ATF36077中文资料

合集下载

振荡器的原理和设计方法

振荡器的原理和设计方法

振荡器的原理和设计方法分析和设计振荡器有两种常用的理论:正反馈理论和负阻振荡理论。

正反馈理论是将振荡器从电路上分为基本放大器和反馈网络两部分,从工作过程上分为起振到平衡两个阶段。

在微波频段由于各种分布参数和寄生效应的影响,将振荡器严格的分为具体的两部分较为困难,用负阻振荡理论可以很好的解释振荡机理,一般将器件看成一个单端口网络,主要考察端口阻抗而不管网络内部划分成几个部分。

在正反馈理论中,将振荡器在结构上划分为一个放大器和反馈网络两部分,如图2.3-1所示,则该振荡器的闭环传递函数G A可以表示为式2.3-1。

而振荡器有输出无输入,则Vin =0,Vout>0,所以式2.3-1分母为0,即G m(ω)=H A(ω) H F(ω)=1,设H F(ω)=H(ω)+j H(ω),放大器为实数增益,则有式2.3-2。

式2.3-2只适用于稳态情况,而在振荡器初始状态,必须有G m(ω)>1,即环路增益必须大于1才能使传递电压逐步增加,但这种增加不是无限制的进行下去,而是最终稳定在频率和功率保持不变的状态,这时满足振荡器的幅度条件和相位条件,即G m(ω)=1,φm(ω)=2nπ,(n=0,1,2….),振荡器最终工作在大信号状态。

振荡器的反馈回路包括振荡器的幅度条件和相位条件,即在某一频率点上将最终满足G m(ω)=H A(ω) H F(ω)=1,而在其它频率点上任何一个条件不能满足都不能起振。

除此之外,振荡器还必须满足稳定条件。

在振荡器由起振逐步过渡到平衡状态时,如果收到细微的噪声干扰,平衡状态将被破坏,振荡器的工作状态将有两种变化趋势,一个是经放大和反馈的作用,振荡器的工作平衡点远离原来的平衡点,在新的位置达到平衡,而且在干扰消失后不能回到原平衡点。

