2017-2018学年度北师大版初中数学七年级下册平行线与相交线习题1-精品试卷
2017-2018学年度北师大版初中数学七年级下册相交线与平行线-近三年中考题汇编答案及解析-精品试卷
北师大新版七年级(下)近3年中考题单元试卷:第2章相交线与平行线一、选择题(共22小题)1.(2015•呼和浩特)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°2.(2013•永州)如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠53.(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180°D.∠4+∠2=180°4.(2013•铜仁市)如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD5.(2015•福州)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.6.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c7.(2015•泰安)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°8.(2015•东莞)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°9.(2015•泸州)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()10.(2015•宁波)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100°D.50°11.(2015•毕节市)如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为()A.15°B.25°C.35°D.55°12.(2015•荆门)如图,m∥n,直线l分别交m,n于点A,点B,AC⊥AB,AC交直线n于点C,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°13.(2015•新疆)已知,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.53°B.63°C.73°D.83°14.(2015•常州)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()15.(2015•山西)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°16.(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°17.(2015•随州)如图,AB∥CD,∠A=50°,则∠1的大小是()A.50°B.120°C.130°D.150°18.(2015•莱芜)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFG的度数为()A.35°B.40°C.70°D.140°19.(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°20.(2015•临沂)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°21.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE22.(2014•长春)如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°二、填空题(共7小题)23.(2014•西藏)如图,点B、C、E在同一条直线上,请你写出一个能使AB∥CD成立的条件:.(只写一个即可,不添加任何字母或数字)24.(2015•成都)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1= 度.25.(2015•宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .26.(2015•威海)如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为.27.(2015•株洲)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是.28.(2014•汕尾)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是.29.(2014•湘潭)如图,直线a、b被直线c所截,若满足,则a、b平行.三、解答题(共1小题)30.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.北师大新版七年级(下)近3年中考题单元试卷:第2章相交线与平行线参考答案与试题解析一、选择题(共22小题)1.(2015•呼和浩特)如图,已知∠1=70°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°【考点】平行线的性质;对顶角、邻补角.【专题】计算题.【分析】先求出∠1的对顶角,再根据两直线平行,同旁内角互补即可求出.【解答】解:如图,∵∠1=70°,∴∠2=∠1=70°,∵CD∥BE,∴∠B=180°﹣∠1=180°﹣70°=110°.故选:C.【点评】本题利用对顶角相等和平行线的性质,需要熟练掌握.2.(2013•永州)如图,下列条件中能判定直线l1∥l2的是()A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠5【考点】平行线的判定.【分析】平行线的判定定理有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.根据以上内容判断即可.【解答】解:A、根据∠1=∠2不能推出l1∥l2,故A选项错误;B、∵∠5=∠3,∠1=∠5,∴∠1=∠3,即根据∠1=∠5不能推出l1∥l2,故B选项错误;C、∵∠1+∠3=180°,∴l1∥l2,故C选项正确;D、根据∠3=∠5不能推出l1∥l2,故D选项错误;故选:C.【点评】本题考查了平行线的判定的应用,注意:平行线的判定定理有:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.3.(2013•抚顺)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180°D.∠4+∠2=180°【考点】平行线的判定.【分析】依据平行线的判定定理即可判断.【解答】解:A、已知∠1=∠3,根据内错角相等,两直线平行可以判断,故命题正确;B、不能判断;C、同旁内角互补,两直线平行,可以判断,故命题正确;D、同旁内角互补,两直线平行,可以判断,故命题正确.故选B.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4.(2013•铜仁市)如图,在下列条件中,能判断AD∥BC的是()A.∠DAC=∠BCA B.∠DCB+∠ABC=180°C.∠ABD=∠BDC D.∠BAC=∠ACD【考点】平行线的判定.【分析】根据各选项中各角的关系及利用平行线的判定定理,分别分析判断AD、BC是否平行即可.【解答】解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),故A正确;B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,故B错误;C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,故C错误;D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,故D错误;故选:A.【点评】本题考查了平行线的判定.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.5.(2015•福州)下列图形中,由∠1=∠2能得到AB∥CD的是()A.B.C.D.【考点】平行线的判定.【专题】计算题.【分析】利用平行线的判定方法判断即可.【解答】解:如图所示:∵∠1=∠2(已知),∴AB∥CD(内错角相等,两直线平行),故选B【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.6.(2015•黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c【考点】平行线的判定.【分析】根据平行线的判定进行判断即可.【解答】解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.【点评】此题考查平行线的判定,关键是根据几种平行线判定的方法进行分析.7.(2015•泰安)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,同旁内角互补解答.【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=∠EFD=×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选B.【点评】题考查了平行线的性质,角平分线的定义,比较简单,准确识图并熟记性质是解题的关键.8.(2015•东莞)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质得出∠4=∠1=75°,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°.故选C.【点评】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.9.(2015•泸州)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90°B.100°C.110°D.120°【考点】平行线的性质.【分析】先利用平行线的性质易得∠ABC=40°,因为CB平分∠ABD,所以∠ABD=80°,再利用平行线的性质两直线平行,同旁内角互补,得出结论.【解答】解:∵AB∥CD,∠C=40°,∴∠ABC=40°,∵CB平分∠ABD,∴∠ABD=80°,∴∠D=100°.故选B.【点评】本题主要考查了平行线的性质和角平分线的定义,利用两直线平行,内错角相等;两直线平行,同旁内角互补是解答此题的关键.10.(2015•宁波)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100°D.50°【考点】平行线的性质.【分析】先根据两直线平行同位角相等,求出∠3的度数,然后根据邻补角的定义即可求出∠2的度数.【解答】解:如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故选B.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补.11.(2015•毕节市)如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为()A.15°B.25°C.35°D.55°【考点】平行线的性质.【分析】首先过点C作CE∥a,可得CE∥a∥b,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点C作CE∥a,∵a∥b,∴CE∥a∥b,∴∠BCE=∠α,∠ACE=∠β=55°,∵∠C=90°,∴∠α=∠BCE=∠ABC﹣∠ACE=35°.故选C.【点评】此题考查了平行线的性质.此题比较简单,注意掌握辅助线的作法,注意掌握两直线平行,内错角相等定理的应用.12.(2015•荆门)如图,m∥n,直线l分别交m,n于点A,点B,AC⊥AB,AC交直线n于点C,若∠1=35°,则∠2等于()A.35°B.45°C.55°D.65°【考点】平行线的性质.【分析】根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.【解答】解:如图,∵AC⊥AB,∴∠3+∠1=90°,∴∠3=90°﹣∠1=90°﹣35°=55°,∵直线m∥n,∴∠3=∠2=55°,故选:C【点评】本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.13.(2015•新疆)已知,AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是()A.53°B.63°C.73°D.83°【考点】平行线的性质.【分析】因为AC∥ED,所以∠BED=∠EAC,而∠EAC是△ABC的外角,所以∠BED=∠EAC=∠CBE+∠C.【解答】解:∵在△ABC中,∠C=26°,∠CBE=37°,∴∠CAE=∠C+∠CBE=26°+37°=63°,∵AC∥ED,∴∠BED=∠CAE=63°.故选B【点评】本题考查的是两直线平行的性质,关键是根据三角形外角与内角的关系及两直线平行的性质分析.14.(2015•常州)如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70°B.60°C.50°D.40°【考点】平行线的性质;垂线.【专题】计算题.【分析】由BC与AE垂直,得到三角形ABC为直角三角形,利用直角三角形两锐角互余,求出∠A的度数,再利用两直线平行同位角相等即可求出∠ECD的度数.【解答】解:∵BC⊥AE,∴∠ACB=90°,在Rt△ABC中,∠B=40°,∴∠A=90°﹣∠B=50°,∵CD∥AB,∴∠ECD=∠A=50°,故选C.【点评】此题考查了平行线的性质,以及垂线,熟练掌握平行线的性质是解本题的关键.15.(2015•山西)如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为()A.105°B.110°C.115°D.120°【考点】平行线的性质.【分析】如图,首先证明∠AMO=∠2;然后运用对顶角的性质求出∠ANM=55°,借助三角形外角的性质求出∠AMO即可解决问题.【解答】解:如图,∵直线a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠AMO=∠A+∠ANM=60°+55°=115°,故选C.