四川省成都市西川中学2019-2020学年中考数学:二次函数第二轮专项训练题(无答案)
2019-2020年中考数学二次函数压轴题汇总训练(50题含答案和解析)
解答题(共50题)1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC 的垂直平分线与x轴交于一个点,即可求得点N的坐标;(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD=(n+2),然后根据S=S△ABN﹣S△BMN△AMN得出关于n的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x 轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;(3)⊙T与△ABC的位置关系分三种情况:①当⊙T在△ABC的左侧时,由d(⊙T,△ABC)=1知此时t=﹣4;②当⊙T在△ABC内部时,当点T与原点重合时,d(⊙T,△ABC)=1,知此时t=0;当点T位于T3位置时,由d(⊙T,△ABC)=1知T3M=2,∵AB=BC=8、∠ABC=90°,∴∠C=∠T3DM=45°,则T3D===2,∴t=4﹣2,故此时0≤t≤4﹣2;③当⊙T在△ABC右边时,由d(⊙T,△ABC)=1知T4N=2,∵∠T4DC=∠C=45°,∴T4D===2,∴t=4+2;综上,t=﹣4或0≤t≤4﹣2或t=4+2.【点评】本题主要考查圆的综合问题,解题的关键是理解并掌握“闭距离”的定义与直线与圆的位置关系和分类讨论思想的运用.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.【分析】(1)求出A、B两点坐标,即可解决问题;(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴交BE于N.构建二次函数利用二次函数的性质求出满足条件的点P坐标,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,因为FK=OF,推出PH+HF+FO=PH+FH+Fk=PH+HK,此时PH+HF+OF的值最小,解直角三角形即可解决问题;(3)分两种情形分别求解即可;【解答】解:(1)由题意A(1,3),B(3,3),∴AB=2.(2)如图1中,设P(m,﹣m2+4m),作PN∥y轴J交BE于N.∵直线BE的解析式为y=x,∴N(m,m),=×2×(﹣m2+3m)=﹣m2+3m,∴S△PEB∴当m=时,△PEB的面积最大,此时P(,),H(,3),∴PH=﹣3=,作直线OG交AB于G,使得∠COG=30°,作HK⊥OG于K交OC于F,∵FK=OF,∴PH+HF+FO=PH+FH+FK=PH+HK,此时PH+HF+OF的值最小,。
2020年中考数学二轮复习专题 二次函数综合(含答案)
2020年中考数学二轮复习专题 二次函数综合(含答案)一、单选题1.二次函数2,0y ax bx c a =++≠()的图象如图如图所示,若M a b c =+-,42N a b c =+-,2P a b =-.则M N P ,,中,值小于0的数有( )A. 3个B. 2个C. 1个D. 0个2.已知抛物线c bx ax y ++=2的图象如图所示,则下列结论中正确的结论有( ) ①0>abc ;②2=++c b a ;③21<a ; ④1>b A.①②B.②③C.③④D.②④3.从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则( )A .小强家在小红家的正东B .小强家在小红家的正西C .小强家在小红家的正南D .小强家在小红家的正北4.如图是二次函数2y ax bx c =++图象的一部分,其对称轴为1x =-,且过点(-3,0).下列说法中说法正确的是( )①0abc <; ②20a b -=;③420a b c <++,④若()15y -, ,25,2y ⎛⎫⎪⎝⎭是抛物线上两点,则12y y >A.①②B.②③C.①②④D.5.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次性购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折: ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A. 1个B. 2个C. 3个D. 4个6.函数b kx y +=的图象如图所示,当y>0时,x 的取值范围是( )A 、 x>1B 、 x>2C 、 x<1D 、 x<27.若二次函数2() 0y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别为()()12,0,,0x x ,且12x x <,图象上有一点00,Mx y ()在x 轴下方,则下列判断正确的是( ) A.0a >B.240b ac -≥C.102x x x <<D.()()01020a x x x x --<.8.已知一次函数b kx y +=,y 随着x 的增大而减小,且0<kb ,则在直角坐标系内它的大致图象是( )9.反比例函数myx=的图象如图所示,下列结论:①常数1m<-;②在每个象限内,y随x的增大而增大;③若点()1,A h-,()2,B k在图象上,则h k<;④若点(),P x y在图象上,则点()',P x y--也在图象上。
(最新整理)2019年中考数学二轮复习二次函数压轴题综合练习(有答案)
2019年中考数学二轮复习二次函数压轴题综合练习(有答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年中考数学二轮复习二次函数压轴题综合练习(有答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年中考数学二轮复习二次函数压轴题综合练习(有答案)的全部内容。
2019年中考数学二轮复习二次函数压轴题综合练习1.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.2。
如图,已知抛物线,抛物线的顶点为,过作2(1)y a x=-+(2)A-,0D O射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.OM AD∥D x OM C B x BC (1)求该抛物线的解析式;(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为P O OM P .问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?()t s t DAOP(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个OC OB=P Q O B长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们OC BO的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值t()s PQ t BCPQ及此时的长.PQ3.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).4。
四川省成都市2019-2020学年中考二诊数学试题含解析
4.下列四个图形中,是中心对称图形的是()
A. B. C. D.
5.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为 ,当电压为定值时,I关于R的函数图象是()
A. B. C. D.
6.下列计算正确的是( )
A.( )2=±8B. + =6 C.(﹣ )0=0D.(x﹣2y)﹣3=
A.25°B.30°C.35°D.55°
2.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()
A. B. C. D.±
3.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()
22.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润 (元)与销售单价 (元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案
(2)先化简,再求值:( )+ ,其中a=﹣2+ .
20.(6分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?
2019-2020学年四川省成都市中考数学二模试卷((有标准答案))
四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)89 90 92 94 95 人数 4 6 8 5 7对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92 D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3 B.y=(x﹣1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3 8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K 1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L 2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y =ax 2+bx +c 的图象如图所示,其对称轴与x 轴交于点(﹣1,0),图象上有三个点分别为(2,y 1),(﹣3,y 2),(0,y 3),则y 1、y 2、y 3的大小关系是 (用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x 元.(1)写出售出一个可获得的利润是多少元(用含x 的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F .(1)若AB =6,AE =4,BD =2,则CF = ;(2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为 (用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:成绩(分)89 90 92 94 95人数 4 6 8 5 7 对于这组数据,下列说法错误的是()A.平均数是92 B.中位数是92 C.众数是92 D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3 B.y=(x﹣1)2+3 C.y=(x﹣1)2﹣3 D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A .∠BAD 与∠B 互补B .∠1=∠2C .∠BAD 与∠D 互补 D .∠BCD 与∠D 互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB ∥CD ,∴∠BAD 与∠D 互补,即C 选项符合题意;当AD ∥BC 时,∠BAD 与∠B 互补,∠1=∠2,∠BCD 与∠D 互补,故选项A 、B 、D 都不合题意,故选:C .【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF 是正六边形,曲线FK 1K 2K 3K 4K 5K 6K 7…叫做“正六边形的渐开线”,其中弧FK 1,弧K 1K 2,弧K 2K 3,弧K 3K 4,弧K 4K 5,弧K 5K 6,…的圆心依次按点A ,B ,C ,D ,E ,F 循环,其弧长分别记为L 1,L 2,L 3,L 4,L 5,L 6,….当AB =1时,L 2016等于( )A .B .C .D ..【分析】用弧长公式,分别计算出l 1,l 2,l 3,…的长,寻找其中的规律,确定l 2016的长.【解答】解:根据题意得:l 1==,l 2==, l 3===π,则L 2016=, 故选:B . 【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l 2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x +y =4,x ﹣=1,则4x 2﹣y 2= 8 .【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN= 2 .【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:A B C DA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE=2,ED=4,∵△ABE∽△ADB,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4 .【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9 .【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF 是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y 1、y 2、y 3的大小关系.【解答】解:∵抛物线的对称轴与x 轴交于点(﹣1,0), ∴抛物线的对称轴为直线x =﹣1,∵点(2,y 1)到直线x =﹣1的距离最大,点(0,y 3)到直线x =﹣1的距离最小, ∴y 3<y 2<y 1. 故答案为y 3<y 2<y 1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键. 五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x 元. (1)写出售出一个可获得的利润是多少元(用含x 的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个? (3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少? 【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x ,列方程求解,根据题意取舍; (3)利用函数的性质求最值. 【解答】解:由题意得: (1)50+x ﹣40=x +10(元) (2)设每个定价增加x 元.列出方程为:(x +10)(400﹣10x )=6000 解得:x 1=10 x 2=20要使进货量较少,则每个定价为70元,应进货200个. (3)设每个定价增加x 元,获得利润为y 元.y =(x +10)(400﹣10x )=﹣10x 2+300x +4000=﹣10(x ﹣15)2+6250当x =15时,y 有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC ,将直角三角板的60°角顶点D 任意放在BC 边上(点D 不与点B 、C 重合),使两边分别交线段AB 、AC 于点E 、F . (1)若AB =6,AE =4,BD =2,则CF = 4 ; (2)求证:△EBD ∽△DCF .【思考】若将图①中的三角板的顶点D 在BC 边上移动,保持三角板与边AB 、AC 的两个交点E 、F 都存在,连接EF ,如图②所示,问:点D 是否存在某一位置,使ED 平分∠BEF 且FD 平分∠CFE ?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC 中,AB =AC ,点O 为BC 边的中点,将三角形透明纸板的一个顶点放在点O 处(其中∠MON =∠B ),使两条边分别交边AB 、AC 于点E 、F (点E 、F 均不与△ABC 的顶点重合),连接EF .设∠B =α,则△AEF 与△ABC 的周长之比为 1﹣cos α (用含α的表达式表示).【分析】(1)先求出BE 的长度后发现BE =BD 的,又∠B =60°,可知△BDE 是等边三角形,可得∠BDE =60°,另外∠DEF =60°,可证得△CDF 是等边三角形,从而CF =CD =BC ﹣BD ;(2)证明△EBD ∽△DCF ,这个模型可称为“一线三等角•相似模型”,根据“AA ”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D 作DM ⊥BE ,DG ⊥EF ,DN ⊥CF ,则DM =DG =DN ,从而证明△BDM ≌△CDN 可得BD =CD ;【探索】由已知不能求得C △ABC =AB +BC +AC =2AB +2OB =2(m +m cos α),则需要用m 和α是三角函数表示出C △AEF ,C △AEF =AE +EF +AF =AG +AH =2AG ;题中直接已知点O 是BC 的中点,应用(2)题的方法和结论,作OG ⊥BE ,OD ⊥EF ,OH ⊥CF ,可得EG =ED ,FH =DF ,则C △AEF =AE +EF +AF =AG +AH =2AG ,而AG =AB ﹣BO ,从而可求得.【解答】(1)解:∵△ABC 是等边三角形,∴AB =BC =AC =6,∠B =∠C =60°.∵AE =4,∴BE =2,则BE =BD ,∴△BDE 是等边三角形,∴∠BED =60°,又∵∠EDF =60°,∴∠CDF =180°﹣∠EDF ﹣∠B =60°,则∠CDF =∠C =60°,∴△CDF 是等边三角形,∴CF =CD =BC =BD =6﹣2=4.故答案是:4;。
四川省成都市2019-2020学年中考数学第二次押题试卷含解析
四川省成都市2019-2020学年中考数学第二次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A.1个B.2个C.3个D.4个2.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.2cm B.32cm C.42cm D.4cm3.如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=﹣x+6于B、C两点,若函数y=kx(x>0)的图象△ABC的边有公共点,则k的取值范围是()A.5≤k≤20B.8≤k≤20C.5≤k≤8D.9≤k≤204.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为A.1或−2 B.−或C.D.15.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m,这个数用科学记数法表示正确的是()A.3.4×10-9m B.0.34×10-9m C.3.4×10-10m D.3.4×10-11m6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F,若AC=BD,AB=ED,BC=BE,则∠ACB等于()A .∠EDB B .∠BEDC .∠EBD D .2∠ABF 7.二次函数y=ax²+bx+c (a ,b ,c 为常数)中的x 与y 的部分对应值如表所示:x -1 0 1 3 y135- 3 2953 下列结论:(1)abc <0(2)当x >1时,y 的值随x 值的增大而减小;(3)16a+4b+c <0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个 8.4的平方根是( )A .16B .2C .±2D .±9.如图,正六边形A 1B 1C 1D 1E 1F 1的边长为2,正六边形A 2B 2C 2D 2E 2F 2的外接圆与正六边形A 1B 1C 1D 1E 1F 1的各边相切,正六边形A 3B 3C 3D 3E 3F 3的外接圆与正六边形A 2B 2C 2D 2E 2F 2的各边相切,…按这样的规律进行下去,A 11B 11C 11D 11E 11F 11的边长为( )A .92432B .813C .82432D .813 10.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .11.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3-12.如图,点F 是Y ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A.18 B.22 C.24 D.46二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在扇形OAB中,∠O=60°,OA=43,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,»AB,OB上,则图中阴影部分的面积为__________.14.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为_____.15.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.16.如图,在△ABC中,AB=AC=23,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为________.17.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,点D是边AB上的动点,将△ACD沿CD 所在的直线折叠至△CDA的位置,CA'交AB于点E.若△A'ED为直角三角形,则AD的长为_____.18.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段CD ,点A 、B 、C 、D 均在小正方形的顶点上.(1)在方格纸中画出以AB 为斜边的等腰直角三角形ABE ,点E 在小正方形的顶点上;(2)在方格纸中画出以CD 为对角线的矩形CMDN (顶点字母按逆时针顺序),且面积为10,点M 、N 均在小正方形的顶点上;(3)连接ME ,并直接写出EM 的长.20.(6分)抛物线y=﹣x 2+(m ﹣1)x+m 与y 轴交于(0,3)点.(1)求出m 的值并画出这条抛物线;(2)求它与x 轴的交点和抛物线顶点的坐标;(3)x 取什么值时,抛物线在x 轴上方?(4)x 取什么值时,y 的值随x 值的增大而减小?21.(6分)已知:如图,AB AD =,AC AE =,BAD CAE ∠=∠.求证:BC DE =.22.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a 元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x 取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.23.(8分)如图,某校数学兴趣小组要测量大楼AB的高度,他们在点C处测得楼顶B的仰角为32°,再往大楼AB方向前进至点D处测得楼顶B的仰角为48°,CD=96m,其中点A、D、C在同一直线上.求AD的长和大楼AB的高度(结果精确到2m)参考数据:sin48°≈2.74,cos48°≈2.67,tan48°≈2.22,3≈2.73 24.(10分)解不等式组21114(2)xx x+-⎧⎨+>-⎩…25.(10分)计算:26.(12分)某手机店销售10部A型和20部B型手机的利润为4000元,销售20部A型和10部B型手机的利润为3500元.(1)求每部A型手机和B型手机的销售利润;(2)该手机店计划一次购进A,B两种型号的手机共100部,其中B型手机的进货量不超过A型手机的2倍,设购进A型手机x部,这100部手机的销售总利润为y元.①求y关于x的函数关系式;②该手机店购进A型、B型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对A型手机出厂价下调()0100m m<<元,且限定手机店最多购进A型手机70部,若手机店保持同种手机的售价不变,设计出使这100部手机销售总利润最大的进货方案.27.(12分)如图,在平面直角坐标系中,抛物线212y x bx c=-++与x轴交于点A、B,与y轴交于点C,直线y=x+4经过点A、C,点P为抛物线上位于直线AC上方的一个动点.