ARMA模型

合集下载

ARMA模型

ARMA模型

ARMA模型AR模型是一种线性预测,即已知N个数据,可由模型推出第N点前面或后面的数据(设推出P点),AR模型-模型简介所以其本质类似于插值,其目的都是为了增加有效数据,只是AR模型是由N点递推,而插值是由两点(或少数几点)去推导多点,所以AR模型要比插值方法效果更好。

ARMA模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础"混合"构成。

在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。

ARMA模型的基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。

一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,e为误差。

作为预测对象Yt受到自身变化的影响,其规律可由下式体现,模型原理误差项在不同时期具有依存关系,由下式表示,模型原理图由此,获得ARMA模型表达式模型原理图模型原理总图模型预测模型-常见预测模型预测是对未来作出的估计和推断,为了达到这一目的,往往要对现实世界(或称研究对象)进行模仿或抽象,这一过程称之为建模;用建模手段获得现实世界(对象)的一种表示和体现就称为模型。

一切客观存在的事物及其运动形态我们统称为现实;现实和未来是不一样的,但是通过对于现实的研究可以预见未来,这就是预测。

从信息运动的角度看,现实之中包含着未来,孕育着未来。

因此,一个"好"的模型不仅能表达现实而且应该能准确的反映现实的发展规律。

时至今日,预测模型已多达一百余种,常用的也有二三十种。

任何预测模型都有它自身的优缺点;至今,还没有一种既有极高的预测精度,又适用于任何现实问题(研究对象)的预测模型。

ARMA模型

ARMA模型


通过OLS法估计 Yt = + Yt-1+ t
计算t 统计量的值,与DF分布表中给定显著性 水平下的临界值比较:
如果:t < 临界值(左尾单侧检验),则拒绝 原假设H0: =0,认为时间序列不存在单位根, 是平稳的。
(2) ADF检验
DF检验的问题:在上述使用 Yt= +Yt-1+ t
水平等指标都很好,但是由于残差序列是一个非
平稳序列,说明了这种回归关系不能够真实的反
映因变量和解释变量之间存在的均衡关系,而仅 仅是一种数字上的巧合而已。伪回归的出现说明 模型的设定出现了问题,有可能需要增加解释变 量或者减少解释变量,抑或是把原方程进行差分,
以使残差序列达到平稳。
一个可行的办法是先把一个非平稳时间序列 通过某种变换化成一个平稳序列。
• 如果一个时间序列经过一次差分变成平稳序 列,也称原序列是1阶单整(integrated of 1)序列, 记为I(1)过程。如果经过d 次差分后变成平稳序 列, 则称原序列是d 阶单整(integrated of d), 记为 I(d)。 • I(0)代表平稳时间序列。
• 多次差分无法变为平稳的时间序列称为非单 整的(non-integrated)。
2. 平稳性与经典回归



经典计量模型的数学基础是极限法则,以独立随机 抽样为样本,如果模型设定正确,模型随机误差项 满足极限法则和由极限法则导出的基本假设,继而 进行的参数估计和统计推断是可靠的。 以时间序列数据为样本,破坏了随机抽样的假定, 则经典计量模型的数学基础能否被满足成为一个重 要问题。 对照极限法则和时间序列的平稳性条件研究发现, 如果模型设定正确,并且所有时间序列是平稳的, 时间序列的平稳性可以替代随机抽样假定,模型随 机误差项仍然满足极限法则。

arma模型的数学表达式

arma模型的数学表达式

arma模型的数学表达式摘要:一、arma模型的简介- 自回归滑动平均模型(ARMA)的概念- ARMA模型在时间序列分析中的应用二、arma模型的数学表达式- ARMA模型的数学定义- 典型ARMA模型的数学表达式三、arma模型的性质与特点- ARMA模型的稳定性- ARMA模型的自相关函数和偏自相关函数四、arma模型的参数估计与预测- 矩估计方法- 极大似然估计方法- ARMA模型的预测方法正文:一、ARMA模型的简介自回归滑动平均模型,简称ARMA模型,是一种常用的时间序列分析模型。

它由自回归模型(AR)和滑动平均模型(MA)组合而成,能够同时考虑时间序列的自相关性和滑动平均性。

ARMA模型广泛应用于经济学、金融学、气象学等领域,用于预测和分析具有线性趋势的时间序列数据。

二、ARMA模型的数学表达式ARMA模型的数学定义如下:Y_t = c + Φ1Y_(t-1) + Φ2Y_(t-2) + ...+ Φpy_(t-p) + θ1X_(t-1) +θ2X_(t-2) + ...+ θqx_(t-q) + ε_t其中,Y_t表示需要分析的时间序列数据,c为常数项,Φi和θj为自回归和滑动平均系数,p和q分别为自回归和滑动平均的阶数,X_t为解释变量,ε_t为误差项。

