管道水力计算
支管水力计算

支管水力计算水力计算是水利工程中非常重要的一部分,它涉及到管道、泵站、水轮机等工程构筑物的设计与运行。
正确进行水力计算可以确保工程的安全稳定运行,因此水力计算是水利工程中一项非常重要的技术。
本文将全面介绍水力计算的内容,包括管道水力计算、泵站水力计算和水轮机水力计算。
一、管道水力计算1.流量计算:根据管道的材质、孔径和坡度等参数,使用雷诺数和曼宁公式等计算方法,确定管道的流量。
2.压力损失计算:根据管道的材质和长度、流量和流速等参数,使用达西公式等计算方法,确定管道的压力损失。
3.防冲击计算:在水力计算中,还需要考虑管道内部的防冲击设计。
因为当管道中的流速发生突变时,会产生压力冲击。
通过伯努利方程和马朝尔方程等计算方法,来设计管道内部的防冲击设施。
二、泵站水力计算1.扬程计算:泵站的扬程是指泵站出水口与进水口之间的水位差。
通过测量进水口和出水口的水位,使用流量守恒公式,结合泵的性能曲线,计算得出泵站的扬程。
2.泵功率计算:泵站的功率是指在不同流量和扬程条件下泵的输出功率。
根据泵的性能曲线和流量扬程计算公式,在给定的流量和扬程条件下,计算得出泵站的功率。
3.变频器调速计算:变频器能够通过调整泵的转速,调整出水量,使之与水的需求相匹配。
通过对泵站的运行情况进行分析,结合流量扬程计算公式,计算出变频器的转速。
三、水轮机水力计算1.入水流速计算:水轮机的入水流速是指水流进入水轮机之前的流速。
根据水轮机型号和水量,使用水力计算方法,计算出水流的流速。
2.转动力矩计算:水轮机的转动力矩是指水轮机在给定的水量和入水流速条件下,转动的力矩。
通过计算水轮机的进水和出水之间的压力差和叶轮半径等参数,利用液力动量守恒定律和转动动力学方程,计算出水轮机的转动力矩。
3.输出功率计算:水轮机的输出功率是指在给定的水量和入水流速条件下,水轮机产生的功率。
通过计算水轮机的转动力矩和转速,使用功率计算公式,计算出水轮机的输出功率。
管道的水力计算

第三章管道的水力计算及强度计算第一节管道的流速和流量流体最基本的特征就是它受外力或重力的作用便产生流动。
如图3—1所示装置,如把管道中的阀门打开,水箱内的水受重力作用,以一定的流速通过管道流出。
如果水箱内的水位始终保持不变,那么管道中的流速也自始至终保持不变。
管道中的水流速度有多大?每小时通过管道的流量是多少?这些都是实际工作中经常遇到的问题。
图3—1水在管道内的流动为了研究流体在管道内流动的速度和流量,这里先引出过流断面的概念。
图3—2为水通过管道流动的两个断面1—1及2—2,过流断面指的是垂直于流体流动方向上流体所通过的管道断面,其断面面积用符号A来表示,它的单位为m2或cm2。
图32管流的过流断面a)满流b)不满流流量是指单位时间内,通过过流断面的流体体积。
以符号q v表示,其单位为m3/h,cm3/h或m3/s,cm3/s。
流速是指单位时间内,流体流动所通过的距离。
以符号。
表示,其单位为m/s或cm/s。
图3—3管流中流速、流量、过流断面关系示意图流量、流速与过流断面之间的关系如下:以水在管道中流动为例,如图3—3所示,在管段上取过流断面1—1,如果在单位时间内水从断面1—1流到断面2—2,那么断面1—1和断面2—2所包围的管段的体积即为单位时间内通过过流断面1—1时水的流量q v,而断面1—1和断面2—2之间的距离就是单位时间内水流所通过的路程,即流速。
由上可知,流量、流速和过流断面之间的关系式为q v=vA (3—1) 式(3—1)叫做流量公式,它说明流体在管道中流动时,流速、流量和过流断面三者之间的相互关系,即流量等于流速与过流断面面积的乘积。
如果在一段输水管道中,各过流断面的面积及所输送的水量一定,即在管道中途没有支管与其连接,既没有水流出,也没有水流入,那么管道内各过流断面的水流速度也不会变化;若管段的管径是变化的(即过流断面的面积A是变化的),那么管段中各过流断面处的流速也随着管径的变化而变化。
管道水力计算-公式汇总

壁厚(mm)
计算内 径(mm) 80
流速 (m/s) 1.99
0.013
8
3.达西—魏斯巴赫(Darrcy—Weisbach)公式及雷诺(Reynolds)公式
公称直径 (mm)
外径 (mm)
壁厚(mm)
计算内 径(mm)
流速 (m/s)
50 32 1002
2.88 1.67 1.03
4.哈森-威廉方程Hazen Williams:
1.舍维列夫公式
公称直径 (mm) 800
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 250
流速 (m/s) 0.71
8
2.曼宁(Mannins)公式C=1/n×R1/6和谢才(Chezy)公式v=C√Ri
粗糙系数
公称直径 (mm) 100
外径 (mm) 100
摩阻系数 公称直径 C (mm) 150 900
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 600
流速 (m/s) 0.68
8
5.常年运行费用(能耗)差额△E=0.994QC△hf/(η K)
Q—计算平均流量(m /d) C—电价(元/KWh) △hf—水头损失差值(mH2O)
3
52500 0.6 -2.63
流量 (m3/h) 687.50
管长
水头损失 (m) 系数f 10000
0.0006
沿程水头 损失 总水头损失(m) Hf(m) 5.58
备注
注:适用于夹
6.70 砂玻璃钢管
沿程水头损 失(m) 0.12 0.05 0.12 0.15 总水头损 失(m) 0.13 0.06 0.13 0.16 备注
第四章输气管的水力计算

第四章输气管的水力计算输气管的水力计算是为了确定管道中气体流动时产生的压力损失和流速等水力参数,从而有效地设计输气系统。
本文将从输气管的水力原理、水力计算公式以及实际应用中的注意事项等方面进行详细探讨。
一、水力原理输气管的水力原理主要依据流体的连续性方程、能量方程和阻力方程。
其中连续性方程描述了输气管中气体流动的连续性,能量方程用于计算气体在管道中的能量变化,而阻力方程则是根据经验公式,计算气体流动产生的摩阻力。
二、水力计算公式1.压力损失计算公式:压力损失(ΔP)=λ×L/D×(ρv^2/2)其中,λ为摩阻系数,L为管道长度,D为管道直径,ρ为气体密度,v为气体流速。
2.流速计算公式:流速(v)=Q/(πD^2/4)其中,Q为气体流量,D为管道直径。
3.管径计算公式:D=0.613×(Q/P)^(1/2)其中,Q为气体流量,P为设计压力。
三、实际应用注意事项1.摩阻系数的选择:摩阻系数的选择会直接影响到压力损失的计算结果,需要根据具体情况进行合理的选择,可以参考相关经验数据或者进行实验研究。
2.流量和压力的测量:水力计算需要准确的流量和压力数据,因此在实际应用中需要使用合适的流量计和压力计进行测量。
同时,还需要考虑测量误差的影响,并进行相应的修正。
3.管道布置和管径设计:在输气管的水力计算中,需要合理布置管道和选择合适的管径,以便满足系统的流量和压力要求,并减小压力损失。
在实际应用中应进行综合考虑,根据具体情况进行设计优化。
4.防止压力过高:在输气管的水力计算中,需要考虑到气体在流动过程中的压力变化,防止压力过高对设备和管道造成损坏。
因此,在设计过程中需要合理选择设计参数,进行安全性评估。
总结:输气管的水力计算是设计输气系统中重要的一环,通过合理的水力计算可以确保输气管道的正常运行。
对于水力计算公式的使用和实际应用中的注意事项,设计人员需要充分理解,并综合考虑实际情况,确保设计的合理性和安全性。
水力计算公式选用