(1)求抛物线的表达式;(2)如图,当CP//AO时,求∠PAC的正切值;(3)当以AP、AO为邻边的平行四边形第四个顶点恰好也在抛物线上时,求出此时点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】【详解】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选B.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.2.C【解析】【分析】利用扇形的弧长公式可得扇形的弧长;让扇形的弧长除以2π即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高.【详解】L=1206180π⨯=4π(cm);圆锥的底面半径为4π÷2π=2(cm),=cm).故选C.【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=2n r180π;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形.3.A【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故520k ≤≤. 故选A.4.D【解析】【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a >0,然后由-2≤x≤1时,y 的最大值为9,可得x=1时,y=9,即可求出a .【详解】∵二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y 随x 的增大而增大,∴a >0,∵-2≤x≤1时,y 的最大值为9,∴x=1时,y=a+2a+3a 2+3=9,∴3a 2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D .【点睛】本题考查了二次函数的性质,二次函数y=ax 2+bx+c (a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax 2+bx+c (a≠0)的图象具有如下性质:①当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,x <-时,y 随x 的增大而减小;x >-时,y 随x 的增大而增大;x=-时,y 取得最小值,即顶点是抛物线的最低点.②当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,x <-时,y 随x 的增大而增大;x >-时,y 随x 的增大而减小;x=-时,y 取得最大值,即顶点是抛物线的最高点.5.C【解析】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10na⨯的形式,所以将1.11111111134用科学记数法表示103.410-⨯,故选C.考点:科学记数法6.C【解析】【分析】根据全等三角形的判定与性质,可得∠ACB=∠DBE的关系,根据三角形外角的性质,可得答案. 【详解】在△ABC和△DEB中,AC BDAB EDBC BE=⎧⎪=⎨⎪=⎩,所以△ABC≅△BDE(SSS),所以∠ACB=∠DBE.故本题正确答案为C.【点睛】.本题主要考查全等三角形的判定与性质,熟悉掌握是关键. 7.B【解析】【分析】(1)利用待定系数法求出二次函数解析式为y=-75x2+215x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【详解】(1)∵x=-1时y=-135,x=0时,y=3,x=1时,y=295,∴1352953a b ca b cc⎧-+-⎪⎪⎪++⎨⎪=⎪⎪⎩==,解得7 =52153 abc⎧-⎪⎪⎪⎨⎪=⎪⎪⎩=∴abc<0,故正确;(2)∵y=-75x2+215x+3,∴对称轴为直线x=-21572()5⨯-=32,所以,当x>32时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=32,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.8.C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.9.A【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2=2E1D1=2×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=3×2,同理可得正六边形A3B3C3D3E3F3的边长=(3)2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(3)10×2,然后化简即可.详解:连接OE1,OD1,OD2,如图,∵六边形A1B1C1D1E1F1为正六边形,∴∠E1OD1=60°,∴△E1OD1为等边三角形,∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,∴OD2⊥E1D1,∴OD2=32E1D1=32×2,∴正六边形A2B2C2D2E2F2的边长32,同理可得正六边形A3B3C3D3E3F3的边长=32×2,则正六边形A11B11C11D11E11F11的边长=310×2=92432.故选A.点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.记住正六边形的边长等于它的半径.10.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.11.D根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.12.B【解析】【分析】连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE的面积.【详解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴AFBC=AEEC=13,∵△AEF与△EFC高相等,∴S△EFC=3S△AEF,∵点F是□ABCD的边AD上的三等分点,∴S△FCD=2S△AFC,∵△AEF的面积为2,∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8π﹣连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.【详解】连接EF、OC交于点H,则OH=23,∴FH=OH×tan30°=2,∴菱形FOEC的面积=12×43×4=83,扇形OAB的面积=()26043360π⨯=8π,则阴影部分的面积为8π﹣83,故答案为8π﹣83.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.14.1或2【解析】【分析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案.【详解】点在圆内,圆的直径为1+3=4,圆的半径为2;点在圆外,圆的直径为3−1=2,圆的半径为1,故答案为1或2.【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外.15.1【解析】【分析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【详解】解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案为1.16.13-1.【解析】【分析】将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=23、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=3x,利用FE=6-1x=3x可求出x以及FE的值,此题得解.【详解】将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵3,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG , ∴∠EFG=∠FEG=12∠CGE=10°, ∴△CEF 为直角三角形. ∵∠BAC=120°,∠DAE=60°, ∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°. 在△ADE 和△AFE 中,60AD AF DAE FAE AE AE ⎧⎪∠∠︒⎨⎪⎩====, ∴△ADE ≌△AFE (SAS ), ∴DE=FE .设EC=x ,则BD=CF=2x ,DE=FE=6-1x , 在Rt △CEF 中,∠CEF=90°,CF=2x ,EC=x ,x , ∴,,∴-1. 故答案为:. 【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键. 17.31 【解析】 【分析】分两种情况:情况一:如图一所示,当∠A'DE=90°时; 情况二:如图二所示,当∠A'ED=90°时. 【详解】解:如图,当∠A'DE=90°时,△A'ED 为直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等边三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,设AD=A'D=x,则DE=1﹣x,∵Rt△A'DE中,A'D=3DE,∴x=3(1﹣x),解得x=3﹣3,即AD的长为3﹣3;如图,当∠A'ED=90°时,△A'ED为直角三角形,此时∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=12BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,设AD=A'D=x,则Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的长为1;综上所述,即AD 的长为3﹣3或1. 故答案为3﹣3或1. 【点睛】本题考查了翻折变换,勾股定理,等腰直角三角形的判定和性质等知识,添加辅助线,构造直角三角形,学会运用分类讨论是解题的关键. 18.3 【解析】 【分析】利用特殊三角形的三边关系,求出AM,AE 长,求比值. 【详解】解:如图所示,设BC=x ,∵在Rt △ABC 中,∠B=90°,∠A=30°, ∴AC=2BC=2x ,AB=3BC=3x ,根据题意得:AD=BC=x ,AE=DE=AB=3x , 如图,作EM ⊥AD 于M ,则AM=12AD=12x , 在Rt △AEM 中,cos ∠EAD=3263XAM AE x==, 故答案为:36.【点睛】特殊三角形: 30°-60°-90°特殊三角形,三边比例是13:2,利用特殊三角函数值或者勾股定理可快速求出边的实际关系.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)画图见解析;(2)画图见解析;(35【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得EM=5.【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理. 20.(1);(2),;(1);(2)【解析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:X ﹣10 1 2 1y 0 1 2 1 0 图象如下.(2)由﹣x 2+2x+1=0,得:x 1=﹣1,x 2=1. ∴抛物线与x 轴的交点为(﹣1,0),(1,0). ∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2 ∴抛物线顶点坐标为(1,2). (1)由图象可知:当﹣1<x <1时,抛物线在x 轴上方. (2)由图象可知:当x >1时,y 的值随x 值的增大而减小 考点: 二次函数的运用 21.见解析 【解析】 【分析】先通过∠BAD=∠CAE 得出∠BAC=∠DAE ,从而证明△ABC ≌△ADE ,得到BC=DE . 【详解】证明:∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC . 即∠BAC=∠DAE , 在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ). ∴BC=DE . 【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:AAS 、SSS 、SAS 、SSA 、HL .22.(1)30+37601850+3600923x x x y x x x ≤≤⎧⎨≤≤⎩(,为整数)=(,为整数) ;(2)当每套房赠送的装修基金多于10 560元时,选择方案一合算;当每套房赠送的装修基金等于10 560元时,两种方案一样;当每套房赠送的装修基金少于10 560元时,选择方案二合算. 【解析】 【详解】解:(1)当1≤x≤8时,每平方米的售价应为: y=4000﹣(8﹣x )×30="30x+3760" (元/平方米) 当9≤x≤23时,每平方米的售价应为: y=4000+(x ﹣8)×50=50x+3600(元/平方米). ∴30+37601850+3600923x x x y x x x ≤≤⎧⎨≤≤⎩(,为整数)=(,为整数)(2)第十六层楼房的每平方米的价格为:50×16+3600=4400(元/平方米), 按照方案一所交房款为:W 1=4400×120×(1﹣8%)﹣a=485760﹣a (元), 按照方案二所交房款为:W 2=4400×120×(1﹣10%)=475200(元), 当W 1>W 2时,即485760﹣a >475200, 解得:0<a <10560,当W 1<W 2时,即485760﹣a <475200, 解得:a >10560,∴当0<a <10560时,方案二合算;当a >10560时,方案一合算. 【点睛】本题考查的是用一次函数解决实际问题,读懂题目信息,找出数量关系表示出各楼层的单价以及是交房款的关系式是解题的关键.23.AD 的长约为225m ,大楼AB 的高约为226m 【解析】 【分析】首先设大楼AB 的高度为xm ,在Rt △ABC中利用正切函数的定义可求得 ,然后根据∠ADB 的正切表示出AD 的长,又由CD=96m ,x961.11-= ,解此方程即可求得答案. 【详解】解:设大楼AB 的高度为xm ,在Rt △ABC 中,∵∠C=32°,∠BAC=92°,∴ABAC=tan 30==o,在Rt △ABD 中,AB tan ADB tan48AD∠=︒= , ∴AB xAD =tan48 1.11=︒,∵CD=AC-AD ,CD=96m , ∴x3x 961.11-= , 解得:x≈226, ∴x 116AD 1051.11 1.11=≈≈ 答:大楼AB 的高度约为226m ,AD 的长约为225m . 【点睛】本题考查解直角三角形的应用.要求学生能借助仰角构造直角三角形并解直角三角形,注意数形结合思想与方程思想的应用. 24.﹣1≤x <1. 【解析】 【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可. 【详解】解不等式2x+1≥﹣1,得:x≥﹣1, 解不等式x+1>4(x ﹣2),得:x <1, 则不等式组的解集为﹣1≤x <1. 【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键. 25.-1 【解析】 【分析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得. 【详解】 原式=1﹣4﹣+1﹣=﹣1.【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.26. (1)每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元;(2)①5015000y x =-+;②手机店购进34部A 型手机和66部B 型手机的销售利润最大;(3)手机店购进70部A 型手机和30部B 型手机的销售利润最大.【分析】(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元,根据题意列出方程组求解即可;(2)①根据总利润=销售A 型手机的利润+销售B 型手机的利润即可列出函数关系式;②根据题意,得1002x x -≤,解得1003x ≥,根据一次函数的增减性可得当当34x =时,y 取最大值; (3)根据题意,()5015000y m x =-+,100703x ≤≤,然后分①当050m <<时,②当50m =时,③当50100m <<时,三种情况进行讨论求解即可.【详解】解:(1)设每部A 型手机的销售利润为a 元,每部B 型手机的销售利润为b 元.根据题意,得1020400020103500a b a b +=⎧⎨+=⎩, 解得100150a b =⎧⎨=⎩ 答:每部A 型手机的销售利润为100元,每部B 型手机的销售利润为150元.(2)①根据题意,得()100150100y x x =+-,即5015000y x =-+.②根据题意,得1002x x -≤,解得1003x ≥. 5015000y x =-+Q ,500-<,y ∴随x 的增大而减小.x Q 为正整数,∴当34x =时,y 取最大值,10066x -=.即手机店购进34部A 型手机和66部B 型手机的销售利润最大.(3)根据题意,得()()100150100y m x x =++-.即()5015000y m x =-+,100703x ≤≤. ①当050m <<时,y 随x 的增大而减小,∴当34x =时,y 取最大值,即手机店购进34部A 型手机和66部B 型手机的销售利润最大; ②当50m =时,500m -=,15000y =,即手机店购进A 型手机的数量为满足100703x ≤≤的整数时,获得利润相同;③当50100m <<时,500m ->,y 随x 的增大而增大, ∴当70x =时,y 取得最大值,即手机店购进70部A 型手机和30部B 型手机的销售利润最大.本题主要考查一次函数的应用,二元一次方程组的应用,解此题的关键在于熟练掌握一次函数的增减性.27.(1)抛物线的表达式为2142y x x =--+;(2)1tan 3∠PAC =;(3)P 点的坐标是5(3,)2-. 【解析】【分析】分析:(1)由题意易得点A 、C 的坐标分别为(-1,0),(0,1),将这两点坐标代入抛物线212y x bx c =-++列出方程组,解得b 、c 的值即可求得抛物线的解析式;(2)如下图,作PH ⊥AC 于H ,连接OP ,由已知条件先求得PC=2,AC=S △APC ,可求得OA=OC 得到∠CAO=15°,结合CP ∥OA 可得∠PCA=15°,即可得到,由此可得AH=Rt △APH 中由tan ∠PAC=PH AH即可求得所求答案了; (3)如图,当四边形AOPQ 为符合要求的平行四边形时,则此时PQ=AO=1,且点P 、Q 关于抛物线的对称轴x=-1对称,由此可得点P 的横坐标为-3,代入抛物线解析即可求得此时的点P 的坐标. 详解:(1)∵直线y=x+1经过点A 、C ,点A 在x 轴上,点C 在y 轴上∴A 点坐标是(﹣1,0),点C 坐标是(0,1),又∵抛物线过A ,C 两点, ∴()21440,2 4.b c c ⎧-⨯--+=⎪⎨⎪=⎩解得14b c =-⎧⎨=⎩, ∴抛物线的表达式为2142y x x =--+; (2)作PH ⊥AC 于H ,∵点C 、P 在抛物线上,CP//AO , C (0,1),A (-1,0)∴P (-2,1),AC=∴PC=2,AC PH PC CO ⋅=⋅,∴∵A (﹣1,0),C (0,1),∴∠CAO=15°.∵CP//AO ,∴∠ACP=∠CAO=15°,∵PH ⊥AC ,∴CH=PH=2, ∴AH 42232=-=.∴PH 1tan PAC AH 3∠==;(3)∵221114(1)4222y x x x =--+=-++, ∴抛物线的对称轴为直线1x =-,∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上,∴PQ ∥AO ,且PQ=AO=1.∵P ,Q 都在抛物线上,∴P ,Q 关于直线1x =-对称,∴P 点的横坐标是﹣3,∵当x=﹣3时,()()215y 33422=-⋅---+=, ∴P 点的坐标是53,2⎛⎫- ⎪⎝⎭.点睛:(1)解第2小题的关键是:作出如图所示的辅助线,构造出Rt △APH ,并结合题中的已知条件求出PH 和AH 的长;(2)解第3小题的关键是:根据题意画出符合要求的示意图,并由PQ ∥AO ,PQ=AO 及P 、Q 关于抛物线的对称轴对称得到点P 的横坐标.【详解】请在此输入详解!。
2024成都中考数学二轮复习专题 二次函数基础专项训练(含答案)
2024成都中考数学二轮复习专题二次函数基础专项训练(学生版)目标层级图一.二次函数定义1.二次函数的定义1.一般地,形如c bx axy ++=2(c b a ,,为常数,0≠a )的函数称为x 的二次函数,其中x 为自变量,y 为因变量,c b a ,,分别为二次函数的二次项、一次项和常数项系数.*二次函数自变量x 的取值范围是全体实数2.任何二次函数都可以整理成c bx ax y ++=2(c b a ,,为常数,0≠a )的形式.3.判断函数是否为二次函数的方法:(1)含有一个变量,且自变量的最高次数为2;(2)二次项系数不等于0;(3)等式两边都是整式.例1.下列y 关于x 函数中,一定是二次函数的有()①2y ax bx c =++②21y x=③212x y x +=-④22(1)y x x =+-⑤210025y x =-A .2个B .3个C .4个D .5个例2.若2(1)mmy m x +=+是关于x 的二次函数,则m 的值为()A .2-B .1C .2-或1D .2或1过关检测1.函数2(2)21y m x x =++-是二次函数,则m .2.若2(1)1mmy m x -=++是x 的二次函数,则m =.二.二次函数的图象与性质1.2y ax =的图象与性质开口对称轴顶点最值增减性a >在对称轴左边,y 随x 的增大而_____,在对称轴右边,y 随x 的增大而______。
a <在对称轴左边,y 随x 的增大而_____,在对称轴右边,y 随x 的增大而______。
2.2y ax c =+的图象与性质开口对称轴顶点最值增减性a >在对称轴左边,y 随x 的增大而_____,在对称轴右边,y 随x 的增大而______。
a <在对称轴左边,y 随x 的增大而_____,在对称轴右边,y 随x 的增大而______。
3.2(0)()a y a x h ≠=-和2()y a x h k =-+的图象与性质开口对称轴顶点最值增减性a >在对称轴左边,y 随x 的增大而_____,在对称轴右边,y 随x 的增大而______。
2019~2020年四川第二次数学-试卷
第 19 题 图
.
数学试卷 第2页(共4页)
三 、解 答 题 (本 大 题 共 6 小 题 ,共 70 分 ,解 答 应 写 出 文 字 说 明 、证 明 过 程 或 演 算 步 骤 ) 21.(本 小 题 满 分 10 分 )计 算 :lg25+lg2lg50+lg22+log29·log32.
=
.
19.为了调查某厂工人 生 产 某 种 产 品 的 能 力,随 机 抽 查
了20位工人某天生 产 该 产 品 的 数 量 的 频 率 分 布 直
方 图 如 图 所 示 ,则 这 20 名 工 人 中 一 天 生 产 该 产 品 数
量 在 [55,75)的 人 数 是
.
20.已 知 圆 锥 的 高 为 4,底 面 圆 半 径 为 3,则 它 的 侧 面 积 为
4 B.- 5
4 C.5
3 D.- 5
6.函数y= x-1+ln(2-x)的定义域是
A.[1,+ ∞ )
B.(- ∞ ,2)
C.(1,2)
7.在直线y=x+3上取两点 A,B,则AB→可以为
D.[1,2)
A.(0,3)
B.(1,1)
C.(1,3)
D.(1,4)
8.在等差数列{an}中,a2,a8 是方程x2+10x-4=0的两根,则a5=
25.(本小题满分13分)在圆锥 PO 中,已知 PO=2 2,☉O 的 直 径 AB =4,点 C 在 底 面 圆 周 上,且∠CAB=30°,D 为AC 的中点. (1)求证:AC⊥平面 POD ; (2)求点 O 到面PAD 的距离.