典型的ARMA模型有:- AR(p)模型:当q=0时,ARMA模型退化为自回归模型。

- MA(q)模型:当p=0时,ARMA模型退化为滑动平均模型。

- ARMA(p,q)模型:当p≠0且q≠0时,为一般ARMA模型。

三、ARMA模型的性质与特点ARMA模型的稳定性主要取决于其系数Φ和θ的取值。

当|Φ(1+jω)|<1和|θ(1+jω)|<1时,ARMA模型是稳定的。

此外,ARMA模型的自相关函数(ACF)和偏自相关函数(PACF)可以用来分析时间序列的序列相关性和平均相关性。

四、ARMA模型的参数估计与预测ARMA模型的参数估计方法有矩估计和极大似然估计。

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

ARMA模型介绍

ARMA模型介绍
这种模型设定形式可以减少多重共线性
➢ 如果Yt一 个Yt时1 间序1Y列t1有 .一.. 个 p单1位Yt根 p,1 那ut 么在回归模
型中可以仅包括Y。
共同学习,重在交流
➢ 一般形式的MA(q)M模型A可(q以)表模示型为
➢ 上述模Y型t 为uqt 阶移1u动t1平均2模ut型2 qutq
➢ MA(q)模型也不存在非平稳问题。
➢ 调整可决系数、AIC和SC准则都是模型选 择的重要标准。
共同学习,重在交流
➢ 赤池信息准A则IC:准AIC则=-和2L/Sn+C2k准/n,则其中L是
对数似然值,n是观测值数目,k是被估计 的参数个数。AIC准则要求其取值越小越好。 ➢ 施瓦茨准则:SC=-2L/n-klnn/n,使用时也 要求SC值越小越好。
共同学习,重在交流
➢ 如果自时间回序归列Y移t是它动的平当期均和模前期型的(随A机R误M差A项) 以及前期值的线性函数,即可表示为:
➢ Y则t 称该1Yt序1 列为2Yt(2 p,.q..) 阶pY自t 回p 归ut移动1u平t1均模型。qu记tq
为ARMA(p,q)
共同学习,重在交流
随机时间序列分析模型的识别
共同学习,重在交流
模型的识别
➢ AR(p)模型的识别。若序列的偏自相关函数在p以 后截尾,而且自相关系数是拖尾的,则此序列是自回 归AR(p)序列。
➢ MA(q)模型的识别。若序列的自相关函数在q以后 截尾,而且偏自相关系数是拖尾的,则此序列是移动 平均MA(q)序列。
➢ ARMA(p,q)模型的识别。若序列的自相关函数和 偏自相关系数都是拖尾的,则此序列是自回归移动平 均ARMA(p,q)序列。至于模型中p和q的识别,则 要从低阶开始逐步试探,直到定出合适的模型为止。

arma的特征方程

arma的特征方程

arma的特征方程一、介绍ARMA模型(Autoregressive Moving Average Model)是一种常用的时间序列分析方法,它将自回归模型(AR)和移动平均模型(MA)结合起来,能够较好地描述时间序列数据中的相关关系和随机波动。

ARMA模型的特征方程是其重要的数学表达式之一,本文将对ARMA模型及其特征方程进行详细介绍。

二、ARMA模型1. AR模型自回归模型是指时间序列数据中当前时刻的值与其过去若干个时刻的值之间存在线性相关关系。

具体地,假设$y_t$表示时间为$t$时刻的观测值,则AR(p)模型可以表示为:$$y_t=\phi_1 y_{t-1}+\phi_2 y_{t-2}+\cdots+\phi_p y_{t-p}+\epsilon_t$$其中$\phi_1,\phi_2,\cdots,\phi_p$是待估计的系数,$\epsilon_t$是噪声项。

2. MA模型移动平均模型是指时间序列数据中当前时刻的值与其过去若干个噪声项之间存在线性相关关系。

具体地,假设$y_t$表示时间为$t$时刻的观测值,则MA(q)模型可以表示为:$$y_t=\epsilon_t+\theta_1 \epsilon_{t-1}+\theta_2 \epsilon_{t-2}+\cdots+\theta_q \epsilon_{t-q}$$其中$\theta_1,\theta_2,\cdots,\theta_q$是待估计的系数,$\epsilon_t$是噪声项。

3. ARMA模型ARMA模型将自回归模型和移动平均模型结合起来,可以描述时间序列数据中的相关关系和随机波动。

具体地,假设$y_t$表示时间为$t$时刻的观测值,则ARMA(p,q)模型可以表示为:$$y_t=\phi_1 y_{t-1}+\phi_2 y_{t-2}+\cdots+\phi_p y_{t-p}+\epsilon_t+\theta_1 \epsilon_{t-1}+\theta_2 \epsilon_{t-2}+\cdots+\theta_q \epsilon_{t-q}$$其中$\phi_1,\phi_2,\cdots,\phi_p$和$\theta_1,\theta_2,\cdots,\theta_q$是待估计的系数,$\epsilon_t$是噪声项。