水力计算公式选用水力计算是指利用水的流动性质进行流量、压力和速度等相关参数的计算。
在水力学中,常用的水力计算公式主要有流量计算公式、速度计算公式和压力计算公式。
下面将介绍几种常用的水力计算公式。
一、流量计算公式:1.泊松公式:流量计算公式是通过测定流速和截面积的方式来计算流量。
泊松公式是最常用的流量计算公式之一,其公式为:Q=A×v其中,Q为流量,A为流体通过的截面积,v为流速。
2.管道流量公式:当涉及到管道流量计算时,可以使用伯努利公式来计算流量,伯努利公式为:Q=π×r²×v其中,Q为流量,r为管道的半径,v为流速。
3.梯形槽流量公式:当涉及到梯形槽流量计算时,可以使用曼宁公式来计算流量,曼宁公式为:Q=(1.49/A)×R^(2/3)×S^(1/2)其中,Q为流量,A为梯形槽的横截面积,R为梯形槽湿周和横截面积之比,S为梯形槽的比降,1.49为曼宁系数。
二、速度计算公式:1.波速计算公式:在涉及到波浪速度计算时,可以使用波速公式进行计算,波速公式的一般形式为:c=λ×f其中,c为波速,λ为波长,f为频率。
2.重力加速度和液体高度差计算公式:当涉及到重力加速度和液体高度差计算时,可以使用水头计算公式,水头计算公式的一般形式为:H=v²/2g+z其中,H为水头,v为速度,g为重力加速度,z为液体的高度。
三、压力计算公式:1.应力计算公式:当涉及到液体对物体的压力计算时,可以使用应力计算公式,应力计算公式的一般形式为:P=F/A其中,P为压力,F为受力大小,A为受力的面积。
2.流体静压力计算公式:当涉及到流体的静压力计算时,可以使用静压力计算公式,静压力计算公式的一般形式为:P=ρ×g×h其中,P为压力,ρ为流体密度,g为重力加速度,h为液体的高度。
以上是一些常用的水力计算公式,可以根据不同的情况和具体要求选择合适的公式进行计算。
管道水力计算(给排水)