第二种变化趋势是在受到干扰后,振荡器能在原平衡点附近建立新的平衡,而干扰消失后振荡器能迅速恢复到原来的状态,第二种即是需要的稳定状态。

根据反馈网络的不同,又分为Colpitts 型、Hartley 型和Clapp 型。

ATF13786中文资料

ATF13786中文资料

ATF-13786Surface Mount GalliumArsenide FET for Oscillators Technical Data85 mil Plastic Surface Mount P ackageFeatures• Low Cost Surface Mount Plastic Package• High f MAX : 60 GHz Typical • Low Phase Noise at 10 GHz:-110 dBc/Hz @ 100 kHz Typical • Output Power at 10 GHz:up to 10 dBm• Tape-and-Reel Packaging Option AvailableDescriptionHewlett-Packard’s ATF-13786 is a low cost Gallium ArsenideSchottky barrier-gate field effect transistor housed in a surface mount plastic package. This device is designed for use in low cost, surface mount oscillators operating over the RF andmicrowave frequency ranges. The ATF-13786 has sufficient gain for easy use as a negative R cell,without excess gain that can lead to unwanted oscillations andmode jumping. The gate structure used in the fabrication of this device results in phase noise performance superior to that of most other MESFETs. These features make this deviceparticularly well suited for low power (< +10 dBm) commercial oscillator applications such as are encountered in DBS, TVRO, and MMDS television receivers, or hand-held transceivers operating in the 900 MHz, 2.4 GHz, and 5.7␣GHz I SM bands.Insertion Power Gain, MaximumAvailable Gain, and Maximum Stable Gain vs. Frequency.V DS = 3 V, I DS = 40 mA.Pin Configuration5101520FREQUENCY (GHz)G A I N(d B )25This GaAs FET device has a nominal 0.3 micron gate length with a total gate periphery of 250␣microns. Proven gold based metallization systems and nitride passivation assure a rugged,reliable device.ATF-13786 Electrical Specifications, T C = 25°C, V DS = 3 V , I DS = 40 mA [4](unless noted)Symbol Parameters and Test ConditionsUnits Min.Typ.Max.|S 21|2I nsertion Power Gainf = 10 GHz dB 6.0P 1 dB Power at 1 dB Gain Compression f = 10 GHz dBm 1516.5G 1 dB 1 dB Compressed Gain f = 10 GHz dB 6.57.5PN Phase Noise (100 kHz offset)[5] f = 10 GHzdBc/Hz -110g m Transconductance V DS = 3 V , V GS = 0 V mS 2555I DSS Saturated Drain Current V DS = 3 V , V GS = 0 V mA 5070100V P Pinchoff VoltageV DS = 3 V, I DS = 1 mAV -2.0-1.5-0.5V BDGGate - Drain Breakdown VoltageI DG = 0.1 mAV6.57Notes:4.Recommended maximum bias conditions for use as an oscillator.5.The superior phase noise of this product results from the use of a gate structure optimized for noise performance.Typical performance of 10 GHz parallel resonated, lightly coupled oscillator using high Q dielectric resonator.ATF-13786 Absolute Maximum RatingsSymbol Parameter Units Absolute Maximum [1]V DS Drain-Source Voltage V 4V GS Gate-Source Voltage V -4V GD Gate-Drain Voltage V -6I DS Drain CurrentmA I DSS P T Power Dissipation [2,3]mW 225T CH Channel Temperature °C 150T STGStorage Temperature°C-65 to +150Notes:1.Operation of this device above any one of these conditions may cause permanent damage.2.T CASE = 25o C (T CASE is defined to be the temperature at the ends of pins 2 and 4 where they contact the circuit board).3.Derate at 3.1 mW/o C for T C␣>␣60o C.Thermal Resistance [2]: θjc = 325°C/WTypical Scattering Parameters, Common Source, Z O = 50 Ω, V DS = 3 V, I DS = 40 mAS 11S 21S 12S 22FrequencyGHzMag.Ang.Mag.Ang.Mag.Ang.Mag.Ang. 10.97 -23 4.801570.03770.46-13 20.88 -46 4.601350.06660.42-25 30.78 -68 4.351170.08580.36-35 40.67 -95 4.02 950.11470.28-48 50.57 -125 3.61 750.12370.19-65 60.52 -157 3.20 570.13280.12-93 70.53 176 2.84 410.14210.08-147 80.57 160 2.54 310.14180.10171 90.60 143 2.27 160.14120.15148100.63 130 2.04 40.15 60.19134110.64 117 1.82 -90.14 00.25122120.67 107 1.65-190.14-40.30113130.72 99 1.55-290.14-80.35109140.76 97 1.47-350.14-90.39111150.7890 1.40-460.14-140.41108160.77 83 1.32-580.14-200.42104170.74 77 1.26-680.14-280.43 98180.73691.23-800.14-360.4293Part Number Ordering InformationPart Number Devices per ReelReel Size ATF-13786-TR110007''ATF-13786-STR10stripPlease refer to the “Tape-and-Reel Packaging for Surface Mount Semiconductors” data sheet for more detailed information.85 mil Plastic Surface Mount Package D imensions0.51 ±DIMENSIONS ARE IN MILLIMETERS (INCHES)。

