七年级下学期数学期中模拟试卷
2021-2022学年七年级数学下学期期中期末必考题精准练苏科版试卷+答案
七年级下学期期中模拟卷一一.选择题(共10小题,满分20分,每小题2分)1.(2分)将下列图案通过平移后可以得到的图案是()A.B.C.D.2.(2分)下列计算正确的是()A.3x2+2x2=5x4B.3x7÷x5=3x2C.x3•x2=x6D.(x2)3=x53.(2分)下列长度的三条线段能组成三角形的是()A.3,4,7B.3,4,8C.3,3,5D.3,3,74.(2分)如图,在△ABC中,点D,E,F分别在边BC,AB,AC上,下列能判定DE∥AC的条件是()A.∠1=∠3B.∠3=∠C C.∠2=∠4D.∠1+∠2=180°5.(2分)下列从左到右的运算是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.x2+y2=(x+y)2﹣2xy D.(xy)2﹣1=(xy+1)(xy﹣1)6.(2分)下列各式中能用平方差公式计算的是()A.(2x+5)(﹣2x﹣5)B.(m﹣1)(1﹣m)C.(﹣a+b)(a﹣b)D.(﹣x﹣y)(x﹣y)7.(2分)正五边形的内角和是()A.360°B.540°C.720°D.900°8.(2分)下列各式是完全平方式的是()A.a2+4B.x2+2xy﹣y2C.a2﹣ab+b2D.4x2﹣4xy+y29.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°10.(2分)在如图所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点,在这个5×5的方格纸中,找出点C使△ABC的面积为1个平方单位,则满足条件的格点C的个数是有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分16分,每小题2分)11.(2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 千克.12.(2分)(13)−2=.13.(2分)分解因式:m 3﹣n 3=.14.(2分)把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,点D ,C 分别折叠到点M ,N 的位置上,∠EFG =54°,则∠1=度.15.(2分)已知m ﹣n =2,则5m ÷5n =.16.(2分)已知等腰三角形的腰长为5cm ,底边上的中线长为4cm ,则它的周长为cm .17.(2分)任意五边形的内角和与外角和的差为度.18.(2分)如图,在△ABC 中,AD 、CD 是△ABC 的角平分线且相交于点D ,∠B =80°,则∠ADC =.三.解答题(共8小题,满分64分)19.(12分)计算:(1)(2﹣3)0﹣(12)﹣2.(2)x 3•x 5﹣(2x 4)2+x 10÷x 2. (3)(x ﹣2)(x 2+2x +4).(4)4a (a ﹣3b )﹣(3b ﹣2a )(2a +3b ).20.(8分)分解因式:(1)8a 3b 2+12ab 3c ;(2)x 4﹣y 4.21.(6分)先化简,再求值:2(x +1)2﹣3(x ﹣3)(3+x )+(x +5)(x ﹣2),其中x =−32.22.(6分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A 'B 'C ;(2)图中AC 与A 'C ′的关系怎样?(3)记网格的边长为1,则△A 'B ′C ′的面积为多少?23.(8分)如图,一条直线分别与直线BE 、直线CE 、直线BF 、直线CF 相交于A ,G ,H ,D ,且∠1=∠2,∠B =∠C .求证:(1)BF ∥EC ;(2)∠A =∠D .24.(7分)如图,图①所示是一个长为2m ,宽为2n 的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于,图②中的小正方形的边长等于;(2)图②中的大正方形的面积等于,图②中的小正方形的面积等于;图①中每个小长方形的面积是;(3)观察图②,你能写出(m +n )2,(m ﹣n )2,mn 这三个代数式间的等量关系吗?.25.(8分)对于任意实数来说,都有“a2≥0”,这个结论在数学里非常有用,有时我们需要利用配方法将代数式配方成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x+2)2+1≥1,即x2+4x+5≥1.(1)填空.∵x2﹣4x+6=(x)2+,∴当x=时,代数式x2﹣4x+6有最(填“大”或“小”)值,这个最值为;(2)若代数式x2+(m+2)x+4m﹣7有最小值为0,求m的值.26.(9分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM交CD于点M,AB ∥CD,且∠FEM=∠FME.(1)当∠AEF=70°时,∠FME=°;(2)判断EM是否平分∠AEF,并说明理由;(3)如图2,点G是射线FD上一动点(不与点F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EGF=α.探究当点G在运动过程中,∠MHN﹣∠FEH和α之间有怎样的数量关系?请写出你的猜想,并加以证明.七年级下学期期中模拟卷一一.选择题(共10小题,满分20分,每小题2分)1.(2分)将下列图案通过平移后可以得到的图案是()A.B.C.D.【分析】根据图形平移、旋转、轴对称的性质对各选项记性逐一分析即可.【解答】解:A、通过平移得到,故本选项正确;B、通过旋转得到,故本选项错误;C、通过旋转得到,故本选项错误;D、通过轴对称得到,故本选项错误.故选:A.【点评】本题考查的是利用平移设计图案,熟知图形平移、旋转、轴对称的性质是解答此题的关键.2.(2分)下列计算正确的是()A.3x2+2x2=5x4B.3x7÷x5=3x2C.x3•x2=x6D.(x2)3=x5【分析】利用合并同类项运算法则判断A,利用单项式除以单项式的运算法则判断B,利用同底数幂的乘法运算法则判断C,利用幂的乘方运算法则判断D.【解答】解:A、原式=5x2,故此选项不符合题意;B、原式=3x2,故此选项符合题意;C、原式=x5,故此选项不符合题意;D、原式=x6,故此选项不符合题意;故选:B.【点评】本题考查整式的混合运算,掌握同底数幂的乘法(底数不变,指数相加),同底数幂的除法(底数不变,指数相减),幂的乘方(a m)n=a mn运算法则是解题关键.3.(2分)下列长度的三条线段能组成三角形的是()A.3,4,7B.3,4,8C.3,3,5D.3,3,7【分析】根据三角形的三边关系进行分析判断,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【解答】解:根据三角形任意两边的和大于第三边,得A、3+4=7,不能组成三角形;B、3+4<8,不能组成三角形;C、3+3>5,能够组成三角形;D、3+3<7,不能组成三角形.故选:C.【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.4.(2分)如图,在△ABC中,点D,E,F分别在边BC,AB,AC上,下列能判定DE∥AC的条件是()A.∠1=∠3B.∠3=∠C C.∠2=∠4D.∠1+∠2=180°【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、当∠1=∠3时,EF∥BC,不符合题意;B、当∠3=∠C时,DE∥AC,符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意.故选:B.【点评】此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.平行线的判定方法:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.(2分)下列从左到右的运算是因式分解的是()A.4a2﹣4a+1=4a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.x2+y2=(x+y)2﹣2xy D.(xy)2﹣1=(xy+1)(xy﹣1)【分析】根据因式分解的定义逐个判断即可.【解答】解:A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点评】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.6.(2分)下列各式中能用平方差公式计算的是()A.(2x+5)(﹣2x﹣5)B.(m﹣1)(1﹣m)C.(﹣a+b)(a﹣b)D.(﹣x﹣y)(x﹣y)【分析】根据平方差公式的特点逐个判断即可.【解答】解:A、不能用平方差公式,故本选项不符合题意;B、不能用平方差公式,故本选项不符合题意;C、不能用平方差公式,故本选项不符合题意;D、能用平方差公式,故本选项符合题意;故选:D.【点评】本题考查了平方差公式,能熟记公式的特点是解此题的关键,注意:(a+b)(a﹣b)=a2﹣b2.7.(2分)正五边形的内角和是()A.360°B.540°C.720°D.900°【分析】根据多边形内角和为(n﹣2)×180°,然后将n=5代入计算即可.【解答】解:正五边形的内角和是:(5﹣2)×180°=3×180°=540°,故选:B.【点评】本题考查多边形内角和,解答本题的关键是明确多边形内角和为(n﹣2)×180°.8.(2分)下列各式是完全平方式的是()A.a2+4B.x2+2xy﹣y2C.a2﹣ab+b2D.4x2﹣4xy+y2【分析】根据完全平方公式,对各选项分析判断后利用排除法求解.公式:(a+b)2=a2+2ab+b2;(a ﹣b)2=a2﹣2ab+b2.【解答】解:A、a2+4是二项式,不符合完全平方式,故本选项错误;B、两平方项符号相反,故本选项错误;C、乘积项不是平方项两数的二倍,故本选项错误;D、∵(2x﹣y)2=4x2﹣4xy+y2,∴是完全平方式.故选:D.【点评】本题主要考查完全平方式,熟练掌握平方式的结构特点是求解本题的关键.9.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°【分析】在△BOC中,根据三角形的内角和定理,即可求得∠OBC与∠OCB的和,再根据角平分线的定义和三角形的内角和定理即可求解.【解答】解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.【点评】本题主要考查了角平分线的定义与三角形内角和定理的综合应用.10.(2分)在如图所示的方格纸中,每个方格都是边长为1的正方形,点A,B是方格纸中的两个格点,在这个5×5的方格纸中,找出点C使△ABC的面积为1个平方单位,则满足条件的格点C的个数是有()A.3个B.4个C.5个D.6个【分析】由三角形面积关系作出平行线即可求解.【解答】解:在线段AB的两侧,距离点A为1的格点分别作AB的平行线,与网格的格点所有交点就是满足条件的C点,如图所示:共有6个,故选:D.【点评】本题考查了三角形面积,正确画出图形是解题的关键.二.填空题(共8小题,满分16分,每小题2分)11.(2分)已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为 2.1×10﹣5千克.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 021=2.1×10﹣5.故答案为:2.1×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(2分)(13)−2=9.【分析】根据负整数指数幂的运算法则进行计算即可.【解答】解:原式=1 (13)2=1×9=9.故答案为:9.【点评】本题考查的是负整数指数幂,即负整数指数幂等于相应的正整数指数幂的倒数.13.(2分)分解因式:m3﹣n3=(m﹣n)(m2+mn+n2).【分析】根据立方差公式分解即可.立方差公式:m3﹣n3=(m﹣n)(m2+mn+n2).【解答】解:m3﹣n3=(m﹣n)(m2+mn+n2).【点评】本题考查了公式法分解因式,可以直接考虑运用立方差公式分解.14.(2分)把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,点D,C分别折叠到点M,N 的位置上,∠EFG=54°,则∠1=72度.【分析】利用平角的定义先求出∠EFC,再利用平行线的性质求出∠FED,最后利用折叠的性质和平角的定义求出∠1的度数.【解答】解:∵∠EFG+∠EFC=180°,∠EFG=54°,∴∠EFC=126°.∵四边形ABCD是长方形,∴DE∥CF.∴∠EFC+∠FED=180°.∴∠FED=54°.∵四边形EFNM是由四边形EFCD折叠而成,∴∠DEF=∠MEF=54°.∵∠1+∠DEF+∠MEF=180°,∴∠1=72°.故答案为:72.【点评】本题考查了平行线的性质,弄清线段的和差关系、掌握平角的定义及“两直线平行,同旁内角互补”是解决本题的关键.15.(2分)已知m﹣n=2,则5m÷5n=25.【分析】利用同底数幂的除法运算法则进行计算,然后代入求值.【解答】解:原式=5m﹣n,∵m﹣n=2,∴原式=52=25,故答案为:25.【点评】本题考查同底数幂的除法,掌握同底数幂的除法(底数不变,指数相减)运算法则是解题关键.16.(2分)已知等腰三角形的腰长为5cm,底边上的中线长为4cm,则它的周长为16cm.【分析】首先根据等腰三角形的三线合一的性质求得底边的一半,然后求得周长即可.【解答】解:∵等腰三角形的腰长为5cm,底边上的中线长为4cm,∴底边的一半=√52−42=3cm,∴底边长为6cm,∴周长=5+5+6=16cm ,故答案为:16.【点评】本题考查了等腰三角形的性质及勾股定理的应用,解题的关键是首先求得底边的一半长,难度不大.17.(2分)任意五边形的内角和与外角和的差为 180 度.【分析】利用多边形的内角和公式求出五边形的内角和,再结合其外角和为360度,即可解决问题.【解答】解:任意五边形的内角和是180×(5﹣2)=540度;任意五边形的外角和都是360度;所以任意五边形的内角和与外角和的差为540﹣360=180度.故答案为:180.【点评】考查了多边形内角与外角,本题利用多边形的内角和公式及多边形的外角和即可解决问题.18.(2分)如图,在△ABC 中,AD 、CD 是△ABC 的角平分线且相交于点D ,∠B =80°,则∠ADC = 130° .【分析】利用角平分线的性质及三角形内角和定理解答即可.【解答】解:∵AD 、CD 是△ABC 的角平分线,∴∠CAD =12∠CAB ,∠ACD =12∠ACB ,∴∠ADC =180°﹣(∠CAD +∠ACD )=180°−12(∠CAB +ACB )=180°−12(180°﹣∠B )=90°+12∠B=90°+12×80°=130°,故答案为:130°.【点评】本题主要考查了角平分线的性质及三角形内角和定理;找准角的关系是解答本题的关键.三.解答题(共8小题,满分64分)19.(12分)计算:(1)(2﹣3)0﹣(12)﹣2. (2)x 3•x 5﹣(2x 4)2+x 10÷x 2.(3)(x ﹣2)(x 2+2x +4).(4)4a (a ﹣3b )﹣(3b ﹣2a )(2a +3b ).【分析】(1)先计算零指数幂和负整数指数幂,再计算减法即可;(2)先计算同底数幂的乘除法和单项式的乘方,再计算加减即可;(3)根据多项式乘多项式法则展开,再计算加减即可;(4)利用单项式乘多项式法则和平方差公式计算,再去括号、合并即可.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=x8﹣4x8+x8=﹣2x8;(3)原式=x3+2x2+4x﹣2x2﹣4x﹣8=x3﹣8;(4)原式=4a2﹣12ab﹣(9b2﹣4a2)=4a2﹣12ab﹣9b2+4a2=8a2﹣12ab﹣9b2.【点评】本题主要考查整式的混合运算,解题的关键是掌握整式的混合运算顺序及相关运算法则、平方差公式.20.(8分)分解因式:(1)8a3b2+12ab3c;(2)x4﹣y4.【分析】(1)提公因式4ab2可分解因式;(2)两次利用平方差公式分解因式即可求解.【解答】解:(1)原式=4ab2(2a2+3bc);(2)原式=(x2+y2)(x2﹣y2)=(x2+y2)(x+y)(x﹣y).【点评】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解因式,分解因式要彻底是解题关键.21.(6分)先化简,再求值:2(x+1)2﹣3(x﹣3)(3+x)+(x+5)(x﹣2),其中x=−3 2.【分析】原式利用单项式乘以多项式,平方差公式以及完全平方公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=2(x2+2x+1)﹣3(x2﹣9)+x2﹣2x+5x﹣10=2x2+4x+2﹣3x2+27+x2﹣2x+5x﹣10=7x+19,当x=−32时,原式=7×(−32)+19=−212+382=172.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(6分)在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的△A'B'C;(2)图中AC与A'C′的关系怎样?(3)记网格的边长为1,则△A'B′C′的面积为多少?【分析】(1)连接BB′,过A、C分别做BB′的平行线,并且在平行线上截取AA′=CC′=BB′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)根据平移的性质解答即可.(3)根据三角形面积公式即可求出△A′B′C′的面积.【解答】解:(1)如图所示:(2)AC=A'C′,AC∥A'C′;(3)△A'B′C′的面积=4×4×12=8.【点评】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.(8分)如图,一条直线分别与直线BE、直线CE、直线BF、直线CF相交于A,G,H,D,且∠1=∠2,∠B=∠C.求证:(1)BF∥EC;(2)∠A=∠D.【分析】(1)由∠1=∠2直接可得结论;(2)根据BF∥EC,∠B=∠C,可得∠B=∠BFD,从而AB∥CD,即得∠A=∠D.【解答】证明:(1)∵∠1=∠2(已知),∴BF∥EC(同位角相等,两直线平行);(2)∵BF∥EC(已证),∴∠C=∠BFD(两直线平行,同位角相等),∵∠B=∠C(已知),∴∠B=∠BFD(等量代换),∴AB∥CD(内错角相等,两直线平行),∴∠A=∠D(两直线平行,内错角相等).【点评】本题考查平行线的性质与判定,解题的关键是掌握平行线性质与判定定理.24.(7分)如图,图①所示是一个长为2m,宽为2n的长方形,用剪刀均分成四个小长方形,然后按图②的方式拼成一个大正方形.(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;(3)观察图②,你能写出(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系吗?(m+n)2﹣(m ﹣n)2=4mn.【分析】(1)依据小长方形的边长,即可得到大正方形的边长以及小正方形的边长;(2)依据正方形的边长即可得到正方形的面积,依据小长方形的边长,即可得到小长方形的面积;(3)依据大正方形的面积减去小正方形的面积等于四个小长方形的面积之和,即可得到三个代数式间的等量关系.【解答】解:(1)图②中的大正方形的边长等于m+n,图②中的小正方形的边长等于m﹣n;故答案为:m+n,m﹣n;(2)图②中的大正方形的面积等于(m+n)2,图②中的小正方形的面积等于(m﹣n)2;图①中每个小长方形的面积是mn;故答案为:(m+n)2,(m﹣n)2,mn;(3)由图②可得,(m+n)2,(m﹣n)2,mn这三个代数式间的等量关系为:(m+n)2﹣(m﹣n)2=4mn.故答案为:(m+n)2﹣(m﹣n)2=4mn.【点评】本题考查了完全平方公式的几何背景,即运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.25.(8分)对于任意实数来说,都有“a2≥0”,这个结论在数学里非常有用,有时我们需要利用配方法将代数式配方成完全平方式.例如:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴(x +2)2+1≥1,即x 2+4x +5≥1.(1)填空.∵x 2﹣4x +6=(x ﹣2 )2+ 2 ,∴当x = 2 时,代数式x 2﹣4x +6有最 小 (填“大”或“小”)值,这个最值为 2 ;(2)若代数式x 2+(m +2)x +4m ﹣7有最小值为0,求m 的值.【分析】(1)利用完全平方公式的结构特征判断,并利用非负数的性质求出最值即可;(2)原式配方变形后,根据最小值为0,求出m 的值即可.【解答】解:(1)∵x 2﹣4x +6=(x ﹣2)2+2,∴当x =2时,代数式x 2﹣4x +6有最小值,这个最值为2;故答案为:﹣2,2,2,小,2;(2)原式=x 2+(m +2)x +4m ﹣7=x 2+(m +2)x +(m+22)2+4m ﹣7﹣(m+22)2,=(x +m+22)2+4m ﹣7−m 2+4m+44=(x +m+22)2+−m 2+12m−324, ∵(x +m+22)2≥0,且原式的最小值为0, ∴−m 2+12m−324=0,即m 2﹣12m +32=0,分解因式得:(m ﹣4)(m ﹣8)=0,解得:m 1=4,m 2=8.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.26.(9分)如图1,已知两条直线AB ,CD 被直线EF 所截,分别交于点E ,点F ,EM 交CD 于点M ,AB ∥CD ,且∠FEM =∠FME .(1)当∠AEF =70°时,∠FME = 35 °;(2)判断EM 是否平分∠AEF ,并说明理由;(3)如图2,点G 是射线FD 上一动点(不与点F 重合),EH 平分∠FEG 交CD 于点H ,过点H 作HN ⊥EM 于点N ,设∠EGF =α.探究当点G 在运动过程中,∠MHN ﹣∠FEH 和α之间有怎样的数量关系?请写出你的猜想,并加以证明.【分析】(1)依据平行线的性质线,可得∠AEM =∠FME ,根据∠FEM =∠FME ,可得∠AEM =∠FEM ,进而得出∠FME 的度数;(2)由(1)得∠AEM =∠FEM ,根据角平分线的定义即可得出结论;(3)依据平行线的性质可得∠BEG=∠EGF=α,再根据EH平分∠FEG,EM平分∠AEF,即可得到∠MEH=12∠AEG=90°−12α,再根据HN⊥EM,即可得到Rt△EHN中,∠EHN=90°﹣∠MEH=12α,由∠BEH=∠EHF即可得出结论.【解答】解:(1)∵AB∥CD,∴∠AEM=∠FME,又∵∠FEM=∠FME,∴∠AEM=∠FEM,∵∠AEF=70°,∴∠FME=∠AEM=12∠AEF=35°;故答案为:35;(2)由(1)得∠AEM=∠FEM,∴EM平分∠AEF;(3)∠MHN﹣∠FEH=12α.证明:∵AB∥CD,∴∠BEG=∠EGF=α,∵EH平分∠FEG,∴∠FEH=∠HEG=12∠FEG,∴∠FEH+α=∠BEG+∠GEH=∠BEH,∵EM平分∠AEF,EH平分∠FEG,∴∠MEH=12∠AEG=12(180°﹣α)=90°−12,在Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(90°−12α)=12α,∵AB∥CD,∴∠BEH=∠EHF,即α+∠GEH=∠EHN+∠NHM,∴α+∠FEH=12α+∠NHM,∴∠MHN﹣∠FEH=12α.【点评】本题主要考查了平行线的性质与判定,角平分线的定义的运用,解决问题的关键是掌握:两直线平行,内错角相等;两直线平行,同旁内角互补;利用角的和差关系进行推算.。
人教版七年级第二学期下册期中模拟数学试卷及答案
人教版七年级第二学期下册期中模拟数学试卷及答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.(3分)4的算术平方根是()A.16B.±2C.2D.2.(3分)在平面直角坐标系中,点P(﹣3,2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)过点B画线段AC所在直线的垂线段,其中正确的是()A.B.C.D.4.(3分)如图所示,AB∥CD,若∠1=144°,则∠2的度数是()A.30°B.32°C.34°D.36°5.(3分)在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等6.(3分)如图,平移折线AEB,得到折线CFD,则平移过程中扫过的面积是()A.4B.5C.6D.77.(3分)小明和妈妈在家门口打车出行,借助某打车软件,他看到了当时附近的出租车分布情况.若以他现在的位置为原点,正东、正北分别为x轴、y轴正方向,图中点A的坐标为(1,0),那么离他最近的出租车所在位置的坐标大约是()A.(3.2,1.3)B.(﹣1.9,0.7)C.(0.7,﹣1.9)D.(3.8,﹣2.6)8.(3分)我们知道“对于实数m,n,k,若m=n,n=k,则m=k”,即相等关系具有传递性.小敏由此进行联想,提出了下列命题:①a,b,c是直线,若a∥b,b∥c,则a∥c.②a,b,c是直线,若a⊥b,b⊥c,则a⊥c.③若∠α与∠β互余,∠β与∠γ互余,则∠α与∠γ互余.其中正确的命题是()A.①B.①②C.②③D.①②③9.(3分)如图所示是一个数值转换器,若输入某个正整数值x后,输出的y值为4,则输入的x值可能为()A.1B.6C.9D.1010.(3分)根据表中的信息判断,下列语句中正确的是()A.=1.59B.235的算术平方根比15.3小C.只有3个正整数n满足15.5D.根据表中数据的变化趋势,可以推断出16.12将比256增大3.19二、填空题(本大题共16分,每小题2分)11.(2分)将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为.12.(2分)如图,数轴上点A,B对应的数分别为﹣1,2,点C在线段AB上运动.请你写出点C可能对应的一个无理数.13.(2分)如图,直线a,b相交,若∠1与∠2互余,则∠3=.14.(2分)依据图中呈现的运算关系,可知a=,b=.15.(2分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是.16.(2分)一副直角三角板如图放置,其中∠C=∠DFE=90°,∠A=45°,∠E=60°,点D在斜边AB上.现将三角板DEF绕着点D顺时针旋转,当DF第一次与BC平行时,∠BDE的度数是.17.(2分)如图,电子宠物P在圆上运动,点O处设置有一个信号转换器,将宠物P的位置信号沿着垂直于线段OP的方向OQ传送,被信号接收板l接收.若传送距离越近,接收到的信号越强,则当P点运动到图中号点的位置时,接收到的信号最强(填序号①,②,③或④).18.(2分)若两个图形有公共点,则称这两个图形相交,否则称它们不相交.回答下列问题:(1)如图1,直线P A,PB和线段AB将平面分成五个区域(不包含边界),当点Q落在区域时,线段PQ与AB相交(直接填写区域序号);(2)在设计印刷线路板时,常常会利用折线连接元件,要求所有连线不能相交.如图2,如果沿着图中的格线连接印有相同字母的元件,那么一共有种连线方案.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)+()2﹣;(2).20.(8分)求出下列等式中x的值:(1)12x2=36;(2).21.(4分)下图是北京市三所大学位置的平面示意图,图中小方格都是边长为1个单位长度的正方形,若清华大学的坐标为(0,3),北京大学的坐标为(﹣3,2).(1)请在图中画出平面直角坐标系,并写出北京语言大学的坐标:;(2)若中国人民大学的坐标为(﹣3,﹣4),请在坐标系中标出中国人民大学的位置.22.(4分)有一张面积为100cm2的正方形贺卡,另有一个长方形信封,长宽之比为5:3,面积为150cm2,能将这张贺卡不折叠的放入此信封吗?请通过计算说明你的判断.四、解答题(本大题共11分,23题5分,24题6分)23.(5分)如图,点D,点E分别在∠BAC的边AB,AC上,点F在∠BAC内,若EF∥AB,∠BDF=∠CEF.求证:DF∥AC.24.(6分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)在平面直角坐标系xOy中,已知点A(a,a),B(a,a﹣3),其中a为整数.点C在线段AB上,且点C的横纵坐标均为整数.(1)当a=1时,画出线段AB;(2)若点C在x轴上,求出点C的坐标;(3)若点C纵坐标满足1,直接写出a的所有可能取值:.26.(6分)如图,已知AB∥CD,点E是直线AB上一个定点,点F在直线CD上运动,设∠CFE=α,在线段EF上取一点M,射线EA上取一点N,使得∠ANM=160°.(1)当∠AEF=时,α=;(2)当MN⊥EF时,求α;(3)作∠CFE的角平分线FQ,若FQ∥MN,直接写出α的值:.27.(7分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”.(填“是”或“否”);(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由;(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.2018-2019学年北京市海淀区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:C.2.【解答】解:点P(﹣3,2)在第二象限,故选:B.3.【解答】解:根据垂线段的定义可知,过点B画线段AC所在直线的垂线段,可得:故选:D.4.【解答】解:∵AB∥CD,∴∠1=∠CAB=144°,∵∠2+∠CAB=180°,∴∠2=180°﹣∠CAB=36°,故选:D.5.【解答】解:有平行线的画法知道,得到同位角相等,即同位角相等两直线平行.∴同位角相等两直线平行.故选:B.6.【解答】解:根据题意得:平移折线AEB,得到折线CFD,则平移过程中扫过的图形为矩形ABCD,所以其面积为2×3=6,故选:C.7.【解答】解:由图可知,(﹣1.9,0.7)距离原点最近,故选:B.8.【解答】解:①a,b,c是直线,若a∥b,b∥c,则a∥c,是真命题.②a,b,c是直线,若a⊥b,b⊥c,则a∥c,是假命题.