ARMA模型

ARMA模型

自回归滑动平均模型(ARMA 模型,Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。

在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。

定义ARMA模型(auto regressive moving average model)自回归滑动平均模型,模型参量法高分辨率谱分析方法之一。

这种方法是研究平稳随机过程有理谱的典型方法,适用于很大一类实际问题。

它比AR模型法与MA模型法有较精确的谱估计及较优良的谱分辨率性能,但其参数估算比较繁琐。

ARMA模型参数估计的方法很多:如果模型的输入序列{u(n)}与输出序列{a(n)}均能被测量时,则可以用最小二乘法估计其模型参数,这种估计是线性估计,模型参数能以足够的精度估计出来;许多谱估计中,仅能得到模型的输出序列{x(n)},这时,参数估计是非线性的,难以求得ARMA 模型参数的准确估值。

从理论上推出了一些ARMA模型参数的最佳估计方法,但它们存在计算量大和不能保证收敛的缺点。

因此工程上提出次最佳方法,即分别估计AR和MA参数,而不像最佳参数估计中那样同时估计AR和MA参数,从而使计算量大大减少。

基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。

一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,Z为误差。

作为预测对象Yt受到自身变化的影响,其规律可由下式体现,误差项在不同时期具有依存关系,由下式表示,由此,获得ARMA模型表达式:基本形式ARMA模型分为以下三种:自回归模型(AR:Auto-regressive)如果时间序列满足其中是独立同分布的随机变量序列,且满足:以及E() = 0则称时间序列为服从p阶的自回归模型。

第三讲 ARMA模型

第三讲 ARMA模型
3
累计脉冲响应函数:
y t +j t
+
y t +j t +1
+
y t +j t +2
+
+
y t +j t +j
= j + j -1 + j -2 +
+ +1
以此衡量随机扰动因素如果出现永久性变化后,即 t,t +1, ,t +j 都变化一个单位,对yt 造成的影响和冲击。 练习:建立年度(1951~1983)数据文件,导入book1 中数据x。利用Eviews创建一个程序,尝试生成不同的yt序 列,还可尝试绘制出脉冲响应函数图: smpl @first @first series x=0 smpl @first+1 @last series x=0.7*x(-1)+0.8*nrnd(正态分布) 该程序是用一阶差分方程生成一个x序列,初始值设定 为0,扰动项设定为服从均值为0,标准差为0.8的正态分布。
可以想象,如果按一定规则的数据 生成过程生成足够多的观测序列(比如 1万次或10万次),然后再求样本均值, 应该可以得到较高精度的结果,从而尽 量捕捉真实过程的特性。
该思想与计量经济学的另一重要概 念不谋而合,即蒙特卡洛模拟。
27
(2)AR (p) 序列的自相关和偏自相关:
●φk截尾性:AR(p)为p阶截尾。
例4:季度数据文件:1979:1~1999:2,调入book8中1个数据y。 同样,输入序列名y,滞后期取20。可得自相关图:
可见:自相关程度缓慢减弱。而偏自相关相邻两项相关程度很高。
14
例5:建月度文件:1972:01~1982:12,调入book18 的y(汗衫背心零售 量),滞后期36。自相关图为: 从自相关函数看: 12、24、36很大,即相 同月份有很强季节性,无明 显趋势。 从偏自相关函数看, k=1时一样,k=2时“自”和 “偏”自相关差距很大。

ARMA模型介绍

ARMA模型介绍

ARMA模型介绍ARMA模型(Autoregressive Moving Average model)是时间序列分析中常用的一种模型,用于描述和预测随时间变化的数据。

ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,可以较好地描述时间序列数据的变化趋势。

ARMA模型的核心思想是:当前时刻的观测值可以通过历史观测值和随机误差的线性组合来表示。

具体地说,AR部分考虑了当前时刻和过去几个时刻的观测值之间的关系,而MA部分则考虑了当前时刻和过去几个时刻的随机误差之间的关系。

在AR模型中,当前时刻的观测值与过去几个时刻的观测值之间存在线性关系。

AR模型的阶数(p)表示过去几个时刻的观测值被考虑进来。

对于AR(p)模型,数学表达式如下:yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et其中,yt表示当前时刻的观测值,c表示常数项,φ1, φ2, ... ,φp表示对应的回归系数,et表示当前时刻的随机误差。

