大一高数复习资料(Ahighnumberofreviewmaterials).doc
高等数学A(1)复习资料精选全文
可编辑修改精选全文完整版高数A (1)复习资料一、极限计算:常用方法包括等价无穷小替换,洛必达法则,两个重要极限。
解题思路:首先判断是否为未定式,否则化成未定式类型(特别注意幂指函数情形利用对数函数性质转化;加减法类型一般通分;如果无穷多项相加则要先求和,如果不能直接求和可能需要利用夹逼准则放缩后后再求和;),对于未定式类型先考虑利用等价无穷小替换后再利用洛必达法则。
注意:函数中如果出现幂指函数类型也可以考虑直接利用第二个重要极限处理,注意处理技巧。
如果出现变上限函数类型,注意变上限函数的导数如何计算,特别是上限为x 的函数,也就是积分上限函数为复合函数时求导要利用链式法则;如果积分上限函数被积函数不是积分变量的一元函数,则将其他变量提出到积分号外面,或者利用换元法化到积分限上。
常用等价无穷小:2~cos 1~arctan ,~arcsin ,~tan ,~sin 2x x x x x x x x x x -,,x x x e x x x αα~1)1(,~1,~)1ln(-+-+(0→x )练习题:1. 设822lim =⎪⎭⎫⎝⎛-+∞→xx a x a x ,则___________=a ; 2. ____________________arctan lim 21=⎪⎭⎫ ⎝⎛∞→x x x x ;3.=+→xx x sin 2)31(lim .4. 0tan sin lim sin x x x x x→-- 5. 0ln sin 5lim ln sin 2x x x →+ 6. 2013sin coslim(1cos )ln(1)x x x x x x →+++ 7. 2220(1)limxtx x t e dtx-→+∞+⎰2220(1)1[lim]2xt xx t e dt xe →+∞+==⎰二、无穷小比较:高阶,同阶,等价的定义处理思路:转化为求极限问题,特别是同阶无穷小;注意如果分式极限存在,分母为无穷小量,则分子也一定为无穷小量。
大一高等数学复习资料(二)2024
大一高等数学复习资料(二)引言概述:大一高等数学是大学数学课程中的基础课程,为了帮助大家更好地复习该门课程,本文提供了一份大一高等数学复习资料(二)。
通过该资料的学习,可以帮助大家复习和巩固高等数学的重要概念和知识点,为接下来的学习打下坚实的基础。
正文:1. 微分学复习:a. 重要概念回顾:导数和微分的定义、基本导数公式;b. 导数的应用:求函数的极值与最值、函数图像的描绘;c. 高阶导数与泰勒展开式:求函数的高阶导数、利用泰勒公式研究函数的性质。
2. 积分学复习:a. 定积分与不定积分:定义及性质、基本积分公式;b. 积分方法与技巧:换元法、分部积分法、三类换元法;c. 积分应用:求函数的面积、曲线长度、曲线包围的面积。
3. 微分方程复习:a. 常微分方程与解法:一阶线性微分方程、可分离变量的微分方程;b. 高阶线性微分方程:二阶齐次线性微分方程、二阶非齐次线性微分方程;c. 变量分离和常系数齐次线性微分方程。
4. 空间解析几何复习:a. 点、线、面的方程与性质;b. 点到直线和点到平面的距离计算;c. 平面与直线的位置关系、两平面的位置关系。
5. 矩阵与行列式复习:a. 矩阵的基本概念:矩阵的定义、矩阵的运算;b. 行列式的定义与性质:二阶、三阶行列式的计算;c. 逆矩阵与矩阵的秩:逆矩阵的判定、矩阵秩的计算。
总结:通过学习本文提供的大一高等数学复习资料(二),我们可以更好地复习和巩固高等数学的重要概念和知识点,为接下来的学习打下坚实的基础。
希望这份资料对于大家的学习有所帮助,祝愿大家在学习中取得优异的成绩!。
高数大一上期末复习要点
高数大一上期末复习要点高等数学是一门大一上学期的重要课程,它是数学的一门基础性课程,也是理工科学生必修的一门课程。
本文将总结和归纳高等数学大一上学期的复习要点,以帮助同学们对这门课程进行有效的复习。
一、函数与极限1. 函数的概念、性质和表示法2. 函数的基本类型:多项式函数、指数函数、对数函数、三角函数等3. 函数的运算:和、差、积、商、复合函数4. 函数的单调性、奇偶性、周期性以及对称性5. 极限的定义、性质和相关定理6. 数列极限与函数极限的关系二、导数与微分1. 导数的概念、定义和几何意义2. 导数的计算法则:常数求导、幂函数求导、指数函数求导、对数函数求导、三角函数求导等3. 高阶导数的概念与计算4. 函数的微分与微分近似值的应用5. 函数的单调性与极值问题6. 函数的图像与导数的关系三、积分与不定积分1. 积分的概念、性质和计算方法2. 定积分的概念、性质和计算方法3. 牛顿-莱布尼茨公式与不定积分的概念4. 不定积分的基本性质和计算方法5. 不定积分的换元法与分部积分法6. 定积分的几何应用:面积、曲线长度、平均值等四、微分方程1. 微分方程的概念和基本形式2. 一阶微分方程的可分离变量、齐次方程和线性方程解法3. 一阶线性微分方程的常数变易法和伯努利方程解法4. 二阶齐次线性微分方程的特征方程解法5. 二阶非齐次线性微分方程的特解叠加法与待定系数法6. 微分方程的应用:变种种群模型、生命问题、机械振动等五、级数与幂级数1. 数列与级数的概念和性质2. 收敛与发散的判定:比较判别法、比值判别法、根值判别法等3. 常数项级数的和与收敛域4. 幂级数的收敛半径与收敛域5. 幂级数的运算:求导、求积等6. 幂级数的应用:函数展开、函数逼近等上述要点是大一上学期高等数学课程的重点内容,同学们在复习的过程中应该重点关注,并通过课堂笔记、教材、习题集等进行系统复习和巩固。