第十六篇%管道水力计算第一章%钢管和铸铁管水力计算一!计算公式!&按水力坡降计算水头损失水管的水力计算#一般采用以下公式&Q H ,!+lE 22-$!$#!#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(E...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h2%!应用公式$!$#!#!%时#必须先确定求取系数,值的依据!对于旧的钢管和铸铁管&当F E#3&2W !"/!(时$E...液体的运动粘滞度#(2*h %#,H "&"2!"+l"&)($!$#!#2%当F E<3&2W !"/!(时,H !+l"&)!&/W !"#1I E ()F "&)($!$#!#)%或采用E H !&)W !"#$(2*h $水温为!"?%时#则,H "&"!43+l"&)!I "&1$4()F "&)($!$#!#0%管壁如发生锈蚀或沉垢#管壁的粗糙度就增加#从而使系数,值增大#公式$!$#!#2%和公式$!$#!#)%适合于旧钢管和铸铁管这类管材的自然粗糙度!将公式$!$#!#2%和公式$!$#!#0%中求得的,值代入公式$!$#!#!%中#得出的旧钢管和铸铁管的计算公式&当F #!&2(*h 时#Q H "&""!"4F2+l!&)$!$#!#/%当F <!&2(*h 时#’4!0!’第一章%钢管和铸铁管水力计算Q H "&"""3!2F 2+l!&)!I"&1$4()F "&)$!$#!#$%钢管和铸铁管水力计算表即按公式$!$#!#/%和$!$#!#$%制成!2&按比阻计算水头损失由公式$!$#!#0%求得比阻公式如下&DH Q ;2H "&""!4)$+l/&)$!$#!#4%钢管和铸铁管的D 值#列于表!$#!#0!二!水力计算表编制表和使用说明!&钢管及铸铁管水力计算表采用管子计算内径+l 的尺寸#见表!$#!#!!在确定计算内径+l 时#直径小于)""((的钢管及铸铁管#考虑锈蚀和沉垢的影响#其内径应减去!((计算!对于直径等于)""((和)""((以上的管子#这种直径的减小没有实际意义#可不必考虑!编制钢管和铸铁管水力计算表时所用的计算内径尺寸表!$#!#!钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M 内%径+计算内径+l 铸铁管$((%内%径+计算内径+l 1!)&/"3&""1&""!2/!0$!2$!2//"03!"!4&""!2&/"!!&/"!/"!$1!01!044/40!/2!&2/!/&4/!0&4/!4/!30!40!4)!""332"2$&4/2!&2/2"&2/2""2!3!33!31!2/!202/))&/"24&""2$&""22/20/22/220!/"!03)202&2/)/&4/)0&4/2/"24)2/)2/22""!330"01&""0!&""0"&""24/2332432412/"203/"$"&""/)&""/2&"")"")2/)"/)"/)"")""4"4/&/"$1&""$3&"")2/)/!))!))!)/")$"1"11&/"1"&/"43&/")/")44)/4)/4!""!!0&""!"$&""!"/&""’1!0!’第十六篇%管道水力计算钢%管%$((%水煤气钢管中等管径钢管公称直径M 8外%径M 内%径+计算内径+l 公称直径M 8外%径M内%径+计算内径+l铸铁管$((%内%径+计算内径+l!2/!0"&""!)!&""!)"&""!/"!$/&""!/$&""!//&""2&表!$#!#2"表!$#!#)$中等管径钢管水力计算表%管壁厚均采用!"((#使用中如需精确计算#应根据所选用的管子壁厚的不同#分别对表!$#!#2"表!$#!#)中的!"""Q 和F 值或对表!$#!#0中的D 值加以修正!!"""Q 值和D 值的修正系数i !采用下式计算&i !H +l+l()m/&)$!$#!#1%式中%+l...壁厚!"((时管子的计算内径$(%#+l m...选用管子的计算内径$(%!修正系数i !值#见表!$#!#2!平均水流速度F 的修正系数i 2#采用下式计算&i 2H +l+l()m2$!$#!#3%修正系数i 2值#见表!$#!#)!)&按比阻计算水头损失时#公式$!$#!#4%只适用于平均水流速度F #!&2(*h 的情况!当F <!&2(*h 时#表!$#!#0中的比阻D 值#应乘以修正系数i )!i )可按下式计算&中等管径的钢管!"""Q 值和D 值的修正系数i !表!$#!#2公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&$!"&$$"&4""&4)"&4$"&41"&1""&1!"&1)"&10"&$$"&4""&40"&44"&43"&1!"&1)"&10"&1/"&1$"&42"&4$"&43"&1!"&1)"&1$"&1$"&14"&11"&13"&41"&1!"&1)"&1/"&14"&11"&13"&3""&3!"&32"&1/"&11"&13"&3""&3!"&32"&3)"&3)"&30"&3/"&32"&3)"&30"&3/"&3/"&3$"&3$"&34"&34"&34!!!!!!!!!!!&"3!&"1!&"$!&"$!&"/!&"0!&"0!&")!&")!&")!&!1!&!$!&!)!&!2!&!"!&"3!&"1!&"4!&"4!&"$’3!0!’第一章%钢管和铸铁管水力计算中等管径钢管F 值的修正系数i 2表!$#!#)公称直径M 8$((%壁%厚%(%$((%0/$413!"!!!2!2/!/"!4/2""22/2/"24/)"")2/)/""&1)"&1/"&14"&13"&3""&3!"&32"&3)"&3)"&30"&1$"&11"&13"&3!"&32"&3)"&3)"&30"&30"&3/"&11"&3""&3!"&32"&3)"&30"&30"&3/"&3/"&3$"&3!"&32"&3)"&30"&3/"&3/"&3$"&3$"&3$"&34"&30"&3/"&3$"&34"&34"&34"&34"&34"&31"&31"&34"&34"&31"&31"&31"&31"&33"&33"&33"&33!!!!!!!!!!!&")!&")!&"2!&"2!&"2!&"2!&"!!&"!!&"!!&"!!&"4!&"/!&"/!&"0!&"0!&")!&")!&")!&"2!&"2钢管和铸铁管的比阻D 值表!$#!#0水煤气钢管中等管径钢管铸铁管公称直径M 8$((%D $;()*h %D $;7*h %公称直径M 8$((%D $;()*h %内径$((%D $;()*h %1!"!/2"2/)20"/"4"1"!""!2/!/"22//""""")23/""""11"3"""!$0)"""0)$4""3)1$"00/)"!!"1"213)!!$12$4&01$&2)))&3/22/&/)2&3/1&1"3!&$0)"&0)$4"&"3)1$"&"00/)"&"!!"1"&""213)"&""!!$1"&"""2$40"&""""1$2)"&""""))3/!2/!/"!4/2""22/2/"24/)"")2/)/"!"$&200&3/!1&3$3&24)0&1222&/1)!&/)/"&3)32"&$"11"&0"41/"4/!""!2/!/"2""2/")"")/"!/!3"!4"3)$/&)!!"&10!&1/3&"232&4/2!&"2/"&0/23i )H "&1/2!I "&1$4()F"&)$!$#!#!"%修正系数i )值#见表!$#!#/!’"20!’第十六篇%管道水力计算钢管和铸铁管D 值的修正系数i )表!$#!#/F $(*h %"&2"&2/"&)"&)/"&0"&0/"&/"&//"&$i )!&0!!&))!&2"!&20!&2"!&!4/!&!/!&!)!&!/F $(*h %"&$/"&4"&4/"&1"&1/"&3!&"!&!!&2i )!&!"!&"1/!&"4!&"$!&"/!&"0!&")!&"!/!&""0&钢管$水煤气管%的!"""Q 和F 值见表!$#!#$#钢管M8H !2/>)/"((的!"""Q 和F 值见表!$#!#4(铸铁管M 8H /">)/"((的!"""Q 和F 值见表!$#!#1#表中F 值为平均水流速度(*h!计算示例&3例!4%当流量;H !0.*h H "&"!0()*h 时#求管长.H )/""(#外径W 壁厚H !30W$((的钢管的水头损失!3解4%由表!$#!#!中查得外径MH !30((的钢管公称直径为M 8H !4/((#又由表!$#!#4中M 8H !4/((一栏内查得!"""Q H 0&!/#F H "&$(*h !因为管壁厚度不等于!"(($为$((%#故需对!"""Q 值加以修正!由表!$#!#2中查得修正系数i !H"&43!故水头损失为&,H Q i !.H 0&!/!"""W "&43W )/""H !!&04(按着比阻求水头损失时#由表!$#!#0中查得DH !1&3$$;以()*h 计%#因为平均水流速度F "&$(*h $小于!&2(*h %#故需对D 值加以修正!由表!$#!#/查得修正系数i )H !&!!/!修正系数i !仍等于"&43!故水头损失为&,H D i !i ).;2H !1&3$W "&43W !&!!/W )/""W "&"!02H !!&0$(同样#因为管壁厚度不等于!"((#也应对平均水流速度F 值加以修正#由表!$#!#)查得修正系数i 2H"&3!!则求得&FH "&$"W "&3!H "&//(*h 3例24%当流量;H 4.*h H "&""4()*h 时#求M 8H !/"((#管长.H 2"""(的铸铁管的水头损失!3解4%由表!$#!#1中查到&!"""Q H 2&0$(F H "&0"(*h #故,H Q .H 2&0$!"""W 2"""H 0&32(!按比阻D 值求水头损失时#由表!$#!#0中查得DH 0!&1/$;以()*h 计%!因为平均流速小于!&2(*h #故必须计入修正系数i )#当F H "&0"(*h 时#由表!$#!#/中查得i )H !&2"!故水头损失为&,H D i ).;2H 0!&1/W !&2"W2"""W"&""42H 0&32(’!20!’第一章%钢管和铸铁管水力计算钢管和铸铁管水力计算见表!$#!#$#!$#!#4#!$#!#1!’220!’第十六篇%管道水力计算’)20!’第一章%钢管和铸铁管水力计算’020!’第十六篇%管道水力计算’/20!’第一章%钢管和铸铁管水力计算’$20!’’420!’’120!’’320!’’")0!’’!)0!’’2)0!’’))0!’’0)0!’’/)0!’’$)0!’第十六篇%管道水力计算’4)0!’第一章%钢管和铸铁管水力计算’1)0!’第十六篇%管道水力计算’3)0!’第一章%钢管和铸铁管水力计算’"00!’第十六篇%管道水力计算’!00!’第一章%钢管和铸铁管水力计算’200!’第十六篇%管道水力计算第二章%塑料给水管水力计算一!计算公式Q H ,!+l F 22-$!$#2#!%式中%Q ...水力坡降(,...摩阻系数(+l...管子的计算内径$(%(F...平均水流速度$(*h %(-...重力加速度#为3&1!$(*h 2%!应用公式$!$#2#!%时#应先确定系数,值!对于各种材质的塑料管$硬聚氯乙烯管"聚丙烯管"聚乙烯等%#摩阻系数定为&,H "&2/X f "&22$$!$#2#2%式中%X f ...雷诺数(X f HF +l E$!$#2#)%其中%E ...液体的运动粘滞系数$(2*h %!当E H !&)W !"#$(2*h $水温为!"?%时#将公式$!$#2#2%和式$!$#2#)%中求得的,值代入公式$!$#2#!%中#进行整理后得到&Q H "&"""3!/;!&440+l0&440$!$#2#0%式中%;...计算流量$()*h %(+l...管子的计算内径$(%!塑料给水管水力计算表即按公式$!$#2#0%制成!二!水力计算表的编制和使用说明$!%为计算方便#水力计算表是按标准管的计算内径编制的!对于公称管径M 8H 1>!/((的塑料管#采用,轻工业部部标准5P 41>1".4/-中B 8H!&"F B 9$!"J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!对于公称管径M 8H 2">)/"((的塑料’)00!’第二章%塑料给水管水力计算管#采用,轻工业部部标准5P 41>1".4/-中B 8H"&$F B 9$$J -*c (2%规格的硬聚氯乙烯管的实际内径作为标准管计算内径!$2%各种不同材质"不同规格的塑料管#由于计算内径互有差异#所以在进行水力计算时#应将查水力计算表所得的!"""Q 值和F 值#分别乘以阻力修正系数i !和流速修正系数i 2进行修正!i !H +l+l()m0&440$!$#2#/%i 2H +l+l()m 2$!$#2#$%式中%+l...标准管计算内径$(%(+l m...计算管计算内径$(%!$)%国产各种材质规格塑料管的i !"i 2数据见表!$#2#!"表!$#2#2和表!$#2#)!在表!$#2#!中#硬聚氯乙烯管和聚乙烯管规格取自,轻工业部部标准5P 41>1".4/-!在表!$#2#2中#聚丙烯管规格取自轻工业部聚丙烯管材标准起草小组!341年1月编制的,聚丙烯管材料暂行技术条件-!在表!$#2#)中#硬聚氯乙烯管和聚乙烯管规格取自,化工部部标准@P .$).$/-!其它材质"规格塑料管的i !"i 2可分别用公式$!$#2#/%和式$!$#2#$%自行计算!轻工业部部标准硬聚氯乙烯管及聚乙烯管i !!i 2值表!$#2#!材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 21!2W !&/3!!!2W !&/3!!!"!$W 2!2!!!$W 2!2!!!/2"W 2!$!!2"W 2!$!!2"2/W !&/22!!2/W 2&/2"!&/4$!&2!"2/W 22!!&203!&"312/)2W !&/23!!)2W 2&/24!&0"4!&!/0)2W 2&/24!&0"4!&!/0)20"W 2&")$!!0"W ))0!&)!0!&!2!0"W ))0!&)!0!&!2!0"/"W 2&"0$!!/"W )&/0)!&)1"!&!00/"W 002!&/00!&2""/"$)W 2&//1!!$)W 0//!&213!&!!2$)W //)!&/)1!&!314"4/W 2&/4"!!4/W 0$4!&2)2!&"321"3"W )10!!3"W 0&/1!!&!3"!&"4/!""!!"W )&/!")!!!!"W /&/33!&2"1!&"12’000!’第十六篇%管道水力计算材%质硬%聚%氯%乙%烯聚%乙%烯工作压力B -H"&$F B 9B -H !&"F B 9B -H "&0F B 9公称管径M 8$((%外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2外径MW 壁厚$((%计算内径+lm$((%i !i 2!!"!2/W 0!!4!!!2/W $!!)!&!1!!&"42!!2/!0"W 0&/!)!!!!0"W 4!2$!&2"0!&"1!!/"!$"W /!/"!!!$"W 1!00!&2!/!&"1/!4/!1"W /&/!$3!!!1"W 3!$2!&220!&"112""2""W $!11!!2""W !"!1"!&2)!!&"3!22/22/W 42!!!!2/"2/"W 4&/2)/!!24/21"W 1&/2$)!!)"")!/W 3&/23$!!)/")//W !"&3))0!!0""0""W !2)4$!!计算示例&)例*%已知流量;H !0.*h H "&"!0()*h #求管长.H )/""(#管径M 2""W $#轻工业部部标准B 8H!&"F B 9$!"J -*c (2%硬聚氯乙烯管的水头损失及平均水流速度!)解*%由表!$#2#!中查得外径M 2""((的塑料公称直径为M 82""((#又由表!$#2#0中查得M 82""((#当;H !0.*h 时#!"""Q H !&)0(#F H "&/(*h!因选用非标准管#故须对已求得的!"""Q 值加以修正!由表!$#2#!查得阻力修正系数i !H!&2)!#故实际水头损失为&,H Q i !.H !&)0!"""W !&2)!W)/""H /&44(同法查得流速修正值i 2H !&"3!#将由表!$#2#0中查得的流速F H "&/"(*h 加以修正!求得管内实际流速为FH "&/"W !&"3!H "&/0$(*h $0%工程中#塑料管一律用外径W 壁厚表示其规格!本计算表中公称管径是指外径而言#单位为毫米!三!水力计算塑料给水管水力计算见表!$#2#0!’/00!’第二章%塑料给水管水力计算’$00!’’400!’’100!’’300!’’"/0!’’!/0!’’2/0!’’)/0!’’0/0!’’//0!’’$/0!’第十六篇%管道水力计算’4/0!’第二章%塑料给水管水力计算’1/0!’第十六篇%管道水力计算’3/0!’第二章%塑料给水管水力计算’"$0!’第十六篇%管道水力计算第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算一!计算公式;H FD $!$#)#!%图!$#)#!%,<M 2%%%%%F H !RX 2*)Q !*2$!$#)#2%式中%;...流量$()*h %(F...流速$(*h %(R...粗糙系数(X ...水力半径$(%(Q ...水力坡降(D ...水流断面$(%!当,<M 2时#DH $;#h Q R ;c a h ;%^2$!$#)#)%图!$#)#2%,<M2%%%%%3H 2;^$!$#)#0%3...湿周$(%!XH ;#h Q R ;c a h ;2;^$!$#)#/%当,[M 2时#DH $1#;I h Q R ;c a h ;%^2$!$#)#$%3H 2$1#;%^$!$#)#4%3...湿周$(%!XH 1#;I h Q R ;c a h ;2$1#;%^$!$#)#1%二!水力计算钢筋混凝土圆管MH !/">1""(($非满流#R H "&"!0%水力计算见表!$#)#!!表中;为流量$.*h %#F 为流速$(*h %!’!$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’2$0!’第十六篇%管道水力计算’)$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算’0$0!’第十六篇%管道水力计算’/$0!’第三章%钢筋混凝土圆管!非满流$R H "&"!0"水力计算。
输水管道水力计算公式

