练习:数列求和及数列的简单应用
数列求和的八种重要方法与例题
典例3:
通项
1+2×3+3×32+4×33+…+n×3n-1=?
课前探究学习
课堂讲练互动
活页规范训练
错位相减法: 如果一个数列的各项是由一
个等差数列与一个等比数列对 应项乘积组成,此时求和可采 用错位相减法.
既{anbn}型
等差
等比
课前探究学习
课堂讲练互动
活页规范训练
典例4: 4、裂项相消
1+ 1 + 1 + … + 1 = ?
类型a1+an=a2+an-1=a3+an-2=……
课前探究学习
课堂讲练互动
活页规范训练
典例. 已知 lg(xy) 2 2.倒序相加法
S =lgxn +lg(xn-·1 y)+ ...+lg(x·1 yn-1)+lgyn,
(x > 0,y > 0) 求S .
S =lgxn +lg(xn-·1 y)+ ...+lgyn
1 2
a0 (4
a0 )
3 2
,
2°假设n=k时 ak1 ak 2 有成立, 令
f (x) 1 x(4 x) 2
f(x)在[0,2]上单调递增 f (ak1) f (ak ) f (2),
1 2
ak 1 (4
ak 1 )
1 2
ak
(4
ak
)
1 2
2
1×2 2×3
n(n + 1)
变式1:通项改为 1 = 1( 1 - 1 ) n(n + 2)
2022版高考数学一轮复习第7章第4讲数列求和数列的综合应用训练含解析
第七章 第4讲[A 级 基础达标]1.在数列{a n }中,a 1=1,a n +1=3a n +2n -1,则数列{a n }的前100项和S 100为( ) A .399-5 051 B .3100-5 051 C .3101-5 051 D .3102-5 051【答案】B2.(2020年唐山月考)已知等差数列{a n }的公差不为零,其前n 项和为S n ,若S 3,S 9,S 27成等比数列,则S 9S 3等于( )A .3B .6C .9D .12【答案】C3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400【答案】B4.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 016=( ) A .22 016-1 B .3·21 008-3 C .3·21 008-1 D .3·21 007-2 【答案】B5.(2020年广州天河区一模)一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .a (1+r )17B .ar [(1+r )17-(1+r )]C .a (1+r )18D .ar [(1+r )18-(1+r )]【答案】D 【解析】根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为a (1+r )17,同理,孩子在2周岁生日时存入的a 元产生的本利合计为a (1+r )16,孩子在3周岁生日时存入的a 元产生的本利合计为a (1+r )15,…,孩子在17周岁生日时存入的a 元产生的本利合计为a (1+r ),题目所求可以看成是以a (1+r )为首项,(1+r )为公比的等比数列的前17项的和,此时S =a (1+r )17+a (1+r )17+…+a (1+r )=a (1+r )[(1+r )17-1]1+r -1=ar [(1+r )18-(1+r )]. 6.(2020年池州模拟)正项等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,则公比q =________.【答案】3 【解析】q =1时,不合题意,q ≠1时,由S 3=a 2+10a 1,得a 1(1-q 3)1-q =a 1q+10a 1,所以1+q +q 2=q +10.又q >0,所以q =3.7.已知{a n }的前n 项和S n =n 2-9n -1,则|a 1|+|a 2|+…+|a 30|的值为________. 【答案】671 【解析】{a n }的前n 项和S n =n 2-9n -1,可得n =1时,a 1=S 1=-9;n ≥2时,a n =S n -S n -1=n 2-9n -1-(n -1)2+9(n -1)+1=2n -10,可得n ≤5时,a n <0,n ≥6时,a n >0,可得|a 1|+|a 2|+…+|a 30|=S 30-S 5-S 5=900-270-1-2×(25-45-1)=671.8.设f (x )=4x 4x +2,利用倒序相加法,可求得f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011的值为________. 【答案】5 【解析】当x 1+x 2=1时,f (x 1)+f (x 2)=4x 14x 1+2+4x 24x 2+2=2×4x 1+x 2+2×(4x 1+4x 2)4x 1+x 2+2×(4x 1+4x 2)+4=1.设S =f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫211+…+f ⎝⎛⎭⎫1011,倒序相加有2S =⎣⎡⎦⎤f ⎝⎛⎭⎫111+f ⎝⎛⎭⎫1011+⎣⎡⎦⎤f ⎝⎛⎭⎫211+f ⎝⎛⎭⎫911+…+⎣⎡⎦⎤f ⎝⎛⎭⎫1011+f ⎝⎛⎭⎫111=10,即S =5.9.(2020年大庆月考)已知正项等差数列{a n }的前n 项和为S n ,若S 3=12,且2a 1,a 2,a 3+1成等比数列.(1)求{a n }的通项公式及S n ;(2)记b n =S nn,求数列{b n }的前n 项和T n .解:(1)设正项等差数列{a n }的公差为d ,则d >0.因为S 3=12,即a 1+a 2+a 3=12, 所以3a 2=12,所以a 2=4.又2a 1,a 2,a 3+1成等比数列,所以 a 22=2a 1·(a 3+1),即42=2(4-d )·(4+d +1). 解得d =3或d =-4(舍去),所以a 1=a 2-d =1.故{a n }的通项公式为a n =a 1+(n -1)d =3n -2,且S n =n (a 1+a n )2=3n 2-n2.(2)由(1)知b n =S n n =3n -12,所以b n +1-b n =3(n +1)-12-3n -12=32,且b 1=3×1-12=1.所以数列{b n }是以b 1=1为首项,32为公差的等差数列.所以数列{b n }的前n 项和为T n =n (b 1+b n )2= 3n 2+n4.10.(2020年哈尔滨期末)设等差数列{a n }的前n 项和为S n ,若S 9=81,a 3+a 5=14. (1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,求{b n }的前n 项和为T n .解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧9a 1+9×82d =81,a 1+2d +a 1+4d =14,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+2(n -1)=2n -1. (2)由于a n =2n -1,所以b n =1a n a n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,所以T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.[B 级 能力提升]11.(2020年蚌埠模拟)数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为( )A .nn +2B .2n n +2 C .n n +1D .2n n +1【答案】B 【解析】a n =1+2+3+…+n n =12(n +1),1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,可得数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为4⎝⎛⎭⎫12-13+13-14+…+1n +1-1n +2=4⎝⎛⎭⎫12-1n +2=2n n +2.12.(多选)(2020年菏泽模拟)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2 019=a 2 020D .a 21+a 22+…+a 22 019a 2 019=a 2 020【答案】ABCD 【解析】对A ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8成立;对B ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,可得a 6=8,a 7=13,所以s 7=1+1+2+3+5+8+13=33成立;对C ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,…,a 2 019=a 2 020-a 2 018,可得a 1+a 3+a 5+…+a 2 019=a 2 020,故a 1+a 3+a 5+…+a 2 019是斐波那契数列中的第2 020项,C成立;对D ,斐波那契数列总有a n +2=a n +1+a n ,则a 21=a 2a 1,a 22=a 2(a 3-a 1)=a 2a 3-a 2a 1,a 23=a 3(a 4-a 2)=a 3a 4-a 3a 2,…,a 22 018=a 2 018a 2 019-a 2 018a 2 017,a 22 019=a 2 019a 2 020-a 2 019a 2 018.所以a 21+a 22+…+a 22 019=a 2 019a 2 020,D 成立.故选ABCD .13.在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n(n ≥2),若数列b n =(-1)n ·2n +1S n,则数列{b n }的前2 020项和为________.【答案】-2 0202 021 【解析】在正项数列{a n }中,a 1=2,其前n 项和S n 满足S n +S n -1=12a 2n (n ≥2),可得S n -1+S n -2=12a 2n -1,相减可得a n +a n -1=12a 2n -12a 2n -1,化为a n -a n -1=2.n =2时,2+2+a 2=12a 22,可得a 2=4,则a n =2n ,S n =n (n +1),b n =(-1)n ·2n +1S n =(-1)nn +n +1n (n +1)=(-1)n ⎝⎛⎭⎫1n +1n +1.可得数列{b n }的前2 020项和为-⎝⎛⎭⎫1+12+12+13+…-12 019-12 020+12 020+12 021=-1+12 021=-2 0202 021.14.(一题两空)(2020年北京模拟)已知集合A ={x |x =a 3×30+a 2×3-1+a 1×3-2+a 0×3-3},其中a k ∈{0,1,2},k =0,1,2,3,将集合A 中的元素从小到大排列得到数列{b n },设{b n }的前n 项和为S n ,则b 3=________,S 15=________.【答案】19 28027 【解析】由题意可知b 3=0×30+0×3-1+1×3-2+0×3-3=19.a 0,a 1,a 2,a 3各有3种取法(均可取0,1,2).