在MA模型中,当前时刻的观测值与过去几个时刻的随机误差之间存在线性关系。

MA模型的阶数(q)表示过去几个时刻的随机误差被考虑进来。

对于MA(q)模型,数学表达式如下:yt = c + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-q其中,yt表示当前时刻的观测值,c表示常数项,θ1, θ2, ... ,θq表示对应的回归系数,et表示当前时刻的随机误差。

yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-qARMA模型可以用于时间序列的拟合和预测。

通过将模型与已有数据进行拟合,可以得到模型的参数估计值。

然后,利用这些参数估计值,可以预测未来的观测值。

ARMA模型适用于没有明显趋势和季节性的时间序列数据。

自回归移动平均模型公式

自回归移动平均模型公式

自回归移动平均模型公式
自回归移动平均模型(ARMA)是一种经济时间序列分析方法,用于预测未来的观测值。

它结合了自回归模型(AR)和移动平均模型(MA)的特点,具有很好的预测性能。

ARMA模型的数学表达式为:
y_t = c + φ₁*y_(t-1) + φ₂*y_(t-2) + ... + φ_p*y_(t-p) + ε_t + θ₁*ε_(t-1) +
θ₂*ε_(t-2) + ... + θ_q*ε_(t-q)
其中,y_t 是时间 t 的观测值,c 是常数项,φ₁, φ₂, ..., φ_p 是自回归系数,表示 t-1, t-2, ..., t-p 时刻 y 值对 t 时刻 y 值的线性影响;ε_t 是时间 t 的误差项,θ₁, θ₂, ..., θ_q 是移动平均系数,表示 t-1, t-2, ..., t-q 时刻的误差对 t 时刻 y 值的影响。

ARMA模型的参数估计可以利用最大似然估计或最小二乘法等方法进行。

根据观测数据的特征,选择合适的 AR 和 MA 阶数是模型建立的关键。

ARMA模型的预测能力在实际应用中被广泛认可。

通过估计模型参数,可以利用过去的观测值来预测未来的观测值。

预测结果可以帮助决策者制定相应的策略和措施。

需要注意的是,ARMA模型在实际应用中可能面临一些限制。

例如,如果数据存在非平稳性或季节性等特征,需要对数据进行预处理或使用其他模型进行分析。

总之,自回归移动平均模型是一种常用的时间序列分析工具,通过结合自回归和移动平均的特点,提供了对未来观测值的预测能力。

在实际应用中,应根据数据特征选择合适的阶数,并结合其他方法进行验证和优化,以达到更好的预测效果。

ARMA模型解析

ARMA模型解析
注3:【2】满足平稳条件时, AR过程等价于无穷阶的MA 过程,即
X t 1 v1B v2 B
2
j ut v j B ut j 0
1 时间序列分析模型【ARMA模型 】简介
3、自回归移动平均【ARMA】模型 【B-J方法建模】
自回归移动平均序列
ARMA序列,它的阶要由从低阶到高阶逐步增加,再通过检验来确定. 但实际数据处理中,得到的样本自协方差函数和样本偏自相关函数只是
k
而只能是在某步之后围绕零值上下波动,故对于 k 和 kk 的截尾性 只能借助于统计手段进行检验和判定。
和 kk 的估计,要使它们在某一步之后全部为0几乎是不可能的,
H0 : pk , pk 0, k 1,
2 统计量 N pM
H1 : 存在某个 k ,使 kk
k p 1
0 ,且
2
pkM p
( ) 表示自由度为 M 的 分布 的上侧 分位数点 2 2 M ( ),则认为 对于给定的显著性水平 0 ,若 2 2 p ,可认为 样本不是来自AR( )模型 ; M ( )
【2】
( B) X t ut
AR(
的根均在单位圆外,即
p )过程平稳的条件是滞后多项式 ( B)
( B) 0 的根大于1
1 时间序列分析模型【ARMA模型 】简介
2、移动平均【MA】模型
移动平均序列 X t : 如果时间序列 X t 是它的当期和前期的随机误差 项的线性函数,即可表示为
时间序列的季节性是指在某一固定的时间间隔上,序列 重复出现某种特性.比如地区降雨量、旅游收入和空调销售额 等时间序列都具有明显的季节变化. 一般地,月度资料的时间序列,其季节周期为12个月;

马尔可夫区制转移arma模型

马尔可夫区制转移arma模型

马尔可夫区制转移arma模型马尔可夫区制转移(ARMA)模型是一种经济和金融时间序列分析常用的模型。

它的基本思想是通过分析当前时间点和过去时间点的关系,来预测未来时间点的值。

ARMA模型的构建基于两个关键概念:自回归(AR)和移动平均(MA)。

马尔可夫区制转移(AR)模型通过分析过去时间点对当前时间点的影响来预测未来时间点。

它基于一个假设,即未来的值是过去值的线性组合。

如果我们用Y表示时间序列的观测值,AR模型可以表示为:Y_t = c + φ_1 * Y_t-1 + φ_2 * Y_t-2 + ... + φ_p * Y_t-p + ε_t其中,Y_t是时间点t的观测值,c是常数,φ_1, φ_2, ...,φ_p是参数,p是模型的延迟数量,ε_t是误差项。