输水管道水力计算公式1.常用的水力计算公式:供水工程中的管道水力计算一般均按照均匀流计算,目前工程设计中普遍采用的管道水力计算公式有:达西(DARCY )公式:g d v l h f 22**=λ (1)谢才(chezy )公式:i R C v **= (2)海澄-威廉(HAZEN-WILIAMS )公式:87.4852.1852.167.10d C l Q h h f ***= (3) 式中 h f -----------沿程损失,mλ----------沿程阻力系数l -----------管段长度,md-----------管道计算内径,mg-----------重力加速度,m/s 2C-----------谢才系数i------------水力坡降;R-----------水力半径,mQ-----------管道流量m/s 2v------------流速 m/sC n -----------海澄―威廉系数其中达西公式、谢才公式对于管道和明渠的水力计算都适用。
海澄-威廉公式影响参数较小,作为一个传统公式,在国内外被广泛用于管网系统计算。
三种水力计算公式中 ,与管道内壁粗糙程度相关的系数均是影响计算结果的重要参数。
2.规范中水力计算公式的规定3.查阅室外给水设计规范及其他各管道设计规范,针对不同的设计条件,推荐采用的水力计算公式也有所差异,见表1:表1 各规范推荐采用的水力计算公式3.1达西公式达西公式是基于圆管层流运动推导出来的均匀流沿程损失普遍计算公式,该式适用于任何截面形状的光滑或粗糙管内的层流和紊流。
公式中沿程阻力系数λ值的确定是水头损失计算的关键,一般采用经验公式计算得出。
舍维列夫公式,布拉修斯公式及柯列勃洛克(C.F.COLEBROOK )公式均是针对工业管道条件计算λ值的著名经验公式。
舍维列夫公式的导出条件是水温10℃,运动粘度1.3*10-6 m 2/s,适用于旧钢管和旧铸铁管,紊流过渡区及粗糙度区.该公式在国内运用较广.柯列勃洛可公式)Re 51.27.3lg(21λλ+∆*-=d (Δ为当量粗糙度,Re 为雷诺数)是根据大量工业管道试验资料提出的工业管道过渡区λ值计算公式,该式实际上是泥古拉兹光滑区公式和粗糙区公式的结合,适用范围为4000<Re<108。
排水管道纯公式水力计算