在前15项中,a 0,a 1,a 2,a 3全部为0,有1个数值;只有1个1,其余取0,共有4个数值;2个取1,2个取0,共有6个数值;3个取1,1个取0,共有4个数值.此时集合A 中,元素从小到大排列得到数列恰好是15个,而且a 0,a 1,a 2,a 3各取1的次数都是7次,由分类计数原理得集合A 中所有元素之和S 15=7×(30+3-1+3-2+3-3)=28027. 15.(2020年韶关期末)已知等差数列{a n }的前n 项和为S n ,且a 2=3,S 6=36. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =1a 2n +4n -2(n ∈N*),求数列{bn }的前n 项和T n .【答案】解:(1)设{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1+d =3,S 6=6a 1+6×52d =36,解得⎩⎪⎨⎪⎧a 1=1,d =2,所以a n =1+2(n -1)=2n -1.(2)由(1)得,数列{b n }满足b n =1a 2n +4n -2=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1,则T n =12⎝⎛ 1-13+13-15+…+12n -1-⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n2n +1.16.(2020年杭州模拟)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=30,2S 2是3S 1和S 3的等差中项.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =1+log 3a na n,求数列{b n }前n 项和T n .解:(1)设等比数列{a n }的公比为q ,由a 1+a 3=30,2S 2是3S 1和S 3的等差中项,可得a 1+a 1q 2=30,4S 2=3S 1+S 3,即有4(a 1+a 1q )=3a 1+a 1+a 1q +a 1q 2,解得a 1=q =3,则a n =3n (n∈N *).(2)b n =1+log 3a na n=1+log 33n3n=(2n +1)·⎝⎛⎭⎫13n , 前n 项和T n =3×13+5×19+7×127+…+(2n +1)·⎝⎛⎭⎫13n , 13T n =3×19+5×127+7×181+…+(2n +1)·⎝⎛⎭⎫13n +1, 相减可得23T n =1+2⎣⎡⎦⎤19+127+…+⎝⎛⎭⎫13n -(2n +1)·⎝⎛⎭⎫13n +1=1+2·19⎝⎛⎭⎫1-13n -11-13-(2n +1)·⎝⎛⎭⎫13n +1,化简可得T n =2-(n +2)·⎝⎛⎭⎫13n . [C 级 创新突破]17.(2020年南通模拟)定义数列{a n }:先给出a 1=1,接着复制该项,再添加1的后继数2,于是a 2=1,a 3=2,接下来再复制前面所有项,之后再添加2的后继数3,如此继续(1,1,2,1,1,2,3,1,1,2,1,1,2,3,4,…),设S n 是a n 的前n 项和,则S 2 020=________.【答案】3 990 【解析】由数列{a n }的构造方法可知a 1=1,a 3=2,a 7=3,a 15=4,可得a 2n -1=n .由于数表的前n 行共有2n -1 个数,于是,先计算S 2n -1.在前2n -1个数中,共有1个n,2个n -1,22个n -2,… ,2n -k 个k , (2)-1个1,因此S 2n -1 =n ×1+(n -1)×2+…+k ×2n -k +…+2×2n -2+1×2n -1,则2S 2n -1=n ×2+(n -1)×22+…+k ×2n-k +1+…+2×2n -1+1×2n ,两式相减,得S 2n -1=n +2+22+…+2n -1+2n =2n +1-n -2.所以S 2 020=S 210-1+S 997=S 210-1+S 29-1+S 486=…=S 210-1+S 29-1+…+S 25-1+S 10=(211-12)+(210-11)+(29-10)+(28-9)+(27-8)+(26-7)+15=3 990.18.(2020年邢台模拟)设数列{a n }是公差为2的等差数列,数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)·b n +1.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n b n }的前n 项和S n ;(3)设c n =a nlog 2b n +1,试问是否存在正整数s ,t (s ≠t ),使c 3,c s ,c t 成等差数列?若存在,求出s ,t 的值;若不存在,请说明理由.解:(1)数列{b n }满足b 1=1,b 2=2,a n b n +b n =(n +1)b n +1. 当n =1时,a 1b 1+b 1=2b 2,解得a 1=3.所以a n =3+2(n -1)=2n +1.由于a n b n +b n =(n +1)b n +1,所以(2n +2)b n =(n +1)b n +1,整理得b n +1b n =2(常数).所以b n =1·2n -1=2n-1.(2)由于a n =2n +1,b n =2n -1, 所以a n b n =(2n +1)·2n-1.则S n =3·20+5·21+7·22+…+(2n +1)·2n -1①, 2S n =3·21+5·22+7·23+…+(2n +1)·2n ②,由①-②得,-S n =2(1+2+…+2n -1)+1-(2n +1)·2n ,整理得S n =(2n -1)·2n +1. (3)根据(1)得c n =a n log 2b n +1=1n+2.假设存在正整数s 和t ,使c 3,c s ,c t 成等差数列, 所以2s +4=13+2+1t +2,整理得2s =13+1t ,即6t =st +3s ,整理得s =6-18t +3,当t =s =3时,与s ≠t 矛盾,故舍去. 当t =6时,s =4,符合题意; 当t =15,s =5时,符合题意.。
数列求和练习题
数列求与问题例1.求与:(1))()2()1(2n a a a n -++-+- (2))12)(12(1531311+-++⨯+⨯n n (3))1(32112≠++++-x nx x x n例2.在等差数列{}n a 中,11a =,前n 项与n S 满足条件242,1,2,1n n S n n S n +==+,(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)记(0)nan n b a p p =>,求数列{}n b 的前n 项与n T 。
例3.正项数列}{n a 的前n 项与为n S ,且.12+=n n a S (公差为2) (1)求数列}{n a 的通项公式; (2)设.21:,}{,11<⋅=+n n n n n nT T n b a a b 求证项和为的前数列四、练习题:1.数列}{n a 的通项公式是)(11+∈++=N n n n a n ,若它的前n 项与为10,则其项数n 为A .11B .99C .120D .1212.数列 ,211,,3211,211,1n ++++++的前n 项与为 A .122+n n B .12+n n C .12++n n D .12+n n3.数列}{n a 的通项是14-=n a n ,na a ab nn +++= 21,则数列}{n b 的的前n 项与为4.已知数列}{n a 的前n项与为142+-=n n S n ,则||||||||10321a a a a ++++ 的值是5.设221)(+=x x f ,利用课本中推导等差数列前n 项与公式的方法,可求)0()4()5(f f f ++-+- )6()5(f f ++的值为A .23B .2C .22D .22 6.22222212979899100-++-+- 的值是 7.数列 ,21)12(,,815,413,211n n +-的前n 项与为n S ,则=n S 8.在等比数列}{n a 中,1221-=+++n n a a a ,则=+++22221n a a a 9.数列2211,(12),(122),,(1222),n -+++++++的通项公式n a = ,前n 项与n S = .10.若数列{}n a 满足 12a =,1(1)2n n na n a +-+=,则数列{}n a 的通项公式n a =___13.已知数列}{n a 是等差数列,其前n 项与为.621,33=⋅=S a S n (I )求数列}{n a 的通项公式; (II )求与:nS S S 11121+++ . 6,1214.设数列}{n a 的前n 项与为22n S n =,}{n b 为等比数列,且.)(,112211b a a b b a =-=(Ⅰ)求数列}{n a 与}{n b 的通项公式; (Ⅱ)设nnnb ac =,求数列}{n c 的前n 项与n T .15. 设数列{}n a 的前n 项与为n S ,且对任意正整数n ,4096n n a S +=。
数列求和公式及其应用
数列求和公式及其应用随着人类社会的不断发展,数学在我们的生活中扮演着越来越重要的角色。
数学中的数列是一个非常基本的概念,它在很多数学问题中都有着广泛的应用。
其中,求和公式是一个非常重要的数列求解方法。
本文将会介绍数列求和公式的定义、性质以及其在实际生活中的应用。
一、数列求和公式的定义及性质首先,我们来了解一下数列求和公式的定义。
数列求和是将数列中的所有项相加所得的结果。
而数列求和公式则是一种能够用于快速计算数列和的公式。
在数学中,数列求和公式分为两种:等差数列求和公式和等比数列求和公式。
1. 等差数列求和公式等差数列的定义为:某个数列中相邻两个数之差都相等,这个差被称为等差数列的公差。
对于等差数列来说,我们可以利用下面的等差数列求和公式来计算其总和:S(n) = (a1 + an)n/2其中,S(n)表示等差数列的前n项和,a1为等差数列的首项,an为等差数列的第n项。
2. 等比数列求和公式等比数列的定义为:某个数列中相邻两个数之比都相等,这个比被称为等比数列的公比。
对于等比数列来说,我们可以利用下面的等比数列求和公式来计算其总和:S(n) = a1(1- qn)/ (1 - q)其中,S(n)表示等比数列的前n项和,a1为等比数列的首项,q 为等比数列的公比。
除了以上两条公式,数列求和公式还具有一些性质:1. 数列中头尾项的和等于相邻两项的和2. 如果一个等差数列的每一项都加上一个相同的值,那么其总和也会增加相应的值。
3. 如果一个等比数列的每一项都乘以一个相同的值,那么其总和也会增加相应的值。
以上性质和公式可以帮助我们更好地理解和运用数列求和公式。
二、数列求和公式在实际生活中的应用数列求和公式在实际生活中的应用非常广泛。
例如,我们可以利用数列求和公式来计算每天的支出、工作中的进度、财产的增值等等。
以每天的支出为例,假设我们每天的支出都只是一个等差数列,其中首项a1为10元,公差d为5元。
如果我们想要计算前30天的支出总和,我们只需要利用等差数列求和公式进行计算。
07第一部分 板块二 专题二 数 列 第2讲 数列求和及数列的简单应用(大题)
本课结束
① ②
=2+2×411--22n-1-(2n-1)·2n+1=-6+2n+2-(2n-1)·2n+1=-6+2n+1(3-2n),
∴Tn=6+(2n-3)·2n+1.