同时,在复习过程中要注重提高自己的问题解决能力和应用能力,培养数学思维和分析能力。
大一期末高数(同济第六版)复习提纲(精选5篇)
大一期末高数(同济第六版)复习提纲(精选5篇)第一篇:大一期末高数(同济第六版)复习提纲高数一期末考试复习大纲题型:解答题(共12小题)类型:求极限、求导数及微分(包括导数的应用)、求不定积分、求定积分(包括定积分的应用)、求解微分方程具体知识点第一章数列的极限、函数的极限(以上只需掌握求极限方法、极限定义了解即可)无穷小与无穷大、极限运算法则、极限存在准则,两个重要极限无穷小的比较、函数的连续性、连续函数的运算和初等函数的连续性第二章导数定义及几何意义、函数的求导法则、高阶导数、隐函数导数、参数方程所确定的函数的导数(会求二阶导数)、函数的微分公式第三章洛必达法则、函数的单调性与曲线的凹凸性、函数的极值与最值第四章求不定积分(换元法、分部积分法)、有理函数的积分第五章微积分基本公式、定积分的换元法和分部积分法第六章定积分在几何学上的应用第七章可分离变量微分方程、齐次方程、一阶线性微分方程第二篇:高数复习提纲第一章1、极限(夹逼准则)2、连续(学会用定义证明一个函数连续,判断间断点类型)第二章1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续2、求导法则(背)3、求导公式也可以是微分公式第三章1、微分中值定理(一定要熟悉并灵活运用--第一节)2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值(高中学过,不需要过多复习)5、曲率公式曲率半径第四章、五章不定积分:1、两类换元法2、分部积分法(注意加C)定积分:1、定义2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第三篇:高数(上)(复习提纲)《高等数学I》复习提纲一、基本概念、公式、法则:“极限,连续,导数,微分,积分”的定义、性质--------基础1、导数(微分)部分:无穷小之间的比较(高阶、同阶、等价、k 阶),常见的等价无穷小(x→0),两个重要极限,初等函数的连续性,闭区间上连续函数的介值定理,基本初等函数的求导公式,复合函数求导的链式法则,求极限的洛必达法则,微分中值定理(Rolle、Lagrange、Cauchy),泰勒公式(特别地,麦克劳林公式),函数的单调性与凹凸性,极值存在的必要条件与充分条件,曲线的水平(竖直)渐近线,平面曲线(直角坐标系、极坐标系、参数方程)的曲率公式、弧微分公式;求极限夹逼准则,可导与连续的关系,可导与可微的关系。
高等代数大一下知识点汇总
高等代数大一下知识点汇总高等代数是数学中的一门重要学科,它作为大学数学的核心课程之一,在大一下学期进行教授。
本文将对高等代数大一下的知识点进行汇总,以帮助学生们更好地理解和掌握这门学科。
一、向量与矩阵高等代数中的向量与矩阵是比较基础而重要的概念。
向量是指有大小和方向的量,通常用箭头表示,矩阵是指二维表格状的数学结构,由多个数值组成。
1.1 向量的定义与运算向量可以表示为 n 维的行向量或列向量,其中 n 表示向量的维数。
在高等代数中,常常遇到向量的加法、减法和标量乘法等运算。
1.2 矩阵的定义与运算矩阵是由 m 行 n 列的数值按一定顺序排列而成的数学结构。
在高等代数中,我们会讨论矩阵的加法、减法、乘法、转置以及逆矩阵等运算。
二、线性方程组线性方程组是高等代数中的另一个重要内容,它描述了多个线性方程的集合。
解线性方程组的过程可以帮助我们确定未知数的数值。
2.1 线性方程组的基本概念线性方程组由多个线性方程组成,方程中的未知数通常用 x1, x2, ..., xn 表示。
线性方程组可以写成增广矩阵的形式,其中系数矩阵代表了方程组的系数,常数矩阵代表了方程组的常数。
2.2 线性方程组的解法常见的线性方程组解法有高斯消元法、矩阵法和克拉默法则等。
高斯消元法通过矩阵的初等行变换将线性方程组的系数矩阵化为阶梯形矩阵,从而求得方程组的解。
三、行列式行列式也是高等代数中的重要概念,它是对矩阵进行特殊运算得到的一个数值。
行列式不仅能判断矩阵是否可逆,还可以计算矩阵的特征值和特征向量等。
3.1 行列式的定义与性质行列式的定义是一个递归的过程,它可以用于计算方阵的数值。
行列式具有一些重要的性质,如交换行列式的两行(列)会改变行列式的符号,两行(列)相同的行列式值为零等。
3.2 行列式的计算方法计算行列式的方法有很多,常见的有拉普拉斯展开法、三角形法则和性质法则等。
不同的计算方法适用于不同规模的矩阵。
四、特征向量与特征值特征向量与特征值是矩阵运算中的重要概念,在高等代数课程中也会进行详细学习。
大一高数期末复习重点
23
求极值的步骤:
a.求 导f数 (x); b .求(驻 方f点 程 (x )0的 )及根 f(x)不存在 的 点. c.检查f(x)在b中所有点左右的, 正负号 或f(x)在该点的符 , 判号断极值点 . d. 求极值.
限 (8) 利用夹逼定理;
的 求
(9) 利用两类重要极限;
法 (10) 利用等价无穷小代换;
(11) 利用连续函数的性质(代入法);
(12) 利用洛必达法则.
