二次函数综合(动点)问题——相似三角形存在问题培优学案(横版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学过程
一、复习预习
(一)二次函数y=ax2+bx+c的图像和性质:
(二)梯形的性质:一组对边平行,另一组对边不平行的四边形;
直角梯形的性质:有两个角是直角的梯形;
等腰梯形:两底角相等,两顶角相等,两腰相等,对角线相等的梯形。

(三)梯形模型探究:
1. 已知三个定点,一个动点的情况
如图:A、B两点坐标分别为(8,0)和(4,3),P点在y轴上且以O、A、B、P为顶点的四边形为梯形,则P点坐标为___________________。

如图:分别以AB、AO、AP为梯形的平行边作平行线与y轴交于P1、P2,则P1、P2为满足题意的点P的坐标。

2.已知两个定点,两个动点的情况
①两个动点之间也存在因果关系,一个点的存在往往是因为另一个点的运动引起的,所以一般首先要根据题意通过一个动点表示出另一个动点;如果是抛物线上有一个动点,直线上有一个动点,一般要根据题意表示或求出两点的坐标,这类题型相对来说难度有些大;
②如果是梯形则用一组对边平行去求解待定参数,如果是直角梯形则分四个内角分别为直角去分类求解,如果是等腰梯形则用两腰相等去求解。

二、知识讲解
考点/易错点1
二次函数y=ax2+bx+c的图像和性质:
考点/易错点2
相似三角形的性质:
(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

考点/易错点3
相似三角形模型探究与解题技巧:
1、课堂导入题解
如图,在平面直角坐标系中有两点A(4,0)、B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为_________________时,使得由点B、O、C组成的三角形与△AOB相似(至少找出两个满足条件的点的坐标).
解:∵点C在x轴上,∴点C的纵坐标是0,且当∠BOC=90°时,由点B、O、C组成的三角形与△AOB 相似,即∠BOC应该与∠BOA=90°对应,
①当△AOB∽△COB,即OC与OA相对应时,则OC=OA=4,C(-4,0);
②当△AOB∽△BOC,即OC与OB对应,则OC=1,C(-1,0)或者(1,0).
故答案可以是:(-1,0);(1,0).
解析:分类讨论:①当△AOB∽△COB时,求点C的坐标;②当△AOB∽△BOC时,求点C的坐标;如果非直角三角形也要分类讨论,对应边不一样就得到不同的结果。

2、几种常见的相似三角形模型
①直角三角形相似的几种常见模型
②非直角三角形相似的几种常见模型
3、解题技巧
函数中因动点产生的相似三角形问题一般有三个解题途径。

①求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。

根据未知三角形中已知边与已知三角形可能对应边成比例进行分类讨论。

②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。

③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程。

三、例题精析
【例题1】
【题干】(宁波)已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点C(0,3),O是原点.
(1)求这条抛物线的解析式;
(2)设此抛物线与x轴的交点为A,B(A在B的左边),问在y轴上是否存在点P,使以O,B,P 为顶点的三角形与△AOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
x2-2x+3;(2)P(0,4)、(0,-4)、(0,9)或(0,-9).
【答案】(1)y=1
4
【解析】解:(1)可设y=a(x-4)2-1,
∵交y轴于点C(0,3),
∴3=16a-1,
∴a=1

4
∴抛物线的解析式为y=1
4
(x-4)2-1,
即∴y=1
4
x2-2x+3.
(2)存在.
当y=0,则1
4
(x-4)2-1=0,
∴x1=2,x2=6,
∴A(2,0),B(6,0),
设P(0,m),则OP=|m|在△AOC与△BOP中,①若∠OCA=∠OBP,则△BOP∽△COA,
∴OB OC =OP
OA
,OP=6×2
3
=4,
∴m=±4;
②若∠OCA=∠OPB,则△BOP∽△AOC,
∴OP OC =BO
AO
,OP=6×3
2
=9,
∴m=±9,
∴存在符合题意的点P,其坐标为(0,4)、(0,-4)、(0,9)或(0,-9).
【例题2】
【题干】(巴中)如图所示,已知抛物线y=x2-4x+3与x轴交于A,B两点,C为抛物线的顶点,过点A作AP∥BC交抛物线于点P.
(1)求A,B,C三点坐标;
(2)求四边形ACBP的面积;
(3)在x轴上方的抛物线上是否存在点M,过点M作ME⊥x轴于点E,使A,M,E三点为顶点的三角形与△PCA相似?若存在,请求出点M的坐标;若不存在,请说明理由.
【答案】(1) A (1,0),(3,0),C (2,-l );(2) 4;(3) M 1(0,3),M 2(103,79),M 3(6,15). 【解析】解:(1)①y=x 2-4x+3令y=0,则x 2-4x+3=0,
即x 1=1,x 2=3,
故点A 的坐标为(1,0),点B 的坐标为(3,0),
∵y=x 2-4x+3=(x-2)2-1,
∴抛物线的顶点C 的坐标为(2,-l );
(2)∵过B ,C 两点的直线为y=x-3,AP ∥BC ,
∴设直线AP 为y=x+b ,
又∵点A 的坐标为(1,0),
∴直线AP 为y=x-1,②
由①②可知点P 的坐标为(4,3),
所以,S 四边形ACBP =S △ABP +S △ACB =12×2×3+12×2×1=4; (3)存在,点M 的坐标为M 1(0,3),M 2(103,79),M 3(6,15). 由(1)(2)易知AP=3√2,AC=√2,PC=2√5,
∴AP 2+AC 2=PC 2,
∴△PAC 为Rt △,且∠PAC=90°,
∵ME ⊥x 轴,
∴以A ,M ,E 三点为顶点的三角形也是Rt △,且∠MEA=90°,
假设点M 是在x 轴上方的抛物线上,设M 为(a ,a 2-4a+3 )且(a <1或a >3),
要使Rt △PAC 和Rt △MEA 相似,则有
①Rt △PAC ∽Rt △AEM ,得PA AE =AC EM , ②Rt △PAC ∽Rt △MEA ,得PA ME =AC EA