③若∠α与∠β互余,∠β与∠γ互余,则∠α=∠γ,是假命题;故选:A.9.【解答】解:A.将x=1代入程序框图得:输出的y值为1,不符合题意;B.将x=6代入程序框图得:输出的y值为3,不符合题意;C.将x=9代入程序框图得:输出的y值为3,不符合题意;D.将x=10代入程序框图得:输出的y值为4,符合题意;故选:D.10.【解答】解:A.根据表格中的信息知:,∴=1.59,故选项不正确;B.根据表格中的信息知:<,∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:15.52=240.25<n<15.62=243.36,∴正整数n=241或242或243,∴只有3个正整数n满足15.5,故选项正确;D.根据表格中的信息无法得知16.12的值,∴不能推断出16.12将比256增大3.19,故选项不正确.故选:C.二、填空题(本大题共16分,每小题2分)11.【解答】解:将点A(﹣1,4)向上平移三个单位,得到点A′,则A′的坐标为(﹣1,7),故答案为:(﹣1,7),12.【解答】解:由C点可得此无理数应该在﹣1与2之间,故可以是,故答案为:(答案不唯一,无理数在﹣1与2之间即可),13.【解答】解:∵∠1与∠2互余,∠1=∠2,∴∠1=∠2=45°,∴∠3=180°﹣45°=135°,故答案为:135°.14.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.15.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).16.【解答】解:∵DF∥BC,∴∠FDB=∠ABC=45°,∴∠EDB=∠DFB﹣∠EDF=45°﹣30°=15°,故答案为15°.17.【解答】解:根据垂线段最短,得出当OQ⊥直线l时,信号最强,即当当P点运动到图中①号点的位置时,接收到的信号最强;故答案为:①.18.【解答】解:(1)当点Q落在区域②时,线段PQ与AB相交;(2)点A沿向上两个格、向右三个格、向下一个格连接,也可以沿向上两个格、向右两个格、向下一个格、向右一个格连接,两种方法;点B沿向下两个格、向右一个格连接,或向下一个格、向右一个格、向下一个格连接,或向右一个格、向下两个格连接,或向右一个格、向下一个格、向左一个格、向下一个格、向右一个格连接,共四种方法;点C只有一种连接方法,所以共6种方法.故答案为:②,6.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【解答】解:(1)原式==(2)原式==.20.【解答】解:(1)x2=3∴x=±(2)x3﹣24=3x3=27∴x=321.【解答】解:(1)北京语言大学的坐标:(3,1);故答案是:(3,1);(2)中国人民大学的位置如图所示:22.【解答】解:设长方形信封的长为5xcm,宽为3xcm.由题意得:5x•3x=150,解得:x=(负值舍去)所以长方形信封的宽为:3x=3,∵=10,∴正方形贺卡的边长为10cm.∵(3)2=90,而90<100,∴3<10,答:不能将这张贺卡不折叠的放入此信封中.四、解答题(本大题共11分,23题5分,24题6分)23.【解答】证明:∵EF∥AB,∴∠CEF=∠A,∵∠BDF=∠CEF,∴∠BDF=∠A,∴DF∥AC.24.【解答】解:(1)∵正实数x的平方根是m和m+b ∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【解答】解:(1)(2)由题意可知,点C的坐标为(a,a),(a,a﹣1),(a,a﹣2)或(a,a﹣3),∵点C在x轴上,∴点C的纵坐标为0.由此可得a的取值为0,1,2或3,因此点C的坐标是(0,0),(1,0),(2,0),(3,0)(3)a的所有可能取值是2,3,4,5.故答案为:2,3,4,5.26.【解答】解:(1)∵AB∥CD,∴∠AEF+∠CFE=180°,∵∠CFE=α,∠AEF=,∴α+=180°,∴α=120°;(2)如,1所示,过点M作直线PM∥AB,由平行公理推论可知:AB∥PM∥CD.∵∠ANM=160°,∴∠NMP=180°﹣160°=20°,又∵NM⊥EF,∴∠NMF=90°,∠PMF=∠NMF﹣∠NMP=90°﹣20°=70°.∴α=180°﹣∠PMF=180°﹣70°=110°;(3)如图2,∵FQ平分∠CFE,∴∠QFM=,∵AB∥CD,∴∠NEM=180°﹣α,∵MN∥FQ,∴∠NME=,∵∠ENM=180°﹣∠ANM=20°,∴20°++180°﹣α=180°,∴α=40°.故答案为:120°,40°.27.【解答】解:(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2=,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(﹣1,3),B′(﹣1,),∵﹣1×(﹣1)=1,3×=1,∴线段A′B′上存在“倒数点”,故答案为:(1,);是;(2)正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1=,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1=,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1=,点N(x2,y2)应当满足y2=,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,);(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1;故答案为:1.人教版七年级第二学期下册期中模拟数学试卷(答案)一、选择题(共10小题,每小题3分,共30分) 1.下列计算中,正确的是( )A.532)(a a = B.632a a a =⋅ C.2632a a a =⋅ D.2532a a a =+2. 如题2图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是( ) A.30° B.40° C.50° D.60°3.如题3图,在下列给出的条件中,不能判定AC ∥DE 的是( ) A.∠1=∠A B.∠A=∠3 C.∠3=∠4 D.∠2+∠4=180°4. 如题4图,AE ⊥BC 于E ,BF ⊥AC 于F ,CD ⊥AB 于,则△ABC 中AC 边上的高是哪条垂线段( )A.BFB.CDC.AED.AF题2图 题3图 题4图 5. 观察下列两个多项式相乘的运算过程:根据你发现的规律,若(x+a )(x+b )=2x -7x+12,则a ,b 的值可能分别是( ) A. -3,-4 B. 3,4 C.3,-4 D.3,46. 小明不慎将一块三角形的玻璃碎成如题6图所示的四块(图中所标1、2、3、4),小明应该带( )去,就能配一块与原来大小一样的三角形玻璃. A. 第1块 B. 第2块 C.第3块 D.第4块7.用100元钱在网上书店恰好可购买m 本书,但是每本书需另加邮寄费6角,购买n 本书共需费用y 元,则可列出关系式( )A.)6.0100(+=mn y B.6.0)100(+=mn y C.)6.0100(+=m n y D.6.0100+=mn y8.如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB=DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是( )A.∠A=∠DB.AC ∥DFC.BE=CFD.AC=DF9.若a 、b 、c 是正数,下列各式,从左到右的变形不能用题9图验证的是( )A.2222)(c bc b c b ++=+ B.ac ab c b a +=+)( C.ac bc ac c b a c b a 222)(2222+++++=++ D.)2(22b a a ab a +=+ 10.如题10图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )二、填空题(共6小题,每小题4分,共24分11.计算xy y x ÷22)2(的结果是 .12.如图,∠1=∠2,需增加条件 可使得AB ∥CD (只写一种).13.在△ABC 中,∠A=60°,∠B=2∠C ,则∠B= . 14.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:设鸭的质量为x 千克,烤制时间为t ,估计当x=2.9千克时,t 的值为 15.如图,两根旗杆间相距12m ,某人从点B 沿BA 走向点A ,一段时间后他到达点M , 此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,则这个人运动到点M 所用时间是16.如图,两个正方形边长分别为a 、b ,如果a+b=20,ab=18,则阴影部分的面积为三、解答题一(共3小题每小题6分,共18分) 17.计算:022019)14.3()31()1(π--+--18.先化简,再求值:))(4()2)(2(y x y x y x y x +--+-,其中2,31-==y x .19.如图,已知:线段βα∠∠,,a ,求作:△ABC ,使BC=a ,∠B=∠α,∠C=β∠.四、解答题二(共3小题,每小题7分,共21分) 20.已知:如图,∠A=∠ADE ,∠C=∠E.(1)∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21,如图,AB=AD,AC=AE,BC=DE,点E在BC上.(1)求证:△ABC ≌△ADE(2)求证:△EAC ≌△DEB22.如图1,在四边形ABCD中,AB∥CD,∠ABC=90°,动点P从A点出发,沿A→D→C→B 匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.⑴①AD= , CD= , BC= ; (填空)②当点P运动的路程x=8时,△ABP的面积为y= ; (填空)⑵求四边形ABCD的面积图1 图2五、解答题三(共3小题,每小题9分,共27分)23. 如题23图,已知AB∥CD,∠A=40°,点P是射线AB上一动点(与点A不重合),CE、CF 分别平分∠ACP 和∠DCP 交射线AB 于点E 、F. (1)求∠ECF 的度数(2)随看点P 的运动,∠APC 与∠AFC 之间的数量关系是否改变?若不改变,请求出此数量天系;若改变,请说明理由.(3)当∠ABC=∠ACF 时,求∠APC 的度数.24.如图所示,在边长为a 米的正方形草坪上修建两条宽为b 米的道路. (1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下: 方法①: 方法②:请你从小明的两种求面积的方法中,直接写出含有字母a ,b 代数式的等式是: (2)根据(1)中的等式,解决如下问题: ①已知:20,522=+=-b a b a ,求ab 的值;②己知:12)2020()2018(22=-+-x x ,求2)2019(-x 的值.25.如图,在长方形ABCD 中,AB=8m ,BC=12cm ,点E 为AB 中点,如果点P 在线段BC 上以每秒4cm 的速度,由点B 向点C 运动,同时,点Q 在线段CD 上以v 厘米/秒的速度,由点C向点D运动,设运动时间为t秒.(1)直接写出:PC= 厘米,CQ= 厘米;(用含t、v的代数式表示) (2)若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,试求v、t的值;(3)若点Q以(2)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针方向沿长方形ABCD的四边运动,求经过多长时间点P与点Q第一次在长方形ABCD 的哪条边上相遇?备用图参考答案1.C.2.C.3.B4.B.5.A.6.B.7.A.8.D.9.A.10.A.11.4x3y;12.AF//DE;13.40°;14.174;15.9秒;16.173;17.原式=7;18.解:原式=-3xy=2;19.画图略;20.解:(1)∵∠A=∠ADE∴AD//DE∴∠CDE+∠C=180°设∠C=x,∠CDE=3x∴4x=180°∴x=45°∴∠C=45°(2)证明:BE//CD.证明如下:∵∠C=∠E∴∠E=45°∵AC//DE∴∠B=∠E=45°∵∠B=∠C=45°∴BE//CD.21.证明:在△ABC和△ADE中∵AD=AB,AE=AC,DE=BC∴△ABC≌△ADE(SSS).22.(1)4,6,4;12;(2)面积为24;23.解:(1)∠ECF=70°;(2)∠APC=2∠AFC.(3)∠APC=40°;24.(1)(a-b )2;a 2-2ab+b 2;(a-b )2=a 2-2ab+b 2;(2)ab=-2.5;(x-2019)2=5; 25.(1)12-4t ;vt ;(2)当BP=CQ 时,t=2,v=4;当BP=PC 时,t=1.5,v=38; (3)4t-38t=12,解得t=9;所以P 点路程为36cm ,所以P 、Q 相遇在边AD 上.七年级(下)期中考试数学试题及答案一、选择题(第1至4题每小题3分,第5至10题每小题2分,共24分)1.4的平方根是( )A.4 B.±4 C.±2 D.22.如图,∠1,∠2是对顶角的是()3.∠1与∠2互余且相等,∠1与∠3是邻补角,则∠3的大小是( )A.30°B.105° C.120° D.135°4.将一直角三角板与两边平行的纸条如图放置.若∠1=60°,则∠2的度数为( )A.60°B.45°C.50°D.30°5.( )A.点PB.点QC.点RD.点S6.在平面直角坐标系中,若将原图形上的每个点的横坐标都加上3,纵坐标保持不变,则所得图形的位置与原图形相比( )A.向上平移3个单位B.向下平移3个单位C.向右平移3个单位D.向左平移3个单位7.点A (2,-1)关于x轴对称的点B的坐标为()A.(2, 1) B.(-2,1) C.(2,-1) D.(-2,- 1)+=,则a与b的关系是()8.0A.a=b=0 B.a=b C.a与b互为相反数D.a=9.“健步走”越来越受到人们的喜爱,某个“健步走”小组将自己的活动场地定在奥林匹克公园,所走路线为:森林公园—玲珑塔—国家体育场—水立方.如图,设在奥林匹克公园设计图上玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2), 那么水立方的坐标为()A .(-2, -4)B .(-1, -4)C .(-2, 4)D .(-4, -1) 10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2),……,按这样的运动规律,经过第2019次运动后,动点P 的坐标是( )A .(2018, 2)B .(2019, 2)C .(2019,1)D .(2017,1)二、填空题(第11至16题每小题3分,第17、18题每小题2分,共22分) 11.在平面直角坐标系中,点(2,3)到x 轴的距离是________.12x 的取值范围是________.13.若33a b-<-,则a_________b .(填“<、>或=”号) 14.在平面直角坐标系中,点(-7+m,2m+1) 在第三象限,则m 的取值范围是_________.153=,则7-m 的立方根是________.16.在平面直角坐标系中,已知两点坐标A(m-1,3), B(1,m 2-1),若AB ∥x 轴,则m 的值是________.17.如图,直径为2个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点O',则点O'对应的数是________。
2022-2023学年七年级下学期期中模拟卷(考试版)(范围:七下前三单元)
2022-2023学年七年级下学期期中模拟卷语文(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷6页,共120分。
考试时间为120分钟。
考生答题全部答在答题卡上,答在本试卷上无效。
2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。
3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案。
答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位詈答颢一律无效。
4.测试范围:七年级下册前三单元。
一(28分)1.阅读下面语段,按要求答题。
(6分)但这是没有办法的,只得表一条毯子,横着心躺下去。
因为实在太疲倦,一会儿就①(A.酣然入梦B.酣畅淋漓)了。
半夜里,忽然醒来,才觉得寒气逼人,刺入肌骨,浑身打着颤。
把毯子卷得更紧些把身子蜷起未,还是睡不着。
天上闪烁的星星好象黑色幕上缀着的宝石,它跟我们这样地接近哪!黑的山峰象巨人一样矗立在面前。
四围的山把这山谷包围得象一口井。
上边和下边有几堆火没有熄;冻醒了的同志们围着火堆小声地谈着话。
除此以外,就是寂静。
耳朵里有②(A.捉摸不透B.不可捉摸)的声响,极远的又是极近的,极洪大的又是极细切的,像春蚕在咀jué()桑叶,像山泉在呜咽.,。
不知什么时候又睡着了。
(节选自陆定一《老山界》,有删改)(1)根据拼音写汉字,给加点字注音。
(2分)①咀jué( )②呜咽.( )(2)结合语境选择恰当的成语,将字母序号填写在相应的位置上。
(2分)(3)仿照画线句子,在横线上补写一句话,使之与前面两个句子构成一组排比句。
(1分)(4)长征不仅是中国的壮举,更是世界的奇迹。
老山界是当年红军长征途中翻越的第一座大山。
如果你是当时的战地记者,请你结合战地生活,设计两个问题采访我们的战士。
(1分)2.默写填空。
【必考题】七年级数学下期中模拟试卷带答案 (3)
【必考题】七年级数学下期中模拟试卷带答案 (3)一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.如图,已知∠1=∠2,其中能判定AB ∥CD 的是( )A .B .C .D .3.如图,将△ABC 沿直线AB 向右平移后到达△BDE 的位置,若∠CAB=50º,∠ABC=100º,则∠CBE 的度数为( )A .45°B .30°C .20°D .15°4.下列说法一定正确的是( )A .若直线a b ∥,a c P ,则b c ∥B .一条直线的平行线有且只有一条C .若两条线段不相交,则它们互相平行D .两条不相交的直线叫做平行线 5.下列语句中,假命题的是( )A .对顶角相等B .若直线a 、b 、c 满足b ∥a ,c ∥a ,那么b ∥cC .两直线平行,同旁内角互补D .互补的角是邻补角6.10x x y -+=,则xy 的值为( )A .0B .1C .-1D .2 7.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 8.已知4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <69.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,410.下列生活中的运动,属于平移的是( )A .电梯的升降B .夏天电风扇中运动的扇叶C .汽车挡风玻璃上运动的刮雨器D .跳绳时摇动的绳子11.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 12.下列运算正确的是( )A .42=±B .222()-=-C .382-=-D .|2|2--=二、填空题13.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.14.如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥CD ,若∠BOE =2∠BOD ,则∠AOF 的度数为______.15.比较大小:-________-3.16.不等式332x a a -≤-的正整数解为1,2,则a 的取值范围是____________________.17.如图,已知AB CD ∥,120ABE ∠=︒,35DCE ∠=︒,则BEC ∠=__________.18.2____35 2.19.若264a =,则3a =______.20.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.三、解答题21.如图,AB CD ∥,OE 平分BOC ∠,OF OE ⊥,OP CD ⊥,40ABO ∠=︒,有下列结论:①70BOE ∠=︒;②OF 平分BOD ∠;③POE BOF ∠=∠;④2POB DOF ∠=∠. 请将正确结论的序号填写在空中,并选择其一证明.正确结论的序号是______,我选择证明的结论序号是______,证明:22.对x ,y 定义一种新运算T ,规定(,)2ax by x y x y +T =+(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:1(0,1)201a b b b ⨯+⨯T ==⨯+ . 已知(1,1)2T -=-,(4,2)1T =.(1)求a ,b 的值; (2)若关于m 的不等式组(2,54)4,(,32)m m m m pT -≤⎧⎨T ->⎩恰好有3个整数解,求实数p 的取值范围. 23.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査. (1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m= ,n= ;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.24.课题学习:平行线的“等角转化功能.(1)问题情景:如图1,已知点A 是BC 外一点,连接AB 、AC ,求BAC B C ∠+∠+∠的度数.天天同学看过图形后立即想出:180BAC B C ∠+∠+∠=︒,请你补全他的推理过程. 解:(1)如图1,过点A 作ED BC ∥,∴B ∠= ,C ∠= .又∵180EAB BAC CAD ∠+∠+∠=︒,∴180BAC B C ∠+∠+∠=︒.解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”功能,将BAC ∠,B Ð,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.(2)问题迁移:如图2,AB ED P ,求B BCD D ∠+∠+∠的度数.(3)方法运用:如图3,AB CD ∥,点C 在D 的右侧,70ADC ∠=︒,点B 在A 的左侧,60ABC ∠=︒,BE 平分ABC ∠,DE 平分ADC ∠,BE 、DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求BED ∠的度数.25.如图,α∠和β∠的度数满足方程组3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,且//CD EF ,AC AE ⊥.(1)求证//AB EF ;(2)求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】由∠1=∠2结合“内错角(同位角)相等,两直线平行”得出两平行的直线,由此即可得出结论.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行);B、∵∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;C、∠1=∠2,∠1、∠2不是同位角和内错角,∴不能得出两直线平行;D、∵∠1=∠2,∴AB∥CD(同位角相等,两直线平行).故选D.【点睛】本题考查了平行线的判定,解题的关键是根据相等的角得出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角,找出平行的直线是关键.3.B解析:B【分析】根据平移的性质得出AC∥BE,以及∠CAB=∠EBD=50°,∠ABC=100º,进而求出∠CBE 的度数.【详解】解:∵将△ABC沿直线AB向右平移后到达△BDE的位置,∴AC∥BE,∴∠CAB=∠EBD=50°(两直线平行,同位角相等),∵∠ABC=100°,∴∠CBE的度数为:180°-50°-100°=30°.故选B.【点睛】此题主要考查了平移的性质以及直线平行的性质,得出∠CAB=∠EBD=50°是解决问题的关键.4.A解析:A【解析】【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【详解】A、在同一平面内,平行于同一直线的两条直线平行.故正确;B、过直线外一点,有且只有一条直线与已知直线平行.故错误;C、根据平行线的定义知是错误的.D、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;故选:A.【点睛】此题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解题的关键.5.D解析:D【解析】分析:分别判断是否是假命题.详解:选项A. 对顶角相等 ,正确.选项B. 若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.选项C. 两直线平行,同旁内角互补,正确.选项D. 互补的角是邻补角,错误,不相邻的两个补角不是邻补角.故选D.点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.(2)条件和结果相矛盾的命题是假命题,即不成立的、错的就是假命题.比如太阳是方的...6.C解析:C【解析】0=,∴x ﹣1=0,x +y =0,解得:x =1,y =﹣1,所以xy =﹣1.故选C .7.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Qx b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.8.B解析:B【解析】【分析】【详解】∵12,∴3<m <4,故选B .【点睛】的取值范围是解题关键.9.C解析:C【解析】【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.10.A解析:A【解析】【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.然后根据平移与旋转定义判断即可.【详解】电梯的升降的运动属于平移,运动的刮雨器、摇动的绳子和吊扇在空中运动属于旋转;故选A.【点睛】此题考查了平移与旋转的意义及在实际当中的运用,关键是根据平移的定义解答.11.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.12.C解析:C【分析】分别计算四个选项,找到正确选项即可.【详解】=,故选项A错误;2==,故选项B错误;2=-,故选项C正确;2--=-,故选项D错误;D. |2|2故选C.【点睛】本题主要考查了开平方、开立方和绝对值的相关知识,熟练掌握各知识点是解题的关键.二、填空题13.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位解析:-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2-2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.54°【解析】【分析】设∠BOD=x∠BOE=2x;根据题意列出方程2x+2x+x=180°得出x=36°求出∠AOC=∠BOD=36°即可求出∠AOF=90°-36°=54°【详解】解:设∠BOD解析:54°【解析】【分析】设∠BOD=x,∠BOE=2x;根据题意列出方程2x+2x+x=180°,得出x=36°,求出∠AOC=∠BOD=36°,即可求出∠AOF=90°-36°=54°.【详解】解:设∠BOD=x ,∠BOE=2x ,∵OE 平分∠BOC ,∴∠COE=∠EOB=2x ,则2x+2x+x=180°,解得:x=36°,∴∠BOD=36°,∴∠AOC=∠BOD=36°,∵OF ⊥CD ,∴∠AOF=90°-∠AOC=90°-36°=54°;故答案为:54°.【点睛】本题考查了垂线、对顶角、邻补角的知识;弄清各个角之间的数量关系是解题的关键.15.<【解析】【分析】由3<10<4可得到结果【详解】因为3<10<4|-10|>|-3|所以-10<-3故答案为:<【点睛】考核知识点:实数的大小比较估计无理数大小是关键解析:<【解析】【分析】 由可得到结果.【详解】 因为, |-|>|-3| 所以-<-3. 故答案为:< 【点睛】考核知识点:实数的大小比较.估计无理数大小是关键. 16.【解析】【分析】根据不等式的性质求出不等式的解集根据不等式的正整数解得出2≤<3求出不等式的解集即可【详解】解答:解:3x−3a≤−2a 移项得:3x≤−2a +3a 合并同类项得:3x≤a ∴不等式的解集解析:69a ≤<.【解析】【分析】根据不等式的性质求出不等式的解集,根据不等式的正整数解得出2≤3a <3,求出不等式的解集即可.【详解】解答:解:3x−3a≤−2a ,移项得:3x≤−2a +3a ,合并同类项得:3x≤a ,∴不等式的解集是x≤3a , ∵不等式3x−3a≤−2a 的正整数解为1,2,∴2≤3a <3, 解得:6≤a <9.故答案为:6≤a <9.【点睛】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的解集得出2≤3a <3是解此题的关键. 17.95°【解析】如图作EF∥AB 则EF∥CD∴∠ABE+∠BEF=180°∵∠ABE=120°∴∠BEF=60°∵∠DCE=∠FEC=35°∴∠BEC=∠BEF+∠FEC=95°故答案为95°点睛:本解析:95°【解析】如图,作EF ∥AB ,则EF ∥CD ,∴∠ABE +∠BEF =180°,∵∠ABE =120°,∴∠BEF =60°,∵∠DCE =∠FEC =35°,∴∠BEC =∠BEF +∠FEC =95°. 故答案为95°. 点睛:本题关键在于构造平行线,再利用平行线的性质解题.18.>>【解析】【分析】【详解】∵∴;∵5>4∴故答案为(1)>;(2)> 解析:> >【解析】【分析】【详解】23<,∴23>∵225=5,2=4() ,5>4,52>.故答案为(1). >;(2). >.19.