【点评】该题主要考查了平行线的性质、对顶角的性质、三角形的外角性质等几何知识点及其应用问题;牢固掌握平行线的性质、对顶角的性质等几何知识点是灵活运用、解题的基础.16.(2015•湖北)如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为()A.60°B.50°C.40°D.30°【考点】平行线的性质.【分析】根据三角形外角性质可得∠3=30°+∠1,由于平行线的性质即可得到∠2=∠3=60°,即可解答.【解答】解:如图,∵∠3=∠1+30°,∵AB∥CD,∴∠2=∠3=60°,∴∠1=∠3﹣30°=60°﹣30°=30°.故选D【点评】本题考查了平行线的性质,关键是根据:两直线平行,内错角相等.也利用了三角形外角性质.17.(2015•随州)如图,AB∥CD,∠A=50°,则∠1的大小是()A.50°B.120°C.130°D.150°【考点】平行线的性质.【分析】由平行线的性质可得出∠2,根据对顶角相得出∠1.【解答】解:如图:∵AB∥CD,∴∠A+∠2=180°,∴∠2=130°,∴∠1=∠2=130°.故选C.【点评】本题考查了平行线的性质,关键是根据两直线平行同旁内角互补和对顶角相等分析.18.(2015•莱芜)如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,那么∠EFG的度数为()A.35°B.40°C.70°D.140°【考点】平行线的性质.【分析】先根据两直线平行同旁内角互补,求出∠AEG的度数,然后根据角平分线的定义求出∠AEF 的度数,然后根据两直线平行内错角相等,即可求出∠EFG的度数.【解答】解:∵AB∥CD,∠FGE=40°,∴∠AEG+∠FGE=180°,∴∠AEG=140°,∵EF平分∠AEG,∴∠AEF=∠AEG=70°,∵AB∥CD,∴∠EFG=∠AEF=70°.故选C.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.19.(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°【考点】平行线的性质;垂线.【分析】如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.20.(2015•临沂)如图,直线a∥b,∠1=60°,∠2=40°,则∠3等于()A.40°B.60°C.80°D.100°【考点】平行线的性质.【分析】根据对顶角相等和利用三角形的内角和定理列式计算即可得解.【解答】解:如图:∵∠4=∠2=40°,∠5=∠1=60°,∴∠3=180°﹣60°﹣40°=80°,故选C.【点评】本题考查了平行线的性质,三角形的内角和定理,熟记性质并准确识图理清各角度之间的关系是解题的关键.21.(2014•汕尾)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【考点】平行线的判定.【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.22.(2014•长春)如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°【考点】平行线的判定.【专题】几何图形问题.【分析】先根据邻补角的定义得到∠3=60°,根据平行线的判定当b与a的夹角为45°时,b∥c,由此得到直线b绕点A逆时针旋转60°﹣45°=15°.【解答】解:∵∠1=120°,∴∠3=60°,∵∠2=45°,∴当∠3=∠2=45°时,b∥c,∴直线b绕点A逆时针旋转60°﹣45°=15°.故选:A.【点评】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行.二、填空题(共7小题)23.(2014•西藏)如图,点B、C、E在同一条直线上,请你写出一个能使AB∥CD成立的条件:∠1=∠2 .(只写一个即可,不添加任何字母或数字)【考点】平行线的判定.【专题】开放型.【分析】欲证AB∥CD,在图中发现AB、CD被一直线所截,故可按同旁内角互补两直线平行补充条件或同位角相等两直线平行补充条件.【解答】解:要使AB∥CD,则只要∠1=∠2(同位角相等两直线平行),或只要∠1+∠3=180°(同旁内角互补两直线平行).故答案为∠1=∠2(答案不唯一).【点评】本题考查了平行线的判定,判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.24.(2015•成都)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1= 45 度.【考点】平行线的性质;等腰直角三角形.【分析】先根据等腰三角形性质和三角形的内角和定理求出∠ABC,根据平行线的性质得出∠1=∠ABC,即可得出答案.【解答】解:∵△ABC为等腰三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵直线m∥n,∴∠1=∠ABC=45°,故答案为:45.【点评】本题考查了等腰三角形的性质,三角形内角和定理,平行线的性质的应用,解此题的关键是求出∠1=∠ABC和求出∠ABC的度数,注意:两直线平行,同位角相等.25.(2015•宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= 80°.【考点】平行线的性质;三角形的外角性质.【分析】先利用平行线的性质易得∠D=45°,再利用三角形外角的性质得出结论.【解答】解:∵AB∥CD,∠B=35°,∴∠C=35°,∵∠D=45°,∴∠AEC=∠C+∠D=35°+45°=80°,故答案为:80°.【点评】本题主要考查了平行线的性质和外角的性质,综合利用平行线的性质和外角的性质是解答此题的关键.26.(2015•威海)如图,直线a∥b,∠1=110°,∠2=55°,则∠3的度数为55°.【考点】平行线的性质.【分析】要求∠3的度数,结合图形和已知条件,先求由两条平行线所构成的同位角或内错角,再利用三角形的外角的性质就可求解.【解答】解:如图:∵∠2=∠5=55°,又∵a∥b,∴∠1=∠4=100°.∵∠4=∠3+∠5,∴∠3=110°﹣55°=55°,故答案为:55°.【点评】本题考查了三角形的外角的性质和平行线的性质;三角形的外角的性质:三角形的外角等于和它不相邻的两个内角的和;平行线的性质:两直线平行,同位角相等.27.(2015•株洲)如图,l∥m,∠1=120°,∠A=55°,则∠ACB的大小是65°.【考点】平行线的性质.【专题】计算题.【分析】先根据平行线的性质得∠2=∠1=120°,然后根据三角形外角性质计算∠ACB的大小.【解答】解:∵l∥m,∴∠2=∠1=120°,∵∠2=∠ACB+∠A,∴∠ACB=120°﹣55°=65°.故答案为65°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.28.(2014•汕尾)已知a,b,c为平面内三条不同直线,若a⊥b,c⊥b,则a与c的位置关系是平行.【考点】平行线的判定;垂线.【分析】根据在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行可得答案.【解答】解:∵a⊥b,c⊥b,∴a∥c,故答案为:平行.【点评】此题主要考查了平行线的判定,关键是掌握在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.29.(2014•湘潭)如图,直线a、b被直线c所截,若满足∠1=∠2或∠2=∠3或∠3+∠4=180°,则a、b平行.【考点】平行线的判定.【专题】开放型.【分析】根据同位角或内错角相等以及同旁内角互补,两直线平行可得a∥b.【解答】解:∵∠1=∠2,∴a∥b(同位角相等两直线平行),同理可得:∠2=∠3或∠3+∠4=180°时,a∥b,故答案为:∠1=∠2或∠2=∠3或∠3+∠4=180°.【点评】此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行.三、解答题(共1小题)30.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.【考点】平行线的判定;角平分线的定义;三角形内角和定理.【专题】证明题.【分析】(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.【解答】(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.【点评】此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.。
北师大版七年级数学下册第二章 相交线与平行线练习(含答案)
第二章 相交线与平行线一、单选题1.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒2.如图CD⊥AB,⊥C=90°,线段AC 、BC 、CD 中最短的是( )A .ACB .BC C .CD D .不能确定 3.如图,下列说法正确的是( )A .A ∠与⊥1与是内错角B .A ∠与2∠是同旁内角C .⊥1与2∠是内错角D .A ∠与3∠是同位角4.下列说法正确的是( )A .一条直线的平行线有且只有一条B .经过一点有且只有一条直线与已知直线平行C .经过一点有两条直线与已知直线平行D .过直线外一点有且只有一条直线与已知直线平行5.如图,能判定EB ⊥AC 的条件是( )A .⊥C =⊥ABEB .⊥A =⊥EBDC .⊥C =⊥ABCD .⊥A =⊥ABE 6.如图,点E 在AD 的延长线上,下列条件中能判断AB ⊥CD 的是( )A .⊥3=⊥4B .⊥1=⊥2C .⊥C =⊥CDED .⊥C +⊥ADC =180° 7.AF 是BAC ∠的平分线,//,DF AC 若70,BAC ∠=︒则1∠的度数为( )A .17.5B .35C .55D .708.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒ 9.下列对尺规作图步骤的描述不准确的是( )A .作ABC ∠,使ABC αβ∠=∠+∠B .作AOB ∠,使2AOB α∠=∠C .以点A 为圆心,线段a 的长为半径作弧D .以点O 为圆心作弧10.如图,已知直线AB 、CD 被直线AC 所截,AB⊥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设⊥BAE=α,⊥DCE=β.下列各式:⊥α+β,⊥α﹣β,⊥β﹣α,⊥360°﹣α﹣β,⊥AEC 的度数可能是( )A .⊥⊥⊥B .⊥⊥⊥C .⊥⊥⊥D .⊥⊥⊥⊥二、填空题 11.如图,直线AB 、CD 相交于点O ,OA 平分⊥EOC ,⊥EOC=80°,则⊥BOD=_____.12.如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是___.13.如图,已知AB ,CD ,EF 互相平行,且⊥ABE =70°,⊥ECD =150°,则⊥BEC =________°.14.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .三、解答题15.如图,直线AB ,CD 相交于点O ,OE AB ⊥,垂足为O .(1)直接写出图中AOC ∠的对顶角为 ,BOD ∠的邻补角为 ; (2)若:1:2BOD COE ∠∠=,求AOD ∠的度数.16.如图,已知四边形ABCD ,AB⊥CD ,点E 是BC 延长线上一点,连接AC 、AE ,AE 交CD 于点F ,⊥1=⊥2,⊥3=⊥4.证明:(1)⊥BAE=⊥DAC;(2)⊥3=⊥BAE;(3)AD⊥BE.17.如图,已知AB⊥CD,⊥B=60°,CM平分⊥ECB,⊥MCN=90°,求⊥DCN的度数.18.如图,已知BC⊥GE,AF⊥DE,点D在直线BC上,点F在直线GE上,且⊥1=50°.(1)求⊥AFG的度数;(2)若AQ平分⊥FAC,交直线BC于点Q,且⊥Q=18°,则⊥ACB的度数为______°.(直接写出答案)答案1.A2.C3.D4.D5.D6.B7.B8.A9.D10.D11.40°12.内错角13.4014.12515.(1)⊥AOC 的对顶角为:⊥BOD⊥BOD 的邻补角为:⊥BOC ,⊥AOD(2)⊥:1:2BOD COE ∠∠=设⊥BOD=x,则⊥COE=2x⊥OE⊥AB⊥⊥EOB=90°⊥⊥COE+⊥BOD=90°,即x+2x=90°解得:x=30°⊥⊥BOD=⊥COA=30°⊥⊥AOD=150°16.证明:(1)⊥⊥1=⊥2,⊥⊥1+⊥CAE=⊥2+⊥CAE,即⊥BAE=⊥DAC;(2)⊥AB⊥CD,⊥⊥4=⊥BAE,⊥⊥3=⊥4,⊥⊥3=⊥BAE;(3)⊥⊥3=⊥BAE,⊥BAE=⊥DAC,⊥⊥3=⊥DAC,⊥AD⊥BE.17.⊥AB⊥CD,⊥⊥B+⊥BCE=180°,⊥BCD=⊥B,⊥⊥B=60°,⊥⊥BCE=120°,⊥BCD=60°,⊥CM平分⊥BCE,⊥⊥ECM=12⊥BCE=60°,⊥⊥MCN=90°,⊥⊥DCN=180°-60°-90°=30°.18.(1)⊥BC⊥EG,⊥⊥E=⊥1=50°.⊥AF⊥DE,⊥⊥AFG=⊥E=50°;(2)作AM⊥BC,⊥BC⊥EG,⊥AM⊥EG,⊥⊥FAM=⊥AFG=50°.⊥AM⊥BC,⊥⊥QAM=⊥Q=18°,⊥⊥FAQ=⊥FAM+⊥QAM=68°.⊥AQ平分⊥FAC,⊥⊥QAC=⊥FAQ=68°,⊥⊥MAC=⊥QAC+⊥QAM=86°.⊥AM⊥BC,⊥⊥ACB=⊥MAC=86°故答案为:86。
北师大版七年级下第二章平行线与相交线证明题.
北师大版七年级下第二章平行线与相交线证明题.北师大版七年级下第二章平行线与相交线1.如图,已知直线EF 与AB 、CD 都相交,且AB ∥CD ,说明∠1=∠2的理由.理由:∵EF 与AB 相交(已知) ∴∠1=∠3( )∵AB ∥CD(已知)∴∠2=∠3() ∴∠1=∠2( )2.如图:已知∠A =∠F ,∠C =∠D ,求证:BD ∥CE 。
证明:∵∠A =∠F ( 已知 ) ∴AC ∥DF ( ) ∴∠D =∠ ( )又∵∠C =∠D ( 已知 ), ∴∠1=∠C ( 等量代换 ) ∴BD∥CE()。
3.已知∠B =∠BGD ∠DGF =∠F 求证∠B + ∠F =180°证明:∵∠B =∠BGD ( 已知 )∴AB ∥CD ( )∵∠DGF =∠F ;( 已知 ) ∴CD ∥EF () ∵AB ∥EF( )∴∠B + ∠F =180°()。