排水管道纯公式水力计算排水管道水力计算是指根据管道的水力特性和流体力学原理,计算管道内流体的速度、压力、流量等参数,以确定管道的水力性能。
下面将介绍一些常见的排水管道水力计算公式,并对其进行说明。
1.流量公式:流量是指单位时间内通过管道截面的液体体积。
流量公式可以用来计算流量,其表示为:Q=A*v式中,Q表示流量,单位为体积/时间;A表示管道截面积,单位为面积;v表示流速,单位为长度/时间。
该公式根据负责流量为截面面积与流速的乘积。
2.流速公式:流速是指单位时间内通过管道其中一点的液体线速度。
流速公式可以用来计算流速,其表示为:v=Q/A式中,v表示流速;Q表示流量;A表示管道截面积。
3.斯怀默公式:斯怀默公式用来计算管道中的流速,其表示为:v=C*R^(2/3)*S^(1/2)式中,v表示流速,单位为长度/时间;C为经验系数(一般根据实际情况取值);R表示液体在管道内运动的惯性系数;S表示液体在管道内运动的能量消耗系数。
4.伯努利方程:伯努利方程是描述流体在管道中运动的一种基本物理原理。
对于水力平衡的平稳流动有:z+(P/γ)+(v^2/2g)=常数式中,z表示位置高度;P表示压力;γ表示液体的比重;v表示流速;g表示重力加速度。
该方程表达了位置高度、压力和速度之间的关系。
5.里德伯格公式:里德伯格公式用来计算管道中的摩阻损失,其表示为:Hf=f*(L/D)*(v^2/2g)式中,Hf表示摩阻损失;f表示摩阻系数;L表示管道长度;D表示管道直径;v表示流速;g表示重力加速度。
以上是一些常见的排水管道水力计算公式,用于计算排水管道的流量、流速、摩阻损失等参数。
在实际应用中,还可以根据具体情况选择适用的公式进行计算。
需要注意的是,公式的使用需要考虑实际情况,并结合实际数据进行合理调整,以保证计算结果的准确性。
管道的水力计算

• 引言 • 管道水力计算基础 • 管道水力计算方法 • 实际应用案例 • 结论与展望
01
引言
主题简介
管道水力计算是流体动力学的一个重 要分支,主要研究流体在管道内的流 动规律和相关参数的计算。
它涉及到流体的物理性质、管道的几 何形状和流动条件等多个因素,对于 保障管道系统的正常运行、优化设计 以及节能减排等方面具有重要意义。
未来还需要加强对于管道水力计算与其他领域的 交叉研究,如环境工程、化学工程等,以拓展其 应用领域和应用范围。
随着科技的不断进步和应用需求的不断提高,未 来对于管道水力计算的研究将更加深入和广泛, 需要加强对于新型计算方法和技术的研究和应用 ,以提高计算精度和效率。
未来需要加强对于管道水力计算在实际工程中的 应用研究,以提高工程设计和运行的效率和安全 性。
03
管道水力计算方法
流量计算
流量与流速的关系
流速越大,流量越大;流速越小,流量越小。
流量计算公式
根据管道的截面积和流速,计算管道内的流 量。
流量与压力的关系
压力越大,流量越大;压力越小,流量越小。
管道阻力损失计算
摩擦阻力损失
由于流体与管道内壁之间的摩擦而产生的阻力损失。
局部阻力损失
由于管道中的阀门、弯头等局部结构而产生的阻力损失。
02
管道水力计算基础
水力学基本概念
水流运动
水流运动的基本规律和特性,包括流速、流量、水压 等。
水头损失
水流在运动过程中受到的阻力,导致水头损失的原理 和计算方法。
流体平衡
流体平衡的基本原理和计算方法,包括静水压强、流 速场等。
管道水流特性
管道水流形态
根据雷诺道水力计算的目的在于确定管道中流体的流量、压力、流速等参数,为管道系 统的设计、优化和运行提供科学依据。
住宅建筑给水管水力计算算例及讨论

住宅建筑给水管水力计算算例及讨论住宅建筑的设计总用水量为10m³/h,给水管道的起始水压为0.4MPa,终点水压为0.3MPa。
首先我们需要确定给水管道的管径,然后计算管道的水力参数,最后根据水力参数来选择合适的给水管道材料和规格。
1.确定给水管道的管径根据设计总用水量,我们可使用以下公式计算给水管道的流量Q:Q=V/t其中,V为设计总用水量,单位为m³/h;t为给水管道使用的小时数。
假设给水管道使用24小时,代入之前的数值,可得:Q=10/24=0.4167m³/h下一步是根据给水管道的流量来确定其管径。
我们将使用流量速度法进行计算。
首先,我们假设给水管道的流速为2m/s。
根据流量速度法公式:Q=A×v其中,Q为流量,单位为m³/h;A为管道横截面积,单位为m²;v为流速,单位为m/s。
代入之前的计算结果,可得:0.4167=A×2解得给水管道的横截面积为0.4167/2=0.2084m²由于给水管道一般选用圆形管道,其横截面积A可通过以下公式进行计算:A=π×(d/2)²其中,π取3.14,d为管道的直径,单位为m。
代入横截面积的计算结果,可得:0.2084=3.14×(d/2)²解得给水管道的直径d为0.515 m,即51.5 cm。
2.计算管道的水力参数根据给水管道的直径,我们可计算出其横截面积和周长:A=π×(d/2)²=3.14×(0.515/2)²=0.2084m²C=π×d=3.14×0.515=1.62m接下来,我们将计算流量速度和雷诺数来确定水力参数。
流量速度v的计算公式为:v=Q/A代入之前的计算结果,可得:v=0.4167/0.2084≈2m/s雷诺数Re的计算公式为:Re=v×d/ν其中,ν为水的运动黏度,单位为m²/s,一般取10⁻⁶m²/s。
管道水力计算与设计

管道水力计算与设计引言管道是指一种具有一定长度和直径的管子,可以输送液体、气体或固体颗粒等物质。
在工程设计中,管道的水力计算和设计是非常重要的环节,它涉及到管道输送流体的流速、压力、管径选择以及相关的水力特性。
本文将围绕管道水力计算和设计展开讨论,以提供读者对于该领域的基本了解。
一、水力计算1.1 流量计算在进行管道水力计算时,首要的任务是确定流体在管道中的流量。
流量的计算通常基于流量公式,其中最常见的是流量公式为Q=Av,其中Q表示流量,A表示管道的横截面积,v表示流速。
在实际的设计中,我们可以根据需求来计算或者给定流体的流量,从而确定所需的管道尺寸。
1.2 压力计算压力计算是管道水力设计的关键部分之一,它决定了管道在工作过程中所能承受的压力范围。
压力的计算需要考虑到多种因素,包括起点和终点的压力、流体的密度、流体的速度等。
通过合适的压力计算,我们能够确定管道的合适材质、管道的连接方式以及必要的支撑结构。
二、管道设计2.1 管道材质选择在进行管道设计时,我们必须考虑所需的材质。
常见的管道材料包括金属材质(如钢、铜等)和非金属材质(如塑料、玻璃钢等)。
不同材质的管道具有不同的特性,例如金属管道具有较高的强度和耐用性,而塑料管道则具有较低的成本和良好的耐腐蚀性。
根据具体情况选择合适的管道材质,对于管道的设计和使用至关重要。
2.2 管道直径确定管道直径的确定是管道设计的重要环节之一。
合适的管道直径能够确保流体在管道内的流速满足要求,同时减小能量损失和阻力。
常用的方法有经验公式法和经济最佳速度法。
经验公式法通常基于实践经验和实际数据,适用于一般情况下的估算;经济最佳速度法通过经济分析来确定最佳管道直径,以实现在经济成本和工作效率之间的平衡。
2.3 管道布置和支撑管道的布置和支撑是管道设计中不可忽视的一部分。
合理的管道布置能够保证流体在管道中平稳地流动,减少能量损失。
同时,必要的支撑结构可以确保管道在工作过程中的稳定性和安全性。
第十章管路水力计算