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a =,∴a=±8.2 故答案为±2 【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数..20.m>-2【解析】【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >解析:m >-2【解析】【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, ①+②得2x +2y =2m +4,则x +y =m +2,根据题意得m +2>0,解得m >﹣2.故答案是:m >﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x +y 的值,再得到关于m 的不等式.三、解答题21.①②③,①②③④.【解析】【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=140°,再根据角平分线定义得到∠BOE=70°;利用OF⊥OE,可计算出∠BOF=20°,则∠BOF=12∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=20°,则∠POE=∠BOF;根据∠POB=70°-∠POE=50°,∠DOF=20°,可知④不正确.【详解】证明:∵AB∥CD,∴∠ABO=∠BOD=40°,∴∠BOC=180°-40°=140°,∵OE平分∠BOC,∴∠BOE=12×140°=70°,所以①正确;∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°-70°=20°,∴∠BOF=12∠BOD,所以②正确;∵OP⊥CD,∴∠COP=90°,∴∠POE=90°-∠EOC=20°,∴∠POE=∠BOF,所以③正确;∴∠POB=70°-∠POE=50°,而∠DOF=20°,所以④错误.综上所述,正确的结论为①②③.故答案为:①②③,①②③④.【点睛】此题考查平行线的性质,解题关键在于掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.22.(1)a,b的值分别为1,3;(2)1 23p-≤<-.【解析】试题分析:(1)已知T的两对值,分别代入T中计算,求出a与b的值即可;(2)根据题中新定义化简已知不等式,根据不等式组恰好有3个整数解,求出p的范围即可;由T(x,y)=T(y,x)列出关系式,整理后即可确定出a与b的关系式.试题解析:(1)由,()4,21T =,得()112211a b ⨯+⨯-=-⨯-,421242a b ⨯+⨯=⨯+, 即2,4210,a b a b -=-⎧⎨+=⎩解得1,3.a b =⎧⎨=⎩即a ,b 的值分别为1,3. (2)由(1)得()3,2x y x y x y +T =+,则不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩可化为105,539,m m p -≤⎧⎨->-⎩ 解得19325p m --≤<. ∵不等式组()()2,544,,32m m m m p ⎧T -≤⎪⎨T ->⎪⎩恰好有3个整数解, ∴93235p -<≤,解得123p -≤<-. 23.(1)③;(2)①20,6;②补图见解析;③B 类;④18万户.【解析】试题分析:(1)根据简单随机抽样的定义即可得出答案.(2)①依题可得出总户数为1000户,从而求出m 和n 的值.②根据数据可求出C 的户数,从而补全条形统计图.③根据调查数据,利用样本估计总体可知,该市市民家庭处理过期药品最常见方式是直接丢弃.④根据样本估计总体,即可求出送回收点的家庭户数.试题解析:(1)简单随机抽样即按随机性原则,从总体单位中抽取部分单位作为样本进行调查,以其结果推断总体有关指标的一种抽样方法.随机原则是在抽取被调查单位时,每个单位都有同等被抽到的机会,被抽取的单位完全是偶然性的.由此可以得出答案为③ (2)①依题可得:510÷51%=1000(户).∴200÷1000×100%=20%.∴m=20.∴60÷1000×100%=6%.∴n=6.②C 的户数为:1000×10%=100(户),补全的条形统计图如下:③根据调查数据,利用样本估计总体可知,该市市民家庭处理过期药品最常见方式是直接丢弃.④∵样本中直接送回收点为10%,根据样本估计总体,送回收点的家庭约为: 180×10%=18(万户).考点:1、用样本估计总体,2、扇形统计图,3、条形统计图24.(1)∠EAB ,∠DAC ; (2)360°;(3)65°【解析】【分析】(1)根据平行线性质“两直线平行,内错角相等”可得∠B+∠BCD+∠D ∠BCF+∠BCD+∠DCF ;(2)过C 作CF ∥AB ,根据平行线性质可得;(3)如图3,过点E 作EF ∥AB ,根据平行线性质和角平分线定义可得∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,故∠BED=∠BEF+∠DEF. 【详解】(1)根据平行线性质可得:因为ED BC ∥,所以B ∠=∠EAB ,C ∠=∠DAC ;(2)过C 作CF ∥AB ,∵AB ∥DE ,∴CF ∥DE ∥AB ,∴∠D=∠FCD ,∠B=∠BCF ,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°,(3)如图3,过点E 作EF ∥AB ,∵AB ∥CD ,∴AB ∥CD ∥EF ,∴∠ABE=∠BEF ,∠CDE=∠DEF ,∵BE 平分∠ABC ,DE 平分∠ADC ,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35° ∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】 考核知识点:平行线性质和角平分线定义.作辅助线构造平行线是关键.25.(1)详见解析;(2)50°.【解析】【分析】(1)解方程组求出α,β即可判断.(2)证明//AB CD ,利用平行线的性质解决问题即可.【详解】(1)由3260100αββα∠+∠=︒⎧⎨∠-∠=︒⎩,解得:40140αβ=︒⎧⎨=︒⎩,180αβ∴+=︒,//AB EF ∴. (2)//CD EF Q ,//EF AB ,//AB CD ∴,180BAC C ∴∠+∠=︒,AC AE ⊥Q ,90EAC ∴∠=︒,40BAE ∠=︒Q ,130BAC ∴∠=︒,50C ∴∠=︒.【点睛】本题考查了平行线的性质和判定,解题的关键是熟练掌握基本知识,属于中考常考题型.。
浙江省温州市2023-2024学年七年级下学期期中学业质量检测数学试卷(含答案)
七年级期中学业质量检测(数学)考生须知:1.本卷评价内容范围是《数学》七年级下册第一章至第三章3.5节,全卷满分100分; 2.考试时间90分钟,不可以使用计算器. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本题有10小题,每小题3分,共30分.每小题只有一个正确选项) 1.下列方程是二元一次方程的是( ▲ )A .320x B .232x x C .11y xD .31x y2.将如图所示的图案通过平移后可以得到的图案是( ▲ )A.B .C .D .3.如图,∠B 的同旁内角是( ▲ )A .∠4B .∠3C .∠2D .∠14.计算34[-10]()的结果是( ▲ )A .710B .710C .1210D .1210 5.下列运算中,计算结果正确的是( ▲ )A .235a a a B .236a a a C .236(2)6a a D .459236a a a6.下列各式中,不能..用平方差公式计算的是( ▲ ) A .()()a b a b B .()()a b b a C .()()a b a b D .()()a b b a 7.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( ▲ )A .34 B .12 C .ECD D D .0180ABD A 8.若关于x ,y 的二元一次方程组2425x y x y ,的解也是方程3x y k 的解,则k 的值为( ▲ )A .2B .1C .1D .2(第2题)(第3题)(第7题)9. 某兴趣小组组织野外活动,男生戴蓝色帽子,女生戴红色帽子,如果每位男生看到蓝色帽子比红色帽子多2个,每位女生看到蓝色帽子是红色帽子的2倍,则该兴趣小组男女生分别有多少人?设男生有x 人,女生有y 人,则下列方程正确的是( ▲ ) A .122-1x y x y ()B .122x y x yC .122-1x y xy D .22x y xy10.如图,正方形AEIJ ,正方形EFGH ,正方形LMCK依次放在长为6,宽为4的长方形ABCD 中,要求出 图中阴影两部分的周长之差,只需要知道下列哪条线 段的长( ▲ )A .AEB .EFC .CMD .NL二、填空题(本题有8小题,每小题3分,共24分) 11.已知方程2x y ,用含x 的代数式表示y ,则y ▲ .12.计算:2(1)a ▲ .13.已知1x a y ,是方程53=+y x 的一组解,则a 的值为 ▲ .14.计算:4413=3(-) ▲ .15. 如图,将两块含30角的三角板ABC 和含45角的三角板BDE 按如图所示的位置放置,若BE AC ∥,则DBA 的度数为 ▲ °.16.已知2(231)x y 与431x y 的值互为相反数,则x y 的值为 ▲ .17.已知240m n ,则42m n ▲ .18.如图1,将一张长方形纸片ABCD 右端沿着EF 折叠成如图2,再将纸片左端沿着GH折叠成如图3,GD 恰好经过点F ,且GF 平分∠HFB .在图3中,若2∠GHF +∠BFE =135°,则∠BFE 的度数为 ▲ ° .三、解答题(本题有6小题,共46分.解答需写出必要的文字说明、演算步骤或证明过程) 19.(本题6分)化简(1)23(21)x xy y (2)(2)(2)(1)x x x x图1图2 图 3(第18题)(第15题)45°30°EDACB(第10题)20.(本题8分)解方程组 (1)3210y x x y (2)327465x y x y21.(本题6分)如图是由边长为1的小正方形构成的8×8网格,线段AB 端点和点P 均在格点上.(1)将线段AB 向上平移1格,再向右平移2格,请在图甲中作出经上述两次平移后所得的线段CD .(2)请在图乙中找一格点E ,连结PB ,PE ,使得∠PBA=∠EPB .22.(本题8分)如图,在△ABC 中,点D 在BC 上,DE ∥AB 交AC 于点E ,点F 在AB 上,∠BFD =∠DEC .(1)说明DF 与AC 平行的理由.理由如下://DE AB ( ▲ ), BFD FDE ( ▲ ). BFD DEC ,FDE▲ .//DF AC ( ▲ ).(2)若∠B +∠C =120°,求∠FDE 的度数.(第22题)图甲图乙(第21题)23.(本题8分) 某校为了喜迎新春,开展了“巧制花灯,福满校园”的活动,如图1为学生制作的其中一种花灯样式,它的四面是由四个完全相同的平面模板(如图2)折叠拼接而成的.模板是由2个长方形A 、2个长方形C 、1个长方形D 和4个等腰梯形B 构成的,其中尺寸如图2所示:长方形A 的宽为,长为,等腰梯形的高与长方形A 的宽大小一样,长方形C 的长为(4)n ,宽为( 1.5)m ,模板总高为32cm . (1)请用含的代数式表示模板的面积(结果需化简). (2)当221n m 时,请求出花灯模板的面积.24.(本题10分)探究学校校服订购的方案.素材1:天气转热,不少学生的夏季校服有损坏或丢失,故学校联系了厂商订制一批校素材2:本届七年级使用的是改版后的校服,每件新版衣服和裤子的价格均比旧版多10元.为保证各年级段校服统一,学校要求七年级学生购买新版,八、九年级学生购买旧版.【任务1】分别求出旧版衣服和旧版裤子的单价.【任务2】依据往年八、九年级的数据统计,衣服数量不超过80件,裤子数量不超过50件.若学校恰好用了4900元为八、九年级购买旧版校服,则衣服和裤子各买了多少件?【任务3】学校统计各班的订购意向后,最终花费9200元订购这批校服.已知七年级订购的衣服数量占所有衣服和裤子总数量的14,且少于50件,则八、九年级订购的裤子共有 ▲ 件.(请直接写出答案)m n m n ,单位:cm图2图1(第23题)七年级期中学业质量检测数学参考答案及评分标准一、选择题(本题有10小题,每小题3分,共30分)二、填空题(本题有8小题,每小题3分,共24分)11.2x −+. 12.221a a −+. 13.2. 14.1. 15. 15. 16.0. 17.16. 18.22.5.三、解答题(本题有6小题,共46分) 19. (本题6分)(1)23(21)x xy y −+22=363x y xy x −+解:原式 ..................(3分)(2)(2)(2)(1)x x x x +−−−22=4x x x −−+解:原式4x =− ..................(3分)20.(本题8分) (1)3210y x x y =⎧⎨+=⎩①②解:将①代入②得:2310x x += 解得:2x = 将2x =代入①得:6y =所以原方程组的解是=2...........(4)6x y ⎧⎨=⎩分(2)327465x y x y −=⎧⎨+=⎩①②解: 3⨯①+②得:1326x =解得:2x =将2x =代入①得: 12y =−所以原方程组的解是=2............(4)12x y ⎧⎪⎨=−⎪⎩分(1)(2)22.(本题8分) (1)理由如下://DE AB ( 已知 ), BFDFDE ( 两直线平行,内错角相等 ).BFD DEC ,FDE∠DEC .//DF AC ( 内错角相等,两直线平行 ).………….(4分)(2)解:∵//DF AC∴FDB C ∠=∠ ∵//DE AB ∴EDC B ∠=∠ ∵120B C ∠+∠=° ∴120FDB EDC ∠+∠=°∴FDE ∠=180°()60FDB EDC −∠+∠=° ..................(4分) (其它正确答案酌情给分)(1)[]124(4)2( 1.5)(4)3262( 1.5)2mn m n n m n n m m +⨯−++−−+−−− =163212m n −++ ...........................(5分)(其它正确答案酌情给分)(2)当221n m −=时原式=163212m n −++=162)12m n −++( =162112⨯+=348 .................................(3分)24.(本题10分):任务1 设一件旧版衣服x 元,一件旧版裤子y 元.由题意,得100807300120607500x y x y解得4535x y答:一件旧版衣服45元,一件旧版裤子35元. .................(4分)任务2 设购买衣服m 件,裤子n 件.由题意,得45m +35n =4900, 化简,得91407n m .∵m ≤80,n ≤50且m ,n 均为正整数, ∴7050m n 或7741m n答:衣服70件、裤子50件或衣服77件、裤子41件.............(4分)任务3 11. .................(2分)设新版衣服a 件,旧版裤子b 件.则所有衣服和裤子共4a 件,旧版衣服和新版裤子共(3a -b )件.由题意,得55a +45(3a -b )+35b =9200, 化简,得b =19a - 920. ∵a <50,且a ,b 均为正整数, ∴a =49,b =11.。
期中模拟测试卷(一)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(一)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.36的平方根是()A.±6 B.6 C.﹣6 D.±【答案】A【解答】解:∵(±6)2=36,∴36的平方根是±6.故选:A.2.如图,小手盖住的点的坐标可能为()A.(4,3)B.(4,﹣3)C.(﹣4,3)D.(﹣4,﹣3)【答案】D【解答】解:小手盖住的点的坐标在第三象限,点横坐标与纵坐标都是负数,只有(﹣4,﹣3)符合.故选:D.3.如图,直线AB、CD相交于点O,OE平分∠BOD,若∠AOE=150°,则∠AOC的度数为()A.50°B.60°C.70°D.80°【答案】B【解答】解:∵∠AOE=150°,∴∠BOE=180°﹣150°=30°,∵OE平分∠BOD,∴∠BOD=2∠BOE=60°,∴∠AOC=∠BOD=60°,故选:B.4.如图,点A为直线BC外一点,AC⊥BC,垂足为C,AC=3,点P是直线BC上的动点,则线段AP长不可能是()A.2 B.3 C.4 D.5【答案】A【解答】解:∵AC⊥BC,∴AP≥AC,即AP≥3.故选:A.5.下列各数3.1415926,﹣,0.202202220…,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:3.1415926,﹣是分数,属于有理数;,是整数,属于有理数;无理数有﹣,0.202202220…,π,共3个.故选:C.6.下列四个图形中,不能推出∠2与∠1相等的是()A.B.C.D.【答案】B【解答】解:A、∵∠1和∠2互为对顶角,∴∠1=∠2,故本选项错误;B、∵a∥b,∴∠1+∠2=180°(两直线平行,同旁内角互补),不能判断∠1=∠2,故本选项正确;C、∵a∥b,∴∠1=∠2(两直线平行,内错角相等),故本选项错误;D、如图,∵a∥b,∴∠1=∠3(两直线平行,同位角相等),∵∠2=∠3(对顶角相等),∴∠1=∠2,故本选项错误;故选:B.7.下列命题是真命题的有()①过直线外一点有且只有一条直线平行于已知直线;②同位角相等,两直线平行;③内错角相等;④在同一平面内,同垂直于一条直线的两条直线平行.A.1个B.2个C.3个D.4个【答案】C【解答】解:①过直线外一点有且只有一条直线平行于已知直线,正确,为真命题;②同位角相等,两直线平行,正确,为真命题;③两直线平行,内错角相等,故原命题为假命题;④在同一平面内,同垂直于一条直线的两条直线平行,正确,为真命题;故真命题的个数为3个,故选:C.8.若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【答案】A【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.9.在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)【答案】D【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.10.如图a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠1+∠2+∠3=()A.180°B.270°C.360°D.540°【答案】C【解答】解:过点P作P A∥a,则a∥b∥P A,∴∠1+∠MP A=180°,∠3+∠NP A=180°,∴∠1+∠2+∠3=360°.故选:C.11.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【答案】C【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,则小明从出口A到出口B所走的路线长为50+(25﹣1)×2=98米.故选:C.12.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2021次,点P依次落在点P1、P2、P3…,P2021的位置,由图可知P1(1,1),P2(2,0),P3(2,0),P4(3,1),则P2021的坐标为()A.(2020,0)B.(2020,1)C.(2021,0)D.(2021,1)【答案】D【解答】解:根据图形可得,正方形旋转4次为一个周期,即P→P4为一周期,且相差3﹣(﹣1)=4,∴一个周期P向右移动4个单位长度.∵2021÷4=505…1,∴到P2021有505个周期再旋转一次,505×4﹣1=2019,∴P2020(2019,1),由P2020→P2021与P→P1类似,∴P2021(2021,1).故选:D.二、填空题(本大题共6小题,每小题3分,共18分)13.把命题“对顶角相等”改写成“如果…那么…”的形式:.【答案】如果两个角是对顶角,那么这两个角相等【解答】解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.14.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为.【答案】110°【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣70°=110°,故答案为:110°.15.如图,△ABC沿着由点B到点E的方向平移,得到△DEF,若BC=4,EC=1,那么平移的距离是.【答案】3【解答】解:根据平移的性质,平移的距离=BE=4﹣1=3,故答案为:3.16.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是.【答案】35°【解答】解:如图,∵AB∥CD,∴∠AEF=∠1=25°,∵∠MEF=60°,∴∠2=∠MEF﹣∠AEF=60°﹣25°=35°,故答案为35°.17.若第三象限内的点P(x,y)、满足|x|=3,y2=25.则P点的坐标是.【答案】(﹣3,﹣5)【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵P在第三象限,∴点P的坐标是(﹣3,﹣5).故答案为:(﹣3,﹣5).18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2019个点的横坐标为.【答案】45【解答】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的横坐标为45.故答案为:45.三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算下列各式的值:【答案】6【解答】解:=+(﹣5)+9﹣(﹣2)=+(﹣5)+9﹣+2=6.20.求满足下列各式x的值(1)2x2﹣8=0;(2)(x﹣1)3=﹣4.【答案】(1)x=±2;(2)x=﹣1【解答】解:(1)2x2﹣8=0,2x2=8,x2=4,x=±2;(2)(x﹣1)3=﹣4,(x﹣1)3=﹣8,x﹣1=﹣2,x=﹣1.21.一个正数的平方根是2a﹣1与﹣a+2,求a和这个正数.【答案】9【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9.22.如图,已知单位长度为1的方格中有个三角形ABC.(1)将三角形ABC向上平移3格再向右平移2格所得三角形A'B'C',在所给的网格中画出三角形A'B'C'的位置;(2)求出三角形A'B'C'的面积;(3)如果点C的坐标为(3,﹣1),请在所给的网格中建立平面直角坐标系.填空:①BC与B'C'的关系是;②BB'与CC'的关系是.【答案】(1)略(2)(3)平行且相等,平行且相等.【解答】解:(1)如图所示,三角形A'B'C'即为所求;(2)S△A'B'C'=3×3﹣=;(3)坐标系如图所示,①BC与B'C'的关系是:平行且相等,②BB'与CC'的关系是:平行且相等,故答案为:平行且相等,平行且相等.23.如图,AB,CD相交于点O,OM平分∠BOD.(1)若∠AOC=50°,求∠AOM的度数;(2)若2∠AOD=3∠AOC,求∠COM的度数.【答案】(1)160°(2)144°【解答】解:(1)由题意可得∠BOD=∠AOC=50°,∠AOD=180°﹣∠AOC=130°,∵OM平分∠BOD,∴∠DOM==25°,∴∠AOM=∠AOD+∠DOM=135°+25°=160°;(2)∵2∠AOD=3∠AOC,∠AOD+∠AOC=180°,∴∠AOD+∠AOD=180°,解得∠AOD=108°,∴∠BOD=180°﹣108°=72°,∠COB=∠AOD=108°,∵OM平分∠BOD,∴∠BOM==36°,∴∠COM=∠COB+∠BOM=108°+36°=144°.24.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.【答案】(1)略(2)25°【解答】(1)证明:∵AE⊥BC,FG⊥BC,∴AE∥GF,∴∠2=∠A,∵∠1=∠2,∴∠1=∠A,∴AB∥CD;(2)解:∵AB∥CD,∴∠D+∠CBD+∠3=180°,∵∠D=∠3+60°,∠CBD=70°,∴∠3=25°,∵AB∥CD,∴∠C=∠3=25°.25.我们知道:无理数是无限不循环的小数.下面是探究无理数的大小过程:因为12=1,22=4,所以1<<2;因为1.42=1.96,1.52=2.25,所以1.4<<1.5;因为1.412=1.9881,1.422=2.0164,所以1.41<<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<<1.415;……如此进行下去,可以得到的更加精确的近似值.(1)请仿照上面的思考过程,请直接写出无理数的大致范围?(精确到0.01)(2)填空:①比较大小:32(填“>、<或=”);②若a、b均为正整数,a>,b<,则a+b的最小值是.(3)现有一块长4.1dm,宽为3dm的长方形木板,要想在这块木板上截出两个面积分别为2dm2和5dm2的正方形木板,张师傅准备采用如图的方式进行,请你帮助分析一下,他的方法可行吗?【答案】(1)2.23<<2.24(2)>,4(3)可行【解答】解:(1)∵2.232<5<2.242,∴2.23<<2.24;(2)①∵(3)2=18,(2)2=12,∴3>2;故答案为:>;②∵a、b均为正整数,a>,b<,∴a最小为3,b=1,∴a+b最小为4;故答案为:4;(3)他的方法可行,理由如下:∵面积分别为2dm2的正方形边长是dm,面积分别为5dm2的正方形是dm,≈2,236<3,+≈3.65<4.1,∴他的方法可行.26.如图,在平面直角坐标系,点A、B的坐标分别为(a,0),(0,b),且|a﹣26|+=0,将点B向右平移24个单位长度得到C.(1)求A、B两点的坐标;(2)点P、Q分别为线段BC、OA两个动点,P自B点向C点以2个单位长度/秒向右运动,同时点Q自A点向O点以4个单位长度/秒向左运动,设运动的时间为t,连接PQ,当PQ恰好平分四边形BOAC的面积时,求t的值;(3)点D是直线AC上一点,连接QD,作∠QDE=120°,边DE与BC的延长线相交于点E,DM平分∠CDE,DN平分∠ADQ,当点Q运动时,∠MDN的度数是否变化?请说明理由.【答案】(1)A(26,0),B(0,8)(2)t=(3)不变【解答】解:(1)∵|a﹣26|+=0,∴a﹣26=0,且8﹣b=0,∴a=26,b=8,∴A(26,0),B(0,8);(2)∵BC∥x轴,BC=24,∴C(24,8),由题意得:BC∥OA,BP=2t,AQ=4t,则PC=24﹣2t,OQ=26﹣4t,BO=8,∴S梯形AOBC=×(24+26)×8=200,当PQ恰好平分四边形BOAC时,S梯形OBPQ=×200=100,∴:×(2t+26﹣4t)×8=100,解得:t=;(3)当点Q运动时,∠MDN的度数不变,理由如下:如图1,当点D在线段CA的延长线上或AC的延长线上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDC=,∠QDA,∠MDC=∠CDE,∴∠MDN=∠NDC+∠MDC=(∠QDA+∠CDE)=∠QDE=60°;如图2,当点D在线段AC上时,∵DM平分∠CDE,DN平分∠ADQ,∴∠NDQ=∠ADQ,∠MDC=∠CDE,设∠CDE=α,∴∠QDC=120°﹣α,∠ADQ=180°﹣(120°﹣α)=60°+α,∴∠MDN=∠MDC+∠QDC+∠NDC=α+120°﹣α+(60°+α)=150°;综上所述,∠MDN的度数为150°或60°,∴当点Q运动时,∠MDN的度数不变化.。
2023—2024学年广东省广州外国语学校七年级下学期期中数学试卷
2023—2024学年广东省广州外国语学校七年级下学期期中数学试卷一、单选题(★) 1. 在以下实数,,1.414,,中无理数有()A.4个B.3个C.2个D.1个(★) 2. 下列各组数中互为相反数的是()A.-2与B.-2与C.2与D.与(★★) 3. 在实数范围内,下列判断正确的是()A.若,则m=n B.若,则a>bC.若,则a=b D.若,则a=b(★★) 4. 如图所示,图中共有内错角().A.2组B.3组C.4组D.5组(★★) 5. 如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=35°,则∠2等于( )A.35°B.45°C.55°D.65°(★★) 6. 如图图中A,B两点的坐标分别为,则C的坐标为()A.B.C.D.(★★) 7. 下列命题:①内错角相等;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③一个角的两边分别平行另一个角的两边,那么这两个角相等;④若,,则;⑤若,,则.⑥直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离.是真命题的个数是()A.1个B.2个C.3个D.4个(★) 8. 如图,直线,则下列式子成立的是()A.∠1+∠2+∠3=180°B.∠1﹣∠2+∠3=180°C.∠2+∠3﹣∠1=180°D.∠1+∠2﹣∠3=180°(★) 9. 点、在坐标系中的坐标分别为、,将线段平移得到线段,点的对应点坐标是时,点的对应点的坐标是()A.B.C.D.(★★★)10. 如图,点在延长线上,、交于,且,,比的余角小,为线段上一动点,为上一点,且满足,为的平分线.则下列结论:①;②平分;③;④的角度为定值.其中正确结论的个数有()A.1个B.2个C.3个D.4个二、填空题(★★) 11. 已知2x﹣3y=1,用含x的代数式表示y,则y= ____ .(★★) 12. 点到两坐标轴的距离相等,则 ________ .(★) 13. 如果是任意实数,那么点一定不在第 ______ 象限.(★★) 14. 已知,则 ______ .(★★★) 15. 如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若∠ABE=40°,那么∠EFC'的度数为 _____ .(★★★) 16. 由一些正整数组成的数表如下(表中下一行中数的个数是上一行中数的个数的2倍):…若规定坐标表示第行从左向右第个数,则所表示的数是______ ;数215的坐标是 ______ .三、解答题(★★) 17. (1)计算:;(2)若,求的值.(★★★) 18. 解方程组:(1) ;(2) .(★★) 19. 若是的算术平方根,为的立方根,试求的平方根.(★★) 20. 直线与相交于点,平分于.(1)图中与互余的角是________.(2)求的度数.(★★★) 21. 如图,于,于,,是的平分线.求证:平分.(★★★) 22. 在平面直角坐标系中有三个点、、,的边,是的边上一点,经平移后得到,点的对应点为.(1)画出平移后的;(2)写出点、、的坐标;(3)求点到的距离.(★★★) 23. (1)已知关于,的二元一次方程组与方程有相同的解,求的值.(2)关于,的二元一次方程组的解为正整数,求整数的值.(★★★★) 24. 如图1,已知a∥b,点A、B在直线a上,点C、D在直线b上,且AD⊥BC于E.(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF平分∠ABC交AD于点F,DG平分∠ADC交BC于点G,求∠AFB+∠CGD的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD= ∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是______.(★★★★) 25. 如图,在平面直角坐标系中,点,,,,,满足.(1) ______,______,______.(2)如图1,若点为轴负半轴上的一个动点,连接交轴于点,是否存在点,使得的面积等于的面积?若存在,请求出点的坐标;若不存在,请说明理由;(3)如图2,若将线段向上平移2个单位长度,点为轴上一点,点为第一象限内的一动点,连接,,,,若的面积等于由,,,四条线段围成的图形的面积,求点的横坐标的值(用含的式子表示).。