321FEDCBA4.已知:如图、BE//CF ,BE 、CF 分别平分∠ABC 和∠BCD 求证:AB//CD证明:∵BE 、平分∠ABC (已知)∴∠1=21∠ ∵CF 平分∠BCD ( )∴∠2=21∠( ) ∵BE//CF (已知) ∴∠1=∠2( )∴21∠ABC=21∠BCD( )即∠ABC=∠BCD ∴AB//CD( ) 5.如图,已知:∠BCF=∠B+∠F 。
求证:AB//EF证明:经过点C 作CD//AB ∴∠BCD=∠B 。
( )∵∠BCF=∠B+∠F ,(已知) ∴∠ ( )=∠F 。
( ) ∴CD//EF。
( ) ∴AB//EF()6.已知,如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:AD ∥BE 。
证明:∵AB ∥CD (已知) ∴∠4=∠( ) ∵∠3=∠4(已知) ∴∠3=∠(AC DF B E1 2 A D B C EF1 2 3 4)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF ()即∠ =∠∴∠3=∠()∴AD∥BE ()7、已知:DE⊥AO于E,BO ⊥AO,∠CFB=∠EDO试说明:CF∥DO证明:∵DE⊥AO,BO⊥AO(已知)∴∠DEA=∠BOA=900()∵DE∥BO ())∴∠EDO=∠DOF ()又∵∠CFB=∠EDO ()∴∠DOF=∠CFB ()∴CF∥DO ())8、已知:如图2-82,DE∥BC,∠ADE=∠EFC,求证:∠1=∠2证明:∵ DE∥BC()∴∠ADE=______()∵∠ADE=∠EFC()∴______=______()∴DB∥EF()∴∠1=∠2()9、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.证明:∵∠A=∠F(已知)∴AC∥DF()∴∠D=∠()又∵∠C=∠D(已知)∴∠1=∠C(等量代换)∴BD∥CE()10、如图,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE.证明:∵∠B+∠BCD=180°(已知),∴AB∥CD().∴∠B=∠DCE (). 又∵∠B=∠D(已知),∴∠DCE=∠ D ( ).∴AD∥BE().∴∠E=∠DFE ().11、如图,已知:∠1=∠2,当DE∥FH时,(1)证明:∠EDA=∠HFB (2)CD与FG 有何关系?证明:(1)∵DE∥FH (已知),∴∠EDF=∠DFH ( ),∴∠EDA=∠HFB ( ) .DABFG HKF EDC B A (2) ∵∠EDF=∠DFH ( ), 且∠CDF=∠EDF-∠1 ,∠DFG=∠DFH-∠2 , 又∵∠1=∠2(已知 ), ∴CD∥FG().12、如图,已知AD ⊥BC,EF ⊥BC,∠1=∠2.求证:DG ∥BA. 证明:∵AD ⊥BC,EF ⊥BC ( ) ∴∠EFB=∠ADB=90° ( ) ∴EF∥AD( ) ∴∠1=∠BAD( ) 又∵∠1=∠ 2()∴ (等量代换) ∴DG∥BA.( )13、如图:已知:AD ⊥BC 于D ,EF ⊥BC 于F ,∠1=∠3,求证 :AD 平分∠BAC 。
第二章 相交线与平行线复习题---解答题(含解析)
北师大版数学七下第二章相交线与平行线复习题---解答题一.解答题1.(2018秋•海珠区期末)如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.2.(2018秋•静宁县期末)如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.3.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有对对顶角.(2)如图b,图中共有对对顶角.(3)如图c,图中共有对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?4.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠=180°(邻补角的意义)所以∠1=∠()5.(2018秋•鞍山期末)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为.(2)若∠COF=x°,求∠BOC的度数.6.(2018春•赣县区期末)如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.7.(2018春•金华期中)如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.8.(2018秋•兰州期末)如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.9.(2018秋•桐梓县校级期中)已知:如图,BC=EF,AD=BE,AC=DF.求证:BC∥EF.10.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.11.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.12.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.13.(2018春•渠县期末)如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.14.(2018春•大冶市期末)已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.15.(2018春•新泰市期末)已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.16.(2018春•孝义市期末)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,17.(2018春•邹城市期末)在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴.()∴∠1=∠3.()又∵∠1=∠2,(已知)∴.()∴EF∥DB.()18.(2018•重庆)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.19.(2018•重庆)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.21.(2018秋•二道区期末)探究:如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):解:∵DE∥BC()∴∠DEF=()∵EF∥AB∴=∠ABC()∴∠DEF=∠ABC()∵∠ABC=65°∴∠DEF=应用:如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为(用含β的代数式表示).22.(2018秋•江海区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.23.(2018•房山区二模)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.24.(2017秋•安岳县期末)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A 不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.25.(2018秋•点军区期中)如图所示,折叠一个宽度相等的纸条,求∠1的度数.26.(2018秋•道里区校级期中)如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?27.(2018秋•忻城县期中)如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.28.(2018秋•嘉祥县期中)如图1,已知过线段AB的两端作直线l1∥l2,作同旁内角的平分线交于点E,过点E作直线m分别和直线l1,12交于点D、C.(1)如图所示,当D、C在AB的同侧,且不与点A、B重合时,求证:AD+BC=AB.(2)当D、C在AB的异侧,且不与点A、B重合时,请在备用图上画出直线m,标出点D、C,并在图形下方直接写出AD、BC、AB之间的数量关系.不用说明理由.29.(2018秋•南岗区期中)如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.30.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH的度数.31.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.32.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.33.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.34.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.35.(2018春•安庆期末)如图,已知AD∥BC,∠A=∠C=50°,线段AD上从左到右依次有两点E、F(不与A、D重合)(1)AB与CD是什么位置关系,并说明理由;(2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BE与AD 是何种位置关系?北师大版数学七下第二章相交线与平行线复习题---解答题参考答案与试题解析一.解答题1.(2018秋•海珠区期末)如图,已知直线AB以及点C、点D、点E.(1)画直线CD交直线AB于点O,画射线OE;(2)在(1)所画的图中,若∠AOE=40°,∠EOD:∠AOC=3:4,求∠AOC的度数.【分析】(1)根据题意画出图形即可;(2)设∠EOD=3x,∠AOC=4x,根据对顶角的性质得到∠BOD=4x,根据平角的定义列方程即可得到结论.【解答】解:(1)如图所示,直线CD,射线OE即为所求;(2)∵∠EOD:∠AOC=3:4,∴设∠EOD=3x,∠AOC=4x,∵∠BOD=∠AOC,∴∠BOD=4x,∵∠AOB=180°,∴40°+3x+4x=180°,∴x=20°,∴∠AOC=4x=80°.2.(2018秋•静宁县期末)如图,已知直线AB,CD,EF相交于点O,∠2=2∠1,∠3=3∠2,求∠DOE的度数.【分析】直接利用已知结合邻补角的定义分析得出答案.【解答】解:∵∠2=2∠1,∴∠1=∠2,∵∠3=3∠2,∴∠1+∠2+∠3=∠2+∠2+3∠2=180°,解得:∠2=40°,∴∠3=3∠2=120°,∴∠DOE=∠3=120°.3.(2017秋•洛宁县期末)观察,在如图所示的各图中找对顶角(不含平角):(1)如图a,图中共有2对对顶角.(2)如图b,图中共有6对对顶角.(3)如图c,图中共有12对对顶角(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n条直线相交于一点,则可形成多少对对顶角?(5)若有2000条直线相交于一点,则可形成多少对对顶角?【分析】(1)根据对顶角的定义找出即可;(2)根据对顶角的定义找出即可;(3)根据对顶角的定义找出即可;(4)根据求出的结果得出规律,即可得出答案;(5)把n=2000代入n(n﹣1),求出即可.【解答】解:(1)如图a,图中共有2对对顶角,故答案为:2;(2)如图b,图中共有6对对顶角.故答案为:6;(3)如图c,图中共有12对对顶角;故答案为;12;(4)2=2×1,3×(3﹣1)=6,4×(4﹣1)=12,所以若有n条直线相交于一点,则可形成n(n﹣1)对对顶角;(5)2000×(2000﹣1)=3998000,若有2000条直线相交于一点,则可形成3998000对对顶角.4.(2018春•奉贤区期中)如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.请完成填空并补充完整.解:因为∠1+∠2=180°(已知)又因为∠2+∠DFE=180°(邻补角的意义)所以∠1=∠DFE(等量代换)【分析】根据平行线的判定方法和平行线的性质填空即可.【解答】解:因为∠1+∠2=180°(已知)又因为∠2+∠DFE=180°(邻补角的意义)所以∠1=∠DFE(等量代换),所以AB∥EF(内错角相等,两直线平行),所以∠3=∠ADE(两直线平行,内错角相等)因为∠3=∠B(已知)所以∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行)∴∠AED=∠C(两直线平行,同位角相等).故答案为DFE,DFE,等量代换.5.(2018秋•鞍山期末)已知:如图,直线AB、CD相交于点O,OE⊥OC,OF平分∠AOE(1)若∠BOC=60°,则∠AOF的度数为15°.(2)若∠COF=x°,求∠BOC的度数.【分析】(1)根据对顶角的性质得到∠AOD=∠BOC=60°,根据垂直的定义得到∠DOE=90°,根据角平分线的定义即可得到结论;(2)由垂直的定义得到∠DOE=∠COE=90°,根据角平分线的定义得到∠AOE=2∠EOF=180°﹣2x°,根据对顶角的性质即可得到结论.【解答】解:∵∠AOD=∠BOC=60°,∵OE⊥OC于点O,∴∠DOE=90°,∴∠AOE=30°,∵OF平分∠AOE,∴∠AOF=∠AOE=15°,故答案为:15°;(2)∵OE⊥OC于点O,∴∠COE=∠DOE=90°,∵∠COF=x°,∴∠EOF=x°﹣90°,∵OF平分∠AOE,∴∠AOE=2∠EOF=2x°﹣180°,∴∠AOD=90°﹣∠AOE=270°﹣2x°,∴∠BOC=∠AOD=270°﹣2x°.6.(2018春•赣县区期末)如图,已知∠DAB=65°,∠1=∠C.(1)在图中画出∠DAB的对顶角;(2)写出∠1的同位角;(3)写出∠C的同旁内角;(4)求∠B的度数.【分析】(1)根据对顶角概念,延长DA、BA即可得;(2)根据同位角定义可得;(3)根据同旁内角定义求解可得;(4)由∠1=∠C知AE∥BC,据此可得∠DAB+∠B=180°,进一步求解可得.【解答】解:(1)如图,∠GAH即为所求;(2)∠1的同位角是∠DAB;(3)∠C的同旁内角是∠B和∠ADC;(4)因为∠1=∠C,所以AE∥BC.所以∠DAB+∠B=180°,又因为∠DAB=65°,所以∠B=115°.7.