洛必达法则+等价无穷小代换
洛必达法则+变上限积分求导
3
例
1taxn 1six n
lim
x 0
et axnes ixn
ta x n sixn lim
x 0,
由于
lim
x0
f
(x)
1
lim
x
1 e x0
1 x
,
所以 x0是函数的第二类间断点, 且是无穷型.
x 1,
由于
lim f ( x )
x1
1
lim
x1
1
e
x 1x
0
ቤተ መጻሕፍቲ ባይዱ
lim f
x1
(
x
)
1
lim
x1
1
e
x 1x
1
所以 x 1是函数的第一类间断点, 且是跳跃型. 7
例求 f(x) (1x)sinx 的间断点,并判别其类型. x(x1)(x1)
大一高等数学复习资料
大一高等数学复习资料作为一名大一学生,高等数学是一门不可避免的课程。
作为一门基础性的学科,它的难度不容低估,需要我们在课堂上认真听讲,并且在课下进行练习。
那么,接下来我将为大家分享一些大一高等数学的复习资料,希望对大家的学习会有所帮助。
一、教材首先我们需要准备一本权威的高等数学教材。
目前主流教材有《高等数学(下册)》、《工科数学(第二册)》、《数学分析》等。
我们可以按照老师所讲课程的教材进行选择。
在阅读教材时,我们要注重理解其所要表达的数学概念和方法,切勿流于表面的公式推导和例题背诵。
二、笔记上好课非常重要,不只是因为老师会讲解重点、难点,更是可以帮助我们更好地理解知识点。
我们可以在课堂上记录笔记,将老师讲解的重点笔记下来,甚至可以在笔记上画一些图形。
在该章节学习结束后,可以对笔记进行复习,归纳概括每一章节的重点内容和式子公式,以便于我们日后的复习。
三、习题高等数学是一门需要大量练习的学科,只有不断地进行练习,才能够更好地掌握知识点。
我们可以从教材中选取一些简单的例题,从易到难逐步练习。
备选习题的来源不只是教材,还可以找到网上的试题,比如考研试题、历年真题等,更好地锻炼自己的综合考核能力。
值得一提的是,我们要注重对错题的剖析,总结错题原因和解题方法,不要仅仅是看一种解法,而要仔细对错题进行回顾。
四、视频讲解与教材相比,视频讲解可能更加生动、形象,能够更好地帮助我们理解知识点。
目前,像“学堂在线”、“网易公开课”等平台上,我们可以找到一些高等数学相关的视频课程。
在看视频讲解时,我们可以记录下一些关键点,同时需要注意,要看懂视频中所讲解的概念和方法,不要仅仅是形式上的了解,同时也不能依赖视频,因此,视频讲解最好与教材一起搭配使用。
总结:总之,高等数学是一门需要重视的学科,我们要在课堂上认真学习,课下进行复习和练习,并且随时留意老师作业、考试要求等,做好准备。
最终,相信通过我们的努力,我们一定能够掌握好高等数学这门科目,为以后的学习积累扎实的数学功底。
大一数学知识点英文
大一数学知识点英文Mathematical Concepts in Freshman YearMathematics is an essential subject that plays a significant role in various fields. It provides a logical and systematic approach to problem-solving. In this article, we will explore some important mathematical concepts that are typically covered in a freshman year curriculum.1. Number SystemsNumber systems form the foundation of mathematics. In freshman year, students learn about different types of numbers, such as natural numbers, whole numbers, integers, rational numbers, and real numbers. Understanding the properties and relationships between these numbers is crucial for further mathematical study.2. Algebraic ExpressionsAlgebraic expressions involve variables, constants, and operations. Students in their freshman year learn how to simplify and evaluate expressions, solve equations, and manipulate algebraic expressions using various techniques like factoring, expanding, and solving linear and quadratic equations.3. Functions and GraphsFunctions describe relationships between inputs and outputs. Freshman students are introduced to different types of functions, such as linear, quadratic, exponential, and logarithmic functions. They learn to graph functions on a coordinate plane and analyze their properties, including domain, range, intercepts, and transformations.4. TrigonometryTrigonometry deals with the relationships between angles and sides of triangles. Freshman students learn about trigonometric ratios (sine, cosine, and tangent) and their applications in solving right-angled triangles. They explore concepts like trigonometric identities, equations, and the unit circle.5. DifferentiationFreshman year introduces the concept of differentiation, which is a fundamental tool in calculus. Students learn how to find derivatives of functions using differentiation rules, including power rule, product rule, quotient rule, and chain rule. They apply these principles to analyze rates of change and solve optimization problems.6. IntegrationIntegration is the reverse process of differentiation and is also a key concept in calculus. Students learn various integration techniques, such as substitution, integration by parts, and partial fractions. They apply integration to find areas, volumes, and evaluate definite integrals.7. Probability and StatisticsProbability and statistics play a crucial role in many real-life applications. Freshman students learn the basics of probability, including calculating probabilities of events, understanding permutations and combinations, and exploring concepts like expected value and standard deviation. They also study data analysis, including data representation, measures of central tendency, and dispersion.8. Matrices and Systems of EquationsMatrices are rectangular arrays of numbers, and they have applications in various fields, including engineering and computer science. Freshman students learn about matrix operations, determinants, and inverse matrices. They also study systems of linear equations and solve them using matrix methods, such as Gaussian elimination.These are just a few examples of the mathematical concepts typically covered in a freshman year. Building a strong foundation in these concepts is essential for further advancements in mathematics and related disciplines. By understanding and applying these concepts, students develop critical thinking skills and enhance their problem-solving abilities.。
大一高等代数期末考知识点
大一高等代数期末考知识点高等代数作为大一学生必修的一门数学课程,是代数学的重要分支,是培养学生抽象思维和逻辑思维的基础。
本文将系统地总结大一高等代数知识点,以帮助同学们复习期末考试。
一、集合与二元关系1. 集合及其运算:包括集合的定义、集合之间的相等关系、子集与真子集、交集、并集、补集和差集等。
2. 二元关系:掌握关系的定义、域、逆关系、复合关系、等价关系和序关系的概念。
二、数系与复数1. 自然数、整数、有理数、实数和复数的定义及其性质。