当p等于1时,AR模型称为AR(1)模型;当p等于2时,AR模型称为AR(2)模型,依此类推。

移动平均(MA)模型是用来描述观测值与白噪声误差项的线性组合之间的关系。

MA模型的基本假设是,当前时间点的观测值是过去时间点的误差项的线性组合。

如果我们用Y表示时间序列的观测值,MA模型可以表示为:Y_t = μ + ε_t + θ_1 * ε_t-1 + θ_2 * ε_t-2 + ... +θ_q * ε_t-q其中,Y_t是时间点t的观测值,μ是均值,ε_t是误差项,θ_1, θ_2, ..., θ_q是参数,q是误差项的延迟数量。

当q等于1时,MA模型称为MA(1)模型;当q等于2时,MA模型称为MA(2)模型,依此类推。

ARMA模型将AR和MA模型结合起来。

ARMA(p, q)模型可以表示为:Y_t = c + φ_1 * Y_t-1 + φ_2 * Y_t-2 + ... + φ_p * Y_t-p + ε_t + θ_1 * ε_t-1 + θ_2 * ε_t-2 + ... + θ_q * ε_t-qARMA模型可以通过最小二乘法或极大似然法来估计参数。

arma模型通俗理解

arma模型通俗理解

Arma模型通俗理解什么是ARMA模型?ARMA模型是时间序列分析中的一种建模方法,它是自回归移动平均模型(ARMA)的组合。

ARMA模型结合了自己的历史数据和随机误差来预测未来的数值。

AR和MA模型的概念在理解ARMA模型之前,我们需要先了解自回归(AR)和移动平均(MA)模型。

自回归(AR)模型自回归模型基于历史数据的线性组合来预测未来的数值。

它假设未来的值是过去值的加权和,其中权重由自回归系数确定。

自回归模型的公式为:x(t) = c + φ1 * x(t-1) + φ2 * x(t-2) + … + φp * x(t-p) + ε(t),其中φ1, φ2, …, φp为自回归系数,ε(t)为误差项,c为常数。

移动平均(MA)模型移动平均模型基于随机误差的线性组合来预测未来的数值。

它假设未来的值是过去误差的加权和,其中权重由移动平均系数确定。

移动平均模型的公式为:x(t) = μ + θ1 * ε(t-1) + θ2 * ε(t-2) + … + θq * ε(t-q) + ε(t),其中θ1,θ2, …, θq为移动平均系数,ε(t)为误差项,μ为均值。

ARMA模型ARMA模型是自回归模型和移动平均模型的结合,它综合了过去的数值和随机误差来预测未来的数值。

ARMA模型可以表示为ARMA(p, q),其中p和q分别为自回归和移动平均阶数。

ARMA模型的公式为:x(t) = c + φ1 * x(t-1) + φ2 * x(t-2) + … + φp * x(t-p) + θ1 * ε(t-1) + θ2 * ε(t-2) + … + θq *ε(t-q) + ε(t),其中φ1, φ2,…, φp为自回归系数,θ1, θ2, …, θq 为移动平均系数,c为常数,ε(t)为误差项。

如何估计ARMA模型的参数?ARMA模型的参数估计可以通过最小二乘法或最大似然法进行。

通过这些方法,可以找到使得模型拟合数据最好的参数。

ARMA模型

ARMA模型

ARMA 模型(一)模型的引进AR :011t t k t k t Y Y Y βββε--=++++ (注意:如果假设t Y 的均值为零,0β可以不写)如果序列在其均值附近波动:t 可用: 12...TT Y Y Y F Y T+++==来预测1T F +,1211 (1)T T Y Y Y F T +++++=+来预测2T F +,等等。

事实上,新的信息更能反映未来,远离现在的数据对未来的影响应该变小。

所以,按照这样一种想法,改用移动平均)。

121212111111 (11)()()TT T T T T T T T Y Y Y F Y T Y Y F Y T F Y Y F Y F T T+++++++++++==++===+-≈+- 那么,1T Y +是实际值,1T F +是上一期的预测值,所以11()T T Y F ++-是误差,即1T e +。

可见,下一期的预测值是用前一期的预测值的基础上,加上修正误差。

实际上它是跟踪数据的变化,这就是移动平均提供的一个非常好的思想!当然,也有问题,就是滞后,前后两期的误差是否一样是需要考虑的。

以此类推,继续将1T F +写成T 时刻的预测值和T 时刻的误差修正之和,如此递推下去,就可将t Y 用不同滞后期的误差项表示:即MA :11t t t k t k Y e e e μαα--=++++ (一定平稳!)。