(2018春•金华期中)如图所示,把一根筷子一端放在水里,一端露出水面,筷子变弯了,它真的弯了吗?其实没有,这是光的折射现象,光从空气中射入水中,光的传播方向发生了改变.(1)请指出与∠1是同旁内角的有哪些角?请指出与∠2是内错角的有哪些角?(2)若∠1=115°,测得∠BOM=145°,从水面上看斜插入水中的筷子,水下部分向上折弯了多少度?请说明理由.【分析】(1)根据同位角、内错角的定义(两条直线被第三条直线所截,处于两条直线的同旁,位于第三条直线的一侧的两个角叫同位角,处于两条直线之间,处于第三条直线两侧的两个角叫内错角)逐个判断即可.(2)根据平行线的性质解答即可.【解答】解:(1)与∠1是同旁内角的有∠AOE,∠MOE,∠ADE;与∠2是内错角的有∠MOE,∠AOE;(2)∵AB∥CD,∴∠BOE=∠1=115°,∵∠BOM=45°,∴∠MOE=∠BOM﹣∠BOE=145°﹣115°=30°,∴向上折弯了30°.8.(2018秋•兰州期末)如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的角平分线,∠1=∠2,求证:DC∥AB.【分析】先利用角平分线定义得到∠3=∠ADC,∠2=∠ABC,而∠ABC=∠ADC,则∠3=∠2,加上∠1=∠2,则∠1=∠3,于是可根据平行线的判定得到DC∥AB.【解答】证明:∵DE、BF分别是∠ABC,∠ADC的角平分线,∴∠3=∠ADC,∠2=∠ABC,∵∠ABC=∠ADC,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴DC∥AB.9.(2018秋•桐梓县校级期中)已知:如图,BC=EF,AD=BE,AC=DF.求证:BC∥EF.【分析】证明△CBA≌△FED,根据全等三角形的性质得到∠B=∠FED,根据平行线的判定定理证明.【解答】证明:∵AD=BE,∴AD+AE=BE+AE,即BA=ED,在△CBA和△FED中,,∴△CBA≌△FED(SSS),∴∠B=∠FED,∴BC∥EF.10.(2018春•庐阳区期末)如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.【分析】(1)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(2)延长EG交CD于H,根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;(3)根据平角的定义得到∠HGF=∠EGF=90°,根据平行线判定定理即可得到结论;【解答】解:(1)AB∥CD,理由:延长EG交CD于H,∴∠HGF=∠EGF=90°,∴∠GHF+∠GFH=90°,∵∠BEG+∠DFG=90°,∴∠BEG=∠GHF,∴AB∥CD;(2)∠BEG+∠MFD=90°,理由:延长EG交CD于H,∵AB∥CD,∴∠BEG=∠GHF,∵EG⊥FG,∴∠GHF+∠GFH=90°,∵∠MFG=2∠DFG,∴∠BEG+∠MFD=90°;(3)∠BEG+()∠MFD=90°,理由:∵AB∥CD,∴∠BEG=∠GHF,∵EG⊥FG,∴∠GHF+∠GFH=90°,∵∠MFG=n∠DFG,∴∠BEG+∠MFG=∠BEG+()∠MFD=90°.11.(2018秋•上杭县期中)如图,点D在△ABC的边AB上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E.(要求:尺规作图,保留作图痕迹,但不必写出作法);(2)在(1)的条件下,求证:DE∥AC.【分析】(1)利用基本作图(作已知角的平分线)作∠BDC的平分线DE;(2)先根据角平分线的定义得到∠BDE=∠CDE,再利用三角形外角性质得∠BDC=∠A+∠ACD,加上∠ACD=∠A,则∠BDE=∠A,然后根据平行线的判定方法可判断DE∥BC.【解答】解:(1)如图,DE为所作;(2)DE∥AC.理由如下:∵DE平分∠BDC,∴∠BDE=∠CDE,而∠BDC=∠A+∠ACD,即∠BDE+∠CDE=∠A+∠ACD,∵∠ACD=∠A,∴∠BDE=∠A,∴DE∥BC.12.(2018秋•宁阳县期中)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.求证:EF∥CD.【分析】推出DG∥AC,根据平行线性质得出∠2=∠ACD,求出∠1=∠DCA,根据平行线判定推出即可.【解答】证明:∵DG⊥BC,AC⊥BC,∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行),∴∠2=∠ACD(两直线平行,内错角相等),∵∠1=∠2,∴∠1=∠DCA,∴EF∥CD(同位角相等,两直线平行).13.(2018春•渠县期末)如图,已知∠A=∠C,∠E=∠F,试说明:AD∥BC.【分析】由∠E=∠F,根据内错角相等,两直线平行得AE∥CF,根据平行线的性质得∠A=∠ADF,利用等量代换得到∠ADF=∠C,然后根据同位角相等,两直线平行可判定AD∥BC.【解答】证明:∵∠E=∠F,∴AE∥CF,∴∠A=∠ADF,∵∠A=∠C,∴∠ADF=∠C,∴AD∥BC.14.(2018春•大冶市期末)已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.【分析】(1)根据两直线平行,同旁内角互补,即可得出∠C的度数;(2)根据AC∥DE,∠C=∠E,即可得出∠C=∠ABE,进而判定BE∥CD.【解答】解:(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.15.(2018春•新泰市期末)已知:如图,∠A=∠F,∠C=∠D.可以判断BD∥CE吗?说明理由.【分析】根据平行线的判定得出AC∥DF,根据平行线的性质求出∠C=∠CEF,求出∠D=∠CEF,根据平行线的判定得出即可.【解答】解:BD∥CE,理由是:∵∠A=∠F,∴AC∥DF,∴∠C=∠CEF,∵∠C=∠D,∴∠D=∠CEF,∴BD∥CE16.(2018春•孝义市期末)如图,直线EF分别与直线AB,CD相交于点P和点Q,PG平分∠BPQ,OH平分∠CQP,并且∠l=∠2.说出图中哪些直线互相平行,并说明理由,【分析】依据PG平分∠BPQ,QH平分∠CQP,即可得到∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,依据∠1=∠2,可得∠GPQ=∠HQP,∠BPQ=∠CQP,进而得出QH∥PG,AB∥CD.【解答】解:AB∥CD,QH∥PG.理由:∵PG平分∠BPQ,QH平分∠CQP,∴∠GPQ=∠1=∠BPQ,∠HQP=∠2=∠CQP,∵∠1=∠2,∴∠GPQ=∠HQP,∠BPQ=∠CQP,∴QH∥PG,AB∥CD.17.(2018春•邹城市期末)在横线上完成下面的证明,并在括号内注明理由.已知:如图,∠ABC+∠BGD=180°,∠1=∠2.求证:EF∥DB.证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB.(同旁内角互补,两直线平行.)∴∠1=∠3.(两直线平行,内错角相等.)又∵∠1=∠2,(已知)∴∠2=∠3.(等量代换)∴EF∥DB.(同位角相等,两直线平行.)【分析】由已知的一对同旁内角互补,利用同旁内角互补,两直线平行得出DG与AB平行,再由两直线平行内错角相等得到∠1=∠3,而∠1=∠2,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得到EF与DB平行.【解答】证明:∵∠ABC+∠BGD=180°,(已知)∴DG∥AB(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),又∵∠1=∠2(已知),∴∠2=∠3(等量代换),∴EF∥DB(同位角相等,两直线平行).故答案为:DG∥AB;同旁内角互补,两直线平行;两直线平行,内错角相等;∠2=∠3;等量代换;同位角相等,两直线平行.18.(2018•重庆)如图,直线AB∥CD,BC平分∠ABD,∠1=54°,求∠2的度数.【分析】直接利用平行线的性质得出∠3的度数,再利用角平分线的定义结合平角的定义得出答案.【解答】解:∵直线AB∥CD,∴∠1=∠3∵∠1=54°,∴∠3=54°∵BC平分∠ABD,∴∠ABD=2∠3=108°,∵AB∥CD,∴∠BDC=180°﹣∠ABD=72°,∴∠2=∠BDC=72°.19.(2018•重庆)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.20.(2017•重庆)如图,AB∥CD,点E是CD上一点,∠AEC=42°,EF平分∠AED交AB于点F,求∠AFE的度数.【分析】由平角求出∠AED的度数,由角平分线得出∠DEF的度数,再由平行线的性质即可求出∠AFE的度数.【解答】解:∵∠AEC=42°,∴∠AED=180°﹣∠AEC=138°,∵EF平分∠AED,∴∠DEF=∠AED=69°,又∵AB∥CD,∴∠AFE=∠DEF=69°.21.(2018秋•二道区期末)探究:如图①,在△ABC中,点D、E、F分别在边AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度数.请将下面的解答过程补充完整,并填空(理由或数学式):解:∵DE∥BC(已知)∴∠DEF=∠CFE(两直线平行,内错角相等)∵EF∥AB∴∠CFE=∠ABC(两直线平行,同位角相等)∴∠DEF=∠ABC(等量代换)∵∠ABC=65°∴∠DEF=65°应用:如图②,在△ABC中,点D、E、F分别在边AB、AC、BC的延长线上,且DE∥BC,EF∥AB,若∠ABC=β,则∠DEF的大小为180°﹣β(用含β的代数式表示).【分析】探究:依据两直线平行,内错角相等以及两直线平行,同位角相等,即可得到∠DEF=∠ABC,进而得出∠DEF的度数.应用:依据两直线平行,同位角相等以及两直线平行,同旁内角互补,即可得到∠DEF的度数.【解答】解:探究:∵DE∥BC(已知)∴∠DEF=∠CFE(两直线平行,内错角相等)∵EF∥AB∴∠CFE=∠ABC(两直线平行,同位角相等)∴∠DEF=∠ABC(等量代换)∵∠ABC=65°∴∠DEF=65°故答案为:已知;∠CFE;两直线平行,内错角相等;∠CFE;两直线平行,同位角相等;等量代换;65°.应用:∵DE∥BC∴∠ABC=∠D=β∵EF∥AB∴∠D+∠DEF=180°∴∠DEF=180°﹣∠D=180°﹣β,故答案为:180°﹣β.22.(2018秋•江海区期末)如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【解答】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.23.(2018•房山区二模)如图,四边形ABCD,AD∥BC,DC⊥BC于C点,AE⊥BD于E,且DB=DA.求证:AE=CD.【分析】依据平行线的性质,即可得到∠ADB=∠DBC,再根据∠C=∠AED=90°,DB=DA,即可得到△AED≌△DCB,进而得到AE=CD.【解答】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于点C,AE⊥BD于点E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD24.(2017秋•安岳县期末)如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A 不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【分析】(1)依据平行线的性质,即可得到∠ACD的度数,再根据角平分线,即可得出∠ECF的度数;(2)依据平行线的性质,以及角平分线,即可得到∠APC=2∠AFC;(3)依据平行线的性质可得∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,进而得出∠ACE=∠DCF,依据∠PCD=∠ACD=70°,即可得出∠APC=70°.【解答】解:(1)∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°﹣40°=140°,∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF,∴∠ECF=∠ACD=70°;(2)不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP,∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC;(3)∵AB∥CD,∴∠AEC=∠ECD,当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF,∴∠PCD=∠ACD=70°,∴∠APC=∠PCD=70°.25.(2018秋•点军区期中)如图所示,折叠一个宽度相等的纸条,求∠1的度数.【分析】依据折叠以及平行线的性质,即可得出∠1=∠2,再根据三角形外角性质,即可得出结论.【解答】解:∵AB∥CD,∴∠1=∠3,由折叠可得∠2=∠3,∴∠1=∠2,又∵∠EFC=∠1+∠2,∴∠1=∠EFC=40°.26.(2018秋•道里区校级期中)如图,AB∥CD,∠ABD和∠BDC的平分线交于点E,BE交CD于点F.(1)求证:∠1+∠2=90°;(2)如果∠EDF=36°,那么∠BFC等于多少度?【分析】(1)依据平行线的性质,以及角平分线的定义,即可得到∠1+∠2=(∠ABD+∠BDC),进而得出结论;(2)依据角平分线定义以及(1)中的结论,即可得出∠1=54°,再根据平行线的性质,即可得到∠BFC的度数.【解答】解:(1)∵AB∥CD,∴∠ABD+∠BDC=180°,∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC,∴∠1+∠2=(∠ABD+∠BDC)=90°,(2)∵DE平分∠BDC,∴∠2=∠EDF=36°,又∵∠1+∠2=90°,∴∠1=54°,又∵AB∥CD,∴∠BFC=180°﹣∠1=180°﹣54°=126°.27.(2018秋•忻城县期中)如图,已知AB∥ED,CD∥BF,AE=CF.求证:AB=ED.【分析】根据平行线性质得到∠A=∠DEC,∠C=∠AFB,根据全等三角形的性质即可得到结论.【解答】证明:∵AB∥ED,CD∥BF,∴∠A=∠DEC,∠C=∠AFB,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ABF与△EDC中,∴△ABF≌△EDC,(ASA),∴AB=ED.28.