 20.设S 为柱面222x y R +=被平面0,z z h ==所截取的部分,则22d SSx y +⎰⎰=__________;21.设(,)xz f xy y=,则2z x y ∂∂∂=__________________________________;22.方程组2200x u yv y v xu ⎧--=⎨--=⎩所确定的隐函数组的偏导数ux ∂=∂_____________________; 23.求曲面222327x y z +-=在点(3,1,1)的切平面方程:_________________________; 24.23(,,)f x y z xy yz =+,则f 在点0(2,1,1)P --的梯度=____________________; 25.函数(,,)f x y z xyz =在约束条件2221x y z ++=下的条件极值点是方程组______________________________的解;26.有界闭区域D 面积D S 可求,按段光滑闭曲线L 为区域D 的边界线,则D S 可分别用二重积分和第二型曲线积分表示为_________________和__________________________; 27.根据莱布尼茨判别法,交错级数1(1)nn n u∞=-∑收敛的条件是____________________;一、判断题 (对的记“√”,否则记“×”)( )1. 若0()f x 为函数)(x f 的极值,则0()0f x '=.( )2. 若()f x 在点0x 的邻域存在连续的二阶导数,且0x 是()f x 的拐点,则0x 是()f x '的稳定点.( )3. 若()()F x f x '=,则(sin )cos (sin )f x xdx F x C =+⎰.( )4.21111()(ln 1ln 1)12112dx dx x x C x x x =+=++-+-+-⎰⎰. ( )5.如果)(x f 在区间] , [b a 上无界,那么)(x f 在] , [b a 上不是黎曼可积的. ( )6.若0()0f x '=, 则0()f x 一定是函数)(x f 的极值.( )7. 函数()f x 在区间[,]a b 上可积是函数()f x 在区间[,]a b 上可积的必要条件. ( )8. 如果)(x f 在区间] , [b a 上不连续,那么)(x f 在] , [b a 上不是黎曼可积的. ( )9. 若()f x 在[, ]a b 可积, 则存在一点[,]c a b ∈,使()()()baf x dx f c b a =-⎰.( )10. 反常积分pdxx +∞⎰当1p >时收敛,当01p <≤时发散。
无穷级数求和函数
无穷级数求和函数1.无穷级数求和函数在收敛域内,可以如图两次应用求积求导法及等比级数求和公式求出这个和函数。
2.高等数学,无穷级数,幂级数,求和函数根据几何级数的求和公式:所以这和划线部分是一样的。
3.无穷级数,求和函数这个是利用逐项求导后求级数和,再求积分。
把原来的级数每一项都求导,这个级数很好求和,就是等比数列求和了:Σx^(4n)=Σ(x^4)^n=lim(n->正无穷) x^4(1-(x^4)^n)/(1-x^4)因为上面求了一次导数。
4.常用的全面的幂级数展开公式可以写开分别求,利用1+x+x²+x³+........=1/(1-x),=x /(1-x)²/n=- ln(1-x);5.高数无穷级数,求和函数可以写开分别求,利用1+x+x²+x³+........=1/(1-x),得∑nxⁿ=x / (1-x)²,∑xⁿ/n=- ln(1-x),所以和函数为x/(1-x)²- ln(1-x) 。
6.无穷级数求和∑1/n21+1/22+1/32+…+1/n2→π2/6这个首先是由欧拉推出来的,将sinx按泰勒级数展开:sinx=x-x^3/3!+…于是sinx/x=1-x^2/3!+…令y=x^2,有sin√y/√y=1-y/3!+…而方程sinx=0的根为0,…故方程sin√y/√y=0的根为π2,+…=0的根为π2,根的倒数和=一次项系数的相反数即1/π2+1/(2π)2+…=1/3!无穷级数是研究有次序的可数或者无穷个数函数的和的收敛性及和的数值的方法,理论以数项级数为基础,数项级数有发散性和收敛性的区别。
只有无穷级数收敛时有一个和,发散的无穷级数没有和。
用解析的形式来逼近函数,一般就是利用比较简单的函数形式。
数项级数和的求法例谈
1 一
将式边导 : 上两求 , } 有
。
例 5 将函数 , )=sn (一丌, 展 开成 fuir ( gx 仃) o r 级 e
・
・
s ( )
‘
< )
数 用开, 数 , 展式 级 耋 利 求
,
・÷ …+1 ++ 1 一
1一
.
利用拆项相消将部分和进行化简 、 变形 , 再求和 。 例 1 求 级 数 、 1 + + …… +
2 一1
_ — 广 一 _ _
一
2
丽
的和
‘ . .
s = i n:3 :l s a r
一
解‘ = : .
教 学研究。
・
9 ・ 6
维普资讯
解幂 数∑ 当 = 时 为 求 :级 寺 即 所
・ .