qVx qVT qL x
dx上消耗水头
dh f
qV2 x K2
dx
则:H
dhf
L 0
qV2 x K2
dx
L 0
qVT q L x K2
2
dx
若流动处于阻力平方区 K const
积分上式得
•H
q2 VT
L
qVT qL2 K2
q 2 L3 3
•H
L K2
q2 VT
qVT qVn
第十章 管路水力计算
本章是应用能量方程和阻力计算来确定流速、 流量,或已知管径、流量,确定阻力,即qv、 Δp。工程中,一般是设计时,qv已知,预知 结构,计算Δp阻力。选择机械如泵、风机。 在计算中,要用到连续方程,动量方程, 能量方程,阻力计算公式。 限制:恒定流,设α=1。
1、几个概念:
(1)管路系统:构成流体流动限制,并保 证流体流动畅通的管件组合,简称管路。
第九节 有压管路的水击
当管件中的闭门突然关闭或水泵突然停止 工作,使液流速度突然改变,这种液体动 量的变化而引起的压强突变(急上或下) 的现象称水击。
压强的交替变化,对管壁或阀门仪表产生类 似于锤击的作用,因此,水击也称水“锤”。
水击使压强升高达数倍或几十倍,严重时 损害管路。
本节介绍水击机理和减轻水击的措施。
liV22 2dg
i
V
)
V22 2g
H
(1
i
li d
i
V2 )
2g
令
s
i
li d
i
H
(1
s
)
V2 2g
(1
s
)
16qv 2
管道水力计算-公式汇总

壁厚(mm)
计算内 径(mm) 80
流速 (m/s) 1.99
0.013
8
3.达西—魏斯巴赫(Darrcy—Weisbach)公式及雷诺(Reynolds)公式
公称直径 (mm)
外径 (mm)
壁厚(mm)
计算内 径(mm)
流速 (m/s)
50 32 1002
2.88 1.67 1.03
4.哈森-威廉方程Hazen Williams:
摩阻系数 公称直径 C (mm) 150 900
外径 (mm) 820
壁厚(mm)
计算内 径(mm) 600
流.常年运行费用(能耗)差额△E=0.994QC△hf/(η K)
Q—计算平均流量(m3/d) C—电价(元/KWh) △hf—水头损失差值(mH2O)
52500 0.6 -2.63
20.35 4.83 2919.00
流量 (m3/h) 687.50
管长
水头损失 (m) 系数f 10000
0.0006
沿程水头 损失 总水头损失(m) Hf(m) 5.58 6.70
备注
注:适用于夹 砂玻璃钢管
沿程水头损 失(m) 0.12 0.05 0.12 0.15 总水头损 失(m) 0.13 0.06 0.13 0.16 备注
流量 (m3/h) 125.00
管长
沿程水头 沿程水头 (m) 损失系数 总水头损失(m) 损失(m) i 617 0.0035 2.1701
备注
使用于旧钢管
2.60 和球墨铸铁管
√Ri
流量 (m3/h) 36.00
管长
沿程水头 沿程水头 (m) 损失系数 总水头损失(m) 备注 损失(m) 注:适用钢筋 i 30 0.1232 3.70 4.07
第一课水力计算及实例讲解

精品课件!
精品课件!
民用户一般直接套用水力计算图表即可,小于2000 户的负荷多采用燃具同时工作系数法来确定计算流量, 大于2000户的多采用高峰系数法来确定计算流量。
管道允许阻力降△Pd=0.75Pn+150 Pn-低压灶具的额定用气压力(Pa),要根据不同气种、
不同灶具来确定。
天然气灶具一般为2000Pa,故△Pd=1650Pa,旧燃规里 根据经验把1650划分成庭院+户内各分别占多少帕, 新规范里没有明确提出,只是要求分配时要根据情况, 经技术经济比较后确定。
对于高层民用户采用二次调压供气时,应根据低低压调 压器的进口压力范围来确定一二级调压间管道的允许阻 力降。
高差大时,水力计算中应考虑附加压力的影响。
1、设备负荷计算。
要根据燃气压力、温度、热值换算工况流量。需要注意 的是标准状态的定义。商业贸易中所说的标准状态一般 是“20℃、1标准大气压”,而 “0℃、1标准大气压” 的标准状态的概念是用在实验室里的,这就需要在引用 基础参数时查看当地供气公司提供的燃气参数的标注状 态。同时我们计算用的热值应是燃气低热值,而非高热 值,两者的区别就是:高热值多了燃烧产物冷凝成液态 所放出的热量,目前这部分热量在日常生活中是不能利 用的,所以在负荷计算中不能套用高热值。
Re 2100 65 Re 105
p l
1.9106 (1
11.8Q 7104 dv 23Q 105 dv )
Q2 d5
T T0
3、湍流状态(Re>3500) ⑴ 钢管(PE管计算公式同钢管):
λ 0.11( K 68 )0.25 d Re
p l
管道水力计算

管道水力计算
管道内的水流速度宜采用经济流速,必要时可超过5m/s,但不应大于10m/s。
每米管道的水头损失应按下式计算:
(9.2.2)
式中i——每米管道的水头损失(MPa/m);
V——管道内水的平均流速(m/s);
d j ——管道的计算内径(m),取值应按管道的内径减1mm确定。
管道的局部水头损失,宜采用当量长度法计算。
当量长度表见本规范附录C。
水泵扬程或系统入口的供水压力应按下式计算:
H=∑h + P 0 + Z (9.2.4)
式中H——水泵扬程或系统人口的供水压力(MPa);
∑ h——管道沿程和局部的水头损失的累计值(MPa),湿式报警阀、水流指示器取值O.O2MPa,雨淋阀取值O.07MPa;
注:蝶阀型报警问及马鞍型水流指示器的取值由生产厂提供。
P 0 ——最不利点处喷头的工作压力(MPa);
Z ——最不利点处喷头与消防水池的最低水位或系统入口管水平中心线之间的高程差,当系统入口管或消防水池最低水位高于最不利点处喷头时,Z应取负值(MPa)。
水力计算基本公式