(2018秋•嘉祥县期中)如图1,已知过线段AB的两端作直线l1∥l2,作同旁内角的平分线交于点E,过点E作直线m分别和直线l1,12交于点D、C.(1)如图所示,当D、C在AB的同侧,且不与点A、B重合时,求证:AD+BC=AB.(2)当D、C在AB的异侧,且不与点A、B重合时,请在备用图上画出直线m,标出点D、C,并在图形下方直接写出AD、BC、AB之间的数量关系.不用说明理由.【分析】(1)延长BE与l1交于F,根据角平分线的定义得到∠BAE=∠F AE=∠BAD,∠ABE=ABC,根据全等三角形的性质得到BE=FE,AB=AF,根据全等三角形的性质得到BC=FD,于是得到AD+BC=AB;(2)方法同(1).【解答】(1)证明:延长BE与l1交于F,∵AE平分∠F AB,EB平分∠ABC,∴∠BAE=∠F AE=∠BAD,∠ABE=ABC,∵l1∥l2,∴∠BAD+∠ABC=180°,∴∠BAE+∠ABE=(BAD+∠ABC+=90°,∴∠AEB=90°,∴∠AEB=∠AEF=90°,在△AEB与△AEF中,∴△AEB≌△AEF,(ASA),∴BE=FE,AB=AF,即AD+FD=AB,∵l1∥l2,∴∠CBE=∠DFE,在△CBE与△DFE中,,∴△CBE≌△DFE(ASA),∴BC=FD,∴AD+BC=AB;(2)如备用图1,BC﹣AD=AB;如备用图2,AD﹣BC=AB.29.(2018秋•南岗区期中)如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.【分析】依据平行线的性质,即可得到∠C=∠CEF,依据∠CEF=∠D,即可得到BD∥CE,进而得出∠3=∠4,再根据对顶角相等,即可得到∠2=∠1.【解答】证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.30.(2018秋•九龙坡区校级期中)如图,AB∥CD,直线EF与AB,CD分别交于M、N两点,过点M作MG⊥MN交CD于G点,过点G作GH平分∠MGD,若∠EMB=40°,求∠MGH的度数.【分析】首先求出∠MGN,再根据角平分线的定义可得∠MGH.【解答】解:∵MG⊥EF,∴∠GME=90°,∴∠BMG=90°﹣∠EMB=50°,∵AB∥CD,∴∠BMG=∠MGN=50°,∴∠MGD=130°,∵GH平分∠MGD,∴∠MGH=∠MGD=65°.31.(2018春•鱼台县期中)课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A是BC外一点,连接AB,AC.求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程解:过点A作ED∥BC,所以∠B=∠EAB,∠C=∠DAE.又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.(提示:过点C作CF∥AB)深化拓展:(3)如图3,已知AB∥CD,点C在点D的右侧,∠ADC=70°.点B在点A的左侧,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间,求∠BED的度数.【分析】(1)根据平行线的性质即可得到结论;(2)过C作CF∥AB根据平行线的性质得到∠D=∠FCD,∠B=∠BCF,然后根据已知条件即可得到结论;(3)过点E作EF∥AB,然后根据两直线平行内错角相等,即可求∠BED的度数.【解答】解:(1)∵ED∥BC,∴∠C=∠DAE,故答案为:∠DAE;(2)过C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.32.(2017秋•永安市期末)直线AB、CD被直线EF所截,AB∥CD,点P是平面内一动点.设∠PFD=∠1,∠PEB=∠2,∠FPE=∠α.(1)若点P在直线CD上,如图①,∠α=50°,则∠1+∠2=50°;(2)若点P在直线AB、CD之间,如图②,试猜想∠α、∠1、∠2之间的等量关系并给出证明;(3)若点P在直线CD的下方,如图③,(2)中∠α、∠1、∠2之间的关系还成立吗?请作出判断并说明理由.【分析】(1)根据平行线的性质即可得到结论;(2)过点P作PG∥AB,根据平行线的性质即可得到结论;(3)过点P作PG∥CD,根据平行线的性质即可得到结论.【解答】解:(1)∵AB∥CD,∴∠α=50°,故答案为:50;(2)∠α=∠1+∠2,证明:过点P作PG∥∵AB∥CD,∴PG∥CD,∴∠2=∠3,∠1=∠4,∴∠α=∠3+∠4=∠1+∠2;(3)∠α=∠2﹣∠1,证明:过点P作PG∥CD,∵AB∥CD,∴PG∥AB,∴∠2=∠EPG,∠1=∠3,∴∠α=∠EPG﹣∠3=∠2﹣∠1.33.(2018春•上饶县期末)(1)如图1,AM∥CN,求证:①∠MAB+∠ABC+∠BCN=360°;②∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)如图2,若平行线AM与CN间有n个点,根据(1)中的结论写出你的猜想并证明.【分析】(1)①过点作BG∥AM,则AM∥CN∥BG,依据平行线的性质,即可得到∠ABG+∠BAM =180°,∠CBG+∠BCN=180°,即可得到∠MAB+∠ABC+∠BCN=360°;②过E作EP∥AM,过F作FQ∥CN,依据平行线的性质,即可得到∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°,即可得到∠MAE+∠AEF+∠EFC+∠FCN=540°;(2)过n个点作AM的平行线,则这些直线互相平行且与CN平行,即可得出所有角的和为(n+1)•180°.【解答】解:(1)①证明:如图1,过点作BG∥AM,则AM∥CN∥BG∴∠ABG+∠BAM=180°,∠CBG+∠BCN=180°∴∠ABG+∠BAM+∠CBG+∠BCN=360°∴∠MAB+∠ABC+∠BCN=360°②如图,过E作EP∥AM,过F作FQ∥CN,∵AM∥CN,∴EP∥FQ,∴∠MAE+∠AEP=180°,∠FEP+∠EFQ=180°,∠CFQ+∠FCN=180°∴∠MAE+∠AEF+∠EFC+∠FCN=180°×3=540°;(2)猜想:若平行线间有n个点,则所有角的和为(n+1)•180°.证明:如图2,过n个点作AM的平行线,则这些直线互相平行且与CN平行,∴所有角的和为(n+1)•180°.34.(2017秋•新野县期末)(1)如图1,已知AB∥CD,求证:∠BED=∠1+∠2.(2)如图2,已知AB∥CD,写出∠1、∠EGH与∠2、∠BEG之间数量关系,并加以证明.(3)如图3,已知AB∥CD,直接写出∠1、∠3、∠5、与∠2、∠4、∠6之间的关系.【分析】(1)过点E作EF∥AB,依据平行线的性质,即可得到∠3+∠4=∠1+∠2,进而得出∠BED =∠1+∠2;(2)分别过点E、G作EF∥AB,GH∥AB,依据平行线的性质,即可得到∠1+∠5+∠6=∠3+∠4+∠2,进而得到∠1+∠EGH=∠2+∠BEG;(3)分别过平行线间的折点作AB的平行线,依据平行线的性质,即可得到∠1、∠3、∠5与∠2、∠4、∠6之间的关系.【解答】解:(1)证明:如图,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠3=∠1,∠4=∠2,∴∠3+∠4=∠1+∠2,即∠BED=∠1+∠2;(2)∠1+∠EGH=∠2+∠BEG,理由如下:如图,分别过点E、G作EF∥AB,GH∥AB,∵AB∥CD,∴AB∥EF∥GH∥CD,∴∠1=∠3,∠4=∠5,∠6=∠2,∴∠1+∠5+∠6=∠3+∠4+∠2,即∠1+∠EGH=∠2+∠BEG;(3)由题可得,向左的角度数之和与向右的角度数之和相等,∴∠1、∠3、∠5与∠2、∠4、∠6之间的关系为:∠1+∠3+∠5=∠2+∠4+∠6.35.(2018春•安庆期末)如图,已知AD∥BC,∠A=∠C=50°,线段AD上从左到右依次有两点E、F(不与A、D重合)(1)AB与CD是什么位置关系,并说明理由;(2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BE与AD 是何种位置关系?【分析】(1)根据平行线的判定证明即可;(2)根据平行线的性质解答即可;(3)根据平行线的性质和角平分线的性质解答即可.【解答】解:(1)AB∥CD,∵AD∥BC,∴∠A+∠ABC=180°,∵∠A=50°,∴∠ABC=130°,∵∠C=50°,∴∠C+∠ABC=180°,∴AB∥CD;(2)∠1>∠2>∠3,∵AD∥BC,∴∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,∵∠EBC>∠FBC>∠DBC,∴∠1>∠2>∠3.(3)∵AD∥BC,∴∠1=∠EBC,∵AB∥CD,∴∠BDC=∠ABD,∵∠1=∠BDC,∴∠ABE=∠DBC,∵BE平分∠ABF,设∠FBD=x°,则∠DBC=4x°,∴∠ABE=∠EBF=4x°,∴4x+4x+x+4x=130°,∴x=10°,∴∠1=4x+x+4x=90°,∴BE⊥AD.中小学教育资源及组卷应用平台21世纪教育网。
北师大版数学七年级下册第二章 相交线和平行线同步练习(含答案)
北师大版七年级下册第二章相交线与平行线一、选择题1.如图,AB、CD相交于点E,EF平分∠AEB,若∠BED∶∠DEF=2∶3,则∠BEC的度数为()A. 144°B. 126°C. 150°D. 72°2.同一平面内的四条直线若满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥dB.b⊥dC.a⊥dD.b∥c3.如果点P在直线a上,也在直线b上,但不在直线c上,且直线a、b、c两两相交符合以上条件的图形是()A.B.C.D.4.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定5.如图,点E在直线AB上,EC平分∠AED,∠DEB=100°,如果要使AB∥CD,则∠C的度数为()A. 30°B. 40°C. 50°D. 60°6.如图,直线AB,CD相交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理依据是()A.同角的余角相等B.对顶角相等C.同角的补角相等D.等角的补角相等7.下列说法正确的是()A.相等的角是对顶角B.一对同旁内角的平分线互相垂直C.对顶角的平分线在一条直线上D.同位角相等8.如图,点O在直线AB上,点M,N在直线AB外,若MO⊥AB,NO⊥AB,垂足均为O,则可得点N在直线MO上,其理由是()A.经过两点有且只有一条直线B.在同一平面上,一条直角只有一条垂线C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.经过直线上或直线外一点,有且只有一条直线与已知直线垂直二、填空题9.如图所示,已知三条直线AB、CD、EF两两相交于点P、Q、R,则图中补角共有______对,对顶角共有______对(平角除外).10.已知AB∥CD,CP平分∠ACD.求证:∠1=∠2证明:∵AB∥CD(已知),∴∠2=∠3 ( ).又∵CP平分∠ACD,∴∠1=__________.∴∠1=∠2(等量代换).11.如图,把一块长方形纸片ABCD沿EG折叠,若∠FEG=35°,则∠AEF的补角为__________度.12.如图,在△ABC中,∠ABC=90,过点B作三角形ABC的AC边上的高BD,过D点作三角形ABD的AB边上的高DE.∠A的同位角是__________________________.∠ABD的内错角是__________.点B到直线AC的距离是线段______的长度.点D到直线AB的距离是线段______的长度.13.n条水平直线与倾斜直线a相交可得________条线段,_______对同位角,____对内错角,______对同旁内角.14.如图,BD⊥AC于D,DE⊥BC于E,若DE=9 cm,AB=12 cm,不考虑点与点重合的情况,则线段BD的取值范围是_________.15.如图,l1∥l2,则∠1=________度.16.已知∠A与∠B互余,若∠A=20°15′,则∠B的度数为.三、解答题17.给下面命题的说理过程填写依据.已知:如图,直线AB,CD相交于点O,EO⊥CD,垂足为O,OF平分∠BOD,对∠EOF=∠BOC说明理由.理由:因为∠AOC=∠BOD(),∠BOF=∠BOD(),所以∠BOF=∠AOC().因为∠AOC=180°-∠BOC(),所以∠BOF=90°-∠BOC.因为EO⊥CD(),所以∠COE=90°()因为∠BOE+∠COE=∠BOC(),所以∠BOE=∠BOC-∠COE.所以∠BOE=∠BOC-90°()因为∠EOF=∠BOE+∠BOF()所以∠EOF=(∠BOC-90°)+( )所以∠EOF=∠BOC.18.如图,已知AC∥ED,ED∥GF,∠BDF=90°.(1)若∠ABD=150°,求∠GFD的度数;(2)若∠ABD=θ,求∠GFD-∠CBD的度数.19.如图,已知直线l1∥l2,直线l和直线l1、l2交于点C和D,在直线l有一点P.若P点在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由.20.如图,已知AB∥CF,DE∥CF,DE与BC交于点P,若∠ABC=70°,∠CDE=130°.(1)试判断∠ABP与∠BPD之间的数量关系,并说明理由;(2)求∠BCD的度数.21.如图,直线AB,CD相交于点O,∠AOC=60°,∠1∶∠2=1∶2.(1)求∠2的度数;(2)若∠2与∠MOE互余,求∠MOB的度数.22.求出满足下列条件的角的度数:(1)已知一个角的补角是这个角的余角的3倍,求这个角;(2)已知一个角的余角比这个角小18°,求这个角的补角.23.如图,直线AB、CD相交于点O,OE⊥AB,点O为垂足,OF平分∠AOC,且∠COE∶∠AOC =2∶5,求∠DOF的度数.24.如图:把一张长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点M,如果∠EFB=66°,求∠EBF及∠DEF的度数.答案解析1.【答案】A【解析】∵EF平分∠AEB,∴∠BEF=90°,∵∠BED∶∠DEF=2∶3,∴∠BED=36°,∴∠BEC=180°-∠BED=144°.故选A.2.【答案】C【解析】∵a⊥b,b⊥c,∴a∥c,∵c⊥d,∴a⊥d.故选C.3.【答案】D【解析】A.不符合直线a、b、c两两相交;B.不符合点P在直线a上;C.不符合点P不在直线c上;D.