3 l n
1
一了
l 2
; 一- 了 一 g -
一
l i m
+
n+1
’ =
l・ ,・ ・
眦 的收剑区间为(一l 1 , ,)
:
3-2 - ̄ n - -
( 一 )
: ÷ 了 … —1 …+) l + + 1 + 3+ 1 ( 1
1 +2 + … … + n一。+
=C 1LI o n c 1 n+ n — l3 + r ,+ 3 一( + n F ) }r 3 r L
逐 项 积 分 有
=
÷ (吉 + 一 + + 1一1 】 () [一 )吉 ). ‘ ) 3
的 函 和 数s
=
} 一1 ( ) 1
专题17 级数求和
⎝ n=0
⎠ ⎝ n=0
⎠
=
⎜⎜⎝⎛
x2 1− x
⎟⎟⎠⎞″
+
⎜⎛ ⎝
1
x −
x
⎟⎞′ ⎠
=
⎜⎛ ⎝
−
(
x
+
1)
+
1
1 −
x
⎟⎞″ ⎠
+
⎜⎛ ⎝
−1
+
1
1 −
x
⎟⎞′ ⎠
= 3−x (1 − x)3
x ∈ (−1,1).
∑∞
【例 4】求幂级数
xn 的收敛域及和函数.
n=1 n(n +1)
【解】 易求得该幂级数收敛域为[−1,1] .
x)
∫ ∫ ∫ S(x) =
x S′(t)dt =
x
ln(1+ t)dt −
x
ln(1− t)dt
0
0
0
= (1+ x) ln(1+ x) + (1− x)ln(1− x)
又 S(1) = lim S(x) = 2ln 2, S(−1) = lim S(x) = 2ln 2,
x→1−
x →−1+
所以
∑∞
令 S(x) =
xn
n=1 n(n + 1)
当 0 < x ≤ 1时,
x ∈[−1,1] . 当 x = 0 时, S(x) = 0 .
∑ ∑ ∑ ∑ ∞
S(x) =
xn
= ∞ x n − ∞ x n = − ln(1 − x) − 1 ∞ x n+1
n=1 n(n + 1) n=1 n n=1 n + 1
用逐项微分法求函数项级数的和
理工科类应用学科 中也会经常遇到。由于对收敛的函数项级数进行求和存在 困难并且有很 强的技
巧性 , 鉴 于此 , 本 文给 出 了一种 利 用逐 项微 分 的方 法对 函数项级 数进 行 求和 , 并举例 说 明。
关键 词 :函数 项级数 ; 幂级 数 ; 逐项微 分 ; 求和 中图分 类号 : G 6 3 3 . 6 文 献标 识码 : A 文 章编 号 : 1 6 7 2— 2 0 8 6 ( 2 0 1 6 ) 0 3— 0 0 6 2— 0 2 和 函数 。
函数项 级数 求 和作为 数学 分析 中 的最根 本和重
要 的问题 , 到 目前 为 至 , 已经积 累 了很多具 有 针对性
注
设 { n }为 给 定 的 数 列 , 称 函 数 项 级 数
和技巧 性 的方法 。在 自然 科学 和工 程技术 中有许 多 问题都 可 以用无 穷 级 数 来 解决 。例 如 : 一 些 函数 是 用 函数 项级 数来 表示 的 。函数 逼近 和近 似计算 等实 际 问题 都 可 以借 助 函数项 级数 来研 究 。
可逐 项微 分 , 即
定义 1
义在 , 上 的函数 , 则
∑U n ( )= u ( ) +
u 2 ( )++u ( )+… ( 1 )
s ( )=∑ ( ) :∑
且 可逐项 求微 分任 意次 , 即
;
( 2 )s ( ) 在 (一 R, R) 内具 有 任 意 阶 导数 连 续 ,
2 s i n 号 七 : 1 2 s i n 号 - c 。 s = 2 s i n 号
解
厂 。 d = ÷ l n
o ) =
÷ l m n , ∈ ( L 一 一, 1 , ・ 1 ) .
