2020年暑假七年级数学训练题(期末模拟题) (32)-0717(解析版)
2023-2024学年七年级数学下学期期末模拟卷01(浙江专用)(全解全析)
2023-2024学年七年级数学下学期期末模拟卷01全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列选项中,可由如图2022年杭州亚运会会徽“潮涌”平移得到的是()A.B.C.D.【分析】根据平移的特征进行判断即可.【解】:由平移的特征可知,能够通过平移得到的是:故选:C.2.如图,已知直线a,b被直线c所截,那么∠1的内错角是()A.∠2B.∠3C.∠4D.∠5【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.【解】:∠1的内错角是∠3.故选:B.3.下列调查方式中正确的是()A.要了解一大批笔芯的使用寿命,采用全面调查的方式B.为了审核书稿中的错别字,采用抽样调查的方式C.为了解外地游客对湖州景点“原乡小镇”的满意程度,采用全面调查的方式D.要了解某班全体学生的视力情况,采用全面调查的方式【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解】:A、要了解一大批笔芯的使用寿命,适合采用抽样调查方式,故不符合题意;B、为了审核书稿中的错别字,适合采用全面调查的方式,故不符合题意;C、为了解外地游客对湖州景点“原乡小镇”的满意程度,适合采用抽样调查的方式,故不符合题意;D、要了解某班全体学生的视力情况,采用全面调查的方式,故符合题意.故选:D.4.已知,则下列式子一定正确的是()A.x=2,y=3B.2x=3y C.D.【分析】依据比例的基本性质以及等式的基本性质,即可得到成立的式子.【解】:A.由,可得3x=2y,故x=2,y=3不一定成立,本选项不合题意;B.由,可得3x=2y,故2x=3y不成立,本选项不合题意;C.由,可得﹣1=﹣1,即=﹣,故=不成立,本选项不合题意;D.由,可得+1=+1,故,本选项符合题意;故选:D.5.下列计算正确的是()A.(2x2y)2=4x4y2B.x3÷x=x3C.2x+3y=5xy D.(x+y)2=x2+y2【分析】直接利用积的乘方的运算法则、同底数幂的乘法法则、合并同类项法则、完全平方公式分别化简得出答案.【解】:A.(2x2y)2=4x4y2,原计算正确,故本选项符合题意;B.x3÷x=x2,原计算错误,故本选项不符合题意;C.2x与3y不是同类项,不能合并,原计算错误,故本选项不符合题意;D.(x+y)2=x2+2xy+y2,原计算错误,故本选项不符合题意;故选:A.6.若4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,则a+b的值为()A.﹣2B.﹣1C.0D.1【分析】根据二元一次方程的定义,得出a+b=1,3a+2b﹣4=1,解出a、b的值,然后把a、b的值代入a+b,计算即可得出结果.【解】:∵4x a+b﹣3y3a+2b﹣4=2是关于x,y的二元一次方程,∴,解得:,当a=3,b=﹣2时,a+b=3﹣2=1.故选:D.7.若关于x的分式方程﹣=1有增根,则a的值为()A.2B.﹣2C.4D.﹣4【分析】先求出分式方程的解,根据分式方程有增根,得到x=2,从而得到a的值.【解答】解:去分母得:x+x﹣a=x﹣2,∴x=a﹣2,∵分式方程有增根,∴x=2,∴a﹣2=2,∴a=4,故选:C.8.《九章算术》中第七章《盈不足》记载了一个问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“现有一些人合伙购买物品,若每人出8钱,则多出3钱;若每人出7钱,则还差4钱.问人数、物品价格各是多少?”设有x个人,物品价格为y钱,则下列方程组中正确的是()A.B.C.D.【分析】根据每人出8钱,则多出3钱,可得8x﹣3=y,根据每人出7钱,则还差4钱,可得7x+4=y,从而可以列出相应的方程组.【解答】解:由题意可得,,故选:B.9.如图所示,将两张相同的矩形纸片和三张不同的正方形纸片按如图方式不重叠地放置在矩形ABCD内若知道图中阴影部分的面积之和,则一定能求出()A.△AEH和△CFG的面积之差B.△DHG和△BEF的面积之和C.△BEF和△CFG的面积之和D.△AEH和△BEF的面积之和【分析】设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,由HI=FK,GH=EF,证明GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,则S△ADH=S△BCF =(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),可求得S阴影=2mn,可推导出S△AEH﹣S△CFG=0;S△DHG+S△BEF=mn=×2mn;S△BEF+S△CFG=mn﹣n2;S△AEH+S△BEF=mn﹣n2,可知B符合题意.【解答】解:如图,设GH、HE、EF、FG分别交DA、AB、BC、CD于点I、J、K、L,∵HI=FK,GH=EF,∴HI+GH=FK+EF,∴GI=EK,设正方形IGLD和正方形KEJB的边长都是m,正方形EFGH的边长为n,∵AJ=HI=FK=m﹣n,∴AB=CD=m+m﹣n=2m﹣n,∵AD=BC=2m+n,JE=GL=m,∴S△ADH=S△BCF=(2m+n)(m﹣n),S△ABE=S△CDG=m(2m﹣n),∴S阴影=(2m﹣n)(2m+n)﹣2×(2m+n)(m﹣n)﹣2×m(2m﹣n),整理得S阴影=2mn,∵S△AEH﹣S△CFG=n(m﹣n)﹣n(m﹣n)=0,∴S△AEH﹣S△CFG的结果与S阴影值的大小无关,故A不符合题意;∵S△DHG+S△BEF=mn+mn=×2mn,∴△DHG和△BEF的面积之和可由S阴影的值求得,故B符合题意;∵S△BEF+S△CFG=mn+n(m﹣n)=mn﹣n2,∴△BEF和△CFG的面积之和不能由S阴影的值求得,故C不符合题意;∵S△AEH+S△BEF=n(m﹣n)+mn=mn﹣n2,∴△AEH和△BEF的面积之和不能由S阴影的值求得,故D不符合题意,故选:B.10.新定义:若两个分式A与B的差为n(n为正整数),则称A是B的“n分式”.例如:,则称分式是分式的“1分式”.根据以上定义,下列选项中说法错误的是()A.是的“3分式”B.若a的值为﹣3,则是的“2分式”C.若是的“1分式”,则a2=3b2D.若a与b互为倒数,则是的“5分式”【分析】根据新定义运算逐个验证正确与否即可.【解】:A、,A说法正确;B、,B说法正确;C、由已知条件得:,化简得:a2=2b2,C说法错误;D、由已知得:ab=1,,D说法正确.故选:C.第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.若分式a2a−1有意义,a的取值范围是.【分析】根据分式有意义的条件,进行判断即可.【解】:∵分式a2a−1有意义,∴2a﹣1≠0,解得:a≠1 2.故答案为:a≠1 2.12.分解因式:2a2﹣6ab=.【分析】根据题中的公因式是2a,用提取公因式的方法进行因式分解.【解】:2a2﹣6ab=2a(a﹣3b),故答案为:2a(a﹣3b).13.七(2)班第一组的12名同学身高(单位:cm)如下:162,157,161,164,154,153,156,168,153,152,165,158.那么身高在155~160的频数是.【分析】从中找出身高在155~160的个数即可得出答案.【解】:身高在155~160的有157,156,158,则频数是3;故答案为:3.14.关于x,y的二元一次方程组{x+y=3x−3y=k的解满足x﹣y=﹣1,则k的值是.【分析】将两式相加,得到2x﹣2y=k+3,然后得到x−y=k+32,据此即可求解.【解】:{x+y=3①x−3y=k②,由②+①得2x﹣2y=k+3,∴x−y=k+3 2,∵x﹣y=﹣1,∴k+32=−1,解得k=﹣5.故答案为:﹣5.15.我们在学习代数公式时,可以用几何图形来推理论证.受此启发,在学习因式分解之后,小明同学将图1一张边长的a的正方形纸片剪去2个长为a,宽为b的长方形以及3个边长为b的正方形之后,拼成了如图2所示的长方形.观察图1和图2的阴影部分,请从因式分解的角度,用一个含有a、b等式表示从图1到图2的变化过程.【分析】利用代数式分别表示图1,图2阴影部分面积即可解答.【解】:由题可知,图1阴影部分面积为a2﹣2ab﹣3b2,图2是长为a+b,宽为a﹣3b a+b)(a﹣3b),∵两个图形阴影部分面积相等,∴a2﹣2ab﹣3b2=(a+b)(a﹣3b),故答案为:a2﹣2ab﹣3b2=(a+b)(a﹣3b).16.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,∠EFC=α,将纸带沿EF折叠成图②(G为ED和BF的交点),再沿BF折叠成图③(H为EF和DG的交点),则图③中的∠HFC =.(结果用含α的代数式表示)【分析】在图①中,由∠EFC=α得∠DEF=180°﹣α,∠EFB=180°﹣α,在图②中,∠EFB=180°﹣α,由折叠的性质得∠FEG =∠DEF =180°﹣α,再由三角形的外角定理得∠DGF =∠FEG +∠EFB =360°﹣2α,在图③中,由折叠的性质得∠DGF =360°﹣2α,∠EFB =180°﹣α,由三角形的外角定理得∠DHF =∠DGF +∠EFB =540°﹣3α,根据DH ∥CF 得∠DHF +∠HFC =180°,据此可得∠HFC 的度数. 【解】:在图①中, ∵四边形ABCD 是长方形, ∴AD ∥BC ,∴∠DEF +∠EFC =180°, ∵∠EFC =α,∴∠DEF =180°﹣∠EFC =180°﹣α, ∴∠EFB =180°﹣∠EFC =180°﹣α, ∴图②中,∠EFB =180°﹣α,由折叠的性质得:图②中,∠FEG =∠DEF =180°﹣α, ∵∠DGF 是△EFG 的一个外角,∴∠DGF =∠FEG +∠EFB =180°﹣α+180°﹣α=360°﹣2α, 由折叠的性质得:图③中,∠DGF =360°﹣2α,∠EFB =180°﹣α, ∵∠DHF 四△HGF 的一个外角,∴∠DHF =∠DGF +∠EFB =360°﹣2α+180°﹣α=540°﹣3α, 在图③中,DH ∥CF , ∴∠DHF +∠HFC =180°,∴∠HFC =180°﹣∠DHF =180°﹣(540°﹣3α)=3α﹣360°.三、解答题(本大题共8个小题,共72分.解答应写出文字说明,证明过程或演算步骤) 17.解二元一次方程组.(1){3x −2y =9x +2y =3;(2){x +3y =14x−23−y−22=1.【分析】(1)利用加减消元法解得x =3,再用代入法求得y =0即可;(2)先将式子去分母,再用加减消元法解得x =6,再用代入法求得y =83即可.【解】:(1){3x −2y =9①x +2y =3②①+②,得4x =12, ∴x =3.把x =3代入②,得3+2y =3, 解得y =0所以原方程组的解为{x =3y =0;(2){x +3y =14①x−23−y−22=1②,②化简得:2(x ﹣2)﹣3(y ﹣2)=6,即2x ﹣3y =4③, ①+③得:3x =18,解得:x =6,将x =6代入①得:6+3y =14,解得:y =83,∴原方程组的解为:{x =6y =83. 18.先化简,再求值:(a ﹣3b )2﹣(a +b )(a ﹣b )+(4ab 2﹣2b 3)÷b ,其中a =12,b =−14.【分析】先根据完全平方公式、平方差公式和多项式除以单项式法则去掉括号,再合并同类项,然后把a ,b 的值代入化简后的式子,进行有理数的混合运算即可.【解】:原式=a 2﹣6ab +9b 2﹣a 2+b 2+4ab ﹣2b 2=a 2﹣a 2+9b 2+b 2﹣2b 2+4ab ﹣6ab =8b 2﹣2ab , 当a =12,b =−14时,原式=8×(−14)2−2×12×(−14)=8×116+14 =12+14 =34.19.如图:已知,∠HCO =∠∠BHC +∠BEF =180°. (1)求证:EF ∥BH ;(2)若BH 平分∠EBO ,EF ⊥AO 于F ,∠HCO =64°,求∠CHO 的度数.【分析】(1)要证明EF ∥BH ,可通过∠E 与∠EBH 互补求得,利用平行线的性质说明∠EBH =∠CHB 可得结论.(2)要求∠CHO 的度数,可通过平角和∠FHC 求得,利用(1)的结论及角平分线的性质求出∠FHB 及∠BHC 的度数即可.【解】证明:(1)∵∠HCO=∠EBC,∴EB∥HC.∴∠EBH=∠CHB.∵∠BHC+∠BEF=180°,∴∠EBH+∠BEF=180°.∴EF∥BH.(2)解:∵∠HCO=∠EBC,∴∠HCO=∠EBC=64°,∵BH平分∠EBO,∴∠EBH=∠CHB=12∠EBC=32°.∵EF⊥AO于F,EF∥BH,∴∠BHA=90°.∴∠FHC=∠BHA+∠CHB=122°.∵∠CHO=180°﹣∠FHC=180°﹣122°=58°.20.为落实“双减”要求,丰富学生校园生活,提升学生综合素养,某学校开展了学科月活动.学校随机抽取了部分学生对学科月最喜欢的活动进行调查:A.法律知识竞赛;B.国际象棋大赛;C.花样剪纸大赛;D.创意书签设计大赛.并将调查结果绘制成了两幅统计图,请根据图中提供的信息回答以下问题:(1)求共调查了多少名学生?并直接补全条形统计图;(2)求扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是多少度?(3)学校有500名学生参加本次活动,地点安排在两个多功能厅,每场报告时间为60分钟.由下面的活动日程表可知,A 和C 两场报告时间与场地已经确定.在确保听取报告的每名同学都有座位的情况下,请你合理安排B ,D 二场报告,补全此次活动日程表,并说明理由.【分析】(1)根据喜欢B 类型的人数及其百分比求得总人数,用总人数减去其它类型的人数求出喜欢D 类型的人数即可补全条形统计图;(2)用360°乘以喜欢“创意书签设计大赛”的百分比即可; (3)分别求出喜欢B ,D 二场的人数,补全此次活动日程表即可. 【解】:(1)共调查的学生人数为15÷30%=50(人),D 类型的人数为50﹣(5+15+20)=10(人),补全条形统计图如下:(2)360°×1050×100%=72°,答:扇形统计图中“创意书签设计大赛”部分所对应的圆心角度数是72度; (3)喜欢B 类型的人数为500×30%=150(人), 喜欢D 类型的人数为500×1050×100%=100(人), 补全此次活动日程表如下:21.如图,四边形BCED中,点A在CB的延长线上,点F在DE的延长线上,连接AF交BD于G,交CE 于H,且∠1=45°,∠2=135°.(1)求证:BD∥CE;(2)若∠C=∠D,求证:∠A=∠F.【分析】(1)由∠CHG+∠2=180°,∠2=135°可得出∠CHG=45°=∠1,利用“同位角相等,两直线平行”可证出BD∥CE;(2)由BD∥CE得出∠C=∠ABD,由∠C=∠D得出∠ABD=∠D,利用“内错角相等,两直线平行”得出AC∥DF,利用“两直线平行,内错角相等”得出∠A=∠F.【解】证明:(1)∵∠CHG+∠2=180°,∠2=135°,∴∠CHG=45°,∵∠1=45°,∴∠CHG=∠1,∴BD∥CE.(2)∵BD∥CE,∴∠C=∠ABD,∵∠C=∠D,∴∠ABD=∠D.∴AC∥DF,∴∠A=∠F.22.去年全国根食产量再创新高,为推进乡村振兴奠定了坚实基础,某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.(1)该专业户去年原计划生产水稻、小麦各多少吨?(2)据了解,该专业户去年水稻种植面积是小麦种植面积的2倍,且水稻亩产量比小麦多120千克,求水稻种植面积是多少亩?【分析】(1)设该专业户去年原计划生产水稻x吨,小麦y吨,根据某粮食生产专业户原计划生产水稻和小麦共14吨,由于水稻超产8%,小麦超产5%,实际生产了15吨.列出二元一次方程组,解方程组即可; (2)设水稻种植面积是m 亩,则小麦种植面积为12m 亩,根据水稻亩产量比小麦多120千克,列出分式方程,解方程即可.【解】:(1)设该专业户去年原计划生产水稻x 吨,小麦y 吨, 由题意得:{x +y =14(1+8%)x +(1+5%)y =15,解得:{x =10y =4,答:该专业户去年原计划生产水稻10吨,小麦4吨;(2)该专业户去年实际生产水稻:(1+8%)×10=10.8(吨),生产小麦:(1+5%)×4=4.2(吨), 设水稻种植面积是m 亩,则小麦种植面积为12m 亩,由题意得:10.8m −4.212m=1201000,解得:m =20,经检验,m =20是原方程的解,且符合题意, 答:水稻种植面积是20亩.23.如图为某社区的一块方形空地,由四块长为a ,宽为b 的长方形空地与一块小正方形水池拼接而成,为创建生态社区、小明为空地设计了甲、乙两种绿化方案,其中阴影部分都用于绿化,已知S 甲、S 乙分别表示图甲、乙中绿化的面积.(1)S 甲= ,S 乙= (用a ,b 的代数式表示); (2)当S 甲−S 乙=14a 2时,求S 甲S乙的值. 【分析】(1)S 甲为四个直角三角形的面积和;S乙为大正方形的面积减四个小直角三角形的面积减小正方形的面积;(2)根据已知以及(1)的结论求得b =a2,代入S 甲S乙计算即可求解.【解】:(1)S 甲=4×12ab =2ab ;S 乙=(a +b)2−2×12ab −2×12(a +b)b −(a −b)2=a 2+2ab +b 2﹣ab ﹣ab ﹣b 2﹣a 2+2ab ﹣b 2=2ab ﹣b 2, 故答案为:2ab ;2ab ﹣b 2; (2)解:∵S 甲−S 乙=14a 2,∴2ab −(2ab −b 2)=14a 2,解得b =a2(负值已舍),∴S 甲S 乙=2ab 2ab−b 2=2a⋅a 22a⋅a2−(a2)2=a 2a 2−a 24=a 23a 24=43. 24.已知:点A 在直线DE 上,点B 、C 都在直线PQ 上(点B 在点C 的左侧),连接AB ,AC ,AB 平分∠CAD ,且∠ABC =∠BAC .(1)如图1,求证:DE ∥PQ ;(2)如图2,点K 为线段AB CK ,且始终满足2∠EAC ﹣∠BCK =90°.①当CK ⊥AB 时,在直线DE 上取点F ,连接FK ,使得∠FKA =12∠AKC ,求此时∠AFK 的度数;②在点K 的运动过程中,∠AKC 与∠EAC 的度数之比是否为定值,若是,求出这个值;若不是,说明理由.【分析】(1)由角平分线的定义可得∠DAB =∠BAC ,再根据内错角相等,两直线平行可得结论; (2)①由垂直的定义可知∠AKC =90°,即可得∠FKA =45°,设∠EAC =x °,则可表示∠ABC 和∠BCK 的度数,然后利用三角形的内角和解题即可解题;②设∠EAC =x °,则可求出∠ABC 的值,然后表示∠AKC 的度数解题即可. 【解答】(1)证明:∵AB 平分∠CAD , ∴∠DAB =∠BAC , 又∵∠ABC =∠BAC , ∴∠DAB =∠ABC ,∴DE ∥PQ ; (2)解:①如图,∵CK ⊥AB , ∴∠AKC =90°, 又∵∠FKA =12∠AKC ,∴∠FKA =45°, 设∠EAC =x °,∵∠DAB =∠BAC =∠ABC , ∴∠ABC =180°−x°2=90°−12x°, 又∵2∠EAC ﹣∠BCK =90°, ∴∠BCK =2x °﹣90°, 在△BKC 中, ∠B +∠BCK =90°,即2x°−90°+90°−12x°=90°,解得:x =60,∴∠AFK =∠DAB −∠AKF =90°−12x°−45°=15°;同理,当F 点可以在A 点的左边,∠AFK =75°; ②∠AKC∠EAC =32,理由为: 如图,设∠EAC =x °, ∵∠DAB =∠BAC =∠ABC ,∴∠ABC=180°−x°2=90°−12x°,∵2∠EAC﹣∠BCK=90°,∴∠BCK=2x°﹣90°,在△BKC中,∴∠AKC=∠B+∠BCK=2x°−90°+90°−12x°=32x°,∴∠AKC∠EAC=32x°x°=32,。
精品解析:山东省日照市岚山区2020-2021学年七年级上学期期末数学试题(解析版)
2020~2021学年度上学期期末质量检测七年级数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试时间为100分钟.2.答第Ⅰ卷前务必将自己的姓名、考号等信息填写在答题卡规定位置上.考试结束,本试卷和答题卡一并收回.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题号的答案标号涂黑.如需改动,必须先用橡皮擦干净,再改涂其他答案.不涂在答题卡上,答在试卷上无效.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案须写在答题卡各题目指定的区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.第Ⅰ卷(选择题 36分)一、选择题(本大题共12小题,每小题3分,满分36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 在()1--,0,−π,|-2.5|,0.333,227,225⎛⎫- ⎪⎝⎭这7个数中,正有理数的个数是( ) A. 3个B. 4个C. 5个D. 6个 【答案】C【解析】【分析】根据有理数式整数、有限小数或无限循环小数,再根据正负数的判断即可得出答案. 【详解】解:()11--=, 2.5 2.5-=,0.333,227,224525⎛⎫-= ⎪⎝⎭为正有理数; 0为整数,−π为无理数,故选C .【点睛】本题考查了实数,关键是熟悉有理数的概念.2. 如图,数轴上有A 、B 、C 、D 四个点,其中绝对值最小的数对应的点是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】根据距离原点越近其绝对值越小即可求解;【详解】解:数轴上点A ,B ,C ,D 在数轴上表示的数距离原点越近,其绝对值越小,∴绝对值最小的数对应的点是B .故答案选B .【点睛】本题主要考查了数轴、绝对值、有理数比大小,准确判断是解题的关键.3. 在算式612--⊗中的⊗所在位置,填入下列运算符号,能使最后计算出来的值最小的符号是()A. +B. −C. ×D. ÷【答案】B【解析】【分析】根据题意,可以计算出各种情况下式子的值,然后比较大小,即可解答本题.【详解】解:A.当算式612--⊗中的⊗所在位置,填入+时,6125--+=;B.当算式612--⊗中的⊗所在位置,填入−时,6123---=;C.当算式612--⊗中的⊗所在位置,填入×时,6124--⨯=;D.当算式612--⊗中的⊗所在位置,填入÷时,116122--÷=;113452<<<∴最后计算出来的值最小的符号是“−”;故选B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4. 在式子2abc ,π,3x y +,243x y-,2a ,22a a +中,单项式的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用单项式的定义分析得出答案.【详解】解:在式子2abc ,π,3x y +,243x y -,2a,22a a +中, 3x y +,22a a +为多项式;2a不是单项式;2abc ,π,243x y -,为单项式; 故选B .【点睛】本题考查了单项式:数或字母的积组成的式子叫单项式,单独的一个数或字母也是单项式;单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5. 下列运算正确的是( )A. 22223x x x -=-B. 220x y xy -=C. 2235a a a +=D. 532m m -= 【答案】A【解析】【分析】根据合并同类项法则一一判断即可.【详解】解:A. 22223x x x -=-,此选项正确;B.22x y xy -不是同类项不能合并,此选项错误;C.235a a a +=,此选项错误;D.532m m m -=,此选项错误;故选A .【点睛】本题考查了合并同类项,熟练掌握同类项的定义是解题的关键. 6. 下列说法错误的是( )A. 5.80万是精确到百位的近似数B. 近似数58.3与58.30表示的意义不相同C. 2.7×104精确到十分位 D. 近似数2.20是由数a 四舍五入得到的,那么数a 的取值范围是2.195 2.205a ≤<【答案】C【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】解:A. 5.80万是精确到百位的近似数,说法正确,不符合题意;B. 近似数58.3与58.30表示的意义不相同,说法正确,不符合题意;C. 2.7×104=27000精确到千位,说法错误,符合题意;D. 近似数2.20是由数a四舍五入得到的,那么数a的取值范围是2.195 2.205≤<,说法正确,不符合题意;a故选C.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.7. 如图,小明同学用剪刀沿着虚线将一张圆形纸片剪掉一部分,发现剩下纸片的周长比原来的周长要小,能正确解释这一现象的数学知识是( )A. 两点之间,直线最短B. 经过一点,有无数条直线C. 两点确定一条直线D. 两点之间,线段最短【答案】D【解析】【分析】根据两点之间,线段最短解答.【详解】解:能正确解释这一现象的数学知识是两点之间,线段最短.故选D.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.8. 下列图形都是由六个相同正方形组成的,经过折叠不能围成正方体的是()A. B.C. D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:选项A 、B 、C 经过折叠均能围成正方体,选项D 折叠后有两个面重叠,不能折成正方体. 故选:D .【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1−4−1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2−2−2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3−3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1−3−2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.9. 一个角的补角比这个角的余角的2倍还多40°,则这个角的度数是( ) A. 40°B. 50°C. 60°D. 70°【答案】A【解析】【分析】设这个角为x 度.根据一个角的补角比这个角的余角的2倍还多40°,构建方程即可解决问题.【详解】解:设这个角为x 度.则根据题意:180-x=2(90-x )+40,解得:x=40.所以这个角的度数是40°.故选:A .【点睛】本题考查余角和补角的有关计算,一元一次方程的应用,掌握方程思想,能根据题意找出等量关系并列出方程是解决此题的关键.10. 已知−2是关于x 的一元一次方程ax+b=1的解,则代数式3(41)b a b -+-的值是( )A. 0B. 1C. 2D. 3 【答案】D【解析】【分析】将2x =-代入ax+b=1可得到12b a =+,再将3(41)b a b -+-化简为241b a -+,将12b a =+代入化简后的式子即可得出答案. 【详解】解:−2是关于x 的一元一次方程ax+b=1的解,21a b ∴-+=12b a ∴=+()341b a b ∴-+-341b a b =--+241b a =-+()21241a a =+-+2441a a =+-+3=故选D .【点睛】本题考查了一元一次方程的解及整式的化简求值,熟练掌握运算法则是解题的关键.11. 如图,已知∠AOB=120°,从∠AOB 的内部引两条射线OM 、ON ,使得夹角∠MON=60°,则∠AON 与∠BOM 一定满足的关系是( )A. ∠AON+∠BOM=120°B. ∠AON+∠BOM=180° C . ∠AON=∠BOMD. ∠AON=2∠BOM【答案】B【解析】【分析】根据角的和差,可得∠AON+∠MOB=∠AOM+∠MON+∠MON+∠NOB=∠AOB+∠MON ,再代入计算即可求解.【详解】解:对于A 、B 选项:∵∠AON =∠AOM +∠MON ,∠MOB =∠MON +∠NOB ,∴∠AON+∠MOB=∠AOM+∠MON+∠MON+∠NOB=∠AOB+∠MON∵∠AOB=120°,∠MON=60°,∴∠AON+∠BOM=120°+60°=180°,故A 选项不符合题意;故B 选项符合题意;对于C 选项:条件不足,不能说明∠AON=∠BOM ,故不符合题意;对于D 选项:条件不足,不能说明∠AON=2∠BOM ,故不符合题意;故选:B .【点睛】本题考查了角的计算,解题的关键是利用了角的和差关系求解.12. 一套仪器由1个A 部件和3个B 部件构成,1立方米钢材可做40个A 部件或240个B 部件,现要用6立方米钢材制作这种仪器,设应用x 立方米钢材做B 部件,其他钢材做A 部件,恰好配套,则可列方程为( )A. 340240(6)x x ⨯=-B. 324040(6)x x ⨯=-C. 403240(6)x x =⨯-D. 240340(6)x x =⨯-【答案】D【解析】【分析】根据A 部件使用的钢材数=6-B 部件的钢材数表示出A 部件使用的钢材数,再根据A 部件的个数×3=B 部件的个数列出方程.【详解】∵应用x 立方米钢材做B 部件,∴可做240x 个B 部件,且应用6-x 立方米钢材做A 部件.∴可做40(6-x )个A 部件∵一套仪器由1个A 部件和3个B 部件构成,且恰好配套.∴240340(6)x x =⨯-故选D.【点睛】本题考查一元一次方程的应用,解题关键是理解题意找出等量关系式,根据等量关系式列出方程. 第Ⅱ卷(非选择题 84分)二、填空题(本大题共4小题,每小题4分,共16分.请将答案直接写在答题卡相应位置上) 13. 国家统计局2020年12月10日公布的全国粮食生产数据显示,我国粮食生产实现“十七连丰”:2020年全国粮食总产量为13390亿斤,产量连续6年保持在1.3万亿斤以上.将“13390亿”用科学记数法表示为______________.【答案】1.339×1012【解析】【分析】科学记数法的表示形式为:10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动位数相同,当原数绝对值>1时,n 是正数,当原数的绝对值<1时,n 是负数.【详解】13390亿121339000000000 1.33910==⨯,故选:A .【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为:10n a ⨯,其中110a ≤<,n 为整数,表示时关键要正确确定a 和n 的值.14. 计算1103752.8'︒-︒=____________.【答案】5749︒'【解析】【分析】先根据1度等于60分,1分等于60秒的换算关系统一单位,再算减法即可.【详解】解:1103752.8=110375248=109975248=5749'''''︒-︒︒-︒'︒-︒︒,故答案为:5749︒'.【点睛】本题考查了度、分、秒之间的换算的应用,能正确进行度、分、秒之间的换算是解此题的关键,注意:1=60,1=60'''. 15. 如图,B 、C 为线段AD 上的两点,若线段AD 的长度为a ,线段BC 的长度为b ,则图中所有线段的长度之和为__________.【答案】3a+b【解析】【分析】先写出所有的线段,再利用线段的和与差即可得出答案.【详解】解:图中所有线段为AB 、AC 、AD 、BC 、BD 、CD,AD a BC b ==∴AB+AC+AD+BC+BD+CD()AB BC CD AD AC BD =+++++2a AD BC =++=3a b +,故答案为:3a+b .【点睛】本题考查了线段的和与差,熟练掌握线段之间的关系是解题的关键.16. 如图,小悦和小萱同学一起玩“数字盒子”的游戏:先任意想一个数输入“数字盒子”中,按顺序进行四次运算后,得到一个输出的数.若小悦想了一个数,并告诉小萱这个数经过 “数字盒子”后输出的数是−2,则小悦所想的数是________.【答案】1【解析】【分析】由结果逆着运算,即由输出的数加4,再乘以2,接着减去1,最后除以3即可解题.【详解】解:242-+= 224⨯=413-=331÷=故答案为:1.【点睛】本题考查有理数的混合运算,是基础考点,难度较易,掌握相关知识是解题关键.三、解答题(本大题共6小题,满分68分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. (1)计算:()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭(2)先化简,再求值:33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭,其中1 2.x y =-=-, 【答案】(1)-4;(2)34x y -;4【解析】【分析】(1)直接利用有理数混合运算法则计算得出答案,(2)先去括号,根据合并同类项法则化简出最简结果,再将1,2x y =-=-代入其中即可求解.【详解】(1)()()()22021353682146⎛⎫-⨯-+-÷--- ⎪⎝⎭ ()13684112⎛⎫=⨯-+-÷+ ⎪⎝⎭3214=--+=- (2)33131122233x x y x y ⎛⎫⎛⎫+---+ ⎪ ⎪⎝⎭⎝⎭ 33131222233x x y x y =+-+- 34x y =-当12x y ,时,原式()()()3412484=⨯---=---=. 【点睛】本题考查了有理数混合运算,整式的加减——化简求值,熟练掌握合并同类项的法则,和有理数混合运算法则是解题关键.18. 如图,已知正方形网格中的三点A ,B ,C ,按下列要求完成画图和解答:(1)画线段AB ,画射线AC ,画直线BC ;(2)取AB 的中点D ,并连接CD ;(3)根据图形可以看出:∠________与∠________互为补角.【答案】(1)见解析;(2)见解析;(3)∠ADC与∠BDC互为补角【解析】【分析】(1)根据直线,射线,线段的定义画出图形即可;(2)根据中点的定义找到点D再连接CD即可;(3)根据补角的性质即可得出答案.【详解】解:(1)如下图所示;(2)如下图所示;(3)根据图形可以看出:∠ADC与∠BDC互为补角.【点睛】本题考查了作图-应用与设计,解题的关键时熟练掌握基本知识,灵活运用所学知识解决问题.19. 数学课上老师布置大家解方程3142125x x-+=-,小星同学板演的解题过程如下:【解析】解:去分母,得5(31)2(42)1x x-=+-.①去括号,得155841x x-=+-.②移项,得158541x x-=+-.③合并同类项,得78x=.④系数化为1,得87x =. ⑤ (1)老师批阅后说小星同学的解题过程有误,你认为出现错误的步骤是_______(只填写序号),错误原因是:_________,这个方程正确的解应该是x=________.然后,请你自己细心解下面的方程:(2)121236x x +--=+. 