A-T CONTROLS INC Fitting Series FFTM3 FFTM3C 商品说明书

A-T CONTROLS INC Fitting Series FFTM3 FFTM3C 商品说明书

9410 - 20 Ave N.W.Edmonton, Alberta, Canada T6N 0A4Tel: (780) 437-9100 / Fax: (780) 437-7787June 10, 2021SERIES FFTM3/FFTM3C VALVESTORONTO, ON M9W 6N9345 CARLINGVIEW DRIVE CRN :Drawing No. :Accepted on:0C23177.52Reg Type:NEW DESIGNApril 13, 2031June 10, 2021Design registered in the name of : A-T CONTROLS INCExpiry Date:SCOPE OF REGISTRATION Fitting type:Attention:The design submission, tracking number 2021-02872, originally received on May 26, 2021 was surveyed and accepted for registration as follows:Sincerely,DICK, ASHLING, P. Eng.TECHNICAL STANDARDS & SAFETY AUTHORITY Tanya FrancisIf you have any question don't hesitate to contact me by phone at (780) 433-0281 ext 3337 or fax (780)****************************.The registration is conditional on your compliance with the following notes:** This registration covers only those valves that are in strict compliance with ASME B16.34, with respect to dimensions, pressure and temperature ratings, materials, markings etc ** See attached Scope of Registration, and a List of Plant SitesAs indicated on AB-41 Statutory Declaration form and submitted documentation, the code of construction is B16.34.- It is our understanding that the fitting(s), included as the scope of this submission, that is(are) subject to the Safety Codes Act shall comply with the requirements of the indicated Standard or Code of Construction on the AB-41 Statutory Declaration as supported by the attached data which identifies the dimensions, materials of construction, press./temp. ratings and the basis for such ratings, and the identification marking of the fittings.- This registration is valid only for fittings fabricated at the location(s) covered by the QC certificate attached to the accepted AB-41 Statutory Declaration form.- This registration is valid only until the indicated expiry date and only if the Manufacturer maintains a valid quality management system approved by an acceptable third-party agency until that date.- Should the approval of the quality management system lapse before the expiry date indicated above, this registration shall become void.DOP Cert. No. D0*******An invoice covering survey and registration fees will be forwarded from our Revenue Accounts.Page 1 of 12021-02872**** Ball Valves Series FFTM3/FFTM3C Class 150, 300 & 600** See attached Scope of Registration and List of Plant SitesABSASAFETY CODES ACT - PROVINCE OF ALBERTASee acceptance letter for conditions of registration.ASHLING DICK, P . Eng.2021-06-10Date:By:This stamp and signature have been affixed electronically to this registered design as required by Section 20(1) of the Pressure Equipment Safety Regulation, in accordance with the Electronic Transactions Act.2021-02872ACCEPTED:0C23177.520C23177.5Technical Standards and Safety Authority Boilers and Pressure Vessels SafetyProgramTHIS IS PART OF CRNABSASAFETY CODES ACT - PROVINCE OF ALBERTASee acceptance letter for conditions of registration.ASHLING DICK, P . Eng.2021-06-10Date:By:This stamp and signature have been affixed electronically to this registered design as required by Section 20(1) of the Pressure Equipment Safety Regulation, in accordance with the Electronic Transactions Act.2021-02872ACCEPTED:0C23177.520C23177.5Technical Standards and Safety Authority Boilers and Pressure Vessels SafetyProgramTHIS IS PART OF CRNBody Materials: ASTM A216 WCB & A351 CF8MABSASAFETY CODES ACT - PROVINCE OF ALBERTASee acceptance letter for conditions of registration.ASHLING DICK, P . Eng.2021-06-10Date:By:This stamp and signature have been affixed electronically to this registered design as required by Section 20(1) of the Pressure Equipment Safety Regulation, in accordance with the Electronic Transactions Act.2021-02872ACCEPTED:0C23177.520C23177.5Technical Standards and Safety Authority Boilers and Pressure Vessels SafetyProgramTHIS IS PART OF CRNABSASAFETY CODES ACT - PROVINCE OF ALBERTASee acceptance letter for conditions of registration.ASHLING DICK, P . Eng.2021-06-10Date:By:This stamp and signature have been affixed electronically to this registered design as required by Section 20(1) of the Pressure Equipment Safety Regulation, in accordance with the Electronic Transactions Act.2021-02872ACCEPTED:0C23177.52April 