考研数学三(解答题)高频考点模拟试卷51(题后含答案及解析)
考研数学三(解答题)高频考点模拟试卷51(题后含答案及解析) 题型有:1.1.求的极值点、拐点、凹凸区间与渐近线.正确答案:(I)先求驻点与不可导点.由解得驻点当x <x时y’>0,y=y(x)为增函数;当x1<x<1时y’<0,y=y(x)为减函数;当x=1时函数无定义,y=y(x)不可导;当1<x<x2时y’<0,y=y(x)为减函数;当x>x2时y’>0,y=y(x)为增函数.于是x=x1为极大值点,x=x2为极小值点,x=1为不可导点.(Ⅱ)再考虑凹凸区间与拐点.由令y”=0,解得在x=1处y”不存在.当时y”<0,y=y(x)图形为凸;当时y”>0,y=y(x)图形为凹;当x>1时y”(x)>0,y=y(x)图形为凹,于是y=y(x)图形的拐点为(Ⅲ)最后考察渐近线.由于因此x=1为曲线y=y(x)的垂直渐近线.又因此无水平渐近线.由可知曲线y=y(x)有斜渐近线y=x+1.涉及知识点:一元函数微分学2.设总成本关于产量x的函数为需求量x关于价格p的函数为求边际成本,边际收益,边际利润以及收益对价格的弹性.正确答案:由边际成本的定义知,边际成本MC=C’(x)=3+x.又因总收益函数于是边际收益从而边际利润由于函数的反函数是因而总收益函数由此可得收益对价格的弹性涉及知识点:一元函数微分学3.设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξ+(ξ一1)f(ξ)=0.正确答案:令φ(x)=.因为φ(0)=φ(1)=0,所以由罗尔定理,存在ξ∈(0,1),使得φ(ξ)=0.而φ(x)=.解析:知识模块:微积分4.设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.正确答案:(必要性)设f(x,y)在点(0,0)处可微,则f’x(0,0),f’y(0,0)存在.因为所以φ(0,0)=0.(充分性)若φ(0,0)=0,则f’x(0,0)=0,f’y(0,0)=0.因为即f(x,y)在点(0,0)处可微.涉及知识点:多元函数微分学5.求下列幂级数的收敛域及其和函数:正确答案:(Ⅰ)由于均发散,所以其收敛域为(一1,1).为求其和函数,先进行代数运算,使其能够通过逐项求导与逐项积分等手段变成几何级数.设当x=0时,上面的运算不能进行,然而从原级数可直接得出S(0)=a0=1.综合得幂级数的和函数容易看出=1.这就说明S(x)在x=0处还是连续的,这一点也正是幂级数的和函数必须具备的性质.(Ⅱ)利用同样的方法容易求得级数n(n+1)xn的收敛域为(一1,1).令S(x)=n(n+1)xn—1应先进行两次逐项积分.即涉及知识点:微积分6.若行列式的第j列的每个元素都加1,则行列式的值增加Aij.正确答案:对修改后的行列式第j列为(a1j+1,…,aij+1,…,anj+1)T=(a1j,…,aij,…,anj)T+(1,…,1,…,1)T,对它分解(性质⑤),分为两个行列式之和,一个就是原行列式,另一个的第j列元素都是1,增加量就是它的值,等于Aij.涉及知识点:线性代数7.设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a、b、c的值。
函数项级数求和方法探讨
方法 5 差分 算子 求和 法 定 理
法[ J ] . 大学数学 , 2 0 1 0 , 2 6 ( 4 ) .
2 0 1 7年 6月 第3 3卷 第 6期
江苏第二师范学院学报( 自然科学)
J o u na r l o f J i a n g s u S e c o n d N o r ma l U n i v e r s i t y( N a t u r a l S c i e n c e )
( 1 ) .
c 詈 十 号 c 詈 , + e 手
[ 2 ] 刘小兰 , 易淼 , 邓雪. 考研 数学 中的幂级 数求 和一
=
寺 ( 1 + 等+ 1 ) , ( 一 ∞< < ∞ ) .
设p ( ) 为 m次多项 式 , 则当 l l <1
题多解 [ J ] . 南昌师范学院学报 , 2 0 1 4, 3 5 ( 6 ) . [ 3 ] 朱 晓杰 , 赵玉荣. 一类级 数的求和公 式[ J 1 . 牡 丹江
时, n ) 收敛 , 而且 其 和函数 为 s ( )如 下 ∑p(
解析 : 设 和函数 为 S ( x ) , 则 下式 成立
令
-+
+. 一+
… ,
5+ . . ‘+
。
. s ( )=s ( 。 ) + (
1
=
可 (
)
1 x 2
) ( ) = 1 + + + . . ・ + 著 + . . ‘
函数 项 级数 . 定义 2 E 。 在收敛 域 上 , 函数 项 级数 的和 是 的函数 . s ( ) , 称它 为级 数 的和 函数 , 写成
【微积分】09-函数项级数
【微积分】09-函数项级数1. ⼀致收敛函数1.1 函数项级数 前⾯讨论了数列的极限和级数,它们都是对单点的逼近,现在我们把这些讨论扩展到函数对象。
设u_1(x),u_2(x),\cdots是同⼀定义域上的函数序列,则式(1)左被称为函数项级数,式(1)右是它的部分和函数。
如果S_n(x)处处收敛于S(x),则S(x)称为函数项级数的和函数。