26.(本 小 题 满 分 13 分 )已
成都中考数学综合题专练∶二次函数
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图1,抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (﹣1,0)、B (4,0)两点,与y 轴交于点C ,且OC=3OA .点P 是抛物线上的一个动点,过点P 作PE ⊥x 轴于点E ,交直线BC 于点D ,连接PC .(1)求抛物线的解析式;(2)如图2,当动点P 只在第一象限的抛物线上运动时,求过点P 作PF ⊥BC 于点F ,试问△PDF 的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由. (3)当点P 在抛物线上运动时,将△CPD 沿直线CP 翻折,点D 的对应点为点Q ,试问,四边形CDPQ 是否成为菱形?如果能,请求出此时点P 的坐标,如果不能,请说明理由.【答案】(1) y=﹣234x +94x+3;(2) 有最大值,365;(3) 存在这样的Q 点,使得四边形CDPQ 是菱形,此时点P 的坐标为(73,256)或(173,﹣253). 【解析】试题分析: (1)利用待定系数法求二次函数的解析式;(2)设P (m ,﹣34m 2+94m+3),△PFD 的周长为L ,再利用待定系数法求直线BC 的解析式为:y=﹣34x+3,表示PD=﹣2334m m ,证明△PFD ∽△BOC ,根据周长比等于对应边的比得:=PED PD BOC BC 的周长的周长,代入得:L=﹣95(m ﹣2)2+365,求L 的最大值即可; (3)如图3,当点Q 落在y 轴上时,四边形CDPQ 是菱形,根据翻折的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD ,又知Q 落在y 轴上时,则CQ ∥PD ,由四边相等:CD=DP=PQ=QC ,得四边形CDPQ 是菱形,表示P (n ,﹣23n 4 +94n+3),则D (n ,﹣34n+3),G (0,﹣34n+3),利用勾股定理表示PD 和CD 的长并列式可得结论. 试题解析:(1)由OC=3OA ,有C (0,3),将A (﹣1,0),B (4,0),C (0,3)代入y=ax 2+bx+c 中,得:016403a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34943a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩, 故抛物线的解析式为:y=﹣234x +94x+3; (2)如图2,设P (m ,﹣34m 2+94m+3),△PFD 的周长为L , ∵直线BC 经过B (4,0),C (0,3),设直线BC 的解析式为:y=kx+b ,则403k b b +=⎧⎨=⎩ 解得:343k b ⎧=-⎪⎨⎪=⎩ ∴直线BC 的解析式为:y=﹣34x+3, 则D (m ,﹣334m +),PD=﹣2334m m +, ∵PE ⊥x 轴,PE ∥OC ,∴∠BDE=∠BCO ,∵∠BDE=∠PDF ,∴∠PDF=∠BCO ,∵∠PFD=∠BOC=90°,∴△PFD ∽△BOC , ∴=PED PD BOC BC的周长的周长, 由(1)得:OC=3,OB=4,BC=5,故△BOC 的周长=12,∴2334125m m L -+=, 即L=﹣95(m ﹣2)2+365,∴当m=2时,L 最大=365; (3)存在这样的Q 点,使得四边形CDPQ 是菱形,如图3, 当点Q 落在y 轴上时,四边形CDPQ 是菱形,理由是:由轴对称的性质知:CD=CQ ,PQ=PD ,∠PCQ=∠PCD , 当点Q 落在y 轴上时,CQ ∥PD ,∴∠PCQ=∠CPD ,∴∠PCD=∠CPD ,∴CD=PD ,∴CD=DP=PQ=QC ,∴四边形CDPQ 是菱形,过D 作DG ⊥y 轴于点G ,设P (n ,﹣234n +94n+3),则D (n ,﹣34n+3),G (0,﹣334n +), 在Rt △CGD 中,CD 2=CG 2+GD 2=[(﹣34n+3)﹣3]2+n 2=22516n , 而|PD|=|(﹣239344n n ++ 3n ++)﹣(﹣34n+3)|=|﹣234n +3n|, ∵PD=CD ,∴﹣235344n n n +=①, ﹣235344n n n +=-②, 解方程①得:n=73或0(不符合条件,舍去), 解方程②得:n=173或0(不符合条件,舍去), 当n=73时,P (73,256),如图3,当n=173时,P (173,﹣253),如图4,综上所述,存在这样的Q点,使得四边形CDPQ是菱形,此时点P的坐标为(73,256)或(173,﹣253).点睛: 本题是二次函数的综合题,考查了利用待定系数法求函数的解析式、菱形的性质和判定、三角形相似的性质和判定,将周长的最值问题转化为二次函数的最值问题,此类问题要熟练掌握利用解析式表示线段的长,并利用相似比或勾股定理列方程解决问题.2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.3.如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值; (3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.【答案】(1)二次函数的解析式为233642y x x =--+;(2)当23x =-时,ADE ∆的面积取得最大值503;(3)P 点的坐标为()1,1-,(1,11-,(1,219--. 【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG ⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.详解:(1)∵二次函数y =ax 2+bx +c 经过点A (﹣4,0)、B (2,0),C (0,6), ∴16404206a b c a b c c -+=⎧⎪++=⎨⎪=⎩, 解得:34326a b c ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩, 所以二次函数的解析式为:y =233642x x --+;(2)由A (﹣4,0),E (0,﹣2),可求AE 所在直线解析式为y =122x --, 过点D 作DN ⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH ⊥DF ,垂足为H ,如图,设D (m ,233642m m --+),则点F (m ,122m --), ∴DF =233642m m --+﹣(122m --)=2384m m --+, ∴S △ADE =S △ADF +S △EDF =12×DF ×AG +12DF ×EH =12×DF ×AG +12×DF ×EH =12×4×DF =2×(2384m m --+) =23250233m -++(), ∴当m =23-时,△ADE 的面积取得最大值为503. (3)y =233642x x --+的对称轴为x =﹣1,设P (﹣1,n ),又E (0,﹣2),A (﹣4,0),可求PA 29n +PE 212n ++()AE 16425+=,分三种情况讨论: 当PA =PE 29n +212n ++()n =1,此时P (﹣1,1); 当PA =AE 29n +16425+=n =11,此时点P 坐标为(﹣1,11);当PE =AE 212n ++()16425+=n =﹣219P 坐标为:(﹣1,﹣219).±).综上所述:P点的坐标为:(﹣1,1),(﹣1,11±),(﹣1,﹣219点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.4.已知点A(﹣1,2)、B(3,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x 轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【答案】(1)抛物线的解析式为y=x2﹣x;(2)证明见解析;(3)当运动时间为或秒时,QM=2PM.【解析】【分析】(1)(1)A,B的坐标代入抛物线y=ax2+bx中确定解析式;(2)把A点坐标代入所设的AF的解析式,与抛物线的解析式构成方程组,解得G点坐标,再通过证明三角形相似,得到同位角相等,两直线平行;(3)具体见详解.【详解】.解:(1)将点A(﹣1,2)、B(3,6)代入中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,2)代入y=kx+m中,即﹣k+m=2,∴k=m﹣2,∴直线AF的解析式为y=(m﹣2)x+m.联立直线AF和抛物线解析式成方程组,,解得:或,∴点G的坐标为(m,m2﹣m).∵GH⊥x轴,∴点H的坐标为(m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).过点A作AA′⊥x轴,垂足为点A′,如图1所示.∵点A(﹣1,2),∴A′(﹣1,0),∴AE=2,AA′=2.∴ =1, = =1,∴= ,∵∠AA′E=∠FOH,∴△AA′E∽△FOH,∴∠AEA′=∠FHO,∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,2)、B(3,6)代入y=k0x+b0中,得,解得:,∴直线AB的解析式为y=x+3,当运动时间为t秒时,点P的坐标为(t﹣3,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示,∵QM=2PM,∴ =,∴QM′=QP'=2,MM′=PP'=t,∴点M的坐标为(t﹣2, t).又∵点M在抛物线y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣6,2t),∵点M在抛物线y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.综上所述:当运动时间秒或时,QM=2PM.【点睛】本题考查二次函数综合运用,综合能力是解题关键.5.如图,已知抛物线经过原点O,顶点A(1,﹣1),且与直线y=kx+2相交于B(2,0)和C两点(1)求抛物线和直线BC的解析式;(2)求证:△ABC是直角三角形;(3)抛物线上存在点E(点E不与点A重合),使∠BCE=∠ACB,求出点E的坐标;(4)在抛物线的对称轴上是否存在点F,使△BDF是等腰三角形?若存在,请直接写出点F的坐标.【答案】(1)y =x 2﹣2x ,y =﹣x +2;(2)详见解析;(3)E (5524,);(4)符合条件的点F 的坐标(17171,71,27【解析】【分析】(1)将B (2,0)代入设抛物线解析式y =a (x ﹣1)2﹣1,求得a ,将B (2,0)代入y =kx +2,求得k ;(2)分别求出AB 2、BC 2、AC 2,根据勾股定理逆定理即可证明;(3)作∠BCE =∠ACB ,与抛物线交于点E ,延长AB ,与CE 的延长线交于点A ',过A '作A 'H 垂直x 轴于点H ,设二次函数对称轴于x 轴交于点G .根据对称与三角形全等,求得A '(3,1),然后求出A 'C 解析式,与抛物线解析式联立,求得点E 坐标;(4)设F (1,m ),分三种情况讨论:①当BF =BD 2122m +=②当DF =BD 24522m m -+=,③当BF =DF 22145m m m +-+m =1,然后代入即可.【详解】(1)设抛物线解析式y =a (x ﹣1)2﹣1,将B (2,0)代入,0=a (2﹣1)2﹣1,∴a =1,抛物线解析式:y =(x ﹣1)2﹣1=x 2﹣2x ,将B (2,0)代入y =kx +2,0=2k +2,k =﹣1,∴直线BC 的解析式:y =﹣x +2;(2)联立222y x y x x =-+⎧⎨=-⎩, 解得1113x y =-⎧⎨=⎩,2220x y =⎧⎨=⎩, ∴C (﹣1,3),∵A (1,﹣1),B (2,0),∴AB 2=(1﹣2)2+(﹣1﹣0)2=2,AC 2=[1﹣(﹣1)]2+(﹣1﹣3)2=20, BC 2=[2﹣(﹣1)]2+(0﹣3)2=18, ∴AB 2+BC 2=AC 2, ∴△ABC 是直角三角形;(3)如图,作∠BCE =∠ACB ,与抛物线交于点E ,延长AB ,与CE 的延长线交于点A ',过A '作A 'H 垂直x 轴于点H ,设二次函数对称轴于x 轴交于点G .∵∠BCE =∠ACB ,∠ABC =90°, ∴点A 与A '关于直线BC 对称, AB =A 'B ,可知△AFB ≌△A 'HB (AAS ), ∵A (1,﹣1),B (2,0) ∴AG =1,BG =OG =1, ∴BH =1,A 'H =1,OH =3, ∴A '(3,1), ∵C (﹣1,3), ∴直线A 'C :1522y x =-+, 联立:215222y x y x x ⎧=-+⎪⎨⎪=-⎩,解得13x y =-⎧⎨=⎩或5254x y ⎧=⎪⎪⎨⎪=⎪⎩,∴E (52,54); (4)∵抛物线的对称轴:直线x =1, ∴设F (1,m ),直线BC 的解析式:y =﹣x +2; ∴D (0,2) ∵B (2,0),∴BD =12x x 222(21)(0)1BF m m =-+-=+,222(10)(2)45DF m m m =-+-=-+,①当BF =BD 时,2122m +=, m =±7,∴F 坐标(1,7)或(1,﹣7) ②当DF =BD 时,24522m m -+=, m =2±7,∴F 坐标(1,2+7)或(1,2﹣7) ③当BF =DF 时,22145m m m +=-+, m =1,F (1,1),此时B 、D 、F 在同一直线上,不符合题意.综上,符合条件的点F 的坐标(1,7)或(1,﹣7)或(1,2+7)或(1,2﹣7).【点睛】考查了二次函数,熟练掌握二次函数的性质是解题的关键.6.如图甲,直线y=﹣x+3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y=x 2+bx+c 与x 轴的另一个交点为A ,顶点为P . (1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M ,使以C ,P ,M 为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M 的坐标;若不存在,请说明理由; (3)当0<x <3时,在抛物线上求一点E ,使△CBE 的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x 2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E 点坐标为(,)时,△CBE 的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.7.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
2020中考数学专题复习之二次函数综合题专项练习题2(附答案详解)
2020中考数学专题复习之二次函数综合题专项练习题2(附答案详解)1.如图,抛物线y =﹣34x 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C .直线y =34x +3经过点A 、C .(1)求抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM ∥y 轴交直线AC 于点M ,设点P 的横坐标为t .①若以点C 、O 、M 、P 为顶点的四边形是平行四边形,求t 的值. ②当射线MP ,AC ,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.2.如图,抛物线212y x mx n =++与直线132y x =-+交于A ,B 两点,交x 轴于D ,C 两点,连接AC ,BC ,已知(0,3)A ,(3,0)C .(1)求抛物线的解析式;(2)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为项点的三角形与ACB ∆相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(3)设E 为线段AC 上一点(不含端点),连接DE ,一动点M 从点D 出发,沿线段DE 以每秒一个单位速度运动到E 点,再沿线段EA 2个单位的速度运动到A 后停止,当点E 的坐标是多少时,点M 在整个运动中用时最少?3.如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.4.如图:抛物线y =x 2+bx +c 与直线y =﹣x ﹣1交于点A ,B .其中点B 的横坐标为2.点P (m ,n )是线段AB 上的动点.(1)求抛物线的表达式;(2)过点P 的直线垂直于x 轴,交抛物线于点Q ,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平角直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形,在(2)的情况下,在平面内找出所有符合要求的整点R ,使P 、Q 、B 、R 为整点平行四边形,请直接写出整点R 的坐标.5.综合与探究如图,抛物线26y ax bx =++经过点A(-2,0),B(4,0)两点,与y 轴交于点C ,点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC .(1)求抛物线的函数表达式;(2)△BCD 的面积等于△AOC 的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.6.如图,抛物线2y ax bx c =++与x 轴相交于A (3,0)、B 两点,与y 轴交于点C (0,3),点B 在x 轴的负半轴上,且OA 3OB =.(1)求抛物线的函数关系式;(2)若P 是抛物线上且位于直线AC 上方的一动点,求ACP V 的面积的最大值及此时点P 的坐标;(3)在线段OC 上是否存在一点M ,使2BM 2+的值最小?若存在,请求出这个最小值及对应的M 点的坐标;若不存在,请说明理由.7.已知抛物线2y x bx c =++与x 轴的交点分别为A (1,0)、B (3,0),与y 轴的交点为D .(1)求抛物线的解析式和顶点坐标;(2)点P (4,t )和Q (m ,n )为抛物线上的两点,当n t >时,写出m 的取值范围;最大?若存在,请求出点M的坐(3)在抛物线的对称轴上是否存在点M,使MB MD标;若不存在,请说明理由8.某玩具批发商销售每件进价为40元的玩具,市场调查发现,若以每件50元的价格销售,平均每天销售90件,单价每提高1元,平均每天就少销售3件.(1)平均每天的销售量y(件)与销售价x(元/件)之间的函数关系式为;(2)求该批发商平均每天的销售利润W(元)与销售价x(元/件)之间的函数关系式;(3)物价部门规定每件售价不得高于55元,当每件玩具的销售价为多少元时,可以获得最大利润?最大利润是多少元?9.如图,已知一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点且与x 轴交于点C,二次函数y=ax2+bx+4的图象经过点A、点C.(1)求一次函数和二次函数的函数表达式;(2)连接OA,求∠OAB的正弦值;(3)若点D在x轴的正半轴上,是否存在以点D,C,B构成的三角形与△OAB相似?若存在,求出点D的坐标;若不存在,请说明理由.10.已知抛物线y=ax2+bx+3经过A(−3,0),B(−1,0)两点(如图1),顶点为M.(1)a、b的值;(2)设抛物线与y轴的交点为Q(如图1),直线y=−2x+9与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点M、Q间所夹的曲线MQˆ扫过的区域的面积;(3)设直线y=−2x+9与y轴交于点C,与直线OM交于点D(如图2).现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标h的取值范围.11.如图,已知抛物线y=﹣33x2+bx+c与x轴交于原点O和点A(6,0),抛物线的顶点为B.(1)求该抛物线的解析式和顶点B的坐标;(2)若动点P从原点O出发,以每秒1个长度单位的速度沿线段OB运动,设点P运动的时间为t(s).问当t为何值时,△OP A是直角三角形?(3)若同时有一动点M从点A出发,以2个长度单位的速度沿线段AO运动,当P、M其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t(s),连接MP,当t为何值时,四边形ABPM的面积最小?并求此最小值.12.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.13.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3交x轴于点A(﹣1,0)和点B (3,0),与y轴交于点C,顶点是D,对称轴交x轴于点E.(1)求抛物线的解析式;(2)点P是抛物线在第四象限内的一点,过点P作PQ∥y轴,交直线AC于点Q,设点P的横坐标是m.①求线段PQ的长度n关于m的函数关系式;②连接AP,CP,求当△ACP面积为358时点P的坐标;(3)若点N是抛物线对称轴上一点,则抛物线上是否存在点M,使得以点B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出线段BN的长度;若不存在,请说明理由.14.如图,已知:抛物线y=a(x+1)(x﹣3)与x轴相交于A、B两点,与y轴的交于点C(0,﹣3).