水力计算基本公式水力计算是涉及水流和流体力学的计算过程。
其基本公式包括渠道流量公式、摩擦阻力公式和水力损失公式等。
下面将详细介绍这些基本公式及其应用。
1.渠道流量公式渠道流量公式是用来计算水流通过给定横截面的流量的公式。
根据不同的渠道形状和流量条件,可以使用相应的公式。
以下是几种常见的渠道流量公式:1.1矩形渠道流量公式:Q=b*h*v式中,Q为流量,b为矩形渠道的宽度,h为水深,v为流速。
1.2圆形渠道流量公式:Q=π*r^2*v式中,Q为流量,r为圆形渠道的半径,v为流速。
1.3梯形渠道流量公式:Q=(a+b)*h*v/2式中,Q为流量,a和b为梯形渠道上下底的长度,h为水深,v为流速。
2.摩擦阻力公式摩擦阻力公式用于计算水流通过渠道时所受到的阻力。
常用的摩擦阻力公式有曼宁公式和切比雪夫公式。
2.1曼宁公式:h=(1/n)*(Q/A)^2*l/(2*g)式中,h为渠道水深(摩擦阻力损失),n为曼宁摩擦系数,Q为流量,A为横截面面积,l为渠道长度,g为重力加速度。
2.2切比雪夫公式:h=α*(Q^2/A^2)*l/(2*g)式中,h为渠道水深(摩擦阻力损失),α为切比雪夫系数,Q为流量,A为横截面面积,l为渠道长度,g为重力加速度。
3.水力损失公式水力损失公式用于计算水流通过管道或渠道时所产生的能量损失。
常见的水力损失公式有弗朗西斯公式和达西-魏本巴赫公式。
3.1弗朗西斯公式:h=(f*l*v^2)/(2*g*d)式中,h为水力损失,f为摩擦阻力系数,l为管道或渠道长度,v为流速,g为重力加速度,d为管道或渠道的直径或水深。
3.2达西-魏本巴赫公式:h=(f*l*v^2)/(2*g*d)式中,h为水力损失,f为达西-魏本巴赫摩擦系数,l为管道或渠道长度,v为流速,g为重力加速度,d为管道或渠道的直径或水深。
这些基本公式在水力学相关领域中都有广泛的应用,通过对水流的流速、渠道形状和摩擦阻力等因素的计算,可以帮助工程师设计和优化水利工程。
自来水管道水力计算报告