13, 2021A-T CONTROLS INC9955 INTERNATIONAL BLVDCINCINNATI OH 45246USWorkorder Type: Registration - Fitting(Conventional)Workorder No: 8005180Your Reference No.:Registered to: A-T CONTROLS INCDear PETE VEZEY,Technical Standards and Safety Authority (TSSA) is pleased to inform you that your submission has been reviewed and registered as follows:CRN : 0C23177.5Main Design No.: Ball Valves Series FFTM3/FFTM3C Class 150, 300 & 600 - See Scope of Registration & List of Plant SitesExpiry Date: Apr 13, 2031Please be advised that a valid quality control system must be maintained for the fitting registration to remain valid until the expiry date.The stamped copy of the approved registration and the invoice are mailed separately (There will be no hard copies for electronic submissions). Should you have any questions or require further assistance, please contact a CustomerServiceAdvisorat1.877.682.TSSA(8772)*********************************.Wewillbehappyto assist you. When contacting TSSA regarding this file, please refer to the Service Request number provided above.Yours truly,Wendy DuEngineer, BPVTel. : +1 416-734-3566Email:************Date:C.R.N.:April 13, 2021.0C23177.5Technical Standards and Safety AuthorityBoilers andPressure Vessels Safety ProgramREGISTEREDSigned:- See stamped Scope of Registration & List of Plant SitesApril 13, 20310C23177.5Technical Standards and Safety Authority Boilers and Pressure Vessels SafetyProgramTHIS IS PART OF CRNBody Materials: ASTM A216 WCB & A351 CF8MTHIS IS PART OF CRN 0C23177.5Technical Standards and Safety Authority Boilers and Pressure Vessels SafetyProgramDate:Account #:Journal #:35231June 18, 202178138TECHNICAL STANDARDS & SAFETY AUTHORITY 345 CARLINGVIEW DRIVE TORONTO ON M9W 6N9TSSAApplication for Design RegistrationThe design, as detailed in your, 0C23177.5 - A-T CONTROLS INC, for a Fitting is accepted for registration as follows:A-T CONTROLS, INC.CRN:0C23177.51Registered To:Drawing #:Scope of Registration Drawing Revision:N/ARe:Attn:Reviewer's Notes:Scope of Registration: Ball Valves Series FFTM3/FFTM3C Class 150, 300 & 600 - See Scope of Registration &List of Plant SitesAs required by CSA B51 4.2.1, this registration expires on 13-Apr-2031. This CRN is valid until the expiry date as long as the Manufacturer maintains a valid quality control program verified by an acceptable third-party agency until that date. Should the certification of the quality control program lapse before the expiry date, this registration shall become void. Any additional conditions of registration stated in TSSA CRN# 0C23177.5 registration shall apply to BC registration.This design was registered based on a technical review performed by the province of initial registration in accordance with the Association of Chief Inspectors policy on reciprocal recognition of design review.Contact me if you have any questions. The invoice for registration will be forwarded under separate :Emilia Tam*******************************Design AdministrationInspection and Technical ServicesMunicipal Relations508-401York AveWinnipeg, Manitoba Canada R3C 0P8T 204-945-3373 F 204-948-2089.mb.ca/itsm_main14 June 2021TSSA345 Carlingview DriveToronto, ON M9W 6N9Dear Tanya FrancisRe: Reciprocal CRN Registration in ManitobaYour application indicates that a CRN has been received in another Canadian Jurisdiction, and therefore your CRN has been registered in Manitoba as follows:File Number: 74-R1571CRN: 0C23177.54Scope: SOR: Ball Valve Series FFTM3 / FFTM3C Class 150, 300 & 600 and List of Plant Sites Manufacturer: A-T Controls IncExpiry Date: 13 April 2031Please find attached invoice for registration.As indicated by the Regulatory Reconciliation and Cooperation Table and the Reconciliation Agreement for the Canadian Registration Number (CRN) for Pressure Equipment, a CRN issued in any Canadian Jurisdiction will be accepted for use in Manitoba.In accordance with Steam and Pressure Plants Regulation and CSA B51, it is the manufacturer’s responsibility to file a Manufacturers Data Report, including partial data reports, with our office, prior to shipping pressure equipment to Manitoba.Please contact ****************.ca for any questions or concerns.Inspection and Technical ServicesMunicipal Relations508 - 401 York Avenue, Winnipeg Manitoba R3C 0P8T (204) 945-3373 | F (204) 948-2089。