函数项级数问题的本质其实就是函数序列\{S_n(x)\}的问题,下⾯的叙述更多地是讨论函数序列\{f_n(x)\}的性质。
\sum\limits_{n=1}^{\infty}u_n(x)=u_1(x)+u_2(x)+\cdots;\quad S_n(x)=\sum\limits_{k=1}^{n}u_k(x)\quad\tag{1} 关于函数项级数(函数序列),我们更关⼼的不是它在单点的收敛条件,⽽是着重讨论和函数S(x)(极限函数f(x))的分析性质。
主要包括它的连续性、可微性和可积性,以及这些分析性质与函数序列分析性质的关系,这样的讨论反过来可以⽤函数序列的分析性质来近似和函数的分析性质,这使得⽤简单函数模拟和研究复杂函数成为可能。
但要有这样的关系,函数序列还要满⾜⼀些条件。
⽐如函数序列x^n在[0,1]上都是连续的,但它们的极限函数在[0,1)上为0,但在x=1时为1,并不连续。
再看函数序列\dfrac{\sin{nx}}{\sqrt{n}},它的极限函数恒为0,导数⾃然为0,但通项的导函数\sqrt{n}\cos{nx}在有理点极限却为⽆穷。
再⽐如函数序列2nxe^{-nx^2},它在[0,1]上的极限函数恒为0,故积分也为0,但通项的积分却恒为1。
1.2 ⼀致收敛的判定 仔细观察上⾯分析性质不⼀致的例⼦,你会发现本质上是因为,函数序列在每⼀点并不是“同时”收敛于极限函数,这导致了函数序列与极限函数并不“相似”,从⽽也就不会有相同的分析性质。
为此我们定义⼀种类似⼀致连续的收敛,即对任意\varepsilon>0,当n⾜够⼤后总有式(2)成⽴,则称函数序列f_n(x)⼀致收敛于f(x)。
幂级数求和函数方法概括与总结
幂级数求和函数方法概括与总结常见幂级数求和函数方法综述引言级数是高等数学体系的重要组成部分,它是在生产实践和科学实验推动下逐步形成和发展起来的。
中国魏晋时期的数学家刘徽早在公元263年创立了“割圆术”,其要旨是用圆内接正多边形去逐步逼近圆,从而求得圆的面积。
这种“割圆术”就已经建立了级数的思想方法,即无限多个数的累加问题。
而将一个函数展开成无穷级数的概念最早来自于14世纪印度的马徳哈瓦,他首先发展了幂级数的概念,对泰勒级数、麦克劳林级数、无穷级数的有理数逼近等做了研究。
同时,他也开始讨论判断无穷级数的敛散性方法。
到了19世纪,高斯、欧拉、柯西等各自给出了各种判别级数审敛法则,使级数理论全面发展起来。
中国传统数学在幂级数理论研究上可谓一枝独秀,清代数学家董祐诚、坎各达等运用具有传统数学特色的方法对三角函数、对数函数等初等函数幂级数展开问题进行了深入的研究。
而今,级数的理论已经发展的相当丰富和完整,在工程实践中有着广泛的应用,级数可以用来表示函数、研究函数的性质、也是进行数值计算的一种工具。
它在自然科学、工程技术和数学本身方面都有广泛的作用。
幂级数是一类最简单的函数项级数,在幂级数理论中,对给定幂级数分析其收敛性,求收敛幂级数的和函数是重要内容之一。
但很多人往往对这一内容感到困难。
产生这一问题的一个重要原因是教材对这一问题讨论较少,仅有的一两个例题使得我们对幂级数求和中的诸多类型问题感到无从下手。
事实上,求幂级数和函数的方法与技巧是多种多样的,一般要综合运用求导、拼凑、分解等来求解,因此它是一个难度较大、技巧较高的有趣的数学问题。
一、幂级数的基本概念(一)、幂级数的定义 [1] 1、设()(1,2,3)n u x n =是定义在数集E 上的一个函数列,则称12()()(),n u x u x u x x E ++++∈为定义在E 上的函数项级数,简记为1()n n u x ∞=∑ 。
2、具有下列形式的函数项级数200102000()()()()n nn n n a x x a a x x a x x a x x ∞=-=+-+-++-+∑称为在点0x 处的幂级数。
级数求和的常用方法
1.7方程式法 (3)1.8原级数转化为子序列求和 (3)1.9数项级数化为函数项级数求和 (3)1.10化数项级数为积分函数求原级数和 (4)1.11三角型数项级数转化为复数系级数 (4)1.12构造函数计算级数和 (5)1.13级数讨论其子序列 (5)1.14裂项法求级数和 (6)1.15裂项+分拆组合法 (7)1.16夹逼法求解级数和 (7)2函数项级数求和 (8)2.1方程式法 (8)2.2积分型级数求和 (8)2.3逐项求导求级数和 (9)2.4逐项积分求级数和 (9)2.5将原级数分解转化为已知级数 (10)2.6利用傅里叶级数求级数和 (10)2.7三角级数对应复数求级数和 (11)2.8利用三角公式化简级数 (12)2.9针对2.7的延伸 (12)2.10添加项处理系数 (12)2.11应用留数定理计算级数和 (13)2.12利用Beta函数求级数和 (14)参考文献 (15)级数求和的常用方法级数要首先考虑敛散性,但本文以级数求和为中心,故涉及的级数均收敛且不过多讨论级数敛散性问题.由于无穷级数求和是个无穷问题,我们只能得到一个n →∞的极限和.加之级数能求和的本身就困难,故本文只做一些特殊情况的讨论,而无级数求和的一般通用方法,各种方法主要以例题形式给出,以期达到较高的事实性.1数项级数求和1.1等差级数求和等差级数为简单级数类型,通过比较各项得到其公差,并运用公式可求和.11((1)22n n a a n n s na d +-=+=),其中1a 为首项,d 为公差 证明:12=++...