七年级数学下学期期中模拟试卷(一)(含解析) 苏科版-苏科版初中七年级全册数学试题
2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x52.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣13.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,55.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±208.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=______.12.一种细菌的半径是0.000039m,用科学记数法表示这个数是______m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2=______度.14.已知x2+y2=10,xy=2,则(x﹣y)2=______.15.已知x m=4,x2n=6,则x m+2n=______.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段______是△ABC中AC边上的高.17.一个多边形的内角和是它外角和的2倍,则它的边数是______.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m=______n=______.19.已知是方程组的解,则a﹣b=______.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为______.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.24.解下列方程组:(1)(2).25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是______.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(______)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=______.②(x﹣1)(x10+x9+…+x+1)=______.(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=______.②1+2+22+23+24+…+22007=______.2015-2016学年某某省某某市丰县宋楼中学七年级(下)期中数学模拟试卷(一)参考答案与试题解析一、精心选一选:(每题3分,共30分)1.计算2x3•3x2的结果是()A.5x5B.6x6C.5x6D.6x5【考点】单项式乘单项式.【分析】原式利用单项式乘以单项式法则计算即可得到结果.【解答】解:2x3•3x2=6x5.故选D.2.下列运算正确的是()A.(2a3﹣2a2)÷(2a2)=a B.a2+a2=a4C.(a+b)2=a2+b2+2ab D.(2a+1)(2a﹣1)=2a2﹣1【考点】整式的除法;合并同类项;完全平方公式;平方差公式.【分析】分别利用整式的除法运算法则以及合并同类项法则和完全平方公式、平方差公式计算得出即可.【解答】解:A、(2a3﹣2a2)÷(2a2)=a﹣1,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(a+b)2=a2+b2+2ab,正确;D、(2a+1)(2a﹣1)=4a2﹣1,故此选项错误;故选:C.3.如图,已知AB∥CD,∠B=120°,∠D=150°,则∠O等于()A.50° B.60° C.80° D.90°【考点】平行线的性质.【分析】根据邻补角的定义求出∠B+∠O+∠D=360°,再根据已知角的度数即可求出答案.【解答】解:作OE∥AB,由AB∥CD,则OE∥CD,∴∠B+∠1=180°,∠D+∠2=180°;∴∠B+∠BOD+∠D=360°.又∵∠B=120°,∠D=150°,∴∠BOD=360°﹣∠B﹣∠D=90°.故选:D.4.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,3 B.2,2,4 C.1,2,4 D.3,4,5【考点】三角形三边关系.【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【解答】解:A、1+2=3,不能组成三角形,故A选项错误;B、2+2=4,不能组成三角形,故B选项错误;C、1+2<4,不能组成三角形,故C选项错误;D、3+4>5,能组成三角形,故D选项正确;故选:D.5.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,设∠ABD和∠DBC的度数分别为x°、y°,那么下面可以求出这两个角的度数的方程组是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故选B.6.如图所示,直线a∥b,∠B=16°,∠C=50°,则∠A的度数为()A.24° B.26° C.34° D.36°【考点】平行线的性质.【分析】先根据平行线的性质得∠1=∠C=50°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵直线a∥b,∴∠1=∠C=50°,∵∠1=∠A+∠B,∴∠A=50°﹣16°=34°.故选C.7.已知关于x的二次三项式4x2﹣mx+25是完全平方式,则常数m的值为()A.10 B.±10 C.﹣20 D.±20【考点】完全平方式.【分析】符和a2+2ab+b2形式的式子叫完全平方式,要明确,常数项是一次项系数一半的平方,进而求出即可.【解答】解:∵关于x的二次三项式4x2﹣mx+25是完全平方式,∴﹣m=±20,即m=±20.故选:D.8.下列不是二元一次方程的是()①3m﹣2n=5 ②③④2x+z=3 ⑤3m+2n ⑥p+7=2.A.1个B.2个C.3个D.4个【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解:①3m﹣2n=5是二元一次方程;②是二元一次方程;③是分式方程;④2x+z=3是二元一次方程;⑤3m+2n是多项式;⑥p+7=2是一元一次方程;故选:C.9.甲、乙二人按3:2的比例投资开办了一家公司,约定除去各项支出外,所得利润按投资比例分成.若第一年甲分得的利润比乙分得的利润的2倍少3千元,求甲、乙二人各分得利润多少千元.若设甲分得x千元,乙分得y千元,由题意得()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设甲分得x千元,乙分得y千元,根据甲、乙二人的比例为3:2,甲分得的利润比乙分得的利润的2倍少3千元,列方程组即可.【解答】解:设甲分得x千元,乙分得y千元,由题意得,,故选C.10.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于()A.40° B.35° C.30° D.20°【考点】对顶角、邻补角;角平分线的定义.【分析】根据角平分线的定义求出∠AOC,再根据对顶角相等解答即可.【解答】解:∵OA平分∠EOC,∠EOC=70°,∴∠AOC=∠EOC=×70°=35°,∴∠BOD=∠AOC=35°.故选B.二、耐心填一填:(每空3分,共33分)11.把方程2x﹣y﹣3=0化成含y的式子表示x的形式:x=.【考点】解二元一次方程.【分析】把方程2x﹣y﹣3=0写成用含y的式子表示x的形式,需要把含有x的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含y的式子表示x的形式:x=【解答】解:移项得2x=y+3系数化为1得:x=12.一种细菌的半径是0.000039m,用科学记数法表示这个数是×10﹣5m.【考点】科学记数法—表示较小的数.【分析】小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】×10﹣5m.×10﹣5m.13.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,则∠2= 54 度.【考点】平行线的性质;角平分线的定义.【分析】两直线平行,同旁内角互补,可求出∠FEB,再根据角平分线的性质,可得到∠BEG,然后用两直线平行,内错角相等求出∠2.【解答】解:∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣72°=108°,∠2=∠BEG,又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.故答案为:54.14.已知x2+y2=10,xy=2,则(x﹣y)2= 6 .【考点】完全平方公式.【分析】利用(x﹣y)2=x2+y2﹣2xy求解即可.【解答】解:∵x2+y2=10,xy=2,∴(x﹣y)2=x2+y2﹣2xy=10﹣4=6.故答案为:6.15.已知x m=4,x2n=6,则x m+2n= 24 .【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,即可解答.【解答】解:x m+2n=x m•x2n=4×6=24,故答案为:24.16.如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段BE 是△ABC中AC边上的高.【考点】三角形的角平分线、中线和高.【分析】根据过三角形的一个顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:∵BE⊥AC,∴△ABC中AC边上的高是BE.故答案为:BE17.一个多边形的内角和是它外角和的2倍,则它的边数是 6 .【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及外角和定理列出方程,然后求解即可.【解答】解:设这个多边形的边数是n,根据题意得,(n﹣2)•180°=2×360°,解得n=6.答:这个多边形的边数是6.故答案为:6.18.方程2x n﹣3﹣y3m+n﹣2+3=0是二元一次方程,则m= ﹣n= 4 .【考点】二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面考虑求常数m、n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:﹣,4.19.已知是方程组的解,则a﹣b= ﹣1 .【考点】二元一次方程组的解.【分析】根据方程组解的定义,把解代入方程组得到关于a、b的方程,然后求解得到a、b 的值,再代入代数式进行计算即可得解.【解答】解:根据题意得,,解得,所以a﹣b=2﹣3=﹣1.故答案为:﹣1.20.若(4x2+2x)(x+a)的运算结果中不含x2的项,则a的值为﹣.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算,根据结果不含x2的项,求出a的值即可.【解答】解:原式=4x3+(4a+2)x2+2ax,由结果中不含x2的项,得到4a+2=0,解得:a=﹣.故答案为:﹣.三、细心算一算:(本题共8题,共57分)21.计算题:(1)(﹣2015)0+22×|﹣1|×(﹣)﹣2(2)(x+y﹣2z)(x﹣y+2z)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据零次幂、乘方定义、绝对值性质、负整数指数幂计算,再计算乘法可得;(2)将原式变形运用平方差公式计算,再根据完全平方公式计算即可.【解答】解:(1)原式=1+4×1×9=1+36=37;(2)原式=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣y2+4yz﹣4z2;22.先化简,后求值:[(x﹣y)2+2y(y﹣x)﹣(x+y)(x﹣y)]÷(2y),其中x﹣y=2.【考点】整式的混合运算—化简求值.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式乘以单项式法则计算得到最简结果,把x﹣y=2代入计算即可求出值.【解答】解:∵x﹣y=2,∴原式=(x2﹣2xy+y2+2y2﹣2xy﹣x2+y2)÷2y=(﹣4xy+4y2)÷2y=﹣2x+2y=﹣2(x﹣y)=﹣4.23.分解因式:(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取2,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=2(x2﹣4y2)=2(x+2y)(x﹣2y);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2.24.解下列方程组:(1)(2).【考点】解二元一次方程组.【分析】(1)利用①×3﹣②可解出y,再把y的值代入①可求出x,从而得到方程组的解;(2)利用①×3+②×2得9x+10x=48+66,可求出x,再把x的值代入①可求出y,从而得到方程组的解.【解答】解:(1),①×3﹣②得5y=﹣5,解得y=﹣1,把y=﹣1代入①得x+1=3,解得x=2,所以方程组的解为;(2),①×3+②×2得9x+10x=48+66,解得x=6,把x=6代入①得18+4y=16,解得y=﹣,所以方程组的解为.25.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.(1)请画出平移后的△A′B′C′;(2)若连接AA′,CC′,则这两条线段之间的关系是平行且相等.【考点】作图-平移变换.【分析】(1)利用平移规律得出平移后对应点位置进而求出即可;(2)利用平移的性质得出两条线段之间的关系.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)连接AA′,CC′,则这两条线段之间的关系是:平行且相等.故答案为:平行且相等.26.如图,已知AE平分∠BAC,过AE延长线一点F作FD⊥BC于D,若∠F=6°,∠C=30°,求∠B的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】由FD⊥BC以及∠F=6°利用三角形内角和定理即可求出∠DEF的度数,再利用三角形的外角性质即可求出∠CAE的度数,结合角平分线的性质以及三角形内角和定理即可得出∠B的度数.【解答】解:∵FD⊥BC,∠F=6°,∴∠DEF=90°﹣6°=84°,∴∠CAE=∠DEF﹣∠C=84°﹣30°=54°,∵AE平分∠BAC,∴∠BAC=2∠CAD=108°,∴∠B=180°﹣∠BAC﹣∠C=180°﹣108°﹣30°=52°.27.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【考点】二元一次方程组的应用.【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.28.阅读下文,寻找规律:已知x≠1时,(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4…(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)= 1﹣x n+1.②(x﹣1)(x10+x9+…+x+1)= x11﹣1 .(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)= ﹣63 .②1+2+22+23+24+…+22007= 22008﹣1 .【考点】平方差公式.【分析】(1)仿照已知等式得到一般性规律,写出即可;(2)利用得出的规律化简两式即可;(3)利用得出的规律化简两式即可.【解答】解:(1)(1﹣x)(1+x+x2+x3+x4+x5+x6+x7)=1﹣x8;(2)观察上式,并猜想:①(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;②(x﹣1)(x10+x9+…+x+1)=x11﹣1;(3)根据你的猜想,计算:①(1﹣2)(1+2+22+23+24+25)=1﹣26=﹣63;②1+2+22+23+24+…+22007=﹣(1﹣2)(1+2+22+23+24+…+22007)=22008﹣1.故答案为:(1)1+x+x2+x3+x4+x5+x6+x7;(2)①1﹣x n+1;②x11﹣1;(3)①﹣63;②22008﹣1.。
最新人教版七年级下学期数学期中考试试卷(含参考答案)
最新人教版七年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列数是无理数的有()A.B.﹣1C.0D.2、下列命题中是真命题的是()A.对顶角相等B.两点之间,直线最短C.同位角相等D.平面内有且只有一条直线与已知直线平行3、已知点P(﹣2,5),Q(n,5)且PQ=4,则n的值为()A.2B.2或4C.2或﹣6D.﹣64、星城长沙是湖南省省会城市,也是长江中游地区重要的中心城市,以下能准确表示长沙地理位置的是()A.在北京的西南方B.东经112.59°,北纬28.12°C.距离北京1478千米处D.东经112.59°5、如图,点E在BA的延长线上,能证明BE∥CD是()A.∠EAD=∠B B.∠BAD=∠ACDC.∠EAD=∠ACD D.∠EAC+∠ACD=180°6、已知方程2x m+1+3y2n﹣1=7是二元一次方程,则m,n的值分别为()A.﹣1,0B.﹣1,1C.0,1D.1,17、若是方程组的解,则a值为()A.1B.2C.3D.48、已知方程,用含x的代数式表示y,正确的是()A.B.C.D.9、明代数学家程大位著《算法统宗》一书中,记载了这样一道数学题:“八万三千短竹竿,将来要把笔头安,管三套五为期定,问君多少能完成?”用现代的话说就是:有83000根短竹,每根短竹可制成毛笔的笔管3个或笔套5个,怎样安排笔管和笔套的短竹的数量,使制成的1个笔管与1个笔套正好配套?设用于制作笔管的短竹数为x根,用于制作笔套的短竹数为y根,则可列方程组为()A.B.C.D.10、如图,在数轴上的对应点分别为C,B,点C是AB的中点,则点A表示的数是()A.﹣B.3﹣C.﹣3D.6﹣二、填空题(每小题3分,满分18分)11、在实数0,﹣1,﹣,π中,最小的是.12、在平面直角坐标系中,点(5,﹣6)到x轴的距离为.13、如图,将含30°角的直角三角板的直角顶点放在直尺的一边上,已知∠1=35°,则∠2的度数是.14、满足方程组的x,y互为相反数,则m=.15、如图,将长方形ABCD折叠,折痕为EF,BC的对应边B′C′与CD交于点M,若∠AEB′=30o,则∠DFE的度数为.16、已知关于x,y的二元一次方程组的解为,则关于x,y的方程组的解为.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、已知某正数的两个不同的平方根是3a﹣14和a+2;b是的整数部分;(1)求2a+b的值;(2)求3a﹣2b的平方根.19、解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求a,b,c的值.20、若关于x,y的方程组与方程组的解相同.(1)求两个方程组的相同解;(2)求(3a﹣b)2022的值.21、如图,D,E分别在△ABC的边AB,AC上,F在线段CD上,且∠1+∠2=180°,DE∥BC.(1)求证:∠3=∠B;(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.22、某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,恰好每辆车都坐满且两种车都要租,请你设计出所有的租车方案.23、已知点P(2a﹣2,a+5),分别根据下列条件求出点P的坐标.(1)点P在y轴上;(2)点Q的坐标为(2,5),且直线PQ∥x轴;(3)点P到x轴的距离与到y轴的距离相等.24、如图1,在平面直角坐标系中,A(0,a),B(b,0),且(a﹣6)2+=0,过A,B两点分别作y轴,x轴的垂线交于C点.(1)求C点的坐标;(2)P,Q为两动点,P,Q同时出发,其中P从C出发,在线段CB,BO 上以2个单位长度每秒的速度沿着C→B→O运动,到达O点P停止运动;Q 从B点出发以1个单位长度每秒速度沿着线段BO向O点运动,到O点Q停止运动.设运动时间为t秒,当点P在线段BO上运动时,t取何值,P,Q,C三点构成的三角形面积为1?(3)如图2,连接AB,点M(m,n)在线段AB上,且m,n满足|m﹣n|=1 0,点N在y轴负半轴上,连接MN交x轴于K点,记M,B,K三点构成的三角形面积为S1,记N,O,K三点构成的三角形面积分别记为S2,若S1=S2,求N点的坐标.25、如图1,在长方形OABC中,O为平面直角坐标系的原点,OA=2,OC=4,点B在第一象限.(1)点B的坐标为;(2)如图2,点P是线段CB延长线上的点,连接AP,OP,则∠POC,∠A PO,∠P AB三个角满足的关系是什么?并说明理由;(3)在(2)的基础上,已知:∠P AB=20°,∠POC=50°,在第一象限内取一点F,连接OF,AF,满足∠P AB=2∠F AP,∠POC=2∠FOP,请直接写出的值.最新人教版七年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、-12、6 13、55°14、1 15、、75°16、三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣3﹣18、(1)8 (2)a﹣2b的平方根为19、a=2.5,b=1,c=220、(1)(2)121、(1)略(2)72°22、(1)每辆小客车能坐20人,每辆大客车能坐45人(2)方案1:租用小客车11辆,大客车4辆;方案2:租用小客车2辆,大客车8辆23、(1)P(0,6)(2)P(﹣2,5)(3)P的坐标为(12,12)或(﹣12,﹣12)或(﹣4,4)或(4,﹣4)24、(1)C(﹣12,6)(2)t=或(3)N(0,﹣3)25、(1)B(4,2)(2)∠POC=∠APO+∠PAB的值为或2或(3)。
河北省廊坊市安次区第五中学2022-2023学年七年级下学期期中数学试卷(含解析)
2022-2023学年河北省廊坊五中七年级(下)期中数学试卷一、选择题(本大题共16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)±3是9的( )A.平方B.立方根C.平方根D.算术平方根2.(3分)在实数、、、π、中,无理数的个数是( )A.1个B.2个C.3个D.4个3.(3分)平面直角坐标系内有一点P(﹣2025,﹣2025),则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)在下面的四幅图案中,能通过已知图案平移得到的是( )A.B.C.D.5.(3分)在平面直角坐标系中,将点A(1,﹣2)向上平移4个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是( )A.(﹣1,1)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)6.(3分)在数轴上标注了四段范围,如图,则表示的点落在( )A.段①B.段②C.段③D.段④7.(3分)下列命题中,是真命题的是( )A.无限小数都是无理数B.若=,则a=bC.y轴上的点,纵坐标为0D.过一点有且只有一条直线与已知直线平行8.(3分)下列各方程组中,属于二元一次方程组的是( )A.B.C.D.9.(3分)已知是二元一次方程3x﹣my=5的一组解,则m的值为( )A.﹣2B.2C.﹣D.10.(3分)下列命题中,是真命题的是( )A.两条直线被第三条直线所截,同位角相等B.相等的角是对顶角C.同旁内角相等,两直线平行D.内错角相等,两直线平行11.(2分)如图,轮船航行到C处时,观测到小岛B的方向是北偏西37°,那么同时从B观测轮船的方向是( )A.南偏西37°B.东偏西37°C.南偏东37°D.南偏东53°12.(2分)若点A在第四象限且到x轴的距离为3,到y轴的距离为4,则点A的坐标为( )A.(﹣4,3)B.(3,﹣4)C.(﹣3,4)D.(4,﹣3)13.(2分)如图是某次行车路线,共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120°,第三次转过的角度145°,则第二次转过的角度是( )A.75°B.85°C.60°D.35°14.(2分)如图,已知AB∥CD,CE平分∠ACD,交AB于点B,∠ABE=140°,则∠A为( )A.110°B.120°C.135°D.100°15.(2分)下列句子,是命题的是( )A.美丽的天空B.相等的角是对顶角C.作线段AB=CD D.你喜欢运动吗?16.(2分)如图,AB∥CD,FG⊥CD于N,∠EMB=α,则∠EFG等于( )A.180°﹣α B.90°+α C.180°+α D.270°﹣α二、填空题(本大题共3个小题,共12分。
期中模拟测试卷(二)七年级数学下学期期中期末满分必刷常考压轴题人教版