avago部分停产器件(放大器)及其替代品

avago部分停产器件(放大器)及其替代品

Product Obsolescence NotificationIssue Date: 03 July 2012Revision Date: 17 July 2012OBS070312WSD2 Dear Customer,Avago Technologies regrets to announce the obsolescence of the following products.Item Avago Part Number Standard orSpecial Product Recommended Replacement Part1 AFEM-7751-RM1 Standard ACPM-5005-TR12 AFEM-7751-TR1 Standard ACPM-5005-TR13 AMMC-6550-W10 Standard AMMC-6545-W104 AMMC-6550-W50 Standard AMMC-6545-W505 AMMP-6421-BLKG Standard AMMP-6408-BLKG6 AMMP-6421-TR1G Standard AMMP-6408-TR1G7 AMMP-6421-TR2G Standard AMMP-6408-TR2G8 AMMP-6441-BLKG Standard AMMP-6442-BLKG9 AMMP-6441-TR1G Standard AMMP-6442-TR1G10 AMMP-6441-TR2G Standard AMMP-6442-TR2G11 HBAT-5400-BLKG Standard HSMS-2700-BLKG12 HBAT-5400-TR1G Standard HSMS-2700-TR1G13 HBAT-5400-TR2G Standard HSMS-2700-TR2G14 HBAT-5402-BLKG Standard HSMS-2702-BLKG15 HBAT-5402-TR1G Standard HSMS-2702-TR1G16 HBAT-5402-TR2G Standard HSMS-2702-TR2G17 HBAT-540B-BLKG Standard HSMS-270B-BLKG18 HBAT-540B-TR1G Standard HSMS-270B-TR1G19 HBAT-540B-TR2G Standard HSMS-270B-TR2G20 HBAT-540C-BLKG Standard HSMS-270C-BLKG21 HBAT-540C-TR1G Standard HSMS-270C-TR1G22 HBAT-540C-TR2G Standard HSMS-270CTR2G23 HSCH-5531 Standard HSCH-5330/HSCH-533124 AT-41435G Standard AT-41511/AT-41533/AT-4153225 AT-41486-BLKG Standard AT-41511/AT-41533/AT-4153226 AT-41486-TR1G Standard AT-41511/AT-41533/AT-4153227 AT-41486-TR2G Standard AT-41511/AT-41533/AT-4153228 AT-41586-BLKG Standard AT-41511/AT-41533/AT-4153229 AT-41586-TR1G Standard AT-41511/AT-41533/AT-4153230 AT-41586-TR2G Standard AT-41511/AT-41533/AT-4153231 AT-42010 Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP432 AT-42035G Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP433 AT-42036-BLKG Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP434 AT-42036-TR1G Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP435 AT-42070 Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP436 AT-42085G Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP437 AT-42086-BLKG Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP438 AT-42086-TR1G Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP439 AT-42086-TR2G Standard ATF-54143/ATF-531P8/AT-41511/AT-41533/AT-41532/AT-42000-GP440 AT-64020 Standard AT-64000/ATF-501P8/ATF-5018941 AT-64023 Standard AT-64000/ATF-501P8/ATF-5018942 ATF-36077-STR Standard VMMK-1225/VMMK-1218/ATF-3616343 ATF-36077-TR1 Standard VMMK-1225/VMMK-1218/ATF-3616344 