+n s a a a ①,21s=+...++n a a a ② ①+②得:()12-112(+++...+(+)n n n s a a a a a a =+) 因为等差级数11...+n n a a a a +==所以1(2n n a a s +=)此证明可导出一个方法“首尾相加法”见1.2. 1.2首尾相加法此类型级数将级数各项逆置后与原级数四则运算由首尾各项四则运算的结果相同,便化为一简易级数求和. 例1:求01235...(21)n n n n n c c c n c +++++.解:01235...(21)n n n n n s c c c n c =+++++,210(21)...53n n n n n s n c c c c =++++,两式相加得:21012(22)(...)(1)2n n n n n n s n c c c c n +=++++=+⋅,即: 01235...(21)(1)2n n n n n n c c c n c n +++++=+.1.3等比级数求和等比级数为简单级数类型,通过比较各项得到其公比并运用公式可求和.当q =1,1s na =;当q ≠1,1(1)1n a q s q-=-,其中1a 为首项,q 为公比.证明:当q =1,易得1s na =,当q ≠1,11111=++...+n s a a q a q - ①, 2111=++...+n qs a q a q a q ②, ①-②得11(1)n q s a a q -=-.可以导出一种方法“错位相减”见下1.4 1.4错位相减法此方法通常适用于等差与等比级数混合型,通过乘以等比级数公比q ,再与原级数四则运算后化为等差或等比级数求和.例2:计算212n n -∑.解: 2313521...2222n n s -=++++ ①,21352121 (222)n n s --=++++ ②, ②-①得: 121121************n n n k k k n k k k k k n s s s -===---=-=+-=+-=∑∑∑111121121213122212n n n n n n -----+-=---,lim n s →∞=3.1.5蕴含型级数相消法此类型级数本身各项之间有蕴含关系,通过观察可知多项展开会相互之间相消部分项,从而化简级数求和.例3:计算1ni =∑.解:将各项展开可得:(1...s =-+++++11==lim n s →∞= 1.6有理化法求级数和对于一些级数通项含有分式根式的级数,我们可以仿照数学中经常使用的方法“有理化”处理,以期达到能使得级数通项化简,最后整个级数都较容易求和.例4:计算1n ∞=.解:可以看出此级数含根式较多,因此尝试运用有理化的方法去处理,即通项n a =对其分母有理化得:−−−−=−分母有理化,则原级数可以采用本文中的1.5“蕴含型级数相消法”,则可以快速求得级数和的极限为1. 1.7方程式法此型级数通过一系列运算能建立级数和的方程式,通过解方程求解级数和.准确建立方程是关键问题,方程类型不固定,有类似与微分方程之类的,故要视具体情况建立方程,解方程也要准确,才能求出级数和.例5:计算2cos cos 2...cos n q q n q θθθ+++,其中1q <. 解:记2cos cos 2...cos =nq q n s q θθθ+++= =1cos nk k k q θ∑两边同时乘以cos 2q θ得即:+1222cos cos+1cos )(cos )2=n n n n q s q s q q q s q θθθθ+•++-+-()( 解此方程得:2122cos cos(1)cos =12cos n n q n q n q q s q q θθθθ++-++-+-22lim cos 12cos n q q s q q θθ→∞-=+-. 1.8原级数转化为子序列求和若下列条件成立[1]:(1)当n →∞时级数的通项0n a →(2)级数各项没有破坏次序的情况而得新序列n 1n b ∞=∑收敛于原级数 .例6:计算11111111111++-1+++-+++-+ (2345627893)()()().解:lim 0n n a →∞=Q ,应用欧拉公式1111++...ln 23n c n e n++=++,其中c 为欧拉常数,0()n e n →→∞111111+++...+-1--...-2332s n n=3ln 3ln n n n n e e =-+-,lim ln3n s →∞=.1.9数项级数化为函数项级数求和数项级数化为相应函数项级数,再通过函数项级数求和,并赋予函数未知数相应未知数后记得相应原级数的和.例7:求级数和11135...n n ∞=••••∑(2-1).解:建立函数项级数2111()135...n n s x x n ∞-==••••∑(2-1)由函数敛散性知识可知其收敛域为(,)-∞+∞,将函数项级数逐项求导可得:'2211()1135...n n s x x n ∞-==+••••∑(2-3)=211111()135...n n x x xs x n ∞-=+=+••••∑(2-1),由此可知()s x 满足微分方程'()()1s x xs x -=,且易知(0)0s =,解此常微分方程得:221122()xx t dt s x ee-=⎰,令1x =则可以求出原级数和:211122s t eedt =⎰.1.10化数项级数为积分函数求原级数和将原级数通过化简,构造积分极限式,从而转化为积分求原级数和也不失为一种好方法,构造积分式子是关键,一般原级数中通过四则运算将n 与积分中的分割相联系从而构造分割,建立级数与积分式子的桥梁.