2. 复数的运算:复数的加减乘除、乘方和开方。
三、代数式与多项式1. 代数式的概念:包括代数式、项、系数和次数等。
2. 多项式的运算:多项式的加减乘除以及整式化简。
3. 多项式的因式分解:二次、三次多项式的因式分解方法。
四、方程与不等式1. 一元一次方程和不等式:一元一次方程和不等式的解集、方程组与不等式组的解集。
2. 一元二次方程与不等式:二次方程和不等式的解集、因式分解法和配方法解方程和不等式。
3. 绝对值方程与不等式:绝对值方程和不等式的解集。
五、函数与图像1. 函数的概念:函数的定义、定义域、值域、图像和性质。
2. 基本初等函数:包括幂函数、指数函数、对数函数、三角函数和反三角函数等。
3. 函数的运算:函数的加减乘除、复合函数以及函数的逆。
六、行列式与矩阵1. 行列式的概念与性质:行列式的定义、性质、性质的运算规律。
2. 矩阵的概念与性质:矩阵的定义、矩阵的加法和数乘、矩阵的乘法、矩阵的转置和矩阵的逆运算。
3. 线性方程组:线性方程组的定义、增广矩阵、齐次方程组与非齐次方程组。
七、向量与线性空间1. 向量的概念与运算:向量的定义、向量的加法、数乘和数量积。
2. 线性空间的概念与性质:线性空间的定义、线性空间的性质、线性相关与线性无关、线性空间的基与维数。
3. 子空间与线性变换:子空间的定义、子空间的性质、线性变换的定义、线性变换的性质。
八、特征值与特征向量1. 特征值与特征向量的概念:矩阵的特征值与特征向量的定义。
高中数学知识点英文版
高中数学知识点英文版Title: High School Mathematics KnowledgeIntroduction:High school mathematics is a crucial subject that students study to develop their critical thinking skills, problem-solving abilities, and analytical reasoning. It provides a foundation for advanced studies in fields such as engineering, computer science, physics, and economics. In this document, we will discuss various important mathematical concepts that high school students need to master.Algebra:Algebra is a branch of mathematics that deals with symbols and the rules for manipulating these symbols. It helps students understand how numbers behave and enables them to solve equations and inequalities. Key algebraic concepts include linear equations, quadratic equations, polynomials, and functions.Geometry:Geometry is the branch of mathematics that deals with shapes, sizes, relative positions of figures, and the properties of space. Students learn about geometric shapes such as lines,circles, triangles, and polygons. They also study concepts like angles, congruence, similarity, and the Pythagorean theorem.Trigonometry:Trigonometry is the study of the relationships between the sides and angles of triangles. It is essential for solving problems involving angles and distances. Key trigonometric functions include sine, cosine, tangent, cosecant, secant, and cotangent. Students also learn about trigonometric identities and equations.Calculus:Calculus is a branch of mathematics that deals with rates of change and accumulation. It comprises two main components: differential calculus and integral calculus. Students study concepts like limits, derivatives, integrals, and applications of calculus in various fields.Statistics:Statistics is the branch of mathematics that deals with collecting, organizing, analyzing, interpreting, and presenting data. Students learn about measures of central tendency, dispersion, correlation, regression, probability distributions, and hypothesis testing. Statistics is essential for making informed decisions based on data.Probability:Probability is the branch of mathematics that deals with the likelihood of events occurring. Students learn about the basics of probability theory, including sample spaces, events, random variables, probability distributions, and independence. Probability is essential for analyzing uncertain outcomes.Conclusion:High school mathematics covers a wide range of topics, including algebra, geometry, trigonometry, calculus, statistics, and probability. Mastering these concepts is crucial for students to succeed in their academic and professional endeavors. By developing a strong foundation in mathematics, students can enhance their problem-solving skills and logical reasoning abilities. It is important for educators to emphasize the relevance of mathematical knowledge and its applications in real-world scenarios. With a solid understanding of high school mathematics, students can pursue further studies in STEM fields and contribute to society's advancement.。
大一高数期末考试复习知识点
大一高数期末考试复习知识点近年来,大学生的课程负担越来越重,而高等数学作为大学本科阶段的一门重要课程,对于理工科学生来说,尤为重要。
大一高数期末考试作为对学生掌握程度的一次大考,需要学生全面复习相关知识点,以确保自己的考试成绩。
一、极限极限是大一高数课程的核心概念之一。
在复习期间,需要重新温习极限的定义、计算方法和性质。
学生应该熟练掌握常见函数的极限计算方法,如幂函数、指数函数、对数函数等。
此外,对于无穷小量和无穷大量的概念以及他们之间的关系也需要重点掌握。
二、导数和微分导数是大一高数课程的另一个重要概念。
在复习期间,学生需要回顾导数的定义和几何意义,并通过练习来熟悉各种函数的导数计算方法。
此外,微分的概念和性质也是复习的重点之一。
学生需要了解微分的定义、微分法则以及微分的物理意义。
三、积分积分是大一高数课程的又一重要概念。
在复习期间,学生需要重新温习积分的定义和计算方法。
掌握不同类型函数的积分计算方法,如基本初等函数的积分、分部积分法、换元积分法等。
此外,对于定积分和不定积分的区别和联系也需要进行复习。
四、微分方程微分方程是大一高数课程中的一大难点。
在复习期间,学生需要重点掌握一阶线性微分方程和二阶线性齐次微分方程的解法,理解解的存在唯一性定理,并通过练习来提高解微分方程的能力。
此外,对于常微分方程和偏微分方程的区别和联系也需要进行复习。
五、级数级数是大一高数课程中的一大难点,也是复习中的一项重点内容。
学生需要回顾级数的概念、收敛性判别法以及级数求和的方法。
对于常见的数列,如等比数列、等差数列、调和数列等,学生需要熟悉它们的性质和求和公式。
六、空间解析几何空间解析几何是大一高数课程中的一项重要内容。
在复习期间,学生需要回顾空间直线和平面的方程及其性质,理解直线与平面的位置关系和相交情况。
此外,学生还需要掌握空间几何体的体积和表面积计算方法,如球体、圆柱体、圆锥体等。
七、数列和数列的极限数列和数列的极限是大一高数课程中的一项基础内容。
大一高等数学期末复习课提纲精品文档40页
ex 1 ~ x s inx ~ x tanx ~ x ln1(x) ~ x 1coxs~ x 2
2
当x0,
ax 1 ~ xlna arcsinx ~ x arctaxn~ x (1x) 1 ~ x taxn sixn~ x 3
2
1
(1) 消去零因子法; (2) 同除最高次幂; (3) 通分;
(4) 同乘共轭因式; (5) 利用无穷小运算性质
函 (6) 复合函数求极限法则
数 极
(7) 利用左、右极限求分段函数极限;
限 (8) 利用夹逼定理;
的 求
(9) 利用两类重要极限;
法 (10) 利用等价无穷小代换;
(11) 利用连续函数的性质(代入法);
(12) 利用洛必达法则.