【答案】(1)①,方程两边没有同时乘10 ,17x =-;(2)6x = 【解析】【分析】 依据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1求解即可.【详解】解:(1) ① 方程两边没有同时乘10 17x =- 3142125x x -+=- 解:去分母,得()()53124210x x -=+-去括号,得1558410x x -=+-移项,得1584105x x -=-+合并同类项,得71x =-系数化为1,得17x =-(2)解方程121236x x +--=+过程如下: 解:去分母,得2(1)612(2)x x +-=+-.去括号,得226122x x +-=+-.移项,得212226x x +=+-+.合并同类项,得318x =.系数化为1,得6x .【点睛】本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.20. 如图1,点A、O、B在同一条直线上,∠BOC=40°,OD平分∠AOC.从点O出发画一条射线OE,使得∠COE=90°.请画出满足条件的射线OE,并求出∠DOE的度数.(1)如图2,已画出射线OE的第一种位置,请将解题过程补充完整:【解析】解:因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠________−∠________=________°.因为OD平分∠AOC,所以∠COD=12∠________=________°.因为∠COE=90°,所以∠DOE=∠________−∠________=________°.(2)请在图3中画出射线OE的第二种位置,并直接写出此种情况下∠DOE的度数.【答案】(1)AOB ,BOC ,140°;AOC,70°;COE ,COD ,20°;(2)见解析,∠DOE=160°【解析】【分析】(1)根据邻补角的定义求出∠AOC,再由角平分线的性质得出∠COD,最后根据∠DOE=∠ COE−∠ COD 即可得出答案;(2)根据邻补角的定义求出∠AOC,再由角平分线的性质得出∠COD,最后根据∠DOE=∠ COE+∠ COD 即可得出答案.【详解】解:(1)因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠ AOB −∠ BOC = 140 °.因为OD平分∠AOC,所以∠COD=12∠ AOC = 70 °.因为∠COE=90°,所以∠DOE=∠ COE −∠ COD = 20 °.(2)射线OE的位置如下图所示,此时∠DOE=160°.因为∠AOB=180°,∠BOC=40°,所以∠AOC=∠AOB −∠ BOC =140°.因为OD平分∠AOC,所以∠COD=12∠ AOC=70°.因为∠COE=90°,所以∠DOE=∠ COE +∠ COD =90°+70°=160°.【点睛】本题考查了邻补角定义,角平分线的定义以及角的计算,准确识图是解题的关键.21. 阅读下面的材料,解决有关问题:在如图1的“数表”中,数字按一定规律排列,我们分别在“数表”中涂抹出两个“H”,在每个“H”所覆盖的7个数字中,将最上端两数的和与最下端两数的和相减,计算结果称为“H值”.【计算与发现】分别计算图1中的两个不同位置的“H”所对应的“H值”:(2+4)−(20+22)=;(24+26)−(42+44)=,我们可以初步发现:__________________________;【探究与证明】图2是从图1中截出的一部分,在“H”所覆盖的7个数字中,若设中心数为x,则A、B、C、D所对应的数可分别表示为,,,(用含x的代数式表示),并请你利用整式的运算,对【计算与发现】中发现的规律进行验证.【答案】【计算与发现】−36;−36;不同位置的“H”所对应的“H值”都是−36;【探究与证明】x﹣10,x+8,x+10,x﹣8;见解析【解析】【分析】【计算与发现】直接根据有理数的加减运算法则计算即可;根据结果即可得出规律;【探究与证明】先分别表示出A、B、C、D所对应的数,再代入(A+D)−(B+C)即可验证规律.【详解】解:【计算与发现】(2+4)−(20+22)=6-42=-36;(24+26)−(42+44)=50-86=-36;我们可以初步发现:不同位置的“H”所对应的“H值”都是−36.【探究与证明】A、B、C、D所对应的数分别为:x﹣10,x+8,x+10,x﹣8;(A+D)−(B+C)=(x﹣10+ x﹣8)﹣(x+8+ x+10)=2x﹣18﹣2x﹣18=−36.【点睛】本题考查了有理数的加减运算及整式的加减的应用,熟练掌握运算法则是解题的关键.22. 疫情期间,某蛋糕店采用“线上”销售模式,即提前一天线上下单,第二天无接触送货上门.为了吸引客户,在A、B两种蛋糕送达时,采用赠代金券的返利方式给顾客意外惊喜.已知返利方式有两种,每种方式返利后A、B两种蛋糕的实际利润如下表:蛋糕店每日限量销售A 、B 两种蛋糕共计30盒,且都能售完,每天只推出一种返利方式.(1)若采用方式一返利,某天销售A 、B 两种蛋糕的实际利润共274元,则A 、B 两种蛋糕各售出多少盒? (2)下完订单的当晚,店员M 说:“明天无论采用哪种返利方式,销售A 、B 两种蛋糕的实际总利润都一样”,你觉得她的判断会成立吗?请说明理由.【答案】(1)A 种蛋糕售出17盒,B 种蛋糕售出13盒;(2)店员的判断不成立,见解析【解析】【分析】(1)设A 种蛋糕售出x 盒,则B 种蛋糕售出(30−x )盒,根据“采用方式一返利,某天销售A 、B 两种蛋糕的实际利润共274元,”列出方程求解即可;(2)设A 种蛋糕订了y 盒,则B 种蛋糕订出(30−y )盒,若店员的判断成立,根据“明天无论采用哪种返利方式,销售A 、B 两种蛋糕的实际总利润都一样”列方程求解,再根据y 只能取整数,即可得出答案.【详解】解:(1)设A 种蛋糕售出x 盒,则B 种蛋糕售出(30−x )盒,根据题意得方程()10830274x x +-=.解得17x =.因此,3013x -=.答:A 种蛋糕售出17盒,B 种蛋糕售出13盒.(2)设A 种蛋糕订了y 盒,则B 种蛋糕订出(30−y )盒,若店员的判断成立,则可列方程:()()1083091130y y y y +-=+-解得22.5y =因为y 只能取整数,所以22.5y =不符合题意,因此店员的判断不成立. 【点睛】本题考查了一元一次方程的应用,读懂题意找到等量关系式式解题的关键.。
人教版七年级下数学期末模拟提优练试题
人教版七年级下数学期末模拟提优练试题一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列实数中,有理数是()A.B.0.1010010001C.D.2.(3分)下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查3.(3分)如图所示,能判定直线AB∥CD的条件是()A.∠1=∠2B.∠3=∠4C.∠1+∠4=180°D.∠3+∠4=90°4.(3分)如图,将北京市地铁部分线路图置于正方形网格中,若设定崇文门站的坐标为(0,﹣1),雍和宫站的坐标为(0,4),则西单站的坐标为()A.(0,5)B.(5,0)C.(0,﹣5)D.(﹣5,0)5.(3分)若m>n,下列不等式不一定成立的是()A.m+2>n+2B.2m>2n C.>D.m2>n26.(3分)观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是()A.2003年农村居民人均收入低于2002年B.农村居民人均收入比上年增长率低于9%的有2年C.农村居民人均收入最多时2004年D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加7.(3分)下列运算中,正确的是()A.=24B.=C.﹣=﹣D.=±28.(3分)一根直尺和一块含有30°角的直角三角板如图所示放置,已知直尺的两条长边互相平行,若∠1=25°,则∠2等于()A.25°B.35°C.45°D.65°9.(3分)若不等式组有解,则a的取值范围是()A.a≤3B.a<3C.a<2D.a≤210.(3分)在平面直角坐标系中,一动点从原点出发按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动的路线如图所示,则该动点移动到点A100时的坐标是()A.(49,0)B.(49,1)C.(50,0)D.(50,1)二、填空题(本小题共8小题,每小题3分,共24分)11.(3分)4的平方根是.12.(3分)用不等式表示“比x的5倍大1的数不小于4”:.13.(3分)已知是二元一次方程ax﹣2y=4的一个解,则a的值是.14.(3分)化简:||=.15.(3分)如图,将一个长方形条折成如图所示的形状,若已知∠1=100°,则∠2=°.16.(3分)有甲、乙两个牧童,甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了.”问:两个牧童各有多少只羊?设甲牧童有x只羊,乙牧童有y只羊,可列方程组为.17.(3分)已知AB∥y轴,点A的坐标为(﹣2,3),且AB=3,则点B的坐标为.18.(3分)已知实数x,y同时满足三个条件:①3x﹣2y=4+p;②3y﹣2x=2﹣p;③x>y,那么实数p的取值范围是.三、解答题(本题共46分)19.(6分)解方程组:.20.(7分)解不等式组:并把它的解集在所给数轴上表示出来.21.(8分)如图,在由边长为1的小正方形组成的网格图中建立平面直角坐标系.(1)直接写出点D的坐标(,);(2)平移△ABC,使得点A与点D重合,请在坐标系中画出平移后的三角形,记为△DB1C1(其中B、C的对应点分别是B1、C1);(3)若P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为(,).22.(6分)完成下面填空.已知:如图,AE平分∠BAD,AB∥CD,CD与AE相交于点F,∠CFE=∠E,求证:AD∥BC证明:∵AB∥CD(已知)∴∠1=∠(两直线平行,同位角相等)∵AE平分∠BAD(已知)∴∠1=∠(角平分线定义)又∵∠CFE=∠E(已知)∴∠=∠E(等量代换)∴AD∥BC()23.(9分)今年央视举办的“经典咏流传”节目受到中学生的广泛关注,某中学为了了解学生对观看“经典咏流传”节目的喜爱程度,对该校部分学生进行了随机抽样调查,并绘制了如下所示的两幅统计图.在条形统计图中,从左往右依次为A类(非常喜欢),B 类(较喜欢),C类(一般),D类(不喜欢),已知A类和B类所占人数比是5:9,请结合两幅统计图,回答下列问题:(1)此次抽样调查的样本容量是:.(2)请补全两幅统计图:并计算扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)该校有2000名学生,请你估计对观看“经典咏流传”节目较喜欢的学生人数.24.(10分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元.大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】依据实数的分类进行判断即可.【解答】解:是开方开不尽的数,是无理数;0.1010010001是有限小数,是有理数;是开方开不尽的数,是无理数;是无理数.故选:B.【点评】本题主要考查的是实数的概念,熟练掌握实数的定义是解题的关键.2.【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:A、审核书稿中的错别字,必须准确,故必须普查;B、此种情况数量不是很大,故必须普查;C、人数不多,容易调查,适合普查;D、中学生的人数比较多,适合采取抽样调查;故选:D.【点评】本题考查了全面调查与抽样调查的应用,一般由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.3.【分析】依据平行线的三条判定定理,进行判断.【解答】解:A、B、∠1与∠2,∠3与∠4都不是直线AB与CD形成的同位角,所以不能判断直线AB∥CD,故错误;C、根据对顶角相等,可得∠1=∠5,∠4=∠6,又∠1+∠4=180°,∴∠5+∠6=180°,根据同旁内角互补,两直线平行可得AB∥CD,故正确;D、∠3+∠4=90°,不符合平行线的判断条件,所以不能判断直线AB∥CD,故错误;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.【分析】首先利用已知点确定原点位置,进而得出答案.【解答】解:如图所示:西单站的坐标为:(﹣5,0).故选:D.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.5.【分析】根据不等式的性质1,可判断A;根据不等式的性质2,可判断B、C;根据不等式的性质3,可判断D.【解答】解:A、不等式的两边都加2,不等号的方向不变,故A正确;B、不等式的两边都乘以2,不等号的方向不变,故B正确;C、不等式的两条边都除以2,不等号的方向不变,故C正确;D、当0>m>n时,不等式的两边都乘以负数,不等号的方向改变,故D错误;故选:D.【点评】本题考查了不等式的性质,.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变6.【分析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,对选项一一分析,选择正确答案.【解答】解:A、2003年农村居民人均收入每年比上一年增长率低于2002年,但是,人均收入仍是增长,所以A错误;B、农村居民人均收入比上年增长率低于9%的有3年,所以B错误;C、农村居民人均收入比上年增长率最多时2004年,所以C错误;D、农村居民人均收入每年比上一年的增长率有大有小,但都在增长,故D正确.故选:D.【点评】本题考查的是折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.注意读图获取信息、分析问题解决问题的能力.7.【分析】依据算术平方根的性质、立方根的性质求解即可.【解答】解:==4,故A错误;=,3==,故B错误;﹣=﹣,故C正确;=2,故D错误.故选:C.【点评】本题主要考查的是立方根、平方根、算术平方根的概念,熟练掌握相关概念是解题的关键.8.【分析】根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG,求出∠EFG,即可求出答案.【解答】解:过F作FN∥AD,∵BC∥AD,∴BC∥AD∥FN,∴∠1=∠NFE=35°,∠2=∠NFG,∵∠G=90°,∠E=30°,∴∠EFG=60°,∴∠2=60°﹣25°=35°,故选:B.【点评】本题考查了平行线性质,三角形内角和定理的应用,关键是根据平行线性质得出∠1=∠NFE=25°,∠2=∠NFG.9.【分析】先求出不等式的解集,再根据不等式组有解即可得到关于a的不等式,求出a 的取值范围即可.【解答】解:,由①得,x>a﹣1;由②得,x≤2,∵此不等式组有解,∴a﹣1<2,解得a<3.故选:B.【点评】本题考查的是解一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.10.【分析】根据点A1、A2、A3、A4、A5、A6、A7、A8、…的坐标的变化,可找出A4n(2n,0)(n为正整数),再结合100=4×25,即可得出A100的坐标.【解答】解:∵A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,∴A4n(2n,0)(n为正整数).∵100=4×25,∴A100的坐标为(50,0).故选:C.【点评】本题考查了规律型中点的坐标,根据点的坐标的变化找出变化规律“A4n(2n,0)(n为正整数)”是解题的关键.二、填空题(本小题共8小题,每小题3分,共24分)11.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.【分析】理解:不小于4就是大于等于4.【解答】解:由题意可知5x+1≥4.故答案是:5x+1≥4.【点评】考查了由实际问题抽象出一元一次不等式.要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.13.【分析】将x与y的值代入方程即可求出a的值.【解答】解:将x=2,y=2代入方程得:2a﹣4=4,解得:a=4.故答案为:4【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【分析】要先判断出<0,再根据绝对值的定义即可求解.【解答】解:∵<0∴||=2﹣.故答案为:2﹣.【点评】此题主要考查了绝对值的性质.要注意负数的绝对值是它的相反数.15.【分析】根据平行线的性质,即可得到∠3的度数,再根据平角的定义以及折叠的性质,即可得到∠2的度数.【解答】解:根据长方形的对边平行,可得∠1+∠3=180°,∵∠1=100°,∴∠3=80°,由折叠可得,∠2=∠4=(180°﹣80°)=50°,故答案为:50【点评】本题主要考查了平行线的性质以及折叠的性质,解题时注意:两直线平行,同旁内角互补.16.【分析】设甲牧童有x只羊,乙牧童有y只羊,根据题意列出方程组解答即可.【解答】解:设甲牧童有x只羊,乙牧童有y只羊,可得:,故答案为:,【点评】此题考查二元一次方程组的应用,解答此题的关键是弄清题意,设出未知数,再根据数量关系列出方程组解决问题.17.【分析】根据平行于y轴的点的横坐标相同可得点B的横坐标,再分点B在点A的上方与下方两种情况讨论求解.【解答】解:∵AB∥y轴,点A的坐标为(﹣2,3),∴点B的横坐标为﹣2,∵AB=3,∴点B在点A的上方时,点B的纵坐标为6,点B的坐标为(﹣2,6),点B在点A的下方时,点B的纵坐标为0,点B的坐标为(﹣2,0),综上所述,点B的坐标为(﹣2,6)或(﹣2,0)故答案为:(﹣2,6)或(﹣2,0)【点评】本题考查了坐标与图形性质,主要利用了平行于y轴的点的横坐标相同的性质,要注意分情况讨论,作出图形更形象直观.18.【分析】首先根据:①3x﹣2y=4+p,②3y﹣2x=2﹣p,用p表示出x、y;然后根据x >y,求出实数p的取值范围是多少即可.【解答】解:①×2+②×3,可得:5y=14﹣p,解得y=2.8﹣0.2p③,把③代入①,解得x=3.2+0.2p,∵x>y,∴3.2+0.2p>2.8﹣0.2p,解得p>﹣1.故答案为:p>﹣1.【点评】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.三、解答题(本题共46分)19.【分析】利用加减消元法求解可得.【解答】解:①+②×5,得:44y=660,解得:y=15,将y=15代入①,得:5x﹣15=110,解得:x=25,所以方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1,解不等式②,得:x<4,所以不等式组的解集为1≤x<4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.21.【分析】(1)直接利用平面直角坐标系得出D点坐标;(2)利用D点平移规律得出各对应点位置进而得出答案;(3)利用平移规律得出P点坐标.【解答】解:(1)点D的坐标为:(﹣2,3);故答案为:﹣2,3;(2)如图所示:△DB1C1即为所求;(3)P1(a,b)在线段DB1上,则其平移前的对应点P的坐标为:(a+3,b﹣2).故答案为:a+3,b﹣2.【点评】此题主要考查了平移变换,正确得出点的平移规律是解题关键.22.【分析】由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由AE为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得证.【解答】证明:∵AB∥DC(已知),∴∠1=∠CFE(两直线平行,同位角相等).∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义),∴∠CFE=∠2(等量代换).∵∠CFE=∠E(已知),∴∠2=∠E(等量代换),∴AD∥BC(内错角相等,两直线平行).故答案为:∠CFE;∠2;∠2;内错角相等,两直线平行.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得选择C和D的人数,B和D所占的百分比从而可以将统计图补充完整,并求得扇形统计图“D类(不喜欢)”部分的圆心角度数;(3)根据统计图的数据可以求得对观看“经典咏流传”节目较喜欢的学生有多少人.【解答】解:(1)此次抽样调查的样本容量是:20÷20%=100,故答案为:100;(2)选择C的有:100×19%=19人,选择D的有:100﹣20﹣36﹣19=25人,B所占的百分比是:36÷100×100%=36%,D所占的百分比是:25÷100×100%=25%,补全的统计图如右图所示,扇形统计图“D类(不喜欢)”部分的圆心角度数是:360°×25%=90°;(4)2000×36%=720(人),答:对观看“经典咏流传”节目较喜欢的学生有720人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体、样本容量,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出等式求出答案;(2)根据要想让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【解答】解:(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:,解得:,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.【点评】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用,正确表示出总费用是解题关键.一、七年级数学易错题1.如图,在直角坐标系中,已知点()()3,0,0,4A B -,对OAB ∆连续作旋转变换,,依次得到1,2,3,4?·····∆∆∆∆则2013∆的直角顶点的坐标为( )A .()8052,0B .()8040,0C .()8049,0D .()8048,0【答案】A 【解析】 【分析】根据勾股定理列式求出AB 的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2013除以3,根据商为671可知第2013个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可. 【详解】解:∵点A (-3,0)、B (0,4), ∴22345AB +=,由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12, ∵2013÷3=671,∴△2013的直角顶点是第671个循环组的最后一个三角形的直角顶点, ∵671×12=8052,∴△2013的直角顶点的坐标为(8052,0). 故选:A .【点睛】本题考查点的坐标变化规律,注意观察图形,得到每三个三角形为一个循环组依次循环是解题的关键.2.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°【答案】B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.3.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A.3B.4C.5D.6【答案】D【解析】【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【详解】∵A(1,0),B(1-a,0),C(1+a,0)(a>0),∴AB=1-(1-a)=a,CA=a+1-1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如图延长AD 交⊙D 于P′,此时AP′最大,∵A (1,0),D (4,4), ∴AD=5, ∴AP′=5+1=6, ∴a 的最大值为6. 故选D . 【点睛】本题考查圆、最值问题、直角三角形性质等知识,解题的关键是发现PA=AB=AC=a ,求出点P 到点A 的最大距离即可解决问题,属于中考常考题型.4.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④【答案】B 【解析】 【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩, 代入方程得:左边=-2-2=-4,右边=-4,左边=右边,此选项正确; ②由x+y=0,得到y=-x ,代入方程组得:31x kx k -=⎧⎨-=-⎩,即k=3k-1,解得:12k =, 则存在实数12k =,使x+y=0,本选项正确;③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k=-⎧⎨=-⎩,∵1y x ->-, ∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③【答案】C 【解析】 【分析】 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( ) A .12x y =⎧⎨=⎩ B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩【答案】D 【解析】 【分析】 将方程组变形,设32,55x y m n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】 解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩ 设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩, ∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩, ∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩, ∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.7.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为()A.12 B.13 C.14 D.15【答案】C【解析】【分析】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),结合图形找出部分a n的值,根据数值的变化找出变化规律“a n=n”,再罗列出部分S n的值,根据数值的变化找出变化规律()12nn nS+=,依次变化规律解不等式()11002n n+≥即可得出结论.【详解】设横坐标为n的点的个数为a n,横坐标≤n的点的个数为S n(n为正整数),观察,发现规律:a1=1,a2=2,a3=3,…,∴a n=n.S1=a1=1,S2=a1+a2=3,S3=a1+a2+a3=6,…,∴S n=1+2+…+n=()12n n+.当100≤S n,即100≤()12n n+,解得:12201n+≤﹣(舍去),或2201n≥﹣1.∵220114﹣113<,故选:C.【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12nn nS+=”.8.已知点A(3a,2b)在x轴上方,在y轴左侧,则点A到x轴、y的距离分别为() A.3a,-2b B.-3a,2b C.2b,-3a D.-2b,3a【答案】C【解析】【分析】应先判断出点A的横纵坐标的符号,进而判断点A到x轴、y轴的距离.【详解】∵点A(3a,2b)在x轴上方,∴点A的纵坐标大于0,得到2b>0,∴点A到x轴的距离是2b;∵点A(3a,2b)在y轴的左边,∴点A的横坐标小于0,即3a<0,∴点A到y轴的距离是-3a;故答案为C.【点睛】本题主要考查点的坐标的几何意义,到x轴的距离就是纵坐标的绝对值,到y轴的距离就是横坐标的绝对值.9.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.【答案】C【解析】【分析】【详解】解:设1分的硬币有x枚,2分的硬币有y枚,则5分的硬币有(15-x-y)枚,可得方程x+2y+5(15-x-y)=35,整理得4x+3y=40,即x=10-34 y,因为x ,y 都是正整数,所以y=4或8或12,所以有3种装法,故选C.10.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .18【答案】B【解析】【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比.【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩, ∴阴影部分面积223()310300=-=⨯=a b ,整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B .【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.11.如果关于x 的不等式组02443x m x x -⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为4x >,且整数m 使得关于x y 、的二元一次方程组831mx y x y +=⎧⎨+=⎩的解为整数(x y 、均为整数),则符合条件的所有整数m 的和是( )A .2-B .2C .6D .10【答案】B【解析】【分析】 根据不等式组求得m ≤4,再解方程组求出732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩,根据x y 、均为整数得到整数m=4、2、-4,即可得到答案.【详解】 解不等式02x m ->得x m >, 解不等式443x x --<-得4x >, ∴m ≤4, 解方程组831mx y x y +=⎧⎨+=⎩得732113x m y m ⎧=⎪⎪-⎨⎪=-⎪-⎩, ∵x y 、均为整数,m-3是7的因数,∴m-3=1、-1、-7,7,即m=4、2、-4,10(舍去)符合条件的所有整数m 的和是4+2-4=2,故选:B.【点睛】此题考查解不等式组,解方程组,因式分解,解题中求出方程组的解,确定m-3是7的因数是解题的关键,由此根据m 的取值范围求出符合条件的所有整数m 的值.12.定义新运算,*(1)a b a b =-,若a 、b 是方程2104x x m -+=(0m <)的两根,则**b b a a -的值为() A .0B .1C .2D .与m 有关 【答案】A【解析】 根据题意可得()()22**11b b a a b b a a b b a a -=---=--+,又因为a ,b 是方程2104x x m -+=的两根,所以2104a a m -+=,化简得214a a m -=-,同理2104b b m -+=,214b b m -=-,代入上式可得()()222211044b b a a b b a a m m ⎛⎫⎛⎫--+=--+-=--+-= ⎪ ⎪⎝⎭⎝⎭,故选A .13.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁B .甲比乙大10岁C .乙比甲大10岁D .乙比甲大5岁【答案】A【解析】【分析】设甲现在的年龄是x 岁,乙现在的年龄是y 岁,根据已知甲是乙现在的年龄时,乙10岁.乙是甲现在的年龄时,甲25岁,可列方程求解.【详解】解:甲现在的年龄是x 岁,乙现在的年龄是y 岁,由题意可得: 1025x y y x y x-=-⎧⎨-=-⎩ 即210225x y x y -=-⎧⎨-=⎩由此可得,3()15x y -=,∴5x y -=,即甲比乙大5岁.【点睛】本题考查了二元一次方程组的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.14.如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】【分析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23,168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.15.将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8D.8x<5x+12<8【答案】C【解析】设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选C.16.设边长为3的正方形的对角线长为a,下列关于a的四种说法:① a是无理数;② a 可以用数轴上的一个点来表示;③ 3<a<4;④ a是18的算术平方根.其中,所有正确说法的序号是A.①④B.②③C.①②④D.①③④【答案】C【解析】根据勾股定理,边长为3的正方形的对角线长为a=①正确.根据实数与数轴上的一点一一对应的关系,a可以用数轴上的一个点来表示,故说法②正确.∵216<a18<25=,∴4<a=,故说法③错误.∵2a18=,∴根据算术平方根的定义,a是18的算术平方根,故说法④正确.综上所述,正确说法的序号是①②④.故选C.17.如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()。
【好题】七年级数学下期末模拟试题(含答案)(1)