2
PART TWO
真题体验 押题预测
真题体验 (2019·全国Ⅰ,文,18)记Sn为等差数列{an}的前n项和.已知S9=-a5. (1)若a3=4,求{an}的通项公式;
(2)求数列{an}的前n项和Sn.
解 由(1)知,当an=5时,Sn=5n. 当 an=2n+1 时,a1=3,则 Sn=n3+22n+1=n2+2n(n∈N*).
热点二 数列的证明问题
判断数列是否为等差或等比数列的策略 (1)将所给的关系式进行变形、转化,以便利用等差数列和等比数列的定义进行 判断; (2)若要判断一个数列不是等差(等比)数列,则只需说明某连续三项(如前三项) 不是等差(等比)数列即可.
=141-n+1 1=4nn+1.
跟踪演练3 (2019·龙岩模拟)已知等差数列{an}的前n项和为Sn,且a2=3,S6=36. (1)求数列{an}的通项公式;
解 ∵a2=3,∴a1+d=3, ∵S6=36,∴6a1+15d=36, 则a1=1,d=2, ∴an=2n-1.
(2)若数列{bn}满足bn=2n·an,n∈N*,求数列{bn}的前n项和Tn.
板块二 专题二 数 列
内容索引
NEIRONGSUOYIN
热点分类突破 真题押题精练
1
PART ONE
热点一 等差、等比数列基本量的计算 热点二 数列的证明问题 热点三 数列的求和问题
热点一 等差、等比数列基本量的计算
解决有关等差数列、等比数列问题,要立足于两个数列的概念,设出相应基本量, 充分利用通项公式、求和公式、数列的性质确定基本量.解决综合问题的关键在于 审清题目,弄懂来龙去脉,揭示问题的内在联系和隐含条件,形成解题策略.
数列求和专题(必考必练,方法全面,有答案)
数列求和专题一.公式法(已知数列是等差或等比数列可以直接使用等差或等比的求和公式求和) 二.分组求和法若数列的通项是若干项的代数和,可将其分成几部分来求.例1:求数列11111246248162n n ++L ,,,,,…的前n 项和n S .- 23411111111(2462)(1)222222n n n S n n n ++⎛⎫=+++++++++=++- ⎪⎝⎭L L .例2: 求数列5,55,555,…,55…5 的前n 项和S n解: 因为55…5=)110(95-n 所以 S n =5+55+555+...+55 (5)=[])110()110()110(952-+⋅⋅⋅+-+-n=⎥⎦⎤⎢⎣⎡---n n 110)110(1095 =815095108150--⨯n n 练习:、求数列11111,2,3,4,392781L 的前n 项和。
解:211223nn n ++-⋅三.错位相减法这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.例: 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………(0x ≠)解: 当x=1时,23121315171(21)1135(21)n n S n n n -=+∙+∙+∙+⋅⋅⋅+-∙=++++-=当x ≠1时, 132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………. ① ①式两边同乘以x 得n xS = 231135(23)(21)n n x x x n x n x -+++⋅⋅⋅+-+-………② (设制错位)①-②得 n n n x n xx x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+n练习: 1:求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n 前n 项的和. 1224-+-=n n n S2. 已知数列.}{,)109()1(n n nn S n a n a 项和的前求⨯+=四.裂项相消法 常见的拆项公式有:1()n n k =+111()k n n k -+=1k,1(21)(21)n n =-+111()22121n n --+,等. 例1:求数列311⨯,421⨯,531⨯,…,)2(1+n n ,…的前n 项和S. 解:∵)2(1+n n =211(21+-n n )S n =⎥⎦⎤⎢⎣⎡+-+⋅⋅⋅+-+-)211()4121()311(21n n =)2111211(21+-+--n n =42122143+-+-n n 例2:设9)(2+=x x f ,(1)若;),2(),(,111n n n u n u f u u 求≥==-(2)若;}{,,3,2,1,11n n k k k S n a k u u a 项和的前求数列 =+=+解:(1)}{),2(9122121n n nu n u u u ∴⎩⎨⎧≥+==- 是公差为9的等差数列,,89,0,892-=∴>-=∴n u u n u n n n(2)),8919(9119891--+=++-=k k k k a k);119(91)]8919()1019()110[(91-+=--+++-+-=∴n n n S n练习: 1、 求数列2112+,2124+,2136+,2148+,…的前n 项和n S .2、求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.五.倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.例1:求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5例2: 求222222222222123101102938101++++++++的和. 解:设222222222222123101102938101S =++++++++ 则222222222222109811012938101S =++++++++.两式相加,得 2111105S S =+++=∴=,.练习:设221)(xx x f +=,求:⑴)4()3()2()()()(111f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++ 【解题思路】观察)(x f 及⎪⎭⎫ ⎝⎛x f 1的特点,发现1)1()(=+xf x f 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .例6: 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ cos(180)cos n n -=- (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0练习:已知:n S n n ⋅-++-+-+-=+1)1(654321 .求n S .(⎪⎪⎩⎪⎪⎨⎧-+=)(2)(21为正偶数为正奇数n n n n S n )。
11-数列求和及数列的简单应用
递推数列
基本特征是指数增长的同时又均匀减少。如年收入增长率为 ,每年年底要拿出 (常数)作为下年度的开销,即数列 满足 。
注:表中 均为正整数
数列求和及其数列的简单应用
数列求和及数列的简单应用
常用求和公式
等差数列
,特别 。
等比数列
,特别 。
自然数
平方和
。
自然数
立方和
。
常用求和方法
公式法
如 。
常用裂项方法: ;
;
;
。
分组法
如 , 。
裂项法
如 。ቤተ መጻሕፍቲ ባይዱ
错位
相减法
如 。
倒序
相加法
如 。
数列模型
等差数列
基本特征是均匀增加或者减少。
等比数列
基本特征是指数增长,常见的是增产率问题、存款复利问题。
(完整版)数列求和经典例题
数列通项的方法⑴利用观察法求数列的通项.⑵利用公式法求数列的通项:①⎩⎨⎧≥-==-)2()111n S S n S a n nn (;②{}n a 等差、等比数列{}n a 公式。
⑶应用迭加(迭乘、迭代)法求数列的通项:①)(1n f a a n n +=+;②).(1n f a a n n =+ ⑶构造等差、等比数列求通项:① q pa a n n +=+1;②n n n q pa a +=+1;③)(1n f pa a n n +=+;④n n n a q a p a ⋅+⋅=++12.[示例]已知下列各数列}{n a 的前n 项和n S 的公式为()*223N n n n S n ∈-=,求}{n a 的通项公式。
题型一 利用公式法求通项[例]数列{a n }的前n 项和记为S n ,a 1=1,a n +1=2S n +1(n ≥1). (1)求{a n }的通项公式;(2)等差数列{b n }的各项为正数,前n 项和为T n ,且T 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列,求T n 。
[练3]数列{a n }是公差大于零的等差数列,2a ,5a 是方程2x 02712=+-x 的两根.数列{}n b 的前n 项和为n T ,且n T 211-=n b ()*∈N n ,求数列{}n a ,{}n b 的通项公式。
[例]已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+,,求}{n a 的通项公式,并求100a 的值.题型二 应用迭加(迭乘、迭代)法求通项[练1]数列{}n a 中,)(,111n n n a a n a a -==+,则数列{}n a 的通项=n a ( ).A 12-n .B 2n .C 1)1(-+n nn .D n[练2]已知n S 为数列{}n a 的前n 项和,11=a ,n n a n S ⋅=2,求数列{}n a 的通项公式。
数列求和 经典练习题(含答案解析)