洛必达法则+等价无穷小代换
~ 当x0, etan xsixn1 taxnsinx,
故 原 式 1 2lx i0m estixn(aetxn a xn ss ix inx n1)
1 taxnsinx 1
2lxi m 0esixn(taxn sinx) 2
3
两对重要的单侧极限
1
1
(a1) limax 0, lim a x ,
x0
x0
limarct1an, limarcta1n.
x0
x 2 x0
x2
一类需要注意的极限
x2 1
lim
1,
x2 1
lim
1.
x x
x x
4
连续的定义
左x l i连x0m f续(x 、) 右f间断 (可去型, 跳跃型) 第二类间断 (无穷型, 振荡型)
11
第二章 导数与微分
大一高数复习资料
大一高数复习资料大一高数复习资料大一高数是大部分理工科学生都要修习的一门基础课程,它是数学的一大分支,对于理解和掌握高等数学的基本概念和方法具有重要意义。
然而,由于大一学生的学习压力较大,时间有限,很多人在高数学习中遇到了困难。
为了帮助大家更好地复习高数,本文将介绍一些高效的复习资料和方法。
一、教材与课件大一高数的教材通常是由教授编写的教材,这些教材系统地介绍了高数的各个知识点和解题方法。
复习时,可以将教材作为主要参考资料,着重阅读和理解教材中的例题和习题解析。
此外,许多学校会提供高数的课件,这些课件通常包含了教材中的重点内容和难点解析,可以帮助学生更好地理解和掌握知识点。
二、习题集习题集是复习高数的重要资料,它包含了大量的习题和答案,可以帮助学生巩固知识和提高解题能力。
在选择习题集时,建议选择与教材相对应的习题集,这样可以更好地对照教材进行复习。
在做习题时,可以按照章节顺序,先做一些基础题,逐渐过渡到难度较大的题目。
同时,要注意查看习题的解析,理解解题思路和方法。
三、辅导书籍除了教材和习题集,还有一些辅导书籍也可以作为复习资料。
这些书籍通常以更简洁明了的方式介绍高数的知识点和解题方法,适合用来查漏补缺和快速复习。
在选择辅导书籍时,可以根据自己的学习风格和需求进行选择。
有的人喜欢图文并茂的书籍,有的人喜欢重点突出的书籍,可以根据自己的喜好选择适合自己的辅导书籍。
四、网络资源互联网是一个宝藏般的资源库,里面有大量的高数学习资料和解题技巧。
在复习高数时,可以利用搜索引擎搜索相关的学习资料和视频教程。
有一些知名的教育网站和学习平台也提供了大量的高数学习资源,可以免费或付费使用。
在使用网络资源时,要注意选择正规和可信的网站,避免受到错误或误导性的信息。
五、刷题APP随着智能手机的普及,刷题APP成为了许多学生复习高数的选择。
这些APP通常提供了大量的高数习题和解题思路,可以随时随地进行刷题练习。
在选择刷题APP时,可以参考其他用户的评价和推荐,选择功能齐全、题目质量较高的APP。
大一高等数学复习资料
大一高等数学复习资料大一高等数学复习资料大一高等数学是大学数学的一门重要课程,对于理工科学生来说尤为重要。
它是数学的基础,也是后续学习更高级数学课程的基石。
因此,对于大一学生来说,复习高等数学是至关重要的。
一、复习方法1. 制定复习计划复习高等数学需要有一个明确的计划。
可以根据教材的章节和重点,制定每天的复习内容和时间安排。
合理的计划可以帮助你合理分配时间,有针对性地复习重点知识点。
2. 多做习题高等数学是一门需要多做题来巩固理论知识的学科。
可以通过做教材后面的习题,或者找一些习题集进行练习。
重点是要理解每道题目的解题思路和方法,而不是死记硬背答案。
3. 结合实际应用高等数学中的很多概念和方法都是为了解决实际问题而提出的。
在复习的过程中,可以将数学知识与实际问题相结合,通过解决实际问题来理解和巩固相关的数学知识。
二、复习重点1. 极限与连续极限与连续是高等数学的重要概念。
在复习时,要掌握极限的定义和性质,理解极限的概念在数学和物理等领域中的应用。
同时,要熟练掌握连续函数的定义和性质,理解连续函数的图像和性质。
2. 导数与微分导数与微分是高等数学中的重要内容。
在复习时,要掌握导数的定义和性质,理解导数在函数图像上的几何意义。
同时,要掌握常见函数的导数公式和求导法则。
微分是导数的应用,要理解微分的定义和性质,并能够应用微分解决实际问题。
3. 积分与定积分积分与定积分是高等数学中的重要内容。
在复习时,要掌握积分的定义和性质,理解积分的几何意义和物理意义。
同时,要熟练掌握常见函数的积分公式和求积法则。
定积分是积分的应用,要理解定积分的定义和性质,并能够应用定积分解决实际问题。
4. 一元函数的级数级数是高等数学中的重要内容。
在复习时,要掌握级数的定义和性质,理解级数的收敛和发散的概念和判别法则。
同时,要熟练掌握常见级数的求和公式和级数的收敛性质。
三、常见问题解答1. 为什么要复习高等数学?复习高等数学可以巩固和加深对数学知识的理解和掌握,为后续学习更高级数学课程打下坚实的基础。
高数级数考纲
高数级数考纲Sequences and SeriesIn this chapter we’ll be taking a look at sequences and (infinite) series. Actually, this chapter will deal almost exclusively with series. However, we also need to understand some of the basics of sequences in order to properly deal with series. We will therefore, spend a little time on sequences as well.Series is one of those topics that many students don’t find all that useful. To be honest, many students will never see series outside of their calculus class. However, series do play an important role in the field of ordinary differential equations and without series large portions of the field of partial differential equations would not be possible.In other words, series is an important topic even if you won’t ever see any of theapplications. Most of the applications are beyond the scope of most Calculus courses and tend to occur in classes that many students don’t take. So, as you go through this material keep in mind that these do have applications even if we won’t really be covering many of them in this class.Here is a list of topics in this chapter.Sequences We will start the chapter off with a brief discussion ofsequences. This section will focus on the basic terminology and convergence of sequencesMore on Sequences Here we will take a quick look about monotonic and bounded sequences.Series The Basics In this section we will discuss some of the basics of infinite series.Series Convergence/Divergence Most of this chapter will be about theconvergence/divergence of a series so we will give the basic ideas and definitions in this section.Series Special Series We will look at the Geometric Series, Telescoping Series, and Harmonic Series in this section.Integral Test Using the Integral Test to determine if a series converges or diverges.Comparison Test/Limit Comparison Test Using the Comparison Test and Limit Comparison Tests to determine if a series converges or diverges.Alternating Series Test Using the Alternating Series Test to determine if a series converges or diverges.Absolute Convergence A brief discussion on absolute convergence and how it differs from convergence.Ratio Test Using the Ratio Test to determine if a series converges ordiverges.Root Test Using the Root Test to determine if a series converges or diverges.Strategy for Series A set of general guidelines to use when deciding which test to use.Estimating the Value of a Series Here we will look at estimating the value of an infinite series.Power Series An introduction to power series and some of the basic concepts.Power Series and Functions In this section we will start looking at how to find a power series representation of a function.Taylor Series Here we will discuss how to find the Taylor/Maclaurin Series for a function.Applications of Series In this section we will take a quick look at a couple of applications of series.Binomial Series A brief look at binomial series.。
(完整word版)大一高数复习资料【全】
高等数学(本科少学时类型)第一章函数与极限第一节函数O函数基础(高中函数部分相关知识)(★★★)O邻域(去心邻域)(★)第二节数列的极限O数列极限的证明(★)【题型示例】已知数列X n,证明limXX n a【证明示例】N语言1•由X n a化简得n g ,N g2.即对0,N g 。
当彳n N时,始终有不等式X n a 成立,••• lim x aX第三节函数的极限O X X0时函数极限的证明(★)【题型示例】已知函数 f x,证明lim fX X0x A【证明示例】语言1•由f x A化简得0XXg ,g2.即对0,g当0XX。