【好题】七年级数学下期末模拟试题(含答案)(1)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 7.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .98.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,xx x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y22< D .2x 2y -<-二、填空题13.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______.14.不等式组11{2320x x ≥--<的解集为________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________18.关于x的不等式1x <-的非负整数解为________.19.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表.根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG,∠CED=∠GHD (1)求证:CE∥GF;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.C解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即40x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩, 故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.C解析:C 【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.4.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.5.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.6.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确. 故选D .7.B解析:B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.8.B解析:B 【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度, 故选B.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1.故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.D解析:D 【解析】 【分析】利用不等式的基本性质判断即可. 【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立; 若x <y ,则3x <3y ,选项B 成立; 若x <y ,则x 2<y2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立, 故选D . 【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6, 解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩ 【解析】 【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决. 【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==.故答案为510x y ⎧⎨⎩==.【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a <﹣1 【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1, ∴a+1<0, 解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,18.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【解析】【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】解:解不等式1x<-得:1x<,∵34=<<=,∴13x<<,∴13x<<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.19.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O则直线与坐标轴围成的三角形是以OAOB为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.952m ≤≤ 【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE ∥GF ;(2)根据平行线的性质可得∠C=∠FGD ,根据等量关系可得∠FGD=∠EFG ,根据内错角相等,两直线平行可得AB ∥CD ,再根据平行线的性质可得∠AED 与∠D 之间的数量关系;(3)根据对顶角相等可求∠DHG ,根据三角形外角的性质可求∠CGF ,根据平行线的性质可得∠C ,∠AEC ,再根据平角的定义可求∠AEM 的度数.本题解析:(1)证明:∵∠CED=∠GHD , ∴CE ∥GF(2)答:∠AED+∠D=180°理由:∵CE ∥GF ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD , ∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE ∥GF ,∴∠C=180°﹣130°=50°∵AB ∥CD ,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°. 点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
汕头市七年级数学试卷七年级苏科下册期末训练经典题目(附答案)
汕头市七年级数学试卷七年级苏科下册期末训练经典题目(附答案)一、幂的运算易错压轴解答题1.(1)已知,,求的值;(2)已知,,求的值.2.(1)你发现了吗?,,由上述计算,我们发;________(2)请你通过计算,判断与之间的关系;(3)我们可以发现: ________(4)利用以上的发现计算: .3.综合题(1)已知4m=a,8n=b,用含a,b的式子表示下列代数式:①求:22m+3n的值②求:24m﹣6n的值(2)已知2×8x×16=223,求x的值.二、平面图形的认识(二)压轴解答题4.问题情境:如图1,已知, .求的度数.(1)经过思考,小敏的思路是:如图2,过P作,根据平行线有关性质,可得 ________.(2)问题迁移:如图3,,点P在射线OM上运动,, .①当点P在A,B两点之间运动时,、、之间有何数量关系?请说明理由.②如果点P在A,B两点外侧运动时(点P与点A,B,O三点不重合),请你直接写出、、之间的数量关系,(3)问题拓展:如图4,,是一条折线段,依据此图所含信息,把你所发现的结论,用简洁的数学式子表达为________.5.对于平面内的∠M和∠N,若存在一个常数k>0,使得∠M+k∠N=360°,则称∠N 为∠M的k系补周角.如若∠M=90°,∠N=45°,则∠N为∠M的6系补周角.(1)若∠H=120°,则∠H的4系补周角的度数为________;(2)在平面内AB∥CD,点E是平面内一点,连接BE,DE.①如图1,∠D=60°,若∠B是∠E的3系补周角,求∠B的度数;②如图2,∠ABE和∠CDE均为钝角,点F在点E的右侧,且满足∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),点P是∠ABE角平分线BG上的一个动点,在P 点运动过程中,请你确定一个点P的位置,使得∠BPD是∠F的k系补周角,并直接写出此时的k值(用含n的式子表示).6.问题情景:如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:过点P作PE//AB,∴∠PAB+∠APE=180°.∵∠PAB=130°,∴∠APE=50°∵AB//CD,PE//AB,∴PE//CD,∴∠PCD+∠CPE=180°.∵∠PCD=120°,∴∠CPE=60°∴∠APC=∠APE+∠CPE=110°.问题迁移:如果AB与CD平行关系不变,动点P在直线AB、CD所夹区域内部运动时,∠PAB,∠PCD的度数会跟着发生变化.(1)如图3,当动点P运动到直线AC右侧时,请写出∠PAB,∠PCD和∠APC之间的数量关系?并说明理由.(2)如图4,AQ,CQ分别平分∠PAB,∠PCD,请直接写出∠AQC和∠APC的数量关系________.(3)如图5,点P在直线AC的左侧时,AQ,CQ仍然平分∠PAB,∠PCD,请直接写出∠AQC和角∠APC的数量关系________三、整式乘法与因式分解易错压轴解答题7.(探究)如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式________.(用含a,b的等式表示)(2)(应用)请应用这个公式完成下列各题:①已知4m2=12+n2, 2m+n=4,则2m﹣n的值为________.②计算:20192﹣2020×2018.________(3)(拓展)计算:1002﹣992+982﹣972+…+42﹣32+22﹣12.8.效学活动课上老师准备了若干个如图1的三种纸片,A种纸片是边长为a的正方形,B 种纸片是边长为b的正方形,C种纸片是长为b,宽为a的长方形.并用A种纸片一张,B 种纸片一张,C种纸片两张拼成如图2的大正方形.(1)请用两种不同的方法求图2大正方形的面积.方法1:________,方法2:________;(2)观察图2,请你写出代数式:(a+b)2, a2+b2, ab之间的等量关系________;(3)根据(2)题中的等量关系,解决如下问题:①已知:a+b=5,a2+b2=13,求ab的值;②已知(2019-a)2+(a-2018)2=5,求(2019-a)(a-2018)的值.9.阅读理解.因为,①因为②所以由①得:,由②得:所以试根据上面公式的变形解答下列问题:(1)已知,则下列等式成立的是()① ;② ;③ ;④ ;A.①B.①②C.①②③D.①②③④;(2)已知,求下列代数式的值:① ;② ;③ .四、二元一次方程组易错压轴解答题10.关于x,y的二元一次方程ax+by=c(a,b,c是常数),b=a+1,c=b+1.(1)当时,求c的值.(2)当a=时,求满足|x|<5,|y|<5的方程的整数解.(3)若a是正整数,求证:仅当a=1时,该方程有正整数解.11.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.(1)若万元,求领带及丝巾的制作成本是多少?(2)若用元钱全部用于制作领带,总共可以制作几条?(3)若用元钱恰好能制作300份其他的礼品,可以选择条领带和条丝巾作为一份礼品(两种都要有),请求出所有可能的、的值.12.为建设京西绿色走廊,改善永定河水质,某治污公司决定购买10台污水处理设备.现有A、B两种型号的设备,其中每台的价格与月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求x、y的值;(2)如果治污公司购买污水处理设备的资金不超过105万元,求该治污公司有哪几种购买方案;(3)在(2)的条件下,如果月处理污水量不低于2040吨,为了节约资金,请为该公司设计一种最省钱的购买方案.五、一元一次不等式易错压轴解答题13.陆老师去水果批发市场采购苹果,他看中了A,B两家苹果,这两家苹果品质一样,零售价都我6元/千克,批发价各不相同.A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~500部分500以上~15001500以上~2500部分2500以上部分价格补贴零售价的95%零售价的85%零售价的75%零售价的70%(2)如果他批发x千克苹果(1500<x<2000),请你分别用含x的代数式表示他在A、B 两家批发所需的费用;(3)A、B两店在互相竞争中开始了互怼,B说A店的苹果总价有不合理的,有时候买的少反而贵,忽悠消费者;A说B的总价计算太麻烦,把消费者都弄糊涂了;旁边陆老师听完,提出两个问题希望同学们帮忙解决:①能否举例说明A店买的多反而便宜?②B店老板比较聪明,在平时工作中发现有巧妙的方法:总价=购买数量×单价+价格补贴;注:不同的单价,补贴价格也不同;只需提前算好即可填下表:数量范围(千克)0~500部分500以上~15001500以上~25002500以上部分价格补贴0元300▲▲14.淮河汛期即将来临防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看河面及两岸河堤的情况•如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足:a是 +1的整数部分,b是不等式2(x+1)>3的最小整数解.假定这一带淮河两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=________,b=________;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,求∠BCD:∠BAC的值.15.我们用表示不大于的最大整数,例如:,,;用表示大于的最小整数,例如:,,.解决下列问题:(1) ________, ________.(2)若,则的取值范围是________;若,则的取值范围是________.(3)已知,满足方程组,求,的取值范围.【参考答案】***试卷处理标记,请不要删除一、幂的运算易错压轴解答题1.(1)解:∵, ax=5∴ ay=5(2)解:【解析】【分析】(1)利用同底幂乘法的逆用,可得ax+y=ax·ay=25,代入数据计算可得ay=5,从而求出ax+ay解析:(1)解:∵,∴(2)解:【解析】【分析】(1)利用同底幂乘法的逆用,可得a x+y=a x·a y=25,代入数据计算可得a y=5,从而求出a x+a y的值.(2)利用同底幂乘法的逆用及幂乘方的逆用,可得102α+2β=(10α)2(10β)2,代入数据计算即可.2.(1)=(2)解:计算得 (54)3=12564 , (45)-3=12564∴ (54)3=(45)-3(3)=(4)解:利用以上的发现计算: =【解析】解析:(1)=(2)解:计算得,∴(3)=(4)解:利用以上的发现计算: =【解析】【分析】(1)类比题干中乘方的运算即可得;(2)类比题干中分数的乘方计算方法计算后即可得;(3)根据(1)、(2)的规律即可得;(4)逆用积的乘方将原式变形为 = ,再利用同底数幂进行计算可得3.(1)解:∵4m=a,8n=b,∴22m=a,23n=b,22m+3n=22m•23n=ab;②24m﹣6n=24m÷26n=(22m)2÷(23n)2= a2b2(2)解∵2×8解析:(1)解:∵4m=a,8n=b,∴22m=a,23n=b,22m+3n=22m•23n=ab;②24m﹣6n=24m÷26n=(22m)2÷(23n)2=(2)解∵2×8x×16=223,∴2×(23)x×24=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6:【解析】【分析】(1)分别将4m,8n化为底数为2的形式,然后代入①②求解;(2)将8x化为23x,将16化为24,列出方程求出x的值.二、平面图形的认识(二)压轴解答题4.(1)252°(2)解:①解:∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;②∠CPD=∠DPE-∠CPE=∠α-∠β(3)∠A1+∠A2+…+∠A n=∠B1+∠B2+…+∠B n.【解析】【解答】(1)解:问题情境:如图,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠PAB+∠APE=180°,∠PCD+∠CPE=180°,∵∠APC=108°,∴∠PAB+∠PCD=360°-108°=252°;故答案为:252°;( 2 )②解:当P在BA延长线时,∠CPD=∠β-∠α;理由:如图,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当P在BO之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.(3 )问题拓展:分别过A2,A3…,A n-1作直线∥A1M,过B1,B2,…,B n-1作直线∥A1M,由平行线的性质和角的和差关系得∠A1+∠A2+…+∠A n=∠B1+∠B2+…+∠B n.故答案为:∠A1+∠A2+…+∠A n=∠B1+∠B2+…+∠B n.【分析】(1)问题情境:根据平行线的判定可得PE∥AB∥CD,再根据平行线的性质即可求解;(2)问题迁移:①过P作PE∥AD,根据平行线的判定可得PE∥AD∥BC,再根据平行线的性质即可求解;②过P作PE∥AD,根据平行线的判定可得PE∥AD∥BC,再根据平行线的性质即可求解;(3)问题拓展:分别过A2,A3…,A n-1作直线∥A1M,过B1,B2,…,B n-1作直线∥A1M,根据平行线的判定和性质即可求解.5.(1)60°(2)解:①如图,过点E作EF//AB,∵AB//EF,∴EF//CD,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D,即∠BED=∠B+∠D,∵∠BED+3∠B=360°,∠D=60,∴,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG上的动点P为∠CDG的角平分线与BG的交点时,满足∠BPD是∠F的k系补周角,此时k=2n.理由如下:若∠BPD是∠F的k系补周角,则∠F+k∠BPD=360°,∴k∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F,∴k∠BPD=∠ABF+∠CDF,又∵∠ABF=n∠ABE,∠CDF=n∠CDE,∴k∠BPD= n∠ABE+ n∠CDE,∵∠BPD=∠PHD+∠PDH,∵AB//CD,PG平分∠ABE,PD平分∠CDE,∴∠PHD=∠ABH= ,∠PDH= ,∴ ( + )=n(∠ABE+∠CDE),∴k=2n.【解析】【解答】解:(1)设∠H的4系补周角的度数为x,则有120°+4x=360°,解得:x=60°∴∠H的4系补周角的度数为60°;【分析】(1)直接利用k系补周角的定义列方程求解即可.(2)①依据k系补周角的定义及平行线的性质,建立∠BED、∠B、∠D的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF=n∠ABE,∠CDF=n∠CDE(其中n为常数且n>1),又由于点P是∠ABE角平分线BG上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P点,再通过推理论证得到k的值(含n的表达式),即说明点P即为所求.6.(1)∠PAB+∠PCD=∠APC理由:如图3,过点P作PF∥AB,∴∠PAB=∠APF,∵AB∥CD,PF∥AB,∴PF∥CD,∴∠PCD=∠CPF,∴∠PAB+∠PCD=∠APF+∠CPF=∠APC,即∠PAB+∠PCD=∠APC故答案为:∠PAB+∠PCD=∠APC(2)(3)2∠AQC+∠APC=360°【解析】【解答】(2)理由:如图4,∵AQ,CQ分别平分∠PAB,∠PCD,∴∠QAB= ∠PAB,∠QCD= ∠PCD,∴∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+∠PCD),由(1),可得∠PAB+∠PCD=∠APC,∠QAB+∠QCD=∠AQC∴∠AQC= ∠APC故答案为:∠AQC= ∠APC;(3)2∠AQC+∠APC=360°理由:如图5,过点P作PG∥AB ,∴∠PAB+∠APG=180°,∵AB∥CD,PG∥AB,∴PG//CD,∴∠PCD+∠CPG=180°,∴∠PAB+∠APG+∠PCD+∠CPG=360°,∴∠PAB+∠PCD+∠APC=360°,∵AQ,CQ分别平分∠PAB,∠PCD,∴∠QAB= ∠PAB,∠QCD= ∠PCD,∴∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+PCD)由(1)知,∠QAB+∠QCD=∠AQC,∴∠AQC= (∠PAB+∠PCD)2∠AQC=∠PAB+∠PCD,∵∠PAB+∠PCD+∠APC=360°,∴2∠AQC+∠APC=360°.【分析】(1)过点P作PF∥AB,可得∠PAB=∠APF,根据AB∥CD,PF∥AB,可得∠PCD=∠CPF,所以∠PAB+∠PCD=∠APF+∠CPF=∠APC,即可证得∠PAB+∠PCD=∠APC;(2)已知AQ,CQ分别平分∠PAB,∠PCD,根据角平分线性质,可得∠QAB= ∠PAB,∠QCD= ∠PCD,∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+∠PCD),再根据(1)结论,即可证明∠AQC= ∠APC.(3)过点P作PG∥AB,根据平行线的性质可得∠PAB+∠APG=180°,由已知可得PG//CD,∠PCD+∠CPG=180°,证明得∠PAB+∠PCD+∠APC=360°,,再根据AQ,CQ分别平分∠PAB,∠PCD,可得∠QAB+∠QCD= ∠PAB+ ∠PCD= (∠PAB+∠PCD),即可证明得出结论2∠AQC+∠APC=360°.三、整式乘法与因式分解易错压轴解答题7.(1)(a+b)(a﹣b)=a2﹣b2(2)3;解:20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)=20192﹣(20192﹣1)=20192﹣20解析:(1)(a+b)(a﹣b)=a2﹣b2(2)3;解:20192﹣2020×2018=20192﹣(2019+1)×(2019﹣1)=20192﹣(20192﹣1)=20192﹣20192+1=1(3)解:1002﹣992+982﹣972+…+42﹣32+22﹣12=(100+99)×(100﹣99)+(98+97)×(98﹣97)+…+(4+3)×(4﹣3)+(2+1)×(2﹣1)=100+99+98+97+…+4+3+2+1=5050【解析】【解答】解:(1)探究:图1中阴影部分面积a2﹣b2,图2中阴影部分面积(a+b)(a﹣b),所以,得到乘法公式(a+b)(a﹣b)=a2﹣b2故答案为(a+b)(a﹣b)=a2﹣b2.(2)应用:①由4m2=12+n2得,4m2﹣n2=12∵(2m+n)•(2m+n)=4m2﹣n2∴2m﹣n=3故答案为3.【分析】探究:将两个图中阴影部分面积分别表示出来,建立等式即可;应用:①利用平方差公式得出(2m+n)•(2m+n)=4m2﹣n2,代入求值即可;②可将2020×2018写成(2019+1)×(2019﹣1),再利用平法差公式求值;拓展:利用平方差公式将1002﹣992写成(100+99)×(100﹣99),以此类推,然后化简求值.8.(1)(a+b)2;a2+b2+2ab(2)(a+b)2=a2+b2+2ab(3)解:①∵(a+b)2=a2+b2+2ab,∴25=13+2ab,∴ab=6;②∵(a+b)2=a2+解析:(1)(a+b)2;a2+b2+2ab(2)(a+b)2=a2+b2+2ab(3)解:①∵(a+b)2=a2+b2+2ab,∴25=13+2ab,∴ab=6;②∵(a+b)2=a2+b2+2ab,∴[(2019-a)+(a-2018)]2=(2019-a)2+(a-2018)2+2(2019-a)(a-2018),即1=5+2(2019-a)(a-2018),∴(2019-a)(a-2018)=-2.【解析】【解答】解:方法1:S=(a+b)2,方法2:S=a2+b2+2ab;故答案为(a+b)2, a2+b2+2ab;(2)由面积相等,可得(a+b)2=a2+b2+2ab;故答案为(a+b)2=a2+b2+2ab【分析】(1)正方形面积可以从整体直接求,还可以是四个图形的面积和;(2)由同一图形面积相等即可得到关系式;(3)根据(a+b)2=a2+b2+2ab,将所给条件代入即可求解9.(1)C(2)解:①原式=(a+ 1a )2-2=(-2)2-2=2②原式=a2+ 1a2 -2=2-2=0③原式=( a2+ 1a2 )2-2=(2)2-2=2【解析】【解答】(1) a解析:(1)C(2)解:①原式=(a+ )2-2=(-2)2-2=2②原式=a2+ -2=2-2=0③原式=( a2+ )2-2=(2)2-2=2【解析】【解答】(1)∴∴同理:由两边同时减去2,得:∴故答案为:C.【分析】(1)本题考查的是完全平方和公式,因为,所以①②③正确;(2)①;②;③ .四、二元一次方程组易错压轴解答题10.(1)∵b=a+1,c=b+1.∴c=a+2,由题意,得3a+a+1=a+2,解得a= 13 ,∴c=a+2= 73 ;(2)当a= 12 时, 12 x+ 32 y= 52 ,解析:(1)∵b=a+1,c=b+1.∴c=a+2,由题意,得3a+a+1=a+2,解得a=,∴c=a+2=;(2)当a=时, x+ y= ,化简得,x+3y=5,∴符合题意的整数解是:,,;(3)由题意,得ax+(a+1)y=a+2,整理得,a(x+y﹣1)=2﹣y①,∵x、y均为正整数,∴x+y﹣1是正整数,∵a是正整数,∴2﹣y是正整数,∴y=1,把y=1代入①得,ax=1,∴a=1,此时,a=1,b=2,c=3,方程的正整数解是 .【解析】【分析】(1)由题意,得3a+a+1=a+2,解得a=,即可求得c=;(2)当a=时,方程为 x+ y= ,即x+3y=5,根据方程即可求得;(3)由题意,得a(x+y﹣1)=2﹣y①,x、y均为正整数,则x+y﹣1是正整数,a是正整数,则2﹣y是正整数,从而求得y=1,把y=1代入①得,ax=1,即可求得a=1,此时方程的正整数解是 .11.(1)解:设领带及丝巾的制作成本是x元和y元,则 {600(2x+y)=240000400(x+3y)=240000解得: {x=120y=160答:领带的制作成本是120元,丝巾解析:(1)解:设领带及丝巾的制作成本是x元和y元,则解得:答:领带的制作成本是120元,丝巾的制作成本是160元(2)解:由题意可得:,且,∴,整理得:,代入可得:,∴可以制作2000条领带.(3)解:由(2)可得:,∴整理可得:∵、都为正整数,∴【解析】【分析】(1)设领带及丝巾的制作成本是x元和y元,根据题意列出方程组求解即可;(2)由与可得到,代入可得,即可求得答案;(3)根据即可表达出、的关系式即可解答.12.(1)解: 由题意,得解得 {x=12y=10(2)解: 设治污公司决定购买A型设备a台,则购买B型设备(10-a)台.由题意,得解得所以,该公司有解析:(1)解: 由题意,得解得(2)解: 设治污公司决定购买A型设备a台,则购买B型设备(10-a)台.由题意,得解得所以,该公司有以下三种方案:A型设备0台,B型设备为10台;A型设备1台,B型设备为9台;A型设备2台,B型设备为8台(3)解: 由题意,得 240a+200(10-a)≥2040解得:所以,购买A型设备1台,B型设备9台最省钱【解析】【分析】(1)根据题意列出二元一次方程组,解之即可得出答案.(2)设治污公司决定购买A型设备a台,则购买B型设备(10-a)台,根据购买污水处理设备的资金不超过105万元列出一元一次不等式,解之即可得出a的范围,从而可得具体方案.(3)根据题意列出一元一次不等式,解之即可得出a的取值范围,从而可得答案.五、一元一次不等式易错压轴解答题13.(1)解:A家:700×6×92%=3864元,B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+100解析:(1)解:A家:700×6×92%=3864元,B家:500×6×95%+200×6×85%=3870元(2)解:A家:6x×90%=5.4x,B家:500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200(3)解:①当他要批发不超过500千克苹果时,很明显在A家批发更优惠;当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300,要使A店买的多反而便宜即是0.42x-300>0,解得:x>∴当x> 时,A店买的多反而便宜;②当购买数量为1500以上~2500时,B家需要的总价=500×6×95%+1000×6×85%+(x-1500)×6×75%=4.5x+1200又总价=购买数量×单价+价格补贴∴价格补贴=1200元,当购买数量为2500以上部分时,B家需要的总价=500×6×95%+1000×6×85%+(2500-1500)×6×75%+(x-2500)×6×70%=4.2x+1950∴价格补贴=1950元.【解析】【分析】(1)A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+(700-500)×单价×85%;把相关数值代入求解即可;(2)根据“A家批发需要费用:质量×单价×92%;B家批发需要费用:500×单价×95%+1000×单价×85%+(x-1500)×单价×75%”;(3)①当他要批发超过500千克但不超过1000千克苹果时,设批发x千克苹果,则A家费用=92%×6x=5.52x,B家费用=6×95%×500+6×85%×(x-500)=5.1x+300,A家费用-B家费用=0.42x-300;即可举例说明A店买的多反而便宜;②分别求出B家批发各个价格所需要的费用的等式即可求解.14.(1)3;1(2)解:设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(30+t)×1,解得t=15;②当60<t<120时,3t-3×60+(30+t)×1=180解析:(1)3;1(2)解:设A灯转动t秒,两灯的光束互相平行,①当0<t<60时,3t=(30+t)×1,解得t=15;②当60<t<120时,3t-3×60+(30+t)×1=180,解得t=82.5;③当120<t<160时,3t-360=t+30,解得t=195>160(不合题意)综上所述,当t=15秒或82.5秒时,两灯的光束互相平行(3)解:设A灯转动时间为t秒,∵∠CAN=180°-3t,∴∠BAC=45°-(180°-3t)=3t-135°,又∵PQ∥MN,∴∠BCA=∠CBD+∠CAN=t+180°-3t=180°-2t,∵∠ACD=90°,∴∠BCD=90°-∠BCA=90°-(180°-2t)=2t-90°,∴∠BCD:∠BAC=2:3.【解析】【解答】解:(1)∵a是 +1的整数部分,∴a=2+1=3,∵b是不等式2(x+1)>3的最小整数解,2(x+1)>3,x+1>1.5,x>0.5∴b=1【分析】(1)根据a是 +1的整数部分,可得a=2+1=3,根据b是不等式2(x+1)>3的最小整数解,可得b的值;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:①在灯A射线转到AN之前,②在灯A射线转到AN之后,分别求得t的值即可;(3)设灯A射线转动时间为t秒,根据∠BAC=45°-(180°-3t)=3t-135°,∠BCD=90°-∠BCA=90°-(180°-2t)=2t-90°,可得∠BCD:∠BAC的值.15.(1)-5;4(2);(3)解:解方程组得:,, y 的取值范围分别为,.【解析】【解答】解:(1)由题意得,, <3.5>=4 ;(2),的取值范围是解析:(1)-5;4(2);(3)解:解方程组得:,,的取值范围分别为,.【解析】【解答】解:(1)由题意得,,;(2),的取值范围是;,的取值范围是;【分析】(1)根据题目所给信息求解;(2)根据,,,可得中的,根据表示大于的最小整数,可得中,;(3)先求出和的值,然后求出和的取值范围.。
【3套打包】长沙市湖南师大附中七年级下册数学期末考试试题(含答案)
新七年级下学期期末考试数学试题及答案人教版七年级下学期期末考试数学试题(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B考点:实数的概念。
解析:无限不循环的小数为无理数,无理数有:1.010010001…,π,共2个,其它为有理数。
2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B考点:整式的运算。
解析:A、3a+2a=5a,故错误;B、正确;C、不是同类项,不能合并;D、不是同类项,不能合并;3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D考点:统计。
解析:A、B、C容量大,不能做全面调查,只有D适合做全面调查。
4.如图,直线l 1∥l 2,且分别与直线l 交于C ,D 两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为( ) A 、90° B 、110° C 、108° D 、100°答案:D考点:两直线平行的性质。
解析:如下图,因为l 1∥l 2, 所以,∠3=∠1=50°, ∠3+∠2+30°=180°,∠2=180°-50°-30°=100°5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需( )A 、3元B 、5元C 、8元D 、13元 答案:C考点:二元一次方程组。
解析:购买1本笔记本和1支水笔分别需x 、y 元,则有314318x y x y ⎧⎨+=⎩+=,解得:53x y =⎧⎨=⎩, x +y =5+3=86.将点A (2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B ,则点B 的坐标是( )A 、(-1,3)B 、(5,3)C 、(﹣1,﹣5)D 、(5,﹣5) 答案:A考点:平移。
最新2021-2022年七年级数学下期末统考测试卷含答案
第二学期教学质量检测试卷本试卷共三大题,满分120分,考试时间90分钟,不能使用计算器。
一、选择题(本题共有10小题,每小题2分,共20分)注意:每小题有四个选项,其中有且仅有一项符合题意,选错、不选、多选或涂改不清的均不给分.1.在平面直角坐标系xoy中,点P()2,4-位于().A.第一象限B.第二象限C.第三象限D.第四象限2.下列各数中是无理数的是().A.3B.4C.38D.3.143.下列调查中,调查方式选择合理的是().A.为了调查某批次汽车的抗撞击能力,选择全面B.为了调查某池塘中现有鱼的数量,选择全面调查C.为了了解某班学生的身高情况,选择抽样调查D.为了了解全国中学生的视力和用眼卫生情况,选择抽样调查4.为了直观地表示我国体育健儿在最近八届夏季奥运会上获得奖牌总数的变化趋势,最适合使用的统计图是().A.扇形图B.折线图C.条形图D.直方图5.下列命题中是假命题的是().A.两点的所有连线中,线段最短B.两条直线被第三条直线所截,同位角相等C.等式两边加同一个数,结果仍相等D.不等式两边加同一个数,不等号的方向不变6.如图,点E在AB的延长线上,下列条件中可以判断AB∥CD的是().A.∠DAB=∠CBE B.∠ADC=∠ABC C.∠ACD=∠CAE D.∠DAC=ACB第6题 第7题 第10题7.如图,AB ⊥AC,AD ⊥BC,垂足为D ,AB=3,AC=4,AD=125,BD=95,则点B 到直线AD 的距离为( ).A .95B .125C .3D .48.若a b ->,则下列不等式中成立的是( ).A .0a b ->B .2a a b ->C .2a ab ->D .1a b ->9.一个篮球队共打12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队赢了的场数最少为( ).A .3B .4C .5D .610.如图,一个点在第一象限及x 轴、y 轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→)(0,1)→(0,2)→……,且每秒移动一个单位,那么第2021秒时,点所在位置的坐标是( ).A .(6,44)B .(38,44)C .(44,38)D .(44,6)二、填空题(本题共有6小题,每小题3分,共18分)11.27的整数部分是__________.12.在某次八年级数学能力测试中,60名考生成绩的频数分布直方图如图所示(分数取正整数,满分100分)。
北京市第二中学教育集团2023-2024学年七年级上学期期末数学试题(含解析)