(1)求抛物线的解析式的一般式.(2)若抛物线上有一点P,满足∠ACO=∠PCB,求P点坐标.(3)直线l:y=kx﹣k+2与抛物线交于E、F两点,当点B到直线l的距离最大时,求△BEF的面积.15.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.16.在平面直角坐标系中,我们定义直线y=ax-a 为抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线2234323y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.17.如图①,直线l :y =mx +n (m <0,n >0)与x 、y 轴分别相交于A 、B 两点,将△AOB 绕点O 逆时针旋转90°得到△COD ,过点A 、B 、D 的抛物线P 叫做l 的关联抛物线,而l 叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l 表示的函数解析式为.(2)求P的对称轴(用含m、n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P 的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标.18.如图1,抛物线y=﹣x2+mx+n交x轴于点A(﹣2,0)和点B,交y轴于点C(0,2).(1)求抛物线的函数表达式;(2)若点M在抛物线上,且S△AOM=2S△BOC,求点M的坐标;(3)如图2,设点N是线段AC上的一动点,作DN⊥x轴,交抛物线于点D,求线段DN 长度的最大值.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.(1)求点A的坐标;(2)求抛物线的解析式;(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=12 DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.如图①,已知抛物线()230y ax bx a =++≠与x 轴交于()1,0A -、()3,0B 两点,与y 轴交于点C ,已知点P 为抛物线第一象限上一动点,连接PB 、PC 、BC .(1)求抛物线的解析式,并直接写出抛物线的顶点坐标;(2)当PBC ∆的面积最大时,求出点P 的坐标;(3)如图②,当点P 与抛物线顶点重合时,过点B 的直线32y kx =-与抛物线交于点E ,在直线BE 上方的抛物线上是否存在一点M ,使得BEM PBC ∠=∠?若存在,求出点M 的坐标;若不存在,请说明理由.21.已知二次函数图象的顶点坐标为M(1,0),直线与该二次函数的图象交于A ,B 两点,其中A 点的坐标为(3,4),B 点在轴上.(1)求m 的值及这个二次函数的解析式;(2)若P(,0) 是轴上的一个动点,过P 作轴的垂线分别与直线AB 和二次函数的图象交于D 、E 两点.①当0<< 3时,求线段DE 的最大值;②若直线AB 与抛物线的对称轴交点为N ,问是否存在一点P ,使以M 、N 、D 、E 为顶点的四边形是平行四边形?若存在,请求出此时P 点的坐标;若不存在,请说明理由.22.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.23.如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△P AB 面积的最大值,并求出此时点P 的坐标.24.如图,抛物线21124y ax ax a =-+交x 轴于C ,D 两点,交y 轴于点440,9B ⎛⎫ ⎪⎝⎭,过抛物线的顶点A 作x 轴的垂线AE ,垂足为点E ,作直线BE .(1)求直线BE 的解析式;(2)点H 为第一象限内直线AE 上的一点,连接CH ,取CH 的中点K ,作射线DK 交抛物线于点P ,设线段EH 的长为m ,点P 的横坐标为n ,求n 与m 之间的函数关系式(不要求写出自变量m 的取值范围);(3)在(2)的条件下,在线段BE 上有一点Q ,连接QH ,QC ,线段QH 交线段PD 于点F ,若2HFD FDO ∠=∠,1902HQC FDO ︒∠=+∠,求n 的值.参考答案1.(1)239344y x x =--+;(2)①满足条件的t 的值为2或﹣或﹣2﹣②综合以上可得t 的值为72122,,255--- 【解析】【分析】(1)先根据直线解析式求出A 、C 两点的坐标,把点A 和C 点的坐标代入y=-34x 2+bx+c 得关于b 和c 的方程组,然后解方程组即可得到抛物线解析式;(2)当OC ∥PM ,且OC=PM 时,以点C 、O 、M 、P 为顶点的四边形是平行四边形,可得关于t 的方程,解方程即可;(3)分三种情况考虑,当MP 平分AC 、MO 的夹角,当AC 平分MP 、MO 的夹角,当MO 平分AC 、MP 的夹角,可由图形的性质得关于t 的方程求解.【详解】(1)在y =34x+3中,令x =0,y =3;令y =0,x =﹣4,得A (﹣4,0),C (0,3), 代入抛物线y=-34x 2+bx+c 解析式得:943b c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式239344y x x =--+; (2)设P (t ,239344x x --+), ∵四边形OCMP 为平行四边形,∴PM =OC =3,PM ∥OC ,∴M 点的坐标可表示为(t ,34t+3), ∴PM =2334t t --,∴|2334t t --=3, 当﹣34t 2﹣3t =3,解得t =2,当﹣34t2﹣3t=﹣3,解得t1=﹣2+22,t2=﹣2﹣22,综上所述,满足条件的t的值为2或﹣2+22或﹣2﹣22;(3)如图1,若当MP平分AC、MO的夹角,则∠AMN=∠OMN,∵PN⊥OA,∴AN=ON,∴t的值为﹣2;如图2,若AC平分MP、MO的夹角,过点C作CH⊥OA,CG⊥MP,则CG=CH,∵1122ACOS OM CH OC CG=⋅=⋅V,∴OM=OC=3,∵点M在直线AC上,∴M(t,34t+3),∴MN 2+ON 2=OM 2,可得,223(3)94t ++=,解得t =﹣7225, 如图3,若MO 平分AC 、MP 的夹角,则可得∠NMO =∠OMC ,过点O 作OK ⊥AC , ∴OK =ON ,∵∠AKO =∠AOC =90°,∠OAK =OAC , ∴△AOK ∽△ACO , ∴AO OK AC OC=, ∴453OK =, ∴OK =125, ∴t =﹣125, 综合以上可得t 的值为72122,,255---. 【点睛】本题考查了二次函数的知识,其中涉及了平行四边形的判定,角平分线的性质定理、等腰三角形的判定等知识. 2.(1)215322y x x =-+;(2)存在,且点P 的坐标为(11,36)或(133,149)或(173,449);(3)当点E 的坐标为(2,1)时,点M 在整个运动中用时最少. 【解析】【分析】(1)把A 、C 两点代入抛物线解析式,即可得到关于m 、n 的方程组,解方程组即可求出m 、n 的值,进而可得结果;(2)先求出直线AB 与抛物线的交点B 的坐标,再利用勾股定理逆定理判断出△ABC 是直角三角形,从而∠ACB =90°;过点P 作PG ⊥y 轴于G ,设点P 的横坐标为x ,再分点G 在点A 的下方和点G 在点A 的上方,分别利用相似三角形的性质用含x 的代数式表示出点P 的坐标,然后代入抛物线的解析式即可求得x 的值,问题即得解决;(3)如图3,过A 作射线AF ∥x 轴,过D 作射线DF ∥y 轴,DF 与AC 交于点E ,DF 与AF 交于点F ,易求得点M 在整个运动中的用时为:t=1DE +=DE +EF =DF ,此时点M 在整个运动中的用时最少,然后求出点D 坐标后,把D 的横坐标代入直线AC 解析式即可求出结果.【详解】解:(1)把(0,3)A ,(3,0)C 代入抛物线的解析式,得;39302n m n =⎧⎪⎨++=⎪⎩,解得:523m n ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为:215322y x x =-+; (2)存在点P ,使得以A ,P ,Q 为顶点的三角形与△ACB 相似. 联立215322132y x x y x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得:03x y =⎧⎨=⎩或41x y =⎧⎨=⎩,∴点B 的坐标为(4,1). ∵C (3,0),B (4,1),A (0,3),∴AB 2=20,BC 2=2,AC 2=18,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形,∴∠ACB =90°,且tan ∠BAC=13BC AC ==; 过点P 作PG ⊥y 轴于G ,则∠PGA =90°.设点P 的横坐标为x ,由P 在y 轴右侧可得x >0,则PG =x .∵PQ ⊥P A ,∠ACB =90°,∴∠APQ =∠ACB =90°.若点G 在点A 的下方,①如图2①,当∠P AQ =∠CAB 时,则△P AQ ∽△CAB .∵∠PGA =∠ACB =90°,∠P AQ =∠CAB ,∴△PGA ∽△BCA ,∴13PG BC AG AC ==, ∴AG =3PG =3x ,则P (x ,3﹣3x ), 把P (x ,3﹣3x )代入215322y x x =-+,得21533322x x x -+=-, 解得:x 1=0(舍去),x 2=﹣1(舍去);②如图2②,当∠P AQ =∠CBA 时,则△P AQ ∽△CBA .同理可得:AG =13PG =13x ,则P (x ,3﹣13x ), 把P (x ,3﹣13x )代入215322y x x =-+,得215133223x x x -+=-, 解得:x 1=0(舍去),x 2=133, ∴P (133,149);若点G 在点A 的上方,①当∠P AQ =∠CAB 时,则△P AQ ∽△CAB ,∵△PGA ∽△BCA ,∴13PG BC AG AC ==, ∴AG =3PG =3x ,则P (x ,3+3x ), 把P (x ,3+3x )代入215322y x x =-+,得21533322x x x -+=+,解得:x 1=0(舍去),x 2=11; ∴点P 的坐标为(11,36).②当∠P AQ =∠CBA 时,则△P AQ ∽△CBA .同理可得:AG =13PG =13x ,则P (x ,3+13x ), 把P (x ,3+13x )代入215322y x x =-+,得215133223x x x -+=+, 解得:x 1=0(舍去),x 2=173, ∴P (173,449); 综上所述:满足条件的点P 的坐标为(11,36)或(133,149)或(173,449); (3)如图3,过A 作射线AF ∥x 轴,过D 作射线DF ∥y 轴,DF 与AC 交于点E ,DF 与AF 交于点F .∵A (0,3),C (3,0),∴l AC :y =﹣x +3,∴OA =OC ,∠AOC =90°,∴∠ACO =45°,∵AF ∥OC ,∴∠F AE =45°,∴EF =AE •sin45°=2,∴点M 在整个运动中的用时为:t =12DE +=DE +EF =DF ,即当AF ⊥DF 时,DE +EF 取得最小值DF ,此时点M 在整个运动中的用时最少,∵抛物线的解析式为215322y x x =-+,令y =0,则2153022x x -+=,解得:122,3x x ==, ∴D 点坐标为(2,0),则E 点横坐标为2,将x =2代入l AC :y =﹣x +3,得y =1,所以E (2,1).即当点E 的坐标为(2,1)时,点M 在整个运动中用时最少.【点睛】本题主要考查了运用待定系数法求抛物线的解析式、直线与抛物线的交点坐标、抛物线上点的坐标特征、三角函数的定义、相似三角形的判定与性质、解一元二次方程、两点之间线段最短和勾股定理等知识,综合性强、难度大,准确分类是解决第(2)小题的关键,把点M 运动的总时间1DE DE +EF 是解决第(3)小题的关键. 3.(1)213222y x x =-++;(2)(2,3)P ;(3)517,39⎛⎫-- ⎪⎝⎭或(1,3) 【解析】【分析】(1)求出A 、B 的坐标,设二次函数解析式为(1)(4)y a x x =+-,把A (0,2)代入即可得出结论;(2)先求出D 的坐标和直线BD 的解析式,过D 作DT ⊥x 轴于T ,可求得∠DBO =45°.设Q (m ,12-m +2),则G (m ,-m +4),MQ =m .设∠ABO =α,则∠NBQ =45°-α,∠MQB =180°-α.证明ΔGQN 为等腰直角三角形,表示出NQ ,MQ ⋅NQ ,利用二次函数的性质解答即可;(3)如图,过A 作AH ⊥PE 于点H ,解Rt △APH ,得到AH =1,PH =2.设H (m ,n ),利用两点间距离公式可求出H 的坐标,进而求出点E 的坐标.【详解】(1)在122y x =-+中,令x =0,得y =2,∴A (0,2); 令y =0,得1202x -+=,解得:x =4,∴B (4,0). 设二次函数解析式为(1)(4)y a x x =+-,将A (0,2)代入得:21(4)a =⨯⨯- 解得:12a =-,∴213222y x x =-++. (2)∵点D (1,n )在抛物线上,∴n =21311222-⨯+⨯+=3, ∴D (1,3). 设直线BD 的解析式为y =kx +b ,则403k b k b +=⎧⎨+=⎩, 解得:14k b =-⎧⎨=⎩,∴直线BD 的解析式为:y =-x +4.过D 作DT ⊥x 轴于T ,则OT =1,DT =3.∵OB =4,∴BT =OB -OT =4-1=3,∴DT =BT ,∴∠DBO =45°.设Q (m ,12-m +2),则G (m ,-m +4),MQ =m . 设∠ABO =α,则∠NBQ =45°-α∠MQB =180°-α.又∵∠PQM =90°,∠NQB =90°-(45°-α)=45°+α, ∴∠GQN =360°-90°-(180°-α)-(45°+α)=45°, ∴ΔGQN 为等腰直角三角形,∴NQ =22142222QG m m ⎛⎫=-++- ⎪⎝⎭224m =-+∴MQ ⋅NQ =4m m ⎛⋅-+ ⎝22)m =-+ 当m =2时,QM ⋅QN 最大,此时P (2,3).(3)如图,过A 作AH ⊥PE 于点H ,其中,∠APE =∠ABO .又A (0,2),P (2,3),1tan tan 2APH ABO ∠=∠=, ∴12AH PH =, ∴PH =2AH .∵AP =222PH AH AP +=,∴2245AH AH +=,∴AH =1,PH =2.设H (m ,n ),则222(0)(2)1AH m n =-+-=,222(2)(3)4PH m n =-+-=, 解得:1147,55m n ==;220,3m n ==, ∴47,55H ⎛⎫ ⎪⎝⎭,1(0,3)H .①易求直线PH 的解析式为PH l :4133y x =+ 令411323232x x x +=-++ 解得:125,23x x =-=(舍) ∴517,39E ⎛⎫-- ⎪⎝⎭; ②易求直线PH 1的解析式为1PH l :3y =. 令2132322x x -++=,解得:122,1x x ==,∴1(1,3)E .综上所述:符合题意的E 点坐标为517,39⎛⎫-- ⎪⎝⎭或(1,3).【点睛】本题是二次函数综合题.考查了待定系数法求二次函数的解析式、二次函数的最值、解直角三角形等知识点.灵活运用基础知识是解答本题的关键.4.(1)y =x 2﹣2x ﹣3;(2)l =﹣m 2+m +2,当m =12时,PQ 最长,最大值为94;(3)符合条件的点R 有,它的坐标为(2,﹣1)或(2,﹣5)或(0,﹣3)或(﹣2,﹣1).【解析】【分析】(1)先由一次函数解析式求出A ,B 两点的坐标,再根据待定系数法,可得抛物线的解析式;(2)根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;(3)使P ,Q ,B ,R 为顶点的四边形是平行四边形,可以分两种情况:一是PQ 为一边时,根据PQ 的长是正整数,可得PQ ,根据平行四边形的性质,对边平行且相等,根据点的坐标表示方法,可得答案,二是PQ 为一条对角线时,根据平行四边形的性质,PQ 与BR 互相平分,此时R 与C 重合.【详解】(1)∵抛物线y =x 2+bx +c 与直线y =﹣x ﹣1交于点A ,B ,∴当y =0时,﹣x ﹣1=0,解得x =﹣1,∴A (﹣1,0),∵点B 的横坐标为2,∴﹣x ﹣1=﹣2﹣1=﹣3,∴B (2,﹣3),将A (﹣1,0),B (2,﹣3)代入y =x 2+bx +c 得:10423b c b c -+=⎧⎨++=-⎩, 解得,23b c =-⎧⎨=-⎩, ∴抛物线的解析式为:y =x 2﹣2x ﹣3;(2)∵点P 在直线AB 上,Q 抛物线上,P (m ,n ),∴n =﹣m ﹣1,Q (m ,m 2+2m ﹣3)∴PQ 的长l =(﹣m ﹣1)﹣(m 2﹣2m ﹣3)=﹣m 2+m +2,∴当m =12(1)-⨯-=12时,PQ 的长l 最大=﹣14+12+2=94. 答:线段PQ 的长度l 与m 的关系式为:l =﹣m 2+m +2,当m =12时,PQ 最长,最大值为94; (3)由(2)可知,0<PQ ≤94. ①当PQ 为边时,BR ∥PQ 且BR =PQ .∵R 是整点,B (2,﹣3),∴PQ 是正整数,∴PQ =1,或PQ =2.当PQ =1时,﹣m 2+m +2=1,∴, 此时P ,Q 不是整点,不合题意舍去,当PQ =2时,﹣m 2+m +2=2,∴m 1=0,m 2=1,∵BR =2,此时点R 的横坐标为2,∴纵坐标为﹣3+2=﹣1或﹣3﹣2=﹣5,即R (2,﹣1)或R (2,﹣5).②当PQ 为平行四边形的一条对角线,则PQ 与BR 互相平分,当PQ =1时,即:﹣x ﹣1﹣(x 2﹣2x ﹣3)=1,此时x 不是整数,当PQ =2时,即﹣x ﹣1﹣(x 2﹣2x ﹣3)=2,此时x 1=﹣1,x 2=0;∴x 1=﹣1,R 与点C 重合,即R (0,﹣3),x 2=0;此时R (﹣2,﹣1).综上所述,符合条件的点R 有,它的坐标为(2,﹣1)或(2,﹣5)或(0,﹣3)或(﹣2,﹣1).【点睛】本题是二次函数综合题,考查了待定系数法求函数的解析式,二次函数的性质,一元二次方程的解法,平行四边形的性质等知识,理解运用分类讨论思想、数学建模思想是解题的关键.5.(1)233642y x x =-++;(2)3;(3)1234(8,0),(0,0),(M M M M . 【解析】【分析】(1)利用待定系数法进行求解即可;(2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,先求出S △OAC =6,再根据S △BCD =34S △AOC ,得到S △BCD =92,然后求出BC 的解析式为362y x =-+,则可得点G 的坐标为3(,6)2m m -+,由此可得2334DG m m =-+,再根据S △BCD =S △CDG +S △BDG =12DG BO ⋅⋅,可得关于m 的方程,解方程即可求得答案; (3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,由点D 的坐标可得点N 点纵坐标为±154,然后分点N 的纵坐标为154和点N 的纵坐标为154-两种情况分别求解;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,根据平行四边形的对边平行且相等可求得BM 1=N 1D=4,继而求得OM 1= 8,由此即可求得答案.【详解】(1)抛物线2y ax bx c =++经过点A(-2,0),B(4,0),∴426016460a b a b -+=⎧⎨++=⎩, 解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,∵点A 的坐标为(-2,0),∴OA=2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC=6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC , ∴S △BCD =39642⨯=, 设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩, ∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+, ∵点B 的坐标为(4,0),∴OB=4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=,解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图,以BD 为边时,有3种情况,∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154, 当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍), ∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4, 此时233156424x x -++=-,解得:12114,114x x ==∴315(114,)4N +-,415(114,)4N -, ∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合,∵115(1,)4N -,D(3,154), ∴N 1D=4,∴BM 1=N 1D=4, ∴OM 1=OB+BM 1=8,∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(14(14M M M M -,,,,,,,.