时, 始终有不等式 f x A成立,• lim f x Ax XO X时函数极限的证明(★)【题型示例】已知函数f x,证明lim f X AX【证明示例】X语言1•由 f X A 化简得x gX g2.即对0,X g当X X时,始终有不等式 f x A 成立,• lim f x AX第四节无穷小与无穷大O无穷小与无穷大的本质(★)函数f x无穷小lim f x 0函数f x无穷大lim f xO无穷小与无穷大的相关定理与推论(★★)(定理三)假设f x为有界函数,g x为无穷小,则lim f x g x 0(定理四)在自变量的某个变化过程中,若 f x 为无穷大,则f 1 X为无穷小;反之,若f X为无穷小,且f x 0,则f 1x为无穷大【题型示例】计算:lim f x g x (或x )X X01 .••• f x < M •函数f x在x x0的任一去心邻域U x0,内是有界的;(••• f x < M,•函数f x在x D上有界;)2. lim g x0即函数g X是x X0时的无穷小;X X0(lim g x0即函数g X是X 时的无穷小;)3 .由定理可知lim f x g x 0X X0(lim f x g X0)X第五节极限运算法则O极限的四则运算法则(★★)(定理一)加减法则(定理二)乘除法则关于多项式p x、q x商式的极限运算m m 1p X 设:a°x a1x a mq x b°x n n1b nn m则有lim卫X a0n mX q X t b0n mf X0(特别地,当彳lim(不定型)时,通常分子X X0g x0分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值lim-x 3x 3x29【求解示例】解:1因为x 3,从而可得x 3,所以原式x 3X3 1 1 lim 2lim -limx 3x 9x 3x 3x 3x 3x 3 6x 3其中x 3为函数f X —的可去间断点x29倘若运用罗比达法则求解(详见第三章第二节):x3 °解:lim 2limx 3 X29 L X 3x 3x2 9limx3 2xO 连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数 f x 是定义域上的连续函数, 那么,lim x x o f lim x x X 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大一高数复习资料(A high number of review materials)A large number of review information. Txt7 is a Durian warmth of spring; warm is written on the face of the shadow; warming is bound to respond with warmth is strict in demands・The 8 respect is a spring, a spring, a give a person warm Shuxin pill, a dose of inspiring arm of Higher Mathematics (undergraduate class type)The first chapter of function and limitThe first section functionThe basic function, (high function knowledge) (* * *)In the neighborhood (go to the heart of the neighborhood) (*)The second section of the sequence limitProof, limit (*)[example] known sequence types, proof[example] that language1. by simplifying it,LThat is, for 2. , at that time, there is always inequality,The third day limit functionProof of function limit, when (b)[questions] example prove the known function.[example] that language1.by simplifying it,LThat is, for 2. , at that time, there is always inequality, LProof of function limit, when (b)[questions] example prove the known function.[example] that language1. by simplifying it,LThat is, for 2., at that time, there is always inequality, The fourth section infinity and infinitesimalInfinity and infinitesimal, the essence of (*)The function is infinitely smallInfinite functionIn the infinitesimal and infinite theorems and inferences (・) (theorem three) is assumed to be bounded, as is infinitesimal,(theorem four) in a change of variables in the process, if it is infinite, is infinitely small; conversely, if it is infinitesimal, and is infinite[example]: (or questions)Any of the 1. dreams than to heart function in the formula in the neighborhood is bounded;(二dreams, bounded on the R function;)The 2. function is the infinite small:(that is the infinitesimal function;)By theorem 3.The fifth day limit algorithmFour arithmetic operations, the limit (* *)(theorem a) and law(theorem two) and lawLimit operation of polynomial, business typeSet:Is there(in particular, when (not stereotypes), usually the numerator and denominator divisor is about to go to solve the discontinuous points can limit, can also be used for Robida rule)[example] evaluation questionsFor example: [] because, so we can get the solution, so the original typeThe function to break pointIf the use of Robida law solution (see Chapter third section second): Solution:Through continuous function, theorem (Solving Limit Function) (* *)(theorem five) if the function is a continuous function defined on the domain, so,[example] evaluation questions:[for example]The sixth day limit existence criteria and two important limitsIn the clamping criterion (P53) (* * *)The first important limit:Dreams, R(in particular,)In the bounded monotone convergence criteria (P57) (* * *)Second important limits:(typically, one)[example] evaluation questions:[for example]The seventh section of infinitesimal order (comparison ofinfinitesimal) 2003 (equivalent infinitesima1.)OneTwo(for multiplication and division, and no)[example] evaluation questions:[for example]The eighth section of continuous functionThe definition, the continuity of the function (・)In the discontinuous point classification (P67) (*)(in particular, to break point in the corresponding fraction in to commonfactor)[questions] a sample function, how to choose the number, make continuous function on?[for example]1.dreams2.by definition of continuous functionThe Ninth Section Properties of continuous functions on closed intervalThe zero point theorem, (*)[example]: proof type equation has at least one root between and among[example] proof1.(an auxiliary function) continuous function in closed interval;2.dreams (ISO, endpoint)3.star by the zero point theorem, in the open interval at least one point, which is (,)4.this equation shows that the equation has at least one root in the open intervalThe second chapter of derivative and differentialThe first section of the derivative conceptThe definition and derivative, in Higher Mathematics (P83) (* *) [questions] examples of known function, in place to guide, for, [for example]1.dreams,2.by function can be defined byL[]for example questions in tangent and normal equation at(or: tangent and normal equation of image point)[for example]1,2.tangent equation:Normal equation:The second section and function (difference), and taking the product differentiation ruleFunction, and (difference), product derivation rule and quotient (* * *)1.linear combination (Ding Liyi):In particular, when there are2. product derivation rule function (theorem two):Taking the 3. function derivative rule (Ding Lisan):The third section derivation rule