1.在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和.解法一 由a 6+a 9+a 12+a 15=34 得4a 1+38d =34=20a 1+190d=5(4a 1+38d)=5×34=170由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17 S 20=1702.已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得由②,有a 1=-2-4d ,代入①,有d 2=4 再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180 解法二 由等差数列的性质可得: a 4+a 6=a 3+a 7 即a 3+a 7=-4 又a 3·a 7=-12,由韦达定理可知: a 3,a 7是方程x 2+4x -12=0的二根 解方程可得x 1=-6,x 2=2又=+×S 20a d 20120192解法二 S =(a +a )202=10(a a )20120120×+(a 2d)(a bd)12 a 3d a 5d = 41111++=-①+++-②⎧⎨⎩∵ d >0 ∴{a n }是递增数列 ∴a 3=-6,a 7=23. 等差数列{a n }的前n 项和S n =m ,前m 项和S m =n(m >n),求前m +n 项和S m+n .解法一 设{a n }的公差d 按题意,则有=-(m +n)解法二 设S x =Ax 2+Bx(x ∈N)①-②,得A(m 2-n 2)+B(m -n)=n -m ∵m ≠n ∴ A(m +n)+B=-1 故A(m +n)2+B(m +n)=-(m +n) 即S m+n =-(m +n)4.设x ≠y ,且两数列x ,a 1,a 2,a 3,y 和b 1,x ,d =a =2a 10S 1807120--a 373,=-,=S na d m S ma d n (m n)a d =n mn 1m11=+=①=+=②①-②,得-·+·-n n m m m n m n ()()()()--⎧⎨⎪⎪⎩⎪⎪-+-121212即+-∴··a d =11m n S m n a m n m n d m n a m n d m n++=++++-=+++-+12121211()()()()()Am Bm n An Bn m22+=①+=②⎧⎨⎪⎩⎪b b y b 234,,,均为等差数列,求.b b a a 4321--5.在等差数列{a n }中,设前m 项和为S m ,前n 项和为S n ,且S m =S n ,m ≠n ,求S m+n .且S m =S n ,m ≠n∴S m+n =06. 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.∵a 1=25,S 17=S 9 解得d =-2∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等分析解 d =y x 51(1)=y x52(2)可采用=由a a m na ab b m n ----------21433264(2)(1)÷,得b b a a 432183--=解 S (m n)a (m n)(m n 1)d(m n)[a (m n 1)d]m+n 11∵=++++-=+++-1212∴+-=+-整理得-+-+-ma m(m 1)d na n(n 1)d(m n)a (m n)(m n 1)=011112122d即-++-由≠,知++-=(m n)[a (m n 1)d]=0m n a (m n 1)d 0111212根据题意:+×,=+×S =17a d S 9a d 1719117162982∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∵a 1=25,S 9=S 17∴a n =25+(n -1)(-2)=-2n +27即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系. 由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0 而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14 ∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0 ∴S 13=169最大.解法四 根据等差数列前n 项和的函数图像,确定取最大值时的n . ∵{a n }是等差数列 ∴可设S n =An 2+Bn二次函数y=Ax 2+Bx 的图像过原点,如图3.2-1所示∵S 9=S 17,∴取n=13时,S 13=169最大差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩∴×+××+×,解得-9252d =1725d d =29817162∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩∴对称轴 x =9+172=137.求数列的通项公式:(1){a n }中,a 1=2,a n+1=3a n +2(2){a n }中,a 1=2,a 2=5,且a n+2-3a n+1+2a n =0 思路:转化为等比数列.∴{a n +1}是等比数列 ∴a n +1=3·3n-1 ∴a n =3n -1∴{a n+1-a n }是等比数列,即 a n+1-a n =(a 2-a 1)·2n-1=3·2n-1再注意到a 2-a 1=3,a 3-a 2=3·21,a 4-a 3=3·22,…,a n -a n-1=3·2n-2,这些等式相加,即可以得到+2说明 解题的关键是发现一个等比数列,即化生疏为已知.(1)中发现{a n +1}是等比数列,(2)中发现{a n+1-a n }是等比数列,这也是通常说的化归思想的一种体现.8. 三个数成等比数列,若第二个数加4就成等差数列,再把这个等差数列的第3项加32又成等比数列,求这三个数.解法一 按等比数列设三个数,设原数列为a ,aq ,aq 2 由已知:a ,aq +4,aq 2成等差数列 即:2(aq +4)=a +aq 2①a ,aq +4,aq 2+32成等比数列 即:(aq +4)2=a(aq 2+32)解 (1)a =3a 2a 1=3(a 1)n+1n n+1n +++⇒(2)a 3a 2a =0a a =2(a a )n+2n+1n n+2n+1n+1n -+--⇒a =3[1222]=3=3(21)n 2n-2n 1+++…+·-21211n ----⇒aq 2=4a +②解法二 按等差数列设三个数,设原数列为b -d ,b -4,b +d由已知:三个数成等比数列 即:(b -4)2=(b -d)(b +d)b -d ,b ,b +d +32成等比数列 即b 2=(b -d)(b +d +32)解法三 任意设三个未知数,设原数列为a 1,a 2,a 3 由已知:a 1,a 2,a 3成等比数列a 1,a 2+4,a 3成等差数列 得:2(a 2+4)=a 1+a 3②a 1,a 2+4,a 3+32成等比数列 得:(a 2+4)2=a 1(a 3+32)③①,②两式联立解得:或-∴这三数为:,,或,,.a =2q =3a =29q =52618⎧⎨⎩⎧⎨⎪⎩⎪-29109509⇒8b d =162-①⇒32b d 32d =02--②①、②两式联立,解得:或∴三数为,,或,,.b =269d =83b =10d =82618⎧⎨⎪⎪⎩⎪⎪⎧⎨⎩-29109509得:①a =a a 2213说明 将三个成等差数列的数设为a -d ,a ,a +d ;将三个成简化计算过程的作用.9.证 ∵S n =a 1+a 1q +a 1q 2+…+a 1q n-1 S 2n =S n +(a 1q n +a 1q n+1+…+a 1q 2n-1) =S n +q n (a 1+a 1q +…+a 1q n-1) =S n +q n S n =S n (1+q n )类似地,可得S 3n =S n (1+q n +q 2n )说明 本题直接运用前n 项和公式去解,也很容易.上边的解法,灵活地处理了S 2n 、S 3n 与S n 的关系.介绍它的用意在于让读者体会利用结合律、提取公因式等方法将某些解析式变形经常是解决数学问题的关键,并且变得好,则解法巧. 10.数列{a n }是等比数列,其中S n =48,S 2n =60,求S 3n .解法一 利用等比数列的前n 项和公式若q=1,则S n =na 1,即na 1=48,2na 1=96≠60,所以q ≠1①、②、③式联立,解得:或a =29a =109a =509a =2a =6a =18123123-⎧⎨⎪⎪⎪⎩⎪⎪⎪⎧⎨⎪⎩⎪等比数列的数设为,,或,,是一种常用技巧,可起到a aq aq (a aq)2aq++.S S =S (S S )n 22n 2n 2n 3n ∴++++S +S =S [S (1q )]=S (22q q )n 22n 2n 2n n 2n2n 2nS (S S )=S [S (1q )S (1q q )]=S (22q q )S S =S (S S )n 2n 3n n n n n n 2n n 2n 2nn 22n 2n 2n 3n +++++++∴++∵S =a (1q )1n 1n --q=S n (1+q n +q 2n )解法二 利用等比数列的性质:S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列 ∴ (60-48)2=48·(S 3n -60) ∴ S 3n =63. 解法三 取特殊值法取n=1,则S 1=a 1=48,S 2n =S 2=a 1+a 2=60 ∴ a 2=12∵ {a n }为等比数列S 3n =S 3=a 1+a 2+a 3=6311.已知数列{a n }中,S n 是它的前n 项和,并且S n+1=4a n +2(n ∈N*),a 1=1(1)设b n =a n+1-2a n (n ∈N*),求证:数列{b n }是等比数列;解 (1)∵ S n+1=4a n +2 S n+2=4a n+1+2S =a (1)a (1)(1+)1q 2n 11--=--=+q qq q S q nn n n n 211()∴q =14S =a (1q )1qn 3n 13n --=-++-a q q q qn n n 12111()()∴S =48(1+116)=633n +14∴ q =a a a =3213=14(2)c =a 2(n N*){c }n nnn 设∈,求证:数列是等差数列.两式相减,得S n+2-S n+1=4a n+1=4a n (n ∈N*) 即:a n+2=4a n+1-4a n变形,得a n+2-2a n+1=2(a n+1-2a n ) ∵ b n =a n+1-2a n (n ∈N*) ∴ b n+1=2b n由此可知,数列{b n }是公比为2的等比数列. 由S 2=a 1+a 2=4a 1+2,a 1=1 可得a 2=5,b 1=a 2-2a 1=3 ∴ b n =3·2n-1将b n =3·2n-1代入,得说明 利用题设的已知条件,通过合理的转换,将非等差、非等比数列转化为等差数列或等比数列来解决(2) c =a 2(n N*)c =b 2n nnn+1n n+1∵∈∴-=-=-++++c a a a a n n n n n n nn 11112222c c =34(n N*)n+1n -∈由此可知,数列是公差的等差数列,它的首项,故+-·即:{c }d =34c =a 2c =(n 1)C =34n 11n n =-12123414n。
数列求和(公式+例题)
1《数列求和》【知识要点】主要方法:1、基本公式法:(1)等差数列求和公式:()()11122n n n a a n n S na d +-==+(2)等比数列求和公式:()111,11,111n n n na q S a q a a qq qq =⎧⎪=-⎨-=≠⎪--⎩ (3)1123....(1)2n n n ++++=+ (4)()()2221121216n n n n +++=++(5)()23333112314n n n ++++=+⎡⎤⎣⎦2、错位相消法:给12n n S a a a =+++各边同乘以一个适当的数或式,然后把所得的等式和原等式相减,对应项相互抵消,最后得出前n 项和n S .一般适应于数列{}n n a b 的前n 项求和,其中{}n a 成等差数列,{}n b 成等比数列。
3、分组求和:把一个数列分成几个可以直接求和的数列,然后利用公式法求和。