2023−2024学年度第一学期初一数学期末考试试卷考查目标1.知识:人教版七年级上册《有理数》、《整式的加减》、《一元一次方程》、《几何图形初步》全部内容.2.能力:抽象能力,运算能力,推理能力,几何直观能力,阅读理解能力,实际应用能力.考生须知1.本试卷分为第I 卷、第Ⅱ卷和答题卡,共14页;其中第1卷2页,第Ⅱ卷6页,答题卡6页.全卷共三道大题,28道小题.2.本试卷满分100分,考试时间100分钟.3.在第Ⅰ卷、第Ⅱ卷指定位置和答题卡的密封线内准确填写班级、姓名、考号、座位号.4.考试结束,将答题卡交回.第I 卷 (选择题共16分)一、选择题(以下每题只有一个正确的选项,每小题2分,共16分)1.如图是某几何体的三视图,该几何体是( )A .圆柱B .圆锥C .三棱锥D .长方体2.2023年8月,新一代人造太阳“中国环流三号”首次实现100万安培等离子体电流下的高约束模式运行,标志着我国磁约束核聚变装置运行水平迈入国际前列.将1000000用科学记数法表示应为( )A .B .C .D .3.如图,甲从点出发向北偏东方向走到点,乙从点出发向南偏西方向走到点,则的度数是( )6110⨯51010⨯70.110⨯7110⨯O 50︒A O 20︒B AOB ∠A .B 4.已知,,且A .2或8B 5.如图,A .6.若是关于A .10107.如图,将一刻度尺放在数轴上.70︒29a =5b =AOB AOC ∠∠:36︒2x =A .1B .3C .5D .6第Ⅱ卷 (非选择题共84分)10.多项式是 11.若一个角的补角比它的余角的312.古代名著《算学启蒙》中有一题行一十二日,问良马几何追及之.意思是里.慢马先走12天,快马几天可追上慢马?若设快马程为 .32231a a a -+-15.如图,一个大正方形的四个角落分别放置了四张大小不同的正方形纸片,其中号两张正方形纸片既不重叠也无空隙.已知阴影部分的周长是 .(用含a (1)画直线;(2)连接并延长到(3)画射线、并度量AB BC BC CA CD解:∵,∴,∵,∴90AOB ∠=︒90BOC AOC ∠+∠=︒90COD ∠=︒90BOC BOD ∠+∠=︒依题得:,,.50AOC ∠=︒AOB AOD BOD ∴∠=∠+∠COD AOC BOD =∠-∠+∠1805020=︒-︒+︒150=︒根据上图可知:第一次变换后,朝上的点数为5,9.两点之间,线段最短【分析】本题主要考查了线段的性质,即两点之间,线段最短.【详解】解:亮亮打开导航,显示两地直线距离为,但导航提供的三条可选路线长却分别为,,,能解释这一现象的数学知识是:两点之间,线段最短.故答案为:两点之间,线段最短.10. 三 四【分析】本题考查了多项式的概念,几个单项式的和叫做多项式.多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.根据多项式的概念解答即可.【详解】解:∵有4个项,最高次项是3次,∴多项式是三次四项式.故答案为;三,四.11.##43度【分析】本题考查了余角和补角的意义,如果两个角的和等于,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于,那么这两个角互为补角,其中一个角叫做另一个角的补角.设这个角为,根据题意列方程求解即可.【详解】解:设这个角为,由题意,得,解得.故答案为:.12.240x=150x+12×150【分析】设良马x 天能够追上驽马,根据路程=速度×时间结合二者总路程相等,即可得出关于x 的一元一次方程.【详解】解:设良马x 天能够追上驽马.根据题意得:240x=150×(12+x )=150x+12×150.【点睛】本题考查的知识点是一元一次方程的应用,解题关键是根据路程=速度×时间结合二者总路程相等,列出关于x 的一元一次方程.13.2或359km 70km 73km 75km 32231a a a -+-32231a a a -+-43︒90︒180︒x ︒x ︒()1803904x x ︒-︒=︒--︒43x =43︒21.2【分析】本题考查了与线段中点有关的计算,据线段中点的定义求出的长,再根据【详解】解:∵点O 是的中点,∴,OB AB 182OB AB ==及根据绝对值的意义化简绝对值.(1)根据数轴可知a .b ,c 的正负性即可求解.(2)根据数轴可知,,,然后根据绝对值的性质化解求解即可.【详解】(1)解:根据数轴可得:,∴,.故答案为:,(2)根据数轴可得:,,∴24.(1)1040(2)302立方米【分析】本题考查了有理数的混合运算,一元一次方程的应用,找到相等关系是解题的关键.(1)根据题中的收费标准计算;(2)根据“B 家庭2023年水费为1838元”列方程求解.【详解】(1)(元),故答案为:1040;(2)设该家庭年用水量为x 立方米,∵,∴,则:,解得:,答:该家庭年用水量为302立方米.25.(1)见详解0b <0a c +>0b a -<0b a c <<<0c -<0abc ><>0b <0a c +>0b a -<||||||b ac b a ++--()b ac a b =-++--b a c a b=-++-+c=()180572001801040⨯+⨯-=()1805726018014601838⨯+⨯-=<260x >()()1805726018092601838x ⨯+⨯-+-=302x =设,∵射线绕点O 顺时针旋转得到射线∴∵平分,平分AOC α∠=OC 90︒90AOD AOC COD a ∠=∠+∠=+OE AOD ∠OF BOC ∠设,则∵平分,平分∴,则设,则,∵平分,平分∴,设,则∵平分,平分AOC β∠=AOD β∠=+OE AOD ∠OF BOC ∠19022EOD AOD β+︒∠=∠=EOF EOD FOC COD ∠=∠+∠-∠AOC γ∠=90AOD γ∠=︒-OE AOD ∠OF BOC ∠19022EOD AOD γ︒-∠=∠=FOC ∠AOC α∠=AOD AOC ∠=∠-360240BOC AOB AOC ∠=︒-∠-∠=OE AOD ∠OF BOC ∠。
2023-2024学年河南省郑州市郑州东区七年级(下)期末数学试卷(含答案)
2023-2024学年河南省郑州市郑州东区七年级(下)期末数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.第33届夏季奥林匹克运动会将于2024年7月26日在巴黎开幕,此次奥运会体育项目图标充满了图形变换的元素.下列运动项目图标中,不是轴对称图形的是( )A. B. C. D.2.若∠1和∠2互补,∠1=36°,则∠2的度数是( )A. 44°B. 54°C. 144°D. 154°3.下列计算正确的是( )A. x5+x5=x10B. b6÷b3=b2C. (ab4)4=a4b16D. (−c2)2n=−c4n4.如图所示,货车匀速通过隧道(隧道长大于货车长)时,货车从进入隧道至离开隧道的时间x与货车在隧道内的长度y之间的关系用图象描述大致是( )A. B.C. D.5.小红在学习垂线时遇到了这样一个问题,请你帮她解决:如图,线段AB和CD相交于点O,则下列条件中能说明AB⊥CD的是( )A. AO=OBB. CO=ODC. ∠AOC=∠BODD. ∠AOC=∠BOC6.2024年6月2日清晨,嫦娥六号成功着陆在月球背面南极——艾特肯盆地预选着陆区,开启了人类探测器首次在月球背面的样品采集任务.小亮同学是航天知识爱好者,他利用边长为16cm的正方形制作出七巧板如图1,并拼出火箭模型如图2.在对火箭模型进行创意宣讲时,激光笔射出的小红点落在该模型的任意位置,它停在阴影部分的概率为( )A. 18B. 316C. 14D. 5167.如图①是长方形纸带,上下边缘平行(AD//BC),∠CFE=α,将纸带沿EF折叠成图②,其中,∠DEG=β,则α,β满足的数量关系是( )A. 2α+β=180°B. α+2β=180°C. 2α+β=90°D. α+β=90°8.在△ABC中,∠B=∠C=50°,将△ABC沿图中虚线剪开,剪下的两个三角形不一定全等的是( )A. B.C. D.9.如图,点C是线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为( )A. 6B. 8C. 10D. 1210.如图,在四边形ACDB中,∠CAB=114°,M、N分别是BD、CD上的点,当△AMN的周长最小时,则∠MAN的度数为( )A. 66°B. 48°C. 57°D. 90°二、填空题:本题共5小题,每小题3分,共15分。
2022-2023人教版七上数学期末考试压轴题集训(四)(解析版)
期末考试压轴题训练(四)1.已知m 为非负整数,若关于x 的方程mx =2-x 的解为整数,则m 的值为________.2.如图,点C 是射线OA 上一点,过C 作CD OB ⊥,垂足为D ,作CE OA ⊥,垂足为C ,交OB 于点E .给出下列结论:①1∠是DCE ∠的余角;②AOB DCE ∠=∠;③图中互余的角共有3对;④ACD BEC ∠=∠.其中正确结论有______.【答案】①②④【详解】解:由CD OB ⊥,CE OA ⊥, 可得∠ODC =∠EDC =∠ECO =∠ECA =90°,所以∠1+∠DCE =∠ECO =90°,∠1+∠AOB =180°-∠ODC =90°, 即∠1是DCE ∠的余角,AOB DCE ∠=∠, 故①②正确;又因为∠CED +∠DCE =180°-∠EDC =90°,∠1+∠DCE =90°, 所以∠1=∠CED ,所以ACD BEC ∠=∠(等角的补角相等) 故④正确;∠1与∠DCE 互余,∠1与∠AOB 互余,∠CED 与∠DCE 互余,∠AOB 与∠CEO 互余, 所以互余的角不止3对,故③错误, 故答案为①②④3.一个长方体包装盒展开后如图所示(单位:cm ),则其容积为 _____cm 3.【答案】6600【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm ),宽为:32﹣10=22(cm ),长为:(70﹣10)÷2=30(cm ),故其容积为:30×10×22=6600(cm 3), 故答案为:6600.4.已知a 、b 为有理数,下列说法: ①若a 、b 互为相反数,则1ab; ②若a +b <0,ab >0,则|3a +4b |=﹣3a ﹣4b ; ③若|a ﹣b |+a ﹣b =0,则b >a ;④若|a |>|b |,则(a +b )•(a ﹣b )是负数. 其中错误的是_____(填写序号).故答案为:①③④.5.某数学老师在课外活动中做了一个有趣的游戏:首先发给A ,B ,C 三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成下列三个步骤: 第一步,A 同学拿出三张扑克牌给B 同学; 第二步,C 同学拿出三张扑克牌给B 同学;第三步,A 同学手中此时有多少张扑克牌,B 同学就拿出多少张扑克牌给A 同学, 请你确定,最终B 同学手中剩余的扑克牌的张数为___________________. 【答案】9【详解】设每个同学的扑克牌的数量都是x ;第一步,A 同学的扑克牌的数量是3x -,B 同学的扑克牌的数量是3x +; 第二步,B 同学的扑克牌的数量是33x ++,C 同学的扑克牌的数量是3x -;第三步,A 同学的扑克牌的数量是2(3x -),B 同学的扑克牌的数量是33x ++-(3x -); ∴B 同学手中剩余的扑克牌的数量是:33x ++-(3x -)9=. 故答案为:9.6.“转化”是一种解决问题的常用策略,有时画图可以帮助我们找到转化的方法.例如借助图①,可以把算式1+3+5+7+9+11转化为62=36,请你观察图②,可以把算式1111111248163264128++++++转化为_______.7.如图,已知点A 、点B 是直线上的两点,14AB =厘米,点C 在线段AB 上,且5BC =厘米.点P 、点Q 是直线上的两个动点,点P 的速度为1厘米/秒,点Q 的速度为2厘米/秒.点P 、Q 分别从点C 、点B同时出发在直线上运动,则经过______秒时线段PQ的长为8厘米.【详解】解:9AC AB BC(厘米)(1)点P、Q都向右运动时,(2)点P、Q都向左运动时,(3)点P向左运动,点Q8.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.【答案】7【详解】一个正方体已知1,4,6,第二个正方体已知1,2,3,第三个正方体已知2,5,6,且不同的面上写的数字各不相同,可求得1的对面数字为5,6的对面数字为3,2的对面数字为4∴a+b=7故答案为:7.9.你喜欢吃拉面吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条.如图所示:这样捏合到第七次后可拉出_______根面条.【答案】72【详解】解:第一次捏合后有122222⨯=根面条,第三次捏合后有=根面条,第二次捏合后有23⨯⨯=根面条,…,第7次捏合后有72根面条,2222故答案为:72. 10.如果方程34217123x x -+-=- 的解与方程 ()431621x a x a -+=+- 的解相同,求式子 21a a -+ 的值.11.已知关于x 的多项式||43252a A ax bx x +=+-+,5334B x x x =-+. (1)若整式+A B 不含5x 项和不含3x 项,求a 、b 的值; (2)若整式A B -是一个五次四项式,求出a 、b 满足的条件. 【答案】(1)=3b ,1a =-(2)=0=1=3=3a ab b ---⎧⎧⎨⎨⎩⎩或【详解】(1)因为||432535234a A B ax bx x x x x ++=+-++-+, 当+A B 不含5x 项和不含3x 项时有3330bx x -=和||450a ax x ++=, 因为3(3)0b x -=,30b -=, 所以=3b .因为||45a +=,||1a =,所以1a =-或=1a (不符合题意). 所以1a =-. (2)①∵|a |+4≥4, ∴a =0,b +3=0时, 即a =0,b =-3,②当|a|+4=5(a-1)x5+(b+3)x3是一项,∴a-1≠0,b+3=0,∴a=-1,b=3,∴=0=1 =3=3a ab b---⎧⎧⎨⎨⎩⎩或12.某水果超市最近新进了一批百香果,每斤8元,为了合理定价,在第一周试行机动价格,卖出时每斤以10元为标准,超出10元的部分记为正,不足10元的部分记为负,超市记录第一周百香果的售价情况和售出情况:(1)这一周超市售出的百香果单价单价最高的是星期.(2)这一周超市出售此种百香果的收益如何?(盈利或亏损的钱数)(3)超市为了促销这种百香果,决定从下周一起推出两种促销方式;方式一:购买不超过5斤百香果,每斤12元,超出5斤的部分,每斤打8折;方式二:每斤售价10元.①顾客买(5)a a>斤百香果,则按照方式一购买需要元,按照方式二购买需要元(请用含a的代数式表示)②如果某顾客决定买35斤百香果,通过计算说明用哪种方式购买更省钱.【答案】(1)六(2)135元(3)①9.6a+12,10a;②选择方式一购买更省钱【详解】(1)这一周超市售出的百香果单价最高的是星期六,故答案为:六;(2)1×20-2×35+3×10-1×30+2×15+5×5-4×50=-195(元),(10-8)×(20+35+10+30+15+5+50)=2×165=330(元),-195+330=135(元);所以这一周超市出售此种百香果盈利135元;(3)①方式一:(a-5)×12×0.8+12×5=(9.6a+12)元;方式二:10a(元);故答案为:9.6a +12,10a ;②方式一:(35-5)×12×0.8+12×5=348(元), 方式二:35×10=350(元), ∵348<350,∴选择方式一购买更省钱.13.如图,O 为数轴原点,点A 原点左侧,点B 在原点右侧,且2OB OA =,18AB =.(1)求A 、B 两点所表示的数各是多少;(2)P 、Q 为线段AB 上两点,且2QB PA =,设PA m =,请用含m 的式子表示线段PQ 的长; (3)在(2)的条件下,M 为线段PQ 的中点,若1OM =,请直接写出m 的值. 【答案】(1)A 、B 两点所表示的数各是-6,12 (2)线段PQ 的长是18-3m 或3m -18 (3)m 的值是4或8【详解】(1)解:∵OB =2OA ,AB =18,AB =OA +OB , ∴18=OA +2OA , 解得:OA =6, ∴OB =12,∵点A 原点左侧,点B 在原点右侧, ∴点A 表示的数为﹣6,点B 表示的数为12. (2)解:∵QB =2P A ,设P A =m , ∴QB =2m ,∴①当点P 在点Q 的左侧时,如图,PQ =AB ﹣P A ﹣BQ =18﹣3m ; ②当点P 在点Q 的右侧时,如图,14.问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm.(2)图中点A所表示的数是,点B所表示的数是.实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我就115岁啦! ”请问妙妙现在多少岁了?【答案】(1)8;(2)14,22;(3)15岁【详解】解:解:(1)观察数轴可知三根木棒长为30−6=24(cm),则这根木棒的长为24÷3=8(cm);故答案为8.(2)6+8=14,14+8=22.所以图中A点所表示的数为14,B点所表示的数为22.故答案为:14,22.-岁,(3)当奶奶像妙妙这样大时,妙妙为(35)--÷=(岁),所以奶奶与妙妙的年龄差为[115(35)]350--=(岁).所以妙妙现在的年龄为11550501515.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA⊥MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD 平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON 的度数.即:180°-∠CON=2(∠CON-∠DON),则:180-4t=2(4t-70-2t).解得:t=40.∴∠CON=4°×40=160°.当∠COD=2∠COM时,如图,即:∠CON-∠DON=2(180°-∠CON).则:4t-(70+2t)=2(180-4t).解得:t=43.∴∠CON=4°×43=172°.综上,当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,∠CON的度数为160°或172°.。
2019-2020学年七年级上学期期末考试数学试卷(附解析)
2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。
2022-2023学年数学冀教版七年级上册期末模拟卷(原卷版)
2022-2023学年数学冀教版七年级上册期末模拟卷一.选择题(共16小题,满分42分)1.(3分)如果﹣(﹣a)为正数,则a为()A.正数B.负数C.0D.任意有理数2.(3分)图中的几何体(圆锥)是由下列()平面图形绕轴旋转一周得到的.A.B.C.D.3.(3分)下列运算正确的是()A.﹣(﹣3)2=9B.﹣|﹣3|=3C.(﹣2)3=6D.(﹣2)3=﹣8 4.(3分)若n是整数,则n+1,n+3表示()A.两个奇数B.两个偶数C.两个整数D.两个正整数5.(3分)如果A、B、C三点在同一直线上,且线段AB=4cm,BC=2cm,那么AC两点之间的距离为()A.2cm B.6cm C.2或6cm D.无法确定6.(3分)如果收入3万元,记作+3万元,那么﹣2万元表示()A.收入2万元B.支出﹣2万元C.支出2万元D.利润是2万元7.(3分)下列代数式中,单项式共有()a,﹣2ab,,x+y,x2+y2,﹣1,A.2个B.3个C.4个D.5个8.(3分)某超市有线上和线下两种销售方式.去年10月份该超市线下销售额比线上销售额多a元.与去年相比,该超市今年10月份线上销售额增长35%,线下销售额减少10%.若该超市今年10月份的销售总额比去年10月份的销售总额增加了10%,则今年10月份线上销售额与当月销售总额的比为()A.B.C.D.9.(3分)把弯曲的河道改直,这样能缩短航程,这样做的道理是()A.线段有两个端点B.线段可以比较大小C.两点之间线段最短D.两点确定一条直线10.(3分)如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠AA′C′的度数是()A.15°B.20°C.25°D.30°11.(2分)元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x元(x>100),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣20B.80%(x﹣20)C.20%x﹣20D.20%(x﹣20)12.(2分)经过任意三点中的两点共可以画出的直线的条数是()A.1条或3条B.3条C.2条D.1条13.(2分)完成下列填空:﹣=0.6,解:化简,得:2.5x﹣()=0.6.括号内填入的应该是()A.B.0.75﹣0.5x C.D.0.75+0.5x 14.(2分)下列各数中,与﹣5的乘积得0的数是()A.5B.﹣5C.0D.115.(2分)下列时刻,时针与分针的夹角为直角的是()A.3时30分B.9时30分C.8时55分D.6时分16.(2分)绵阳市中学生足球联赛共8轮(即每队需要比赛8场),胜一场得3分,平一场得一分,负一场不得分,在2019足球联赛中,三台县中学生足球代表队踢平的场数是负场数的2倍,共得17分,三台足球队胜了()场.A.4B.5C.2D.不确定二.填空题(共3小题,满分15分)17.(3分)若单项式2x4y n与﹣3x m y2可以合并同类项,则m n=.18.(6分)在每个口内填入“+、﹣、×、÷”中的某一个符号(可重复使用),使得“1口2口3﹣6”计算所得数最小,则这个最小数是.19.(6分)图(1)是棱长为1的小正方体,图(2)、图(3)是由这样的正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第1层、第2层…第n层,第n层小正方体个数记为S,如表.l1234…S13610…当n=100 时,S=.三.解答题(共6小题,满分47分)20.(9分)计算:(1)27﹣8×(﹣5)﹣(﹣1)4;(2);(3)化简:3x2﹣3(﹣x2﹣2x+1)+4;(4)先化简,再求值,其中x=﹣1,y=﹣2:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy];(5)2y﹣1=1﹣3y;(6)=﹣x.21.(6分)已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠COD=30°)如图1摆放,点O、A、C在一条直线上.将直角三角板OCD绕点O逆时针方向转动,变化摆放如图位置(1)如图1,当点O、A、C在同一条直线上时,则∠BOD的度数是多少?(2)如图2,若要OB恰好平分∠COD,则∠AOC的度数是多少?(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON 平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.22.(8分)杭州地铁2号线是杭州市第二条建成运营的地铁线路,大致呈西北﹣东南走向,西北起良渚站,东南至朝阳站,共设33个地下车站,其中东南段15个站点如图所示.某一天王红同学从振宁路站开始乘坐地铁,在地铁各站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,约定向朝阳站方向为正,当天的乘车记录如下(单位:站):+5,﹣2,﹣6,+8,+3,﹣4,﹣9,+8(1)请通过计算说明A站是哪一站?(2)相邻两站之间的距离为1.3千米,求这次王红志愿服务期间乘坐地铁行进的路程是多少千米?23.(8分)化简:(1)﹣3a+2ab﹣4ab+2a;(2)4(2x2y﹣xy﹣1)﹣2(4x2y﹣2xy+3).24.(8分)全球赖氏的精神家园、中原“根亲文化”的示范性工程﹣﹣古赖国文化园坐落在河南省三大历史名镇之一的息县包信镇,近些年世界各地赖氏宗亲都会到河南息县参加赖氏祭祖活动.为使活动更有意义,举办方决定购买甲、乙两种品牌的文化衫,已知购买4件甲品牌文化衫和2件乙品牌文化衫需230元;购买8件甲品牌文化衫和6件乙品牌文化衫需530元.(1)求甲、乙两种品牌文化衫的单价;(2)根据需要,举办方决定购买两种品牌的文化衫共2000件,且甲品牌文化衫的件数超过乙品牌文化衫件数的2倍.请你设计出最省钱的购买方案,并说明理由.25.(8分)如图,把一个面积为1的正方形等分成两个面积为的长方形,接着再把面积为的一个长方形分成两个面积为的长方形,再把面积为的一个长方形分成两个面积为的长方形,如此进行下去.(1)第8次等分所得的一个小长方形面积为多少?(2)试利用图形揭示的规律计算:+++++++.。
初中数学:专题1 实数的运算专项训练50道(举一反三)(解析版)
专题6.5 实数的运算专项训练(50道)参考答案与试题解析3+(﹣1)2021.1.(1分)(2021春•陆河县校级期末)计算:√9+|√5−3|+√−64【分析】先求算术平方根、绝对值、立方根运算,再进行计算即可.3+(﹣1)2021【解答】解:√9+|√5−3|+√−64=3+3−√5−4﹣1=1−√5.3+|√3−2|.2.(1分)(2021春•珠海期中)计算:(﹣2)2+√(−3)2−√27【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.3+2−√3【解答】解:原式=4+√32−√33=4+3﹣3+2−√3=6−√3.3.(1分)(2021•天心区开学)计算:|7−√2|−|√2−π|−√(−7)2.【分析】由去绝对值及算术平方根运算法则计算即可.【解答】解:原式=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π.3+|2−√5|+|3−√5|.4.(1分)(2021春•浏阳市期末)计算:√81+√−27【分析】本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.3+|2−√5|+|3−√5|【解答】解:√81+√−27=9﹣3+√5−2+3−√5=7.3+(﹣3)2−√25+|√3−2|+(√3)2.5.(1分)(2021春•淮北期末)√(−5)3【分析】先计算开方、乘方、绝对值的运算,再合并即可得到答案.【解答】解:原式=−5+9−5+2−√3+3=4−√3.3−√4.6.(1分)(2021春•昆明期末)计算:(﹣1)3+|−√2|+√27【分析】直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:原式=﹣1+√2+3﹣2=√2. 7.(1分)(2021春•宁乡市期末)计算:√−13+√49+|3−π|−(−√3)2.【分析】直接利用立方根的性质以及绝对值的性质和二次根式的性质分别化简,再利用实数加减运算法则计算得出答案.【解答】解:原式=﹣1+7+π﹣3﹣3=π. 8.(1分)(2021春•临沧期末)计算:√83−(−1)2021+√(−3)2−|1−√3|.【分析】首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√83−(−1)2021+√(−3)2−|1−√3|=2﹣(﹣1)+3﹣(√3−1)=6−√3+1=7−√3.9.(1分)(2021春•曲靖期末)计算:﹣22×√14−√83+√9×(﹣1)2021. 【分析】先化简有理数的乘方,算术平方根,立方根,然后先算乘法,再算加减.【解答】解:原式=﹣4×12−2+3×(﹣1)=﹣2﹣2﹣3=﹣7. 10.(1分)(2021春•海拉尔区期末)计算:√−83÷√0.04+√14×(−2)2−(−1)2020.【分析】先化简立方根,算术平方根,有理数的乘方,然后先算乘除,再算加减.【解答】解:原式=﹣2÷0.2+12×4﹣1=﹣10+2﹣1=﹣9.11.(1分)(2021春•红塔区期末)计算:(﹣1)2020﹣(﹣2)2+√4+√−273. 【分析】直接利用有理数的乘方运算法则以及立方根的性质、算术平方根分解化简得出答案.【解答】解:原式=1﹣4+2﹣3=﹣4.12.(1分)(2021春•盘龙区期末)计算:(﹣1)2021+|3﹣π|+√16+√−83−π.【分析】根据﹣1的奇、偶次方,绝对值、算术平方根、立方根的运算法则进行计算即可得出答案.【解答】解:原式=﹣1﹣(3﹣π)+4﹣2﹣π=﹣1﹣3+π+2﹣π=﹣2. 13.(1分)(2021春•开福区校级期末)√(−1)2+√273+(−1)2021+|√3−3|.【分析】先计算平方根、乘方和绝对值运算,再合并同类项即可.【解答】解:原式=|﹣1|+3+(﹣1)+3−√3=1+3﹣1+3−√3=6−√3.14.(1分)(2021春•利川市期末)计算|√2−√3|﹣2(14+√22)−√−183. 【分析】根据绝对值的性质、立方根的定义以及实数的加减运算以及乘除运算法则即可求出答案. 【解答】解:原式=√3−√2−12−√2+12 =√3−2√2. 15.(1分)(2021春•永城市期末)计算:√16+√−643−√1−(35)2−|π﹣3.2|. 【分析】直接利用立方根的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣4−45−(3.2﹣π)=4﹣4−45−3.2+π=﹣4+π. 16.(1分)(2021春•鹿邑县期末)计算:√(−1)33−√3116+√(1−78)23. 【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√(−1)33−√3116+√(1−78)23=﹣1−74+14=−52. 17.(1分)(2021春•恩平市期末)计算:√25+√−83−√49+√8273+(−1)2021. 【分析】利用实数的运算法则对所求式子进行求解即可.【解答】解:√25+√−83−√49+√8273+(−1)2021 =5﹣2−23+23−1=2.18.(1分)(2021春•潮阳区期末)计算:−12021+√(−2)2−√−1253+|√2−3|.【分析】直接利用绝对值的性质和立方根的性质和二次根式的性质分别化简得出答案.【解答】解:原式=﹣1+2+5+3−√2=9−√2. 19.(1分)(2021春•白云区期末)计算:√−273−√256−√116+√1−63643. 【分析】实数的混合运算,先分别化简立方根,算术平方根,然后再计算.【解答】解:原式=﹣3﹣16−14+√1643 =﹣3﹣16−14+14=﹣19. 20.(1分)(2021春•杨浦区期中)计算:√−0.0013−(√23−√10003)−√162.【分析】直接利用立方根以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣0.1−√23+10−42 =﹣0.1−√23+10﹣2 =7.9−√23.21.(2分)(2021春•青川县期末)计算:(1)(﹣3)2+2×(√2−1)﹣|﹣2√2|;(2)√−83−√1−1625+|2−√5|+√(−4)2.【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=9+2√2−2﹣2√2=7; (2)原式=﹣2−√925+√5−2+4=﹣2−35+√5−2+4=√5−35.22.(2分)(2021春•西城区校级期中)计算:(1)(−√7)2−√62+√−83;(2)√49−√273+|1−√2|+√(1−54)2.【分析】(1)先化简,再计算加减法;(2)先算二次根式、三次根式,再计算加减法.【解答】解:(1)原式=7﹣6+(﹣2)=7﹣6﹣2=﹣1;(2)原式=7﹣3+√2−1+54−1=2+54+√2=134+√2. 23.(2分)(2021春•抚顺期末)计算:(1)√−83+√36−√49;(2)√254+√−273−|2−√3|+√(−2)2. 【分析】(1)根据立方根,算术平方根的运算法则进行运算,即可得出答案;(2)根据算术平方根,立方根,绝对值的法则进行运算,即可得出答案.【解答】解:(1)解:原式=﹣2+6﹣7=﹣3;(2)原式=52−3﹣2+√3+2 =−12+√3. 24.(2分)(2021春•乾安县期末)计算:(1)|√3−2|−(√3−1)+√−643;(2)√9+|﹣2|+√273+(﹣1)2021. 【分析】(1)直接利用绝对值的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:(1)原式=2−√3−√3+1﹣4=﹣2√3−1;(2)原式=3+2+3﹣1=7.25.(2分)(2021春•曾都区期末)计算下列各式:(1)√(−1)2+√14×(﹣2)2−√−643;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简,再合并二次根式得出答案.【解答】解:(1)原式=1+12×4+4=1+2+4=7;(2)原式=√3−√2+2−√3−(√2−1)=√3−√2+2−√3−√2+1=3﹣2√2.26.(2分)(2021春•林州市期末)计算:(1)|3−√13|+√−273−√13+√25;(2)−12−(−2)3×18+√−273×|−13|+|1−√3|.【分析】(1)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案;(2)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=√13−3﹣3−√13+5=﹣1;(2)原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.27.(2分)(2021春•黄冈期末)计算:(1)(−√2)2+|1−√2|+√−83; (2)﹣22+√(−4)2+√32+42−(﹣1)2021.【分析】(1)首先计算乘方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)(−√2)2+|1−√2|+√−83=2+√2−1+(﹣2)=√2−1.(2)﹣22+√(−4)2+√32+42−(﹣1)2021=﹣4+4+5﹣(﹣1)=6.28.(2分)(2021春•越秀区期末)(1)计算:√183+√(−2)2+√14;(2)计算:2(√3−1)﹣|√3−2|−√−643.【分析】(1)根据立方根以及算术平方根的定义解决此题.(2)由|√3−2|=2−√3,√−643=−4,得2(√3−1)−|√3−2|−√−643=3√3.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)2(√3−1)−|√3−2|−√−643=2√3−2−(2−√3)−(−4)=2√3−2−2+√3+4=3√3.29.(2分)(2021春•西城区校级期末)计算题(1)√83+√0−√14+√−183+|3−√2|; (2)√−273−√0−√14+√0.1253+√1−63643.【分析】(1)根据立方根,算术平方根,绝对值的性质计算即可;(2)先化简,再求这个数的立方根,化简即可.【解答】解:(1)原式=2+0−12−12+3−√2=4−√2;(2)原式=﹣3﹣0−12+√183+√1643 =﹣3−12+12+14=−114.30.(2分)(2020春•合川区期末)计算:(1)|﹣2|+(﹣1)2020+√214−√−183; (2)(﹣24)﹣(12−23)÷(−16)×[﹣2−√(−3)2]﹣|14−0.52|. 