of compound function and inverse functionIn the derivation rule of inverse function (*)[example] for function derivative questions[example] by solving problem for direct function in the domain can be monotonous, is scheduled to guide, and dry;Derivation rule of compound function, (* * *)[example] questions, for[for example]The fourth section high order derivative,(or) (*)[example] derivative type for function[for exampleThe fifth section derivative of implicit function and parameter equation functionIn the derivation of implicit function (equation of derivative) (* * *)[example] : find the questions given by the equation of the curve in tangent equation and equation of normal point[example] from both sides of the derivative solutionThat Jane wasLL tangent equation:Normal equation:In the parameter equation type function derivation[questions] set parameter equation for example・[for example] 1. 2.The sixth section changes and related problems of rate of change rate (not required)The seventh section differential functionThe basic elementary function, differential equation and differential algorithm (* * *)The third chapter is the application of mean value theorem and derivativeThe first section theoremLemma (lemma, Fermat) (*)Rolle, (* * *) theorem[example] it is assumed that the function in question is continuous in the guide, try to prove:,The establishment of[example] proof1.(an auxiliary function) OrderObviously, continuous function in closed interval, in the open interval can guide;2.dreamsThat is3.star by Rolle theorem of knowledgeThat makes upThe Lagrange theorem (*),[example]: the proof of inequality questions,[example] proof1.(an auxiliary function) to function on, apparently continuous function in closed interval, in the open interval can be guided, and;2.by Lagrange mean value theorem, the equation was established,And dreams, r,Jane, that proved: at that time,[example]: the proof of inequality questions,[example] proof1.(am aux订iary function) to the function, continuous function in closed interval, in the open interval can be guided, and;2.by Lagrange mean value theorem, the equation was established, Jane, and dreams,So, 1,The permit was,The second section Robida ruleThe basic steps, using the rules of Robida limit operation (* *)1.or Equivalent Infinitesimal Replacement (to simplify operation)2.judgment limit amorphous type and whether or not to meet the three conditions using Robida lawA.belongs to the two basic stereotypes () and meet the conditions of operation:(then 1, 2 steps repeatedly until the results)B.You do not belong to the two basic stereotypes (into basic stereotypes)The type (except for the ride, construction of fractional)[example] evaluation questions: [for example](typically, one)The type (through the construction of fractional denominator, observation)[example] evaluation questions:[for example]The type (log limit method)[example] evaluation questions:[for example]The type (log limit method)[example] evaluation questions:[for example]The type (log limit method)[example] evaluation questions:[for example]The basic ideas, using the rules of Robida limit operation (* *) The way to get fractional (usually accompanied by Equivalent Infinitesimal Replacement)The reciprocal fraction obtained (the product form into a fractional form)The logarithmic gain product (by logarithmic index in advance)The third section Taylor theorem (not required)Monotonicity and convexity curve of section fourth functions・Continuous function, monotonicity (monotone interval) (* * *)[questions] sample trial to determine the monotone interval function[for example]1.dreams function in its definition domain is continuous and differentiableL2.order solution:3.(three line)maximum valueMinimum value4.star function monotonically increasing interval;Monotone interval[questions] example demonstrated that the,[example] proof1.(construction of auxiliary function),() (2.).L3.card: at that time,[questions] example demonstrated that the,[example] proof1. (construction of auxiliary function),() (2.).L3.card: at that time,Continuous, convex function (* * *) [example] questions try to discuss the monotonicity, concavity dnd inflection point, extreme value [example] proofOne2.order solution:3.(four line)4. a monotone increasing function interval, monotonic interval,; The minimum value in the function to take, for,The maximum value when take, for;The function in the interval, concave, convex in the interval:The function of the inflection point coordinatesThe fifth section extreme value function and the maximum and minimum valuesThe extreme value of function, and the value of (* * *)The design function of the domain, if a neighborhood, so on, are suitable for inequality,We say that the function has a maximum value at the point;orderIs the maximum function in closed interval values:■9The design function of the domain, if a neighborhood, so on, are suitable for inequality,We say that the function has a minimum value at the point; orderIs the minimum function in closed interval to meet:■9[]for example the value type function in the[for example]1.dreams function in its definition domain is continuous and differentiableL2.order,Solution:3.