4、拆项(裂项)求和:把一个数列的通项公式分成两项差的形式,相加过程中消去中间项,只剩下有限项再求和. 常见的拆项公式有:(1)若{}n a 是公差为d 的等差数列,则111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭; (2)()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭; (3)()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;(41a b=-;(51k=;(6)11,1,2nn n S n a S S n -=⎧=⎨-⎩≥5、倒序相加法:根据有些数列的特点,将其倒写后与原数列相加,以达到求和的目的。
【典例精析】例1、111112123123nS n=+++⋅⋅⋅++++++++例2、23123n nn S a a aa =++++例3、已知等差数列{}n a 的首项为1,前10项的和为145,求.242n a a a +++例4、求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值例5、求数列{n(n+1)(2n+1)}的前n 项和.例6、数列{a n }的前n 项和n 2n 21S 2n -=,数列{b n }满足nn n a 1a b +=。
数列求和练习题(基础、经典、好用)
数列求和一、选择题1.数列{1+2n -1}的前n 项和为( )A .1+2nB .2+2nC .n +2n -1D .n +2+2n2.(2013·清远模拟)已知数列{a n }的通项公式是a n =1n +n +1,若前n 项和为10,则项数n 为( )A .11B .99C .120D .1213.已知S n 为等差数列{a n }的前n 项和,若a 1=-2 012,S 2 0102 010-S 2 0042 004=6,则S 2 013等于( )A .2 011B .2 010C .0D .24.(2013·梅州质检)已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 013项的和等于( )A.3 0192 B .3 019 C .1 508 D .2 0135.若数列{a n }为等比数列,且a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为( )A .1-14nB .1-12n C.23(1-14n ) D.23(1-12n ) 二、填空题6.已知{a n }是公差为-2的等差数列,a 1=12,则|a 1|+|a 2|+|a 3|+…+|a 20|=________.7.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是________.8.设数列{x n }满足log a x n +1=1+log a x n (n ∈N +,a >0且a ≠1),且x 1+x 2+x 3+…+x 100=100,则x 101+x 102+x 103+…+x 200的值为________.三、解答题9.已知{a n }为等差数列,且a 3=-6,a 6=0.(1)求{a n }的通项公式;(2)若等比数列{b n }满足b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前n项和公式.10.已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =1a n ·a n +1,求数列{b n }的前n 项和T n .11.(2013·揭阳模拟)已知等差数列{a n }的前3项和为6,前8项和为-4.(1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n .解析及答案一、选择题1.【解析】 S n =n +1-2n1-2=n +2n -1. 【答案】 C2.【解析】 ∵a n =1n +n +1=n +1-n ,∴S n =a 1+a 2+…+a n=(2-1)+(3-2)+…+(n +1-n )=n +1-1.令n +1-1=10,得n =120.【答案】 C3.【解析】 设等差数列的公差为d ,则S n =na 1+n (n -1)2d , ∴S n n =-2 012+(n -1)·d 2, ∴数列{S n n }是以-2 012为首项,以d 2为公差的等差数列,由S 2 0102 010-S 2 0042 004=6得6×d 2=6,∴d =2.∴S 2 0132 013=-2 012+(2 013-1)×22=0,则S 2 013=0.【答案】 C4.【解析】 因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,…,即得a n =⎩⎪⎨⎪⎧12,n =2k -11,n =2k(k ∈N *). 故S 2 013=1 007×12+1 006×1=3 0192.【答案】 A5.【解析】 a n =2n -1,设b n =1a n a n +1=(12)2n -1, 则T n =b 1+b 2+b 3+…+b n=12+(12)3+…+(12)2n -1=23(1-14n ).【答案】 C二、填空题6.【解析】 由题意知,a n =12+(n -1)×(-2)=-2n +14, 令-2n +14≥0,得n ≤7,∴当n ≤7时,a n ≥0,当n >7时,a n <0,∴|a 1|+|a 2|+|a 3|+…+|a 20|=(a 1+a 2+…+a 7)-(a 8+a 9+…+a 20)=2S 7-S 20=2[7×12+7×62×(-2)]-[20×12+20×192×(-2)]=224.【答案】 2247.【解析】 f ′(x )=mx m -1+a =2x +1,∴a =1,m =2.∴f (x )=x (x +1),因此1f (n )=1n (n +1)=1n -1n +1, 用裂项法求和得S n =n n +1. 【答案】 n n +18.【解析】 log a x n +1=1+log a x n ,得x n +1=ax n 且a >0,a ≠1,x n >0, ∴数列{x n }是公比为a 的等比数列,∴x 101+x 102+x 103+…+x 200=x 1a 100+x 2a 100+x 3a 100+…+x 100a 100=100a 100.【答案】 100a 100三、解答题9.【解】 (1)设等差数列{a n }的公差为d .因为a 3=-6,a 6=0,所以⎩⎨⎧a 1+2d =-6,a 1+5d =0,解得a 1=-10,d =2. 所以a n =-10+(n -1)·2=2n -12.(2)设等比数列{b n }的公比为q . 因为b 2=a 1+a 2+a 3=-24,b 1=-8, 所以-8q =-24,即q =3.所以{b n }的前n 项和公式为S n =b 1(1-q n )1-q=4(1-3n ). 10.【解】 (1)法一 设等差数列{a n }的公差为d ,首项为a 1, 在a 2n =S 2n -1中,令n =1,n =2,得⎩⎨⎧a 21=S 1,a 22=S 3,即⎩⎨⎧a 21=a 1,(a 1+d )2=3a 1+3d , 解得a 1=1,d =2,∴a n =2n -1.法二 ∵{a n }是等差数列,∴a 1+a 2n -12=a n , ∴S 2n -1=a 1+a 2n -12(2n -1)=(2n -1)a n . 由a 2n =S 2n -1,得a 2n =(2n -1)a n ,又∵a n ≠0,∴a n =2n -1.(2)∵b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), ∴T n =12(1-13+13-15+…+12n -1-12n +1)=n 2n +1. 11.【解】 (1)设{a n }的公差为d .由已知得⎩⎨⎧3a 1+3d =6,8a 1+28d =-4. 解得a 1=3,d =-1.故a n =3-(n -1)=4-n .(2)由(1)可得,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1.若q ≠1,将上式两边同乘以q , qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n . 两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1=nq n -q n -1q -1=nq n +1-(n +1)q n +1q -1, 于是,S n =nq n +1-(n +1)q n +1(q -1)2. 若q =1,则S n =1+2+3+…+n =n (n +1)2, 所以,S n =⎩⎪⎨⎪⎧n (n +1)2,(q =1),nq n +1-(n +1)q n +1(q -1)2,(q ≠1).。
数列求和及数列的综合应用知识点讲解+例题讲解(含解析)
数列求和及数列的综合应用一、知识梳理 1.特殊数列的求和公式 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系. 小结:1.1+2+3+4+…+n =n (n +1)2. 2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的三种变形 (1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1.(3)1n +n +1=n +1-n .二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q.( ) (2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( )(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )(4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( ) 解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解. 答案 (1)√ (2)√ (3)× (4)√2.数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n为( ) A.2 018 B.2 019 C.2 020D.2 021解析 a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2019. 答案 B3.等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________.解析 由a 1=27,a 9=1243知,1243=27·q 8, 又由q >0,解得q =13,所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1361-13=3649.答案 36494.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A.9B.15C.18D.30解析 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18. 