而AE=|1-a|,ME=a 2-4a+3,由①得|1-a|=3(a 2-4a+3),
解之a 1=83 (舍去),a 2=1 (舍去),a 3=103,a 4=1(舍去), 再由②得3|1-a|=3(a 2-4a+3),
解之,a 5=0,a 6=1 (舍去),a 7=6,a 8=1(舍去),
综上所述:存在点M 的坐标,即为M 1(0,3),M 2(103,79),M 3(6,15).
【例题3】
【题干】(临沂)如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C.
(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】(1) y=x 2+2x ;(2) D 1(1,3),D 2(-3,3),D 3(-1,-1);(3) P (13,79)或(3,15). 【解析】解:(1)设抛物线的解析式为y=ax 2+bx+c (a ≠0),且过A (-2,0),B (-3,3),O (0,
0)可得
{ 4a −2b +c =0
9a −3b +c =3c =0

解得{a =1b =2c =0
.
故抛物线的解析式为y=x 2+2x ;
(2)①当AO 为边时,
∵A 、O 、D 、E 为顶点的四边形是平行四边形, ∴DE=AO=2,
则D在x轴下方不可能,
∴D在x轴上方且DE=2,
则D1(1,3),D2(-3,3);
②当AO为对角线时,则DE与AO互相平分,
∵点E在对称轴上,对称轴为直线x=-1,
由对称性知,符合条件的点D只有一个,与点C重合,即D3(-1,-1)
故符合条件的点D有三个,分别是D1(1,3),D2(-3,3),D3(-1,-1);(3)存在,如图:∵B(-3,3),C(-1,-1),根据勾股定理得:
BO2=18,CO2=2,BC2=20,
∴BO2+CO2=BC2.
∴△BOC是直角三角形.
假设存在点P ,使以P ,M ,A 为顶点的 三角形与△BOC 相似,
设P (x ,y ),由题意知x >0,y >0,且y=x 2+2x ,
①若△AMP ∽△BOC ,则AM BO =MP OC ,
即 x+2=3(x 2+2x )
得:x 1=13,x 2=-2(舍去).
当x=13时,y=79,即P (13,79).
②若△PMA ∽△BOC ,则AM CO =PM BO ,
即:x 2+2x=3(x+2)
得:x 1=3,x 2=-2(舍去)
当x=3时,y=15,即P (3,15).
故符合条件的点P 有两个,分别是P (13,79)或(3,15).
四、课堂运用
【基础】
1.(红河州)如图,抛物线y=-x2+4与x轴交于A、B两点,与y轴交于C点,点P是抛物线上的一个动点且在第一象限,过点P作x轴的垂线,垂足为D,交直线BC于点E.(1)求点A、B、C的坐标和直线BC的解析式;
(3)是否存在以点P、O、D为顶点的三角形与△OAC相似?
若存在,请求出点P的坐标,若不存在,请说明理由.
2.(漳州)如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点.
(1)填空:A(___,___)、B(___,___)、C(___,___);
(2)求抛物线的函数关系式;
(3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC 相似?若存在,请求出点P的坐标;若不存在,请说明理由.
3、(临汾)如图,直线y=-x+3与x轴、y轴分别相交x轴于点B、交y轴于点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由
【巩固】
1.(谷城县模拟)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;
(3)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由.
2.(莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.
(1)求抛物线的表达式;
(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;
(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.
【拔高】
1. (毕节地区)如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C (0,1).
(1)求抛物线的解析式,并求出点B坐标;
(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.
2. (金东区一模)如图,已知抛物线y=x2-1与x轴交于A、B两点,与y轴交于点C.过点A作AP ∥BC交抛物线于点P.
(1)求A、B、C三点的坐标以及直线BC的解析式;
(2)求点P的坐标以及四边形ACBP的面积;
(3)在抛物线上是否存在点M,过点M作MN垂直x轴于点N,使以A、M、N三点为顶点的三角形与三角形PCA相似?若存在,求出M点的坐标;若不存在,请说明理由.
课程小结。

相关文档
最新文档