【分析】(1)直接利用有理数的乘方运算法则以及立方根的性质、算术平方根、绝对值的性质分别化简得出答案;(2)直接利用有理数的混合运算以及二次根式的性质、绝对值的性质分别化简得出答案. 【解答】解:(1)原式=2+1+√94+12=2+1+32+12=5;(2)原式=﹣16﹣(36−46)×(﹣6)×(﹣2﹣3)﹣|14−(12)2| =﹣16+16×(﹣6)×(﹣5)﹣0=﹣16+5﹣0=﹣11.31.(2分)(2020春•甘南县期中)计算下列各式:(1)√16−√273+√−183+√94 (2)|1−√2|+√−8273×√14−√2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,平方根、立方根定义计算即可求出值.【解答】解:(1)原式=4﹣3−12+32=2;(2)原式=√2−1−23×12−√2=−43.32.(2分)(2020春•岳麓区校级月考)计算:(1)√83−√4−√(−3)2+|1−√2|(2)√6×(√6−√6)−√214−|2﹣π| 【分析】(1)首先计算立方根,化简二次根式,计算绝对值,然后再计算加减即可;(2)首先计算乘法、化简二次根式,计算绝对值,然后再计算加减即可.【解答】解:(1)原式=2﹣2﹣3+√2−1=√2−4;(2)原式=1﹣6−32−(π﹣2),=1﹣6−32−π+2,=﹣412−π. 33.(2分)(2020春•蕲春县期中)计算:(1)√−273+√(−3)2+√−13;(2)√16+√−27643×√(−43)2−|2−√5|. 【分析】(1)首先根据二次根式和立方根的性质进行化简,再计算加减即可;(2)首先根据二次根式和立方根和绝对值的性质进行化简,再计算乘法,后算加减即可.【解答】解:(1)原式=﹣3+3﹣1=﹣1;(2)原式=4−34×43−(√5−2)=4﹣1−√5+2=5−√5.34.(2分)(2020春•西市区期末)计算:(1)√−13−√83÷√(−6)2;(2)(2−√3)2020×(2+√3)2021﹣2√34.【分析】(1)首先计算乘方、开方,然后计算除法,最后计算减法,求出算式的值是多少即可.(2)首先根据积的乘方计算,然后计算乘法、减法,求出算式的值是多少即可.【解答】解:(1)√−13−√83÷√(−6)2=﹣1﹣2÷6=﹣1−13=−43.(2)(2−√3)2020×(2+√3)2021﹣2√34 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×√32=2+√3−√3=2.35.(2分)(2020春•渝北区校级月考)计算下列各题. (1)|3−2√3|−√643+(√6)2;(2)√1.44+√1033−√0.04−√83−√−13.【分析】(1)直接利用立方根的性质以及二次根式的性质、绝对值的性质等知识分别化简得出答案;(2)直接利用立方根的性质以及二次根式的性质等知识分别化简得出答案.【解答】解:(1)原式=2√3−3﹣4+6=2√3−1;(2)原式=1.2+10﹣0.2﹣2+1=10.36.(2分)(2020春•牡丹江期中)计算题:(1)√81+√−273+√(−2)2+|√3−2|;(2)√22−√214+√78−13−√−13. 【分析】各式利用算术平方根、立方根性质计算即可求出值.【解答】解:(1)原式=9﹣3+2+2−√3=10−√3;(2)原式=2−32−12−(﹣1)=2﹣2+1=1.37.(2分)(2020春•凉州区校级期中)计算:(1)√2549+|﹣5|+√−643−(﹣1)2020; (2)√16+√−273−√3−|√3−2|+√(−5)2.【分析】利用二次根式的性质、绝对值得先年改制、立方根的性质、乘方的意义进行计算,再算加减即可.【解答】解:(1)原式=57+5﹣4﹣1=57;(2)原式=4﹣3−√3−2+√3+5=4.38.(2分)(2020秋•东港市期中)(1)(√6−√7)2019×(√6+√7)2020.(2)√32−√−273−√(−23)2+|1−√2|.【分析】(1)直接利用积的乘方运算法则,将原式变形得出答案;(2)直接利用立方根以及算术平方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=[(√6−√7)(√6+√7)]2019×(√6+√7)=﹣1×(√6+√7) =−√6−√7;(2)原式=4√2+3−23+√2−1 =5√2+43.39.(2分)(2020春•越秀区校级月考)计算:(1)√36−√273+√(−2)2−√214;(2)|√3−2|−√4−(3−√3).【分析】(1)直接利用立方根的定义和算术平方根的定义分别化简得出答案;(2)直接利用绝对值的性质以及算术平方根的定义分别化简得出答案.【解答】解:(1)原式=6﹣3+2−32=3.5;(2)原式=2−√3−2﹣3+√3=﹣3.40.(2分)(2020春•和平区校级月考)计算(1)√273+|3−√5|﹣(√9−√83)2+√5; (2)√16−√83−√13+√1+916+|1−√2|﹣|√3−√2|.【分析】(1)直接利用立方根的性质以及绝对值的性质分别化简得出答案;(2)直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=3+3−√5−(3﹣2)2+√5=3+3−√5−1+√5=5;(2)原式=4﹣2﹣1+54+√2−1﹣(√3−√2)=4﹣2﹣1+54+√2−1−√3+√2 =2√2−√3+54.41.(4分)(2020春•硚口区期中)(1)计算:①√−8273×√14−√(−2)2;②√3−√25+|√3−3|+√1−63643.(2)求下列式子中的x 的值:①4(x ﹣2)2=49;②(x ﹣1)3=64.【分析】(1)①直接利用立方根以及二次根式的性质分别化简得出答案;②直接利用立方根以及二次根式的性质分别化简得出答案;(2)①直接利用平方根的定义化简得出答案;②直接利用立方根的定义化简得出答案.【解答】解:(1)①原式=−23×12−2=﹣213;②原式=√3−5+3−√3+14=−74;(2)①∵4(x ﹣2)2=49, ∴(x −2)2=494, ∴x −2=±72,∴x =2±72,∴x =112或x =−32.②∵(x ﹣1)3=64,∴x ﹣1=4,∴x =5.42.(4分)(2020秋•射洪市月考)(1)计算:√16+√−643−√(−3)2+|√3−1|;(2)解方程:18﹣2x 2=0;(3)解方程:(x +1)3+27=0;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2.【分析】(1)利用平方根与立方根的定义及绝对值的意义,先化简,再利用实数混合运算进行运算即可;(2)对方程进行转化,利用平方根的定义即可解答;(3)对方程进行转化,利用立方根的定义即可解答;(4)先利用幂运算法则和平方差公式进行简便运算,利用算术平方根的定义进行化简,再利用实数混合运算进行运算即可;【解答】解:(1)原式=4﹣4﹣3+√3−1=﹣4+√3;(2)∵18﹣2x 2=0,∴2x 2=18,即x 2=9,∴x =±3;(3)∵(x +1)3+27=0,∴(x +1)3=﹣27,∴x +1=﹣3,∴x =﹣4;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×45=2+√3−85=25+√3.43.(4分)(2021春•南开区期中)(1)化简|1−√2|+|√2−√3|+|√3−2|.(2)计算:√−643+√16×√94÷(−√2)2.(3)解方程(x ﹣1)3=27.(4)解方程2x 2﹣50=0.【分析】(1)去掉绝对值符号,合并同类二次根式即可;(2)利用实数的混合运算法则进行运算即可;(3)利用立方根的意义解答;(4)利用平方根的意义解答.【解答】解:(1)原式=√2−1+√3−√2+2−√3=1;(2)原式=﹣4+4×32÷2=﹣4+3=﹣1;(3)两边开立方得:x ﹣1=3.∴x =4.∴原方程的解为:x =4.(4)原方程变为:2x 2=50.∴x 2=25.两边开平方得:x =±5.∴原方程的解为:x 1=5,x 2=﹣5.44.(4分)(2021春•红桥区期中)计算:(1)3√2+√2−6√2;(2)√5(√5+1√5); (3)√−273+√(−2)2−|1−√3|;(4)√9−√−83+√(−3)2−(√2)2. 【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案;(3)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案;(4)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣2√2;(2)原式=5+1=6;(3)原式=﹣3+2﹣(√3−1)=﹣3+2−√3+1=−√3;(4)原式=3+2+3﹣2=6.45.(4分)(2021春•硚口区期中)(1)计算:①√16−√273+√214;②√3(√3√3)+|2−√5|. (2)求下列式子中的x 的值:①(x ﹣2)2=9;②3(x +1)3+81=0.【分析】(1)①首先计算开方,然后从左向右依次计算即可.②首先计算绝对值和乘法,然后从左向右依次计算即可.(2)①根据平方根的含义和求法,求出x 的值是多少即可.②根据立方根的含义和求法,求出x 的值是多少即可.【解答】解(1)①√16−√273+√214=4﹣3+32=52.②√3(√31√3)+|2−√5| =3﹣1+√5−2=√5.(2)①∵(x ﹣2)2=9,∴x ﹣2=±3,解得:x =5或﹣1.②∵3(x +1)3+81=0,∴3(x +1)3=﹣81,∴(x +1)3=﹣27,∴x +1=﹣3,解得:x =﹣4.46.(4分)(2021春•岷县月考)计算:(1)√−8×(−0.5).(2)√4+√225−√400.(3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273. 【分析】根据算术平方根和立方根的定义,分别计算即可.【解答】解:(1)原式=√4=2;(2)原式=2+15﹣20=﹣3;(3)原式=﹣1+√−13+√13=﹣1+(﹣1)+1=﹣1;(4)原式=12−52×(−15)+(﹣7)﹣(﹣3)=12−(−12)+(﹣7)+3=12+12+(﹣7)+3 =1﹣7+3=﹣3.47.(4分)(2020秋•海曙区期中)计算.(1)−34×(−8+23−13).(2)17﹣8÷(﹣4)+4×(﹣5).(3)√25+(√−1273+13)−6. (4)−32×[−32×(−23)2−2].【分析】(1)利用乘法分配律使得计算简便;(2)先算乘除,然后再算加减;(3)先化简算术平方根,立方根,然后算小括号里面的,再算括号外面的;(4)先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【解答】解:(1)原式=34×8−34×23+34×13=6−12+14 =512+14=524+14 =534;(2)原式=17+2﹣20=19﹣20=﹣1; (3)原式=5+(−13+13)﹣6=5+0﹣6=5﹣6=﹣1;(4)原式=−32×(﹣9×49−2)=−32×(﹣4﹣2)=−32×(﹣6)=9.48.(4分)(2020秋•嵊州市期中)计算:(1)(+1013)+(﹣11.5)+(﹣1013)﹣4.5; (2)(﹣6)2×(13−12)﹣23; (3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25); (4)−√36+6÷(−23)×√−83.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律以及有理数的混合运算法则计算得出答案;(3)直接提取公因式14,进而计算得出答案; (4)直接利用算术平方根的性质以及立方根的性质分别化简得出答案.【解答】解:(1)原式=﹣11.5﹣4.5+(1013−1013) =﹣16+0=﹣16;(2)(﹣6)2×(13−12)﹣23 =36×13−36×12−8=12﹣18﹣8=﹣14;(3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25) =14×(﹣270+21.5+812) =14×(﹣240)=﹣60;(4)−√36+6÷(−23)×√−83=﹣6﹣9×(﹣2)=﹣6+18=12.49.(4分)(2020秋•北仑区期中)计算:(1)(﹣3)2﹣(112)3×29−6÷|−23|; (2)﹣12020+|﹣3|+√−1273−√(−4)2; (3)3×(√3−√5)+2×(−32×√3+32);(4)|√6−√2|+|√2−1|﹣|3−√6|.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质、算术平方根的性质分别化简得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用绝对值的性质化简,进而得出答案.【解答】解:(1)(﹣3)2﹣(112)3×29−6÷|−23|=9−278×29−6×32=9−34−9=−34;(2)﹣12020+|﹣3|+√−1273−√(−4)2=﹣1+3−13−4=﹣213; (3)3×(√3−√5)+2×(−32×√3+32)=3√3−3√5−3√3+3=﹣3√5+3;(4)|√6−√2|+|√2−1|﹣|3−√6|=√6−√2+√2−1﹣(3−√6)=√6−√2+√2−1﹣3+√6=2√6−4.50.(4分)(2020秋•下城区校级期中)计算.(1)(+15)﹣(+11)﹣(﹣18)+(﹣15);(2)(﹣72)×(49−38+512−13); (3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2];(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020|.(结果保留根号形式)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律进而计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去绝对值进而计算得出答案.【解答】解:(1)(+15)﹣(+11)﹣(﹣18)+(﹣15)=15﹣11+18﹣15=7;(2)(﹣72)×(49−38+512−13) =(﹣72)×49+(﹣72)×(−38)+(﹣72)×512+(﹣72)×(−13)=﹣32+27﹣30+24=﹣11;(3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2]=﹣1−12×5×(2﹣4)=﹣1−52×(﹣2)=﹣1+5=4;(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020| =√2−1+√3−√2+√4−√3+⋯+√2020−√2019 =√2020−1.。
人教版七年级下册期末数学试卷(含解析)
2019-2020学年辽宁省营口市七年级(下)期末数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.沙燕风筝是北京传统风筝中最具代表性的,不仅性能良好,还有祈福的寓意.图是一种北京沙燕风筝的示意图,在下面的四个图中,能由图经过平移得到的是()A.B.C.D.2.的平方根是()A.3B.﹣3C.±3D.±93.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)4.若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3B.3﹣a<3﹣b C.﹣3a>﹣3b D.3a<3b5.下列调查中,不适合用全面调查方式的是()A.嫦娥四号月球探测器发射前对重要零部件的检查B.对新冠肺炎确诊患者同机乘客进行医学检查C.日光灯管厂要检测一批灯管的使用寿命D.了解某班同学的身高情况6.已知方程组的解满足x=y,则k的值为()A.1B.2C.3D.47.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为()A.20°B.125°C.20°或125°D.35°或1108.若关于x的不等式组无解,则m的取值范围是()A.m≤9B.m≥9C.m≥5D.m≤﹣59.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x人,小学在校生y人,由题意可列方程组()A.B.C.D.10.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④二、填空题(每题3分,共24分)11.“a,b,c是直线,若a⊥b,b⊥c,那么a⊥c”这个命题是命题.(填“真”或者“假”)12.若a<<b,且a,b是两个连续的整数,则ab的值为.13.如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.请你用所学的数学知识说明道理?.14.若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是.15.AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为.16.甲、乙两人同求关于x,y的方程ax﹣by=7的整数解,甲正确地求出一个解为,乙把ax﹣by=7看成ax﹣by=1求得一个解为,则a b的值为.17.如果(x﹣2)2=9,则x=.18.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1向右跳到A2(2,1),第三次点A2跳到A3(﹣2,2),第四次点A3向右跳动至点A4(3,2),…,依此规律跳动下去,则点A2019与点A2020之间的距离是.三、解答题(共66分)19.计算:(﹣2)3×+×()2﹣.20.解方程组或解不等式组:(1);(2).21.补全下面的证明过程和理由:如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F证明:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(),∴∠C=().∴AC∥DF().∴∠A=().∵EF∥AB,∴∠F=().∴∠A=∠F.22.某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,绘制了两幅尚不完整的统计图如图所示.根据统计图中的信息解答下列问题:(1)若A组的频数比B组小24,则频数分布直方图中a=;b=.(2)扇形统计图中n=,并补全频数分布直方图;(3)若成绩在80分以上为优秀,全校共有2000名学生,请估计成绩优秀的学生有多少名?23.将若干吨分别含铁72%和含铁58%的两种矿石混合后配成含铁64%的矿石70吨.求两种矿石分别需要多少吨?24.某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生产一件A 产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少?25.如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+3|+=0,现同时将点A,B分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.(1)请求出C,D两点的坐标;(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠BOP的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在直接写出点M的坐标;若不存在,试说明理由.参考答案与试题解析一.选择题(共10小题)1.沙燕风筝是北京传统风筝中最具代表性的,不仅性能良好,还有祈福的寓意.图是一种北京沙燕风筝的示意图,在下面的四个图中,能由图经过平移得到的是()A.B.C.D.【分析】平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定的距离,这样的图形运动叫作图形的平移运动,简称平移.【解答】解:根据“平移”的定义可知,由题图经过平移得到的图形如下:故选:D.2.的平方根是()A.3B.﹣3C.±3D.±9【分析】求出的值,根据平方根的定义求出即可.【解答】解:∵=9,∴的平方根是±3,故选:C.3.下列各点中,在第二象限的点是()A.(﹣3,2)B.(﹣3,﹣2)C.(3,2)D.(3,﹣2)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A、(﹣3,2)在第二象限,故本选项正确;B、(﹣3,﹣2)在第三象限,故本选项错误;C、(3,2)在第一象限,故本选项错误;D、(3,﹣2)在第四象限,故本选项错误.故选:A.4.若a<b,则下列各式中,错误的是()A.a﹣3<b﹣3B.3﹣a<3﹣b C.﹣3a>﹣3b D.3a<3b【分析】根据不等式的性质,可得答案.【解答】解:A、两边都减3,不等号的方向不变,故本选项不符合题意;B、两边都乘以﹣1,不等号的方向改变,然后两边同时加3,不等号方向不变,即3﹣a>3﹣b.故本选项符合题意;C、两边都乘以﹣3,不等号的方向改变,故本选项不符合题意;D、两边都乘以3,不等号的方向不变,故本选项不符合题意;故选:B.5.下列调查中,不适合用全面调查方式的是()A.嫦娥四号月球探测器发射前对重要零部件的检查B.对新冠肺炎确诊患者同机乘客进行医学检查C.日光灯管厂要检测一批灯管的使用寿命D.了解某班同学的身高情况【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、嫦娥四号月球探测器发射前对重要零部件的检查,精确度要求高,适合普查;B、对新冠肺炎确诊患者同机乘客进行医学检查,事关重大,适合普查;C、日光灯管厂要检测一批灯管的使用寿命,调查具有破坏性,不易普查;D、了解某班同学的身高情况,人数较少,适合普查;故选:C.6.已知方程组的解满足x=y,则k的值为()A.1B.2C.3D.4【分析】将方程组用k表示出x,y,根据方程组的解满足x=y,得到关于k的方程,即可求出k的值.【解答】解:解方程组得,∵关于x,y的二元一次方程组组的解满足x=y,∴,解得:k=1.故选:A.7.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为()A.20°B.125°C.20°或125°D.35°或110【分析】由两角的两边互相平行可得出两角相等或互补,再由题意,其中一个角比另一个角的3倍少40°,可得出答案.【解答】解:设∠β为x,则∠α为3x﹣40°,若两角互补,则x+3x﹣40°=180°,解得x=55°,∠α=125°;若两角相等,则x=3x﹣40°,解得x=20°,∠α=20°.故选:C.8.若关于x的不等式组无解,则m的取值范围是()A.m≤9B.m≥9C.m≥5D.m≤﹣5【分析】先求出两个不等式的解集,再根据不等式组无解列出关于m的不等式求解即可.【解答】解:解不等式﹣>1,得:x>7,解不等式2(m﹣x)≥4,得:x≤m﹣2,∵不等式组无解,∴m﹣2≤7,则m≤9,故选:A.9.我市某九年一贯制学校共有学生3000人,计划一年后初中在校生增加8%,小学在校生增加11%,这样全校在校生将增加10%,设这所学校现初中在校生x人,小学在校生y人,由题意可列方程组()A.B.C.D.【分析】根据题意可以列出相应的二元一次方程组,从而可以解答本题.【解答】解:由题意可得,或,故选:A.10.如图,△ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论①AH⊥EF,②∠ABF=∠EFB,③AC∥BE,④∠E=∠ABE.正确的是()A.①②③④B.①②C.①③④D.①②④【分析】根据平行线的性质、角平分线的定义、余角的性质等来判断即可.【解答】解:∵AH⊥BC,EF∥BC,∴①AH⊥EF正确;∵BF平分∠ABC,∴∠ABF=∠CBF,∵EF∥BC,∴∠EFB=∠CBF,∴②∠ABF=∠EFB正确;∵BE⊥BF,而AC与BF不一定垂直,∴BE∥AC不一定成立,故③错误;∵BE⊥BF,∴∠E和∠EFB互余,∠ABE和∠ABF互余,而∠EFB=∠ABF,∴④∠E=∠ABE正确.故选:D.二.填空题11.“a,b,c是直线,若a⊥b,b⊥c,那么a⊥c”这个命题是假命题.(填“真”或者“假”)【分析】利用垂直的定义进行判断即可.【解答】解:平面内a,b,c是直线,若a⊥b,b⊥c,那么a∥c,故原命题错误,是假命题,故答案为:假.12.若a<<b,且a,b是两个连续的整数,则ab的值为56.【分析】直接利用的取值范围得出a,b的值,进而得出答案.【解答】解:∵7<<8,a<<b,其中a、b为两个连续的整数,∴a=7,b=8,∴ab=56.故答案为:56.13.如图所示,王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.请你用所学的数学知识说明道理?在同一平面内,过一点有且只有一条直线与已知直线垂直.【分析】利用垂线的性质进行解答即可.【解答】解:王师傅为了检验门框AB是否垂直于地面,在门框AB的上端A处用细线悬挂一铅锤,看门框AB 是否与铅锤线重合.若门框AB垂直于地面,则AB会重合于AE,否则AB与AE不重合.所用的数学知识是:在同一平面内,过一点有且只有一条直线与已知直线垂直.故答案为:在同一平面内,过一点有且只有一条直线与已知直线垂直.14.若不等式(a﹣3)x≤3﹣a的解集在数轴上表示如图所示,则a的取值范围是a<3.【分析】不等式两边同时除以a﹣3即可求解不等式,根据不等式的性质可以得到a﹣3一定小于0,据此即可求解.【解答】解:由题意得a﹣3<0,解得:a<3,故答案为:a<3.15.AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数为151°.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,同旁内角互补解答.【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故答案为151°.16.甲、乙两人同求关于x,y的方程ax﹣by=7的整数解,甲正确地求出一个解为,乙把ax﹣by=7看成ax﹣by=1求得一个解为,则a b的值为25.【分析】把代入方程ax﹣by=7得出a+b=7;把代入ax﹣by=1得出a﹣2b=1,求出组成的方程组的解即可.【解答】解:把代入方程ax﹣by=7得:a+b=7;把代入ax﹣by=1得:a﹣2b=1,即,解得:a=5,b=2,所以a b=52=25,故答案为:25.17.如果(x﹣2)2=9,则x=x1=5,x2=﹣1.【分析】相当于求9的平方根.【解答】解:开方得x﹣2=±3,即x﹣2=3或x﹣2=﹣3.解得x1=5,x2=﹣1.故答案为:x1=5,x2=﹣1.18.如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次点A1向右跳到A2(2,1),第三次点A2跳到A3(﹣2,2),第四次点A3向右跳动至点A4(3,2),…,依此规律跳动下去,则点A2019与点A2020之间的距离是2021.【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2019与点A2020的坐标,进而可求出点A2019与点A2020之间的距离.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点A2019的坐标是(﹣1010,1010).∵点A2019与点A2020的纵坐标相等,∴点A2019与点A2020之间的距离=1011﹣(﹣1010)=2021,故答案为:2021.三.解答题(共7小题)19.计算:(﹣2)3×+×()2﹣.【分析】原式利用平方根及立方根定义化简,计算即可得到结果.【解答】解:原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36.20.解方程组或解不等式组:(1);(2).【分析】(1)利用加减消元法求解可得;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1),①×3﹣②,得:﹣11y=﹣11,解得y=1,将y=1代入①,得:3x﹣1=2,解得:x=1,则方程组的解为;(2),解不等式①得:x>2,解不等式②得:x≤5,则不等式组的解集为2<x≤5.21.补全下面的证明过程和理由:如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.求证:∠A=∠F证明:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠ABD(两直线平行,内错角相等).∵EF∥AB,∴∠F=∠ABD(两直线平行,内错角相等).∴∠A=∠F.【分析】证出∠C=∠D,得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.【解答】解:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D(等量代换).∴AC∥DF(内错角相等,两直线平行).∴∠A=∠ABD(两直线平行,内错角相等).∵EF∥AB,∴∠F=∠ABD(两直线平行,内错角相等).∴∠A=∠F.故答案为:对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等.22.某校为了加强学生的安全意识,组织学生参加安全知识竞赛,并从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,绘制了两幅尚不完整的统计图如图所示.根据统计图中的信息解答下列问题:(1)若A组的频数比B组小24,则频数分布直方图中a=16;b=40.(2)扇形统计图中n=126,并补全频数分布直方图;(3)若成绩在80分以上为优秀,全校共有2000名学生,请估计成绩优秀的学生有多少名?【分析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C组的人数是:200×25%=50.补全频数分布直方图如下:(3)2000×(1﹣25%﹣20%﹣8%)=940(名).答:估计成绩优秀的学生有940名.故答案为:(1)16,40;(2)126.23.将若干吨分别含铁72%和含铁58%的两种矿石混合后配成含铁64%的矿石70吨.求两种矿石分别需要多少吨?【分析】设含铁72%的矿山需要x吨,含铁58%的矿山需要y吨,根据“将若干吨分别含铁72%和含铁58%的两种矿石混合后配成含铁64%的矿石70吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设含铁72%的矿山需要x吨,含铁58%的矿山需要y吨,依题意得:,解得:.答:含铁72%的矿山需要30吨,含铁58%的矿山需要40吨.24.某工厂现有甲种原料280kg,乙种原料190kg,计划用这两种原料生产A,B两种产品50件,已知生产一件A 产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件B产品需甲种原料3kg,乙种原料5kg,可获利350元.(1)请问工厂有哪几种生产方案?(2)选择哪种方案可获利最大,最大利润是多少?【分析】(1)关系式为①A产品需甲种原料量+B产品需甲种原料量≤280;②A产品需乙种原料量+B产品需乙种原料量≤190,列不等式组即可求解;(2)利润为:A产品数量×400+B产品数量×350,按自变量的取值求得最大利润.【解答】解:(1)设生产A产品x件,生产B产品(50﹣x)件,则解得30≤x≤32.5∵x为正整数∴x可取30,31,32.当x=30时,50﹣x=20,当x=31时,50﹣x=19,当x=32时,50﹣x=18,所以工厂可有三种生产方案,分别为方案一:生产A产品30件,生产B产品20件;方案二:生产A产品31件,生产B产品19件;方案三:生产A产品32件,生产B产品18件;(2)法一:方案一的利润为30×400+20×350=19000元;方案二的利润为31×400+19×350=19050元;方案三的利润为32×400+18×350=19100元.因此选择方案三可获利最多,最大利润为19100元.法二:设生产A产品x件,生产B产品(50﹣x)件,可获利共y元,∴y=400x+350(50﹣x)=50x+17500,∵此函数y随x的增大而增大,∴当x=32时,可获利最多,最大利润为19100元.25.如图1,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+3|+=0,现同时将点A,B分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点A,B的对应点C,D.连接AC,BD.(1)请求出C,D两点的坐标;(2)如图2,点P是线段AC上的一个动点,点Q是线段CD的中点,连接PQ,PO,当点P在线段AC上移动时(不与A,C重合),请找出∠PQD,∠OPQ,∠BOP的数量关系,并证明你的结论;(3)在坐标轴上是否存在点M,使三角形MAD的面积与三角形ACD的面积相等?若存在直接写出点M的坐标;若不存在,试说明理由.【分析】(1)利用非负数的性质求出a、b,即可解决问题;(2)如图2中,结论:∠DQP+∠QPO+∠BOP=360°.作PH∥AB.根据平行线的性质即可证明;(3)分两种情形当点M在y轴上,设M(0,m),由题意:×5×2=×|m﹣2|×3;当点M在x轴上时,设M(n,0),由题意:•|n+3|×2=×5×2,分别解方程即可解决问题.【解答】解:(1)∵|a+3|+=0,∴|a+3|=0+=0,∴a=﹣3 b=2,∴A(﹣3,0)B(2,0),∴C(﹣5,2),D(0,2);(2)结论:∠PQD+∠OPQ+∠BOP=360°.过点P作PH∥AB.∵将点A,B分别向左平移2个单位长度,再向上平移2个单位长度,分别得到点A,B的对应点C,D.∴CD∥AB,∴PH∥AB∥CD,∴∠PQD+∠QPH=180°,∠BOP+∠HPO=180°,∴∠PQD+∠QPH+∠BOP+∠HPO=360°,∴∠PQD+∠OPQ+∠BOP=360°.(3)当点M在y轴上,设M(0,m),由题意:×5×2=×|m﹣2|×3,解得m=或﹣,∴M(0,)或(0,﹣).当点M在x轴上时,设M(n,0),由题意:•|n+3|×2=×5×2,解得n=2或﹣8,∴M(﹣8,0)或(2,0),综上所述,满足条件的点M的坐标为(0,)或(0,﹣)或(﹣8,0)或(2,0).。
2023年人教版七年级数学下册期末考试卷带答案