答案 C5.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________. 解析 由题意知T n -S n =b 1-a 1+b 2-a 2+…+b n -a n =n +2n +1-2, 又S n +T n =2n +1+n 2-2,所以2T n =T n -S n +S n +T n =2n +2+n (n +1)-4. 答案 2n +2+n (n +1)-46.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝ ⎛⎭⎪⎫1n +…+f ⎝⎛⎭⎪⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.解析 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝ ⎛⎭⎪⎫1n +f ⎝⎛⎭⎪⎫n -1n =4,所以2a n =[f (0)+f (1)]+⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫1n +f ⎝ ⎛⎭⎪⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 答案 a n =2(n +1)考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小.解 (1)设等比数列{a n }的公比为q , ∵a 1,a 2,a 3-1成等差数列, ∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2,∴a n =a 1q n -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1) =[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1) =1+(2n -1)2·n +1-2n 1-2=n 2+2n-1. ∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n .规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n ,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和. 【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n . 解 (1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5, ∴3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n .考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n .解 (1)∵a 2=8,S n =a n +12-n -1, ∴a 1=S 1=a 22-2=2,当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝⎛⎭⎪⎫a n 2-n ,即a n +1=3a n +2,又a 2=8=3a 1+2, ∴a n +1=3a n +2,n ∈N *, ∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3, ∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3n a n a n +1=2×3n (3n -1)(3n +1-1)=13n -1-13n +1-1.∴数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和 T n =⎝ ⎛⎭⎪⎫13-1-132-1+⎝ ⎛⎭⎪⎫132-1-133-1+…+⎝ ⎛⎭⎪⎫13n -1-13n +1-1=12-13n +1-1.【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2), ∴b n =1n (n +2)=12⎝ ⎛⎭⎪⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2=12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2 =34-12⎝ ⎛⎭⎪⎫1n +1+1n +2.考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n . 解 (1)设{a n }的公比为q ,由题意知⎩⎪⎨⎪⎧a 1(1+q )=6,a 21q =a 1q 2,又a n >0,解得⎩⎪⎨⎪⎧a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1, 又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1. 令c n =b na n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n ,又12T n =322+523+724+…+2n -12n +2n +12n +1,两式相减得12T n =32+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .【训练3】 已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1. (1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,则d >0,由a 1=1,a 2=1+d ,a 3=1+2d 分别加上1,1,3后成等比数列,得(2+d )2=2(4+2d ), 解得d =2(舍负),所以a n =1+(n -1)×2=2n -1.又因为a n +2log 2b n =-1,所以log 2b n =-n ,则b n =12n . (2)由(1)知a n ·b n =(2n -1)·12n , 则T n =121+322+523+…+2n -12n ,①12T n =122+323+524+…+2n -12n +1,② 由①-②,得 12T n =12+2×⎝ ⎛⎭⎪⎫122+123+124+…+12n -2n -12n +1. ∴12T n =12+2×14⎝ ⎛⎭⎪⎫1-12n -11-12-2n -12n +1,∴T n =1+2-22n -1-2n -12n =3-4+2n -12n =3-3+2n 2n .考点四 数列的综合应用【例4】 某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?解 设该学生工作n 天,每天领工资a n 元,共领工资S n 元,则第一种方案a n (1)=38,S n (1)=38n ;第二种方案a n (2)=4n ,S n (2)=4(1+2+3+…+n )=2n 2+2n ;第三种方案a n (3)=0.4×2n -1,S n (3)=0.4(1-2n )1-2=0.4(2n -1). 令S n (1)≥S n (2),即38n ≥2n 2+2n ,解得n ≤18,即小于或等于18天时,第一种方案比第二种方案报酬高(18天时一样高).令S n (1)≥S n (3),即38n ≥0.4×(2n -1),利用计算器计算得小于或等于9天时,第一种方案报酬高, 所以少于10天时,选择第一种方案.比较第二、第三种方案,S 10(2)=220,S 10(3)=409.2,S 10(3)>S 10(2),…,S n (3)>S n (2).所以等于或多于10天时,选择第三种方案.【训练4】 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n . 解 (1)设二次函数f (x )=ax 2+bx (a ≠0),则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2,所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上,所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5;当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式, 所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝ ⎛⎭⎪⎫16n -5-16n +1, 故T n =12⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫1-17+⎝ ⎛⎭⎪⎫17-113+…+⎝ ⎛⎭⎪⎫16n -5-16n +1=12⎝ ⎛⎭⎪⎫1-16n +1=3n 6n +1.三、课后练习1.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则( )A.a n ≥2n +1B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -1解析 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2, ∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1),∴a n -a 1≥2(n -1),∴a n ≥2n -1,∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n (1+2n -1)2=n 2. 答案 B2.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N的大小关系是()A.ω>NB.ω<NC.ω=ND.不确定解析投入资金逐月值构成等比数列{b n},利润逐月值构成等差数列{a n},等比数列{b n}可以看成关于n的指数式函数,它是凹函数,等差数列{a n}可以看成关于n的一次式函数.由于a1=b1,a12=b12,相当于图象有两个交点,且两交点间指数式函数图象在一次函数图象下方,所以全年的总利润ω=a1+a2+…+a12比总投资N=b1+b2+…+b12大,故选A.答案A3.已知数列{a n}中,a n=-4n+5,等比数列{b n}的公比q满足q=a n-a n-1(n≥2)且b1=a2,则|b1|+|b2|+|b3|+…+|b n|=________.解析由已知得b1=a2=-3,q=-4,∴b n=(-3)×(-4)n-1,∴|b n|=3×4n-1,即{|b n|}是以3为首项,4为公比的等比数列,∴|b1|+|b2|+…+|b n|=3(1-4n)1-4=4n-1.答案4n-14.(2019·潍坊调研)已知数列{a n}的前n项和为S n,a1=5,nS n+1-(n+1)S n=n2+n.(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S n n =1, 又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列. (2)解 由(1)可知S n n =5+(n -1)=n +4,所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3. 又a 1=5也符合上式,所以a n =2n +3(n ∈N *), 所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,① 2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,② 所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1)=(2n +3)2n +1-10-23(1-2n -1)1-2=(2n +3)2n +1-10-(2n +2-8) =(2n +1)2n +1-2.。