符合条件,故选D.4.【答案】A【解析】∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A.5.【答案】B【解析】∵∠DEB=100°,∴∠AED=180°-100°=80°,∵EC平分∠AED,∴∠AEC=∠DEC=∠AED=40°,∵AB∥CD,∠C=∠AEC=40°,故选B.6.【答案】C【解析】∵∠1+∠3=180°,∠2+∠3=180°,∴∠1=∠2(同角的补角相等),故选C.7.【答案】C【解析】A.相等的角不一定是对顶角,错误;B.一对同旁内角的平分线不一定互相垂直,错误;C.对顶角的平分线在一条直线上,正确;D.同位角不一定相等,错误;故选C.8.【答案】D【解析】∵MO⊥AB,NO⊥AB,垂足均为O,∴MN⊥AB于点O,即MO与NO是同一条直线,根据是经过直线上或直线外一点,有且只有一条直线与已知直线垂直,故选D.9.【答案】126【解析】如图,一个顶点处∠1与∠2,∠2与∠3,∠3与∠4,∠4与∠1是补角,共4对,图中共有三个顶点,所以补角有4×3=12对;∠1与∠3,∠2与∠4是对顶角,共2对,图中共有3个顶点,所以对顶角有2×3=6对.故应填12,6.10.【答案】两直线平行,内错角相等∠3【解析】∵AB∥CD(已知),∴∠2=∠3 (两直线平行,内错角相等).又∵CP平分∠ACD,∴∠1=∠3,∴∠1=∠2(等量代换).故答案为:两直线平行,内错角相等,∠3.11.【答案】70【解析】∠DEF=∠FEG+∠DEG=35°+35°=70°,即∠AEF的补角是70°.故答案是:70.12.【答案】∠BDC、∠BED、∠EDC∠BDC BD DE【解析】根据两直线被第三条直线所截,位置相同的角是同位角,可得一个角的同位角,根据根据两直线被第三条直线所截,角位于两直线的中间,截线的两侧是内错角,可得一个角的内错角,根据点到直线的垂线段的长度是点到直线的距离,可得答案.∠A的同位角是∠BDC、∠BED、∠EDC,∠ABD的内错角是∠BDC,点B到直线AC的距离是线段BD的长度,点D到直线AB的距离是线段DE的长度,13.【答案】2n(n-1)n(n-1)n(n-1)【解析】n条水平直线与倾斜直线a相交可得条线段,2n(n-1)对同位角,n(n-1)对内错角,n(n-1)对同旁内角,故答案为,2n(n-1),n(n-1),n(n-1).14.【答案】9 cm<DB<12 cm【解析】在△ADB中,∵BD⊥AD,∴AB>BD,∵AB=12 cm,∴BD<12 cm,在△BDE中,∵DE⊥BC,∴BD>DE,∵DE=9 cm,∴BD>9 cm,∴9 cm<DB<12 cm.故答案为9 cm<DB<12 cm.15.【答案】20【解析】∵l1∥l2,∴∠2=70°,∴∠1=90°-∠2=90°-70°=20°.16.【答案】69.75°【解析】∵∠A与∠B互余,∠A=20°15′,∴∠B=90°-20°15′=69°45′=69.75°.故答案为:69.75°.17.【答案】因为∠AOC=∠BOD(对顶角相等),∠BOF=∠BOD(平分线的定义),所以∠BOF=∠AOC(等量代换).因为∠AOC=180°-∠BOC(平角的定义),所以∠BOF=90°-∠BOC.因为EO⊥CD(已知),所以∠COE=90°(垂直的定义)因为∠BOE+∠COE=∠BOC(两角和的定义),所以∠BOE=∠BOC-∠COE.所以∠BOE=∠BOC-90°(等量代换)因为∠EOF=∠BOE+∠BOF(两角和的定义)所以∠EOF=(∠BOC-90°)+(等量代换)所以∠EOF=∠BOC.故答案为:对顶角相等,角平分线的定义,等量代换,平角的定义,已知,垂直的定义,两角和的定义,等量代换,两角和的定义,等量代换.【解析】根据对顶角的性质得到∠AOC=∠BOD,由角平分线的定义得到∠BOF=∠BOD,等量代换得到∠BOF=∠AOC,由垂直的定义得到∠COE=90°,等量代换得到∠BOE=∠BOC-90°,于是得到结论.18.【答案】(1)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=150°,∴∠BDE=30°,∵∠BDF=90°,∴∠EDF=60°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=120°;(2)∵AC∥ED,∴∠ABD+∠BDE=180°,∵∠ABD=θ,∴∠BDE=180°-θ,∵∠BDF=90°,∴∠EDF=90°-(180°-θ)=θ-90°,∵ED∥GF,∴∠EDF+∠F=180°,∴∠F=270°-θ,∵∠ABD=θ,∴∠CBD=180°-θ,∴∠GFD-∠CBD=(270°-θ)-(180-θ)°=90°.【解析】(1)根据平行线的性质可得∠ABD+∠BDE=180°,进而可得∠BDE=30°,然后再计算出∠EDF的度数,再根据平行线的性质可得∠EDF+∠F=180°,进而可得∠GFD的度数;(2)与(1)类似,表示出∠F的度数,再表示出∠CBD的度数,再求差即可.19.【答案】如图,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD.【解析】当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.20.【答案】(1)∠ABP=∠BPD,理由:∵AB∥CF,DE∥CF,∴AB∥DE,∴∠ABP=∠BPD;(2)∵AB∥CF,∠ABC=70°,∴∠BCF=∠ABC=70°,又∵DE∥CF,∠CDE=130°,∴∠DCF+∠CDE=180°,∴∠DCF=50°,∴∠BCD=∠BCF-∠DCF=70°-50°=20°.【解析】(1)根据AB∥CF,DE∥CF,可得AB∥DE,进而得出∠ABP=∠BPD;(2)由AB∥CF,∠ABC=70°,易求∠BCF,又DE∥CF,∠CDE=130°,那么易求∠DCF,于是∠BCD=∠BCF-∠DCF可求.21.【答案】(1)∵∠DOB=∠AOC=60°,∴∠1+∠2=60°,又∠1∶∠2=1∶2.∴∠1=20°,∠2=40°;(2)∵∠2与∠MOE互余,∠2=40°,∴∠MOE=50°,又∠1=20°,∴∠MOB=30°.【解析】(1)根据对顶角相等得到∠DOB=60°,根据已知求出∠2的度数;(2)根据余角的概念求出∠MOE的度数,计算即可.22.【答案】解:(1)设这个角为x°,由题意得:180-x=3(90-x),解得:x=45.答:这个角为45°.(2)设这个角为x°,由题意得:90-x=x-18,解得:x=54.所以这个角的补角为126°.【解析】(1)首先设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,根据题目所给等量关系列出方程,再解方程即可.(2)首先这个角为x°,则它的余角为(90-x)°,根据题意列出方程即可.23.【答案】∵OE⊥AB,∴∠AOE=∠BOE=90°,设∠EOC=2x,∠AOC=5x.∵∠AOC-∠COE=∠AOE,∴5x-2x=90°,解得x=30°,∴∠COE=60°,∠AOC=150°.∵OF平分∠AOC,∴∠AOF=75°.∵∠AOD=∠BOC=90°-∠COE=30°,∴∠DOF=∠AOD+∠AOF=105°.【解析】先由OE⊥AB得出∠AOE=∠BOE=90°,再设∠COE=2x,∠AOC=5x.根据∠AOC-∠COE=∠AOE,列方程求出x,再根据角平分线定义求出∠AOF=75°,根据对顶角性质及互余的性质得出∠AOD=∠BOC=90°-∠COE=30°,然后由∠DOF=∠AOD+∠AOF即可求解.24.【答案】∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠可得∠DEF=∠BEF,∴∠BEF=66°,∴∠EBF=∠AEB=180°-∠DEF-∠BEF=180°-66°-66°=48°.【解析】首先根据平行线的性质可得∠DEF=∠EFB,再根据折叠可得∠DEF=∠BEF,再利用三角形内角和可得∠EBF=∠AEB=180°-∠DEF-∠BEF,进而得到答案.。
北师大版七年级下册第二章-平行线与相交线同步练习题(含答案)
第二章 平行线与相交线同步练习题2.1两条直线的位置关系一、选择题(共18小题) 1 .下列说法正确的是( )A .两条不相交的线段叫平行线B .过一点有且只有一条直线与已知直线平行 C. 线段与直线不平行就相交D. 与同一条直线相交的两条直线有可能平行2 .如果线段AB 与线段CD 没有交点,则( A .线段AB 与线段CD 一定平行 C .线段AB 与线段CD 可能平行3.如图,在方格纸上给出的线中,平行的有( )4.已知Z1 + Z 2=90° Z3+)B .线段AB 与线段CD 一定不平行 D .以上说法都不正确0=180 °下列说法正确的是()A. Z1是余角C. Z1是的余角 D . Z3和也都是补角5. 下列说法错误的是()题(含答案)6. 下列说法正确的是()A.两个互补的角中必有一个是钝角B . 一个锐角的余角一定小于这个角的补角C. 一个角的补角一定比这个角大D. 一个角的余角一定比这个角小7. 如果Z aZ =90°,而/与/互余,那么/o与/Y勺关系为()A.互余 B .互补C.相等9.下列说法正确的是()A.如果两个角相等,那么这两个角是对顶角B .有公共顶点并且相等的两个角是对顶角C.如果两个角不相等,那么这两个角不是对顶角D .以上说法都不对A •两个互余的角相加等于90°C.互为补角的两个角不可能都是钝角B .钝角的平分线把钝角分为两个锐角D .两个锐角的和必定是直角或钝角D .不能确定A. 60 ° B . 45 C. 30° D . 90°8—个角的余角是它的补角的11.(2007?济南)已知:如图,AB J CD ,垂足为O,EF 为过点O 的一条直线,则J 与的关系一定成立的是 ( )12. (2003?杭州)如图所示立方体中,过棱 BB 1和平面CD 1垂直的平面有(C . 3个15. 如图,已知 0A J m , OB J m ,所以OA 与OB 重合,其理由是□EmC .互补D .互为对顶角ZPQR 等于 138° SQ J QR , QTZPQ .贝U zSQT 等于(B . 64 °C . 48°D . 24°14. (2005?哈尔滨)过一个钝角的顶点作这个角两边的垂线,若这两条垂线的夹角为 40°则此钝角为( 140° B . 160° C . 120° D . 110°A •相等A . 1个B •过一点只能作一条垂线C. 经过一点只有一条直线垂直于已知直线D. 垂线段最短16. 如图,ZBAC=90 ° AD ZBC,则下列的结论中正确的个数是()①点B到AC的垂线段是线段AB ;②线段AC是点C到AB的垂线段;③线段AD是点D到BC的垂线段;④线段BD是点B到AD的垂线段.C. 3个17. 如图,把水渠中的水引到水池C,先过C点向渠岸AB画垂线,垂足为D,再沿垂线CD开沟才能使沟最短,A.垂线最短B .过一点确定一条直线与已知直线垂盲C. 垂线段最短D. 以上说法都不对18 .已知线段AB=10cm,点A , B至煩线I的距离分别为6cm, 4cm .符合条件的直线I有()C. 3条、填空题(共12小题)19.已知Z1=43°7',则Z1的余角是_____________ ,补角是20.若一个角的余角是30°则这个角的补角为_________________21•两个角互余或互补,与它们的位置 ________________ (填有”或无”)关.22. 一个角的补角是它的余角的4倍,则这个角等于_______________ 度.23•若/o和/匝为余角,并且/a匕/大20° /和/互为补角,贝y Z = _______________________ , Z= _____________ ,那么,/ 丫 / = ______________ .24.如图,已知ZCOE= ZBOD= zAOC=90 °则图中与ZBOC相等的角为_________________ ,与ZBOC互补的角为—___________ ,与ZBOC互余的角为______________ .O,左OC=6O ° OA平分zEOC,那么ZBOD的度数是26. (2006?宁波)如图,直线azb, Z=50° 则/2= _ _ 度.27.如图,点 A ,B ,C 在一条直线上,已知 21=53° Z2=37°贝U CD 与CE 的位置关系是 ____________________28 .老师在黑板上随便画了两条直线 AB , CD 相交于点0,还作/BOC 的平分线0E 和CD 的垂线OF (如图),量得zDOE 被一直线分成2: 3两部分,小颖同学马上就知道 2AOF 等于 __ .30. 如图,已知 BA zBD , CB 2CD , AD=8 , BC=6,则线段 BD长的取值范围是29 .如图,2ADB=90 ° 贝^ AD ____________ B D ;用 匕”连接AB , AC , AD ,结果是三、解答题(共9小题)31. 已知一个角的补角加上 10。
北师大版七年级数学下册第二章相交线和平行线专题练习(含答案)