例8:计算11k n k ∞=+∑,其中()n →∞. 解:记1011111lim =ln21+1n n n k k dx s k n k n x n∞→∞==−−−−−−−−→==←−−−−−−−−++∑∑⎰分子分母同时除以构造分割建立级数与积分的桥梁. 1.11三角型数项级数转化为复数系级数将三角型数项级数转化为复数域上的级数,由于复数的实部对应于数项级数,从而转化为求复数系级数进而求原级数和.例9[7]:设2cos cos 2...cos = n s q q n q θθθ+++,求s .解:由于1cos =nk k s q k θ=∑,令(cos sin )i z qe q i θθθ==+为复数,其中0,1,2...k =(cos sin )k k ik k z q e q k i k θθθ==+,其中1,2...k =,得:2...+cos (sin )sin 2...sin nn q n i q qq n θθθθ++++而另一方面1111(cos(+1)sin(+1))11(cos sin )n n z q n i n z q i θθθθ++--+=--+=211-2cos q q θ+ {1221cos cos(1)cos(1)cos sin(1)sin n n n q q n q n q n θθθθθθ+++⎡⎤--+++++⎣⎦+ 212sin cos(1)sin sin(1)sin(1)cos n n n i q q n q n q n θθθθθθ+++⎡⎤-+-+++⎣⎦g g }取实部对应原级数和即得:12211(1cos cos(1)cos )1-2cos n n q qs q q n q n θθθθ+++=--+++即: 当n →∞,且1q <时22lim cos 12cos n q q s q q θθ→∞-=+-.1.12构造函数计算级数和将级数各项转化为其它函数式子化简级数并求原级数和,关键在于各项的化简函数是否基本统一,如何选择函数式子才能有效化简,将级数参数化为函数式子中的未知数,并无一般的通用函数,选择函数视具体情况而定,下面我们先看一个例子感受这种方法,并从中体会这种方法.例10[7]:请计算下面的级数式子:记2323=1-+......)1111nn t t t t s t t t t t ++++++++()(,其中1t →-.解:构造函数式子:1()11x x xe f x e e --==++,此函数在[0,)+∞单调递减. 由于000(1)ln(1)|ln 211x xx x x e d e dx dx e e e--+∞+∞-+∞---+==-+=++⎰⎰, 令ln h t =-,满足11lim limln t t h t →→==0ln 1111hthe t eeh h----=-=-=g ,ln ln ()()1()11k t k hk kt k hk t e e f kh t e e ----===+++. 代入题目中的级数式子得:23231lim 1-+......)111n n t t t t t t t t t t -→+++++++()(+1= 011lim ()h h k e h f kh h -∞→=-∑=0011lim ()ln 21h xx h k e e h f kh dx h e --∞+∞-→=-==+∑⎰.1.13级数讨论其子序列引理[1]:数列}{n s 收敛的充分必要条件是}{n s 的任一子序列都收敛且有相同的极限.特别的:数列}{n s 收敛于s 的充分必要条件是两个互补的子列}{2n s ,}{12-n s ,收敛于同一极限.推广可得:定理[1]:若级数∑∞=1n n a 通项满足当n →∞时, 0→n a (收敛判别的必要条件),∑∞=1n n a 收敛于s 的充分必要条件是:部分和}{n s 的一个子序列}{np s 收敛于s ,其中p 满足:p 是某个正整数p =1,2,…将级数分情况讨论,化为多个子序列之和,利用原级数收敛则级数任意添加括号得到的级数和收敛于原级数和原理,通过求各个子序列之和求解原级数和,关键在于如何分解原级数为不同子序列,然而子序列相对于原级数来说易求些,这样方法才行之有效,这和1.6的“原级数转化为子序列求和”是不同的.分情况讨论在三角中讨论角的大小我们已不陌生,下面我们就看一个这样讨论角的幅度的例题.例11[6]:计算:12cos32nn n π∞=∑. 解:记12cos32n n n s π∞==∑,由级数敛散性知识可知,该级数绝对收敛.按幅度角的讨论将级数分解为:1{|3,0,1,2...}A n n k k ===,2{|31,0,1,2...}A n n k k ==+=,3{|32,0,1,2...}A n n k k ==+=.则:1232222coscos cos cos 3333=++2222n n n n n n A n A n A n n n n ππππ∞∞∞∞=∈∈∈∑∑∑∑1115(1)148718=--=-g ,所以:12cos23127n n n s π∞==-=-∑. 