数列求和的七种方法及例题
数列求和的七种方法及例题
1、直接求和法:将数列中所有的项都加起来,累加求和。
例如:求 1+2+3+4+5=15
2、等差数列求和法:只适用于等差数列,将首项和末项相加,乘以项数,再除以2。
例如:求 1+3+5+7+9=25
3、等比数列求和法:只适用于等比数列,求出公比,然后用求和公式求和。
例如:求 3+6+12+24=45
4、分而治之法:将大的问题分解成小的问题,再求出小的问题的答案之和为大的问题的答案。
例如:求
1+2+3+4+5=15
5、求差法:将数列中连续的相邻两项差值求出,然后把差值相加求和。
例如:求 1+2+3+4+5=15
6、高阶法:当数列中有多项时,可以把它们分成高阶和低阶两组,先求高阶项和低阶项的和,在相加求和。
例如:求 1+2+3+4+5=15
7、循环求和法:将数列中的每一项都分别相加,然后把结果累加求和。
例如:求 1+2+3+4+5=15。
数列的求和公式与应用
数列的求和公式与应用数列在数学中有着重要的地位,是一种按照一定规则排列的一系列数值的集合。
从古至今,人们一直在探索数列的性质和规律,并寻找数列求和的公式和应用。
本文将介绍数列的求和公式及其在实际中的应用。
一、等差数列的求和公式及应用等差数列是一种按照相同的公差递增或递减的数列。
对于等差数列而言,求和公式是非常重要的。
对于首项为a1,公差为d的等差数列,求和公式为Sn = (n/2)(2a1 + (n-1)d),其中Sn代表前n项的和。
等差数列求和公式的应用非常广泛。
例如,我们可以通过等差数列的求和公式来解决实际生活中的问题。
比如,假设小明每天存银行100元,第一天存了100元,第二天存了200元,以此类推。
如果小明一共存了30天,我们可以通过等差数列求和公式计算出他一共存了多少钱,即Sn = (30/2)(2*100 + (30-1)*100) = 46500元。
二、等比数列的求和公式及应用等比数列是一种按照相同比例递增或递减的数列。
求和等比数列的公式同样也是非常重要的。
对于首项为a1,公比为r的等比数列(r≠1),求和公式为Sn =a1(1 - r^n)/(1 - r),其中Sn代表前n项的和。
等比数列求和公式的应用也非常广泛。
例如,我们可以通过等比数列的求和公式来计算利息的复利效应。
比如,某银行的年利率为5%,每年按照相同的利率累计计息,如果存款本金为10000元,存款期限为10年,我们可以通过等比数列的求和公式计算出最终的本息总额,即Sn = 10000*(1 - (1 + 0.05)^10)/(1 - 1.05) = 62889.99元。
三、斐波那契数列的求和公式及应用斐波那契数列是一种特殊的数列,前两项为1,从第三项开始,每一项都是前两项的和。
斐波那契数列具有许多有趣的性质和应用。
斐波那契数列的求和通常没有一个简单的公式。
然而,斐波那契数列在实际应用中具有广泛的用途,如金融分析、自然科学、计算机科学等。
数列应用练习题
数列应用练习题一、等差数列应用题1. 甲买了一批商品,每天卖出其中的5个,经过10天后全部卖完。
已知甲每天的销售额为200元,求甲买进这批商品的总额。
解析:由已知可知,甲每天销售的商品数量为5个,所以经过10天,甲总共卖出的商品数量为5 * 10 = 50个。
同时,甲每天的销售额为200元,所以甲卖出这批商品的总额为50 * 200 = 10000元。
由于这批商品全部卖完,所以甲买进这批商品的总额也为10000元。
2. 一列等差数列的首项是2,公差是3,请问这列数列中第10项的值是多少?解析:由已知可知,这列等差数列的首项是2,公差是3。
根据等差数列的通项公式an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。
代入已知数据可以得到第10项的值:a10 = 2 + (10 - 1) * 3 = 2 + 9 * 3 = 2 + 27 = 29。
二、等比数列应用题1. 一列等比数列的首项是1,公比是2,求前10项的和。
解析:由已知可知,这列等比数列的首项是1,公比是2。
根据等比数列的求和公式Sn = a1 * (1 - q^n) / (1 - q),其中Sn表示前n项的和,a1表示首项,q表示公比,n表示项数。
代入已知数据可以得到前10项的和:S10 = 1 * (1 - 2^10) / (1 - 2) = 1 * (-1023) / (-1) = 1023。
2. 一列等比数列的首项是3,公比是0.5,求前10项的乘积。
解析:由已知可知,这列等比数列的首项是3,公比是0.5。
根据等比数列的乘积公式Pn = a1^n * q^{n(n-1)/2},其中Pn表示前n项的乘积,a1表示首项,q表示公比,n表示项数。
代入已知数据可以得到前10项的乘积:P10 = 3^10 * (0.5)^{10(10-1)/2} = 59049 * (0.5)^45 = 59049 * (0.5)^{45/2} = 59049 * (0.5)^{(9*5)/2} = 59049 * (0.5)^{45/2} = 3.8146973 * 10^{-7}。
数列求和方法(带例题和练习题)(最新整理)
∴ S=44.5 例 4 变式训练 1:解:设 Sn= cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°
∵ cos n cos(180 n )
(找特殊性质项)
∴Sn= (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···
公式法求和注意事项 (1)弄准求和项数 n 的值;
(2)等比数列公比 q 未知时,运用前 n 项和公式要分类。
例 1.求和1 x x 2 x n2 ( n 2, x 0 )
二、错位相减法求和 这种方法是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{an· bn}的前 n
倒序相加发,如等差数列的前 n 项和就是此法推导的
例 4.求 sin 2 1 sin 2 2 sin 2 3 sin 2 88 sin 2 89 的值
例 4 变式训练 1:求 cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.
例 4 变式训练 2: 数列{an}: a1 1, a2 3, a3 2, an2 an1 an ,求 S2002.
设 xSn 1x 3x 2 5x3 7x 4 (2n 1)x n ………………………. ② (设制错位)
①-②得 (1 x)Sn 1 2x 2x 2 2x3 2x 4 2x n1 (2n 1)x n (错位相减)
(1
x)Sn
1
2x 1 x n1 1 x
例 5.已知数列an 的通项公式 an 3n 2n 1,求数列an 的前 n 项和 Sn 。
数列求和及其数列的简单应用
数列求和及数列的简单应用
常用求和公式
等差数列
,特别 。
等比数列
,特别 。
自然数
平方和
。
自然数
立方和
。
常用求和方法
公式法
如 。
常用裂项方法: ;
;
;
。
分组法
如 , 。
裂项法
如 。
错位
相减法
如 。
倒序
相加法
如 。
数列模型
等差数列
基本特征是均匀增加者减少。
等比数列
基本特征是指数增长,常见的是增产率问题、存款复利问题。
一个简单
递推数列
基本特征是指数增长的同时又均匀减少。如年收入增长率为 ,每年年底要拿出 (常数)作为下年度的开销,即数列 满足 。
注:表中 均为正整数
数学归纳法
数学
归纳法
数学归纳法是以自然数的归纳公理做为它的理论基础的,因此,数学归纳法的适用范围仅限于与自然数有关的命题。分两步:首先证明当n取第一个值n0(例如n0=1)时结论正确;然后假设当n=k 时结论正确,证明当n=k+1时结论也正确.
常见的数列求和及应用
常见的数列求和及应用常见的数列求和及应用常见的数列求和及应用一、自主探究1、等差数列的前n项和公式:。
2、等比数列的前n项和公式:①当时,;②当时, = 。
3、常见求和公式有:①1+2+3+4+…+②1+3+5+…+(2n-1)=※③※④二、典例剖析(一)、分组求和法:某些数列,通过适当分组,可得出两个或几个等差数列或等比数列,进而利用公式分别求和,从而得出原数列的和。
例1 已知,求数列{}的前n项和。
变式练习:已知,求数列{}的前n项和。
(二)、裂项求和法:如果数列的通项公式可转化为形式,常采用裂项求和的方法。
特别地,当数列形如,其中是等差数列,可采用此法例2 求和:()变式练习:已知数列的通项公式,求数列{}的前n项和。
(三)、奇偶并项法:当数列通项中出现时,常常需要对n取值的奇偶性进行分类讨论。
例3 求和:(四)、倒序相加法:此法主要适用数列前后具有“对称性”,即“首末两项之和相等”的形式。
例4 求在区间内分母是3的所有不可约分数之和。
变式练习:已知且 .求(五)错位相减法:一般地,如果数列时等差数列,是等比数列,求数列的前项和时,可采用此法,在等式的两边乘以或,再错一位相减。
例5 求和:变式练习:求和:三、提炼总结:数列的求和是数列的一个重要内容,它往往是数列知识的综合体现,求和题在试题中更是常见,它常用来考察我们的基础知识,分析问题和解决问题的能力。
任何一个数列的前n项和都是从第1项一直加到第n项。
数列的求和主要有以下几种方法。
⑴公式法;⑵分组求和法;⑶裂项求和法;拆项成差求和经常用到下列拆项公式,请补充完整:① = ;② = ;③ = ;④ = ;⑷奇偶并项法;⑸倒序相加法;⑹错位相减法。