【点睛】本题考查的是二次函数的综合题,涉及了待定系数法、三角形的面积、解一元二次方程、平行四边形的性质等知识,运用了数形结合思想、分类讨论思想等数学思想,熟练掌握和灵活运用相关知识是解题的关键.6.(1)2y x 2x 3=-++;(2)ACP V 的面积的最大值为278,此时315(,)24P -;(3)当(0,1)M 时,2BM 2+的最小值为22【解析】【分析】 (1)根据OA 3OB =求出B 点坐标,设交点式,用待定系数法即可求出函数关系式; (2)作PD ⊥x 轴,与线段AC 相交于D ,根据APC DPC DPA S S S ∆∆∆=+表示ACP V 的面积,利用二次函数的性质即可求出ACP V 的面积的最大值及此事P 点坐标;(3)构造CM 为斜边的等腰三角形,它的直角顶点为第一象限内的N ,可得出2BM +=BM MN +最小值即为BN.设(0,)M m 可表示N 点坐标,继而可表示2BN ,利用二次函数的性质即可求的2BM 最小值,以及此时M 点坐标. 【详解】解:(1)∵(3,0)A ,OA 3OB =∴OA=3,OB=1∴(1,0)B-∴设抛物线的交点式为(1)(3)y a x x=+-,将(0,3)C代入得31(3)a=⋅⋅-,解得1a=-∴21(1)(3)23y x x x x=-+-=-++,即该抛物线的函数关系式为2y x2x3=-++.(2)作PD⊥x轴,与线段AC相交于D.设直线AC:y=kx+d将(0,3)C,(3,0)A分别代入得303dk d=⎧⎨=+⎩,解得31dk=⎧⎨=-⎩,所以y=-x+3.设2(,23)P n n n-++,则(,3)D n n-+,2223(3)3DP n n n n n=-++--+=-+设△DCP以PD为底时高为h1,△DAP以PD为底时高为h2,则221212111139()(3)3222222 APC DPC DPAS S S PD h PD h PD h h n n n n ∆∆∆=+=⋅⋅+⋅⋅=⋅⋅+=-+⋅=-+因为32-<,所以923232()2n=-=⨯-时取得最大值为278.22331523()23224n n-++=-+⨯+=.故ACPV的面积的最大值为278,此时315(,)24P-.(3)存在,如下图,作以CM为斜边的等腰三角形,它的直角顶点为第一象限内的N点,∵△MCN 为等腰直角三角形,∴MN=22MC ,即要使2BM CM 2+最短,只需要BM MN +最短为BN 即可, 设(0,)M m 则33,2m MC m EM EN -=-==,33(,)22m m N -+ ∴222233117(1)()2222m m BN m m -+=++=-+ 当12112m -==-⨯时,2BN 取得最小值为8,即22BN =当(0,1)M 时,2BM 2+的最小值为22【点睛】 本题考查待定系数法求二次函数解析式,二次函数与图形问题.(1)中能选择交点式,可以使求解析式的过程更加简单;(2)中能正确表示ACP V 的面积是解题关键;(3)中能构造等腰直角△CMN ,将2BM CM 2+最短问题转化为BM MN +最短是解题关键. 7.(1)243y x x =-+,(2,-1);(2)0m <或4m >;(3)存在,(2,3)- 【解析】【分析】(1)把A 、B 坐标代入2y x bx c =++得到方程组,解方程组即可;化成顶点式即可求出顶点坐标;(2)求出t 值并求出当y=t 时另外一点的坐标,观察图象的升降趋势即可求出当n t >时,m 的取值范围;(3)由抛物线的对称性知,点B 关于对称轴的对称点是A ,于是问题就转化成了“在抛物线的对称轴上是找点M ,使MA MD -最大”,直线AD 与对称轴的交点就是所要找的点M ,据此求解即可.【详解】解:(1)∵抛物线2y x bx c =++经过点A (1,0)、B (3,0), ∴10930b c b c ++=⎧⎨++=⎩, 解得4b =-,3c =,∴抛物线的解析式为243y x x =-+,∴2(2)1y x =--∴抛物线的顶点坐标是(2,-1)(2)当x=4时,y=3,∴点P 坐标为(4,3)∴点P (4,3)关于对称轴对称的点的坐标为(0,3), ∴当n t >即n>3时,m 的取值范围是0m <或4m >.(3)由抛物线的对称性知,其对称轴是AB 的垂直平分线, ∴MA MB =, ∴MB MD MA MD -=-由三角形的三边关系,得 MA MD AD -<, ∴MB MD AD -<∴当点M 、A 、D 共线时,MA MD -最大,为AD 的长度 设直线AD 的解析式为(0)y kx b k =+≠,则 03k b b +=⎧⎨=⎩解得33k b =-⎧⎨=⎩, ∴直线AD 的解析式为33y x =-+由(1)得,抛物线的对称轴是直线2x =,把x=2 代入33y x =-+中得y=-3,即点M 的坐标为(2,3)-,∴抛物线的对称轴上存在点(2,3)M -,使MB MD -最大【点睛】本题考查了用待定系数法求二次函数的解析式、二次函数的有关性质和路程这差问题的解决,考查了数形结合思想的运用,属二次函数综合题,熟练掌握相关性质和求解方法是解题关键.8.(1)3240y x =-+;(2)233609600w x x =-+-;(3)55,1125.【解析】【分析】(1)根据“平均每天销售90件,单价每提高1元,平均每天就少销售3件.”平均每天销售量y=原来的销售量90-3(x-50),(x-50)是相对于50元的单价提高的价格;(2)根据“销售利润W=单价的利润×平均每天的销售量,”代入即可得出W 与x 的函数关系式. (3)根据题中所给的自变量的取值,结合(2)得到的关系式,即可求得二次函数的最值.【详解】(1)由题意得:903(50)3240y x x =--=-+(2)2(40)(3240)33609600W x x x x =--+=-+-(3)22336096003(60)1200y x x x =-+-=--+故当x=60时,y 取最大值1200,x=60是二次函数的对称轴,且开口向下,.当x<60时,y 随x 的增大而增大,规定每件售价不得高于55元,当x=55时,W 取得最大值为1125元,即每件玩具的销售价为55元时,可获得1125元的最大利润.【点睛】本题考查了一次函数和二次函数的应用,解决本题的关键是找出题目中蕴含的等量关系,并熟练掌握二次函数的性质.9.(1)y =x ﹣4,y =﹣2x 2+7x +4;(2;(3)存在,(6,0)或(20,0) 【解析】【分析】(1)利用待定系数法求出一次函数的解析式,然后根据与x 轴的交点y=0,求出C 的坐标,然后根据A 与C 的坐标求出二次函数的解析式即可;(2)过O作OH⊥BC,垂足为H,证明△BOC为等腰直角三角形,求出OH=12BC=22,然后求出OA,即可求出∠OAB的正弦值;(3)利用勾股定理求出AH,再求出AB=2,然后分情况求出D点的坐标即可. 【详解】解:(1)∵一次函数y=kx+b的图象经过A(﹣1,﹣5),B(0,﹣4)两点,∴﹣5=﹣k+b,b=﹣4,k=1,∴一次函数解析式为:y=x﹣4,∵一次函数y=x﹣4与x轴交于点C,∴y=0时,x=4,∴C(4,0),∵二次函数y=ax2+bx+4的图象经过点A(﹣1,﹣5)、点C(4,0),∴45 16440 a ba b-+=-⎧⎨++=⎩,解得a=﹣2,b=7,∴二次函数的函数表达式为y=﹣2x2+7x+4;(2)过O作OH⊥BC,垂足为H,∵C(4,0),B(0,﹣4),∴OB=OC=4,即△BOC为等腰直角三角形,∴BC2200+B C2244+2,∴OH=12BC=2,由点O(0,0),A(﹣1,﹣5),得:OA26,在Rt △OAH 中,sin ∠OAB =OH OA = (3)存在,由(2)可知,△OBC 为等腰直角三角形,OH =BH =,在Rt △AOH 中,根据勾股定理得:AH =,∴AB =AH ﹣BH ,∴当点D 在C 点右侧时,∠OBA =∠DCB =135°,①当CD BACB BO =4=时,解得CD =2, ∵C (4,0),即OC =4,∴OD =OC +CD =2+4=6,此时D 坐标为(6,0);②当CD BOCB BA==时, 解得CD =16,∵C (4,0),即OC =4,∴OD =OC +CD =16+4=20,此时D 坐标为(20,0),综上所述,若△BCD 与△ABO 相似,此时D 坐标为(6,0)或(20,0).【点睛】本题主要考查了二次函数的综合,涉及了相似三角形的性质与判定,勾股定理,等腰直角三角形的判定,综合性较强,熟练掌握各知识点并学会综合应用是解题的关键.10.(1)a =1,b=4;(2)MQ 扫过的面积为845;(3)14h --<或4h > 【解析】【分析】(1)将A 、B 两点的坐标代入抛物线的解析式中,即可求出待定系数的值.(2)连接MQ 、DN 后,由图可以发现曲线MQ 扫过的面积正好是▱MQND 的面积;连接QD ,则▱MQND 的面积是两倍的△MQD 的面积,所以这道题实际求的是△MQD 的面积;由(1)的抛物线解析式,不难求出顶点M 的坐标,联立直线OM 和直线CD 的解析式可以。
四川省成都市2019-2020学年中考第二次模拟数学试题含解析
四川省成都市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图1,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是( )A .10B .12C .20D .242.小苏和小林在如图①所示的跑道上进行450⨯米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m )与跑步时间t (单位:s )的对应关系如图②所示.下列叙述正确的是( ).A .两人从起跑线同时出发,同时到达终点B .小苏跑全程的平均速度大于小林跑全程的平均速度C .小苏前15s 跑过的路程大于小林前15s 跑过的路程D .小林在跑最后100m 的过程中,与小苏相遇2次3.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )A .()16.516.50.5x 125%x +=+ B .()16.516.50.5x 1-25%x += C .()16.516.5-0.5x 125%x =+D .()16.516.5-0.5x 1-25%x =4.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC=30°,弦EF ∥AB ,则EF 的长度为( )A .2B .23C .3D .225.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π6.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚7.若(x ﹣1)0=1成立,则x 的取值范围是( ) A .x =﹣1B .x =1C .x≠0D .x≠18.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒9.如图,等边△ABC 的边长为1cm ,D 、E 分别AB 、AC 是上的点,将△ADE 沿直线DE 折叠,点A 落在点A′处,且点A′在△ABC 外部,则阴影部分的周长为( )cmA.1 B.2 C.3 D.4 10.下列运算结果正确的是()A.a3+a4=a7B.a4÷a3=a C.a3•a2=2a3D.(a3)3=a611.对于不等式组1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3B.此不等式组的解集为716x-<≤C.此不等式组有5个整数解D.此不等式组无解12.下列各点中,在二次函数2y x=-的图象上的是()A.()1,1B.()2,2-C.()2,4D.()2,4--二、填空题:(本大题共6个小题,每小题4分,共24分.)13.图中是两个全等的正五边形,则∠α=______.14.计算20180(1)(32)---=_____.15.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.16.在矩形ABCD中,AB=6CM,E为直线CD上一点,连接AC,BE,若AC与BE交与点F,DE=2,则EF:BE= ________ 。
成都西川中学九年级数学上册第二单元《二次函数》检测卷(含答案解析)
一、选择题1.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( )①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④2.二次函数y =ax 2+bx +c 的部分图象如图,图象过点A (3,0),对称轴为直线x =1,下列结论:①a ﹣b +c =0;②2a +b =0; ③4ac ﹣b 2>0;④a +b ≥am 2+bm (m 为实数);⑤3a +c >0.则其中正确的结论有( )A .2个B .3个C .4个D .5个3.下列函数关系式中,属于二次函数的是( ) A .21y x =+ B .21y x x=+C .()()221y x x x=+--D .21y x =-4.将抛物线22y x =平移,得到抛物线22(4)1y x =-+,下列平移方法正确的是( ) A .先向左平移4个单位,在向上平移1个单位 B .先向左平移4个单位,在向下平移1个单位 C .先向右平移4个单位,在向上平移1个单位 D .先向右平移4个单位,在向下平移1个单位5.一次函数y cx b =-与二次函数2y ax bx c =++在同一平面直角坐标系中的图象可能是( )A .B .C .D .6.二次函数y =ax 2+bx+c (a >0)的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n <0时,m <0 B .当n >0时,m >x 2 C .当n <0时,x 1<m <x 2D .当n >0时,m <x 17.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y轴交于C 点,且OC=OB,令COAO=m ,则下列m 与b 的关系式正确的是( )A .m=2b B .m=b+1C .m=6bD . m=2b +18.对于二次函数()2532y x =-+的图象,下列说法中不正确的是( ) A .顶点是()3,2 B .开口向上 C .与x 轴有两个交点D .对称轴是3x =9.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A 、B 两点.下列结论:①2a +b =0;②abc >0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1;⑥a +b ≥m (am +b )(m 实数)其中正确的是( )A .①②③⑥B .①③④C .①③⑤⑥D .②④⑤10.如果将抛物线23y x =+先向下平移2个单位,再向左平移1个单位,那么所得新抛物线的表达式是( ) A .2(1)2y x =-+ B .2(1)1y x =++ C .21y x =+D .2(1)1y x =-+11.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( ) A .0个 B .1个 C .2个 D .1或2个12.二次函数2y ax bx c =++的图象如图所示,下列结论正确的是( )A .0abc >B .0a b c ++=C .420a b c ++=D .240b ac -<二、填空题13.如图,抛物线y =﹣x 2+bx+c 交x 轴于A ,B 两点,交y 轴于点C ,则bc 的值为_____(填正或负).14.一条抛物线与x 轴相交于A ,B 两点(点A 在点B 的左侧),若点M ,N 的坐标分别为(-1,-2),(1,-2),抛物线顶点P 在线段MN 上移动.点B 的横坐标的最大值为3,则点A 的横坐标的最小值为__________.15.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.16.如图所示为抛物线223y ax ax =-+,则一元二次方程2230ax ax -+=两根为______.17.二次函数2y ax bx c =++的图象经过(1,0)A ,对称轴为1x =-,其图像如图所示,则2244||b bc c a b c +++-+的结果为___________.18.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________19.若二次函数()221y x k =++的图象上有两点()(),,,03A m B n -,m ____________n .(填“>”,“=”或“<”)20.如图,在平面直角坐标系中抛物线y =x 2﹣3x +2与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan ∠DCB =3,则点D 的坐标为_____.三、解答题21.已知二次函数y =ax 2与y =﹣2x 2+c .(1)随着系数a 和c 的变化,分别说出这两个二次函数图象的变与不变;(2)若这两个函数图象的形状相同,则a = ;若抛物线y =ax 2沿y 轴向下平移2个单位就能与y =﹣2x 2+c 的图象完全重合,则c = ; (3)二次函数y =﹣2x 2+c 中x 、y 的几组对应值如表: x ﹣2 1 5 y mn p的大小关系为 (用“<”连接).22.如图用长为30m 的篱笆围成一个一边靠墙的矩形养鸡场ABCD ,已知墙长14m ,设边AB 的长为xm ,矩形ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并求出函数y 的最大值. (2)当y =108时,求x 的值.23.如图,二次函数2y x bx c =++的图象与x 轴交于A 、B 两点,与y 轴交于点C ,OB OC =.点D 在函数图象上,//CD x 轴,且2CD =,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值.(2)如图①,连接BE ,线段OC 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标.(3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与BC 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得PQN 与APM △的面积相等,且线段NQ 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.24.已知二次函数y =﹣x 2+4x .(1)下表是y 与x 的部分对应值,请补充完整; x … 0 1 2 3 4 … y……(3)根据图象,写出当y <0时,x 的取值范围.25.如图,直线:33l y x =-+与x 轴,y 轴分别相交于A,B 两点,抛物线224(0)y ax ax a a =-++<经过点B .(1)求该抛物线的解析式及顶点坐标;(2)连结BD,以AB,BD 为一组邻边的平行四边形ABDE,顶点E 是否在抛物线上?(3)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 横坐标为m,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值.26.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)当21x -≤≤时,y 的最大值与最小值的差是_______________;(3)一次函数()22y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确; ③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.2.B解析:B 【分析】由抛物线过点A(3,0)及对称轴为直线x=1,可得抛物线与x 轴的另一个交点,则可判断①②是否正确;由抛物线与x 轴有两个交点,可得△>0,据此可判断③是否正确;由x=1时,函数取得最大值,可判断④是否正确;把b=-2a 代入a-b+c=0得3a+c=0,则可判断⑤是否正确. 【详解】解:∵二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,∴点A (3,0)关于直线x =1对称点为(﹣1,0),∴当x =﹣1时,y =0,即a ﹣b +c =0.故①正确;∵对称轴为直线x =1,∴﹣2ba=1,∴b =﹣2a ,∴2a +b =0,故②正确; ∵抛物线与x 轴有两个交点,∴△=b 2﹣4ac >0,∴4ac ﹣b 2<0,故③错误; ∵当x =1时,函数有最大值,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确; ∵b =﹣2a ,a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故⑤错误; 综上,正确的有①②④. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,数形结合并明确二次函数的相关性质是解题的关键.3.D解析:D 【分析】利用二次函数定义进行解答即可. 【详解】A 、21y x =+是一次函数,故A 不符合题意;B 、2y x =+1x不是二次函数,故B 不符合题意; C 、()()2222122y x x x x x x x =+--=+--=-,此函数是一次函数,故C 不符合题意;D 、21y x =-是二次函数,故D 符合题意; 故答案为:D . 