七年级下册期中模拟测试(二)数学学科(考试时间:120分钟满分:120分)注意:本试卷分试题卷和答题卡(卷)两部分,答案一律填写在答题卡(卷)上,在试题卷上作答无效.一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.的算术平方根为()A.B.C.D.﹣【答案】C【解答】解:的算术平方根为.故选:C.2.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解答】解:观察图形可知图案D通过平移后可以得到.故选:D.3.下列坐标中,是第二象限的坐标是()A.(1,﹣5)B.(﹣2,4)C.(﹣1,﹣5)D.(5,7)【答案】B【解答】解:A、(1,﹣5)在第四象限,故本选项不合题意;B、(﹣2,4)在第二象限,故本选项符合题意;C、(﹣1,﹣5)在第三象限,故本选项不合题意;D、(5,7)在第一象限,故本选项不合题意;故选:B.4.下列图形中,∠1与∠2是同位角的是()A.B.C.D.【答案】B【解答】解:A选项,∠1与∠2是对顶角,不是同位角,故该选项不符合题意;B选项,∠1与∠2是同位角,故该选项符合题意;C选项,∠1与∠2是内错角,不是同位角,故该选项不符合题意;D选项,∠1与∠2是同旁内角,不是同位角,故该选项不符合题意;故选:B.5.若点P在x轴的下方,y轴的左方,且到每条坐标轴的距离都是4,则点P的坐标为()A.(4,4)B.(﹣4,4)C.(﹣4,﹣4)D.(4,﹣4)【答案】C【解答】解:∵点P在x轴的下方y轴的左方,∴点P在第三象限,∵点P到每条坐标轴的距离都是4,∴点P的坐标为(﹣4,﹣4).故选:C.6.如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ【答案】C【解答】解:如图,CP⊥AB,垂足为P,在P处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.故选:C.7.如图,下列条件:①∠1=∠3;②∠DAB=∠BCD;③∠ADC+∠BCD=180°;④∠2=∠4,其中能判定AB∥CD的有()A.1个B.2个C.4个D.3个【答案】A【解答】解:①由∠1=∠3可判定AD∥BC,不符合题意;②由∠DAB=∠BCD不能判定AB∥CD,不符合题意;③由∠ADC+∠BCD=180°可判定AD∥BC,不符合题意;④由∠2=∠4可判定AB∥CD,符合题意.故选:A.8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点A B.点B C.点C D.点D【答案】B【解答】解:根据如图所建的坐标系,易知(10,20)表示的位置是点B,故选:B.9.下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离.A.①②B.①③C.①④D.②③【答案】B【解答】解:①两点之间的所有连线中,线段最短,说法正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;③平行于同一直线的两条直线互相平行,说法正确;④直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.10.如图,将一块直角三角板DEF放置在锐角△ABC上,使得该三角板的两条直角边DE、DF恰好分别经过点B、C,若∠ABC+∠ACB=120°,则∠ABD+∠ACD的值为()A.60°B.50°C.40°D.30°【答案】D【解答】解:在△ABC中,∠ABC+∠ACB=120°,在△DBC中,∠BDC=90°,∴∠DBC+∠DCB=180°﹣90°=90°,∴∠ABD+∠ACD=120°﹣90°=30°.故选:D.11.一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带①的边线平行,纸带②的边线不平行B.纸带①、②的边线都平行C.纸带①的边线不平行,纸带②的边线平行D.纸带①、②的边线都不平行【答案】C【解答】解:如图①所示:∵∠1=∠2=50°,∴∠3=∠2=50°,∴∠4=∠5=180°﹣50°﹣50°=80°,∴∠2≠∠4,∴纸带①的边线不平行;如图②所示:∵GD与GC重合,HF与HE重合,∴∠CGH=∠DGH=90°,∠EHG=∠FHG=90°,∴∠CGH+∠EHG=180°,∴纸带②的边线平行.故选:C.12.如图,点A(1,0)第一次跳动至点A1(﹣1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次跳动至点A4(3,2),…,依此规律跳动下去,点A第100次跳动至点A100的坐标是()A.(50,51)B.(51,50)C.(49,50)D.(50,49)【答案】B【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选:B二、填空题(本大题共6小题,每小题3分,共18分)13.5的平方根是.【答案】±【解答】解:∵(±)2=5,∴5的平方根是±.故答案为:±.14.如图,AB、CD相交于点O,OE是∠AOC的平分线,∠BOD=70°,∠EOF=65°,则∠AOF的度数为°.【答案】30【解答】解:∵∠BOD=70°,∴∠AOC=∠BOD=70°,∵OE是∠AOC的平分线,∴∠AOE=∠AOC=70°=35°,∵∠EOF=65°,∴∠AOF=65°﹣35°=30°,故答案为:30.15.已知≈4.496,≈14.22,则≈.【答案】44.96【解答】解:==10≈10×4.496=44.96,故答案为:44.96.16.如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2=.【答案】45°【解答】解:如图,过点A作l∥m,则∠1=∠3.又∵m∥n,∴l∥n,∴∠4=∠2,∴∠1+∠2=∠3+∠4=45°.故答案是:45°.17.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.【答案】540【解答】解:如图,把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFGH是矩形.∵CF=32﹣2=30(米),CG=20﹣2=18(米),∴矩形EFCG的面积=30×18=540(平方米).答:绿化的面积为540m2.故答案为:540.18.在平面直角坐标系中,点P位于原点,第1秒钟向右移动1个单位,第2秒钟向上移动2个单位,第3秒钟向左移动3个单位,第4秒钟向下移动4个单位,第5秒钟向右移动5个单位,…依此类推,经过2021秒钟后,点P的坐标是.【答案】(1011,﹣1010)【解答】解:观察图形可知经过2017秒钟后,点P在第四象限的直线y=﹣x+1上,∵2021÷4=505余1,∴P2021的横坐标为1+2×505=1011,∴y=﹣1011+1=﹣1010,∴P(1011,﹣1010).故答案为(1011,﹣1010)三、解答题(本大题共8小题,共66分.解答题应写出文字说明,证明过程或演算步骤.)19.计算:+﹣(﹣1).【答案】1﹣【解答】解:+﹣(﹣1)=3﹣3﹣+1=1﹣20.已知正数m的两个不同平方根分别是2a﹣7和a+4,又b﹣7的立方根为﹣2.(1)求a和正数m及b的值;(2)求3a+2b的算术平方根.【答案】(1)a=1,m=25,b=﹣1 (2)1【解答】解:(1)∵正数m的两个不同平方根分别是2a﹣7和a+4,∴(2a﹣7)+(a+4)=0,∴a=1,2a﹣7=﹣5,∴m=25,∵b﹣7的立方根为﹣2,∴b﹣7=﹣8,∴b=﹣1,∴a=1,m=25,b=﹣1;(2)由(1)有a=1,b=﹣1,∴3a+2b=3×1+2×(﹣1)=1,∴3a+2b的算术平方根为1.21.补全下列题目的解题过程.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC.证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(),∴∠3=∠4(等量代换),∴DB∥(),∴∠C=∠ABD(),∵∠C=∠D(已知),∴∠D=∠ABD(),∴DF∥AC().【答案】对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.【解答】证明:∵∠1=∠2(已知),且∠2=∠3,∠1=∠4(对顶角相等),∴∠3=∠4(等量代换),∴DB∥CE(内错角相等,两直线平行),∴∠C=∠ABD(两直线平行,同位角相等),∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴DF∥A C(内错角相等,两直线平行),故答案为:对顶角相等;CE;内错角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.22.如图,在平面直角坐标系中,三角形ABC的顶点都在网格点上,其中点C的坐标为(1,2).(1)点A的坐标是点B的坐标是.(2)画出将三角形ABC先向左平移2个单位长度,再向上平移1个单位长度所得到的三角形A'B'C'.请写出三角形A'B'C'的三个顶点坐标;(3)求三角形ABC的面积.【答案】(1)(2,﹣1);(4,3)(2)略(3)5【解答】解:(1)A(2,﹣1),B(4,3);故答案为(2,﹣1);(4,3);(2)如图,三角形A'B'C'为所作;A′(0,0),B′(2,4),C′(﹣1,3);(3)三角形ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=5.23.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2) (﹣2,5)(3)8【解答】解:(1)令2m﹣4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)令m+4﹣(2m﹣4)=7,解得m=1,所以P点的坐标为(﹣2,5);(3)∵点P在过A(2,3)点且与x轴平行的直线上,∴m+4=3,解得m=﹣1.∴P点的坐标为(﹣6,3),∴AP=2+6=8.24.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|,例如:数轴上表示﹣1与﹣2的两点间的距离=|﹣1﹣(﹣2)|=﹣1+2=1;而|x+2|=|x﹣(﹣2)|,所以|x+2|表示x与﹣2两点间的距离.利用数形结合思想回答下列问题:(1)数轴上表示﹣2和5两点之间的距离.(2)若数轴上表示点x的数满足|x﹣1|=3,那么x=.(3)若数轴上表示点x的数满足﹣4<x<2,则|x﹣2|+|x+4|=.【答案】(1)76(2)﹣2或4(3)6【解答】解:(1)根据题意知数轴上表示﹣2和5两点之间的距离为5﹣(﹣2)=7,故答案为:7;(2)∵|x﹣1|=3,即在数轴上到表示1和x的点的距离为3,∴x=﹣2或x=4,故答案为:﹣2或4;(3)∵|x﹣2|+|x+4|表示在数轴上表示x的点到﹣4和2的点的距离之和,且x位于﹣4到2之间,∴|x﹣2|+|x+4|=2﹣x+x+4=6,故答案为:6.25如图①.已知AM∥CN,点B为平面内一点,AB⊥BC于点B,过点B作BD⊥AM于点D,设∠BCN=α.(1)若α=30°,求∠ABD的度数;(2)如图②,若点E、F在DM上,连接BE、BF、CF,使得BE平分∠ABD、BF平分∠DBC,求∠EBF的度数;(3)如图③,在(2)问的条件下,若CF平分∠BCH,且∠BFC=3∠BCN,求∠EBC 的度数.【答案】(1)30°(2)45°(3)97.5°.【解答】解:(1)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α=30°,∴∠HBC=90°﹣∠BCN=60°.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=30°;(2)延长DB,交NC于点H,如图,∵AM∥CN,BD⊥AM,∴DH⊥NC.∴∠BHC=90°.∵∠BCN=α,∴∠HBC=90°﹣α.∵AB⊥BC,∴∠ABC=90°.∴∠ABD=180°﹣∠ABC﹣∠HBC=α.∵BE平分∠ABD,∴∠DBE=∠ABE=α.∵∠HBC=90°﹣α,∴∠DBC=180°﹣∠HBC=90°+α.∵BF平分∠DBC,∴∠DBF=∠CBF=∠DBC=45°+α.∴∠EBF=∠DBF﹣∠DBE=45°+α﹣α=45°;(3)∵∠BCN=α,∴∠HCB=180°﹣∠BCN=180°﹣α.∵CF平分∠BCH,∴∠BCF=∠HCF=∠HCB=90°﹣α.∵AM∥CN,∴∠DFC=∠HCF=90°﹣α.∵∠BFC=3∠BCN,∴∠BFC=3α.∴∠DFB=∠DFC﹣∠BFC=90°﹣α.由(2)知:∠DBF=45°+α.∵BD⊥AM,∴∠D=90°.∴∠DBF+∠DFB=90°.∴45°+α+90°﹣α=90°.解得:α=15°.∴∠FBC=∠DBF=45°+α=52.5°.∴∠EBC=∠FBC+∠EBF=52.5°+45°=97.5°.26.如图1,在平面直角坐标系中,点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度,得到A,B的对应点C,D.连接AC、BD、CD.(1)写出点C,D的坐标并求出四边形ABDC的面积.(2)在x轴上是否存在一点E,使得△DEC的面积是△DEB面积的2倍?若存在,请求出点E的坐标;若不存在,请说明理由.(3)如图2,点F是直线BD上一个动点,连接FC、FO,当点F在直线BD上运动时,请直接写出∠OFC与∠FCD,∠FOB的数量关系.【答案】(1) 12(2)存在(3)当点F在线段BD上,∠OFC=∠FOB+∠FCD;;当点F在线段BD的延长线上,∠OFC=∠FOB﹣∠FCD.【解答】解:(1)∵点A,B的坐标分别是(﹣2,0),(4,0),现同时将点A、B分别向上平移2个单位长度,再向右平移2个单位长度得到A,B的对应点C,D,∴点C的坐标为(0,2),点D的坐标为(6,2);四边形ABDC的面积=2×(4+2)=12;(2)存在.设点E的坐标为(x,0),∵△DEC的面积是△DEB面积的2倍,∴×6×2=2××|4﹣x|×2,解得x=1或x=7,∴点E的坐标为(1,0)和(7,0);(3)当点F在线段BD上,作FM∥AB,如图1,∵MF∥AB,∴∠2=∠FOB,∵CD∥AB,∴CD∥MF,∴∠1=∠FCD,∴∠OFC=∠1+∠2=∠FOB+∠FCD;当点F在线段DB的延长线上,作FN∥AB,如图2,∵FN∥AB,∴∠NFO=∠FOB,∵CD∥AB,∴CD∥FN,∴∠NFC=∠FCD,∴∠OFC=∠NFC﹣∠NFO=∠FCD﹣∠FOB;同样得到当点F在线段BD的延长线上,得到∠OFC=∠FOB﹣∠FCD.。
2024七年级数学下学期期中模拟卷01(人教版)测试范围:第五章~第七章
试题 第1页(共6页) 试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2023-2024学年七年级数学下学期期中模拟卷01基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:测试范围:第五章、第六章、第七章(人教版),难度系数:0.6。
第Ⅰ卷一、单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在实数5,722 ,38-,0, 1.41-,π2,36 ,0.1010010001中,无理数有( )个A .2B .4C .3D .52.在下列各对数中,互为相反数的是( )A .13-与3-B .|3|-与3C .39-与39-D .38-与2(2)-3.若点()2,A m 在x 轴上,则点()1,4B m m --在( ) A .第四象限B .第三象限C .第二象限D .第一象限4.关于代数式34x -+的说法正确的是( ) A .0x =时最大 B .0x =时最小 C .4x =-时最大D .4x =-时最小5.如图,AB AC ⊥,AD BC ⊥,垂足分别为A ,D ,则图中线段的长度可以作为点到直线的距离的有( )A .2条B .3条C .4条D .5条6.如图,是一片树叶标本,将其放在平面直角坐标系中,表示叶片尖端A ,B 两点的坐标分别为()()3,3,1,0--,则叶柄底部点C 的坐标为( )A .()2,0B .()2,1C .()1,0D .()1,1-7.如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法(图中三角形ABC 是三角板),其依据是( )A .同旁内角互补,两直线平行B .两直线平行,同旁内角互补C .同位角相等,两直线平行D .两直线平行,同位角相等8.若10404102=,则10.2x =中的x 等于( ) A .1040.4B .10.404C .104.04D .1.04049.如图,BE CD BD ∥,平分CBE ∠,110CBE ∠=︒,125E ∠=︒,则ADC ∠度数是( )A .35︒B .45︒C .25︒D .30︒10.如图,木条a 、b 、c 用螺丝固定在木板上,且50ABM ∠=︒,70DEM ∠=︒,将木条a 、木条b 、木条c 看作是在同一平面内的三条直线AC 、DF 、MN ,若使直线AC 、直线DF 达到平行的位置关系,则下列描述错误的是( )A .木条b 、c 固定不动,木条a 纯点B 顺时针旋转20︒B .木条b 、c 固定不动,木条a 绕点B 逆时针旋转160︒C .木条a 、c 固定不动,木条b 绕点E 逆时针旋转20︒D .木条a 、c 固定不动,木条b 绕点E 顺时针旋转110︒11.如图,边BC 经过原点O ,点A 在x 轴上,AD BC ⊥于点D ,若点(,2)B m ,(,3)C n -,(4,0)A ,则BC AD ⋅的值是( )试题 第3页(共6页) 试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………A .8B .12C .16D .2012.如图,动点M 按图中箭头所示方向运动,第1次从原点运动到点()2,2,第2次运动到点()4,0,第3次运动到点()6,4,…,按这样的规律运动,则第2024次运动到点( )A .()2024,2B .()4048,0C .()2024,4D .()4048,4第II 卷二、填空题(本题共6小题,每小题3分,共18分.)13.若一个正数的两个平方根分别为32a +和2a +,则这个数是 . 14.比较大小:512- 12(填>,<或=).15.点()221P m m ++,向右平移1个单位长度后,正好落在y 轴上,则m = . 16.若经过点()3,2M -与点(),N x y 的直线平行于x 轴,且点N 到y 轴的距离等于9,则N 点的坐标是 . 17.如图,直线AB CD 、相交于点,,O OE CD OF ⊥平分BOD ∠,若66AOE BOF ∠+∠=︒,则BOC ∠= °.18.如图,已知PQ MN ∥,点A ,B 分别在MN ,PQ 上,射线AC 自射线AN 的位置开始,以每秒4°的速度绕点A 逆时针旋转至AM 便立即顺时针回转当和AN 重合时停止运动,射线BD 自射线BP 的位置开始,以每秒1°的速度绕点B 逆时针旋转至BQ 后停止运动.若射线BD 先转动30秒,射线AC 才开始转动,当射线AC 与BD 互相平行时,射线BD 的旋转时间为 秒.三、解答题(本题共8小题,共66分.第19-20题每题6分,第21-23题每题8题,其他每题10分,解答应写出文字说明、证明过程或演算步骤.) 19.计算: (1)38132273⎛⎫--+- ⎪⎝⎭(2)()23334649515⎛⎫--⨯-+- ⎪⎝⎭20.求下列各式中的x 的值:(1)2121049x -= (2)3(3)270x +-=21.如图,F 是BC 上一点,FG AC 于点G ,H 是AB 上一点,HE AC ⊥于点E ,12∠=∠,求证:DE BC ∥. 证明:连接EFFG AC ⊥,HE AC ⊥,90FGC HEC ∴∠=∠=︒(___________).∴____________________(__________).3∴∠=∠__________(__________). 又12∠=∠,132∴∠+∠=∠+∠________(等式的性质). 即DEF EFC ∠=∠DE BC ∴∥(__________).22.如图,在平面直角坐标系中,ABC 的顶点都在网格点上,将ABC 先向下平移5个单位长度,再向左平移4个单位长度得到111A B C △.试题 第5页(共6页) 试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________(1)请在图中画出111A B C △,并直接写出111A B C △的面积;(2)若ABC 内有一点()P a b ,经过上述平移后的对应点为1P ,写出点1P 的坐标;(3)如图,直线l 经过点B ,且与x 轴垂直,若点Q 在直线l 上,且QBC △的面积等于ABC 的面积,直接写出点Q 的坐标.23.如图,每个小正方形的边长为1,阴影部分是一个正方形.(1)图中阴影正方形的面积是________,边长是________.(2)已知x 为阴影正方形的边长的小数部分,y 为15的整数部分.求: Ⅰx ,y 的值; Ⅰx y +的相反数.24.如图,在三角形ABC 中,AD 平分BAC ∠交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,180BDA CEG ∠+∠=︒.(1)AD 与EF 平行吗?请说明理由;(2)点H 在FE 的延长线上,连接DH ,若EDH C ∠=∠,240F H ︒∠=∠-,求BAC ∠.25.如图1,已知三角形ABC ,D 是线段BA 延长线上一点,AE BC ∥.(1)求证:DAC B C ∠=∠+∠;(2)如图2,过C 作CH AB ∥交AE 于H ,AF 平分DAE ∠,CF 平分DCH ∠,若70BCD ∠=︒,求F ∠的度数;(3)如图3,CH AD ∥,点P 为线段AC 上一点,点G 为射线AD 上一动点,线段PQ ,GM 分别交CH 于点Q 、M ,其中2DGM PGM ∠=∠,2CPQ GPQ ∠=∠,又过P 作PN GM ∥,则QPN ∠与BAC ∠的数量关系是____.26.如图1,在坐标系中,已知(),0A a ,(),0B b ,()3,7C -,连接BC 交y 轴于点D ,364a =-,()24b=.(1)请直接写出点A ,B 的坐标,A ______,B ______; (2)如图2,BCPS、ABCS分别表示三角形BCP 、三角形ABC 的面积,点P 在y 轴上,使BCPABCSS=,点P 若存在,求P 点纵坐标、若不存在,说朋理由;(3)如图3,若(),Q m n 是x 轴上方一点,当三角形QAC 的面积为20时,求出7m n -的值.。
上海市民办立达中学2023-2024学年七年级下学期4月月考数学试卷
2024年立达4月份月考卷-七年级下学期期中模拟卷一、选择题(共6小题,每题3分)1. 下列根式中,与23 是同类二次根式的是( ) A.18 B. 32c.75 D.0.3 2. 若1144x x x x --=-- 在实数范围内成立,则x 的取值范围是( ) A. 1x ≥ B.4x ≥ C.14x ≤≤ D.4x >3. 若使用如图所示的 a,b 两根直铁丝做成一个三角形框架,需要将其中一根铁丝折成两段,则可以分为两段的铁丝是( )A.a,b 都可以B.a ,b 都不可以C. 只有a 可以D. 只有b 可以4. 如图、AD,BE,CF 分别是△ABC 的中线、高和角平分线,∠ABC=90°,CF 交AD 于点 G, 交 BE 于点H, 则下列结论一定正确的是( )A. ∠ABE=∠FCBB. ∠GAC=∠GCAC.FG=GCD.BF=BH5. 如图,点C 和点E 分别在AD 和AB 上,BC 与DE 交于点F, 已知AB=AD, 若要使△ABC ≌△ADE, 应添加条件中错误的是( )A .BC=DE B.AC=AEC. ∠ACB=∠AED=90°D.∠BCD=∠DEB6. 如图,已知△ABC 与△CDE 都是等边三角形,点 B 、C 、D 在同一条直线上, AD 与 BE相交于点G,BE 与AC 相交于点F,AD 与CE 相交于点 H,连接 FH. 给出下列结论:①ACD ≌△BCE;②60AGB ∠=︒③BF=AH;④△CFH 是等边三角形.其中正确结论的个数是( )A.1B.2C.3D.4二. 填空题(共12小题,每题2分)7. 截至2024年1月末,我国外汇储备规模为31845亿美元,较2023.年末上升1.82%,请将31845保留3个有效数字表示为 亿美元.8.1x- 有意义,则x 的取值范围是 。
CF AEB DE D FG H9. 下列二次根 100 ,53 ,12 ,23 ,6 中,是最简二次根式的为 10. 已知331x x y -+-+= ,则x y +的算术平方根是11.一个三角形的三边长分别为3,4,x,则化简()217x x -+-的结果为12. 如图,已知∠1=∠2,利用“SAS ”加上条件 ,可以证明△ADB ≌△ADC.13. 如图,△ABC ≌△DEC, 点E 在AB 边上,∠ACD=50°, 则∠DEC 的度数为14. 如图,BP 是△ABC 中∠ABC 的平分线, CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°, 则∠A+∠P=_15.若等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形的底角度数是16. 已知△ABC 是等腰三角形,若∠A=20°, 则∠B 的度数为17.如图,△ABC 是等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E,DF ⊥AC 于点F. 若BC=4, 则BE+CF=18.如图,在&ABC 中,AB=AC,点D 为线段BC 上一动点(不与点B;C 重合),连接AD, 作∠ADE=∠B=40°,DE 交线段AC 于点E, 下列结论:①∠DEC=∠BDA;②若AB=DC, 则AD=DE;③当 DE ⊥AC 时,则D 为BC 中点;④当△ADE 为等腰三角形时,∠BAD=40° .正确的有 .(填序号) E DA CB三.计算题(每题5分)19. 1325045183⑵()(()20201221124252π-⎛⎫---⨯-- ⎪⎝⎭⑶ab ab a ab a a b⎫÷⎪-⎭ 3223x x +<20. 计算与求值. 已知23a =+ ,求2221211a a a a a -+-+-- 的值。
北京市第一零一中学2022-2023学年下学期七年级期中数学模拟试卷(含解析)
2022-2023学年北京市101中学七年级(下)期中数学模拟试卷一、选择题(本大题共8小题,共24分)1.(3分)下列说法错误的是( )A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和12.(3分)在平面直角坐标系中,下列各点位于第二象限的是( )A.(3,4)B.(﹣3,4)C.(﹣3,﹣4)D.(3,﹣4)3.(3分)下列实数:﹣,,0.1010010001(每相邻两个1之间依次增加一个0),,3.14,中,无理数的个数是( )A.1个B.2个C.3个D.4个4.(3分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A.60°B.50°C.40°D.30°5.(3分)估算+2在哪两个整数之间?( )A.2和3B.3和4C.4和5D.5和66.(3分)如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为(﹣2,2),“马”的坐标为(1,2),则棋子“炮”的坐标为( )A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)7.(3分)盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A与玩偶B组合成一批盲盒,一个盲盒搭配1个玩偶A和2个玩偶B,已知每米布料可做1个玩偶A或3个玩偶B,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x米布料做玩偶A,用y米布料做玩偶B,使得恰好配套,则下列方程组正确的是( )A.B.C.D.8.(3分)运算能力是一项重要的数学能力.兵老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试(每次测验满分均为100分).小明和小军同学帮助兵老师统计了某数学小组5位同学(A,B,C,D,E)的三次测试成绩,小明在下面两个平面直角坐标系里描述5位同学的相关成绩.小军仔细核对所有数据后发现,图1中所有同学的成绩坐标数据完全正确,而图2中只有一个同学的成绩纵坐标数据有误.以下说法中:①A同学第一次成绩50分,第二次成绩40分,第三次成绩60分;②B同学第二次成绩比第三次成绩高;③D同学在图2中的纵坐标是有误的;④E同学每次测验成绩都在95分以上.其中合理的是( )A.①②③B.①②④C.①③④D.②③④二、填空题(本大题共8小题,共24分)9.(3分)A(a,0),B(3,4)是平面直角坐标系中的两点,线段AB长度的最小值为 .10.(3分)已知a,b满足方程组,则a+b的值为 .11.(3分)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,),则点E 的坐标为 .12.(3分)如图,与∠1是同位角的是 ,与∠1是内错角的是 .13.(3分)依据图中呈现的运算关系,可知a= ,b= .14.(3分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是 .15.(3分)定义新运算:对于任意实数a,b都有a※b=am﹣bn,等式右边是通常的减法和乘法运算.规定,若3※2=5,1※(﹣2)=﹣1,则(﹣3)※1的值为 .16.(3分)如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,运用你所学的知识求出这块草地的绿地面积为 m2.三、解答题(本大题共9小题,共52分)17.(4分)如图,点P是∠AOB的边OB上的一点.(1)过点M画OA的平行线MN;(2)过点P画OB的垂线,交OA于点C;(3)点C到直线OB的距离是线段 的长度.18.(4分)计算:.19.(8分)求下列各式中的x:(1)(x﹣2)3=8;(2)64x2﹣81=0.20.(5分)完成下面的证明.已知:如图,∠1+∠2=180°,∠3+∠4=180°.求证:AB∥EF.证明:∵∠1+∠2=180°,∴AB∥ ( ).∵∠3+∠4=180°,∴ ∥ .∴AB∥EF( ).21.(5分)如图,用两个边长为cm的小正方形纸片沿边裁剪拼成一个大的正方形,(1)则大正方形的边长是 cm;(2)若将此大正方形纸片的局部剪掉,能否剩下一个长宽之比为3:2且面积为12cm2的长方形纸片,若能,求出剩下的长方形纸片的长和宽;若不能,请说明理由.22.(5分)如图,点F在AB上,点E在CD上,AE,DF分别交BC于点H,G,∠A=∠D,∠FGB+∠EHG=180°.求证:AB∥CD.23.(5分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.24.(8分)【阅读材料】:善于思考的小明在解方程组时,采用了一种“整体代换”的解法:解:将方程(2)变形:4x+10y+y=5,即2(2x+5y)+y=5(3),把方程(1)代入(3)得:2×3+y=5,所以y=﹣1,将y=﹣1代入(1)得x=4,所以原方程组的解为.【解决问题】:(1)模仿小明的“整体代换”法解方程组;(2)已知x,y满足方程组,求x2+4y2的值.25.(8分)如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC,OE平分∠BOC.(1)图中∠BOD的邻补角为 ,∠AOE的邻补角为 ;(2)如果∠COD=25°,那么∠BOE= ,如果∠COD=60°,那么∠BOE= ;(3)试猜想∠COD与∠BOE具有怎样的数量关系,并说明理由.四、附加题(每题10分)26.(10分)线段AB与线段CD互相平行,P是平面内的一点,且点P不在直线AB,CD 上,连接PA,PD,射线AM,DN分别是∠BAP和∠CDP的平分线.(1)若点P在线段AD上,如图1,①依题意补全图1;②判断AM与DN的位置关系,并证明;(2)是否存在点P,使AM⊥DN?若存在,直接写出点P的位置;若不存在,说明理由.27.(10分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).如图,已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2),D(6,6).(1)d(点O,CD)= ,d(点B,AC)= ;(2)记线段BC,AD组成图形G已知点T(4,m),若d(点T,G)≤2,求m的取值范围;(3)若E(t,0),F(t+1,0),d(EF,四边形ABCD)=2,直接写出t的取值范围.2022-2023学年北京市101中学七年级(下)期中数学模拟试卷参考答案与试题解析一、选择题(本大题共8小题,共24分)1.(3分)下列说法错误的是( )A.3的平方根是B.﹣1的立方根是﹣1C.0.1是0.01的一个平方根D.算术平方根是本身的数只有0和1【分析】根据立方根的定义和求法,平方根的定义和求法,以及算术平方根的定义和求法,逐项判定即可.【解答】解:A、3的平方根是±,原说法错误,故此选项符合题意;B、﹣1的立方根是﹣1,原说法正确,故此选项不符合题意;C、0.1是0.01的一个平方根,原说法正确,故此选项不符合题意;D、算术平方根是本身的数只有0和1,原说法正确,故此选项不符合题意.故选:A.【点评】此题考查了立方根、平方根、算术平方根.解题的关键是熟练掌握立方根的定义,平方根的定义,以及算术平方根的定义.2.(3分)在平面直角坐标系中,下列各点位于第二象限的是( )A.(3,4)B.