(three line)Minimum value maximum value4.dreamsLThe sixth section describes the function diagram (not required) The seventh section curvature (not required)The eighth section of the approximate solution of equation (not required)The fourth chapter of indefinite integralThe first section conceptions and properties of indefinite integralsThe concept, function and indefinite integral (* *)The concept of the original function:Assume that in any given interval, derivative differentiable function, i. e. when the independent variable, or set up, a primary function is called theThe original function theorem: (* *)If the function is continuous on interval, in there must be a differentiable function which, also is to say: there must be a continuous function of original function (derivative must be continuous)The concept of indefinite integral (* *)In the interval of definition, function with arbitrary constant primary function is called indefinite integral in the definition of interval,That is:(called the integral numbet, called the integrand, called integral representation, called integral variables)In the basic table (* * *)In the indefinite linear integral property (partial integral formula) (* * *)The second section element integral methodFirst, change element method (Minato differential) (in * * *) (the reverse application)[questions] for example [for example][questions] for example[for example]Second, change element method (to (positive application)For a radical (1):So, then,The original type ofFor the root and the square (form) Order: (a),Thus, the original type of;The square root of the difference A.: (to),Thus, the original type of;B.: (to),Thus, the original type of: []for example questions (a type)[for example][]for example types (triangle element) [for example]Section third subsection integral methodIn subsection integral method (* *)The design function, with continuousderivative, the integral formula can beexpressed as:The subsection integral function, thesort order: "anti, power, three"The basic steps, using the subsectionintegral calculation of indefinite integral:To comply with subsection integral function of the integrand sort sort order;The nearest together: (differential)The use of integral formula:The expansion of a judgment, form) (* *)in form ():A. if the indefinite integral is easy to solve, is to directly calculate the answer (to use basic table for element method with integral of rational function can easily solve the result);If the B. is still quite complex, indefinite integral cannot be solved by a method, then repeat the branch, until the emergence of indefinite integral can be solved easily; if the cycle repeated process, then the simultaneous equations, but the final note added constant[questions] for example[for example][questions] for example[for example]LThe indefinite integral of rational functions in section fourth(b), rational functionSet:For rational functions, the number of times when less than when the rational function is true when the number is greater than the numbet fraction; when the fractional rational function is falseIn the rational function (fraction) of indefinite integral solution of (*)It will be the denominator of rational function split into product of two have no common factor of Polynomials: one can be expressed as a polynomial factorization; another polynomial can be expressed as two times the quality factor (,);That is:In general, the parameter:The parameterIt is a rational function of the spin off and type:amongThe parameter by the method of undetermined coefficient (comparison method) to calculateIt was split after the breakdown of integral can be solved[](for example test method)[for example]The use of integral section fifth (not required)The fifth chapter integral and its applicationThe first concept of definite integralsThe definition of definile integral, (b)(called the integrand, called the integrand expressions, called integral variables, called the lower limit of the integral, called integral upper limit, called integral interval)Nature, integral (* * *)123The (linear properties)(the additivity of integral interval)If such functions satisfy in the integral interval, then;(d a)If the function, function satisfies in the integral interval is;(corollary two)In the mean value theorem of integral (not required)The second section calculus basic formulaIn Newton Leibniz formula (* * *) (theorem three) if the function is a function of the original continuous function in the interval, thenVariable limit integral, derivative formula (* * *) (on the guide - under the guide)[questions] for example[for example]The third section for definite element method and integral integral methodIn the fixed element method for integral (* * *)1(first element method)[questions] for example[for example]2(second method)Set the function, function satisfies:A., the;B. in the interval or continuous.Then: [questions] for example[for example]The (integral method)Even, odd times (* *)We have the following conclusion:If it is.If it is.The application of the fourth section integral in geometry of (temporarily not required)The application of section fifth of the definite integral in the physical world (not required)The sixth section (not required) abnormal integralSuch as: proof of indefinite integral formula・Many students in class can not prove, then at the end of the semester, I give such a proof method to explain the problem:So, indefinite integral formula is easily proved, hope that we carefully try to figure out, understand.Finally, the limited to the level limit, data errors and omissions can hardly be avoided, I hope the students to actively learn from each other so that improved.99• •99• •99• •99• •Review of advanced mathematics data of first pages (9 pages)。