第二章相交线与平行线专题练习一、选择题1.下列说法中正确的个数有( )①两点之间的所有连线中,线段最短;②相等的角叫对顶角;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤两点之间的距离是两点间的线段;⑥在同一平面内,两条直线的位置关系只有两种:平行或相交.A.1个B.2个C.3 个D.4个2.如图,AB∥CD,AD=CD,∠1=50°,则∠2的度数是( )A .55° B.60° C.65° D.70°3.如图,直线a∥b,将一块含30°角(∠ BAC=30°)的直角三角=20°,则∠ 2的度数为( )A .20° B.30° C.40 D.50尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1A .20° B.30° C.40 D.504.如图,直线AB,CD 相交于点O,OD 平分∠ BOF,OE⊥CD于点O.若∠ EOF=α,下列说法:①∠ AOC=α-90° ②∠ EOB =180°-α ③∠ AOF=360°-2α,其中正确的是( )5.如图,AB∥CD,∠ B=75°,∠ E=27°,则∠ D 的度数为()A .45° B.48° C.50° D.586.如图,点 E 是BA延长线上一点,在下列条件中:①∠1=∠3 ②∠2=∠ 4 ③∠5=∠ D ④∠ BAD =∠ BCD ⑤∠B+∠ BCD=180°,能判定 AB ∥DC 的有 ( )二、填空题8.如图,∠ AOB 的一边 OA 为平面镜,∠ AOB =37°,在 OB 上 有一点 E ,从点 E 射出一束光线经 OA 上一点 D 反射,此时∠ ODE =∠ ADC ,且反射光线 DC 恰好与 OB 平行,则∠ DEB 的度数是A .1个B .2个C .3 个D .4个7.如图,小明从 A 处出发,沿北偏东 40°方向行走至 B 处,又从 点 B 处沿东偏南 20°方向行走至 C 处,则∠ ABC 等于 (A . 130D .100C .110 B .180°,能判定 AB ∥DC 的有 ( )9.如图,将一条直的等宽纸带按如图的方式折叠时,则图中∠α10.如图是一块四边形木板和一把曲尺(直角尺),把曲尺一边紧靠木板边缘PQ,画直线AB,与PQ,MN 分别交于点A,B;再把曲尺的一边紧靠木板的边缘MN,移动使曲尺的另一边过点 B 画直线,若所画直线与BA重合,则这块木板的对边MN 与PQ是平行的,其理论依据是__ .11.如图,点 E 在AD 的延长线上,有下列四个条件:①∠ 1=∠ 2;②∠ 3=∠ 4;③∠ A=∠ CDE;④∠ C+∠ ABC=180°.其中能判定AB∥CD 的是___________ .(填写正确的序号即可)三、解答题12.如图,直线AB,CD 相交于点O,OA 平分∠ EOC,FO⊥AB.若∠ DOE=3∠EOA,求∠ DOF 的度数.13.如图,已知∠ DAB=65°,∠1=∠ C.(1) 在图中画出∠DAB 的对顶角;(2) 写出∠ 1 的同位角;(3) 写出∠C 的同旁内角;(4) 求∠B 的度数.14.如图,直线AB,CD 相交于点O,OE 平分∠BOD.(1) 若∠EOF=55°,OD⊥OF,求∠AOC 的度数;(2) 若OF 平分∠COE,∠BOF=15°,求∠DOE 的度数.15.如图:已知∠ 1+∠ 2= 180°,∠ 3=∠ B ,问 AB 与 DE 是否平行?并说明理由16.如图①, AB ∥ CD ,点 P 在 AB 与 CD 之间,可得结论:+ ∠APC + ∠PCD = 360 .°理由如下:过点 P 作 PQ ∥AB.∴∠ BAP +∠ APQ = 180°.∵ AB ∥CD ,∴PQ ∥CD.∴∠ PCD +∠ CPQ = 180°.【阅读材料】在“相交线与平 有这样∠BAP 行线”的学习中,∴∠ BAP+∠ APC+∠ PCD=∠ BAP+∠ APQ+∠ CPQ+∠ PCD=180°+180°=360°.【问题解决】(1) ________________________________________ 如图②,AB∥ CD,点P 在AB 与CD 之间,可得∠ BAP,∠ APC,∠ PCD 间的等量关系是___________________________ 只( 写结论);(2) 如图③,AB∥CD,点P,E 在AB 与CD 之间,AE 平分∠ BAP,CE 平分∠ DCP.写出∠ AEC 与∠ APC间的等量关系,并写出理由;结论:∠ APC=2∠AEC.理由:图③中,设∠ EAB=∠ EAP=x,∠ ECD=∠ ECP=y.由(1)可知:∠ AEC=x+y,∠APC=2x+2y,∴∠ APC=2∠AEC.1(3) 如图④,AB∥CD,点P,E在AB与CD之间,∠ BAE=3∠1BAP,∠ DCE=3∠DCP,可得∠ AEC 与∠ APC 间的等量关系是____________________ 只(写结论).参考答案、选择题1.A提①正确,②③④⑤⑥错误.示:2.C3.C4.D5.B6.C7.C、填空题8.74°9.75°10.内错角相等,两直线平行三、解答题12.解设∠AOE=∵OA 平分∠EOC,∴∠AOC=∠AOE=x°.∵∠DOE=3∠EOA,∴∠DOE=3x°. ∵∠BOD=∠AOC=x°,∴由∠AOE+∠ DOE+∠ BOD=180 °,得x+3x+x=180,解得x=36,∴∠BOD=36 °.∵FO⊥AB,∴∠BOF=90 °,∴∠DOF=∠BOF-∠BOD=54 °.13.11.①③④解:(1)如答图,∠GAH 即为所求.(2)∠1的同位角是∠DAB.(3) ∠C的同旁内角是∠B 和∠ADC.(4) ∵∠1=∠C,∴AE∥BC,∴∠DAB+∠ B=180 .°又∵∠ DAB=65 °,∴∠B=115 .°14.解:(1)∵OE 平分∠ BOD,∴∠BOE=∠DOE.∵∠EOF=55 °,OD⊥OF,∴∠DOE=35 °,∴∠BOD=70 °,∴∠AOC=70 °.(2)∵OF 平分∠COE,∴∠COF=∠EOF. 设∠DOE=∠BOE=x.∵∠BOF=15 °,∴∠COF=∠EOF=x+15°. ∵∠COD=∠COF+∠EOF+∠DOE=180 °,∴x+15°+x+15°+x=180 ,°解得x=50°,故∠DOE 的度数为50°.15.解:AB∥ DE.理由:∵∠ 1+∠ADC=180 (°平角的定义),且∠1+∠2=180 (°已知),∴∠ADC=∠ 2(等量代换),∴EF∥DC(同位角相等,两直线平行).∴∠3=∠EDC(两直线平行,内错角相等),又∵∠3=∠B (已知),∴∠EDC=∠ B(等量代换),∴AB∥DE(同位角相等,两直线平行).16.(1)∠ APC=∠ A+∠ C(2)结论:∠ APC=2∠AEC.理由:图③中,设∠ EAB=∠ EAP=x,∠ ECD=∠ ECP=y.由(1)可知:∠ AEC=x+y,∠APC=2x+2y,∴∠ APC=2∠AEC.(3) ∠APC+3∠AEC=360。
北师大版数学七年级下册 第二章 相交线和平行线的判定练习
3.21综合练习卷1.下列说法中,错误的有()①若a与c相交,b与c相交,则a与b相交;②若a//b,b//c,则a//c;③过一点有且只有一条直线与已知直线平行;④在同一平面内,不重合的两条直线的位置关系有平行、相交、垂直三种.A. 3个B. 2个C. 1个D. 0个2.a,b,c是同一平面内的任意三条直线,其交点有()A. 1或2个B. 1或2或3个C. 0或1或3个D. 0或1或2或3个3.如图所示,若∠1=∠2,则在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中,相等的有()A. 1对B. 2对C. 3对D. 4对4.下列说法正确的个数是()①同位角相等;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;⑤若a//b,b//c,则a//c.A. 1B. 2C. 3D. 45.如图,直线AB与直线CD相交于点O,MO⊥AB,垂足为O,已知∠AOD=136°,则∠COM的度数为()A. 36°B. 44°C. 46°D. 54°6.下列四个图形中,不能推出∠2与∠1相等的是()A. B. C. D.7.如图,直线AB,CD相交于点O,OA平分∠EOC,且∠EOC:∠EOB=2:9,则∠BOD的度数是()A. 15°B. 16°C. 18°D. 20°8.如图,把河AB中的水引到C,拟修水渠中最短的是()A. CMB. CNC. CPD. CQ9.如图,△ABC中,∠C=90°,AC=3,BC=4,点P是BC边上的动点,则AP的长不可能是()A. 3.4B. 4C. 4.5D. 710.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=6cm,则点P到直线m的距离()A. 等于5cmB. 等于4cmC. 小于4cmD. 不大于4cm11.如图所示,下列说法不正确的是()A. 线段BD是点B到AD的垂线段B. 线段AD是点D到BC的垂线段C. 点C到AB的垂线段是线段ACD. 点B到AC的垂线段是线段AB12.下列作图能表示点A到BC的距离的是()A. B. C. D.13.如图,射线AB,AC被射线DE所截,图中的∠1与∠2是()A. 内错角B. 对顶角C. 同位角D. 同旁内角14.下列图形中∠1与∠2不是同位角的是()A. B. C. D.15.如图,下列结论正确的是()A. ∠4和∠5是同旁内角B. ∠3和∠2是对顶角C. ∠3和∠5是内错角D. ∠1和∠5是同位角16.如图,下列条件中,不能判定AB//CD的是()A. ∠D+∠BAD=180°B. ∠1=∠2C. ∠3=∠4D. ∠B=∠DCE17.如图,下列判断中正确的是()A.如果∠3+∠2=180°,那么AB//CDB. 如果∠1+∠3=180°,那么AB//CDC. 如果∠2=∠4,那么AB//CDD. 如果∠1=∠5,那么AB//CD18.如图,在下列给出的条件中,不能判定AB//DF的是()A. ∠A=∠3B. ∠A+∠2=180°C. ∠1=∠4D. ∠1=∠A19.如图,若∠ADB=∠CBD,则下列结论正确的是()A. ∠ABD=∠BDCB. AB//CDC. ∠BAD=∠BCDD. AD//BC20.如图,点E是四边形ABCD的边BC延长线上的一点,则下列条件中不能判定AD//BE的是()A. ∠1=∠2B. ∠3=∠4C. ∠D=∠5D. ∠B+∠BAD=180°21.如图,从点P向直线l所画的4条线段中,线段______最短,理由是______.22.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是______.23.如图,D是△ABC的BA边延长线上的一点,AE是∠DAC的平分线,∠B=∠C,试说明:AE//BC.24.如图,直线EF分别与直线AB、CD交于M,N两点,∠1=55°,∠2=125°,求证:AB//CD.25.如图,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD平行于EF吗?为什么?26.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC交BC于点D,点E是边AC上一点,连接DE,若∠ADE=40°,求证:DE//AB.27.完成下面的证明:如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,求证:AB//CD.证明:∵BE平分∠ABD(____)∴∠ABD=2∠α(____)∵DE平分∠BDC(已知)∵∠BDC=____(____)∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)(____)∵∠α+∠β=90°(已知)∴∠ABD+∠BDC=180°(____)∴AB//CD(____)28.如图,∠ABC=∠ADC,BF,DE分别是∠ABC,∠ADC的平分线,∠1=∠2,试说明:DC//AB.29.完成下面的推理说明:已知:如图,BE//CF,BE、CF分别平分∠ABC和∠BCD.求证:AB//CD.证明:∵BE、CF分别平分∠ABC和∠BCD,∴∠1=12∠_____,∠2=12∠_____(_______________).∵BE//CF,∴∠1=∠2(_______________________).∴12∠ABC=12∠BCD(______________).∴∠ABC=∠BCD(等式的性质).∴AB//CD(_______________).。
七年级(北师大版)数学下册相交线与平行线专题训练
相交线与平行线1.如图,要证明AD∥BC,只需要知道∠B=.答案∠EAD解析本题根据同位角相等,两直线平行得出答案.2.已知两个角互为补角,若其中一个角比另一个角大90°,那么这两个角分别是.答案45°,135°解析设较小角为x°,则180-x-x=90,x=45,180°-45°=135°.3.如图,把一个长方形纸片ABCD沿EF折叠后,点D,C分别落在D',C'的位置.若∠EFB=65°,则∠AED'的度数为度.答案50解析∵AD∥BC,∴∠EFB=∠DEF=65°(两直线平行,内错角相等).由折叠知,∠D'EF=∠DEF=65°.∴∠AED'=180°-∠D'EF-∠DEF=180°-65°-65°=50°.4.如图所示,∠1的内错角是,∠B的同旁内角是(只写一个).答案∠B;∠C(答案不唯一)解析∠1和∠ABC在被截直线AD和BC之间,截线AB的两旁,故∠1的内错角是∠B.∠B与∠C在被截直线AB和AC之间,截线BC的同旁,故∠B与∠C是同旁内角(答案不唯一).5.如图所示,∠ACB=60°,∠ABC=50°,BO,CO分别是∠ABC,∠ACB的平分线,EF经过O点且平行于BC,则∠BOC=度.答案125解析∵∠ABC=50°,∠ACB=60°,BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC=25°,∠OCB=∠ACB=30°.∵EF经过O点且平行于BC,∴∠EOB=∠OBC=25°,∠FOC=∠OCB=30°.又∠EOF是平角,即为180°,∴∠BOC=180°-∠EOB-∠FOC=180°-25°-30°=125°.6.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.答案140°解析如图,延长AE,使AE与l2交于点B.∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.7.推理填空:如图:①若∠1=∠2,则∥();若∠DAB+∠ABC=180°,则∥();②当∥时,∠C+∠ABC=180°(); 当∥时,∠3=∠C().答案①AD;BC;内错角相等,两直线平行;AD;BC;同旁内角互补,两直线平行②CD;AB;两直线平行,同旁内角互补;AD;BC;两直线平行,同位角相等8.如图,AB∥CD,AD平分∠BAC,且∠D=72°,则∠C的度数为()A.36°B.72°C.108°D.144°答案A∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D=72°,∴∠CAB=144°,∵AB∥CD,∴∠CAB+∠C=180°,∴∠C=180°-144°=36°.故选A.9.如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角答案B根据内错角的定义判定.10.如图,a∥b,且∠2是∠1的2倍,那么∠2等于()A.60°B.90°C.120°D.150°答案C∵a∥b,∴∠1+∠2=180°,又∵∠2=2∠1,∴3∠1=180°.∴∠1=60°,∠2=120°.11.如图,下列条件中,不能判定直线l1∥l2的是()A.∠1=∠3B.∠2+∠4=180°C.∠4=∠5D.∠2=∠3答案D A.可根据内错角相等,两直线平行判定l1∥l2;B.可根据同旁内角互补,两直线平行判定l1∥l2;C.可根据同位角相等,两直线平行判定l1∥l2,只有D选项不能判定l1∥l2,故选D.12.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°答案B如图,根据题意可知∠2=∠3,∵∠1+∠3=90°,∴∠3=90°-∠1=58°.故∠2=58°,故选B.13.