而ARMA 模型为:01111t t p t p t t q t q Y Y Y e e e βββαα----=+++++++对时间序列的分析的一种重要工具——自相关。

注意:移动平均可平滑数据,消除周期变动和不规则变动的影响,使长期趋势显示出来。

(二)方法性工具自相关系数只是序列逐项之间的一种简单相关,它和x 和y 之间的简单相关系数实际上是一样的。

1.自相关函数:k γ当序列t Y 完全随机时,它的自相关系数理论上为零,没有任何自相关,但是我们不可能穷尽这个总体,所以,我们只能用它的样本数据来算,当使用样本数据来算的时候可能不是零,比如说0.008、0.007或者负的0.008、0.007。

arma模型的数学表达式

arma模型的数学表达式

arma模型的数学表达式摘要:1.ARMA 模型的概述2.ARMA 模型的数学表达式3.ARMA 模型的应用正文:一、ARMA 模型的概述自回归滑动平均模型(ARMA)是一种常用的时间序列分析方法,主要用于拟合和预测具有线性趋势的时间序列数据。

ARMA 模型是由自回归模型(AR)和滑动平均模型(MA)组合而成的,可以同时对时间序列数据中的长期依赖关系和短期依赖关系进行建模。

二、ARMA 模型的数学表达式ARMA 模型的数学表达式分为两个部分:自回归部分(AR)和滑动平均部分(MA)。

1.自回归部分(AR)自回归模型主要描述时间序列数据中的长期依赖关系,其数学表达式为:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + ε_t其中,X_t 表示时间序列数据在t 时刻的取值,c 为常数项,Φ1、Φ2、...、Φp 为自回归系数,ε_t 为误差项。

2.滑动平均部分(MA)滑动平均模型主要描述时间序列数据中的短期依赖关系,其数学表达式为:X_t = μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,X_t 表示时间序列数据在t 时刻的取值,μ为常数项,θ1、θ2、...、θq 为滑动平均系数,ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。

将自回归部分和滑动平均部分相结合,即可得到ARMA 模型的数学表达式:X_t = c + Φ1X_{t-1} + Φ2X_{t-2} +...+ ΦpX_{t-p} + μ+ θ1ε_{t-1} + θ2ε_{t-2} +...+ θqε_{t-q}其中,c、μ为常数项,Φ1、Φ2、...、Φp、θ1、θ2、...、θq 分别为自回归系数和滑动平均系数,ε_t、ε_{t-1}、ε_{t-2}、...、ε_{t-q}为误差项。

三、ARMA 模型的应用ARMA 模型广泛应用于金融、经济学、气象学等领域的时间序列数据分析和预测。

ARMA模型

ARMA模型

ARMA模型1.简单介绍ARMA模型是一类常用的随机时间序列预测模型,是一种精度较高的时间序列短期预测方法,它的基本思想是:某些时间序列是依赖于时间t的一族随机变量,构成该时间序列的单个序列值虽然具有不确定性,但整个序列的变化却有一定规律性,可用数学模型近似描述。

2.分类ARMA模型具有三种基本类型:自回归(AR)模型,移动平均(MA)模型,自回归移动平均(ARMA)模型。

3.表达如果时间序列X t是它的前期值和随机项的线性函数,即表示为:X t=φ1X t−1+φ2X t−2+⋯+φp X t−p+εt就称为P阶自回归模型,记为AR(p)。

其中φi称为自回归系数,是待估参数。

随机项εt 是相互独立的白噪声序列,服从均值为0,方差为σ2的正态分布。

且一般假定X t的均值也为0。

AR模型的平稳性问题从数学表达式来看,我们首先记B k为k步滞后算子,即B k X t=X t−k。

则上述模型可写为:X t=φ1BX t+φ2B2X t+⋯+φP B p X t+εt我们令φ(B)=1−φ1B−φ2B2−⋯−φp B p,模型就被简化为φ(B)X t=εt。

AR(p)平稳的等价条件是φ(B)的根都小于1,另一方面,从自相关系数和偏自相关系数的曲线图也能看出该模型是否平稳,AR(p)模型平稳等价于自相关系数拖尾,偏自相关系数p步截尾。