2023年人教版七年级数学下册期末考试卷带答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( )A .10B .52C .20D .322.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .3.8的相反数的立方根是( ) A .2B .12C .﹣2D .12-4.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩5.如图,按各组角的位置判断错误的是( )A .∠1与∠4是同旁内角B .∠3与∠4是内错角C .∠5与∠6是同旁内角D .∠2与∠5是同位角6.下列二次根式中,最简二次根式的是( ) A 15B 0.5C 5D 507.如图,AB ∥CD ,点E 在线段BC 上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,已知AE是ΔABC的角平分线,AD是BC边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE的大小是()A.5°B.13°C.15°D.20°10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是.2.在数轴上表示实数a2(5)a-|a-2|的结果为____________.3.12与最简二次根式51a +是同类二次根式,则a=________. 4.若216x mx ++是一个完全平方式,则m =________5.如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C岛看A ,B 两岛的视角∠ACB =________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程: (1)x -12(3x -2)=2(5-x ) (2)24x +-1=236x -2.甲乙两人同时解方程85mx ny mx ny +=-⎧⎨-=⎩①②由于甲看错了方程①,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②,得到的解是25x y =⎧⎨=⎩,试求正确m ,n 的值.3.如图,直线AB ,CD 相交于点O .OF 平分∠AOE ,OF ⊥CD 于点O . (1)请直接写出图中所有与∠AOC 相等的角:______. (2)若∠AOD =150°,求∠AOE 的度数.4.已知:如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.5.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.6.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、C6、C7、A8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、3.3、24、±85、70°6、5三、解答题(本大题共6小题,共72分)1、(1)x=6(2 x=02、74n=-,38m=.3、(1)∠BOD,∠DOE;(2)∠AOE=120°.4、证明略.5、(1)150,(2)36°,(3)240.6、(1)三;(2)商品A的标价为90元,商品B的标价为120元;(3)6折.。
江苏淮安2023-2024学年七年级上学期期末数学试题(解析版)
2023-2024学年度第一学期期末学业监测七年级数学试题注意事项∶1.全卷共6页,满分120分;测试时长为120分钟.2.请将姓名、考号等认真填涂在答题纸的相应位置上.3.选择题答案,请使用2B 铅笔填涂;非选择题答案,请用0.5毫米黑色钢笔或墨水笔直接写在答题纸上.答案写在本试卷上或答题纸规定区域以外均无效.4.考试结束后,请将答题纸交回.第 I 卷(选择题共24分)一、选择题(本大题共8小题,每题3分,请将答案涂到答题卡上)1. 2023年12月15日,淮安迎来了这一年冬天的第一场雪.下图是淮安市这一天的天气预报图,淮安市这天的最高气温与最低气温的温差是( )A. 6℃B. 14℃C. 8−℃D. 5−℃【答案】A【解析】【分析】本题考查了有理数的减法,根据有理数的减法列式计算即可.【详解】解:2(4)−− 24=+6=℃,故选:A .2. 下列运算正确的是( )A. 321a a −=B. 23a a a +=C. 325a b ab +=D. 76ab ba ab −=【答案】D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A.∵32a a a −=,故计算错误,该选项不符合题意;B.∵a 与2a 不是同类项,不能合并,该选项不符合题意;C.3a 与2b 不是同类项,不能合并,该选项不符合题意;D. 76ab ba ab −=,计算正确,该选项符合题意;故选:D .【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的定义,本题属于基础题型. 3. 我国北斗卫星导航系统部署已完成,其中一颗中高轨道卫星高度大约是21500000米.将21500000用科学记数法表示为( )A. 215×105B. 2.15×105C. 2.15×108D. 2.15×107【答案】D【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:将21500000用科学记数法表示为72.1510×,故选:D .4. 如图,在数轴上点P 表示的数最有可能是( )A. 1.2−B. 1.5−C. 1.7−D. 2.3−【答案】C【解析】【分析】本题考查了数轴上的点表示有理数.根据点A 在数轴上的位置,先确定A 的大致范围,再确定符合条件的数.【详解】解:因为点P 在2−与1−之间,且靠近2−,所以点P 表示的数可能是 1.7−.故选:C .5. 如图是一个正方体的表面展开图,把展开图折叠成正方体后,“宝”字一面相对面上的字是( )A. 城B. 市C. 淮D. 安【答案】C【解析】【分析】本题考查了正方体相对两个面上的文字.根据正方体表面展开图的特征进行判断即可.【详解】解:“宝”字一面相对面上的字是“淮”.故选:C .6. 对于代数式1m −的值,下列说法正确的是( )A. 比1−大B. 比1−小C. 比m 大D. 比m 小【答案】D【解析】【分析】本题考查了比较大小,掌握比较大小的“求差法”是解决本题的关键.先算减法,根据两个的差和零的关系得结论.【详解】解:1(1)m m −−−= , 由于m 的取值不确定,故A 、B 均不正确;110m m −−=−< ,1m m ∴−<.故选项C 错误,选项D 正确.故选:D .7. 下列各选项中能用“垂线段最短”来解释的现象是( )A. B.C. D.【答案】A【解析】【分析】根据直线的性质,线段的性质对各选项分析判断即可得解.【详解】解:A 、测量跳远成绩是利用了“垂线段最短”,故本选项合题意.B 、木板弹出一条墨迹是利用了“两点确定一条直线”,故本选项不合题意;C 、用两个钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故本选项不合题意;D 、把弯曲的河道改直,就能缩短路程是利用了“两点之间,线段最短”,故本选项不符合题意; 故选:A .【点睛】本题考查了线段的性质,直线的性质,解题时注意:两点的所有连线中可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.8. 我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.“诗中后面两句的意思是:如果一间客房住7人,那么有7人无房可住;如果一间客房住9人,那么就空出一间客房,若设该店有客房x 间,则列出关于x 的一元一次方程正确的是( )A. 7791x x −=−()B. 7791x x +=−()C. 7791x x −−D. 7791x x +=−【答案】B【解析】【分析】此题主要考查了由实际问题抽象出一元一次方程,正确表示出总住店人数是解题关键.直接利用住店人数不变进而得出等式即可.【详解】解:设该店有房x 间,则可列方程:779(1)x x +=−.故选:B . 第 II 卷(非选择题共96分)二、填空题(本大题共83分,共24分,请将答案写在答题卡上)9. ﹣3的相反数是__________.【答案】3【解析】【详解】解:一个数的相反数就是在这个数前面添上“﹣”号.所以﹣(﹣3)=3,故答案为:3.10. 若232m x y 与35xy −是同类项,则m =_____. 【答案】12##0.5【解析】【分析】本题考查同类项:所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.根据同类项的定义建立关于m 的方程求解即可.【详解】解: 单项式232m x y 与35xy −是同类项,21m ∴=, 12m ∴=. 故答案为:12.11. 一个几何体主视图、左视图、俯视图都相同,这个几何体可能的形状是________.(只填一种即可)【答案】球(或正方体)【解析】【分析】根据常见几何体的形状,找出三种视图相同的几何体即可.【详解】因为球的三种视图都是圆,所以这个几何体可能是球.因为正方体的三种视图都是正方形,所以这个几何体可能是正方体.故答案为:球(或正方体) .【点睛】本题主要考查了常见几何体的三种视图,熟悉常见几何体的三种视图是解题的关键.12. 已知2x =是方程452x x a −+的解,则a 的值是_______.【答案】1a =−【解析】【分析】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把2x =代入已知方程列出关于a 的新方程,通过解新方程即可求得a 的值.【详解】解:依题意,得42522a ×−=×+.解得1a =−.故答案:1a =−.13. 如图,直线,AB CD 交于点O ,OE 平分AOC ∠,若40BOD ∠=°,则AOE ∠=_______°.【答案】20°##20度【解析】【分析】根据对顶角相等,可求出AOC ∠的度数,根据角平分线的定义即可求出AOE ∠的度数.【详解】解:∵AOC BOD ∠=∠(对顶角相等), ∴40AOC ∠=°,的∵OE 平分AOC ∠, ∴11402022AOE AOC ∠=∠=×°=°, ∴20AOE ∠=°,故答案为:20°.【点睛】本题主要考查对顶角,角平分线的定义,理解题意,掌握对顶角的性质,角平分线的定义是解题的关键.14. 如图所示的网格是正方形网格,则AOB ∠__________MPN ∠.(填“>”,“=”或“<”)【答案】=【解析】【分析】作∠DNP ,再作比较.【详解】解:如图,∠DNP =∠AOB ,∠DNP =∠MPN ,∴∠AOB =∠MPN ,故答案为:=.【点睛】本题主要考查了角的大小比较,解题的关键是掌握角的定义和网格的特点.15. 根据如图的计算程序,若输入x 的值为5−,则输出的值为________.【答案】22【分析】把x 的值代入数值运算程序中计算,即可得到输出的结果.详解】解:把5x =−代入数值运算程序得:()25322−−=, 故答案为:22.【点睛】此题考查了有理数的混合运算,根据流程图正确计算是解题的关键.16. 整式23ax b −(a 、b 为常数,0a ≠)的值随x 的取值不同而不同,下表是当x 取不同值时对应的整式的值,则关于x 的方程1322ax b −+=的解是_____. x 2− 0 223ax b −6− 3−【答案】0x =【解析】 【分析】此题考查了一元一次方程解,以及代数式求值,据表格提供的数据可直接得出方程233ax b −=−的解.【详解】解:由1322ax b −+=,化简得:233ax b −=− 根据表格得:当0x =时,233ax b −=−, 故233ax b −=−的的解为0x =. 故答案为:0x =.三、解答题(本大题共10小题,共72分.解答时应写出文字说明、证明过程或演算步骤) 17. (1)计算:25321()()−+×−+−;(2)解方程:8124x x −−=. 【答案】(1)0;(2)4x = 【解析】【分析】本题考查了有理数的混合运算,解一元一次方程;(1)先算乘方,再计算乘法以及去绝对值符号,最后算加减进行计算.(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:(1)253(2)(1)−+×−+− 【的0=;(2)8124x x −−=, 去分母得,248x x −=−,移项,合并同类项得,312x =,系数化为1得,4x =.18. 先化简,再求值:()()222321ab a ab a −−−−,其中122a b =−=,. 【答案】1ab −,2.【解析】 【分析】先把代数式进行化简,然后把122a b =−=,代入计算,即可得到答案. 详解】解:()()222321ab a ab a −−−− 2222321ab a ab a =−−++1ab =−, 又因为,122a b =−=,, 所以,原式()1121122=−−×=+=.19. 如图是由9个大小相同的小正方体组成的简单几何体.在下面的正方形网格中,画出该几何体的主视图、左视图、俯视图.【答案】见详解【解析】【【分析】本题考查作图−三视图,根据三视图的定义画出图形即可;【详解】解:如图,三视图即为所求.20. 如图,将一个长方形纸片(),ABCD AB CDAD BC ==沿虚线剪去一个三角形,图中阴影部分的面积为110,根据图中标注的长度求x 的值.【答案】12.3【解析】【分析】本题主要考查了一元一次方程的应用.根据长方形的面积减去三角形的面积等于阴影部分的面积,列出方程,即可求解.【详解】解:根据题意得:()()()()1101131071102x x x −−−−−−= , 整理得:10103110x −−=,解得:12.3x =.21. 如图,直线AB 、CD 相交于点O ,OE CD ⊥,垂足为点O .(1)若155∠=°,则BOE ∠=_________°; (2)若1∠与2∠的度数比为3:2,求BOC ∠的度数.【答案】(1)125°(2)144°【解析】【分析】本题主要考查了垂直的定义以及邻补角和对顶角,掌握垂直的定义以及邻补角和对顶角的定义是解题关键.(1)由OE CD ⊥,得出90EOD ∠=°,由BOE EOD DOB ∠=∠+∠,可求出∠BOE 的度数. (2)直接利用垂直的定义得出90EOD ∠=°,进而利用1:23:2∠∠=,得出2∠的度数,进而得出答案.【小问1详解】解:OE CD ⊥ ,90EOD COE ∴∠=∠=°,155∠=° ,21905535EOC ∴∠=∠−∠=°−°=°,35BOD ∴∠=°,∴9035125BOE EOD DOB ∠=∠+∠=°+°=°;【小问2详解】OE CD ⊥ ,90EOD COE ∴∠=∠=°,∴1290∠+∠=° 1:23:2∠∠= ,∴设13x ∠=,22x ∠=,则2390x x +=°,解得:18x=°, 故236∠=°,则18036144BOC∠=°−°=°, BOC ∠的度数为144°.22. 如图,点A ,C ,E ,B ,D 在同一条直线上,且AB CD =,点E 是线段BC 的中点.(1)点E 是线段AD 的中点吗?请说明理由;(2)若11AD =,2CE =,求线段AB 的长.【答案】(1)是中点,理由见详解(2)152【解析】【分析】此题主要考查了两点间的距离,中点的应用,利用中点性质转化线段之间的倍分关系是解题的关键.(1)由于AB CD =可以得到AC BD =,又E 是线段BC 的中点,利用中点的性质即可证明结论; (2)由于11AD =,由此求出AE ,然后利用中点的性质即可求出AB 的长度. 【小问1详解】解:点E 是线段AD 的中点.理由如下:AB CD = ,AB BC CD BC ∴−=−, AC BD ∴=,E 是线段BC 的中点,CE EB ∴=,CE AC EB BD ∴+=+,即AE DE =,∴点E 是线段AD 的中点;【小问2详解】由(1)得:点E 是线段AD 的中点∴11122AE AD == 2CE = ,点E 是线段BC2CE BE ∴==,∴1115222AB AE BE =+=+=. 23. 某市为提倡居民错时用电,避免用电高峰,实行峰谷分时计价制度,8∶00~22∶00是高峰时间,22∶00~次日8∶00为低谷时间,按分时电价收费.下表是某区一户人家2023年8月份缴纳家庭电费的回执中的部分内容,根据表中提供的信息解答下列问题∶ 示数类型 上次示数(度)本次示数(度)用电量(度)电价(元/度)电费(元)峰 10279 10409 130 0.56 a谷 7434b190c68.4合计金141.2元额(1)表中a =_______,b =_______,c =______;(2)若该用户某个月的谷时用电量比峰时多30度,电费共194.8元,则该用户这个月的用电量是多少度?【答案】(1)72.8,7624,0.36 (2)该用户这个月的用电量是430度 【解析】【分析】本题考查了有理数的混合运算,一元一次方程的应用; (1)根据表格数据分别求得,,a b c 的值;(2)设峰时用电量为x 度,则谷时用电量为()30x +度,根据题意列出一元一次方程,解方程,即可求解.【小问1详解】解:依题意,141.268.472.8a =−=,74341907624b +,68.41900.36c =÷=, 故答案为:72.8,7624,0.36. 【小问2详解】解:设峰时用电量为x 度,则谷时用电量为()30x +度,根据题意得,()0.560.3630194.8x x ++=,解得:200x =,∴用电量为30430x x ++=度; 答:该用户这个月的用电量是430度. 24. 作图题∶(1)如图1,点A 、B 、C 均在正方形网格的格点上,用直尺画图∶① 过点B 画AC 的平行线BP ; ② 过点C 画AC 的垂线CQ .(2)如图2,已知,AB BC ABC ⊥∠内部有一射线BD ,利用直尺和圆规作图∶在BC 下方作出射线BE ,使得90DBE ∠=°(不写作法,保留作图痕迹). 【答案】(1)①见解析;②见解析 (2)见解析 【解析】【分析】本题主要考查了网格图——作平行线,垂线;尺规作图——作一个角等于已知角: (1)①取格点P ,连接BP ,即可;②取格点Q ,连接CQ ,即可; (2)作CBE ABD ∠=∠,即可. 【小问1详解】解:①如图,BP 即为所求;②如图,CQ 即为所求; 【小问2详解】解:如图,射线BE 即所求.25. 我们用一个数对[]a b ,表示从左到右排列的两个数,把[]a b ,变换成[1]b a −−,称为1次“移轴变换”.例如∶[13]−,经过1次“移轴变换”变成[311]−,,即为[2]1,,再经过1次“移轴变换”变成[0]2−,.(1)把[21]−,先经过1次“移轴变换”变成[_____,_____],再连续经过3次“移轴变换”变成[_____,为_____];(2)把[]a b ,连续经过2023次“移轴变换”变成[32]−,,求a b +的值; (3)若[3]x ,经过1次、2次、3次、…、k 次(k 为正整数)“移轴变换”所得的k 个数对中,左边所有数的和与x 的取值无关,则k 的取值可能为____.(填序号) ① 2024;②2027;③2030;④2031. 【答案】(1)[02],,[]11−,- (2)4 (3)① 【解析】【分析】本题考查的是有理数的加法以及整式的运算,根据题意找出数字的变化规律是解答此题的关键. (1)根据题意进行一步步变换即可. (2)根据题意进行一步步变换找出规律即可. (3)根据题意进行一步步变换找出规律即可. 【小问1详解】解:由题意可得:[21]−,经过1次“移轴变换”: [02], [21]−,经过2次“移轴变换”: [1]0, [21]−,经过3次“移轴变换”: []11−,-【小问2详解】解:由题意可得:[]a b ,经过1次“移轴变换”: [1]b a −−, []a b ,经过2次“移轴变换”: 11[]a b −−−, []a b ,经过3次“移轴变换”: [1]b a −+,[]a b ,经过4次“移轴变换”: []a b , []a b ,经过5次“移轴变换”: [1]b a −−,……202345053÷=∴[]a b ,连续经过2023次“移轴变换”[1]b a −+,∵[]a b ,连续经过2023次“移轴变换”变成[32]−, ∴3,12b a −=−+= 3,1b a ==∴314b a +=+= 【小问3详解】解:由题意可得:[3]x ,经过1次“移轴变换”: []13x −−, [3]x ,经过2次“移轴变换”: [41]x −−, [3]x ,经过3次“移轴变换”: [4]x −, [3]x ,经过4次“移轴变换”: [3]x , [3]x ,经过5次“移轴变换”: []13x −−, [3]x ,经过6次“移轴变换”: [41]x −−,[3]x ,经过7次“移轴变换”: [4]x −, [3]x ,经过8次“移轴变换”: [3]x ,……∵左边所有数的和与x 的取值无关, ∴4k ÷ 的余数为0或1∵20244506÷=,202745063÷= ,203045072÷= ,203145073÷= ∴k 的取值可能为202426. 定义∶若已知两个角a 、β满足90a β−=°∶,则称a 、β互为“差余角”(0180α°<<°,0180)β°<<°.(1)若1∠与2∠互为“差余角”,当145∠=°时,2_____∠=°;(2)如图,160AOB ∠=°,射线OM 从OA 开始绕点O 顺时针旋转,速度为6度/秒,同时,射线ON 从OB 开始绕点O 逆时针旋转,速度为4度/秒,当OM 与OB 重合时,OM 与ON 同时停止运动.设运动时间为t 秒(0)t >.① 当5t =时,AOM ∠与_____MON ∠互为“差余角”(填“是”或“不是”); ② 若AOM ∠与MON ∠互为“差余角”,求t 的值;③ MON ∠能否既与AOM ∠互为“差余角”,同时又与BON ∠互为“差余角”,如果可以,求t 的值,如果不可以,请说明理由. 【答案】(1)135 (2)①不是;②358t =或1258t = 或352t =;③不可以,理由见解析 【解析】【分析】本题考查了“差余角”的定义,解一元一次方程,角度的计算; (1)根据定义,即可求解;(2)①当5t =时,30AOM ∠=°,20BON ∠=°;110MON ∠=°,根据定义,即可求解; ②分016t <≤时,80163t <≤时分别求得MON ∠,根据新定义列出方程,解方程,即可求解; ③根据②的方法求得当MON ∠与BON ∠互为“差余角”时t 的值,与②的结果比较,即可求解. 【小问1详解】解:依题意,当2190∠−∠=°,145∠=° ∴2135∠=°当1290∠−∠=°,则245∠=−°(舍去) 故答案为:135. 【小问2详解】①当5t =时,30AOM ∠=°,20BON ∠=°,1603020110MON AOB AOM BON ∠=∠−∠−∠=°−°−°=°∵110308090°−°=°≠°∴AOM ∠与MON ∠不是互为“差余角”, 故答案为:不是.②∵()1606416÷+=,则,OM ON 经过16秒相遇,OM 与OB 重合时,1608063t ==当016t <≤时,依题意,6AOM t ∠=°,4BON t ∠=°,1606416010MON AOB AOM BON t t t ∠=∠−∠−∠=°−°−°=°−°∵AOM ∠与MON ∠互为“差余角”, ∴16010690t t °−°−°=° 解得:358t =或1258t = 当80163t <≤时,依题意,6AOM t ∠=°,4BON t ∠=°,10160MON AOM BON AOB t ∠=∠+∠−∠=°−°∴10160690t t °−°−°=°解得:352t =或1252t =(舍去) 综上所述,358t =或1258t = 或352t =时AOM ∠与MON ∠互为“差余角”; ③解:MON ∠不能既与AOM ∠互为“差余角”,同时又与BON ∠互为“差余角”理由如下, 当MON ∠与BON ∠互为“差余角” 当016t <≤时, 16010490t t °−°−°=°, 解得:5t =或1257t =(舍去)当80163t <≤时, 1016090t °−°−° 解得:353t =(舍去),1253t =(舍去)∴5t =时,当MON ∠与BON ∠互为“差余角” 由②可得358t =或1258t =或352t =时,AOM ∠与MON ∠互为“差余角”; ∴MON ∠不能既与AOM ∠互为“差余角”,同时又与BON ∠互为“差余角”。
天津市部分区2020-2021学年七年级下学期期末考试数学试题2份(含解析)
2020-2021学年天津市部分区七年级第二学期期末数学试卷一、选择题1.下列实数中无理数是()A.3.2121B.4C.D.2.在下列各图中,∠1与∠2是对顶角的是()A.B.C.D.3.的值为()A.3B.﹣3C.±3D.4.在实数0,﹣,﹣,|﹣2|中,最小的数是()A.﹣B.0C.﹣D.|﹣2|5.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与26.如图,直线AB、CD与EF相交,则∠2的内错角是()A.∠8B.∠7C.∠6D.∠47.下列命题是真命题的是()A.两直线平行,同位角相等B.内错角相等C.同旁内角相等D.同位角互补8.若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排1号”.则下列有序数对表示丽丽在电影院位置正确的是()A.(3,1)B.(1,3)C.(13,31)D.(31,13)9.在下列方程中,是二元一次方程的是()A.2xy=3B.2x+3=0C.x3+2y=5D.2x=3y+710.以下调查中,适合全面调查的是()A.调查某批次汽车的抗撞击能力B.了解某班学生的体重情况C.调查春节联欢会的收视率D.调查市场上某种食品的防腐剂含量是否符合国家标准11.已知方程组的解为,则a,b的值为()A.a=3,b=2B.a=2,b=3C.a=3,b=1D.a=1,b=3 12.如图,在三角形ABC中,已知∠C=90°,AC=3,BC=4,则AB的大小有可能是()A.1B.2C.3D.5二、填空题(本大题共6小题,每小题3分,共18分)13.81的算术平方根是.14.﹣5的绝对值是.15.若a<b,则a+2b+2(请用“<”或“>”填空).16.在平面直角坐标系中,点(﹣5,10)在第象限.17.为了解学生每天自主学习时间,某校抽取了50名学生作为样本进行调查,在这个问题中,样本容量是.18.已知关于x的不等式组,解不等式①得;解不等式②得;若不等式组的整数解共4个,则m的取值范围是.三、解答题(本大题共7小题,共46分解答应写出文字说明、演算步骗或推理过程)19.解下列方程组.(1);(2).20.解下列不等式(组)(1)5x﹣3x>4;(2).21.如图,直线a、b与直线c、d分别相交,已知∠1=∠2,∠5=75°.求∠3、∠4、∠6的度数.请你完成下列解答的空缺部分:解:∵∠1=∠2∴a∥b()∴∠3+∠5=180°()∵∠5=75°∴∠3=∵∠4+∠5=180°∴∠4=∵∠6=∠5()∴∠6=.22.如图,将三角形ABC向右平移5个单位长度,然后再向上平移4个单位,得到对应的三角形A1B1C1.(1)写出点A1、B1、C1的坐标;(2)画出三角形A1B1C1.23.如图所示,直线AB与CD交于点O,EO⊥AB,垂足为O,∠COE=35°,求∠BOD 与∠AOD的度数.24.一种商品有大小盒两种包装,若4大盒、3小盒共装116瓶,2大盒、3小盒共装76瓶.求大盒与小盒每盒各装多少瓶.25.要了解某校学生对新闻、体育、动画、戏曲四类节目的喜爱情况,抽取了部分学生进行调查,整理绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,a=;(2)补全条形统计图;(3)扇形统计图中动画对应的圆心角为度.参考答案一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中无理数是()A.3.2121B.4C.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:A.3.2121是有限小数,属于有理数;B.4是整数,属于有理数;C.是无理数;D.,是整数,属于有理数.故选:C.2.在下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【分析】根据对顶角的定义对各图形判断即可.解:A、∠1和∠2不是对顶角,故选项不符合题意;B、∠1和∠2不是对顶角,故选项不符合题意;C、∠1和∠2不是对顶角,故选项不符合题意;D、∠1和∠2是对顶角,故选项符合题意.故选:D.3.的值为()A.3B.﹣3C.±3D.【分析】由于(﹣3)3=﹣27,可得=﹣3,得出答案.解:∵(﹣3)3=﹣27,∴=﹣3,故选:B.4.在实数0,﹣,﹣,|﹣2|中,最小的数是()A.﹣B.0C.﹣D.|﹣2|【分析】根据正数大于负数和0,0大于负数,两个负数绝对值大的反而小,即可解答.解:|﹣|=,,|﹣2|=2,∵,∴,∴最小的数是﹣,故选:C.5.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.|﹣2|与2【分析】直接利用实数的相关性质化简各数,进而判断即可.解:A、﹣2与=2,是互为相反数,故此选项正确;B、﹣2与=﹣2,两数相等,故此选项错误;C、﹣2与,不是互为相反数,故此选项错误;D、|﹣2|与2,两数相等,故此选项错误;故选:A.6.如图,直线AB、CD与EF相交,则∠2的内错角是()A.∠8B.∠7C.∠6D.∠4【分析】两直线被第三条直线所截,在截线的两侧,被截线的内部的两个角是内错角.解:由题可得,∠2的内错角是∠7,故选:B.7.下列命题是真命题的是()A.两直线平行,同位角相等B.内错角相等C.同旁内角相等D.同位角互补【分析】根据平行线的性质、同位角、内错角、同旁内角的概念判断.解:A、两直线平行,同位角相等,本选项说法是真命题;B、两直线平行,内错角相等,本选项说法是假命题;C、同旁内角不一定相等,本选项说法是假命题;D、同位角不一定互补,本选项说法是假命题;故选:A.8.若电影院中“5排8号”的位置,记作(5,8),丽丽的电影票是“3排1号”.则下列有序数对表示丽丽在电影院位置正确的是()A.(3,1)B.(1,3)C.(13,31)D.(31,13)【分析】由题意可得:第一个数字表示“排”,第二个数字表示“号”,据此即可解答问题.解:∵“5排8号”的位置,记作(5,8),∴丽丽的电影票是“3排1号”,记作(3,1).故选:A.9.在下列方程中,是二元一次方程的是()A.2xy=3B.2x+3=0C.x3+2y=5D.2x=3y+7【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别.解:A、是二元二次方程,故本选项错误;B、不含有两个未知数,故本选项错误;C、是二元三次方程,故本选项错误;D、符合二元一次方程的定义,故本选项正确.故选:D.10.以下调查中,适合全面调查的是()A.调查某批次汽车的抗撞击能力B.了解某班学生的体重情况C.调查春节联欢会的收视率D.调查市场上某种食品的防腐剂含量是否符合国家标准【分析】适合普查(全面调查)的方式一般有以下特点:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.解:A、调查某批次汽车的抗撞击能力,适合抽样调查;B、了解某班学生的体重情况,适合全面调查;C、调查春节联欢晚会的收视率,适合抽样调查;D、调查市场上某种食品的防腐剂含量是否符合国家标准,适合抽样调查;故选:B.11.已知方程组的解为,则a,b的值为()A.a=3,b=2B.a=2,b=3C.a=3,b=1D.a=1,b=3【分析】把x与y的值代入方程组求出a与b的值即可.解:把代入方程组得:,①+②,得4a=12,∴a=3,把a=3代入①,得6+b=7,∴b=1,∴a=3,b=1,故选:C.12.如图,在三角形ABC中,已知∠C=90°,AC=3,BC=4,则AB的大小有可能是()A.1B.2C.3D.5【分析】根据勾股定理即可求解.解:在三角形ABC中,∠C=90°,AC=3,BC=4,则AB===5.故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.81的算术平方根是9.【分析】直接利用算术平方根的定义得出答案.解:81的算术平方根是:=9.故答案为:9.14.﹣5的绝对值是5.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.解:根据负数的绝对值是它的相反数,得|﹣5|=5.15.若a<b,则a+2<b+2(请用“<”或“>”填空).【分析】根据不等式的性质,可得答案.解:不等式a<b两边都加2,不等号的方向不变,所以a+2<b+2.故答案为:<.16.在平面直角坐标系中,点(﹣5,10)在第二象限.【分析】根据各象限内点的坐标的符号特征,可得答案.解:点P(﹣5,10)在第二象限,故答案为:二.17.为了解学生每天自主学习时间,某校抽取了50名学生作为样本进行调查,在这个问题中,样本容量是50.【分析】根据样本容量则是指样本中个体的数目,可得答案.解:为了解学生每天自主学习时间,某校抽取了50名学生作为样本进行调查,在这个问题中,样本容量是50.故答案为:50.18.已知关于x的不等式组,解不等式①得x<m;解不等式②得x≥3;若不等式组的整数解共4个,则m的取值范围是6<m≤7.【分析】分别表示出不等式组中两不等式的解集,根据整数解有4个,确定出m的范围即可.解:已知关于x的不等式组,解不等式①得x<m;解不等式②得x≥3;∴不等式组的解集为3≤x<m,若不等式组的整数解共4个,得到整数解为3,4,5,6,∴6<m≤7,则m的取值范围是6<m≤7.故答案为:x<m;x≥3;6<m≤7.三、解答题(本大题共7小题,共46分解答应写出文字说明、演算步骗或推理过程)19.解下列方程组.(1);(2).【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.解:(1)把①代入②,得3x+5(x+1)=13,解这个方程,得x=1,把x=1代入①,得y=2,所以这个方程组的解是;(2)①+②,得6x=18,解得:x=3,把x=3代入①,得3+6y=﹣9,解得:y=﹣2,所以这个方程组的解是.20.解下列不等式(组)(1)5x﹣3x>4;(2).【分析】(1)合并同类项,系数化为1即可;(2)首先解每个不等式,然后确定两个不等式的解集的公共部分即可.【解答】(1)解:合并同类项,得2x>4,系数化为1,得x>2;(2)解:解不等式①,得x≥﹣2,解不等式②,得x≤1,所以,原不等式组的解集为﹣2≤x≤1.21.如图,直线a、b与直线c、d分别相交,已知∠1=∠2,∠5=75°.求∠3、∠4、∠6的度数.请你完成下列解答的空缺部分:解:∵∠1=∠2∴a∥b(内错角相等,两直线平行)∴∠3+∠5=180°(两直线平行,同旁内角互补)∵∠5=75°∴∠3=105°∵∠4+∠5=180°∴∠4=105°∵∠6=∠5(对顶角相等)∴∠6=75°.【分析】由∠1=∠2得a∥b,其性质得∠3+∠5=180°,由角的和差求得∠3=105°,邻补角和对顶角分别求得∠4=105°,∠6=75°.解:如图所示:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∴∠3+∠5=180°(两直线平行,同旁内角互补)∵∠5=75°,∴∠3=105°,∵∠4+∠5=180°,∴∠4=105°,∵∠6=∠5(对顶角相等)∴∠6=75°,故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;105°,105°,对顶角相等,75°.22.如图,将三角形ABC向右平移5个单位长度,然后再向上平移4个单位,得到对应的三角形A1B1C1.(1)写出点A1、B1、C1的坐标;(2)画出三角形A1B1C1.