【分析】本题主要考查了二次函数定义,关键是掌握形如2y ax bx c =++(a 、b 、c 是常数,a≠0)的函数,叫做二次函数.4.C解析:C 【分析】先利用顶点式得到两抛物线的顶点式,然后通过点平移的规律得到抛物线平移的情况. 【详解】解:抛物线y=2x 2的顶点坐标为(0,0),抛物线y=2(x-4)2+1的顶点坐标为(4,1),而点(0,0)先向右平移4个单位,再向上平移1个单位可得到点(4,1),所以抛物线y=2x 2先向右平移4个单位,再向上平移1个单位得到抛物线y=2(x+4)2+1. 故选:C . 【点睛】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.D解析:D 【分析】先假设0c <,根据二次函数2y ax bx c =++图象与y 轴交点的位置可判断A ,C 是否成立;再假设0c >,0b <,判断一次函数y cx b =-的图象位置及增减性,再根据二次函数2y ax bx c =++的开口方向及对称轴位置确定B ,D 是否成立.【详解】解:若0c <,则一次函数y cx b =-图象y 随x 的增大而减小,此时二次函数2y ax bx c =++的图象与y 轴的交点在y 轴负半轴,故A ,C 错;若0c >,0b <,则一次函数y cx b =-图象y 随x 的增大而增大,且图象与y 的交点在y 轴正半轴上,此时二次函数2y ax bx c =++的图象与y 轴的交点也在y 轴正半轴,若0a >,则对称轴bx 02a =->,故B 错;若0a <,则对称轴02b x a=-<,则D 可能成立. 故选:D . 【点睛】本题考查一次函数图象与二次函数图象的综合判断问题,解答时可假设一次函数图象成立,分析二次函数的图象是否符合即可.6.C解析:C 【分析】首先根据a 判断二次函数图象的开口方向,再确定对称轴,根据图象和二次函数的性质分析得出结论. 【详解】 解:∵a >0,∴开口向上,以对称轴在y 轴左侧为例可以画图二次函数y =ax 2+bx+c 的图象与x 轴的两个交点A (x 1,0),B (x 2,0),且x 1<x 2, 无法确定x 1与x 2的正负情况,∴当n <0时,x 1<m <x 2,但m 的正负无法确定,故A 错误,C 正确; 当n >0时,m <x 1 或m >x 2,故B ,D 错误,均不完整 故选:C .【点睛】本题主要考查二次函数图象与x 轴交点的问题,熟练掌握二次函数图象及图像上的坐标特征是解题的关键.7.B解析:B 【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可. 【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=, 则可解得:1c b =+, 根据CO m AO =,可得c OA m =,即A 的横坐标为cm-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=,将1c b =+代入可得;2110b b m m +--+=,即2210m b bmm ---=,210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦, 解得:1m b =+,或1m =-(舍去), 故选:B . 【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.8.C解析:C 【分析】根据函数图象和性质逐个求解即可.解:对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,顶点坐标为(3,2), A .二次函数y =5(x ﹣3)2+2的图象的顶点坐标为(3,2),故本选项不符合题意; B .由于a =5>0,所以抛物线开口向上,故本选项不符合题意;C .由于y =5(x ﹣3)2+2=5x 2﹣30x+47,则△=b 2﹣4ac =900﹣4×5×47=﹣40<0,所以该抛物线与x 轴没有交点,故本选项符合题意;D .对于y =5(x ﹣3)2+2,则该函数的对称轴为直线x =3,故本选项不符合题意. 故选:C .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点,顶点等点坐标的求法,及这些点代表的意义及函数特征. 9.C解析:C【分析】根据拋物线的开口方向以及对称轴为x =1,即可得出a 、b 之间的关系以及ab 的正负,由此得出①正确;根据抛物线与y 轴的交点在y 轴正半轴上,可知c 为正结合a <0、b >0即可得出②错误;将抛物线往下平移3个单位长度可知抛物线与x 轴只有一个交点从而得知③正确;根据拋物线的对称性结合抛物线的对称轴为x =1以及点B 的坐标,即可得出抛物线与x 轴的另一交点坐标,④正确;⑤根据两函数图象的上下位置关系即可判断y 2<y 1,故⑤正确;当1x =时y 1有最大值,a +b +c ≥am 2+bm +c ,即可判断⑥正确.【详解】解:由抛物线对称轴为直线x =2b a,从而b =﹣2a ,则2a +b =0,故①正确; 抛物线开口向下,与y 轴相交于正半轴,则a <0,c >0,而b =﹣2a >0,因而abc <0,故②错误;方程ax 2+bx +c =3从函数角度可以看做是y =ax 2+bx +c 与直线y =3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax 2+bx +c =3有两个相等的实数根,故③正确;由抛物线对称性,与x 轴的一个交点B (4,0),则另一个交点坐标为(﹣2,0),故④错误;由图象可知,当1<x <4时,y 2<y 1,故⑤正确;因为x =1时,y 1有最大值,所以a +b +c ≥am 2+bm +c ,即a +b ≥m (am +b )(m 实数),故⑥正确.故选C .【点睛】本题主要考查了二次函数的图像、一次函数图像、二次函数的图象与系数的关系等知识考查知识点较多.解答的关键在于读懂图象信息,掌握二次函数知识,灵活运用所学知识解决问题,属于中考常考题型.10.B【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】解:抛物线y=x 2+3的顶点坐标为(0,3),向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(-1,1), 所以,平移后的抛物线的解析式为y=(x+1)²+1.故选:B .【点睛】本题考查了二次函数图象与几何变换,熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.11.C解析:C【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数.【详解】 解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解, ∴3a-2>a+2,即a >2,令y=0,21(3)4x x a --+-=0, △=(-1)2-4×(a-3)×(-14)=a-2, ∵a >2,∴a-2>0,∴函数图象与x 轴的交点个数为2.故选:C .【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.12.C解析:C【分析】由二次函数的开口方向,对称轴0x >,以及二次函数与y 的交点在x 轴的上方,与x 轴有两个交点等条件来判断各结论的正误即可.【详解】A 、观察图象,二次函数的开口向下,∴0a <,与y 轴的交点在x 轴上方,∴0c >,又∵对称轴为2b x a =-,在x 轴的正半轴上, 故02b x a=->,即0b >. ∴0abc <,故选项A 不正确;B 、观察图象,抛物线对称轴为直线12122x -+== ∴在对称轴右侧,当1x =时,函数值0y a b c =++>,故选项B 不正确; C 、观察图象,当2x =时,函数值420y a b c =++=,故选项C 正确;D 、∵二次函数与x 轴有两个交点,∴240b ac =->,故D 不正确.故选:C .【点睛】本题考查了二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键. 二、填空题13.正【分析】根据抛物线的开口方向判定a<0根据对称轴位于y 轴左侧判定ab 同号根据抛物线与y 轴交点位置判定c 的符号【详解】解:由图可知抛物线的开口方向向下则a <0抛物线的对称轴位于y 轴的左侧则ab 同号即 解析:正【分析】根据抛物线的开口方向判定a<0,根据对称轴位于y 轴左侧判定a 、b 同号,根据抛物线与y 轴交点位置判定c 的符号.【详解】解:由图可知,抛物线的开口方向向下,则a <0,抛物线的对称轴位于y 轴的左侧,则a 、b 同号,即b <0,抛物线与y 轴交于负半轴,则c <0,所以bc >0,即bc 的值为正,故答案为:正.【点睛】本题考察抛物线与x 轴的交点、二次函数图像上点的坐标特征,解题此题的关键是掌握抛物线()20y ax bx c a =++≠中a 、b 、c 所表示的几何意义. 14.-3【分析】根据顶点P 在线段MN 上移动又知点MN 的坐标分别为(-1-2)(1-2)分别求出对称轴过点M 和N 时的情况即可判断出A 点横坐标的最小值【详解】根据题意知点B 的横坐标的最大值为3即可知当对称轴解析:-3【分析】根据顶点P 在线段MN 上移动,又知点M 、N 的坐标分别为(-1,-2)、(1,-2),分别求出对称轴过点M 和N 时的情况,即可判断出A 点横坐标的最小值.【详解】根据题意知,点B 的横坐标的最大值为3,即可知当对称轴过N 点时,点B 的横坐标最大,此时的A 点坐标为(-1,0),当对称轴过M 点时,点A 的横坐标最小,此时B 点坐标为(1,0),此时A 点的坐标最小为(-3,0),故点A 的横坐标的最小值为-3,故答案为:-3.【点睛】本题主要考査二次函数的综合,解答本题的关键是熟练掌握二次函数的图象对称轴的特点.15.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.16.【分析】先求得对称轴再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标即可求解【详解】抛物线的对称轴由图象得抛物线与轴的一个交点的坐标为(30)∴抛物线与轴的另一个交点的坐标为(-10)∴元二次解析:11x =-,23x =【分析】先求得对称轴1x =,再根据抛物线的对称性求得抛物线与x 轴的另一个交点的坐标,即可求解.【详解】 抛物线的对称轴212a x a-=-=, 由图象得抛物线与x 轴的一个交点的坐标为(3,0),∴抛物线与x 轴的另一个交点的坐标为(-1,0),∴元二次方程2230ax ax -+=两根为1213x x =-=,.故答案为:1213x x =-=,.【点睛】本题考查了二次函数的性质,抛物线与x 轴的交点,理解方程20ax bx c ++=的根就是函数2y ax bx c =++(0a ≠)的图象与x 轴的交点的横坐标是解题的关键. 17.【分析】根据二次函数的性质及绝对值的非负性二次根式的性质求解即可【详解】解:观察图象得:a<0c>0把A(10)代入得a+b+c=0∴c=-a-b ∵=-1∴b=2a<0∴c=-a-2a=-3a>0∴解析:2a b c -+-【分析】根据二次函数的性质及绝对值的非负性,二次根式的性质求解即可.【详解】解:观察图象得:a<0,c>0,把A(1,0)代入2y ax bx c =++得a+b+c=0,∴c= -a-b , ∵2b a -= -1,∴b=2a<0,∴c=-a-2a=-3a>0,∴2b+c=4a-3a=a<0,a-b+c=a-2a-3a=-4a>0,∴||a b c -+=a b c -+=-(2b+c)+a-b+c=-2b-c+a-b+c= -3b+a=-5a ,故答案为-5a .【点睛】本题考查了二次函数的性质及绝对值的非负性,解题的关键是熟练掌握二次函数的性质. 18.【分析】根据判别式的意义得到△=b2-4a=0然后a 取一个不为0的实数再确定对应的b 的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x 轴只有一个交点∴△=b2-4a=0若a=1则b可解析:12【分析】根据判别式的意义得到△=b2-4a=0,然后a取一个不为0的实数,再确定对应的b的值.【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x轴只有一个交点,∴△=b2-4a=0,若a=1,则b可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.19.【分析】抛物线开口向上且对称轴为直线根据二次函数的图象性质:在对称轴的右侧y随x的增大而增大【详解】∵二次函数∴该抛物线开口向上且对称轴为直线:∴点A(-3m)关于对称轴的对称点为(1m)∵-1<0解析:>【分析】抛物线开口向上,且对称轴为直线1x=-,根据二次函数的图象性质:在对称轴的右侧,y随x的增大而增大.【详解】∵二次函数22(1)y x k=++,∴该抛物线开口向上,且对称轴为直线:1x=-.∴点A(-3,m)关于对称轴的对称点为(1,m),∵-1<0<1,∴m>n.故答案为:>.【点睛】本题主要考查了二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.20.()【分析】根据抛物线y=x2﹣3x+2与x轴交于AB两点与y轴交于点C 得A(10)B(20)C(02)过点B作BM⊥BC交CD延长线于点M过点M作MG⊥x轴于点G易证等腰直角三角形OCB∽等腰直角解析:(715 ,24)【分析】根据抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,得A(1,0),B(2,0),C(0,2),过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,易证等腰直角三角形OCB∽等腰直角三角形GBM,可得M(8,6),再求得直线CM的解析式为y=12x+2,联立直线和抛物线,解方程组即可得点D的坐标.【详解】解:∵抛物线y=x2﹣3x+2与x轴交于A、B两点,与y轴交于点C,∴解得A(1,0),B(2,0),C(0,2),∴OB=OC∴∠OBC=45°,如图,过点B作BM⊥BC交CD延长线于点M,过点M作MG⊥x轴于点G,∴∠COB=∠MGB=90°∴∠CBO+∠MBG=90°∴∠MBG=45°∴MG=BG∴等腰直角三角形OCB∽等腰直角三角形GBM∴BCBM =OCBG∵tan∠DCB=MBBC=3∴123BG∴BG=6∴MG=6∴M(8,6)设直线CM解析式为y=kx+b,把C(0,2),M(8,6)代入,解得k=12,b=2所以直线CM的解析式为y=12x+2联立212232y x y x x ⎧=+⎪⎨⎪=-+⎩ 解得1102x y =⎧⎨=⎩,2272154x y ⎧=⎪⎪⎨⎪=⎪⎩∴D (715,24) 故答案为(715,24). 【点睛】本题考查了抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征、解直角三角形,解决本题的关键是掌握二次函数的性质.三、解答题21.(1)二次函数y =ax 2的图象随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y =﹣2x 2+c 的图象随着c 的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)±2,﹣2;(3)p <m <n【分析】(1)根据二次函数的性质即可得到结论;(2)由函数图象的形状相同得到a=±2,根据上加下减的平移规律即可求得函数 y =ax 2-2,根据完全重合,得到c =-2.(3)由二次函数的解析式得到开口方向和对称轴,然后根据点到对称轴的距离即可判断.【详解】解:(1)二次函数y =ax 2的图象随着a 的变化,开口大小和开口方向都会变化,但是对称轴、顶点坐标不会改变;二次函数y =﹣2x 2+c 的图象随着c 的变化,开囗大小和开口方向都没有改变,对称轴也没有改变,但是,顶点坐标会发生改变;(2)∵函数y =ax 2与函数y =﹣2x 2+c 的形状相同,∴a =±2,∵抛物线y =ax 2沿y 轴向下平移2个单位得到y =ax 2﹣2,与y =﹣2x 2+c 的图象完全重合,∴c =﹣2,故答案为:±2,﹣2.(3)由函数y =﹣2x 2+c 可知,抛物线开口向下,对称轴为y 轴,∵1﹣0<0﹣(﹣2)<5﹣0,∴p <m <n ,故答案为:p <m <n .【点睛】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,熟知图形平移不变性的性质是解答此题的关键.22.(1)y =﹣12(x ﹣15)2+112.5,y 的最大值为112m 2;(2)x 的值为12 【分析】(1)根据长方形的面积等于长乘以宽及墙体长度为14米,即可求出y 与x 的函数关系式,结合二次函数增减性得出二次函数最值;(2)把y=108代入(1)中的解析式,解方程得出答案.【详解】(1)根据题意可得:AD =12(30﹣x )m , y =12x (30﹣x ) =﹣12x 2+15x =﹣12(x ﹣15)2+112.5, ∵墙长为14m ,∴0<x≤14,则x≤15时,y 随 x 的增大而增大,∴当x =14m ,即AB =14m ,BC =8m 时,长方形的面积最大,最大面积为:14×8=112(m 2);∴y 的最大值为112m 2;(2)当y =108时,108=12x (30﹣x ), 整理得:x 2﹣30x+216=0,解得:x 1=12,x 2=18(不合题意舍去),答:x 的值为12.【点睛】本题考查了二次函数在实际问题中的应用,根据题意正确得出函数关系式并明确二次函数的性质是解题的关键.23.(1)2b =-,3c =-;(2)点F 坐标为(0,2)-;(3)存在,Q 的坐标为115,24⎛⎫- ⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭ 【分析】(1)由条件可求得抛物线对称轴,则可求得b 的值;由OB=OC ,可用c 表示出B 点坐标,代入抛物线解析式可求得c 的值;(2)可设F (0,m ),则可表示出F′的坐标,由B 、E 的坐标可求得直线BE 的解析式,把F′坐标代入直线BE 解析式可得到关于m 的方程,可求得F 点的坐标;(3)设点P 坐标为(n ,0),可表示出PA 、PB 、PN 的长,作QR ⊥PN ,垂足为R ,则可求得QR 的长,用n 可表示出Q 、R 、N 的坐标,在Rt △QRN 中,由勾股定理可得到关于n 的二次函数,利用二次函数的性质可知其取得最小值时n 的值,则可求得Q 点的坐标,【详解】解:(1)∵CD//x 轴,2CD =,∴抛物线对称轴为直线:1l x =, ∴12b -=,即2b =-, ∵OB OC =,(0,)C c ,∴B 点坐标为(,0)c -, ∴202c c c =++,解得3c =-或0c(舍去); ∴3c =-.(2)设点F 坐标为(0,)m ,∵对称轴是直线:1l x =,∴点F 关于直线l 的对称点F '的坐标为(2,)m ,由(1)可知抛物线解析式为y=x 2-2x-3=(x-1)2-4,∴E (1,-4),∵直线BE 经过点(3,0)B ,(1,4)E -,∴直线BE 的表达式为26y x =-,∵点F '在BE 上,∴2262m =⨯-=-,即点F 坐标为(0,2)-.(3)存在点Q 满足题意.设点P 坐标为(,0)n ,则1PA n =+,3PB PM n ==-,223PN n n =-++, 如解图,连接QN ,过点Q 作QR PN ⊥,垂足为R ,∵PQN APM SS =, ∴1(1)(3)2n n +- ()21232n n QR =-++⋅, ∴1QR =,①点Q 在直线PN 的左侧时,Q 点坐标为()21,4n n n --,R 点坐标为()2,4n n n -,N 点坐标为()2,23n n n --,∴()2242323RN n n n n n =----=-+∴在Rt QRN 中,221(23)NQ n =+-,∴当3n 2=时,NQ 取得最小值1, 此时Q 点坐标为115,24⎛⎫-⎪⎝⎭; ②点Q 在直线PN 的右侧时,Q 点坐标为()21,4n n +-,同理21RNn =-,221(21)NQ n =+-, ∴当12n =时,NQ 取得最小值1, 此时Q 点坐标为315,24⎛⎫- ⎪⎝⎭, 综上所述:满足题意的点Q 的坐标为115,24⎛⎫-⎪⎝⎭和315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数的综合应用,涉及待定系数法、轴对称、三角形的面积、勾股定理、二次函数的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的对称轴是解题的关键,在(2)中用F 点的坐标表示出F′的坐标是解题的关键,在(3)中求得QR 的长,用勾股定理得到关于n 的二次函数是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.24.(1)3,4,3;(2)见解析;(3)x <0或x >4.【分析】(1)把x =1,x =2,x =3分别代入函数解析式,求出y 的值即可;(2)在坐标系内描出各点,再顺次连接即可;(3)根据函数图象即可得出结论.【详解】解:(1)∵当x =1时,y =﹣1+4×1=3;当x =2时,y =﹣4+4×2=4;当x =3时,y =﹣9+4×3=3.故答案为:3,4,3;(2)如图所示;(3)如图所示,当y <0时,x 的取值范围是x <0或x >4.【点睛】本题考查了二次函数的图象,函数与方程、不等式的关系,熟知画二次函数图象的一般步骤列表、描点、连线,理解函数与方程、不等式的关系是解题关键.25.(1) 2y x 2x 3=-++,顶点坐标为(1,4);(2)不在,理由见解析;(3)S=21522m m +,S 的最大值为:258. 【分析】(1)求出A 、B 两点坐标,把B 点坐标代入抛物线的解析式即可解决问题.(2)首先求出BD 和BD 所在直线解析式,再过A 作//AE BD 交抛物线于点F ,联立方程组2123y x y x x =-⎧⎨=-++⎩求出点F 的坐标,进而得出AF 的长,从而可判断出AF 和BD 的关系,故可得结;(3)如图2中,连接OM ,设M (m ,-m 2+2m+3),根据S=S △BOM +S △AOM -S △AOB 计算即可.再利用二次函数的性质求出最大值.【详解】解:(1)∵直线l :y=-3x+3与x 轴、y 轴分别相交于A 、B 两点,∴A (1,0),B (0,3),把点B (0,3)代入y=ax 2-2ax+a+4得a=-1,∴抛物线的解析式为y=-x 2+2x+3.顶点D 的坐标为(1,4)(2)不在,如图1,∵(0,3),(1,4)B D。