1.14裂项法求级数和针对级数是分数形式,且满足分母为多项乘积形式,且各项之间相差一个相同的整数,裂项后各项就独立出来,而原来各项之间相差整数则裂项后新级数等价于求解某一个级数,其余新级数照此可求出,从而原级数和可以求出. 裂项一般形式:1111()()(+)x m x n n m x m x n=-+-++,此处m n >.例12:计算111...123234(1)(2)s n n n =+++++g g g g g g . 解:记1(1)(2)n a n n n =++g g ,111[]2(1)(1)(2)n a n n n n =-+++ 针对11(1)nk k k =⋅+∑同理采用裂项法记111(1)1n b n n n n ==-++则11(1)nk k k =+∑=11-1n +,111lim lim[1-]1(1)1nn n k k k n →∞→∞===++∑,所以 111111lim lim [](1)(2)2(1)(1)(2)nnn n k k k k k k k k k →∞→∞===++++++∑∑= 11111111lim lim()2(1)2(1)2n n n n k k k k k k +→∞→∞==--++∑∑=1111(1)2224--=. 1.15裂项+分拆组合法将裂项与分拆组合法合用在一起,运用裂项法分拆级数,再将分拆重新组合级数,由新级数返回求原级数和.例13:计算1(+1)(+2)n nn n n ∞=∑(+3).解:11235+1+2+3(+1)(+2)n n n n n n n ++-=Q(+3)111111251()(+1)(+2)3+1+2+33(+1)(+2)n n n n n n n n n n n n n ∞∞∞===∴=+--∑∑∑(+3)(+3)=1125111()()3233464+--=. 1.16夹逼法求解级数和在数学分析中运用夹逼法则求解极限,在求极限和中我们也可以借鉴此方法,运用两个级数逼近原级数,最后两逼近级数和等于原级数和.例14[8]:设m 为一给定的正整数,求221,1n m nm n ∞=≠-∑. 解:12222221,11111m Nm m Nm Nn m n n n m s m n m n m n+-++=≠==+==+---∑∑∑ 1111111111[ (21122121)m Nn m m m m m m m m n m n +=+=++++++++-+-+--+∑] 21112...2122+1m m N m N N N m N +++++++Q<<且∞→N 时,2lim 0+1N mN →∞=,且2lim 0+2N m N m →∞=,所以23lim 04m N N s m +→∞=-,即2221,134n m n m nm ∞=≠=--∑ 2 函数项级数求和函数项级数和依据未知数x 的而定,因此在收敛域内寻找一个新函数去刻画级数和.2.1方程式法类似于数项级数,函数项级数建立方程,通过方程求解求函数项级数和.例15:计算函数项级数23456()1 (21324135246)x x x x x s x x =+++++++g g g g g g 解:由函数项级数收敛性知识可知题中函数项级数收敛半径为+∞,逐项求导得3'2()1 (2)x s x x x =++++即:'()1()s x xs x =+(0)1s =Q解此微分方程得:2222()(1)x t x s x e e dt -=+⎰.2.2积分型级数求和积分型级数求和显然直接求和会带来困难,通常积分也积不出来,所以要转化,将积分式子化简是个想法,通过变量替换等积分技术化简积分式子,再求级数和,所以关键在于处理积分式子,下面我们看个例题.例16:计算级数(21)220x k k k eππ∞+-=∑⎰.解:因为(2,(21x k k ππ∈+)),作变量替换t k x +=π2得:再根据:'22tt ee dt --=⎰⎰C +得:(422204tt tk ee e πππππ-+--=-+⎰⎰⎰)=4042|2eeπππ--=84042|24eeec ππππ---=.所以原级数=8211t k k eee ππππ∞----==-∑⎰. 2.3逐项求导求级数和根据幂级数逐项求导收敛半径不变原理,对原级数逐项求导后化为一些易求和的幂级数,再往回求积分,从而求原级数和.易知的级数往往是通过泰勒展式或者麦克劳林展式获得的。
无穷级数求和的方法与技巧
责任编辑 李叶亚 99
n =1 ∞ n =1 n =1 ∞ ∞
(un±vn ) 收敛, 且Σ (un±vn ) =Σun±Σvn。 当把级数分成两
n =1 n =1 n =1 ∞
个或多个 (有限个) 收敛级数的和时, 注意一定要保证 Σun
n =1 ∞
推广:对于实数 a≠0,- 1, b 为任意实数,无穷级数Σ
n =1
与Σvn 均收敛。
参考文献
[1] [2] [3] [4] 邵剑,陈维新,等.大学数学考研专题复习[M],科学出版社,2002. 刘玉琏,傅沛仁.数学分析:下册[M].3 版.高等教育出版社. 费定晖,周学圣.数学分析习题集题解[M].山东科学技术出版社,1987. 徐利治 , 王兴华 . 数学分析的方法及例题选讲 [M]. 高等教育出 版社,1988.