MGA-86576-STRG Standard MGA-86563/VMMK-3803/MGA-3098945 MGA-86576-TR1G Standard MGA-86563/VMMK-3803/MGA-3098946 MSA-0236-BLKG Standard ADA-4643/ADA-4543/MSA-031147 MSA-0236-TR1G Standard ADA-4643/ADA-4543/MSA-031148 MSA-0236-TR1MCG Standard ADA-4643/ADA-4543/MSA-031149 MSA-0236-TR5MCG Standard ADA-4643/ADA-4543/MSA-031150 MSA-0270 Standard ADA-4643/ADA-4543/MSA-031151 MSA-0286-BLKG Standard ADA-4643/ADA-4543/MSA-031152 MSA-0286-TR1G Standard ADA-4643/ADA-4543/MSA-031153 MSA-0286-TR1MCG Standard ADA-4643/ADA-4543/MSA-031154 MSA-0286-TR2G Standard ADA-4643/ADA-4543/MSA-031155 MSA-0336-BLKG Standard ADA-4643/AVT-50663/MSA-0311/MSA-030056 MSA-0336-TR1G Standard ADA-4643/AVT-50663/MSA-0311/MSA-030057 MSA-0336-TR1MCG Standard ADA-4643/AVT-50663/MSA-0311/MSA-030058 MSA-0336-TR5MCG Standard ADA-4643/AVT-50663/MSA-0311/MSA-030059 MSA-0370 Standard ADA-4643/AVT-50663/MSA-0311/MSA-030060 MSA-0386-BLKG Standard ADA-4643/AVT-50663/MSA-0311/MSA-030061 MSA-0386-TR1G Standard ADA-4643/AVT-50663/MSA-0311/MSA-030062 MSA-0386-TR1MCG Standard ADA-4643/AVT-50663/MSA-0311/MSA-030063 MSA-0386-TR2G Standard ADA-4643/AVT-50663/MSA-0311/MSA-030064 MSA-0420 Standard ADA-4789/AVT-5468965 MSA-0436-BLKG Standard ADA-4643/AVT-5066366 MSA-0436-TR1G Standard ADA-4643/AVT-5066367 MSA-0436-TR1MCG Standard ADA-4643/AVT-5066368 MSA-0436-TR5MCG Standard ADA-4643/AVT-5066369 MSA-0470 Standard ADA-4643/AVT-5066370 MSA-0486-BLKG Standard ADA-4643/AVT-5066371 MSA-0486-TR1G Standard ADA-4643/AVT-5066372 MSA-0486-TR1MCG Standard ADA-4643/AVT-5066373 MSA-0486-TR2G Standard ADA-4643/AVT-5066374 MSA-0505-STRG Standard ADA-4789/AVT-54689/AVT-5568975 MSA-0505-TR1G Standard ADA-4789/AVT-54689/AVT-5568976 MSA-0505-TR1MCG Standard ADA-4789/AVT-54689/AVT-5568977 MSA-0520 Standard ADA-4789/AVT-5568978 MSA-0636-BLKG Standard MSA-0611/ABA-51563/ABA-52563/ADA-454379 MSA-0636-TR1G Standard MSA-0611/ABA-51563/ABA-52563/ADA-454380 MSA-0636-TR1MCG Standard MSA-0611/ABA-51563/ABA-52563/ADA-454381 MSA-0636-TR5MCG Standard MSA-0611/ABA-51563/ABA-52563/ADA-454382 MSA-0670 Standard MSA-0611/ABA-51563/ABA-52563/ADA-454383 MSA-0686-BLKG Standard MSA-0611/ABA-51563/ABA-52563/ADA-454384 MSA-0686-TR1G Standard MSA-0611/ABA-51563/ABA-52563/ADA-454385 MSA-0686-TR1MCG Standard MSA-0611/ABA-51563/ABA-52563/ADA-454386 MSA-0686-TR2G Standard MSA-0611/ABA-51563/ABA-52563/ADA-454387 MSA-0736-BLKG Standard ADA-4643/MSA-071188 MSA-0736-TR1G Standard ADA-4643/MSA-071189 MSA-0736-TR1MCG Standard