四川省中考数学二次函数试题分类学生版
四川省2019年、2020年数学中考试题分类(8)——二次函数一.选择题(共25小题)1.(2020•德阳)已知不等式0ax b +>的解集为2x <,则下列结论正确的个数是( )(1)20a b +=;(2)当c a >时,函数2y ax bx c =++的图象与x 轴没有公共点;(3)当0c >时,抛物线2y ax bx c =++的顶点在直线y ax b =+的上方;(4)如果3b <且20a mb m --=,则m 的取值范围是304m -<<. A .1 B .2 C .3 D .42.(2020•绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .B .C .D .7米3.(2020•眉山)已知二次函数22224(y x ax a a a =-+--为常数)的图象与x 轴有交点,且当3x >时,y 随x 的增大而增大,则a 的取值范围是( )A .2a -B .3a <C .23a -<D .23a -4.(2020•宜宾)函数2(0)y ax bx c a =++≠的图象与x 轴交于点(2,0),顶点坐标为(1,)n -,其中0n >.以下结论正确的是( )①0abc >;②函数2(0)y ax bx c a =++≠在1x =和2x =-处的函数值相等;③函数1y kx =+的图象与2(0)y ax bx c a =++≠的函数图象总有两个不同交点; ④函数2(0)y ax bx c a =++≠在33x -内既有最大值又有最小值.A .①③B .①②③C .①④D .②③④5.(2020•凉山州)二次函数2y ax bx c =++的图象如图所示,有如下结论: ①0abc >;②20a b +=;③320b c -<;④2(am bm a b m ++为实数).其中正确结论的个数是( )A .1个B .2个C .3个D .4个6.(2020•达州)如图,直线1y kx =与抛物线22y ax bx c =++交于A 、B 两点,则2()y ax b k x c =+-+的图象可能是( )A .B .C .D .7.(2020•泸州)已知二次函数22224y x bx b c =-+-(其中x 是自变量)的图象经过不同两点(1,)A b m -,(2,)B b c m +,且该二次函数的图象与x 轴有公共点,则b c +的值为( )A .1-B .2C .3D .48.(2020•成都)关于二次函数228y x x =+-,下列说法正确的是( )A .图象的对称轴在y 轴的右侧B .图象与y 轴的交点坐标为(0,8)C .图象与x 轴的交点坐标为(2,0)-和(4,0)D .y 的最小值为9-9.(2020•南充)关于二次函数245(0)y ax ax a =--≠的三个结论:①对任意实数m ,都有12x m =+与22x m =-对应的函数值相等;②若34x ,对应的y 的整数值有4个,则413a -<-或413a <;③若抛物线与x 轴交于不同两点A ,B ,且6AB ,则54a <-或1a .其中正确的结论是( )A .①②B .①③C .②③D .①②③10.(2020•甘孜州)如图,二次函数2(1)y a x k =++的图象与x 轴交于(3,0)A -,B 两点,下列说法错误的是( )A .0a <B .图象的对称轴为直线1x =-C .点B 的坐标为(1,0)D .当0x <时,y 随x 的增大而增大11.(2020•遂宁)二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为直线1x =-,下列结论不正确的是( )A .24b ac >B .0abc >C .0a c -<D .2(am bm a b m +-为任意实数)12.(2020•南充)如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3).若抛物线2y ax =的图象与正方形有公共点,则实数a 的取值范围是( )A .139aB .119aC .133aD .113a 13.(2019•阿坝州)二次函数2y x bx c =-++的图象如图所示,则直线y bx c =+不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限14.(2019•德阳)对于二次函数26y x x a =-+,在下列几种说法中:①当2x <时.y 随x 的增大而减小;②若函数的图象与x 轴有交点,则9a ;③若8a =,则二次函数26(24)y x x a x =-+<<的图象在x 轴的下方;④若将此函数的图象绕坐标原点旋转180︒,则旋转后的函数图象的顶点坐标为(3,9)a --,其中正确的个数为( )A .1B .2C .3D .415.(2019•雅安)在平面直角坐标系中,对于二次函数2(2)1y x =-+,下列说法中错误的是( )A .y 的最小值为1B .图象顶点坐标为(2,1),对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x 时,y 的值随x 值的增大而减D .它的图象可以由2y x =的图象向右平移2个单位长度,再向上平移1个单位长度得到16.(2019•泸州)已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( )A .2a <B .1a >-C .12a -<D .12a -<17.(2019•宜宾)已知抛物线21y x =-与y 轴交于点A ,与直线(y kx k =为任意实数)相交于B ,C 两点,则下列结论不正确的是( )A .存在实数k ,使得ABC ∆为等腰三角形B .存在实数k ,使得ABC ∆的内角中有两角分别为30︒和60︒C .任意实数k ,使得ABC ∆都为直角三角形D .存在实数k ,使得ABC ∆为等边三角形18.(2019•资阳)如图是函数223(04)y x x x =--的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线l 下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .1mB .0mC .01mD .1m 或0m19.(2019•巴中)二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④20.(2019•绵阳)如图,二次函数2(0)y ax bx c a =++>的图象与x 轴交于两点1(x ,0),(2,0),其中101x <<.下列四个结论:①0abc <;②20a c ->;③240a b c ++>;④44a b b a+<-,正确的个数是( )A .1B .2C .3D .421.(2019•遂宁)二次函数2y x ax b =-+的图象如图所示,对称轴为直线2x =,下列结论不正确的是( )A .4a =B .当4b =-时,顶点的坐标为(2,8)-C .当1x =-时,5b >-D .当3x >时,y 随x 的增大而增大22.(2019•广安)二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线1x =,下列结论:①0abc <②b c <③30a c +=④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个23.(2019•攀枝花)在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图象可能是( )A .B .C .D .24.(2019•南充)抛物线2(y ax bx c a =++,b ,c 是常数),0a >,顶点坐标为1(2,)m ,给出下列结论:①若点1(,)n y 与3(22n -,2)y 在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误25.(2019•临沂)从地面竖直向上抛出一小球,小球的高度h (单位:)m 与小球运动时间t (单位:)s 之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m ;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度30h m =时, 1.5t s =.其中正确的是( )A .①④B .①②C .②③④D .②③26.(2020•德阳)若实数x ,y 满足23x y +=,设228s x y =+,则s 的取值范围是 .27.(2020•内江)已知抛物线214y x x =-+(如图)和直线22y x b =+.我们规定:当x 取任意一个值时,x 对应的函数值分别为1y 和2y .若12y y ≠,取1y 和2y 中较大者为M ;若12y y =,记12M y y ==.①当2x =时,M 的最大值为4;②当3b =-时,使2M y >的x 的取值范围是13x -<<;③当5b =-时,使3M =的x 的值是11x =,23x =;④当1b 时,M随x 的增大而增大.上述结论正确的是 .(填写所有正确结论的序号)28.(2020•乐山)符号[]x 表示不大于x 最大整数.例如:[1.5]1=,[1.5]2-=-.那么:(1)当1[]2x -<时,x 的取值范围是 ;(2)当12x -<时,函数22[]3y x a x =-+的图象始终在函数[]3y x =+的图象上方或图象上,则实数a 的范围是 .29.(2019•达州)如图,抛物线221(y x x m m =-+++为常数)交y 轴于点A ,与x 轴的一个交点在2和3之间,顶点为B .①抛物线221y x x m =-+++与直线2y m =+有且只有一个交点;②若点1(2,)M y -、点1(2N ,2)y 、点3(2,)P y 在该函数图象上,则123y y y <<; ③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为2(1)y x m =-++;④点A 关于直线1x =的对称点为C ,点D 、E 分别在x 轴和y 轴上,当1m =时,四边形BCDE .其中正确判断的序号是 .30.(2020•德阳)如图1,抛物线223(0)=--≠与x轴交于点A,B.与y轴交y ax ax a a于点C.连接AC,BC.已知ABC∆的面积为2.(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点.过P,Q向x轴作垂线,垂足分别为G,H.若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N(2,0).点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E.连接AD并延长交MN于点F.在点D运动过程中,3NE NF+是否为定值?若是,求出这个定值;若不是,请说明理由.31.(2020•眉山)如图1,抛物线2=-++与x轴交于A、B两点,与y轴交于点C,y x bx c已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当PBC∆的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD x⊥轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.32.(2020•雅安)已知二次函数22(0)=++≠的图象与x轴的交于A、(1,0)y ax x c aB两点,C-,与y轴交于点(0,3)(1)求二次函数的表达式及A点坐标;(2)D是二次函数图象上位于第三象限内的点,求点D到直线AC的距离取得最大值时点D的坐标;(3)M是二次函数图象对称轴上的点,在二次函数图象上是否存在点N,使以M、N、B、O为顶点的四边形是平行四边形?若有,请写出点N的坐标(不写求解过程).A和C,顶点为D,直线AC与抛物线的对称轴BD 33.(2020•绵阳)如图,抛物线过点(0,1)的交点为B,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点FBDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当PAB∆面积最大时,求点P的坐标及PAB∆面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.34.(2020•宜宾)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,F作x轴的平行线交二次函数的图象于M、N两点.过点(0,1)(1)求二次函数的表达式;(2)P为平面内一点,当PMN∆是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E ,使得以点E 为圆心的圆过点F 和点N ,且与直线1y =-相切.若存在,求出点E 的坐标,并求E 的半径;若不存在,说明理由.35.(2020•攀枝花)如图,开口向下的抛物线与x 轴交于点(1,0)A -、(2,0)B ,与y 轴交于点(0,4)C ,点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP 的面积为S ,求S 的最大值.36.(2020•内江)如图,抛物线2y ax bx c =++经过(1,0)A -、(4,0)B 、(0,2)C 三点,点(,)D x y 为抛物线上第一象限内的一个动点.(1)求抛物线所对应的函数表达式;(2)当BCD ∆的面积为3时,求点D 的坐标;(3)过点D 作DE BC ⊥,垂足为点E ,是否存在点D ,使得CDE ∆中的某个角等于ABC ∠的2倍?若存在,求点D 的横坐标;若不存在,请说明理由.37.(2020•泸州)如图,已知抛物线2y ax bx c =++经过(2,0)A -,(4,0)B ,(0,4)C 三点. (1)求该抛物线的解析式;(2)经过点B 的直线交y 轴于点D ,交线段AC 于点E ,若5BD DE =. ①求直线BD 的解析式;②已知点Q 在该抛物线的对称轴l 上,且纵坐标为1,点P 是该抛物线上位于第一象限的动点,且在l 右侧,点R 是直线BD 上的动点,若PQR ∆是以点Q 为直角顶点的等腰直角三角形,求点P 的坐标.38.(2020•凉山州)如图,二次函数2y ax bx c =++的图象过(0,0)O 、(1,0)A 、3(2B 三点.(1)求二次函数的解析式;(2)若线段OB 的垂直平分线与y 轴交于点C ,与二次函数的图象在x 轴上方的部分相交于点D ,求直线CD 的解析式;(3)在直线CD 下方的二次函数的图象上有一动点P ,过点P 作PQ x ⊥轴,交直线CD 于Q ,当线段PQ 的长最大时,求点P 的坐标.39.(2020•达州)如图,在平面直角坐标系xOy 中,已知直线122y x =-与x 轴交于点A ,与y 轴交于点B ,过A 、B 两点的抛物线2y ax bx c =++与x 轴交于另一点(1,0)C -.(1)求抛物线的解析式;(2)在抛物线上是否存在一点P ,使PAB OAB S S ∆∆=?若存在,请求出点P 的坐标,若不存在,请说明理由;(3)点M 为直线AB 下方抛物线上一点,点N 为y 轴上一点,当MAB ∆的面积最大时,求12MN ON +的最小值.40.(2020•成都)在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于(1,0)A -,(4,0)B 两点,与y 轴交于点(0,2)C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,连接BD ,记BDE ∆的面积为1S ,ABE ∆的面积为2S ,求12S S 的最大值; (3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点.试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∆∆∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.41.(2020•乐山)已知抛物线2y ax bx c =++与x 轴交于(1,0)A -,(5,0)B 两点,C 为抛物线的顶点,抛物线的对称轴交x 轴于点D ,连结BC ,且4tan 3CBD ∠=,如图所示. (1)求抛物线的解析式;(2)设P 是抛物线的对称轴上的一个动点.①过点P 作x 轴的平行线交线段BC 于点E ,过点E 作EF PE ⊥交抛物线于点F ,连结FB 、FC ,求BCF ∆的面积的最大值;②连结PB ,求35PC PB +的最小值.42.(2020•甘孜州)如图,在平面直角坐标系xOy 中,直线3y kx =+分别交x 轴、y 轴于A ,B 两点,经过A ,B 两点的抛物线2y x bx c =-++与x 轴的正半轴相交于点(1,0)C .(1)求抛物线的解析式;(2)若P 为线段AB 上一点,APO ACB ∠=∠,求AP 的长;(3)在(2)的条件下,设M 是y 轴上一点,试问:抛物线上是否存在点N ,使得以A ,P ,M ,N 为顶点的四边形为平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.43.(2020•遂宁)新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买A 、B 两种花苗.据了解,购买A 种花苗3盆,B 种花苗5盆,则需210元;购买A 种花苗4盆,B 种花苗10盆,则需380元. (1)求A 、B 两种花苗的单价分别是多少元?(2)经九年级一班班委会商定,决定购买A 、B 两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B 种花苗,B 种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?44.(2020•南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第(020)x x <个生产周期设备售价z 万元/件,z 与x 之间的关系用图中的函数图象表示.求z 关于x 的函数解析式(写出x 的范围).(2)设第x 个生产周期生产并销售的设备为y 件,y 与x 满足关系式540(020)y x x =+<.在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)45.(2020•遂宁)如图,抛物线2(0)y ax bx c a =++≠的图象经过(1,0)A ,(3,0)B ,(0,6)C 三点.(1)求抛物线的解析式.(2)抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,直线AN 交抛物线于点D ,直线BE 交AD 于点E ,若直线BE 将ABD ∆的面积分为1:2两部分,求点E 的坐标.(3)P 为抛物线上的一动点,Q 为对称轴上动点,抛物线上是否存在一点P ,使A 、D 、P 、Q 为顶点的四边形为平行四边形?若存在,求出点P 的坐标;若不存在,请说明理由.46.(2020•遂宁)阅读以下材料,并解决相应问题: 小明在课外学习时遇到这样一个问题:定义:如果二次函数21111(0y a x b x c a =++≠,1a 、1b 、1c 是常数)与22222(0y a x b x c a =++≠,2a 、2b 、2c 是常数)满足120a a +=,12b b =,120c c +=,则这两个函数互为“旋转函数”.求函数2231y x x =-+的旋转函数,小明是这样思考的,由函数2231y x x =-+可知,12a =,13b =-,11c =,根据120a a +=,12b b =,120c c +=,求出2a ,2b ,2c 就能确定这个函数的旋转函数.请思考小明的方法解决下面问题: (1)写出函数243y x x =-+的旋转函数.(2)若函数25(1)y x m x n =+-+与253y x nx =---互为旋转函数,求2020()m n +的值. (3)已知函数2(1)(3)y x x =-+的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是1A 、1B 、1C ,试求证:经过点1A 、1B 、1C 的二次函数与2(1)(3)y x x =-+互为“旋转函数”.47.(2019•阿坝州)如图,在平面直角坐标系中,抛物线2y ax bx c =++经过原点O ,顶点为(2,4)A -.(1)求抛物线的函数解析式;(2)设点P 为抛物线2y ax bx c =++的对称轴上的一点,点Q 在该抛物线上,当四边 形OAQP 为菱形时,求出点P 的坐标;(3)在(2)的条件下,抛物线2y ax bx c =++在第一象限的图象上是否存在一点M ,使得点M 到直线OP 的距离与其到x 轴的距离相等?若存在,求出直线OM 的函数解析式;若不存在,请说明理由.48.(2019•德阳)如图1,在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴的负半轴交于点C ,已知抛物线的对称轴为直线x =,B 、C两点的坐标分别为B ,0),(0,3)C -.点P 为直线BC 下方的抛物线上的一个动点(不与B 、C 两点重合).(1)求此抛物线的解析式;(2)如图1,连接PB 、PC 得到PBC ∆,问是否存在着这样的点P ,使得PBC ∆的面积最大?如果存在,求出面积的最大值和此时点P 的坐标;如果不存在,请说明理由. (3)如图2,连接AP 交线段BC 于点D ,点E 为线段AD 的中点,过点D 作DM AB ⊥于点M ,DN AC ⊥于点N ,连接EM 、EN ,则在点P 的运动过程中,MEN ∠的大小是否为定值?如果是,求出这个定值;如果不是,请说明理由.49.(2019•雅安)已知二次函数2(0)y ax a =≠的图象过点(2,1)-,点(P P 与O 不重合)是图象上的一点,直线l 过点(0,1)且平行于x 轴.PM l ⊥于点M ,点(0,1)F -. (1)求二次函数的解析式;(2)求证:点P 在线段MF 的中垂线上;(3)设直线PF 交二次函数的图象于另一点Q ,QN l ⊥于点N ,线段MF 的中垂线交l 于点R ,求MRRN的值; (4)试判断点R 与以线段PQ 为直径的圆的位置关系.50.(2019•内江)两条抛物线211:361C y x x =--与222:C y x mx n =-+的顶点相同.(1)求抛物线2C 的解析式;(2)点A 是抛物线2C 在第四象限内图象上的一动点,过点A 作AP x ⊥轴,P 为垂足,求AP OP +的最大值;(3)设抛物线2C 的顶点为点C ,点B 的坐标为(1,4)--,问在2C 的对称轴上是否存在点Q ,使线段QB 绕点Q 顺时针旋转90︒得到线段QB ',且点B '恰好落在抛物线2C 上?若存在,求出点Q 的坐标;若不存在,请说明理由.。