n =1 ∞ ∞ ∞
b 收敛于 b 。 (n- 1 ) +1][an+1] a [a 注: 可见当通项为无理因式时, 应先将其有理化, 再进 行适当变形, 是一种有效而常用的处理手段。 1.3 错位相消法 主要适用于数列 {anbn}, 其中数列 {an}为等差数列, {bn}为 98
2 ) 用 Σcn= Σan ·Σbn, 其中 cn=a0bn+a1bn- 1+ … +anb0, 且
例 2. 求无穷级数Σnxn 的和, 其中 x <1。
n =1
解: 令 sn=x+2x2+3x3+…+nxn xsn=x2+2x3+3x4+…+nxn+1 则 (1 ) -(2 ) 得:
n
(1 ) (2 )
1 定义法
此法难点在于无穷级数前 n 项和的求取,既是求和的 基础, 也是求和的关键。笔者结合自己的学习经验, 略举几 例, 仅供参考。 1.1 公式法 对于一些收敛的无穷级数可直接使用等比数列的求和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理工科类应用学科 中也会经常遇到。由于对收敛的函数项级数进行求和存在 困难并且有很 强的技
巧性 , 鉴 于此 , 本 文给 出 了一种 利 用逐 项微 分 的方 法对 函数项级 数进 行 求和 , 并举例 说 明。
关键 词 :函数 项级数 ; 幂级 数 ; 逐项微 分 ; 求和 中图分 类号 : G 6 3 3 . 6 文 献标 识码 : A 文 章编 号 : 1 6 7 2— 2 0 8 6 ( 2 0 1 6 ) 0 3— 0 0 6 2— 0 2 和 函数 。
可逐 项微 分 , 即
定义 1
义在 , 上 的函数 , 则
∑U n ( )= u ( ) +
u 2 ( )++u ( )+… ( 1 )
s ( )=∑ ( ) :∑
且 可逐项 求微 分任 意次 , 即
;
( 2 )s ( ) 在 (一 R, R) 内具 有 任 意 阶 导数 连 续 ,
函数项 级数 求 和作为 数学 分析 中 的最根 本和重
要 的问题 , 到 目前 为 至 , 已经积 累 了很多具 有 针对性
注
设 { n }为 给 定 的 数 列 , 称 函 数 项 级 数
和技巧 性 的方法 。在 自然 科学 和工 程技术 中有许 多 问题都 可 以用无 穷 级 数 来 解决 。例 如 : 一 些 函数 是 用 函数 项级 数来 表示 的 。函数 逼近 和近 似计算 等实 际 问题 都 可 以借 助 函数项 级数 来研 究 。
【 教学改革】
用逐项微分法求 函数项级数 的和
秦 国强
( 离石师 范 数学 与计算机 系 , 山西 吕梁 0 3 3 0 0 0 )
摘
要 :函数 项级数 是数 学分 析 中的一 个 重要 内容 , 其 中对 收敛 函数 项 级数 进 行 求和 是级 数
教 学 内容 中的一 个难 点 , 收 敛 函数项级 数 求和 不仅 对数 学本 学科有 重要 的 不 可替代 的 意 义 , 在 其他
易 知原 级数 的收敛 域是 [一1 , 1 ] , 记
F ( ) =
( s i n ( 后 + 丢 ) — s i n ( 后 一 ) ) =
则
一
2 s i n 詈 ( s i n
s i n 詈 ) = (
1
2 ’
( ’ 薹 n = 2 J \ / ) =
s ” ( )=0 t +2 a 2 +… +I / , . O - 1+… ,
称为定 义 在 , 上 的 函数项 无 穷级 数 , 其 中: u ( )称
为函 数项 无穷 级数的 通项, s . ( )=∑ ( ) 为 部
= 1
s ” ( )=2 , o 2+3・ 2 . o 3 +… +/ 7 , ( / 7 , 一1 ) ' O n X 一 +… ,
分 和, 也 称{ J s ( ) } 为∑ “ ( ) 的 部分和函 数列。
n l
s ’ ( )= ! 口 +( +1 ) ( 1 1 , 一1 ) …3・ 2 , o + 1 +…;
( 3 )幂级 数 的 系数 o 与 和 函数 各 阶 微分 之 间
一
∑O " n 为 幂 级数。 定 理1
设幂 级数 ∑O " n 的收 敛半径为R
、
函数项 级数 和 函数项 级数 求和 的定 义 设 ( ) , “ ( ) , …, / A , ( ) , …是定
>0, 和 函数 为 s ( ) , 则有 下列 结论 : ( 1 )s ( ) 在 收敛 区间 (一 R, R) 内导 函数连 续且
2 0 1 6年 9月
吕梁教 育学 院学 报
J o u r n a l o f L v l i a n g Ed u c a t i o n I n s t i t u t e
Se p t .2 0 1 6
第3 3卷
第 3期 ( 总第 9 7期 )
V o 1 . 3 3 N o . 3 ( S u m. N o . 9 7 )
n=l
s ( )
=
∑
Sቤተ መጻሕፍቲ ባይዱ nn
(
n = 1
: 1一 2 ’
故 和 函数
.
解 当 = 0 , 级数 ∑
n=1
Sl n n n
s ( 戈 )
=
㈤ 厂 。 ( 丽 t 2 n * 1 )
当 ∈ ( 。 , 记 J s ) = 薹 s _ i _ n _ k _ x , 则 s ( ) = ( 毫 s i n k x ] , = 毫 c 。 s =
2 s i n 号 七 : 1 2 s i n 号 - c 。 s = 2 s i n 号
解
厂 。 d = ÷ l n
o ) =
÷ l m n , ∈ ( L 一 一, 1 , ・ 1 ) .
例 3 求 幂 级 数 妻 n Z 。 \ ‘ 苦 , 的 和 函 数 ;
收 稿 日期 : 2 0 1 6— 0 6—1 0
二、 利用逐 项微 分法 对无 穷级 数求 和
作者简介 : 秦 国强 , 男, 山西师范大学教育硕 士( 学科数学 ) 在读硕士 ; 离石师范教师。
6 2
一 2
例 1 设 ∈[ 0 , 1 T 】 , 试 求 函数项 无 穷 级 数之 和
有如 下关 系 : " O 0 0 ) ' n = _1 , 2 , … ).
定 义2
n J
若V ∈, , ∑u ( ) 收 敛, 则称
n l n l
∑/ Z n ( ) 在, 上收 敛 . 此 时 . V ∈ , , ∑“ ( ) 都 有 意 义, 记| s ( ):∑1 1 , n ( ) , 称s ( ) 为∑ ( ) 的