ADA-4643/MSA-071190 MSA-0736-TR5MCG Standard ADA-4643/MSA-071191 MSA-0770 Standard ADA-4643/MSA-071192 MSA-0786-BLKG Standard ADA-4643/MSA-071193 MSA-0786-TR1G Standard ADA-4643/MSA-071194 MSA-0786-TR1MCG Standard ADA-4643/MSA-071195 MSA-0836-BLKG Standard ABA-52563/ADA-4643/AVT-5366396 MSA-0836-TR1G Standard ABA-52563/ADA-4643/AVT-5366397 MSA-0836-TR1MCG Standard ABA-52563/ADA-4643/AVT-5366398 MSA-0836-TR5MCG Standard ABA-52563/ADA-4643/AVT-5366399 MSA-0870 Standard ABA-52563/ADA-4643/AVT-53663100 MSA-0886-BLKG Standard ABA-52563/ADA-4643/AVT-53663101 MSA-0886-TR1G Standard ABA-52563/ADA-4643/AVT-53663102 MSA-0886-TR1MCG Standard ABA-52563/ADA-4643/AVT-53663103 MSA-0886-TR2G Standard ABA-52563/ADA-4643/AVT-53663104 MSA-0986-BLKG Standard ADA-4643105 MSA-0986-TR1G Standard ADA-4643106 MSA-1105-STRG Standard ADA-4743/ADA-4789/ABA-54563/AVT-54689/AVT-55689107 MSA-1105-TR1G Standard ADA-4743/ADA-4789/ABA-54563/AVT-54689/AVT-55689108 MSA-1105-TR1MCG Standard ADA-4743/ADA-4789/ABA-54563/AVT-54689/AVT-55689109 MSA-1105-TR2G Standard ADA-4743/ADA-4789/ABA-54563/AVT-54689/AVT-55689110 MSA-1110 Standard ADA-4743/ADA-4789/ABA-54563/AVT-54689/AVT-55689111 MSA-1120 Standard ADA-4743/ADA-4789/ABA-54563/AVT-54689/AVT-55689112 MSA-2086-BLKG Standard MSA-2011/ABA-52563/ADA-4643/AVT-51663113 MSA-2086-TR1G Standard MSA-2011/ABA-52563/ADA-4643/AVT-51663114 MSA-2086-TR2G Standard MSA-2011/ABA-52563/ADA-4643/AVT-51663115 MSA-3186-BLKG Standard MSA-3111/ADA-4643/AVT-51663116 MSA-3186-TR1G Standard MSA-3111/ADA-4643/AVT-51663117 MSA-3186-TR2G Standard MSA-3111/ADA-4643/AVT-51663118 MSA-9970 Standard ADA-4643/AVT-52663119 QMSA-0806-TR1G Standard NonePlease note that the ABP products (Item 24-119) are being obsolete due to cease of subcontractor’s manufacturing activities and other products (Item 1-23) are being obsolete due to economical reasons. Last time buys will be offered through Jan 31, 2013. Orders will be acceptable on a non-cancelable, non-returnable basis only. Customer required delivery dates must be scheduled on or before July 31, 2013. Avago Technologies reserves the right to limit last time buy quantities based on capacity and material availability.Wireless Semiconductor DivisionAvago Technologies____________________________________________________________________________________________________ Please contact your Avago Technologies field sales engineer or Contact Center (/contact/) for any questions or support requirements.。