(﹣3,4)C.(﹣3,﹣4)D.(3,﹣4)【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.【解答】解:A、(3,4)在第一象限,故本选项错误;B、(﹣3,4)在第二象限,故本选项正确;C、(﹣3,﹣4)在第三象限,故本选项错误;D、(3,﹣4)在第四象限,故本选项错误.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(3分)下列实数:﹣,,0.1010010001(每相邻两个1之间依次增加一个0),,3.14,中,无理数的个数是( )A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:是分数,属于有理数;3.14是有限小数,属于有理数;无理数有:﹣,,0.1010010001...(每相邻两个1之间依次增加一个0),,共4个.故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001.4.(3分)直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为( )A.60°B.50°C.40°D.30°【分析】过E作EF∥AB,则AB∥EF∥CD,根据平行线的性质即可得到结论.【解答】解:如图,过E作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,∠2=∠4,∵∠3+∠4=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键.5.(3分)估算+2在哪两个整数之间?( )A.2和3B.3和4C.4和5D.5和6【分析】找出与6相邻的两个平方数,然后估算的范围,进而可以判断+2的范围.【解答】解:∵4<6<9,∴2<<3,∴4<+2<5.即+2在4和5之间.故选:C.【点评】此题主要考查了估算无理数的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6.(3分)如图,若在象棋盘上建立平面直角坐标系,使棋子“车”的坐标为(﹣2,2),“马”的坐标为(1,2),则棋子“炮”的坐标为( )A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.【解答】解:如图所示:棋子“炮”的坐标为(3,1).故选:B.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.7.(3分)盲盒近来火爆,这种不确定的“盲抽”模式受到了大家的喜爱,一服装厂用某种布料生产玩偶A与玩偶B组合成一批盲盒,一个盲盒搭配1个玩偶A和2个玩偶B,已知每米布料可做1个玩偶A或3个玩偶B,现计划用136米这种布料生产这批盲盒(不考虑布料的损耗),设用x米布料做玩偶A,用y米布料做玩偶B,使得恰好配套,则下列方程组正确的是( )A.B.C.D.【分析】根据生产玩偶的布料的总长度及生产的玩偶B的总数量是生产的玩偶A总数量的2倍,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:∵现计划用136米这种布料生产这批盲盒,用x米布料做玩偶A,用y米布料做玩偶B,∴x+y=136;∵每米布料可做1个玩偶A或3个玩偶B,一个盲盒搭配1个玩偶A和2个玩偶B,且生产的两种玩偶恰好配套,∴2x=3y.∴根据题意可列出方程组.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8.(3分)运算能力是一项重要的数学能力.兵老师为帮助学生诊断和改进运算中的问题,对全班学生进行了三次运算测试(每次测验满分均为100分).小明和小军同学帮助兵老师统计了某数学小组5位同学(A,B,C,D,E)的三次测试成绩,小明在下面两个平面直角坐标系里描述5位同学的相关成绩.小军仔细核对所有数据后发现,图1中所有同学的成绩坐标数据完全正确,而图2中只有一个同学的成绩纵坐标数据有误.以下说法中:①A同学第一次成绩50分,第二次成绩40分,第三次成绩60分;②B同学第二次成绩比第三次成绩高;③D同学在图2中的纵坐标是有误的;④E同学每次测验成绩都在95分以上.其中合理的是( )A.①②③B.①②④C.①③④D.②③④【分析】分别观察图1和图2,根据横纵坐标所表示的数据的含义,对各个选项的说法进行分析或计算即可.【解答】解:观察图1,A的横坐标对应50,说明A同学第一次成绩50分;观察图1的纵坐标,A的值为45,说明A同学第二次成绩40分;观察图2,可知A的前三次的平均成绩为50,则50×3﹣50﹣40=60,即A的第三次成绩60分,故①合理;观察图1,B第一次成绩为70分,前两次平均成绩76分左右,则B同学第二次成绩大于80分;观察图2,B同学前三次的平均成绩和前两次的平均成绩基本相同,说明B同学第三次成绩和前两次的平均成绩基本相同,故B同学第二次成绩比第三次成绩高,②合理;由图1可知,D同学第一次和第二次的成绩均大于90分,且小于95分;观察图2,则右上角格内下方的点为D点,反映出前三次平均成绩大于90分,且小于95分,则D同学在图2中的纵坐标是合理的,故③说法不合理;从选择题角度选项A,C,D已经排除;结合图形分析,由图1可知,E同学每次测验成绩都在95分以上,且前两次平均成绩接近满分;由图2可知,前三次平均成绩接近满分,则E同学每次测验成绩都在95分以上合理;综上,合理的有:①②④.故选:B.【点评】本题考查了点的坐标所表示的数据信息,读懂图中横纵坐标所表示的含义、数形结合是解题的关键.二、填空题(本大题共8小题,共24分)9.(3分)A(a,0),B(3,4)是平面直角坐标系中的两点,线段AB长度的最小值为 4 .【分析】根据两点间的距离公式即可得到结论.【解答】解:∵A(a,0),B(3,4),∴AB=,∴当a﹣3=0时,线段AB长度的值最小,即线段AB长度的最小值为4,故答案为:4.【点评】本题考查了勾股定理,两点间的距离公式,正确的理解题意是解题的关键.10.(3分)已知a,b满足方程组,则a+b的值为 4 .【分析】根据方程组解的定义,将方程组中的两个方程相加即可.【解答】解:,①+②得,3a+3b=12,所以a+b=4,故答案为:4.【点评】本题考查二元一次方程组的解以及解二元一次方程组,理解二元一次方程组解的定义,掌握解二元一次方程组的方法是解决问题的前提.11.(3分)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,),则点E 的坐标为 (7,0) .【分析】利用平移的性质解决问题即可.【解答】解:∵A(3,),D(6,),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0),故答案为(7,0).【点评】本题考查坐标与图形变化﹣平移,解题的关键是熟练掌握基本知识,属于中考常考题型.12.(3分)如图,与∠1是同位角的是 ∠4 ,与∠1是内错角的是 ∠2 .【分析】利用同位角和内错角定义进行解答即可.【解答】解:与∠1是同位角的是∠4,与∠1是内错角的是∠2,故答案为:∠4;∠2.【点评】此题主要考查了同位角和内错角,关键是掌握同位角的边构成“F“形,内错角的边构成“Z“形.13.(3分)依据图中呈现的运算关系,可知a= ﹣2019 ,b= ﹣2019 .【分析】利用立方根和平方根的定义及性质即可解决问题.【解答】解:依据图中呈现的运算关系,可知2019的立方根是m,a的立方根是﹣m,∴m3=2019,(﹣m)3=a,∴a=﹣2019;又∵n的平方根是2019和b,∴b=﹣2019.故答案为:﹣2019,﹣2019.【点评】本题考查了立方根和平方根的定义及性质,熟练掌握定义及性质是解题的关键.14.(3分)平面直角坐标系xOy中,已知线段AB与x轴平行,且AB=5,若点A的坐标为(3,2),则点B的坐标是 (﹣2,2)或(8,2) .【分析】根据平行于x轴的直线上的点的纵坐标相等,再分点B在点A的左边与右边两种情况讨论求解.【解答】解:∵线段AB与x轴平行,∴点B的纵坐标为2,点B在点A的左边时,3﹣5=﹣2,点B在点A的右边时,3+5=8,∴点B的坐标为(﹣2,2)或(8,2).故答案为:(﹣2,2)或(8,2).【点评】本题考查了坐标与图形性质,熟记平行于x轴的直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论.15.(3分)定义新运算:对于任意实数a,b都有a※b=am﹣bn,等式右边是通常的减法和乘法运算.规定,若3※2=5,1※(﹣2)=﹣1,则(﹣3)※1的值为 ﹣2 .【分析】根据新定义运算法则以及二元一次方程组的解法可求出m与n的值,然后再根据新定义运算法则即可求出答案.【解答】解:∵3※2=5,1※(﹣2)=﹣1,∴,解得,∴(﹣3)※1=﹣3×1﹣1×(﹣1)=﹣3+1=﹣2.故答案为:﹣2.【点评】本题考查实数的运算以及解二元一次方程组,解题的关键是正确求出m与n的值,本题属于基础题型.16.(3分)如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,运用你所学的知识求出这块草地的绿地面积为 216 m2.【分析】根据平移,可得路是矩形,根据面积的和差,可得答案.【解答】解:平移使路变直,绿地拼成一个长20﹣2,14﹣2的矩形,绿地的面积(20﹣2)(14﹣2)=216(m2),答:这块草地的绿地面积是216m2.故答案为:216.【点评】本题考查了平移,平移使路变直是解题关键.三、解答题(本大题共9小题,共52分)17.(4分)如图,点P是∠AOB的边OB上的一点.(1)过点M画OA的平行线MN;(2)过点P画OB的垂线,交OA于点C;(3)点C到直线OB的距离是线段 CP 的长度.【分析】(1)根据平行线的定义画出直线MN即可;(2)根据垂线的定义画出垂线即可;(3)点C到直线OB的距离是线段CP的长度;【解答】解:(1)OA的平行线MN如图所示.(2)OB的垂线PC如图所示.(3)点C到直线OB的距离是线段CP的长度.故答案为CP.【点评】本题考查基本作图、点到直线的距离等知识,解题的关键是熟练掌握基本概念,属于中考基础题.18.(4分)计算:.【分析】首先计算开方和绝对值,然后从左向右依次计算即可.【解答】解:=﹣3﹣2+4﹣=﹣1﹣.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.19.(8分)求下列各式中的x:(1)(x﹣2)3=8;(2)64x2﹣81=0.【分析】(1)直接利用开立方的方法解方程即可;(2)先整理成x2=a的形式,再直接开平方解方程即可.【解答】解:(1)∵(x﹣2)3=8,∴x﹣2=2,∴=4.(2)∵64x2﹣81=0,∴64x2=81∴x2=∴x=±.【点评】此题主要考查了利用立方根和平方根的性质解方程.要灵活运用使计算简便.20.(5分)完成下面的证明.已知:如图,∠1+∠2=180°,∠3+∠4=180°.求证:AB∥EF.证明:∵∠1+∠2=180°,∴AB∥ CD ( 同旁内角互补,两直线平行 ).∵∠3+∠4=180°,∴ EF ∥ CD .∴AB∥EF( 若两直线同时平行于第三直线,则这两直线也相互平行 ).【分析】由同旁内相等证明AB∥CD,EF∥CD,再根据平行公理的推论证明直线AB∥EF.【解答】证明:如图所示:∵∠1+∠2=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∵∠3+∠4=180°(已知),∴EF∥CD(同旁内角互补,两直线平行),∴AB∥EF(若两直线同时平行于第三直线,则这两直线也相互平行),故答案为:CD;同旁内角互补,两直线平行;ED;CD;若两直线同时平行于第三直线,则这两直线也相互平行.【点评】本题考查了平行线的判定与性质,平行公理的推论,重点掌握平行线的判定与性质.21.(5分)如图,用两个边长为cm的小正方形纸片沿边裁剪拼成一个大的正方形,(1)则大正方形的边长是 4 cm;(2)若将此大正方形纸片的局部剪掉,能否剩下一个长宽之比为3:2且面积为12cm2的长方形纸片,若能,求出剩下的长方形纸片的长和宽;若不能,请说明理由.【分析】(1)已知两个正方形的面积之和就是大正方形的面积,根据面积公式即可求出大正方形的边长;(2)先设未知数根据面积=12(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.【解答】解:(1)两个正方形面积之和为:2×=16(cm2),∴拼成的大正方形的面积=16(cm2),∴大正方形的边长是4cm;(2)设长方形纸片的长为3xcm,宽为2xcm,则2x•3x=12,解得:x=,3x=3>4,所以不能使剩下的长方形纸片的长宽之比为3:2,且面积为12cm2.【点评】本题考查了算术平方根实际应用,能根据题意列出算式是解此题的关键.22.(5分)如图,点F在AB上,点E在CD上,AE,DF分别交BC于点H,G,∠A=∠D,∠FGB+∠EHG=180°.求证:AB∥CD.【分析】由∠FGB+∠EHG=180°可得AE∥DF,于是∠A+∠AFD=180°,而∠A=∠D,等量代换可得∠D+∠AFD=180°,从而易证AB∥CD.【解答】证明:∵∠FGB+∠EHG=180°,∴∠HGD+∠EHG=180°,∴AE∥DF,∴∠A+∠AFD=180°,又∵∠A=∠D,∴∠D+∠AFD=180°,∴AB∥CD.【点评】本题考查了平行线的判定和性质,解题的关键是理清角之间的位置关系.23.(5分)已知正实数x的平方根是m和m+b.(1)当b=8时,求m;(2)若m2x+(m+b)2x=4,求x的值.【分析】(1)利用正实数平方根互为相反数即可求出m的值;(2)利用平方根的定义得到(m+b)2=x,m2=x,代入式子m2x+(m+b)2x=4即可求出x值.【解答】解:(1)∵正实数x的平方根是m和m+b∴m+m+b=0,∵b=8,∴2m+8=0∴m=﹣4;(2)∵正实数x的平方根是m和m+b,∴(m+b)2=x,m2=x,∵m2x+(m+b)2x=4,∴x2+x2=4,∴x2=2,∵x>0,∴x=.【点评】本题考查了平方根的定义及平方根的性质,熟练掌握这两个知识点是解题的关键.24.(8分)【阅读材料】:善于思考的小明在解方程组时,采用了一种“整体代换”的解法:解:将方程(2)变形:4x+10y+y=5,即2(2x+5y)+y=5(3),把方程(1)代入(3)得:2×3+y=5,所以y=﹣1,将y=﹣1代入(1)得x=4,所以原方程组的解为.【解决问题】:(1)模仿小明的“整体代换”法解方程组;(2)已知x,y满足方程组,求x2+4y2的值.【分析】(1)将方程②化为3x+2(3x﹣2y)=19,再将方程①代入可求出x的值,进而求出方程组的解即可;(2)将方程②×2,再与方程①相加后化简即可.【解答】解:(1),由②可得,3x+2(3x﹣2y)=19③,将①代入③得,3x+10=19,解得x=3,把x=3代入①得,9﹣2y=5,解得,y=2,所以原方程组的解为;(2),②×2得,2x2+2xy+8y2=50③,①+③得,5x2+20y2=100,所以x2+4y2=20.【点评】本题考查二元一次方程组的解以及解二元一次方程组,理解二元一次方程组解的定义,掌握解二元一次方程组的方法是正确解答的前提.25.(8分)如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC,OE平分∠BOC.(1)图中∠BOD的邻补角为 ∠AOD ,∠AOE的邻补角为 ∠BOE ;(2)如果∠COD=25°,那么∠BOE= 65° ,如果∠COD=60°,那么∠BOE= 30° ;(3)试猜想∠COD与∠BOE具有怎样的数量关系,并说明理由.【分析】(1)直接利用邻补角的定义分析得出答案;(2)结合角平分线的定义利用已知分别得出各角度数即可;(3)利用角平分线的定义结合平角的定义分析得出答案.【解答】解:(1)如图所示:∠BOD的邻补角为:∠AOD,∠AOE的邻补角为:∠BOE;故答案为:∠AOD,∠BOE;(2)∵∠COD=25°,∴∠AOC=2×25°=50°,∴∠BOC=130°,∴∠BOE=×130°=65°,∵∠COD=60°,∴∠AOC=120°,∴∠BOC=60°,∴∠BOE=∠BOC=30°,故答案为:65°,30°;(3)由题意可得:∠COD+∠BOE=∠AOC+∠BOC=(∠AOC+∠BOC)=90°.【点评】此题主要考查了邻补角、角平分线的定义,正确把握定义是解题关键.四、附加题(每题10分)26.(10分)线段AB与线段CD互相平行,P是平面内的一点,且点P不在直线AB,CD 上,连接PA,PD,射线AM,DN分别是∠BAP和∠CDP的平分线.(1)若点P在线段AD上,如图1,①依题意补全图1;②判断AM与DN的位置关系,并证明;(2)是否存在点P,使AM⊥DN?若存在,直接写出点P的位置;若不存在,说明理由.【分析】(1)①根据题意作出图形便可;②由角平分线定义得∠DAM=,,由平行线的性质得∠BAD=∠CAD,进而得∠DAM=∠ADN,最后根据平行线的判定定理得出结论便可;(2)当P点在AD直线上,位于AB与CD两平行线之外时,AM⊥DN.【解答】解:(1)①根据题意作出图形如下:②AM∥DN.证明:∵AM平分∠BAD,DN平分∠CDA,∴∠DAM=,,∵AB∥CD,∴∠BAD=∠CDA,∴∠DAM=∠ADN,∴AM∥DN;(2)当P点在AD直线上,位于AB与CD两平行线之外时,AM⊥DN.证明:如下图,∵AB∥CD,∴∠PAF=∠PDC,∵∠PAF+∠PAB=180°,∴∠PDC+∠PAB=180°,∵AM平分∠BAP,DN平分∠CDA,∴∠BAM=,,∴∠CDN+∠BAM=90°,∵AB∥CD,∴∠AFD=∠CDN,∵∠EAF=∠BAM,∴∠AFE+∠EAF=90°,∴∠AEF=90°,∴AM⊥DN.【点评】本题主要考查了平行线的性质,关键熟记和正确理解平行的性质与判定.27.(10分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).如图,已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2),D(6,6).(1)d(点O,CD)= 6 ,d(点B,AC)= 4 ;(2)记线段BC,AD组成图形G已知点T(4,m),若d(点T,G)≤2,求m的取值范围;(3)若E(t,0),F(t+1,0),d(EF,四边形ABCD)=2,直接写出t的取值范围.【分析】(1)设CD交x轴于M,连接AC,过B作BN⊥AC,求出CM、BN即得答案;(2)在直线x=4上找出到AD、BC距离等于2的点,画出图形即可得到答案;(3)分三种情况:①EF在AB左侧,②EF在正方形ABCD内,③EF在CD右侧,分别求出d(EF,四边形ABCD)=2时t的范围即可.【解答】解(1)设CD交x轴于M,连接AC,过B作BN⊥AC,如图:∵A(﹣2,6),B(﹣2,﹣2),C(6,﹣2),D(6,6).∴O到CD的距离CM=6,AB=8,BC=8,AC=8,∴根据“闭距离”定义得:d(点O,CD)=6,∵S△ABC=AB•BC=AC•BN,∴B到AC的距离BN==4,∴d(点B,AC)=4,故答案为:6,4;(2)作直线x=4,取E(4,8)、F(4,4)、G(4,0)、H(4,﹣4),如图:在直线x=4上,E(4,8)、F(4,4)到AD距离为2,线段EF上的点到AD距离都小于2,同理G(4,0)、H(4,﹣4)到BC的距离为2,线段GH上的点到BC的距离都小于2,∴记线段BC,AD组成图形G已知点T(4,m),若d(点T,G)≤2,则4≤m≤8或﹣4≤m≤0;(3)取G(﹣5,0)、H(﹣4,0)、M(4,0)、N(8,0),如图:∵E(t,0),F(t+1,0),∴线段EF在x轴上,F在E右侧1个单位,①EF在AB左侧时,∵H到AB距离为2,∴F与H重合,此时EF上的点F到AB的距离最小为2,故d(EF,四边形ABCD)=2,∴t+1=﹣4,可得t=﹣5,②EF在正方形ABCD内时,当EF在线段OM上,则EF的点到BC的距离都为2,故d(EF,四边形ABCD)=2,此时,∴0≤t≤3,③EF在AB右侧时,E与N重合,此时EF上的点E到AB的距离最小为2,故d(EF,四边形ABCD)=2,∴t=8,综上所述,d(EF,四边形ABCD)=2,t=﹣5或0≤t≤3或t=8.【点评】本题考查直角坐标系中,点与点、点与直线的距离问题,解题的关键是读懂“闭距离”的定义,数形结合解决问题.。
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷+答案解析
2023-2024学年北京市西城区北京市第八中学七年级下学期期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.点所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中正确的是()A. B. C. D.3.如图,下列两个角是内错角的是()A.与B.与C.与D.与4.在实数,,,,,0,,中,无理数有个()A.1B.2C.3D.45.若是二元一次方程的一个解,则m的值为()A. B. C.1 D.6.下列命题中,真命题是()A.互补的角是邻补角B.同旁内角互补C.过直线外一点,有且只有一条直线与已知直线平行D.如果两条直线都与第三条直线垂直,那么这两条直线也相互垂直7.已知,则下列不等式中不成立的是()A. B. C. D.8.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳长y尺,根据题意列方程组得()A. B. C. D.9.如图,直线AB,CD交于点O,已知于点平分,若,则的度数是()A. B. C. D.10.如图,是由8个大小相同的小长方形无缝拼接而成的一个大长方形,已知大长方形的周长为2a,则小长方形的周长为()A. B. C. D.二、填空题:本题共8小题,每小题3分,共24分。
11.x的2倍与4的差不大于3,用不等式表示为__________.12.如图,点E在DC的延长线上,请添加一个恰当的条件__________,使13.如图,,则AC__________填>,<,,理由是__________.14.已知二元一次方程组,则的值为__________.15.若是关于x、的二元一次方程,则__________.16.已知:实数a,b满足,则的平方根是__________.17.如图,在公园的长方形草地内修建了宽为2米的道路后,剩余的草地面积是__________平方米.18.如图,第一象限内有两点,,将线段PQ平移,使点P、Q分别落在两条坐标轴上,则点P平移后的对应点的坐标是__________.三、解答题:本题共10小题,共80分。
北京市顺义区仁和中学2023-2024学年七年级下学期期中数学试题(解析版)
仁和中学2023-2024学年度第二学期期中考试初一年级数学试卷一、选择题(每题2分,共20分)1. 不等式的解集在数轴上表示正确的是( )A. B.C.D.【答案】D【解析】【分析】本题主要考查了一元一次不等式的求解,在数轴上表示不等式解集;解不等式,即可得出合适的选项.【详解】解:解不等式,可得,故不等式解集在数轴上表示为:故选:D .2. 下列命题中,假命题是( )A. 同角的补角相等B. 同一平面内,过一点有且只有一条直线与已知直线垂直C. 如果,,那么D. 两条直线被第三条直线所截,同旁内角互补【答案】D【解析】【分析】利用同角的补角的性质、垂直的定义、平行线的性质等知识分别判断后即可.【详解】解:A 、同角的补角相等,是真命题,故本选项不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故本选项不符合题意;C 、如果,,那么,是真命题,故本选项不符合题意;D、两条平行直线被第三条直线所截,同旁内角互补,故原命题是假命题,故本选项符合题意;的10x +<10x +<10x +<1x <-10x +<a b =b c =a c=a b =b c =a c =【点睛】考查了命题与定理的知识,解题的关键是了解同角的补角的性质、垂直的定义、平行线的性质等知识,难度不大.3. 下列各组数值中,哪个是方程的解( )A. B. C. D. 【答案】B【解析】【分析】将四个选项分别代入原方程,能使方程左右两边相等的未知数的值是方程的解.【详解】解:将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项符合题意;将代入原方程,左边右边,选项不符合题意;将代入原方程,左边右边,选项不符合题意.故选:.【点睛】本题主要考查了二元一次方程的解.正确利用二元一次方程的解的意义是解题的关键.4. 如图,,射线在内部,下列说法一定成立的是( )A. 和互余B. 和互补C. 和互为对顶角D. 和相等21x y +=21x y =⎧⎨=⎩13x y =-⎧⎨=⎩13x y =⎧⎨=-⎩22x y =⎧⎨=-⎩ 21x y =⎧⎨=⎩5=≠A ∴ 13x y =-⎧⎨=⎩1==B ∴13x y =⎧⎨=-⎩1=-≠C ∴ 22x y =⎧⎨=-⎩2=≠D ∴B AO OB ⊥OC AOB ∠1∠2∠1∠2∠1∠2∠1∠2∠【解析】【分析】本题考查了角的互余概念、对顶角的定义,准确理解角的互余概念,对顶角的定义是解题的关键.【详解】解:∵,∴,又∵射线在内部,∴,∴和互余,故选A5. 如图,下列条件中,能判断的是( )A. B. C. D. 【答案】A【解析】【分析】由平行线的判定方法,即可判断.【详解】解:A.,由内错角相等,两直线平行,能判断,故A 符合题意;B.不是被截成的内错角,不能判断,故B 不符合题意;C. 不是被截成的内错角,不能判断,故C 不符合题意;D.不是被截成的同旁内角,不能判断,故D 不符合题意;故选:A .【点睛】本题考查平行线的判定,熟练掌握:①内错角相等,两直线平行;②同位角相等,两直线平行;③同旁内角互补,两直线平行,是解题的关键.6. 如图,由可以得到的结论是( )AO OB ⊥90AOB ∠=︒OC AOB ∠1290∠∠+=︒1∠2∠AB CD 12∠=∠13∠=∠14∠=∠13180∠+∠=︒12∠=∠AB CD 13∠∠、AB CD 、()AD BC AB CD 14∠∠、AB CD 、()AD BC AB CD 13∠∠、AB CD 、()AD BC AB CD AB CD ∥A. B. C. D. 【答案】B【解析】【分析】由平行线的性质,角平分线的定义逐项判断可求解【详解】解:A .当平分时,,故此选项不符合题意;B .当时,,故此选项符合题意;C .当时,,故此选项不符合题意;D .当平分时,,故此选项不符合题意.故选:B .【点睛】本题考查平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.掌握平行线的性质是解题的关键.也考查了角平分线的定义.7. 将一个长方形的长减少,宽变成现在的2倍,设这个长方形的长为,宽为,则下列方程中正确的是( )A. B. C. D. 【答案】C【解析】【分析】根据长方形的长减少宽变成现在的2倍,列出方程即可.【详解】解:设这个长方形的长为,宽为,根据题意得:,故C 正确.故选:C .【点睛】本题主要考查了列二元一次方程,解题的关键是找出题目中的等量关系.8. 实数,对应的位置如图所示,下列式子正确的是( )A. B. C. D. 【答案】D【解析】【分析】根据数轴得出a 和b 的范围,进而得出,,根据有理数运算法则逐一判断即可.【详解】解:由数轴可得:,,∴,,12∠=∠14∠=∠23∠∠=34∠∠=AC BAD ∠12∠=∠AB CD ∥14∠=∠AD BC ∥23∠∠=AC BCD ∠34∠∠=5cm cm x cm y 52x y+=52x y +=+52x y -=52x y -=+5cm=cm x cm y 52x y -=a b 22a b <22a b -<-50a +<44a b +<+a b <a b >54a -<<-3<<4b a b <a b >∴,,,,故A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查了利用数轴判断式子的正负,有理数运算和符号之间的关系,乘、除法注意:同号得正,异号得负.9. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】由图可得,小丽的重量为50千克,且进入电梯后,警示音没有响起,小欧的重量分别为70千克.且进入电梯后,警示音响起,分别列出不等式即可求解.【详解】由题意可知:当电梯乘载的重量超过400千克时警示音响起,小丽进入电梯前,电梯内已乘载的重量为x 千克,由图可知:小丽的重量为50千克,且进入电梯后,警示音没有响起,所以此时电梯乘载的重量,解得因为小欧的重量为70千克.且进入电梯后,警示音响起,所以此时电梯乘载的重量,解得因此的取值范围是故选:A【点睛】本题考查了一元一次不等式组的应用,解决本题的关键是根据题意找到不等关系.22a b >22a b ->-50a +>44a b +<+x x 280350x <≤280400x <≤330350x <≤330400x <≤50400x +≤350x ≤5070400x ++>280x >x 280350x <≤10. 已知关于的不等式组有以下说法:①当时,则不等式组的解集是;②若不等式组的解集是,则;③若不等式组无解,则;④若不等式组的整数解只有,0,1,2,则.其中正确的说法有( )A. ①③B. ②④C. ①②③D. ①②③④【答案】C【解析】【分析】先求出各不等式的解集,再根据各小题的结论解答即可.【详解】解:关于的不等式组,①当时,则不等式组的解集是,故本小题正确,符合题意;②若不等式组的解集是,则,故本小题正确,符合题意;③若不等式组无解,则,故本小题正确,符合题意;④若不等式组的整数解只有,0,1,2,则,故本小题错误,不符合题意;故选:C .【点睛】本题考查的是由不等式组的解集情况求参数,熟知解一元一次不等式组的基本步骤是解题的关键.二、填空题(每题2分,共20分)11. 用不等式表示“的3倍与7的差小于11”为______.【答案】【解析】【分析】首先表示“的3倍”为,再表示“与7的差”为,最后再表示“小于11”为.【详解】解:∵“的3倍”为,再表示“与7的差”为,∴用不等式表示“的3倍与7的差小于11”为:,故答案为:.【点睛】本题考查由实际问题抽象出一元一次不等式,用不等式表示不等关系时,要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”、“至少”、“最多”等等,正确选择不等号.x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-2m =x 2x x m >-⎧⎨≤⎩1m =21x -<≤20x -<≤0m =2m ≤-1-23m <≤m 3711m -<m 3m 37m -3711m -<m 3m 37m -m 3711m -<3711m -<12. 