2020年九年级中考数学二轮复习:二次函数专题练习(含答案)
12020年中考数学二轮复习二次函数专题练习☆选择题(请在下面的四个选项中将正确的答案选在括号里)1.已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( ) A .(﹣3,7)B .(﹣1,7)C .(﹣4,10)D .(0,10)2.已知点A (﹣3,y 1),B (2,y 2)均在抛物线y =ax 2+bx +c 上,点P (m ,n )是该抛物线的顶点,若y 1>y 2≥n ,则m 的取值范围是( ) A .﹣3<m <2B .﹣32<m <-12C .m >﹣12D .m >23.已知抛物线y =ax 2+bx +c 的图象如图所示,下列说法正确的是( )A .abc >0B .a ﹣b +c =2C .4ac ﹣b 2<0D .当x >﹣1时,y 随x 增大而增大4.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x ﹣12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:2 25.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为( ) A .74-B或C .2或D .2或74-6.在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线256y x x =++,则原抛物线的解析式是( )A .2511()24y x =---B .2511()24y x =-+-C .251()24y x =---D .251()24y x =-++7.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (﹣3,0),对称轴为x =﹣1.给出四个结论:①b 2>4ac ;②2a +b =0;③a ﹣b +c =0;④5a <b .其中正确的有( )A .1个B .2个C .3个D .4个8.如果我们把函数2y ax b x c =++称为二次函数2y ax bx c =++的“镜子函数”,那么对于二次函数1C :223y x x =--的“镜子函数”2C :223y x x =--,下列说法:①2C 的图像关于y 轴对称;②2C 有最小值,最小值为4-;③当方程223x x m --=有两个不相等的实数根时,3m >-;④直线y x b =+与2C 的图像有三个交点时,1334b -≤≤-中,正确的有( ) A .1个B .2个C .3个D .4个☆填空题9.二次函数2247y x x =--+的对称轴为___________.10.二次函数()2y x 1b =-+的图象与y 轴交于点(0,1),则b 的值为________. 11.已知二次函数221y ax x =-+的图象与x 轴只有一个公共点,则a 的值是_______. 12.把y =2x 2﹣6x +4配方成y =a (x ﹣h )2+k 的形式是__________.13.将二次函数21:23C y x x =+-的图像向左平移1个单位得到2C ,则函数2C 的解析式为______.314.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.15.汽车刹车后行驶的距离S (单位:m )与行驶的时间t (单位:s )之间的函数关系式是2124S t t =-,当一辆行驶的汽车刹车后,在它的前方10m 远的地方有一只小狗,那么这只小狗________出现危险(填“会”或者“不会”).16.若二次函数25y x bx =+-的对称轴为直线1x =,则关于x 的方程251x bx +-=的解为______. 17.如图,在平面直角坐标系中,抛物线2(1)y a x b =++与2(2)1y a x b =-++交于点A .过点A 作y 轴的垂线,分别交两条抛物线于点B 、C (点B 在点A 左侧,点C 在点A 右侧),则线段BC 的长为____.18.如图,抛物线y =ax 2+bx +4与x 轴交于点A (﹣2,0)和B (4,0)、与y 轴交于点C .点M ,Q 分别从点A ,B 以每秒1个单位长度的速度沿x 轴同时出发相向而行.当点M 到达原点时,点Q 立刻掉头并以每秒32个单位长度的速度向点B 方向移动,当点M 到达抛物线的对称轴时,两点停止运动.过点M 的直线l ⊥x 轴,交AC 或BC 于点P .当t =_____时,△APQ 的面积S 有最大值,为_____. 4☆解答题19.某微商销售的某商品每袋成本20元,设销售价格为x (单位:元/袋),该微商发现销售量y 与销售价格x 之间的关系如表:(1)求y 关于x 的函数表达式;(2)根据物价部门的规定,商品的利润率不能超过100%,该微商应该如何定价,才能使获得的利润最大,最大利润是多少?20.如图,ABCD 是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形AEFG 的形状,其中点E 在AB 边上,点G 在AD 的延长线上,DG = 2BE .设BE 的长为x 米,改造后苗圃AEFG 的面积为y 平方米.(1)求y 与x 之间的函数关系式(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等,请问此时BE 的长为多少米?521.二次函数y =ax 2+bx +c (a ≠0)的图象过点A (﹣1,8)、B (2,﹣1),与y 轴交于点C (0,3),求二次函数的表达式.22.如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索); (3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)23.设,a b 是任意两个不等实数,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],a b .对于一个函数,如果它的自变量x 与函数值y 满足:当m x n ≤≤时,有m y n ≤≤,我们就称此函数是闭区间[],m n 上的“闭函数”.如函数4y x =-+,当1x =时,3y =;当3x =时,1y =,即当13x ≤≤时,有13y ≤≤,所以说函数4y x =-+是闭区间[]1,3上的“闭函数” (1)反比例函数2019y x=是闭区间[]1,2019上的“闭函数”吗?请判断并说明理由; (2)若二次函数26y x x k =-+是闭区间[]3,4上的“闭函数”,求k 的值;(3)若一次函数(0)y kx b k =+≠是闭区间[],m n 上的“闭函数”,求此函数的表达式(可用含,m n 的代数式表示).24.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)分别求出图中直线和抛物线的函数表达式;(2)连接PO、PC,并把△POC沿C O翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.25.如图①,一次函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=12x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标. 6参考答案1.D 2.C 3.C 4.A 5.C 6.A 7.B 8.B 9.直线1x =- 10.0 11.1 12.y =2(x -32)2-1213.2(2)4y x =+- 14.0.5 15.不会16.11x =,21x =17.6 18.83;253. 19.(1)y =﹣5x +400;(2)当x =40时,获得的利润最大,最大利润是4000元. 20.(1)y =-2x 2+4x +16;(2)2米 21.y =x 2﹣4x +3. 22.(1)2545442y x x -+=,函数的对称轴为:3x =;(2)点8(3)5P ,;(3)存在,点E 的坐标为12(2,)5-或12,)5(4-. 23.(1)反比例函数2019y x=是闭区间[1,2019]上的“闭函数”;(2)12k =;(3)y x =或y x m n =-++ 24.(1)y =x ﹣3,y =x 2﹣2x ﹣3.(2)存在,点P 32⎫-⎪⎪⎝⎭25.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值6;(3)点M 的坐标为(52,12)或(52,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省成都市西川中学 2019-2020 学年中考数学:二次函数第二轮专项训练题1、某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时,房间会全部住满.当每个房间的房价每增加 10 元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20 元的各种费用.根据规定,每个房间每天房价不得高于 340 元.设每个房间的房价增加 x 元(x 为10 的正整数倍).(1)设一天订住的房间数为 y,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围;(2)设宾馆一天的利润为 W 元,求 W 与 x 的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?2、某旅游景点的门票价格是 20 元/人,日接待游客 500 人,进入旅游旺季时,景点想提高门票价格增加盈利.经过市场调查发现,门票价格每提高 5 元,日接待游客人数就会减少 50 人.设提价后的门票价格为x(元/人)(x>20),日接待游客的人数为 y(人).(1)求 y 与 x(x>20)的函数关系式;(2)已知景点每日的接待成本为 z(元),z 与y 满足函数关系式:z=100+10y.求z 与x 的函数关系式;(3)在(2)的条件下,当门票价格为多少时,景点每日获取的利润最大?最大利润是多少?3、抛物线 y=ax2+bx+3 经过点 A、B、C,已知 A(-1,0),B(3,0).(1)求抛物线的解析式;(2)如图 1,P为线段 BC上一点,过点 P作 y轴平行线,交抛物线于点 D,当△BDC的面积最大时,求点 P的坐标;4、如图,抛物线y =1 x2 +bx - 2 与x轴交于 A、B两点,与y轴交于 C点,且A(一1,0).2(1)求抛物线的解析式及顶点 D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点 M是抛物线对称轴上的一个动点,当△ACM周长最小时,求点 M的坐标及△ACM的最小周长.5、如图,二次函数 y=ax2+bx+c的图象与 x轴的交点为 A、D(A在 D的右侧),与 y轴的交点为 C,且 A(4,0).C(0,-3),对称轴是直线 x=l.(1)求二次函数的解析式;(2)若 M是第四象限抛物线上一动点,且横坐标为 m,设四边形 OCMA的面积为 s.请写出 s 与 m之间的函数关系式,并求出当 m为何值时,四边形 OCMA的面积最大;6、如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段P C的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.7、如图,在平面直角坐标系中,△ABC的边 AB在 x轴上,∠ABC=90°,AB=BC,OA=1,OB=4,抛物线 y=x2+bx+c经过 A、C两点.(1)求抛物线的解析式及其顶点坐标;(2)如图,点 P是抛物线上位于 x轴下方的一点,点 Q与点 P关于抛物线的对称轴对称,过点 P、Q分别向 x轴作垂线,垂足为点 D、E,记矩形 DPQE的周长为 d,求 d的最大值,并求出使 d最大值时点 P的坐标;8、如图,已知抛物线 y=ax2+bx-3(a≠0)与 x轴交于 A,B两点,过点 A的直线l与抛物线交于点 C,其中 A点的坐标是(1,0),C点坐标是(4,-3).(1)求抛物线解析式;(2)点 M是(1)中抛物线上一个动点,且位于直线 AC的上方,试求△ACM的最大面积以及此时点 M的坐标;9、如图,抛物线 y=x2-2x-3 与 x轴交于 A、B两点(点 A在点 B的左侧),直线l与抛物线交于 A,C两点,其中点 C的横坐标为 2.(1)求 A,B两点的坐标及直线 AC的函数表达式;(2)P是线段 AC上的一个动点(P与 A,C不重合),过 P点作 y轴的平行线交抛物线于点E,求△ACE面积的最大值;(3)若直线 PE为抛物线的对称轴,抛物线与 y轴交于点 D,直线 AC与 y轴交于点 Q,点 M 为直线 PE上一动点,则在 x轴上是否存在一点 N,使四边形 DMNQ的周长最小?若存在,求出这个最小值及点 M,N的坐标;若不存在,请说明理由.10、如图,抛物线 y=ax2-2ax+c(a≠0)与 y轴交于点 C(0,4),与 x轴交于点 A、B,点 A 坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为 N,在 x轴上找一点 K,使 CK+KN最小,并求出点 K的坐标;(3)点 Q是线段 AB上的动点,过点 Q作QE∥AC,交 BC于点 E,连接 CQ.当△CQE的面积最大时,求点 Q的坐标;11、如图,Rt△OAB如图所示放置在平面直角坐标系中,直角边 OA与 x轴重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB绕点 O逆时针旋转90°,点 B旋转到点 C的位置,一条抛物线正好经过点 O,C,A三点.(1)求该抛物线的解析式;(2)在 x轴上方的抛物线上有一动点 P,过点 P作 x轴的平行线交抛物线于点 M,分别过点P,点 M作 x轴的垂线,交 x轴于 E,F两点,问:四边形 PEFM的周长是否有最大值?如果有,请求出最值,并写出解答过程;如果没有,请说明理由.(3)如果 x轴上有一动点 H,在抛物线上是否存在点 N,使 O(原点)、C、H、N四点构成以OC为一边的平行四边形?若存在,求出 N点的坐标;若不存在,请说明理由.yE A BDOF C x12、如图,已知在平面直角坐标系 xOy 中,直角梯形 OABC 的边 OA 在 y 轴的正半轴上,OC 在 x 轴的正半轴上,OA =AB =2,OC =3,过点 B 作 BD⊥BC,交 OA 于点 D .将∠DBC绕点 B 按顺时针方向旋转,角的两边分别交 y 轴的正半轴、x 轴的正半轴于点 E 和 F . (1)求经过 A 、B 、C 三点的抛物线的解析式;(2)当 BE 经过(1)中抛物线的顶点时,求 CF 的长;(3)在抛物线的对称轴上取两点 P 、Q (点 Q 在点 P 的上方),且 PQ =1,要使四边形 BCPQ 的周长最小,求出 P 、Q 两点的坐标.备用图13、如图,已知点 A(-4,8)和点 B(2,n)在抛物线 y= ax 2 上.(1)求 a 的值及点 B 关于 x 轴对称点 P 的坐标,并在 x 轴上找一点 Q ,使得 AQ+QB 最短,求出点 Q 的坐标;(2)平移抛物线 y=ax 2,记平移后点 A 的对应点为 A′,点 B 的对应点为 B′,点 C(-2,0)和 点 D(-4,0 是 x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A′C+CB′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形 A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.Ay8 6 4 2B D -4C -2 O -2 -424xy E A BD OFC x14、如图,菱形 ABCD 的边长为 6 且∠DAB=60°,以点 A 为原点、边 AB 所在的直线为 x 轴且顶点 D 在第一象限建立平面直角坐标系.动点 P 从点 D 出发沿折线 DCB 向终点 B 以 2 单位/每秒的速度运动,同时动点 Q 从点 A 出发沿 x 轴负半轴以 1 单位/秒的速度运动,当点 P 到达终点时停止运动,运动时间为 t,直线 PQ 交边AD 于点E.(1)求出经过 A、D、C 三点的抛物线解析式;(2)是否存在时刻 t 使得PQ⊥DB,若存在请求出 t 值,若不存在,请说明理由;(3)设 AE 长为 y,试求 y 与 t 之间的函数关系式;(4)若 F、G 为 DC 边上两点,且点 DF=FG=1,试在对角线 DB 上找一点 M、抛物线 ADC 对称轴上找一点 N,使得四边形 FMNG 周长最小并求出周长最小值.15、如图,在平面直角坐标系xOy中,二次函数的图象与x轴交于A(﹣1,0)、B(3,0)两点,顶点为C.(1)求此二次函数解析式;(2)点D为点C关于x轴的对称点,过点A作直线l:交BD于点E,过点B作直线BK∥AD 交直线l于K点.问:在四边形ABKD的内部是否存在点P,使得它到四边形ABKD四边的距离都相等?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M、N分别为直线AD和直线l上的两个动点,连结DN、NM、MK,求DN+NM+MK和的最小值.16、如图 1,抛物线 y=ax2+bx+3(a≠0)与 x轴、y轴分别交于点 A(-1,0),B(3,0)、点 C 三点.(1)求抛物线的表达式.(2)点 D(2,m)在第一象限的抛物线上,连接 BC,BD.在对称轴左侧的抛物线上是否存在一点 P,满足∠PBC=∠DBC?如果存在,请求出点 P的坐标;如果不存在,请说明理由.(3)如图 2,在(2)的条件下,将△BOC沿 x轴正方向以每秒 1 个单位长度的速度向右平移,记平移后的三角形为△B′O′C′.在平移过程中,△B′O′C′与△BCD重叠的面积记为S,设平移的时间为 t秒,直接写出S与 t之间的函数关系式.17、如图,抛物线 y=ax2+bx+6 过点 A(6,0),B(4,6),与 y轴交于点 C.(1)求该抛物线的解析式;(2)如图1,直线l 的解析式为 y=x,抛物线的对称轴与线段 BC交于点 P,过点 P作直线l的垂线,垂足为点 H,连接 OP,求△OPH的面积;(3)把图1中的直线 y=x向下平移 4 个单位长度得到直线 y=x-4,如图 2,直线 y=x-4 与x轴交于点 G.点 P是四边形 ABCO边上的一点,过点 P分别作 x轴、直线 l的垂线,垂足分别为点 E,F.是否存在点 P,使得以 P,E,F为顶点的三角形是等腰三角形?若存在,直接写出点 P的坐标;若不存在,请说明理由.18、如图 1,在平面直角坐标系中,O是坐标原点.点 A在 x轴的正半轴上,点 A的坐标为(10,0).一条抛物线y =-1x2 +bx +c经过 O,A,B三点,直线 AB的表达式为y =-1x + 5 ,且与4 2抛物线的对称轴交于点Q.(1)求拋物线的表达式.(2)如图 2,在 A,B两点之间的抛物线上有一动点 P,连接 AP,BP,设点 P的横坐标为m,△ABP的面积为 S,求出面积 S取得最大值时点 P的坐标.(3)如图 3,将△OAB沿射线 BA方向平移得到△DEF.在平移过程中,以 A,D,Q为顶点的三角形能否成为等腰三角形?如果能,请直接写出此时点 E的坐标(点 O除外);如果不能,请说明理由.19、如图 1,抛物线y =ax2 +bx +7经过A(1,0),B(7,0)两点,交 y轴于D点,以 AB为边4在 x轴上方作等边三角形 ABC.(1)求抛物线的解析式;(2)在 x轴上方的抛物线上是否存在点 M,使S△ABM=的坐标;若不存在,请说明理由;S△ABC?若存在,请求出点 M(3)如图 2,E是线段 AC上的动点,F是线段 BC上的动点,AF与 BE相交于点 P.①若 CE=BF,试猜想 AF与 BE的数量关系及∠APB的度数,并说明理由;②若 AF=BE,当点 E由 A运动到 C时,请直接写出点 P经过的路径长.4 39。