【分析】(1)根据点的平移方法确定点A1、B1、C1的位置,再写出点的坐标即可;(2)连结点A1、B1、C1即可.解:(1)A1(4,2)、B1(1,﹣2)、C1(4,﹣2);(2)如图所示:△A1B1C1即为所求.23.如图所示,直线AB与CD交于点O,EO⊥AB,垂足为O,∠COE=35°,求∠BOD 与∠AOD的度数.【分析】根据垂直定义求出∠AOE,求出∠AOC,即可求出答案.解:∵EO⊥AB,∴∠AOE=90°,∵∠COE=35°,∴∠AOC=90°﹣35°=55°,∴∠BOD=∠AOC=55°,∠AOD=180°﹣∠AOC=180°﹣55°=125°.24.一种商品有大小盒两种包装,若4大盒、3小盒共装116瓶,2大盒、3小盒共装76瓶.求大盒与小盒每盒各装多少瓶.【分析】设大盒与小盒每盒分别装x瓶和y瓶,根据等量关系:4大盒、3小盒共装116瓶;2大盒、3小盒共装76瓶,列出方程组求解即可.解:设大盒每盒装x瓶,小盒每盒装y瓶,根据题意得:,解得:,答:大盒每盒装20瓶,小盒每盒装12瓶.25.要了解某校学生对新闻、体育、动画、戏曲四类节目的喜爱情况,抽取了部分学生进行调查,整理绘制成如图所示的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了100名学生,a=24;(2)补全条形统计图;(3)扇形统计图中动画对应的圆心角为72度.【分析】(1)从两个统计图中可知,喜欢“体育”的有48人,占调查人数的48%,可求出调查人数;进而求出喜欢“新闻”所占的百分比;(2)求出喜欢“动画”的人数即可补全条形统计图;(3)喜欢“动画”占调查人数的,因此相应的圆心角为360°的20%即可.解:(1)48÷48%=100(人),24÷100=24%,故答案为:100,24;(2)喜欢“动画”的人数:100﹣24﹣48﹣8=20(人),补全条形统计图如图所示:(3)360°×20%=72°,故答案为:72.2020-2021学年天津市和平区七年级第二学期期末数学试卷一、选择题1.4的算术平方根()A.2B.﹣2C.D.±2.点P(﹣1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A.y=2x﹣3B.y=3﹣2x C.x=D.x=4.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c﹣a<c﹣b C.a﹣3c<b﹣3c D.5.如图,点D、E分别在AB和AC上,DE∥BC.∠ABC=65°,则∠BDE的度数()A.55°B.95°C.115°D.25°6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在2到3之间7.以下适合普查的是()A.了解一个班级升学考试的成绩B.了解某电视剧的收视率情况C.了解一批灯泡的使用寿命D.了解贵州省的家庭人均收入8.不等式x>2在数轴上表示正确的是()A.B.C.D.9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()A.B.C.D.10.如图,AB∥DE,∠ABC=20°,∠CDE=60°,则∠BCD=()A.20°B.60°C.80°D.100°11.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.012.如果关于x的不等式仅有四个整数解:﹣1,0,1,2,那么适合这个为等式组的整数m、n组成的有序实数对(m,n)最多共有()A.2个B.4个C.6个D.9个二、填空题:本大题共6小题,每小题3分共18分.13.+=.14.若方程组的解也是二元一次方程5x﹣my=﹣11的一个解,则m的值等于.15.如图所示,直线AB、CD相交于点O,若∠l=3∠2,则∠BOD=度.16.如果P(m+3,2m+4)在y轴上,那么点P的坐标是.17.若则5x﹣y﹣z﹣1的立方根是.18.若关于x的不等式ax﹣b>0的解集为x<,则关于x的不等式(a+b)x>a﹣b的解集为.三、解答题:本大题共7小题,共58分.解答应写出文字说明、演算步骤或证明过程. 19.解方程组:.20.解不等式组:.解:解不等式①得;解不等式②,得;在数轴上表示如图.故不等式组的解集是.21.2020年天津市创建文明城市期间,某区教育局为了了解全区中学生对课外体育运动项目的喜欢程度,随机抽取了某校七年级部分学生进行问卷调查(每人限选一种体育运动项目)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)在这次活动中一共调查了名学生;(2)在扇形统计图中,“跳绳”所在扇形圆心角等于度;(3)喜欢“羽毛球”的人数是.(4)若该校有七年级学生1000人,请你估计该七年级校喜欢“足球”的学生约有多少人?22.如图,a∥b,c、d是截线,∠1=80°,∠5=70°,∠2、∠3、∠4各是多少度?为什么?23.某电器超市销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.24.已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.25.在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0),且满足+(a ﹣b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.(1)求出点A,B的坐标;(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD 的度数;(用含a的代数式表示).(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案一、选择题:本大愿共12小题,每小题2分,共24分在每小题给出的四个选项中,只有--项是符合题目要求的.1.4的算术平方根()A.2B.﹣2C.D.±【分析】依据算术平方根的性质求解即可.解:4的算术平方根2.故选:A.2.点P(﹣1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标符号直接判断的判断即可.解:∵P(﹣1,5),横坐标为﹣1,纵坐标为:5,∴P点在第二象限.故选:B.3.将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A.y=2x﹣3B.y=3﹣2x C.x=D.x=【分析】把x看做已知数求出y即可.解:方程2x+y=3,解得:y=3﹣2x,故选:B.4.已知a<b,c是有理数,下列各式中正确的是()A.ac2<bc2B.c﹣a<c﹣b C.a﹣3c<b﹣3c D.【分析】根据不等式的基本性质进行解答.解:A、当c=0时,该不等式不成立.故本选项错误;B、不等式a<b的两边同时乘以﹣1,不等号的方向改变,即﹣a>﹣b,再在两边同时加上c,不等式仍成立,即c﹣a>c﹣b.故本选项错误;C、不等式a<b的两边同时减去3c,不等式仍成立,即a﹣3c<b﹣3c.故本选项正确;D、当c=0时,该不等式不成立.故本选项错误;故选:C.5.如图,点D、E分别在AB和AC上,DE∥BC.∠ABC=65°,则∠BDE的度数()A.55°B.95°C.115°D.25°【分析】由DE∥BC得∠BDE+∠ABC=180°,根据∠ABC=65°,计算得∠BDE的度数为115°.解:如图所示:∵DE∥BC,∴∠BDE+∠ABC=180°,又∵∠ABC=65°,∴∠BDE=115°,故选:C.6.估计的值()A.在3到4之间B.在4到5之间C.在5到6之间D.在2到3之间【分析】根据25<28<36,可得5<<6,据此判断即可.解:∵25<28<36,∴5<<6,∴的值在5到6之间.故选:C.7.以下适合普查的是()A.了解一个班级升学考试的成绩B.了解某电视剧的收视率情况C.了解一批灯泡的使用寿命D.了解贵州省的家庭人均收入【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解:A.了解一个班级升学考试的成绩,工作量小,无破坏性,适合普查.B.了解某电视剧的收视率情况,选项普查时要花费的劳动量太大,也不宜普查.C.了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验.D.了解贵州省的家庭人均收入,选项普查时要花费的劳动量太大,也不宜普查.故选:A.8.不等式x>2在数轴上表示正确的是()A.B.C.D.【分析】根据不等式的解集在数轴上表示出来的方法画数轴即可.解:∵不等式x>2,∴在数轴上表示为故选:A.9.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,则方程组正确的是()A.B.C.D.【分析】根据甲乙两种奖品共30件,可找到等量关系列出一个方程,在根据甲乙两种奖品的总价格找到一个等量关系列出一个方程,将两个方程组成一个二元一次方程组.解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共30件,所以x+y=30因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=400由上可得方程组:.故选:B.10.如图,AB∥DE,∠ABC=20°,∠CDE=60°,则∠BCD=()A.20°B.60°C.80°D.100°【分析】由AB∥DE,CF∥AB得CF∥ED,根据平行线的性质得∠FCD=∠CDE,∠ABC =∠BCF,角的和差计算出∠BCD的度数为80°.解:过点E作CF∥AB,如图所示:∵AB∥DE,CF∥AB,∴CF∥ED,∴∠FCD=∠CDE,又∵∠CDE=60°,∴∠FCD=60°,又∵CF∥AB,∠ABC=20°∴∠ABC=∠BCF=20°,又∵∠BCD=∠BCF+∠FCD,∴∠BCD=80°,故选:C.11.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.0【分析】方程组中的两个方程相减得出x﹣y=3m+2,根据已知得出不等式,求出不等式的解集即可.解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.12.如果关于x的不等式仅有四个整数解:﹣1,0,1,2,那么适合这个为等式组的整数m、n组成的有序实数对(m,n)最多共有()A.2个B.4个C.6个D.9个【分析】先求出不等式组的解,得出关于m、n的不等式组,求出整数m、n的值,即可得出答案.解:∵解不等式2x﹣m≥0得:x≥,解不等式n﹣3x≥0得:x≤,∴不等式组的解集是≤x≤,∵关于x的不等式组的整数解仅有﹣1,0,1,2,∴﹣2<≤﹣1,2≤<3,解得:﹣4<m≤﹣2,6≤n<9,即m的值是﹣3,﹣2,n的值是6,7,8,即适合这个不等式组的整数m,n组成的有序数对(m,n)共有6个,是(﹣3,6),(﹣3,7),(﹣3,8),(﹣2,6),(﹣2,7),(﹣2,8).故选:C.二、填空题:本大题共6小题,每小题3分共18分.13.+=1.【分析】直接利用立方根的性质以及二次根式的性质分别计算得出答案.解:原式=﹣3+4=1.故答案为:1.14.若方程组的解也是二元一次方程5x﹣my=﹣11的一个解,则m的值等于7.【分析】先把2x﹣y=1中的y用x表示出来,代入3x+2y=12求出x的值,再代入2x﹣y=1求出y的值,最后将所求x,y的值代入5x﹣my=﹣11解答即可.解:根据题意得,∴由①得:y=2x﹣1,代入②用x表示y得,3x+2(2x﹣1)=12,解得:x=2,代入①得,y=3,∴将x=2,y=3,代入5x﹣my=﹣11解得,m=7.故答案为:7.15.如图所示,直线AB、CD相交于点O,若∠l=3∠2,则∠BOD=135度.【分析】根据邻补角的定义,对顶角相等,可得答案.解:由邻补角的定义,得∠1+∠2=180°,因为∠l=3∠2,所以3∠2+∠2=180°,所以∠2=45°,所以∠1=3×45°=135°,故答案为:135.16.如果P(m+3,2m+4)在y轴上,那么点P的坐标是(0,﹣2).【分析】点P在y轴上则该点横坐标为0,可解得m的值,从而得到点P的坐标.解:∵P(m+3,2m+4)在y轴上,∴m+3=0,得m=﹣3,即2m+4=﹣2.即点P的坐标为(0,﹣2).故答案为:(0,﹣2).17.若则5x﹣y﹣z﹣1的立方根是3.【分析】先根据方程组解出x、y、z,然后代入5x﹣y﹣z﹣1后即可求出答案.解:由③可得:z=3x+2y﹣18④把④代入①中得,17x+4y=85⑤把④代入②得,7x﹣y=35⑥联立⑤⑥可得:x=5,y=0,将x=5,y=0代入④得,z=﹣3∴5x﹣y﹣z﹣1=5×5﹣0+3﹣1=27∴27的立方根是3,故答案为:318.若关于x的不等式ax﹣b>0的解集为x<,则关于x的不等式(a+b)x>a﹣b的解集为x<.【分析】由不等式ax﹣b>0的解集为x<得a=3b,且b<0,将原不等式变形可得4bx >2b,两边除以4b可得答案.解:∵不等式ax﹣b>0的解集为x<,∴=,即a=3b且a<0,则b<0∴不等式(a+b)x>a﹣b整理为4bx>2b,∴x<.故答案为:x<.三、解答题:本大题共7小题,共58分.解答应写出文字说明、演算步骤或证明过程. 19.解方程组:.【分析】把方程组整理后,利用加减消元法解答即可.解:方程组整理得:,①+②得:6x=18,解这个方程得:x=3,把x=3代入①得:9﹣2y=8,解得:y=,∴原方程组的解为:.20.解不等式组:.解:解不等式①得x≥﹣1;解不等式②,得x<2;在数轴上表示如图.故不等式组的解集是﹣1≤x<2.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式①得x≥﹣1;解不等式②,得x<2;在数轴上表示如图.故不等式组的解集是﹣1≤x<2,故答案为:x≥﹣1,x<2,﹣1≤x<2.21.2020年天津市创建文明城市期间,某区教育局为了了解全区中学生对课外体育运动项目的喜欢程度,随机抽取了某校七年级部分学生进行问卷调查(每人限选一种体育运动项目)如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)在这次活动中一共调查了500名学生;(2)在扇形统计图中,“跳绳”所在扇形圆心角等于36度;(3)喜欢“羽毛球”的人数是150名.(4)若该校有七年级学生1000人,请你估计该七年级校喜欢“足球”的学生约有多少人?【分析】(1)喜欢“篮球”的有200名,占调查人数的40%,可求出调查人数;(2)“跳绳”占调查人数的,因此相应的圆心角的度数占360°的,计算可得结果;(3)喜欢“羽毛球”的占调查人数的30%,即500人的30%;(4)样本中喜欢“足球”的占,因此总体1000名的是喜欢“足球”的人数.解:200÷40%=500(名),故答案为:500;(2)360°×=36°,故答案为:36;(3)500×30%=150(名),故答案为:150名;(4)1000×=200(人),答:该校七年级学生1000人中喜欢“足球”的学生约有200人.22.如图,a∥b,c、d是截线,∠1=80°,∠5=70°,∠2、∠3、∠4各是多少度?为什【分析】根据平行线的性质求解.解:∵a∥b,∴∠2=∠1=80°(两直线平行,内错角相等),∠3=180°﹣∠5=180°﹣70°=110°(两直线平行,同旁内角互补),∠4=∠3=110°(两直线平行,同位角相等).23.某电器超市销售每台进价分别为200元,170元的A、B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:,解得:,答:A、B两种型号电风扇的销售单价分别为250元、210元;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30﹣a)台.依题意得:200a+170(30﹣a)≤5400,解得:a≤10.答:超市最多采购A种型号电风扇10台时,采购金额不多于5400元;(3)依题意有:(250﹣200)a+(210﹣170)(30﹣a)=1400,解得:a=20,∵a≤10,∴在(2)的条件下超市不能实现利润1400元的目标.24.已知关于x、y的方程组的解都为正数.(1)求a的取值范围;(2)已知a+b=4,且b>0,z=2a﹣3b,求z的取值范围.【分析】(1)根据二元一次方程组的解法即可求出x与y的表达式,从而可求出a的范围.(2)根据(1)问可求出b的范围,将z化为8﹣5b,从而可求出z的范围.解:(1)∵∴由于该方程组的解都是正数,∴∴a>1(2)∵a+b=4,∴a=4﹣b,∴解得:0<b<3,∴z=2(4﹣b)﹣3b=8﹣5b∴﹣7<8﹣5b<8,∴﹣7<z<825.在平面直角坐标系中,已知点A(a,0),B(b,3),C(4,0),且满足+(a ﹣b+6)2=0,线段AB交y轴于点F,点D是y轴正半轴上的一点.(1)求出点A,B的坐标;(2)如图2,若DB∥AC,∠BAC=a,且AM,DM分别平分∠CAB,∠ODB,求∠AMD 的度数;(用含a的代数式表示).(3)如图3,坐标轴上是否存在一点P,使得△ABP的面积和△ABC的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质可求出a和b,即可得到点A和B的坐标;(2)作MN∥DB,由DB∥AC知MN∥AC,从而得出∠DMN=∠BDM、∠AMN=∠MAC,再由角平分线得出∠MAC=a,∠BDM=45°,根据∠AMD=∠AMN+∠DMN可得答案;(3)连结OB,如图3,设F(0,t),根据S△AOF+S△BOF=S△AOB,得到关于t的方程,可求得t的值,则可求得点F的坐标;计算△ABC的面积,再分点P在y轴上和在x轴上讨论.当P点在y轴上时,设P(0,y),利用S△ABP=S△APF+S△BPF,可解得y的值,可求得P点坐标;当P点在x轴上时,设P(x,0),根据三角形面积公式得,同理可得到关于x的方程,可求得x的值,可求得P点坐标.解:(1)∵+(a﹣b+6)2=0,∴a+b=0,a﹣b+6=0,∴a=﹣3,b=3,∴A(﹣3,0),B(3,3);(2)如图2,过点M作MN∥DB,交y轴于点N,∴∠DMN=∠BDM,又∵DB∥AC,∴MN∥AC,∴∠AMN=∠MAC,∵DB∥AC,∠DOC=90°,∴∠BDO=90°,又∵AM,DM分别平分∠CAB,∠ODB,∠BAC=a,∴∠MAC=a,∠BDM=45°,∴∠AMN=a,∠DMN=45°,∴∠AMD=∠AMN+∠DMN=45°+a;(3)存在.连结OB,如图3,设F(0,t),。
2020-2021学年辽宁省大连市七年级(下)期末数学试卷(含解析)
2020-2021学年辽宁省大连市七年级(下)期末数学试卷题号 一 二 三 四 总分 得分一、选择题(本大题共10小题,共30.0分)1. 如图,在平面直角坐标系中,有若干个横纵坐标分别为y 整数的点,其顺序按图中“→”方向排列,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→(2,2),…,根据这个规律,第2015个点的坐标为( )A. (0,672)B. (672,672)C. (672,0)D. (0,0)2. 在下列各数:4.27⋅、3.149、√49100、0.2、π、0.1010010001…(相邻两个1之间依次多一个0)中,无理数的个数是( )A. 2B. 3C. 4D. 53. 如图,∠1与∠2是同位角,若∠2=65°,则∠1的大小是( )A. 25°B. 65°C. 115°D. 不能确定4. 在给出的一组数0,π,√5,3.14,√93,117中,无理数有( )A. 4个B. 3个C. 2个D. 1个5. 如图,O 是直线AB 上一点,∠AOC =50°,则∠BOC 的度数是( )A. 120°B. 130°C. 140°D. 150°6. 关于“√19”,下列说法不正确的是( )A. 它是一个无理数B. 它可以用数轴上的一个点来表示C. 它可以表示面积为19的正方形的边长D. 若n <√19<n +1(n 为整数),则n =57. 在平面直角坐标系中,将点A(−2,3)先向左平移2个单位,再向上平移3个单位,得到B 点的坐标是( )A. (0,6)B. (−4,0)C. (−4,6)D. (0,0)8. 篮球小组共有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示,这15名同学进球数的众数和中位数分别是( )A. 6,7B. 7,9C. 9,7D. 9,99. 若关于x 的方程mx 2−2(3m −1)x +9m −1=0有两个不相等的实数根,则实数m的取值范围是( )A. m >−15 B. m <15 C. m >−15且m ≠0D. m <15且m ≠010. 下列哪个是方程3x −2y =1的解( )A. x =1,y =−1B. x =1,y =1C. x =−1,y =1D. x =−1,y =−1二、填空题(本大题共6小题,共18.0分)11. 若√x −2y +1+|2x +y −8|=0,则3x −y 立方根为______.12. 在样本的频数分布直方图中,共有5个小长方形,若前面4个小组的频率分别为0.1,0.3,0.2,0.1,且第五组的频数是60,则样本容量是______ .13. 高于海平面50m 记作______ ,低于海平面30m 记作______ ,海平面的高度记作______ .14. 在Rt △ABC 中,∠C =90°,AC =3,BC =4.若以C 点为圆心,r 为半径所作的圆与斜边AB 只有一个公共点,则r 的取值范围是______.15. 程大位,明代商人,珠算发明家,被称为珠算之父、卷尺之父.少年时,读书记为广博,对数学颇感兴趣,60岁时完成其杰作《直指算法统宗》(简称《算法统宗》).在《算法统宗》里记载了一道趣题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?如果设大和尚有x 人,小和尚有y 人,那么根据题意可列方程组为______. 16. 如果不等式组{x ≥2x <m有解,那么m 的范围是______.三、计算题(本大题共2小题,共21.0分) 17. 解下列方程组(1){y =2x −13x +4y =7;(2){3x −2y =−14x +3y =10.18. (8分)为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A 、B 、C 、D 分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上等四种情况,图1的条形图表示的是抽查的各种色素含量的方便面的袋数,图2的扇形图表示的是抽查的各种色素含量的方便面中占抽查总数的百分比.根据以上信息,请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?四、解答题(本大题共8小题,共81.0分)19.计算(1)23√9x+6√x4.(2)4√5+√45−√8+4√2.20.如图,在△ABC中∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.21.已知:△ABC,∠A、∠B、∠C之和为多少?为什么?解;∠A+∠B+∠C=180°理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠______(已作)∴AB//CD(______)∴∠B=______(______)而∠ACB+∠ACD+∠DCE=180°∴∠ACB+______+______=180°(______)22.如图,△ABC的三顶点分别为A(4,4),B(−2,2),C(3,0).请画出一个以原点O为位的位似图形△A1B1C1,并写出△A1B1C1各顶点的坐似中心,且与△ABC相似比为12)标.(只需画出一种情况,A1B1:AB=1223.全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种植物苔藓就开始在岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的年限,近似地满足如下的关系式:d=7√t−12(t≥12),其中d代表苔藓的直径,单位为厘米,它代表冰川消失的时间,单位为年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是14厘米,问冰川约在多少年前消失的?24.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC交AB于M,交AC于N,若BM=2,CN=3,求线段MN的长.25.某花农培育甲种花木10株,乙种花木8株,共需成本6400元;培育甲种花木4株,乙种花木5株,共需成本3100元.(1)求甲乙两种花木成本分别是多少元?(2)若1株甲种花木售价为700元,一株乙种花木售价为500元.该花农决定在成本不超过29000元的情况下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要是总利润不少于18200元,花农有哪几种具体的培育方案?26.在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为直角边在AD右侧作等腰直角三角形ADE,且∠DAE=90°,连接CE.(1)如图①,当点D在线段BC上时:①BC与CE的位置关系为______;②BC、CD、CE之间的数量关系为______.(2)如图②,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若不成立,请你写出正确结论,并给予证明.(3)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为______.答案和解析1.【答案】C【解析】解:∵(2015−1)÷3=671×3+1,∴第2015个点是第672组的第一个点,在x轴上,坐标为(672,0).故选:C.从第二个点开始,每3个点为一组,第奇数组第一个点在y轴,第三个点在x轴,第偶数组,第一个点在x轴,第三个点在y轴,用(2015−1)除以3,根据商的情况确定点的位置和坐标即可.本题是对点的坐标变化规律的考查,考虑从第二个点开始,每3个点为一组求解是解题的关键,也是本题的难点.2.【答案】A【解析】解:4.27⋅是循环小数是有理数;3.149是有限小数,是有理数;√49 100=710是有理数;0.2是有理数;π是无理数;0.1010010001…(相邻两个1之间依次多一个0)是无理数.故选:A.无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.本题主要考查的是无理数的概念,熟练掌握无理数的常见类型是解题的关键.3.【答案】D【解析】解:由图形可得,不能确定直线m和直线n平行,故不能确定∠1的大小.故选:D.两直线平行同位角相等,如果不能确定两直线是平行线则不能确定同位角之间的关系.此题考查了同位角的知识,注意两直线平行同位角相等,如果不能确定两直线是平行线则不能确定同位角之间的关系,难度一般.4.【答案】B3,共三个,【解析】解:无理数有:π,√5,√9故选:B.根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.本题考查了无理数,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.【答案】B【解析】解:∵O是直线AB上一点,∠AOC=50°,∴∠BOC的度数是:180°−50°=130°.故选:B.直接利用平角的定义分析得出答案.此题主要考查了邻补角的定义,正确把握邻补角的定义是解题关键.6.【答案】D【解析】【分析】本题主要考查了无理数的定义、数轴的意义以及无理数的估算,无理数的估算关键是确定无理数的整数部分.分别根据无理数的定义、数轴的意义、正方形面积公式以及无理数的估算方法判断即可.【解答】解:A.√19是一个无理数,说法正确,故选项A不合题意;B.√19可以用数轴上的一个点来表示,说法正确,故选项B不合题意;C.它可以表示面积为19的正方形的边长,说法正确,故选项C不合题意;D.∵4<√19<5,∴n=4,原说法错误,故选项D符合题意.故选D.7.【答案】C【解析】解:将点A(−2,3)先向左平移2个单位,再向上平移3个单位,得到B点的坐标是(−2−2,3+3),即(−4,6),故选:C.根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.此题主要考查了坐标与图形的变化,关键是掌握点的坐标与图形的平移的关系.8.【答案】C【解析】解:学生进球数最多的是9个,共有6人,因此众数是9个,将这15名同学进球的个数从小到大排列后处在第8位的是7个,因此中位数是7个,故选:C.根据中位数、众数的意义求解即可.考查中位数、众数的意义和求法,理解中位数、众数的意义.掌握计算方法是正确解答的关键.9.【答案】D【解析】解:∵a=m,b=−2(3m−1),c=9m−1,而方程有两个不相等的实数根,∴△=b2−4ac=[−2(3m−1)]2−4m(9m−1)>0,且m≠0,∴m<1且m≠0;5故选:D.此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数;(3)△<0⇔方程没有实数根.根据一元二次方程的定义和根的判别式△>0时,方程有两个不相等的实数根,建立关于m的不等式,然后求出m的取值范围.10.【答案】B【解析】解:A、把x=1,y=−1代入3x−2y=1得:左边=3+2=5,右边=1,左边≠右边,不是方程的解,不符合题意;B、把x=1,y=1代入3x−2y=1得:左边=3−2=1,右边=1,左边=右边,是方程的解,符合题意;C、把x=−1,y=1代入3x−2y=1得:左边=−3−2=−5,右边=1,左边≠右边,不是方程的解,不符合题意;D、把x=−1,y=−1代入3x−2y=1得:左边=−3+2=−1,右边=1,左边≠右边,不是方程的解,不符合题意,故选:B.把x与y的值代入方程检验即可.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.11.【答案】√73【解析】解:∵√x−2y+1+|2x+y−8|=0,∴{x−2y=−1 ①2x+y=8 ②,①+②得:3x−y=7,则3x−y的立方根为√73,故答案为:√73利用非负数的性质列出方程组,求出3x−y的值,即可求出立方根.此题考查了解二元一次方程组,以及非负数的性质,熟练掌握运算法则是解本题的关键.12.【答案】200【解析】【分析】此题考查了频数(率)分布直方图,弄清题意是解本题的关键.根据前面4个小组的频率求出第5组的频率,用频数除以频率求出样本容量即可.【解答】解:根据题意得:60÷(1−0.1−0.3−0.2−0.1)=60÷0.3=200,则样本容量为200.故答案为:20013.【答案】+50m;−30m;0m【解析】【分析】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:高于海平面50m 记作+50m ,低于海平面30m 记作−30m ,海平面的高度记作0m , 故答案为+50 m ;−30 m ;0 m .14.【答案】3<r ≤4或r =2.4【解析】解:如图,∵BC >AC ,∴以C 为圆心,r 为半径所作的圆与斜边AB 只有一个公共点.根据勾股定理求得AB =5.分两种情况:(1)圆与AB 相切时,即r =CD =3×4÷5=2.4;(2)点A 在圆内部,点B 在圆上或圆外时,此时AC <r ≤BC ,即3<r ≤4. ∴3<r ≤4或r =2.4.此题注意两种情况:(1)圆与AB 相切时;(2)点A 在圆内部,点B 在圆上或圆外时.根据勾股定理以及直角三角形的面积计算出其斜边上的高,再根据位置关系与数量之间的联系进行求解.本题利用的知识点:勾股定理和垂线段最短的定理;直角三角形的面积公式求解;直线与圆的位置关系与数量之间的联系.15.【答案】{x +y =1003x +13 y =100【解析】解:设大和尚有x 人,小和尚有y 人,根据题意得:{x +y =1003x +13 y =100. 故答案是:{x +y =1003x +13 y =100. 根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.本题考查了由实际问题抽象出二元一次方程组,关键以和尚数和馒头数作为等量关系列出方程.16.【答案】m >2【解析】解:∵不等式组{x ≥2x <m有解, ∴2≤x <m ,∴m >2,故答案为:m >2.根据不等式组有解的条件,得出2≤x <m ,即可求出m 的取值范围.本题主要考查了不等式组有解的条件,在解题时要会根据条件列出不等式. 17.【答案】解:(1){y =2x −1①3x +4y =7②, 把①代入②得:3x +8x −4=7,解得:x =1,把x =1代入①得:y =1,则方程组的解为{x =1y =1; (2){3x −2y =−1①4x +3y =10②①×3+②×2得:17x =17,解得:x =1,把x =1代入①得:y =2,则方程组的解为{x =1y =2.【解析】(1)利用代入消元法求出解即可;(2)利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】(1)20袋;(2)(3)5%;(4)10000袋中不合格的产品有500袋.【解析】【解析】试题分析:解依题意知:(1)由图1知A色素有8袋,由图2知A色素占了总数的40%所以总袋数=8÷40%=20(袋);(2)20×45%=9(袋),即(3)图2中的色素含量为D的方便面所占的百分比:1−10%−40%−45%=5%;(4)不合格的产品袋数=10000×5%=500(袋),即10000袋中不合格的产品有500袋.考点:扇形统计图和条形统计图点评:本题难度较低,考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.19.【答案】解:(1)原式=23×3√x+6×√x2=2√x+3√x=5√x.(2)原式=4√5+3√5−2√2+4√2=7√5+2√2.【解析】根据二次根式的性质把各个二次根式化简,合并同类二次根式即可.本题考查的是二次根式的加减法,掌握二次根式的性质、合并同类二次根式的法则是解题的关键.20.【答案】解:∵AD平分∠CAB,∠BAC=40°,∴∠DAB=12∠BAC=20°,∵∠B=75°,∴∠ADB=180°−∠DAB−∠B=180°−20°−75°=85°.【解析】根据角平分线定义求出∠DAB,根据三角形内角和定理得出∠ADB=180°−∠DAB−∠B,代入求出即可.本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°.21.【答案】A;内错角相等,两直线平行;∠DCE;两直线平行,同位角相等;∠A;∠B;等量代换【解析】解;∠A+∠B+∠C=180°.理由:作∠ACD=∠A,并延长BC到E∵∠ACD=∠A(已作)∴AB//CD(内错角相等,两直线平行)∴∠B=∠DCE(两直线平行,同位角相等)而∠ACB+∠ACD+∠DCE=180°,∴∠ACB+∠A+∠B=180°(等量代换)故答案为:A,内错角相等,两直线平行,∠DCE,两直线平行,同位角相等,∠A,∠B,等量代换.依据∠ACD=∠A即可得到AB//CD,进而得出∠B=∠DCE,再根据平角为180°,即可得到∠ACB+∠A+∠B=180°.本题主要考查了三角形内角和定理,解题时注意:三角形内角和是180°.22.【答案】解:如图△A1B1C1就是所求的三角形,A1(−2,−2),B1(1,−1),C1(−1.5,0).,再根据所作三【解析】先以原点O为位似中心,作△ABC的位似图形,使相似比为12角形三点的位置写出三点的坐标.此题考查位似三角形的作法和点的坐标的写法,难度中等.23.【答案】解:(1)当t=16时,d=7×√t−12=7×2=14cm;(2)当d=14时,√t−12=2,即t−12=4,解得t=16年.答:冰川消失16年后苔藓的直径为14cm ,冰川约是在16年前消失的.【解析】(1)根据题意可知分别是求当t =16时,d 的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d =14时,t 的值,直接把对应数值代入关系式即可求解. 本题主要考查了平方根、算术平方根概念的运用.会根据题意把数值准确的代入对应的关系式中是解题的关键.24.【答案】解:∵MN//BC ,∴∠MEB =∠CBE ,∠NEC =∠BCE ,∵在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,∴∠MBE =∠EBC ,∠NCE =∠BCE ,∴∠MEB =∠MBE ,∠NEC =∠NCE ,∴ME =MB ,NE =NC ,∴MN =ME +NE =BM +CN =5,故线段MN 的长为5.【解析】先根据平行线的性质,得出∠MEB =∠CBE ,∠NEC =∠BCE ,再根据∠ABC 和∠ACB 的平分线交于点E ,得出∠MBE =∠EBC ,∠NCE =∠BCE ,最后根据ME =MB ,NE =NC ,求得MN 的长即可.本题主要考查了平行线的性质以及等腰三角形的判定,解题时注意:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.【答案】解:(1)设甲种花木的成本价是x 元,乙种花木的成本价为y 元.由题意得:{10x +8y =64004x +5y =3100, 解得:{x =400y =300. (2)设种植甲种花木为a 株,则种植乙种花木为(3a +10)株.{400a +300(3a +10)≤29000(700−400)a +(500−300)(3a +10)≥18200, 解得:18≤a ≤20,∵a 为整数,∴a 可取18或19或20.所以有三种具体方案:①种植甲种花木18株,种植乙种花木3a +10=64株;②种植甲种花木19株,种植乙种花木3a+10=67株;③种植甲种花木20株,种植乙种花木3a+10=70株.【解析】(1)设设甲种花木的成本价是x元,乙种花木的成本价为y元.此问中的等量关系:①甲种花木10株,乙种花木8株,共需成本6400元;②培育甲种花木4株,乙种花木5株,共需成本3100元.(2)结合(1)中求得的结果,根据题目中的不等关系:①成本不超过29000元;②总利润不少于18200元.列不等式组进行分析.考查了一元一次不等式组的应用,二元一次方程组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.注意:利润=售价−进价.26.【答案】解:(1)①BC⊥CE,②BC=CD+CE;(2)结论①成立,②不成立,结论:CD=BC+CE理由:如图2中,∵∠BAC=∠DAE=90°,∴∠BAC−∠BAE=∠DAE−∠BAE,即∠BAD=∠EAC,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABD=135°,∴CD=BC+BD=BC+CE∵∠ACB=45°∴∠DCE=90°,∴CE⊥BC;(3)CE=BC+CD.【解析】【分析】此题是三角形综合题,主要考查了全等三角形的判定与性质以及等腰直角三角形的性质的运用,解决问题的关键是掌握:两边及其夹角分别对应相等的两个三角形全等.(1)根据条件AB=AC,∠BAC=90°,AD=AE,∠DAE=90°,判定△ABD≌△ACE(SAS),由全等的性质得出BD=CE,∠ACE=∠ABD=135°,再而得出BC⊥CE,BC=CD+CE;(2)同(1)的方法判断出△ABD≌△ACE(SAS),得出BD=CE,∠ACE=∠ABD=135°,即可解决问题;(3)同(1)的方法判断出△ABD≌△ACE(SAS),得出BD=CE,再根据BD=BC+CD,即可得出结论.(3)如图3中,【解答】(1)如图1,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠B=∠ACE=45°,①利用两角的和即可得出结论;∵∠ACE=45°=∠ACB,∴∠BCE=45°+45°=90°,即BD⊥CE;②利用线段的和差即可得出结论;∵BD=CE,∴BC=BD+CD=CE+CD,故答案为BC⊥CE,BC=CD+CE;(2)见答案;(3)∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD 即∠BAD=∠CAE,∴在△ABD和△ACE中,{AB=AC∠BAD=∠CAE AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ACE=∠ABC,∵AB=AC,∴∠ABC=∠ACB=45°,∴BD=BC+CD,即CE=BC+CD,故答案为CE=BC+CD.。