已知方程的三个解为方程的三个解为则方程组的解为______.【答案】【解析】【分析】根据方程组解的定义,能够同时满足方程组中的两个方程的解是方程组的解观察得出两个方程的解中相同的解为方程组的解.【详解】解:根据方程组的解的定义,能够同时满足方程组中的两个方程的解是方程组的解,可知是这两个方程中所有的解中能同时满足两个方程的解,∴方程组的解为,故答案为:.【点睛】此题主要是考查了方程组的解的定义,能够熟练掌握同时满足方程组中的两个方程的解是方程组的解是解答此题的关键.13. 如图,利用工具测量角,则的大小为______.【答案】##30度【解析】【分析】根据对顶角的性质解答即可.【详解】解:量角器测量的度数为,根据对顶角相等的性质,可得,故答案为:.【点睛】本题考查量角器的使用和对顶角的性质,掌握对顶角相等是解题的关键.的24x y -+=1,2;x y =-⎧⎨=⎩0,4;x y =⎧⎨=⎩1,6,x y =⎧⎨=⎩1x y +=2,3;x y =-⎧⎨=⎩1,2;x y =-⎧⎨=⎩0,1.x y =⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩24,1x y x y -+=⎧⎨+=⎩12x y =-⎧⎨=⎩12x y =-⎧⎨=⎩1∠30︒30︒130∠=︒30︒14. 如图,将含有的直角三角板的两个顶点分别放在直尺的一组对边上,如果,那么______°.【答案】40【解析】【分析】首先根据题意求出,然后根据平行线的性质求解即可.【详解】解:如图,∵∴ ∵∴.故答案为:40.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.15. 下列命题中,①对顶角相等;②内错角相等;③平行于同一条直线的两条直线平行;④若,则.是真命题的是______.【答案】①③【解析】【分析】根据对顶角的性质判断①;根据平行线的性质判断②;根据平行公理的推论判断③;根据平方根定义判断④.【详解】解:①对顶角相等,是真命题;②内错角不一定相等,是假命题;③平行于同一条直线的两条直线互相平行,是真命题;60︒120∠=︒2∠=140EBC ABC ∠=∠-∠=︒120∠=︒140EBC ABC ∠=∠-∠=︒EB CD∥240EBC ∠=∠=︒22a b >a b >④若,则a 不一定大于b ,是假命题;故答案为:①③.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.16. 如果关于的不等式的解集为,则的值是___________.【答案】1【解析】【分析】解不等式得,结合关于的不等式的解集为,得出,解之可得答案.详解】解:∵,∴,则, ∵关于的不等式的解集为,∴, 解得,故答案为:1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17. 在一本书上写着方程组的解是,其中的值被墨渍盖住了,但我们可解得的值为___________.【答案】【解析】【分析】根据,代入中,解得;把,代入中,即可求出的值.【22a b >x 3223x a a +≤-1x ≤-a 253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-3223x a a +≤-325x a ≤-253x a ≤-x 3223x a a +≤-1x ≤-2153a -=-1a =43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩y p 321x =3x y +=2y =1x =2y =4x py +=p【详解】解:∵方程组的解是,∴代入中,解得,把,代入,得解得.故答案为:.【点睛】本题考查二元一次方程组的知识,解题的关键是代入中,求出.18. 如图,一条公路两次转弯后,和原来的方向相同.如果第一次的拐角∠A 是135°,则第二次的拐角∠B 是________, 根据是________________.【答案】①. 135° ②. 两直线平行,内错角相等【解析】【分析】由两次转弯后,和原来的方向相同可知拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:如图:∵两次转弯后,和原来的方向相同,∴AC∥BD,∴∠B=∠A=135°(两直线平行,内错角相等).故答案为135°;两直线平行,内错角相等.【点睛】本题考查了平行线性质的应用,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.19. 如图,四边形纸片,.折叠纸片,使点D 落在上的点处,点C 落在点处,折痕为.若,则______.43x py x y +=⎧⎨+=⎩1x y =⎧⎨=⎩1x =3x y +=2y =1x =2y =4x py +=124p +=32p =321x =3x y +=2y =ABCD AD BC ∥ABCD AB 1D 1C EF 102EFC ∠=︒1AED ∠=︒【答案】24【解析】【分析】根据平行线的性质可得,再根据折叠的性质可得,然后利用平角的定义求解即可.【详解】∵,∴,∵,∴,∵折叠纸片,使点D 落在上的点处,∴,∴,故答案为:24.【点睛】本题考查了折叠的性质,平行线的性质,平角的定义等知识点,熟练掌握其性质是解决此题的关键.20. 某快递公司的快递件分为甲类件和乙类件,快递员送甲类件每件收入1元,送乙类件每件收入2元.累计工作1小时,只送甲类件,最多可送30件,只送乙类件,最多可送10件;累计工作2小时,只送甲类件,最多可送55件,只送乙类件,最多可送20件;…,经整理形成统计表如表:累计工作时长最多件数(时)种类(件)12345678甲类件305580100115125135145乙类件1020304050607080(1)如果快递员一天工作8小时,且只送某一类件,那么他一天的最大收入为_____元;180EFC DEF ∠+∠=︒178DEF D EF ∠=∠=︒AD BC ∥180EFC DEF ∠+∠=︒102EFC ∠=︒18010278DEF ∠=︒-︒=︒ABCD AB 1D 178DEF D EF ∠=∠=︒1180787824AED ∠=︒-︒-︒=︒(2)如果快递员一天累计送x小时甲类件,y小时乙类件,且x+y=8,x,y均为正整数,那么他一天的最大收入为_____元.【答案】①. 160②. 180【解析】【分析】(1)根据表格数据得出答案即可;(2)根据x+y=8,x,y均为正整数,把所有收入可能都计算出,即可得出最大收入.【详解】解:(1)由统计表可知:如果该快递员一天工作8小时只送甲类件,则他的收入是1×145=145(元)如果该快递员一天工作8小时只送乙类件,则他的收入是2 × 80= 160 (元)∴他一天的最大收入是160元;(2)依题意可知:x和y均正整数,且x+y= 8①当x=1时,则y=7∴该快递员一天的收入是1 ×30+2×70=30+ 140= 170 (元);②当x=2时,则y=6∴该快递员-天的收入是1×55+2×60=55+120=175(元);③当x=3时,则y=5∴该快递员一天的收入是1× 80+2×50= 80+ 100= 180 (元);④当x=4时,则y=4∴该快递员一天的收入是1×100+2×40= 100+80 = 180 (元);⑤当x=5时,则y=3∴该快递员一天的收入是1×115+2×30=115十60 = 175 (元);⑥当x=6时,则y=2∴该快递员一天的收入是1 × 125+ 2× 20= 125+40 = 165 (元);⑦当x=7时,则y=1∴该快递员一天的收入是1×135+2×10=135+20= 155 (元)综上讨论可知:他一天的最大收入为180元.故填:160;180.【点睛】本题主要考查二元一次方程的应用,在给定的“x+y=8,x,y均为正整数”的条件下,分情况讨论出最大收入即可.三、解答题(共60分,第21-24题,每题3分,第25题5分,第26-27题,每题4分,第28题6分,第29-31题,每题5分,第32-33题7分)21. 解方程组【答案】【解析】【分析】利用加减消元法求解可得;【详解】解:,得∴把代入①,得∴所以,原方程组的解为【点睛】此题考查了解二元一次方程组,利用了消元的思想,解决本题的关键是要掌握消元的方法,即代入消元法与加减消元法.22. 解方程组:【答案】【解析】【分析】方程组整理后,方程组利用加减消元法求解即可.【详解】整理得,得,解得,将代入①得:342,328.x y x y +=⎧⎨-=⎩21x y =⎧⎨=-⎩342,328.x y x y +=⎧⎨-=⎩①②-①②66y =-1y =-1y =-()3412x +⨯-=2x =2,1.x y =⎧⎨=-⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩12x y =⎧⎨=⎩2,232 1.y x x y ⎧+=⎪⎨⎪-=-⎩24321x y x y +=⎧⎨-=-⎩①②2⨯+①②77x =1x =1x =214y ⨯+=∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,解题的关键是利用代入消元法或加减消元法消去一个未知数.23. 解不等式,并把解集在数轴上表示出来.【答案】,图见解析【解析】【分析】先去括号,再移项、合并同类项、最后系数化为1即可,再在数轴上把解集表示出来.【详解】解:去括号得,,去括号得,,合并同类项得,,系数化为1得,,解集在数轴上表示为:【点睛】本题考查了解一元一次不等式以及在数轴上表示不等式的解集,是基础知识要熟练掌握.24. 解不式组:并求出它的整数解.【答案】,整数解为3或4【解析】【分析】本题考查了解一元一次不等式组,不等式组的整数解.熟练掌握解一元一次不等式组,不等式组的整数解是解题的关键.先分别求出两个不等式的解集,进而可得不等式组的解集,最后求整数解即可.【详解】解:,,,12x y =⎧⎨=⎩()3157x x +-≤2x ≥-3357x x +-≤3573x x -≤-24x -≤2x ≥-()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩24x <≤()2241213x x x x ⎧-->⎪⎨+≥-⎪⎩()224x x -->224x x -+>,,,,解得,,∴不等式组的解集为,整数解为3或4.25. 完成下列计算,并在括号内填写推理依据.如图,,直线分别交、于点E 和点F ,过点E 作交直线于点G .若,计算的度数.解:∵,∴ ( ).∵,∴ ().∴ .【答案】;两直线平行,内错角相等;垂直定义;;;【解析】【分析】由平行线的性质得,由垂直的定义得,进而可求的度数.【详解】解:∵,∴(两直线平行,内错角相等).∵,∴(垂直定义).∴.1213x x +≥-()1231x x +≥-1233x x +≥-4x -≥-4x ≤24x <≤AB CD MN AB CD EG MN ⊥CD 60EGF ∠=︒MEB ∠AB CD 60EGF ︒=∠=EG MN ⊥90MEG ∠=︒MEB ∠=-906030=︒-︒=︒BEG ∠MEG ∠BEG ∠60BEG EGF ︒∠=∠=90MEG ∠=︒MEB ∠AB CD 60BEG EGF ︒∠=∠=EG MN ⊥90MEG ∠=︒906030MEB MEG BEG ︒︒︒∠=∠-∠=-=故答案为:;两直线平行,内错角相等;垂直定义;;.【点睛】本题考查了平行线的性质,垂直的定义,数形结合是解答本题的关键.26. 如图,在三角形中,平分,求的度数.【答案】【解析】【分析】根据平行线的性质可得,根据角平分线的性质可得,则,最后根据三角形的一个外角定于与它不相邻两个内角之和,即可解答.【详解】解:∵,∴,∵平分,∴,∴,∵,∴.【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形的外角定理,解题的关键是掌握两直线平行,内错角相等;三角形的一个外角定于与它不相邻两个内角之和.27. 如图,点B 、C 在线段异侧,E 、F 分别是线段、上的点,和分别交于点G 和点H .已知,,.求证:.BEG ∠MEG ∠BEG ∠ABC CD ,,80ACB DE BC AED ∠∠=︒∥EDC ∠40︒BCD EDC ∠=∠ECD BCD ∠=∠ECD EDC ∠=∠DE BC ∥BCD EDC ∠=∠CD ACB ∠ECD BCD ∠=∠ECD EDC ∠=∠80AED ∠=︒180402EDC ∠=⨯︒=︒AD AB CD EC BF AD AEG AGE ∠=∠DGC C ∠=∠180BEC BFD ∠+∠=︒EC BF ∥【答案】见解析【解析】【分析】先证明出,从而得到,得到,再根据条件,得出,再根据平行线的判定求解即可.【详解】证明:证明:∵,,又∵∴,∴∴∵∴∴.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.28. 围棋,起源于中国,古代称为“弈”,是棋类鼻祖,距今已有4000多年的历史.某商家销售A 、B 两种材质的围棋,每套进价分别为200元、170元,下表是近两个月的销售情况:销售数量销售时段A 种材质B 种材质销售收入第一个月3套5套1800元第二个月4套10套3100元(1)求A 、B 两种材质的围棋每套的售价.(2)若商家准备用不多于5400元的金额再采购A 、B 两种材质的围棋共30套,求A 种材质的围棋最多能采购多少套?(3)在(2)的条件下,商店销售完这30套围棋能否实现利润为1300元的目标?请说明理由.【答案】(1)A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;(2)A 种材质的围棋最多能采购10套;(3)商店销售完这30套围棋能实现利润为1300元的目标;理由见解析.【解析】AEG C ∠=∠AB CD ∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD ∠=∠AEG AGE ∠=∠DGC C ∠=∠DGC AGE∠=∠AEG C ∠=∠AB CD∥180BEC C ∠+∠=︒180BEC BFD ∠+∠=︒C BFD∠=∠EC BF ∥【分析】(1)设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,根据表格中的销量和收入列方程组求解即可;(2)设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,根据“用不多于5400元的金额再采购A 、B 两种材质的围棋共30套”列不等式求解即可;(3)设销售利润为w ,根据题意列出一次函数解析式,然后利用一次函数的性质求解.【小问1详解】解:设A 种材质的围棋每套的售价为x 元,B 种材质的围棋每套的售价为y 元,由题意得:,解得:,答:A 种材质的围棋每套的售价为250元,B 种材质的围棋每套的售价为210元;【小问2详解】解:设A 种材质的围棋采购a 套,则B 种材质的围棋采购套,由题意得:,解得:,所以a 的最大值为10,答:A 种材质的围棋最多能采购10套;【小问3详解】解:商店销售完这30套围棋能实现利润为1300元的目标;理由:设销售利润为w ,由题意得:,∵,∴w 随a 的增大而增大,∵a 的最大值为10,∴当时,w 取最大值1300,即商店销售完这30套围棋能实现利润为1300元的目标.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用以及一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列出方程组、不等式以及一次函数解析()30a -3518004103100x y x y +=⎧⎨+=⎩250210x y =⎧⎨=⎩()30a -()200170305400a a +-≤10a ≤()()()25020021017030101200w a a a =-+--=+100>10a =式.29. 已知:如图,点D 在线段上,过点D 作交线段于点E ,连接,过点D 作于点F ,过点F 作交线段于点G .(1)依题意补全图形;(2)用等式表示与的数量关系,并证明.【答案】(1)见解析;(2),证明见解析.【解析】【分析】(1)根据题意画出图形即可;(2)根据平行线的性质得出,,等量代换得出,根据,可知,进而可得出结论.【小问1详解】解:图形如下:【小问2详解】解:,证明:∵,∴,∵,∴,∴,∵,∴,∴,AB DE BC ∥AC CD DF BC ⊥FG CD ∥AB CDE ∠DFG ∠90CDE DFG ∠+∠=︒12∠=∠23∠∠=13∠=∠DF BC ⊥3490∠+∠=°90CDE DFG ∠+∠=︒DE BC ∥12∠=∠CD FG ∥23∠∠=13∠=∠DF BC ⊥3490∠+∠=°1490∠+∠=︒即.【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.30. 解答题:解方程组时,由于,的系数及常数项的数值较大,如果用常规的代入消元法、加减消元法来解,不仅计算量大,而且易出现运算错误,而采用下面的解法则比较简单:①②得,所以③,③①得,解得,从而,所以原方程组的解是.请你运用上述方法解方程组:.【答案】【解析】【分析】仿照例子,利用加减消元法可解方程组求解.【详解】解:,得:,∴③,③①得:,解得:,将代入③得:,∴原方程组的解为.90CDE DFG ∠+∠=︒323538303336x y x y +=⎧⎨+=⎩①②x y -222x y +=1x y +=35⨯-33x =-=1x -2y =12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩12x y =-⎧⎨=⎩201620182020201920212023x y x y +=⎧⎨+=⎩①②-②①333x y +=1x y +=2018⨯-22x =-=1x -=1x -2y =12x y =-⎧⎨=⎩【点睛】本题主要考查二元一次方程组解法,解二元一次方程组由代入消元法和加减消元法.31. 先阅读绝对值不等式和的解法,再解答问题:①因为,从数轴上(如图1)可以看出只有大于而小于6的数的绝对值小于6,所以的解集为.②因为,从数轴上(如图2)可以看出只有小于的数和大于6的数的绝对值大于6,所以的解集为或.(1)的解集为_________,的解集为_________;(2)已知关于x ,y 的二元一次方程组的解满足,其中m 是负整数,求m 的值.【答案】(1),或(2)【解析】【分析】本题考查了绝对值的意义,不等式组的解集,加减消元法解二元一次方程组等知识.理解题意是解题的关键.(1)根据题意求解集即可;(2)加减消元法解二元一次方程组得,由题意知,,即,,可求,然后作答即可.【小问1详解】解:由题意知,的解集为,的解集为或;故答案为:,或;【小问2详解】解:,的||6x <||6x >||6x <6-||6x <66x -<<||6x >6-||6x >6x <-6x >||2x <||5x >254482x y m x y m -=+⎧⎨+=-+⎩||3x y +≤22x -<<5x <-5x >1-42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩472333m m +-≤23m -≤323m -≤-≤15m -≤≤||2x <22x -<<||5x >5x <-5x >22x -<<5x <-5x >254482x y m x y m -=+⎧⎨+=-+⎩①②得,,解得,,将代入①得,,解得,,∴,∵,∴,即,∴,解得,,∵m 是负整数,∴m 的值为.32. 已知:如图,直线,点A 、B 在直线a 上(点A 在点B 左侧),点C 、D 在直线b 上(点C 在点D 左侧),和相交于点E .(1)求证:;(2)分别作和的角平分线相交于点F .① 结合题意,补全图形;② 用等式表示和的数量关系,并证明.【答案】(1)见解析(2)①见解析;②;见解析【解析】【分析】(1) 过点E 作,证明 ,,可得,从而可得答案;2⨯-②①921y m =-73y m =-73y m =-72543x m m ⎛⎫--=+ ⎪⎝⎭423x m =+42373x m y m ⎧=+⎪⎪⎨⎪=-⎪⎩||3x y +≤472333m m +-≤23m -≤323m -≤-≤15m -≤≤1-a b ∥AD BC BED BAD BCD ∠=∠+∠BAD ∠BCD ∠AFC ∠BED ∠12AFC BED ∠=∠EM AB ∥BAD AEM ∠=∠BCD MEC ∠=∠AEC BAD BCD ∠=∠+∠(2)①根据题意补全图形即可;②过点F 作,可得 ,证明,可得,结合、分别平分和,可得,结合,从而可得答案.【小问1详解】过点E 作,∴ ,∵,∴,∴,∵,∴,∵,∴.【小问2详解】①补全图形如图所示:②;证明:过点F 作,∴∵,∴,FN AB ∥AFN BAF ∠=∠NFC FCD ∠=∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠EM AB ∥BAD AEM ∠=∠AB CD ∥EM CD ∥BCD MEC ∠=∠AEC AEM MEC ∠=∠+∠AEC BAD BCD ∠=∠+∠AEC BED ∠=∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠FN AB ∥AFN BAF ∠=∠AB CD ∥FN CD ∥∴,∵,∴,∵、分别平分和,∴,∵,∴.【点睛】本题考查的是平行公理的应用,平行线的性质,角平分线的定义,熟练的利用平行线的性质进行证明是解本题的关键.33. 给出如下定义:如果一个未知数的值使得方程和不等式(组)同时成立,那么这个未知数的值称为该方程与不等式(组)的“关联解”.例如:已知方程和不等式,对于未知数,当时,使得,同时成立,则称是方程与不等式 的“关联解”.(1)判断是否是方程与不等式的“关联解”_____(填是或否);判断是方程与不等式(组)①,②,③中_______的“关联解”;(只填序号)(2)如果是关于的方程与关于的不等式组的“关联解”,那么____,的取值范围是_______;(3)如果是关于方程与关于的不等式组的“关联解”,求的取值范围.【答案】(1)否;①;(2);;(3).【解析】的NFC FCD ∠=∠AFC AFN NFC ∠=∠+∠AFC BAF FCD ∠=∠+∠AF CF BAD ∠BCD ∠()12AFC BAD BCD ∠=∠+∠BED BAD BCD ∠=∠+∠12AFC BED ∠=∠321x -=40x +>x 1x =3121⨯-=41450x +=+=>1x =321x -=40x +>3x =260x -=()234x +<=1x -231x +=1322x -<132x ->2050x x ->⎧⎨-<⎩2x =x 20x a -=x ()11212x x a b +⎧>-⎪⎨⎪+-≤⎩=a b x m =x 24x n -=x 121n m x m n x ⎧-+>-⎪⎨⎪-->-⎩m 4a =3b ≥-36m <<【分析】(1)根据“关联解”的定义求解即可;(2)根据“关联解”的定义,将代入方程即可求出,再解不等式得:,即可得出答案;(3)根据“关联解”的定义得出不等式组,求解即可【小问1详解】解:当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,成立,则是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式 的“关联解”;当时,使得成立,不成立,则不是方程与不等式组 的“关联解”;故答案为:否;①;【小问2详解】解:根据题意可得:,解得:,不等式组解不等式得:,即,解得:;故答案为:;;【小问3详解】2x =4a =②8122b +-≥4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩3x =2360⨯-=()2334+<3x =260x -=()234x +<=1x -()2131⨯-+=13122--<=1x -231x +=1322x -<=1x -()2131⨯-+=1132-->=1x -231x +=132x ->=1x -()2131⨯-+=120150-->⎧⎨--<⎩=1x -231x +=2050x x ->⎧⎨-<⎩220a ⨯-=4a =()11212x x a b +⎧>-⎪⎨⎪+-≤⎩①②②212b a x +-≤8122b +-≥3b ≥-4a =3b ≥-解:根据题意可得:,∴,不等式组为,化简得:,解不等式组得:.【点睛】本题考查解一元一次不等式组,方程的解,正确理解新定义是解题的关键.24m n -=42-=m n 4122412m m m m m m -⎧-+>-⎪⎪⎨-⎪-->-⎪⎩4122412m m -⎧>-⎪⎪⎨-⎪>-⎪⎩36m <<。
北京市北京师范大学附属实验中学2023-2024学年七年级下学期期中数学试题(解析版)
北师大实验中学2023—2024学年度第二学期初一年级数学期中考试试卷试卷说明:1.本试卷考试时间为100分钟,总分数为120分.2.本试卷共8页,四道大题,31道小题.3.请将答案都写在答题纸上.4.一律不得使用涂改液及涂改带,本试卷主观试题铅笔答题无效.5.注意保持卷面整洁,书写工整.A 卷一、选择题(本大题共10道小题,每小题3分,共30分)1. 5的平方根是()A. 25B. C. D. 【答案】C【解析】【分析】本题考查平方根的定义,关键在于牢记定义,注意平方根与算术平方根的区别.根据平方根定义求出即可.解:5的平方根是故选:C .2. 在平面直角坐标系中,点在第()象限.A. 一B. 二C. 三D. 四【答案】D【解析】【分析】本题考查判断点所在的象限.熟练掌握象限内点的符号特征,第一象限,第二象限,第三象限,第四象限,是解题的关键.根据象限内点的符号特征,进行判断即可.解:∵,∴点在第四象限,故选D .()2,4-(),++(),-+(),--(),+-20,40>-<()2,4A -3. 下列命题中,错误的是()A. 若,则B. 若且,则C. 若且,则D. 若,则【答案】D【解析】【分析】本题考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质判断即可.解:对于A 选项,若,则,正确,不符合题意;对于B 选项,若且,则,正确,不符合题意;对于C 选项,若且,则,正确,不符合题意;对于D 选项,当,,,则,错误,符合题意;故选D .4. 如图,直线直线,与相等的角是()A. B. C. D. 【答案】A【解析】【分析】本题考查了平行线的性质,对顶角相等,由,得到,又因为,所以,掌握平行线的性质是解题的关键.解:∵,∴,∵,∴,故选:A .5. 北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道a b >a c b c->-a b >0c ≠22ac bc >a b >0c <ac bc<a b >22a b >a b >a c b c ->-a b >0c ≠22ac bc >a b >0c <ac bc <1a =-2b =-a b >22a b <a ∥b 1∠3∠5∠7∠8∠a b ∥21∠=∠23∠∠=31∠=∠a b ∥21∠=∠23∠∠=31∠=∠AB在点O 的南偏东的方向上,则点A 在点B 的()的方向上.A. 南偏东B. 南偏西C. 北偏西D. 北偏东【答案】C【解析】【分析】本题考查方位角的定义,熟练掌握方位角的定义是解题的关键.根据方位角的定义解答即可.解:在点O 的南偏东的方向上,点A 在点B 的北偏西的方向上,故选C .6. 若是关于、的方程组的解,则有序数对是()A. B. C. D. 【答案】A【解析】【分析】本题考查了二元一次方程组的解和解二元一次方程组,把代入原方程组,得到关于、的方程组,解方程组即可.解题关键是明确方程解的概念,熟练的解二元一次方程组.】解:把代入方程得:,解得:,故选:A .7. 下列说法中,正确的是()A. 同旁内角相等,两直线平行B. 直线外一点到这条直线的垂线段的长度,叫做点到直线的距离C.如果两个角互补,那么这两个角互为邻补角70︒70︒70︒70︒70︒AB 70︒∴70︒11x y =⎧⎨=-⎩x y 221ax by bx ay +=-⎧⎨-=⎩(),a b ()1,1-()1,1-()2,2-()2,2-11x y =⎧⎨=-⎩a b 11x y =⎧⎨=-⎩221a b b a -=-⎧⎨+=⎩11a b =-⎧⎨=⎩D. 过一点有且只有一条直线与已知直线平行【答案】B【解析】【分析】本题考查平行公理,点到直线的距离,邻补角的定义,平行线的判定,熟练掌握有关定理是解题的关键.根据平行公理,点到直线的距离,邻补角的定义,平行线的判定逐一分析即可.解:A 、同旁内角互补,两直线平行,原说法错误,不符合题意;B 、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,正确,符合题意;C 、如果两个角互补,那么这两个角互为邻补角,错误,不符合题意;D 、平面内,过一点有且只有一条直线与已知直线垂直,原说法错误,不符合题意;故选:B .8. 不等式组的解集为,则的取值范围是()A. B. C. D. 【答案】C【解析】【分析】根据不等式组的解集“大大取大”的原则确定a 的取值范围解:由题意可得故选:C .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9. 某种商品的进价为500元,标价为750元,商店要求以利润率不低于的售价打折出售.设商店在标价的基础上打x 折出售商品,那么x 满足的条件是()A. B. C. D. 【答案】B【解析】【分析】本题考查一元一次不等式的应用,读懂题意是解题关键.根据题意列出不等式即可.2x x a>⎧⎨>⎩2x >a 2a >2a <2a ≤2a ≥2a ≤5%7505005%10x ⋅⨯≥()75050015%10x ⋅⨯+≥7505005%10x ⋅⨯≤()75050015%10x ⋅⨯+≤解:根据题意可得:,故选B .10. 在平面直角坐标系中,对于点,若点Q 的坐标为,则称点Q 为点P 的“单向2倍点”.例如:点的“单向2倍点”为.如图,正方形四个顶点分别为、、、,则正方形的边上及内部所有点的“单向2倍点”组成的图形是( )A. B.C. D.【答案】C【解析】【分析】本题考查新定义单向2倍点,理解单向2倍点的定义是解题的关键.根据单向2倍点的定义分别找出正方形四个顶点的单向2倍点即可得出答案.