如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°答案B∵AB∥CD,∴∠C+∠CAB=180°,∴∠CAB=180°-∠C=130°,∵AE平分∠CAB,∴∠BAE=∠CAB=65°,∵AB∥CD,∴∠BAE+∠AED=180°,∴∠AED=180°-65°=115°.故选B.14.如图,将直角三角尺的直角顶点落在直尺上,且斜边与直尺平行,那么在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个D.1个答案C∵斜边与这把直尺平行,∴∠α=∠2,易知∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.15.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为()A.35°B.40°C.105°D.145°答案D∵CD∥AB,∴∠DCE=∠B=40°,∠ACD=∠A=105°,∴∠ACE=∠ACD+∠DCE=145°.16.将一个直角三角板和一把刻度尺如图2-6-9放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°答案B如图,作CF∥ED,则∠α=∠1.又∵AB∥ED,∴CF∥AB,∴∠2=∠β.∵∠1+∠2=90°,∴∠α+∠β=90°.∴∠β=90°-43°=47°.17.已知:OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数为()A.30°B.60°C.150°D.30°或150°答案D∵OA⊥OC,∴∠AOC=90°.由∠AOB∶∠AOC=2∶3,得∠AOB=60°.当OB在∠AOC的外部时,∠BOC=60°+90°=150°;当OB在∠AOC的内部时,∠BOC=90°-60°=30°.故选D.18.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.解析(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°-∠COF=150°.(2)证明:∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF-∠FOG=150°-90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.。
七年级(北师大版)数学下册相交线与平行线专题训练
相交线与平行线1.如图,要证明AD∥BC,只需要知道∠B=.答案∠EAD解析本题根据同位角相等,两直线平行得出答案.2.已知两个角互为补角,若其中一个角比另一个角大90°,那么这两个角分别是.答案45°,135°解析设较小角为x°,则180-x-x=90,x=45,180°-45°=135°.3.如图,把一个长方形纸片ABCD沿EF折叠后,点D,C分别落在D',C'的位置.若∠EFB=65°,则∠AED'的度数为度.答案50解析∵AD∥BC,∴∠EFB=∠DEF=65°(两直线平行,内错角相等).由折叠知,∠D'EF=∠DEF=65°.∴∠AED'=180°-∠D'EF-∠DEF=180°-65°-65°=50°.4.如图所示,∠1的内错角是,∠B的同旁内角是(只写一个).答案∠B;∠C(答案不唯一)解析∠1和∠ABC在被截直线AD和BC之间,截线AB的两旁,故∠1的内错角是∠B.∠B与∠C在被截直线AB和AC之间,截线BC的同旁,故∠B与∠C是同旁内角(答案不唯一).5.如图所示,∠ACB=60°,∠ABC=50°,BO,CO分别是∠ABC,∠ACB的平分线,EF经过O点且平行于BC,则∠BOC=度.答案125解析∵∠ABC=50°,∠ACB=60°,BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC=25°,∠OCB=∠ACB=30°.∵EF经过O点且平行于BC,∴∠EOB=∠OBC=25°,∠FOC=∠OCB=30°.又∠EOF是平角,即为180°,∴∠BOC=180°-∠EOB-∠FOC=180°-25°-30°=125°.6.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.答案140°解析如图,延长AE,使AE与l2交于点B.∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°-∠3=180°-40°=140°.7.推理填空:如图:①若∠1=∠2,则∥();若∠DAB+∠ABC=180°,则∥();②当∥时,∠C+∠ABC=180°(); 当∥时,∠3=∠C().答案①AD;BC;内错角相等,两直线平行;AD;BC;同旁内角互补,两直线平行②CD;AB;两直线平行,同旁内角互补;AD;BC;两直线平行,同位角相等8.如图,AB∥CD,AD平分∠BAC,且∠D=72°,则∠C的度数为()A.36°B.72°C.108°D.144°答案A∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D=72°,∴∠CAB=144°,∵AB∥CD,∴∠CAB+∠C=180°,∴∠C=180°-144°=36°.故选A.9.如图,∠1和∠2是一对()A.同位角B.内错角C.同旁内角D.对顶角答案B根据内错角的定义判定.10.如图,a∥b,且∠2是∠1的2倍,那么∠2等于()A.60°B.90°C.120°D.150°答案C∵a∥b,∴∠1+∠2=180°,又∵∠2=2∠1,∴3∠1=180°.∴∠1=60°,∠2=120°.11.如图,下列条件中,不能判定直线l1∥l2的是()A.∠1=∠3B.∠2+∠4=180°C.∠4=∠5D.∠2=∠3答案D A.可根据内错角相等,两直线平行判定l1∥l2;B.可根据同旁内角互补,两直线平行判定l1∥l2;C.可根据同位角相等,两直线平行判定l1∥l2,只有D选项不能判定l1∥l2,故选D.12.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°答案B如图,根据题意可知∠2=∠3,∵∠1+∠3=90°,∴∠3=90°-∠1=58°.故∠2=58°,故选B.13.如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°答案B∵AB∥CD,∴∠C+∠CAB=180°,∴∠CAB=180°-∠C=130°,∵AE平分∠CAB,∴∠BAE=∠CAB=65°,∵AB∥CD,∴∠BAE+∠AED=180°,∴∠AED=180°-65°=115°.故选B.14.如图,将直角三角尺的直角顶点落在直尺上,且斜边与直尺平行,那么在形成的这个图中与∠α互余的角共有()A.4个B.3个C.2个D.1个答案C∵斜边与这把直尺平行,∴∠α=∠2,易知∠1+∠2=90°,∴∠1+∠α=90°,又∠α+∠3=90°,∴与α互余的角为∠1和∠3.故选C.15.如图,已知B、C、E在同一直线上,且CD∥AB,若∠A=105°,∠B=40°,则∠ACE为()A.35°B.40°C.105°D.145°答案D∵CD∥AB,∴∠DCE=∠B=40°,∠ACD=∠A=105°,∴∠ACE=∠ACD+∠DCE=145°.16.将一个直角三角板和一把刻度尺如图2-6-9放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°答案B如图,作CF∥ED,则∠α=∠1.又∵AB∥ED,∴CF∥AB,∴∠2=∠β.∵∠1+∠2=90°,∴∠α+∠β=90°.∴∠β=90°-43°=47°.17.已知:OA⊥OC,∠AOB∶∠AOC=2∶3,则∠BOC的度数为()A.30°B.60°C.150°D.30°或150°答案D∵OA⊥OC,∴∠AOC=90°.由∠AOB∶∠AOC=2∶3,得∠AOB=60°.当OB在∠AOC的外部时,∠BOC=60°+90°=150°;当OB在∠AOC的内部时,∠BOC=90°-60°=30°.故选D.18.如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.解析(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°-∠COF=150°.(2)证明:∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF-∠FOG=150°-90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.。
完整版北师大版七年级下册数学第二章平行线与相交线练习题
完整版北师⼤版七年级下册数学第⼆章平⾏线与相交线练习题北师⼤版七年级下册数学第⼆章平⾏线与相交线练习题分卷I )注释?、单选题(o>则Z2交于?点,若Zl=50b、c^ dd,已知c丄a, c丄b,直线cl、如图,直线Q、b、、等于【oooo ? 4030 B? 50D C ? A? 602、如图,AB丄BC, BC丄CD, ZEBC=ZBCF,那么,ZABE与ZDCF的位置与⼈⼩关()系是A.是同位⾓且和等B.不是同位⾓但相等;C.是同位⾓但不等D.不是同位⾓也不等3、如果两个⾓的-边在同-直线上,另?边互相平⾏,那么这两个⾓只能()A.和等B.互补C.相等或互补D.相等且互补4、下列说法中,为平⾏线特征的是()①两条岚线平⾏,同旁内⾓互补;②同位⾓相等,两条直线平⾏;③内错⾓相等,两条直线平⾏;④垂直于同⼀条直线的两条直线平⾏.A.①B.②(§)C.④D.②和④5、如图,AB〃CD〃EF,若ZABC=5O° , ZCEF=150°,则ZBCE=()A. 60° B? 50° C? 30° D? 20°6.如图,如果AB〃CD,则⾓a、Y之间的关系为()A. a+ p + Y =360° B ? a-B + 丫=180°C ? a +p-Y =180°D ? a+0 + y=18O°7、如图,由A 到B 的⽅向是()A.南偏东30° B ?南偏东60° C.北偏西30° D ?北偏西60。
8、如图,由ACZ7ED,可知相等的⾓有()A ?B ?C ?D ? 3 X ⼨9. 如图,直线AB 、CD 交于6 EO 丄AB 于O, Z1与Z2的关系是(更多功能介绍/doc/9e9e0fb5bcd5b9f3f90f76c66137ee06eef94e6b.html /zt/10、若Z1和Z2互余,Z1与Z3互补,Z3=120° ,则Z1与Z2的度数分别为()、60° 120° .............................. A5O 0 40° B60° 30° C50° 130° D)(、下列语句正确的是11?A. ?个⾓⼩于它的补⾓A.互余B.对顶⾓C.互补D.相等B?相等的⾓是对顶⾓C.同位⾓互补,两直线平⾏D.同旁内⾓互补,两宜线平⾏12、图中与Z1是内错⾓的⾓的个数是()A. 2个B?3个C?4个D?5个13、如图,直线AB和CD相交于点O, ZAOD和ZBOC的和为202°,那么ZAOC的度数为()A. 89°B. 101°C? 79° D? 110°1和Z2是对顶⾓的图形的个数有(14、如图.ZA?1个B. 2个C. 3个D. 0个15、如图,直线a、b被宜线c所截,现给出下列四个条件:①Z1=Z5,②Z1=Z7,③Z2+Z3=180° , ?Z4=Z7>其中能判定a〃b的条件的序号是()A.①②?③④D?①<g)C?①③B分卷II⼆.填空题(注释)16、如图,ZACD=ZBCD, DE〃EC 交AC 于E,若ZACB = 60? , ZB = 74° ,则ZEDC= ____ ° =—0 , ZCDB如图,BA 〃DE, ZB = 150°, ZD=130° ■则ZC 的度数是= ____ 则 ZADB如图,DH 〃EG 〃BC, DC 〃EF,图中与Z1相等的⾓有20、如图,AB 〃CD,直线EF 分别交AB 、CD 于E. F, EG 平分ZBEF,若Zl = 72° ,则o __________ Z2 =个,它们分—相等的⾓有FCD,那么与Z45° =F=Zb ZEF 丄CD, EF 丄AB 、如图, 21?O 别是 ______________22、如图,AB 〃CD, AF 分别交 AB 、CD 于 A. C, CE 平分ZDCF, Zl = 100 ° ,则Z217、如图,AD 〃BC, ZA 是ZABC 的 2 倍,(1) ZA= 度:(2)若 BD 平分ZABC,B23、如图,Z1与Z4是 _______ ⾓,Z1与Z3是 _______ ⾓,Z3与Z5是 ______ ⾓,Z3与Z4_______ ⾓是〃 ____3= ____ ?则Z, 1=65° Z, 2=90。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(下)平行线与相交线测试2
班级姓名
一、填空:(每空2分,共26分)
1、如图1,是由两个相同的直角三角形ABC和FDE
拼成的,则图中与∠A相等的角有个,分别是;∠1与∠A
关系是;∠2与∠1的关系是;
2、右图所示,一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆
心角是度,你的根据是;
3、如图3,若∠1=∠2,则∥;根据;
4、如图3,若AD∥BC,则∠BAD+=1800,根据;
5、500角的余角是,补角是;
二、结合图形填空:(每空2分,共50分)
1、如图4,
(1) AD∥BC(已知)
∴∠B+=1800();
(2) ∠1=(已知)
∴∥();
2、如图5,已知∠1=1350,∠8=450,直线a与b平行吗?说明理由:(1) ∠1=1350 (已知)
∴∠2=
∠2=∠
∴a∥b()
(2) ∠8=450(已知)
∴∠6=∠8=450()
+=1800
∴a∥b ();
3、如图6:
(1) EF∥AB,(已知)
∴∠1= ();
(2) ∠3=(已知)
∴AB∥EF ();
(3) ∠A=(已知)
∴AC∥DF ();
(4) ∠2+=1800(已知)
∴DE∥BC ();
(5) AC∥DF(已知)
∴∠2=();
(6) EF∥AB(已知)
∴∠FCA+=1800();
三、已知∠α,用直尺和圆规作∠ABC,使∠ABC=∠α(10分)
如图7,AB∥CD,∠B=610,∠D=350,求∠1和∠A的度数(写出过程)(14分)
附加题:(每题10分)
1、如图8,AB∥CD,求∠A、∠E、∠C的关系,并说明
理由;
2、已知∠AOB及两边上的点M、N(如图)请用尺规分别过点M、N作OB、OA的平行线,不写作法,保留作图痕迹。