2022-2023人教版七上数学期末考试压轴题集训(三)(解析版)
期末考试压轴题训练(三)1.如图1,点A ,B ,C 是数轴上从左到右排列的三个点,分别对应的数为5-,b ,4,某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点A ,发现点B 对应刻度1.8cm ,点C 对齐刻度5.4cm .则数轴上点B 所对应的数b 为( )A .3B .1-C .2-D .3- 【答案】C【详解】解:由图1可得AC =4-(-5)=9,由图2可得AC =5.4cm ,∴数轴上的一个长度单位对应刻度尺上的长度为=5.4÷9=0.6(cm ),∴AB =1.8cm ,∴AB =1.8÷0.6=3(单位长度),∴在数轴上点B 所对应的数b =-5+3=-2;故选:C2.一副三角板ABC 、DBE ,如图1放置,(D ∠=30°、BAC ∠=45°),将三角板DBE 绕点B 逆时针旋转一定角度,如图2所示,且0°<CBE ∠<90°,则下列结论中正确的个数有( ) ①DBC ABE ∠+∠的角度恒为105°;②在旋转过程中,若BM 平分DBA ∠,BN 平分EBC ∠,MBN ∠的角度恒为定值; ③在旋转过程中,两块三角板的边所在直线夹角成90°的次数为2次;④在图1的情况下,作DBF EBF ∠=∠,则AB 平分DBF ∠A .1个B .2个C .3个D .4个 【答案】A【详解】34,9005,BAC DEB AC D B ∠=︒∠=︒∠=∠=︒9060,0594DBE D ABC BAC ∠=︒-∠=︒∠∠︒-==∴︒ 如图1,当045CBE ︒<∠≤︒时()DBC ABE DBE CBE ABC CBE ∠+∠=∠+∠+∠-∠0CBE︒<∠如图1,当∠=BFE90︒<︒+045∠=DBC∠=DBA∴DE只与三角板边所在直线夹角成如图2,当BFE∠=90︒<45135∠=DBCDBA∠=∴只有DBABD ABF ∠⎧⎨∠⎩如图4,作综上,正确的个数只有故选:A .3.若多项式22571--+-x mxy y xy (m 为常数)不含xy 项,则m =____________.【答案】7【详解】解:22571--+-x mxy y xy=225(7)1x m xy y +---∴多项式中不含xy 项∴7-m =0∴m =7故答案为:7.4.已知a ,b 为定值,且无论k 为何值,关于x 的方程2132-+=-kx a x bk 的解总是x =2,则ab=_________.120,则CD的最大值是_____.【答案】14【详解】解:如图,作点A关于CM的对称点'A,点B关于DM的对称点B'.120∠=,CMD∴∠+∠=,60AMC DMB∴''60∠+∠=,CMA DMBA MB∴∠=,''60=,MA MB''∴∆为等边三角形A MB''CD CA A B B D CA AM BD≤++=++=,''''14∴的最大值为14,CD故答案为14.6.已知OC是∴AOB的平分线,∴BOD=13∴COD,OE平分∴COD,设∴AOB=β,则∴BOE=_____.(用含β的代数式表示)7.已知:如图1,点O 是直线MN 上一点,过点O 作射线OE ,使15EOM EON ∠=∠,过点O 作射线OA ,使90AOM ∠=︒.如图2,EON ∠绕点O 以每秒9°的速度顺时针旋转得E ON ∠'',同时射线OA 绕点O 以每秒3°的速度顺时针旋转得射线OA ',当射线OA '落在OA 的反向延长线上时,射线OA '和E ON ∠''同时停止,在整个运动过程中,当t =______时,E ON ∠''的某一边平分A OM ∠'(A OM ∠'指不大于180°的角).∴MOE'=30+9t②ON'平分∴A'OM,此时分为两种情况,第一种情况:ON'没有旋转完360°,∴MON'=∴A'ON'∴MON'=9t-180∴A'ON'=90+(9t-180)-3t∴9t-180=90+(9t-180)-3t解得t=30,第二种情况:ON'旋转完了360°∴MON'=∴A'ON'∴MON'=180-9t+360,∴A'ON'=180-(3t-90)-(180-9t+360)180-9t+360=180-(3t-90)-(180-9t+360)解得t=54,故答案为:t=3或t=30或t=548.问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为 cm .(2)图中点A 所表示的数是 ,点B 所表示的数是 . 实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我就115岁啦! ”请问妙妙现在多少岁了? 【答案】(1)8;(2)14,22;(3)15岁【详解】解:解:(1)观察数轴可知三根木棒长为30−6=24(cm ),则这根木棒的长为24÷3=8(cm );故答案为8.(2)6+8=14,14+8=22.所以图中A 点所表示的数为14,B 点所表示的数为22.故答案为:14,22.(3)当奶奶像妙妙这样大时,妙妙为(35)-岁,所以奶奶与妙妙的年龄差为[115(35)]350--÷=(岁),所以妙妙现在的年龄为115505015--=(岁).9.某商店购进甲、乙两种型号的节能灯共100只,购进100只节能灯的进货款恰好为2600元,这两种节能灯的进价、预售价如下表:(利润=售价-进价)(1)求该商店购进甲、乙两种型号的节能灯各多少只?(2)在实际销售过程中,商店按预售价将购进的甲型号节能灯全部售出,购进的乙型号节能灯部分售出后,决定将乙型号节能灯打九折销售,全部售完后,两种节能灯共获得利润380元,求乙型号节能灯按预售价售出了多少只?【答案】(1)购进甲型号的节能灯60只,购进乙型号的节能灯40只,(2)10只【解析】(1)解:设该商店购进甲种型号的节能灯x 只,则可以购进乙种型号的节能灯(100)x -只, 由题意可得:2035(100)2600x x +-=,解得:60x =,10060400-=(只),答:该商店购进甲种型号的节能灯60只,可以购进乙种型号的节能灯40只;(2)解:设乙型节能灯按预售价售出的数量是y 只,由题意得60(2520)(4035)(40)(4090%35)380y y ⨯-+-+-⨯⨯-=,解得:10y =,答:乙型节能灯按预售价售出的数量是10只.10.(1)先化简,再求值:()()2222523625x y xy y x -++-,其中13x =,12y =-; (2)设2345A a ab =++,22B a ab =-.当a ,b 互为倒数时,求3A B -的值.满足2倍的数量关系,则称该点是其它两个点的“联盟点”.例如:数轴上点A ,B ,C 所表示的数分别为1,3,4,此时点B 是点A ,C 的“联盟点”.(1)若点A 表示数﹣2,点B 表示的数4,下列各数,3,2,0所对应的点分别C 1,C 2,C 3,其中是点A ,B 的“联盟点”的是 ;(2)点A 表示数﹣10,点B 表示的数30,P 在为数轴上一个动点:①若点P 在点B 的左侧,且点P 是点A ,B 的“联盟点”,求此时点P 表示的数;②若点P 在点B 的右侧,点P ,A ,B 中,有一个点恰好是其它两个点的“联盟点”,直接写出此时点P 表示的数为 .当点P 是点A 、点B 的“联盟点”时,有P A =2PB . 根据题意得()()10230x x --=⨯-. 解得x =70.所以此时点P 表示的数为70或50或110. 故答案为:70或50或110.12.如图,将一副三角板放到一起可以擦除怎样的数学火花呢?福山区某学校两个数学兴趣小组对一副三角板进行了以下两种方式的摆放组合.已知一副三角板重合的顶点记为点O ,作射线OE 平分∴AOC ,射线OF 平分∴BOD ,来研究一下45°三角板不动,30°三角板绕重合的顶点O 旋转时,∴EOF 的度数如何变化. 【A 组研究】在同一平面内,将这副三角板的的两个锐角顶点重合(图中点O ),此时∴AOB =45°,∴COD =30°将三角板OCD 绕点O 转动.(1)如图①,当射线OB 与OC 重合时,则∴EOF 的度数为___________;(2)如图②,将∴COD 绕着点O 顺时针旋转,设BOC α∠=,∴EOF 的度数是否发生变化?如果不变,请根据图②求出∴EOF 的度数;如果变化,请简单说明理由. 【B 组研究】在同一平面内,将这副直角三角板中的一个直角顶点和一个锐角顶点重合(图中点O ),此时∴AOB =90°,∴COD =30°,将三角板OCD 绕点O 转动.(3)如图③,当三角板OCD 摆放在三角板AOB 内部时,则∴EOF 的度数为___________; (4)如图④,当三角板OCD 转动到三角板AOB 外部,设∴BOC =β,∴EOF 的度数是否发生变化?如果不变,请根据图④求出∴EOF 的度数;如果变化,请简单说明理由.【答案】(1)37.5︒;(2)不变,37.5︒;(3)60︒;(4)不变,60︒ ∠建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F(Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:____________________________.+-=.V F E214.如图1是墨水瓶包装盒实物图,图2是粉笔包装盒实物图,图3是墨水瓶包装盒展开图,图4是粉笔包装盒展开图,尺寸数据如下(单位:cm.以下问题结果用含a,b,c的式子表示,其中阴影部分为内部粘贴角料,计算纸片面积时内部粘贴角料忽略不计):(1)做一个墨水瓶包装盒需要纸片的面积为___,做一个粉笔包装盒需要纸片的面积为___;(直接写出答案)(2)做一个墨水瓶包装盒和一个粉笔包装盒共用纸片多少平方厘米?(3)做三个粉笔包装盒比做两个墨水瓶包装盒多用多少平方厘米纸片?【答案】(1)(2ab+2ac+2bc)cm2;(6ab+6ac+8bc)cm2(2)(8ab+8ac+10bc)平方厘米(3)做三个粉笔包装盒比做两个墨水瓶包装盒多用(14ab+14ac+20bc)平方厘米纸片.【解析】(1)解:将墨水瓶包装盒展开图折叠,可得长、宽、高分别为a cm、b cm、c cm,故做一个墨水瓶包装盒需要纸片的面积为:(2ab+2ac+2bc)cm2;将粉笔包装盒展开图折叠,可得长、宽、高分别为1.5a cm、2b cm、2c cm,故做一个粉笔包装盒需要纸片的面积为:2×1.5a×2b+2×1.5a×2c+2×2b×2c=(6ab+6ac+8bc)cm2;故答案为:(2ab+2ac+2bc)cm2;(6ab+6ac+8bc)cm2;(2)解:做一个墨水瓶包装盒和一个粉笔包装盒共用纸片:(2ab+2ac+2bc)+(6ab+6ac+8bc)=(8ab+8ac+10bc)cm2;(3)解:3(6ab+6ac+8bc)-2(2ab+2ac+2bc)=18ab+18ac+24bc-4ab-4ac-4bc=14ab+14ac+20bc(cm2),即做三个粉笔包装盒比做两个墨水瓶包装盒多用(14ab+14ac+20bc)平方厘米纸片.15.已知:如图1,M是定长线段AB上一定点,C、D两点分别从M、B出发以1cm/s、3cm/s 的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AB=11cm,当点C、D运动了1s,求AC+MD的值.(2)若点C、D运动时,总有MD=3AC,直接填空:AM=BM.(3)在(2)的条件下,N是直线AB上一点,且AN﹣BN=MN,求2MN3AB的值.∴AN﹣BN=MN,∴AN﹣BN=MN,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年暑假七年级数学训练题(期末模拟题) (32)一、选择题(本大题共10小题,共30.0分)1.如图所示,∠2和∠1是对顶角的是()A. B.C. D.2.4的平方根是()A. ±16B. ±2C. −2D. 23.已知a<b,下列不等式中,变形正确的是()A. a−3>b−3B. a3>b3C. −3a>−3bD. 3a−1>3b−14.在平面直角坐标系中,如果点P(−1,−2+m)在第三象限,那么m的取值范围为()A. m<2B. m≤2C. m≤0D. m<05.下列调查方式,你认为最合适的是()A. 旅客上飞机前的安检,采用抽样调查方式B. 了解某地区饮用水矿物质含量的情况,采用抽样调查方式C. 调查某种品牌笔芯的使用寿命,采用全面调查方式D. 调查浙江卫视《奔跑吧,兄弟》节目的收视率,采用全面调查方式6.如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是()A. 55°B. 45°C. 35°D. 65°7.下列命题中,是假命题的是()A. 在同一平面内,过一点有且只有一条直线与已知直线垂直B. 同旁内角互补,两直线平行C. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行D. 两条直线被第三条直线所截,同位角相等8.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A. 70°B. 50°C. 40°D. 35°9.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(−2,1),则表示棋子“炮”的点的坐标为()A. (−3,3)B. (0,3)C. (3,2)D. (1,3)10. 如图,在平面直角坐标系xOy 中,如果一个点的坐标可以用来表示关于x 、y 的二元一次方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解,那么这个点是( )A. MB. NC. ED. F二、填空题(本大题共6小题,共18.0分)11. 列不等式表示:x 与2的差小于−1______. 12. 把无理数√17,√11,√5,−√3表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是______.13. 若(a −3)2+√b +2=0,则a +b =______.14. 写出二元一次方程2x +y =5的一个非负整数解______.15. 如图,写出能判定AB//CD 的一对角的数量关系:______.16. 在平面直角坐标系xOy 中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′={x −y(当x ≥y 时)y −x(当x <y 时),那么称点Q 为点P 的“关联点”.请写出点(3,5)的“关联点”的坐标______;如果点P(x,y)的关联点Q 坐标为(−2,3),则点P 的坐标为______.三、计算题(本大题共1小题,共6.0分)17. 解不等式组:{2x+35<12(x −1)−1≤5x +3,并把它的解集在数轴上表示出来.四、解答题(本大题共8小题,共46.0分)18. 计算:√16+√−643−√(−3)2+|√3−1|.19. 解二元一次方程组{5x +y =−3,3x +2y =1.20. 按要求完成下列证明:已知:如图,AB//CD ,直线AE 交CD 于点C ,∠BAC +∠CDF =180°.求证:AE//DF .证明:∵AB//CD(______),∴∠BAC =∠DCE(______).∵∠BAC +∠CDF =180°(已知),∴______+∠CDF =180°(______).∴AE//DF(______).21.如图,平面直角坐标系中,已知点A(−3,3),B(−5,1),C(−2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b−2).(1)直接写出点A1,B1,C1的坐标.(2)在图中画出△A1B1C1.(3)连接A A1,求△AOA1的面积.22.关于x的方程5x−2k=6+4k−x的解是负数,求字母k的值.23.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同)若购买2个篮球和3个足球共340元,购买1个篮球和2个足球共需200元;(1)篮球、足球的单价各是多少元;(2)根据学校的实际需要,需一次性购买篮球和足球共100个要求购买篮球和足球的总费用不超过6450元,则该校最多可以购买多少个篮球?24.镇政府想了解李家庄130户家庭的经济情况,从中随机抽取了部分家庭进行调查,获得了他们的年收入(单位:万元),并对数据(年收入)进行整理、描述和分析.下面给出了部分信息.a.被抽取的部分家庭年收入的频数分布直方图和扇形统计图如下(数据分组:0.9≤x<1.3,1.3≤x<1.7,1.7≤x<2.1,2.1≤x<2.5,2.5≤x<2.9,2.9≤x<3.3)b.家庭年收入在1.3≤x<1.7这一组的是:1.31.31.41.51.61.6根据以上信息,完成下列问题:(1)将两个统计图补充完整;(2)估计李家庄有多少户家庭年收入不低于1.5万元且不足2.1万元?25.已知:如图1,AB//CD,点E,F分别为AB,CD上一点.(1)在AB,CD之间有一点M(点M不在线段EF上),连接ME,MF,试探究∠AEM,∠EMF,∠MFC之间有怎样的数量关系.请补全图形,并在图形下面写出相应的数量关系,选其中一个进行证明.(2)如图2,在AB,CD之间有两点M,N,连接ME,MN,NF,请选择一个图形写出∠AEM,∠EMN,∠MNF,∠NFC存在的数量关系(不需证明).-------- 答案与解析 --------1.答案:C解析:解:A.∠1和∠2不是对顶角,B.∠1和∠2不是对顶角,C.∠1和∠2是对顶角,D.∠1和∠2不是对顶角.根据对顶角的定义对各图形判断即可.本题考查了对顶角相等,是基础题,熟记概念并准确识图是解题的关键.2.答案:B解析:解:4的平方根是±2,故选:B.利用平方根的义求解即可.本题主要考查了平方根,解题的关键是熟记平方根的定义.3.答案:C解析:解:∵a<b,∴a−3<b−3,∴选项A不正确;∵a<b,∴a3<b3,∴选项B不正确;∵a<b,∴−3a>−3b,∴选项C正确;∵a<b,∴3a<3b,∴3a−1<3b−1,∴选项D不正确.故选:C.(1)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此解答即可.(2)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.(3)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.(4)首先根据不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,可得3a<3b,然后根据不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,可得3a−1<3b−1,据此解答即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.4.答案:A解析:解:由题意知−2+m<0,则m<2,故选:A.根据解一元一次不等式基本步骤移项、合并同类项1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.5.答案:B解析:解:A、旅客上飞机前的安检,应该采用全面调查方式,不合题意;B、了解某地区饮用水矿物质含量的情况,采用抽样调查方式,符合题意;C、调查某种品牌笔芯的使用寿命,应该采用抽样调查方式,不合题意;D、调查浙江卫视《奔跑吧,兄弟》节目的收视率,应该采用抽样调查方式,不合题意;故选:B.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.6.答案:A解析:解:如图,∵∠CAE=90°,∠1=35°,∴∠BAC=90°−35°=55°,∵AB//CD,∴∠2=∠BAC=55°,故选:A.根据直角可得出∠CAB的度数,再依据平行线的性质,即可得到∠2的度数.本题主要考查了平行线的性质,角的和差,解题关键是求得∠BAC.7.答案:D解析:解:A、在同一平面内,过一点有且只有一条直线与已知直线垂直,这个命题为真命题;B、同旁内角互补,两直线平行,这个命题为真命题;C、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,这个命题为真命题;D、两条直线被第三条直线所截,同位角相等,这个命题为假命题.故选:D.根据垂线公理对A进行判断;根据平行线的判定对B进行判断;根据平行线的传递性对C进行判断;根据平行线的性质对D进行判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可. 8.答案:B解析:解:∵OD ⊥OE 于点O ,∴∠DOE =90°,∴∠AOD +∠BOE =90°,∵OE 平分∠BOC ,∠BOC =80°,∴∠BOE =40°,∴∠AOD =50°.故选:B .直接利用垂线的定义结合角平分线的定义得出∠BOE =40°,进而得出答案.此题主要考查了垂线的定义以及角平分线的定义,正确得出∠BOE 的度数是解题关键.9.答案:D解析:解:如图所示:棋子“炮”的点的坐标为:(1,3).故选:D .根据棋子“馬”和“車”的点的坐标可得出原点的位置,进而得出答案.此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.10.答案:C解析:解:两直线都过定点E ,所以点E 表示关于x 、y 的二元一次方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解, 故选C本题可以通过直线与方程的关系得到两直线都过定点E ,得到本题结论.本题考查的是直线与方程的关系,还可以用解方程组的方法加以解决.11.答案:x −2<−1解析:解:x 与2的差小于−1,用不等式表示为x −2<−1,故答案为:x −2<−1.根据题意表示即可得.本题主要考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.因此建立不等式要善于从“关键词”中挖掘其内涵,不同的词里蕴含这不同的不等关系. 12.答案:√11解析:【分析】本题考查了实数与数轴的关系以及估算无理数的大小有关知识,根据被覆盖的数在3到4之间,化为带根号的数的被开方数的范围,然后即可得解.【解答】解:∵墨迹覆盖的数在3~4,即√9~√16,∴符合条件的数是√11.故答案为√11.13.答案:1解析:解:由题意得,a −3=0,b +2=0,解得a =3,b =−2,所以,a +b =3+(−2)=1.故答案为:1.根据非负数的性质列式求出a 、b 的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.14.答案:{x =0y =5解析:解:∵2x +y =5,∴y =−2x +5,∴当x =0时,y =5;x =1时,y =3;x =2时,y =1,则方程的非负整数解为{x =0y =5,{x =1y =3,{x =2y =1. 故答案为:{x =0y =5(答案不唯一). 把x 看做已知数求出y ,即可确定出非负整数解.此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .15.答案:∠BAC =∠ACD 或∠B +∠BCD =180°或∠D +∠BAD =180°.解析:解:由“内错角相等,两直线平行”可以添加条件∠BAC =∠ACD .由“同旁内角互补,两直线平行”可以添加条件∠B +∠BCD =180°,或∠D +∠BAD =180°. 故答案是:∠BAC =∠ACD 或∠B +∠BCD =180°或∠D +∠BAD =180°.根据平行线的判定定理进行填空.本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力. 16.答案:(3,2) (−2,1)或(−2,−5)解析:解:∵3<5,根据关联点的定义,∴y′=5−3=2,点(3,5)的“关联点”的坐标(3,2);∵点P(x,y)的关联点Q 坐标为(−2,3),∴y′=y −x =3或x −y =3,即y −(−2)=3或(−2)−y =3,解得y =1或y =−5,∴点P 的坐标为(−2,1)或(−2,−5).故答案为:(3,2);(−2,1)或(−2,−5).根据关联点的定义,可得答案.本题主要考查了点的坐标,理清“关联点”的定义是解答本题的关键.17.答案:解:{2x+35<1①2(x −1)−1≤5x +3②, 解不等式①,得x <1,解不等式②,得x ≥−2,∴不等式组的解集是−2≤x <1.解集在数轴上表示如图:解析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.答案:解:√16+√−643−√(−3)2+|√3−1|=4−4−3+√3−1=√3−4.解析:根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式√16+√−643−√(−3)2+|√3−1|的值是多少即可.此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.答案:解:{5x +y =−3 ①3x +2y =1 ②①×2−②,可得:7x =−7,解得x =−1,把x =−1代入①,可得:−5+y =−3,解得y =2, ∴原方程组的解是{x =−1y =2.解析:应用加减消元法,求出方程组的解是多少即可.此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用. 20.答案:已知 两直线平行,同位角相等 ∠DCE 等量代换 同旁内角互补,两直线平行解析:证明:∵AB//CD(已知),∴∠BAC =∠DCE(两直线平行,同位角相等).∵∠BAC +∠CDF =180°(已知),∴∠DCE +∠CDF =180°(等量代换).∴AE//DF(同旁内角互补,两直线平行).故答案为:已知;两直线平行,同位角相等;∠DCE ;同旁内角互补,两直线平行.由已知条件AB//CD ,利用平行线性质知∠BAC =∠DCE ,根据等量代换得∠DCE +∠CDF =180°,由平行线的判定即可得证.本题主要考查了平行线的性质与判定的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.答案:解:(1)∵点P(a,b)的对应点为P 1(a +6,b −2),∴平移规律为向右6个单位,向下2个单位,∴A(−3,3),B(−5,1),C(−2,0)的对应点的坐标为A 1(3,1),B 1(1,−1),C 1(4,−2);(2)△A 1B 1C 1如图所示;(3)连接OA 、OA 1、OA ,△AOA 1的面积=6×3−12×3×3−12×3×1−12×6×2,=18−92−32−6,=18−12,=6.解析:本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.(1)根据点P 、P 1的坐标确定出平移规律,再求出C 1的坐标即可;(2)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(3)利用△AOA 1所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.22.答案:解:解方程得x =k +1,∵方程的解是负数,∴k +1<0,∴k <−1.解析:解方程得出x =k +1,根据方程的解为负数得出关于k 的不等式,解之可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.23.答案:解:(1)设每个篮球x 元,每个足球y 元,由题意得,{2x +3y =340x +2y =200,解得:{x =80y =60, 答:每个篮球80元,每个足球60元;(2)设买m 个篮球,则购买(100−m)个足球,由题意得:80m +60(100−m)≤6450,解得:m ≤22.5,∵m 为整数,∴m 最大取22,答:最多可以买22个篮球.解析:(1)设每个篮球x 元,每个足球y 元,根据买2个篮球和3个足球共需340元,购买1个篮球和2个足球共需200元,列出方程组,求解即可;(2)设买m 个篮球,则购买(100−m)个足球,根据总价钱不超过6450元,列不等式求出x 的最大整数解即可.本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.24.答案:解:(1)抽查的家庭总数为:3÷15%=20(户),第四组2.1≤x <2.5的户数为:20−(3+6+3+2+1)=5(户),第四组2.1≤x <2.5所占的百分比为:520×100%=25%.两统计图补充如下:(2)130×3+320=39(户).答:李家庄有39户的家庭年收入不低于1.5万元且不足2.1万元.解析:(1)根据条形图,得出第一组0.9≤x<1.3的有3户,由扇形图得出所占百分比是15%,由此求出数据总数,再根据各组频数之和等于数据总数求出第四组2.1≤x<2.5的户数,补全条形图;用频数÷数据总数得出所占百分比,补全扇形图;(2)先求出样本中年收入不低于1.5万元且不足2.1万元的家庭所占的百分比,再乘以130即可.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了利用样本估计总体.25.答案:解:(1)∠EMF=∠AEM+∠MFC.∠AEM+∠EMF+∠MFC=360°.证明:过点M作MP//AB.∵AB//CD,∴MP//CD.∴∠4=∠3.∵MP//AB,∴∠1=∠2.∵∠EMF=∠2+∠3,∴∠EMF=∠1+∠4.∴∠EMF=∠AEM+∠MFC;证明:过点M作MQ//AB.∵AB//CD,∴MQ//CD.∴∠CFM+∠1=180°;∵MQ//AB,∴∠AEM+∠2=180°.∴∠CFM+∠1+∠AEM+∠2=360°.∵∠EMF=∠1+∠2,∴∠AEM+∠EMF+∠MFC=360°;(2)如图2第一个图:∠EMN+∠MNF−∠AEM−∠NF C=180°;如图2第二个图:∠EMN−∠MNF+∠AEM+∠NFC=180°.解析:(1)过点M作MP//AB.根据平行线的性质即可得到结论;(2)根据平行线的性质即可得到结论.本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.。