自来水管道水力计算报告水力计算简介:自来水管道的水力计算是确保管道系统正常运行的重要一环。
通过对管道的水力特性进行测算和分析,可以保证管道能够满足不同使用场景下的需水量,并确保水流的均匀性和稳定性。
本报告将对自来水管道的水力计算进行详细分析,以提供合理的设计指导。
1. 基本参数在进行水力计算之前,首先需要明确一些基本参数:- 管道长度:根据实际布置情况测量得出的管道总长度。
- 管道直径:管道的内径,通常以毫米或英寸表示。
- 材料:管道所采用的材料,如钢、铸铁、PVC等。
- 流量:管道系统中所需水流量,通常以立方米/小时表示。
2. 流速计算水流速度是水力计算的重要参数之一,其确定与管道直径、管道材料以及流量有关。
根据流速公式,可以计算得出水流速度:流速 = 流量/ (π * (管道直径/2)²)3. 管道阻力计算管道内的水流将受到摩擦阻力和局部阻力的影响,进而影响水力计算的结果。
根据丧失系数法则,可以计算得出总阻力系数:总阻力系数= Σ(局部阻力系数) + 各段长度 * 径向阻力系数4. 压力计算确保管道系统正常供水的关键在于管道中的水压,在水力计算中需要保证供水压力的合理性。
通过对压力损失的计算,可以得出管道末端的供水压力:供水压力 = 初始水压 - 压力损失5. 选取合适管径根据前述的水力计算结果,可以选取合适的管径,确保管道能够满足供水要求。
在确定管径时,需要考虑到管道的流速以及排列形式等因素。
6. 结论根据水力计算的结果,我们可以获得以下结论:- 确定合适的管径,以满足不同场景下的供水要求。
- 通过控制管道的压力损失,保证管道末端的供水压力。
- 确保管道系统的稳定性和均匀性,以保障供水的质量。
总结:本报告对自来水管道的水力计算进行了详尽分析,通过考量基本参数、流速、阻力、压力等因素,为供水系统的设计提供了有效的指导。
合理的水力计算对于保证自来水供应的正常运行至关重要,我们建议在实际工程中充分考虑水力计算的结果,以提供高质量的供水服务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管道水力计算新大技术研究所:戴颂周2012 年3 月2 日目录第一章单相液体管内流动和管道水力计算 (3)第一节流体总流的伯努利方程 (3)一、流体总流的伯努利方程 (3)二、流体流动的水力损失 (3)第二节流体运动的两种状态 (6)一、雷诺实验 (6)二、雷诺数 (7)三、圆管中紊流的运动学特征—速度分布 (7)四、雷诺数算图 (8)第三节沿程水力损失 (9)一、计算方法: (9)第四节局部水力损失 (14)第五节管道的水力计算 (17)一、管道流体的允许流速(经济流速供参考) (17)二、简单管道的水力计算 (19)第二章玻璃钢管道水力计算 (20)第一节玻璃钢管道水力计算公式 (20)一、玻璃钢管道水力计算公式 (20)二、管道水力压降曲线 (21)三、常用液体压降的换算 (21)四、常用管件压降 (23)第二节油气集输管道压降计算 (24)第三节玻璃钢输水管线的水力学特性 (25)一、玻璃钢输水管水流量计算 (25)二、玻璃钢输水管水击强度计算 (25)第三章管道水力学计算中应注意的几个问题 (28)一、热油管道的工艺计算 (28)二、油水两相液体的工艺计算 (28)三、地形变化时的水力坡降 (30)第一章 单相液体管内流动和管道水力计算第一节 流体总流的伯努利方程一、流体总流的伯努利方程1. 流体总流的伯努利方程式(能量方式)=++gc g P Z 221111αρw h g c g P Z +++222222αρ 2. 方程的分析(1) 方程的意义物理意义:不可压缩的实际流体在管道内流动时的能量守恒,或者说,上游机械能=下游机械能+能量的损失。
(2) 各项的意义-21,z z 单位重量流体所具有的位能,或位置水头,m ,即起点、终点标高。
-g p g p ρρ/,/21单位重量流体所具有的压能,或压强水头,m ;即P 1 P 2为起点、终点液流压力,-g c g c 2/,2/222211αα单位重量流体所具有的动能,或速度水头,m ;即C 1 C 2为液流起、终点的流速。
-21,αα单位重量流体的动能修正系数;-w h 单位重量流体流动过程的水力损失,m 。
二、流体流动的水力损失1. 水力损失的计算液体所以能在管道中流动,是由于泵或自然位差提供的能量。
液体流动过程中与各种管道、阀件、管件发生摩擦或撞击而产生阻力。
同时液体质点间的互相摩擦和撞击也要产生阻力。
为了使液体继续流动,就必须供给能量,以克服这些阻力。
用于克服液流阻力的能量,就是管路摩阻损失。
水力损失一般包括两项,即沿程损失fh 与局部损失mh 。
因此,流体流动时上、下游截面间的总水力损失wh 应等于两截面间的所有沿程损失与局部损失之和,即∑∑+=mf w h h h2. 关于沿程损失(1) 实质:沿程流动过程中,由于实际流体具有黏性,流体层之间以及流体与壁面间将产生摩擦阻力损失,即沿程损失,因此,其实质是摩擦损失。
(2) 发生的地点:平顺长直的管段上,或者说等径直管段上。
(3) 计算式:g c d l h f 22λ=式中,-λ沿程损失系数;-d l ,管段长度与内直径,m ;-c 管道截面上的平均流速,m/s 。
3. 关于局部损失(1) 实质:由于实际流体具有黏性,在流经有局部变化的管段时将产生碰擦,并产生漩涡而引起阻力损失,即局部损失,因此,其实质是漩涡损失。
(2) 发生的地点:管段有局部改变的地点,如突变、渐变、转折、弯曲、分汇流及有阀门等管道附件处。
(3) 计算式:g c h m 22ς=式中,-ς局部损失系数。
4、两种水头损失大小比重第二节流体运动的两种状态一、雷诺实验1. 实验装置由于实际流体具有粘性,因此流体在管道中流动时,紧贴管壁的流体其速度必然为零。
而离开管壁越远,流速逐渐增大,到管道中心处的流速最大。
2. 实验结论(1) 如图,出现层流、临界流及紊流的流动状态。
A.层流:流体质点间分层运动,不相掺混;B.紊流:流体质点间不再分层运动,而是相互掺混,呈现较混乱的状态。
C.临界流:又称过渡流,是层流向紊流或紊流向层流转变的过渡状态流动。
(2) 层流向紊流转变时的临界速度A. 下临界速度c nx: 紊流向层流转变时的临界速度;B. 上临界速度c ns: 层流向紊流转变时的临界速度。
工程上,下临界速度更有实际意义。
(3) 影响流动状态的因素A.流速;B. 流体的物性,主要是密度、黏度等;C. 管道的特征尺寸,管内流动一般取管内直径。
上述因素的综合,便是雷诺数Re。
二、雷诺数1. 表达式ννμρd Qcd cd π4Re ===式中:ρ——密度 kg/m ³ μ——动力粘度 mPa.sν——运动粘度 ㎡/s (运动粘度等于动力粘度与流体密度ρ之比,ν=μ/ρ)с——管道截面上的平均流速 m/s d ——管道内直径 mQ ——管路中介质体积流量,米3/秒雷诺数Re 是判断流体流动状态的判据。
它表示流体所受的惯性力与黏性力之比。
若Re 数较小,则黏性力占主导地位,流体易保持原来状态而呈现层流状态;若Re 数较大,则惯性力占主导地位,流体易打破原来状态而呈现紊流状态。
2. 管内流动时的临界雷诺值Re c2000Re ===νμρdc d c nx nx c3. 一般管内流(粗糙管)管内流动时流态的判定Re<2000时,流体为层流;Re>4000时,流体为紊流;4000>Re>2000时,流体为临界流。
三、圆管中紊流的运动学特征—速度分布1.圆管横截面积的紊流结构 (1)近壁处:流体呈层流体;(2)管中心较大区域:流体呈紊流状态; (3)层流至紊流过渡区 2.水力光滑和水力粗糙(1)绝对粗糙度与相对粗糙度:平面凸起的平均高度称为绝对粗糙度,记作△;绝对粗糙度△与管内直径d之比△/d称为相对粗糙度。
(2)水力光滑与水力粗糙:紊流的层流底层厚度δ大于壁面的绝对粗糙度△,即δ>△,称此时管道为水力光滑管;反之,即δ<△,则为水力粗糙管。
(注意)水力光滑和水力粗糙是相对的,不是绝对不变的。
影响因素主要为雷诺数、相对粗糙度△/d等。
四、雷诺数算图雷诺数算图例:已知流速为2米/秒,管内径150mm,介质粘度5厘沱,求雷诺数。
解:联AB交辅助线于C点,从C点与D点联直线交Re轴于E点,可读出雷诺数Re=60000第三节 沿程水力损失一、计算方法:沿程水力损失的计算有多种经验公式,下面介绍达西公式和列宾宗公式沿程摩阻gV D L h T 2*2λ=式中:h r ——管道沿程摩阻,mL ——管道长度,m D ——管道内径,m V ——液流平均流速,m/s g ——重力加速度,m/s 2 λ——水力摩阻系数水力摩阻系数与管道中液体流动状态(雷诺数)、管子的粗糙度、管径等因素有关。
不同λ值可按下表进行计算。
(一)不同流态下的的λ值 (达西公式)(二)利用莫迪图(Moody Figure)查λ值。
莫迪图查法:横坐标为雷诺数Re ,右侧纵坐标为当量的相对粗糙度/d '∆(其中当量粗糙度'∆可按经验查书P 158表4-4),左侧纵坐标即为沿程水力损失系数λ。
查图时,利用Re 和/d '∆所对应的曲线交点,即可获得λ。
利用莫迪曲线图,确定沿程阻力系数值λ,即能确定流动是在那一区域内,非常方便。
莫迪图在以上不同流态下的的λ值表中,雷诺数是一个划分流态的标准,Re=VD/v 它标志着液流中因粘滞性造成的阻力损失和由于液体质点碰撞造成的惯性力损失,在总的阻力损失中所占的地位。
Re 很小时,粘滞阻力起主要作用。
Re 很大时,惯性力损失起主要作用。
v ——流体的粘度(㎡/s ).e —管子的绝对粗糙度(mm )表示管道内壁突起的绝对高度,绝对粗糙度与管道内径的比值称为相对粗糙度,即Der e 2==ε。
由于管道内壁的绝对粗糙度分布不均,且大小不等,因此,在实际上采用的是绝对粗糙度平均值,称之为当量粗糙度,(以K 表示)。
其植受管子材料、使用年限、腐蚀程度的影响。
对于绝大数钢管,当量粗糙度K=0.1-0.2mm 。
对于输油管建议采用K=0.14-0.15mm 。
东北输油管道设计时取K=0.2mm(三)管壁当量粗糙度K(四)不同流态的A 、m 、β值,为方便计算,将上式用一种形式表示。
以m A Re =λ表示水力摩擦系数,并将24D Q V π=,νD QR 54e =代入上式,整理后写出: L D Q Ht mm m--=52νβ式中 gAmm -=248πβ(秒2/米), Q ——体积流量(m ³/s )ν——液体运动粘度(㎡/s ) D 、L ——管内径、管道长(米)。
A 、m 是与流态有关的常数。
不同流态下的A 、m 、β值见列宾公式输油管道水力学计算公式(列宾宗公式)不同流态的A 、m 、β值注:混合区计算式为从25.0)Re68(11.0ελ+=推导出,其误差约为5%。
(五)、各流态区域液流摩阻T h 与流量Q 、粘度ν、管内径D 、管道长L 等参数间的关系。
1、流量Q 对摩阻的影响。
在管径一定及其它条件相同的情况下,液体的流量越大,摩阻损失也越大。
而且在不同的流态区,流量对摩阻的影响程度各不相同:层流区,摩阻与流量成正比(T h αQ );紊流水力光滑区摩阻与流量的1.75次方成正比(T h αQ 1.75);紊流粗糙区摩阻与流量的平方成正比(T h αQ 2)。
即流量增加一倍,紊流区摩阻增加三倍,层流区和水利光滑区各增加1倍和2.36倍。
2、粘度对摩阻的影响当其它条件都相同时,液流的粘度越大,摩阻损失也越大、层流区,粘度对摩阻的影响最显著,摩阻与粘度成正比(T h αν);水力光滑区,摩阻与粘度的0.25次方成正比(T h αν0.25);阻力平方区,粘度不影响摩阻损失3、管道L 长对摩阻的影响摩阻损失与管道长度成正比关系(T h αL ),这对各流态都一样。
4、管径D 对摩阻的影响管径越大,摩阻损失越小。
在层流区,(T h α41D ν);水力光滑区(T h α75.41D);紊流粗糙区,(T h α51D )。
即,当管径增加一倍时,不同流态区的摩阻相应减少为原来的1/16,1/27,1/32。
从以上的分析可以看出,管道直径对摩阻损失的影响最大。
因此,要改变摩阻损失,变更管道直径,效果最为明显。
在实际输油管道中,一般很少出现紊流粗糙区。
热油管道常在水力光滑区。
轻油(汽油、煤油、柴油等)管道多在混合摩擦区。
只有输送高粘度的中质油时才可能出现在层流区。
第四节 局部水力损失一、局部水力损失的计算1.计算式(半经验公式—根据相似理论推导)gc h m 22ξ=由上式可知,其计算关键是局部水力损失系数ξ。
2. 局部水力损失系数ξ的影响因素)/(Re,,局部阻件的性质等△d f =ξ式中ξ——局部摩阻系数。