四、课堂检测:1、已知数列的通项,由所确定的数列的前项之和是()A. B. C. D.2、已知数列为等比数列,前三项为则等于()A. B. C. D、设数列,(1+2+4),…,()的前m项和为2036,则m的值为()A.8B.9C.10 D、在50和350之间所有末位数是1的整数之和是()A.5880 B280 D.48725、6、若 ,则、设正项等比数列的首项,前n项和为,且①求的通项;②求的前n项和8、数列中,且满足 ,①求数列的通项公式;②设是否存在最大的整数m,使得任意的n均有>总成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和及数列的简单应用{a n }中,a 1=1,a 2=2,2a 2n =a 2n -1+a 2n +1(n ≥2),则a 6等于( )A .16B .8C .2 2D .42.已知数列{a n }为等比数列,且a 4·a 6=2a 5,设等差数列{b n }的前n 项和为S n ,若b 5=2a 5,则S 9=( )A .36B .32C .24D .223.设等比数列{a n }的各项均为正数,其前n 项和为S n .若a 1=1,a 3=4,S k =63,则k =________.4.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形的面积为S n ,则S 1+S 2+….(1101)2表示二进制的数,将它转化成十进制数的形式是1×23+1×22+0×21+1×20=13,那么将二进制数111…1(2)(共16位)转换成十进制数的值是( )A .217-2B .217-1C .216-1D .215-16.已知函数f (x )=1x +1,点O 为坐标原点,点A n (n ,f (n ))(n ∈N *).若记直线OA n 的倾斜角为θn ,则tan θ1+tan θ2+…+tan θn =( )A.1nB.1n +1C.n n +1D.n -1n 7.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意的正整数m ,n ,都有a m +n =a m ·a n ,若S n <t 恒成立,则实数t 的最小值为( )A.14B.34C.43D .4 8.在数列{a n }中,若对任意的n ∈N *均有a n +a n +1+a n +2为定值,且a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( )A .132B .299C .68D .999.定义n p 1+p 2+…+p n为n 个正数p 1,p 2,…,p n 的“均倒数”.若已知数列{a n }的前n 项的“均倒数”为12n +1,又b n =a n +14,则1b 1b 2+1b 2b 3+…+1b 10b 11=( ) A.111 B.910 C.1011 D.111210.已知数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为数列{a n }的前n 项和,则S 2013=________.11.已知数列{a n }的各项均为正整数,其前n 项和为S n .若a n +1=⎩⎪⎨⎪⎧a n 2,a n 是偶数,3a n +1,a n 是奇数,且S 3=29,则a 1=________;S 3n=________. 12.对于一切实数x ,令[x ]为不大于x 的最大整数,则函数f (x )=[x ]称为高斯函数或取整函数.若a n =f n 3,n ∈N *,S n 为数列{a n }的前n 项和,则S 3n =________. 13.已知等差数列{a n }满足a 3=10,a 5-2a 2=6.(1)求数列{a n }的通项公式;(2)数列{b n }满足b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),12a n -1(n 为偶数),T n 为数列{b n }的前n 项和,求T 2n .14.等差数列{a n}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为S n.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=1S n+1-1,其前n项和为T n,求证:T n<34(n∈N*).15.环保刻不容缓,或许人类最后一滴水将是自己的泪水.某地水资源极为紧张,且受工业污染严重,预计20年后该地将无洁净的水可用.当地决定重新选址建设新城区,同时对旧城区进行拆除.已知旧城区的住房总面积为64a m2,每年拆除的数量相同;新城区计划第一年建设住房面积a m2,前四年每年以100%的增长率建设新住房,从第五年开始,每年都比上一年增加a m2.设第n(n≥1,且n∈N)年新城区的住房总面积为a n m2,该地的住房总面积为b n m2.(1)求数列{a n}的通项公式;(2)若每年拆除4a m2,比较a n+1与b n的大小.专题限时集训1.D [解析] 根据2a 2n =a 2n -1+a 2n +1知,数列{a 2n }为等差数列,首项为1,公差为3,所以a 2n =1+(n -1)×3=3n -2,又a n >0,所以a n =3n -2,所以a 6=18-2=4.2.A [解析] 由a 4·a 6=2a 5,得a 25=2a 5,即a 5=2,所以b 5=4,S 9=9(b 1+b 9)2=9b 5=36.3.6 [解析] 设公比为q ,因为a n >0,所以q >0,则a 3=4=a 1q 2=q 2,所以q =2,又S k =63=1-2k1-2,即2k =64,所以k =6. 4.20122013 [解析] 直线与两坐标轴的交点坐标分别为⎝⎛⎭⎫2n ,0,⎝ ⎛⎭⎪⎫0,2n +1,故S n =1n (n +1)=1n -1n +1,所以S 1+S 2+…+S 2012=1-12013=20122013. 5.C [解析] 即215+214+…+2+1=216-1.6.C [解析] A n ⎝⎛⎭⎫n ,1n +1,tan θn =1n (n +1)=1n -1n +1,所以tan θ1+tan θ2+…+tan θn =1-1n +1=n n +1. 7.A [解析] 令m =1可得a n +1=15a n ,所以{a n }为首项为15,公比为15的等比数列,所以S n =15⎣⎡⎦⎤1-⎝⎛⎭⎫15n 1-15=14⎣⎡⎦⎤1-⎝⎛⎭⎫15n <14,故实数t 的最小值为14. 8.B [解析] 设a n +a n +1+a n +2=M ,则a n +1+a n +2+a n +3=M ,后式减去前式得a n +3=a n ,即数列{a n }是以3为周期的周期数列,a 7=a 1=2,a 9=a 3=3,a 98=a 2=4,所以在一个周期内的三项之和为9,所以S 100=33×9+2=299.9.C [解析] 由已知得n a 1+a 2+…+a n =12n +1, ∴a 1+a 2+…+a n =n (2n +1)=S n .当n ≥2时,a n =S n -S n -1=4n -1,当n =1时也成立,∴a n =4n -1,∴b n =a n +14=n ,∴1b n b n +1=1n -1n +1, ∴1b 1b 2+1b 2b 3+…+1b 10b 11=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫110-111=1011. 10.-1005 [解析] a 1=1,a 2=-2,a 3=-1,a 4=0,a 5=1,…,由此可得该数列的周期为4,一个周期内四项之和为-2,2013=503×4+1,a 2013=a 1,所以S 2013=503×(-2)+1=-1005.11.5 7n +22 [解析] 若a 1=4k ,则a 2=2k ,a 3=k ,此时S 3=7k =29,由于k 为整数,此时无解;若a 1=4k +1,则a 2=12k +4,a 3=6k +2,此时S 3=22k +7=29,解得k =1,即a 1=5; 若a 1=4k +2,则a 2=2k +1,a 3=6k +4,此时S 3=12k +7=29,由于k 为整数,此时无解;若a 1=4k +3,则a 2=12k +10,a 3=6k +5,此时S 3=22k +18=29,由于k 为整数,此时无解.综上可知a 1=5.由于a 1=5,则a 2=16,a 3=8,a 4=4,a 5=2,a 6=1,a 7=4,a 8=2,a 9=1,a 10=4,a 11=2,a 12=1.a 1=4+1,a 2=2+14,a 3=1+7,则a 1+a 2+a 3=22+7,其余每连续三项之和为7,故S 3n =22+7n .12.32n 2-12n [解析] 当n =3k ,n =3k +1,n =3k +2时均有a n =f ⎝⎛⎭⎫n 3=⎣⎡⎦⎤n 3=k ,所以 S 3n =0+0+1+1+1,\s \do 4(3个))+2+2+2,\s \do 4(3个))+…+(n -1)+(n -1)+(n -1),\s \do 4(3个))+n =3×1+n -12×(n -1)+n =32n 2-12n . 13.解:(1)设数列{a n }的公差为d ,则a 1+2d =10,a 1+4d -2(a 1+d )=6,解得a 1=2,d =4,所以a n =a 1+(n -1)d =4n -2.(2)数列{b n }的前2n 项和中,奇数项和偶数项各有n 项.奇数项是首项为1,公比为4的等比数列,其和为1×(1-4n )1-4=4n -13;偶数项是首项为1,公差为4的等差数列,其和为n +n (n -1)2×4=2n 2-n . 所以T 2n =4n -13+2n 2-n . 14.解:(1)设数列{a n }的公差为d ,则2a 1+3a 2=2a 1+3(a 1+d )=5a 1+3d =11,2a 3=a 2+a 6-4,即2(a 1+2d )=a 1+d +a 1+5d -4,得d =2,a 1=1,所以a n =a 1+(n -1)d =1+(n -1)×2=2n -1.(2)证明:S n =na 1+12n (n -1)d =n ×1+12n (n -1)×2=n 2, b n =1S n +1-1=1(n +1)2-1=1n 2+2n =1n (n +2)=121n -1n +2, 所以T n =1211-13+12-14+13-15+…+1n -1-1n +1+1n -1n +2=1211+12-1n +1-1n +2<34(n ∈N *). 15.解:(1)设第n 年新城区的住房建设面积为λn m 2,则当1≤n ≤4时,λn =2n -1a ;当n ≥5时,λn =(n +4)a .所以,当1≤n ≤4时,a n =(2n -1)a ,当n ≥5时,a n =a +2a +4a +8a +9a +…+(n +4)a =n 2+9n -222a , 故a n =⎩⎪⎨⎪⎧(2n -1)a ,1≤n ≤4,n 2+9n -222a ,n ≥5. (2)当1≤n ≤3时,a n +1=(2n +1-1)a ,b n =(2n -1)a +64a -4na ,显然有a n +1<b n ,当n =4时,a n +1=a 5=24a ,b n =b 4=63a ,此时a n +1<b n .当5≤n ≤16时,a n +1=n 2+11n -122a ,b n =n 2+9n -222a +64a -4na . a n +1-b n =(5n -59)a .所以,当5≤n ≤11时,a n +1<b n ;当12≤n ≤16时,a n +1>b n .当n ≥17时,显然a n +1>b n , 故当1≤n ≤11时,a n +1<b n ;当n ≥12时,a n +1>b n .。