解:正方形四个顶点分别为、、、,()75050015%10x ⋅⨯+≥(),P x y ()()()()2,,,2,x y x y x y x y ⎧≥⎪⎨<⎪⎩()3,5-()3,10-ABCD ()1,1A ()1,1B -()1,1C --()1,1D -ABCD ABCD ABCD ()1,1A ()1,1B -()1,1C --()1,1D -的单向2倍点为,的单向2倍点为,的单向2倍点为,的单向2倍点为,故正方形的边上及内部所有点的“单向2倍点”组成的图形为:故选C .二、填空题(本大题共10道小题,每小题2分,共20分)11. 写出一个2到3之间的无理数______.【解析】无理数是无限不循环小数,本题答案不唯一,只要在2到3.故答案为(答案不唯一,符合要求即可).12.,则_______.【答案】【解析】【分析】本题考查算术平方根的非负性,结合已知条件求得的值是解题的关键.根据算术平方根的非负性确定的值,再将其代入中计算即可.,,解得:,则,故答案为:.13. 能说明“如果,那么”是假命题的反例是:____,____.【答案】 ①. ; ②. .()1,1A ∴()2,1()1,1B -()2,1-()1,1C --()2,1--()1,1D -()2,1-ABCD 0+=a b +=1-,a b ,a b a b +0=30,20a b ∴+=-=3,2a b =-=321a b +=-+=-1-a b >a b >=a b =1-0【解析】【分析】本题考查了举反例,举一组例子说明时有即可求解,掌握举反例的定义是解题的关键.解:要说明“如果,那么”是假命题,只需要举一组例子说明时有就可以,当,时,有,但,∴,是假命题的反例,故答案为:;.14. 图中用五角星标记了北京师范大学附属实验中学本校、国际部、初二校区、初三校区的旗杆的位置.如果初二校区旗杆的坐标为,国际部旗杆的坐标为,那么初三校区旗杆的坐标是_______.【答案】【解析】【分析】本题考查了坐标确定位置,确定出坐标原点的位置是解题的关键.根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,然后找出初三校区旗杆的坐标即可.解:根据初二校区旗杆的坐标为,国际部旗杆的坐标为,建立平面直角坐标系,如图所示:的a b <a b >a b >a b >a b <a b >1a =0b =a b >a b <1a =0b =1-0()4,9-()0,14-()11,16-()4,9-()0,14-()4,9-()0,14-由图可得初三校区旗杆的坐标为,故答案为:.15.________.【答案】【解析】【分析】本题考查了当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的移动一位,熟练掌握此知识点是解题的关键.根据当被开方数的小数点每移动两位,那么其算术平方根的小数点也相应的值.解:,.故答案为:.16. 在平面直角坐标系中,点在x 轴上,则m 的值为____.【答案】2【解析】【分析】根据平面直角坐标系中的点在x 轴的特点纵坐标为0来求解.解:∵点在x 轴上,∴,()11,16-()11,16- 3.606≈11.40≈≈36.063.606≈36.06=≈36.06()3,2A m m +-()3,2A m m +-20m -=故答案为:2.【点睛】本题主要考查了在坐标上点的坐标特征,理解点在坐标轴上的坐标特征是解答关键.17. 如图,已知OA ⊥OB ,,BOC =40°,OD 平分AOC ,则BOD =________.【答案】25°【解析】【分析】根据题意:因为OD 平分∠AOC ,可以先求∠AOC ,再求∠COD ,利用角和差关系求∠BOD 的度数.解:∵OA ⊥OB ,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =130°,∵OD 平分∠AOC ,∴∠AOD =∠AOC ÷2=65°,∴∠BOD =∠AOB -∠AOD =25°.故答案为:25°.【点睛】本题主要考查了垂线和角平分线的定义,难度较小.18. 光从一种透明介质斜射入另一种透明介质时,传播方向一般会发生改变.如图,两束平行的光线从烧杯底部斜射入水面,然后折射到空气中,由于折射率相同,射入空气后的两束光线也平行.若,,则________°,________°.【答案】①. 45 ②. 58【解析】【分析】本题考查了平行线的判定与性质、同位角以及同旁内角,解题的关键是:①能够找出一个角的同位角以及同旁内角;②熟悉各平行线的性质.根据平行线的性质即可求解.的∠∠∠145∠=︒2122∠=︒3∠=6∠=∵,∴,∵,∴,∴,∵,∴,故答案为:45;58.19. 在平面直角坐标系中,点的坐标为,轴,且,则点的坐标为_______.【答案】或【解析】【分析】此题考查坐标与图形,在平面直角坐标系中与轴平行,则它上面的点纵坐标相同,可求点纵坐标;与轴平行,相当于点左右平移,可求点横坐标,掌握平面直角坐标系内点的坐标特定,利用数形结合和分类讨论思想解题是关键.解:轴,点纵坐标与点纵坐标相同,为1,,当点位于点右侧时,点的横坐标为;当点位于点的左侧时,点的横坐标为,点坐标为或.故答案为:或.20. 在平面直角坐标系中,一个动点从原点出发移动:当其所在位置横、纵坐标之和是3的倍数时就向右平移一个单位长度;当其所在位置的横、纵坐标之和除以3余1时就向上平移一个单位长度;当其所在位的,145∠=︒AC BD ∥3145∠=∠=︒CD EF ∥25180+=︒∠∠518012258∠=︒-︒=︒CE DF ∥6558∠=∠=︒A ()2,1-AB x 3AB =B ()5,1-()1,1x B x A B AB x ∴B A 3AB = ∴B A B 231-+=B A B 235--=-B ∴()5,1-()1,1()5,1-()1,1置的横、纵坐标之和除以3余2时就向下平移两个单位长度.即起点坐标为,第一次平移到,第二次平移到,第三次平移到,……,这个动点第2024次平移到_______.【答案】【解析】【分析】本题考查点的坐标规律问题,熟练找到点的坐标规律是解题的关键.根据题意找出点的坐标规律即可得出答案.解:第一次平移到,第二次平移到,第三次平移到,第四次平移到,第五次平移到,第六次平移到,第七次平移到,第八次平移到,第九次平移到,……,由此可得每三次得到一个循环,,第2024次平移到,故答案为:.三、解答题(本大题共50分,第21、22题各8分,第23题5分,第24题7分,第25、26题各4分,第27、28题各7分)21. (1;(2)解方程组:.【答案】(1)2)【解析】【分析】(1)先计算算术平方根、立方根及绝对值,再进行实数的混合运算即可;(2)利用加减消元法解二元一次方程组即可.本题考查实数的混合运算、算术平方根、立方根、绝对值及解二元一次方程组,熟练掌握运算法则是解题的关键.(1)解:原式;()0,0()1,0()1,1()1,1-()675,673-()1,0()1,1()1,1-()2,1-()2,0()2,2-()3,2-()3,1-()3,3-202436742÷= ∴()675,673-()675,673-3-243213x y x y +=⎧⎨-=⎩232x y =⎧⎨=-⎩)4343=-++2=+(2)解:,得:,解得,把代入①,得:,解得,∴原方程组的解为.22. (1)解不等式,并在数轴上表示解集;(2)求不等式组的整数解.【答案】(1),在数轴上表示解集见解析;(2)整数解为【解析】【分析】本题考查解一元一次不等式及不等式组,在数轴上表示不等式的解集,不等式的整数解.(1)根据解一元一次不等式的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行求解,再在数轴上表示解集即可;(2)先分别求出各个不等式的解集,它们的公共部分即为不等式组的解集,进而可得整数解.(1)解:去分母,得,去括号,得,移项并合并同类项,得,系数化为1,得,该不等式的解集在数轴上表示为:(2)解:解不等式①得:,243213x y x y +=⎧⎨-=⎩①②2⨯+①②721x =3x =3x =234y ⨯+==2y -32x y =⎧⎨=-⎩131124x x -+->-()3434242x x x x +≤+⎧⎨-<+⎩1x <3,2,1,0,1x =---131124x x -+->-()()21314x x --+>-22314x x --->-1x ->-1x <()3434242x x x x +≤+⎧⎪⎨-<+⎪⎩①②1x ≤解不等式②得:,把不等式①和②的解集在数轴上表示为∴原不等式组的解集为.又∵整数,∴.23. 如图,点在的边上,按要求作图并回答问题:(1)过点作边的垂线;(2)过点作边的垂线段;(3)过点作的平行线交直线于点;(4)比较、、三条线段的长度,并用“>”连接:__________,得此结论的依据是_____________.【答案】(1)见解析(2)见解析(3)见解析(4);垂线段最短【解析】【分析】该题主要考查了-基本作图,垂线,平行线的判定,以及线段比较大小,解题的关键是理解题意.(1)根据题意作图即可;(2)根据题意作图即可;(3)根据题意作图即可;(4)根据垂线段最短判断即可;【小问1】如图,垂线即为所求;是103x >-1013x -<≤x 3,2,1,0,1x =---B MAN ∠AM B AM B AN BC A BC D AB BC AD AD AB BC >>【小问2】如图,线段即为所求;【小问3】如图,即为所求;【小问4】根据图象即可得出:;得此结论的依据是:垂线段最短.24. 已知:如图,,,平分,,,求的大小.解:,,.,,.又,,.平分,.【答案】;两直线平行,内错角相等;;平行于同一直线的两直线平行;;;BC AD AD AB BC >>AB CD AB EF ∥EG BED ∠45B ∠=︒30D ∠=︒GEF ∠AB EF ∥45B ∠=︒()45B ∴∠=∠=︒①②∥ AB CD AB EF ∥()∴③④30D ∠=︒ 30DEF D ∴∠=∠=︒BED BEF DEF ∴∠=∠+∠=︒⑤EG BED ∠12DEG BED ∴∠=∠=︒⑥GEF DEG DEF ∴∠=∠-∠=︒⑦BEF ①②EF CD ③④75⑤37.5⑥7.5⑦【解析】【分析】本题考查了平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.先根据两直线平行,内错角相等得出,再根据平行于同一直线的两直线平行得出,最后根据角平分线的定义和角的等量关系即可得出答案.解:,,(两直线平行,内错角相等),,,(平行于同一直线的两直线平行),又,,.平分,..25. 如图,在平面直角坐标系中,三角形的三个顶点的坐标分别为,,.将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,其中点,,分别为点,,的对应点.(1)请在所给坐标系中画出三角形,点的坐标为_______;(2)若边上一点经过上述平移后的对应点为,则点的坐标为_______;(用含、的式子表示)(3)三角形的面积是_______.45BEF B ∠=∠=︒EF CD AB EF ∥45B ∠=︒45BEF B ∴∠=∠=︒∥ AB CD AB EF ∥EF CD ∴ 30D ∠=︒ 30DEF D ∴∠=∠=︒75BED BEF DEF ∴∠=∠+∠=︒EG BED ∠137.52DEG BED ∴∠=∠=︒7.5GEF DEG DEF ∴∠=∠-∠=︒ABC ()5,1A -()1,5B -()1,1C --ABC A B C '''A 'B 'C 'A B C A B C '''C 'AB (),P x y P 'P 'x y ABC【答案】(1)画图见解析,(2)(3)12【解析】【分析】本题主要考查了坐标与图形变化—平移,坐标与图形:(1)根据所给的平移方式确定A 、B 、C 对应点的坐标,在坐标系中描出,再顺次连接即可;(2)根据“上加下减,左减右加”的平移规律求解即可;(3)根据三角形面积计算公式结合网格的特点进行求解即可.【小问1】解:如图所示,即为所求,∴点的坐标为;【小问2】解:∵将三角形向右平移5个单位长度,再向下平移4个单位长度,得到三角形,边上一点经过上述平移后的对应点为,∴点的坐标为,故答案为:;【小问3】解:.26. 已知:如图,,,.求证:.()45-,()5,4x y +-A B C '''、、A B C '''、、A B C '''、、A B C ''' C '()45-,ABC A B C '''AB (),P x y P 'P '()5,4x y +-()5,4x y +-164122ABC S =⨯⨯= AB CD 12∠=∠34∠∠=AD BE【答案】见解析【解析】【分析】本题考查了平行线的性质和判定的应用,根据平行线的性质求出,求出,推出,根据平行线的判定推出即可.注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.证明:∵,∴,∵,∴,即,∴,∵,∴,∴.27. 列方程(组)或不等式(组)解应用题:为了更好地治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A 、B 两种型号的设备,其中每台设备的价格、月处理污水量如下表:A 型型价格(万元/台)处理污水量(吨/月)240200经调查:购买一台A 型设备比购买一台型设备多2万元,购买2台A 型设备比购买3台型设备少6万元.(1)求、的值;(2)如果每月要求处理流溪河两岸污水量不低于2040吨,并且市治污公司购买污水处理设备的资金不超过105万元,求该公司最省钱的设备购买方案.43BAF ∠=∠=∠DAC BAF ∠=∠3CAD ∠=∠AB CD 4BAE ∠=∠12∠=∠12CAE CAE ∠+∠=∠+∠BAE DAC ∠=∠4DAC ∠=∠34∠∠=3DAC ∠=∠AD BE B a b B B a b【答案】(1)(2)选择购买型设备1台、型设备9台最省钱【解析】【分析】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系,同时要注意分类讨论思想的运用.(1)根据“购买一台型设备比购买一台型设备多2万元,购买2台型设备比购买3台型设备少6万元”即可列出方程组,继而进行求解;(2)因为每月要求处理流溪河两岸的污水量不低于2040吨,可列不等式,再根据市治污公司购买污水处理设备的资金不超过105万元,列不等式,解不等式组即可由的值确定方案,然后进行比较,作出选择.【小问1】解:根据题意,得:,解得;【小问2】解:设公司购买型设备台.根据题意,得:,解得∴公司可购买型设备1台、型设备9台或型设备2台、型设备8台.∵型设备比型设备贵,∴型设备应尽量少购买,故选择购买型设备1台、型设备9台最省钱.28. 将两副三角板、按图1方式摆放,其中,,,、分别在直线、上,直线.(1)从图1的位置开始,保持三角板不动,将三角板绕点以每秒的速度顺时针旋转(如图2,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.1210a b =⎧⎨=⎩A B A B A B x 2326a b b a -=⎧⎨-=⎩1210a b =⎧⎨=⎩A x ()()240200102040121010105x x x x ⎧+-≥⎪⎨+-≤⎪⎩512x ≤≤A B A B A B A A B ABC DEF 90EDF ACB ∠=∠=︒45E ∠=︒30BAC ∠=︒AB DF GH MN GH MN ABC DEF D 2︒0180t ≤≤①当边与边平行时,_______;②当边与边平行时,求所有满足条件的的值.(2)从图1的位置开始,将三角板绕点以每秒的速度顺时针旋转,同时三角板绕点以每秒的速度顺时针旋转(如图3,运动过程中,三角板任意两边所在直线均不重合).设旋转时间为秒,且.当与垂直时,______.【答案】(1)①15或105;②或172.5(2)165【解析】【分析】(1)①延长交于点P ,则,然后根据平行线的性质求出旋转角,然后计算时间即可;②延长交于点,过点作,则,然后根据平行线的性质求出旋转角,然后计算时间即可;(2)由旋转可得,,设于点P ,过P 点作,过点E 作,即可得到,计算得到,然后根据解题即可.【小问1】①解:延长交于点P ,则,当时,如图,则,∴;如图,,∴旋转角为,即旋转时间为;DF AC t =EF BC ABC A 1︒DEF D 2︒0180t ≤≤AC EF t =82.5t =AC MN 30APM BAC ∠=∠=︒BC MN P D DQ BC 60BPN ABP ∠=∠=︒180BAG t ∠=︒-︒3602MDF t ∠=︒-︒CA EF ⊥PQ GH ET MN PQ GH ET MN 4052240PET t QPF t ∠=︒-︒∠=︒-︒,PET QPF ∠=∠AC MN 30APM BAC ∠=∠=︒DF AC 30FDM APD ∠=∠=︒3015s 2t ==30FDM APD ∠=∠=︒18030210︒+︒=︒210105s 2t ==故答案为:或;②如图,延长交于点,过点作,∵,∴,∵,∴,∴,,∴,∴旋转时间为;如图,由上题解答可得:,,∴∴旋转角度为,时间为;综上所述,当或时,边与边平行;【小问2】15105BC MN P D DQ BC GH MN 60BPN ABP ∠=∠=︒BC EF DH BC EF 180********MDQ BPN ∠=︒-∠=︒-︒=︒45QDF F ∠=∠=︒12045165MDF MDQ QDF ∠=∠+∠=︒+︒=︒16582.5s 2t ==60MDQ BPN ∠=∠=︒45QDF F ∠=∠=︒604515MDF MDQ QDF ∠=∠-∠=︒-︒=︒,36015345︒-︒=︒345172.5s 2t ==82.5s t =172.5s t =EF BC如图,由旋转可得:,,∴,,设于点P ,过P 点作,过点E 作,∵,∴,∴,,∴∵,∴,∴,∵,∴,解得:,故答案为:.【点睛】本题考查平行线的性质,解决本题的关键是掌握平行线的性质、添加恰当的辅助线、采用分类讨论的思想解决问题.B 卷四、填空题(本卷共20分,第29、30题每题6分,第31题8分)29. (1)关于的不等式有________个整数解;(2)若关于的不等式组(为常数,且为整数)恰有5个整数解,则的取值为180BAG t ∠=︒-︒3602MDF t ∠=︒-︒()30180t 150CAG CAB BAG t ∠=∠-∠=︒-︒-︒=︒-︒()909036022270EDM MDF t t ∠=︒-∠=︒-︒-︒=︒-︒CA EF ⊥PQ GH ET MN GH MN PQ GH ET MN 150CAG APQ t ∠=∠=︒-︒QPE PET ∠=∠2270TED EDM t ∠=∠=︒-︒,()1801804522704052PET FED TED t t ∠=︒-∠-∠=︒-︒-︒-︒=︒-︒,CA EF ⊥90CPF ∠=︒()9090150240QPF CPQ t t ∠=︒-∠=︒-︒-︒=︒-︒QPE PET ∠=∠2404052t t ︒-︒=︒-︒165t =165x 23x -<<x 4223x k k x x k-<+⎧⎨<-⎩k k________;(3)若关于的不等式(和为常数,且为整数)恰有6个整数解,则共有________组满足题意的和.【答案】①. 4 ②. 2 ③. 4【解析】【分析】本题考查了一元一次不等式,不等式组的整数解问题,解一元一次方程,正确理解题意,熟练掌握知识点是解题的关键.(1)直接找出的范围内的整数即可;(2)先求出不等式组的解集为,满足题意得,解方程即可;(3)由题意得:,化简得到,由于和为常数,且为整数,分类讨论即可.(1)解:在的范围内整数为,∴有4个,故答案为:4.(2)解:由①得:;由②得:,则不等式组的解集为:,∵方程组恰有5个整数解,∴,解得:,故答案为:2.(3)解:由题意得:,化简得:,∵和为常数,且为整数,∴只有或,∴有,∴有4组满足题意的和,x ()33k x a k <<+k a k a 23x -<<352k x k <<+5236k k +-=()337a k k +-=7ak =k a 23x -<<1,012-,,4223x k k x x k -<+⎧⎨<-⎩①②52x k <+3x k >352k x k <<+5236k k +-=2k =()337a k k +-=7ak =k a 177⨯=()()177-⨯-=1177,,,7711a a a a k k k k ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-==-⎩⎩⎩⎩k a故答案为:4.30. 定义“[ ]”是一种取整运算新符号,即表示不超过的最大整数.例如:,.(1)请计算:_______,_______;(2)若和满足方程,则当时,请直接写出的取值范围:________;(3)在平面直角坐标系中,如果坐标为的点都在第一象限,且满足,则所有符合条件的点所构成图形面积为_______.【答案】 ①. 1 ②. ③. ④. 4【解析】【分析】本题考查了取整函数的定义,根据定义正确列出不等式是解题的关键.(1)根据取整函数的定义即可求解;(2)根据取整函数的定义即可求解;(3)根据取整函数的定义即可求解.解:(1)的最大整数,,故;∵表示不超过的最大整数,故,故答案为:;(2),,,,,,故答案为:.(3)∵的点都在第一象限,[]a a []1.22-=-[]3π==[]3.14-=m n [][]1m n +=1n =-m (),p q [][]3p q +=(),p q 4-12m ≤<1.414≈1=[ 3.14]- 3.14-[ 3.14]4-=-1;4-[][]1,1+==Q m n n 12<<Q 011∴<<[]0∴=n []1[]1∴=-=m n 12m ∴≤<12m ≤<(),p q∴,又∵,都是整数,或或或,则所有符合条件的点所构成图形如图所示,故所有符合条件的点所构成图形面积.故答案为:4.31. 平面直角坐标系中,从点分别向轴、轴作垂线,两条垂线分别与坐标轴交于点,,与一、三象限角平分线交于,,则记点的长度差为,例如.(1)请直接写出:_____,______;(2)若点的长度差,则______;0,0p q >>[][]3p q +=[][],p q ∴[][]03p q ⎧=⎪⎨=⎪⎩[][]12p q ⎧=⎪⎨=⎪⎩[][]21p q ⎧=⎪⎨=⎪⎩[][]30p q ⎧=⎪⎨=⎪⎩(),p q (),p q 144=⨯=(),x y x y 1X 1Y 2X 2Y (),x y ()1212,x y d X X YY =-()1,2121d =-=()2,3d =()2,1d -=()3,m ()3,4m d =m =(3)若整点的长度差,且,,则所有满足条件的整点共有_____个.【答案】(1)1,1(2)(3)36【解析】【分析】本题考查了平面直角坐标系中坐标与图形性质,等腰直角三角形的性质,两点之间的距离,熟练掌握知识点是解题的关键.(1)先证明出,再根据新定义即可求解;(2)根据新定义得到,分类讨论解方程即可;(3)分类讨论,根据,且,这些范围,列举出所有的情况即可.【小问1】解:如图,∵直线是第一、三象限角平分线,∴,∵点向轴作垂线,∴,∴,∴,∴,∴,同理,故答案为:1,1.【小问2】(),p q (),2p q d ≥4p ≤4q ≤7±121X O X X =34m -=(),2p q d ≥4p ≤4q ≤2OX 2145X OX ∠=︒(),x y x 2190X X O ∠=︒21904545OX X ∠=︒-︒=︒2121X OX OX X ∠=∠121X O X X =()2,3231d =-=()2,1211d -=-=解:由题意得:,则或解得或(舍),∴,故答案为:.【小问3】解:当点P 在第一象限及坐标轴时,则,由得:,∴满足题意得点有,共12个;当点P 在第二象限及坐标轴时,则,由得:,∴满足题意的点有共9个;当个点P 在第三象限及坐标轴时,则由得:,∴满足题意的点有,共9个;当个点P 在第四象限及坐标轴时,则由得:,∴满足题意的有:共6个,∴共计36个,故答案为:36.34m -=34m -=34m -=-7m =1m =-7m =±7±04,04p q ≤≤≤≤(),2p q d ≥2p q -≥()()()()()()2,0,3,0,4,0,3,14,1,4,2()()()()()()0,2,0,3,0,4,1,31,4,2,440,04p q -≤≤≤≤(),2p q d ≥2p q -≥()()()()()()()()()2,0,3,0,4,0,3,14,1,4,2,2,4,1,3,1,4---------40,40p q -≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()()3,1,1,3,4,1,1,4,4,2,2,4,0,4-------------()()0,3,0,2--04,40p q ≤≤-≤≤(),2p q d ≥2p q -≥()()()()()()1,3,1,4,2,4,3,1,4,1,4,2--。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
2011-2012学年七年级下学期数学期中模拟试卷
1、下面四个图形中,∠1与∠2是对顶角的图形的个数是( )
A 、0
B 、1
C 、2
D 、3
2、如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=34°,则∠BED 的度数是( ) A .17° B .34° C .56° D .68°
3、将点P (﹣4,3)先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为( ) A 、(﹣2,5)
B 、(﹣6,1)
C 、(﹣6,5)
D 、(﹣2,1)
4、下列平面图形中,不能镶嵌平面的图形是( )
A .任意一种三角形
B .任意一种四边形
C .任意一种正五边形
D .任意一种正六边形 5、将一副直角三角尺如图放置,已知A
E ∥BC ,则∠AFD 的度数是( ) A .45° B .50° C .60° D .75°
第2题图 第5题图 第6题图
6、如图,在三角形纸片ABC 中,∠A=65°,∠B=75°,将纸片的一角折叠(折痕为DE ),使点C 落在△ABC 内的C ′处,若∠AEC ′=20°,则∠BDC ′的度数是( ) A .30° B .40° C .50° D .60°
7、在平面直角坐标系中,第二象限内有一点P ,且P 点到x 轴的距离是4,到y 轴的距离是5,则P 点坐标为 。
8、已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形有 个。
9、如图,直线AB 、CD 交于点O ,OT ⊥AB 于点O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT= 。
10、如图,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B 与∠C 互余,将AB ,CD 分别平移到EF 和EG 的位置,则△EFG 为 三角形,若AD=2cm ,BC=8cm ,则FG= cm .
第9题图 第10题图 第13题图
11、在直角坐标系中,若点P (a ,b )在第二象限,则点Q (1-a ,-b )在第 象限. 12、一个多边形内角和为1440°,则这个多边形共有 条对角线。
13、如图把一张长方形纸条ABCD 沿AF 折叠,已知∠ADB=15°,若AE ∥BD ,则∠EFC= . 14、已知三条不同的直线a 、b 、c 在同一平面内,下列四条命题: ①如果a ∥b ,a ⊥c ,那么b ⊥c ;②如果b ∥a ,c ∥a ,那么b ∥c ; ③如果b ⊥a ,c ⊥a ,那么b ⊥c ;④如果b ⊥a ,c ⊥a ,那么b ∥c . 其中真命题的是 .(填写所有真命题的序号) 15、如图,所有正方形的中心均在坐标原点,且各边与 x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6, 8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55 的坐标是 。
16、如图:∠A=27°,∠EFB=95°,∠B=38°,则∠D=_______.
17、(8分)如图AB ∥DE ,∠1=∠2,问AE 与DC 的位置关系,说明理由.
18、(8分)如图,在平面直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3.
(1)观察每次变换前后的三角形的变化规律,若将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是 _________ ,B 4的坐标是 _________ ;
(2)若按第(1)题找到的规律将△OAB 进行n 次变换,得到△OA n B n ,比较每次变换中三角形顶点坐标有何变化,找出规律,推测A n 的坐标是 _________ ,B n 的坐标是 _________ .
21、(8分)如图,AD 为△ABC 的中线,BE 为三角形ABD 中线, (1)∠ABE=15°,∠BAD=35°,求∠BED 的度数; (2)在△BED 中作BD 边上的高;
(3)若△ABC 的面积为60,BD=5,则点E 到BC 边的距离为多少?
22、(8分)如图:MN ∥HP ,直线L 交MN 于A ,交HP 于B ,点C 为线段AB 上一定点,点D 为直线HP 上一动点.
(1)当点D 在射线BH 上运动时(B 点除外),∠BCD+∠BDC 与∠MAB 有何数量关系?猜想出结论并说明理由;
(2)当点D 在射线BP 上运动时(B 点除外),∠BCD+∠BDC 与∠MAB 又有何数量关系?画出图形,猜想出结论(无需说明理由).
23、在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,1),(3,0),(2,2) (1)求△ABC 的面积;
(2)如果在第二象限内有一点P (a ,2),试用含a 的式子表示四边形ABOP 的面积; (3)在(2)的条件下是否存在点P ,使得四边形ABOP 的面积与△ABC 的面积相等?若存在,请求出点P 的坐标;若不存在,请说明理由.
24、(10分)如图1,线段AB 、CD 相交于点O ,连接AD 、CB ,我们把形如图1的图形称之为“8
字形”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N .试解答下列问题:
(1)在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: ; (2)仔细观察,在图2中“8字形”的个数: 个; (3)图2中,当∠D=50度,∠B=40度时,求∠P 的度数.
(4)图2中∠D 和∠B 为任意角时,其他条件不变,试问∠P 与∠D 、∠B 之间存在着怎样的数量关系.(直接写出结论即可)。