而如果时间序列X t是它的当期和前期的随机误差项的线性函数,即X t=μ+εt−θ1εt−1−⋯−θqεt−q则称为q阶移动平均模型,记为MA(q)。

它是无条件平稳的,因为它的均值和方差均为常数,跟AR模型做同样的滞后和简化,如果θ(B)的根都小于1,则MA模型是可逆的。

另一个可逆的等价条件就是自相关函数q步截尾,偏自相关函数拖尾。

基于此,ARMA(p,q)模型的数学表达就呼之欲出了:X t=φ1X t−1+φ2X t−2+⋯+φp X t−p+εt−θ1εt−1−⋯−θqεt−q而ARMA(p,q)的平稳条件就是AR(p)的平稳条件,可逆条件就是MA(q)的可逆条件。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X t ut 1ut 1 2ut 2 qut q
【3】
式【3】称为 q 阶移动平均模型,记为MA( q )
注:实参数 1 ,2 ,,q 为移动平均系数,是待估参数
1 时间序列分析模型【ARMA模型 】简介
引入滞后算子,并令 (B) 1 1B 2 B2 q Bq 则模型【3】可简写为
若时间序列 X t 满足 1)对任意时间 t ,其均值恒为常数; 2)对任意时间 t和 s ,其自相关系数只与时间间隔 t s 有关,而与t 和 s 的起始点无关。 那么,这个时间序列就称为平稳时间序列 。
1 时间序列分析模型【ARMA模型 】简介
序列的平稳性也可以利用置信区间理论进行判定.需要 注意的是,在B-J方法中,只有平稳时间序列才能直接建立 ARMA模型,否则必须经过适当处理使序列满足平稳性要求 在实际中,常见的时间序列多具有某种趋势,但很多序 列通过差分可以平稳 判断时间序列的趋势是否消除,只需考察经过差分后序 列的自相关系数 (3)季节性
1 时间序列分析模型【ARMA模型 】简介 二、随机时间序列的特性分析
1、时序特性的研究工具 (1)自相关 构成时间序列的每个序列值 X t , X t 1, X t 2 ,, X t k 之间的简单 相关关系称为自相关。自相关程度由自相关系数 k 度量, 表示时间序列中相隔 k 期的型,记为AR( p )
1 时间序列分析模型【ARMA模型 】简介
k 记 B k 为 k 步滞后算子,即 B X t X t k ,则 模型【1】可表示为
X t 1BX t 2 B X t p B X t ut
2 p
(B) 1 1B 2 B2 p B p 令 ,模型可简写为
其中
k 1 k 2,3,
k 是滞后
kj k 1, j kkk 1,k j , j 1, 2,, k 1
k 期的自相关系数,
1 时间序列分析模型【ARMA模型 】简介
2、时间序列的特性分析 (1)随机性 如果一个时间序列是纯随机序列,意味着序列没有任何规 律性,序列诸项之间不存在相关,即序列是白噪声序列,其 自相关系数应该与0没有显著差异。可以利用置信区间理论进 行判定。 在B-J方法中,测定序列的随机性,多用于模型残差以及评 价模型的优劣。 (2)平稳性
1 12 q2 2 , k 0 k k 1 k 1 q k q 2 , 1 k q 0, k q Dut 2 是白噪声序列的方差
1 时间序列分析模型【ARMA模型 】简介
时间序列分析模型
时间序列分析模型简介 一、时间序列分析模型概述 1、自回归模型 2、移动平均模型
3、自回归移动平均模型 二、随机时间序列的特性分析 三、模型的识别与建立 四、模型的预测
1 时间序列分析模型【ARMA模型 】简介
一、概 述
ARMA模型是一类常用的随机时间序列模型, 是一种精度较高的时间序列短期预测方法,其基本 思想是:某些时间序列是依赖于时间 t 的一族随机 变量,构成该时间序列的单个序列值虽然具有不确 定性,但整个序列的变化却有一定的规律性,可以 用相应的数学模型近似描述. 通过对该数学模型的分析研究,能够更本质地认 识时间序列的结构与特征,达到最小方差意义下的 最优预测.
注1:实参数 1 , 2 ,, p 称为自回归系数, 都是模型的待估参数 注2:【1】和【3】是【5】的特殊情形 注3:引入滞后算子,模型【5】可简记为
1,2 ,,q
为移动平均系数,
( B) X t (B)ut
【6】
注4:ARMA过程的平稳条件是滞后多项式 ( B ) 的根均在单位圆外 可逆条件是滞后多项式 ( B ) 的根都在单位圆外
(2)偏自相关
偏自相关是指对于时间序列 X t ,在给定 X t 1 , X t 2 ,, X t k 1 的条件下,X t与 X t k 之间的条件相关关系。 其相关程度用
偏自相关系数 kk 度量,有 1 kk 1
1 k 1 k k 1, j k j kk j 1 k 1 1 k 1, j j j 1
( B) X t ut
AR(
的根均在单位圆外,即
【2】
p )过程平稳的条件是滞后多项式 ( B)
( B) 0 的根大于1
1 时间序列分析模型【ARMA模型 】简介
2、移动平均【MA】模型
移动平均序列 X t : 如果时间序列 X t 是它的当期和前期的随机误差 项的线性函数,即可表示为
q
步截尾性;偏自相关函数
随着滞后期 k 的增加,呈现指数或者正弦波衰减,趋向于0, 这种特性称为偏自相关函数的拖尾性
1 时间序列分析模型【ARMA模型 】简介
(2)AR( p )序列的自相关与偏自相关函数 偏自相关函数
k , 1 k p kk kp 0,
是 p 步截尾的 ; 自协方差函数 k 满足 ( B) k 自相关函数 k 满足 ( B) k
时间序列的季节性是指在某一固定的时间间隔上,序列 重复出现某种特性.比如地区降雨量、旅游收入和空调销售额 等时间序列都具有明显的季节变化. 一般地,月度资料的时间序列,其季节周期为12个月;
季度资料的时间序列,季节周期为4个季.
1 时间序列分析模型【ARMA模型 】简介
判断时间序列季节性的标准为: 月度数据,考察 k 12, 24,36, 时的自相关系数是否 与0有显著差异; 季度数据,考察 k 4,8,12, 时的自相关 系数是否与0有显著差异。 若自相关系数与0无显著不同, 说明各年中同一月(季)不相关,序列不存在季节性,否则 存在季节性. 实际问题中,常会遇到季节性和趋势性同时存在的情况, 这时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖,以至判断错误. 包含季节性的时间序列也不能直接建立ARMA模型,需进 行季节差分消除序列的季节性,差分步长应与季节周期一致.
X t ( B)ut
注1:移动平均过程无条件平稳
【4】
注2:滞后多项式 ( B ) 的根都在单位圆外时,AR过程与MA过程 能相互表出,即过程可逆, 2 1 w1B w2 B X t wi Bi X t ut i 0 即为MA过程的逆转形式,也就是MA过程等价于无穷阶的AR过程
0 0
它们呈指数或者正弦波衰减,具有拖尾性 (3)ARMA( p, q )序列的自相关与偏自相关函数均是拖尾的
1 时间序列分析模型【ARMA模型 】简介
2、模型的识别 自相关函数与偏自相关函数是识别ARMA模型的最 主要工具,B-J方法主要利用相关分析法确定模型的阶数. q q )序列 若样本自协方差函数 k 在 步截尾,则判断 X t 是MA( , 若样本偏自相关函数 kk在 p 步截尾,则可判断 X t 是AR( p )序列 若 k , kk 都不截尾,而仅是依负指数衰减,这时可初步认为 X t 是
2 M

2 kk
2 M
样本来自AR(
p
)模型 。
注:实际中,此判断方法比较粗糙,还不能定阶,目前流行的方法是H.Akaike 信息定阶准则(AIC)
注3:【2】满足平稳条件时, AR过程等价于无穷阶的MA 过程,即
j X t 1 v1B v2 B ut v j B ut j 0
2
1 时间序列分析模型【ARMA模型 】简介
3、自回归移动平均【ARMA】模型 【B-J方法建模】
自回归移动平均序列
1 时间序列分析模型【ARMA模型 】简介 三、模型的识别与建立
在需要对一个时间序列运用B-J方法建模时,应运用序列的 自相关与偏自相关对序列适合的模型类型进行识别,确定适 宜的阶数 d , D, p, q 以及 P, Q(消除季节趋势性后的平稳序列) 1、自相关函数与偏自相关函数 (1)MA( q )的自相关与偏自相关函数 自协方差函数
样本自相关函数
1, k 0 k k 1 k 1 q k q k , 1 k q 2 2 0 1 1 q 0, k q
MA( q )序列的自相关函数 k 在 这种性质称为自相关函数的
kq
以后全都是0,
l 1
q
M 的68.3%或95.5%。
如果当1 k q0 时, k 明显地异于0,而 q0 1 ,, q0 M 近似为0,且满足上述不等式的个数达到了相应的比例, 则可近似地认为 k 在 0 步截尾


q
1 时间序列分析模型【ARMA模型 】简介
(2)
kk 的截尾性判断
N
ARMA模型有三种基本类型:
自回归(AR:Auto-regressive)模型 移动平均(MA:Moving Average)模型 自回归移动平均(ARMA:Auto-regressive Moving Average)模型
1 时间序列分析模型【ARMA模型 】简介 1、自回归【 AR 】模型
自回归序列 X t :

k
注1:
(X
t 1
nk
t n
X )( X t k X )
( X t X )2
t 1
n 是样本量, k 为滞后期, X 代表样本数据的算术平均值 注2:自相关系数 k 的取值范围是 [1,1] 且 | | 越接近1,自相关程度越高
k
1 时间序列分析模型【ARMA模型 】简介
Xt

如果时间序列 X t 是它的当期和前期的随机误差项以及 前期值的线性函数,即可表示为
X t 1 Xt 1 2 X t 2 p X t p ut 1ut 1 2ut 2 qut q【5】
相关文档
最新文档