ATF-36077中文资料

ATF-36077中文资料

ATF-360772–18 GHz Ultra Low Noise Pseudomorphic HEMT Technical DataFeatures• PHEMT Technology• Ultra-Low Noise Figure:0.5 dB Typical at 12 GHz 0.3 dB Typical at 4 GHz • High Associated Gain:12 dB Typical at 12 GHz 17 dB Typical at 4 GHz • Low Parasitic Ceramic Microstrip Package • Tape-and-Reel Packing Option AvailableApplications• 12 GHz DBS LNB (Low Noise Block)• 4 GHz TVRO LNB (Low Noise Block)• Ultra-Sensitive Low Noise AmplifiersFigure 1. ATF-36077 Optimum Noise Figure and Associated Gain vs.Frequency for V DS = 1.5V, I D = 10 mA.Pin Configuration77 PackageN O I S E F I G U R E (d B )FREQUENCY (GHz)A S S O C I A T E D G AI N (d B )Note: 1. See Noise Parameter Table.DescriptionHewlett-Packard’s ATF-36077 is an ultra-low-noise Pseudomorphic High Electron Mobility Transistor (PHEMT), packaged in a low parasitic, surface-mountable ceramic package. Properly matched, this transistor will provide typical 12 GHz noisefigures of 0.5 dB, or typical 4 GHz noise figures of 0.3 dB. Addition-ally, the ATF-36077 has very low noise resistance, reducing the sensitivity of noise performance to variations in input impedance match, making the design of broadband low noise amplifiers much easier. The premium sensitivity of the ATF-36077makes this device the ideal choice for use in the first stage of extremely low noise cascades.The repeatable performance and consistency make it appropriate for use in Ku-band Direct Broad-cast Satellite (DBS) Television systems, C-band Television Receive Only (TVRO) LNAs, or other low noise amplifiers operating in the 2-18␣G Hz frequency range.This GaAs PHEMT device has a nominal 0.2 micron gate length with a total gate periphery (width)of 200 microns. Proven gold based metalization systems and nitride passivation assure rugged, reliable devices.ATF-36077 Electrical Specifications,T C = 25°C, Z O = 50 Ω, V ds = 1.5 V, I ds = 10 mA, (unless otherwise noted).Symbol Parameters and Test ConditionsUnits Min.Typ.Max.NF Noise Figure [1] f = 12.0 G Hz dB 0.50.6G A Gain at NF [1] f = 12.0 G HzdB 11.012.0g m Transconductance V DS = 1.5 V, V G S = 0 V mS 5055I dss Saturated Drain Current V DS = 1.5 V, V G S = 0 V mA 152545V p 10 %Pinch-off VoltageV DS = 1.5 V, I DS = 10% of I dssV-1.0-0.35-0.15Note:1. Measured in a fixed tuned environment with Γ source = 0.54 at 156°; Γ load = 0.48 at 167°.Thermal Resistance [2,3]:θch-c = 60°C/WNotes:1. Operation of this device above any one of these parameters may cause permanent damage.2. Measured at P diss = 15 mW and T ch =100°C.3. Derate at 16.7 mW/°C for T C > 139°C.ATF-36077 Absolute Maximum RatingsAbsolute Symbol ParameterUnits Maximum [1]V DS Drain – Source Voltage V +3V GS Gate – Source Voltage V -3V GD Gate-Drain Voltage V -3.5I D Drain CurrentmA I dss P T Total Power Dissipation [3]mW 180P in max RF Input Power dBm +10T ch Channel Temperature °C 150T STGStorage Temperature°C-65 to 150ATF-36077 Characterization Information,T C = 25°C, Z O = 50 Ω, V ds = 1.5 V, I ds = 10 mA, (unless otherwise noted).Symbol Parameters and Test ConditionsUnits Typ.NF Noise Figure (Tuned Circuit) f = 4 GHz dB 0.3[2]f = 12 G Hz dB 0.5G A Gain at Noise Figure (Tuned Circuit) f = 4 GHz dB 17f = 12 G HzdB 12S 12 off Reverse Isolationf = 12 G Hz, V DS = 1.5 V , V G S = -2 VdB 14P 1dB Output Power at 1 dB Gain Compression f = 4 GHz dBm 5f = 12 G Hz dBm 5V GS 10 mAGate to Source Voltage for I DS = 10 mAV DS = 1.5 VV-0.2Note:2. See noise parameter table.ATF-36077 Typical Scattering Parameters,Common Source, Z O = 50 Ω, V DS = 1.5 V, I D = 10 mAFreq.S11S21S12S22 GHz Mag.Ang.dB Mag.Ang.dB Mag.Ang.Mag.Ang.1.00.99-1714.00 5.010163-36.080.016780.60-142.00.97-3313.814.904147-30.330.030660.59-283.00.94-4913.534.745132-27.250.043540.57-414.00.90-6513.17 4.556116-25.320.054430.55-545.00.86-7912.78 4.357102-24.040.063330.53-666.00.82-9312.39 4.16288-23.170.069240.50-787.00.78-10712.00 3.98175-22.580.074160.48-898.00.75-12011.64 3.82062-22.170.07880.46-999.00.72-13311.32 3.68249-21.900.08010.44-10910.00.69-14611.04 3.56637-21.710.082-60.42-11911.00.66-15910.81 3.47325-21.570.083-130.40-12912.00.63-17210.63 3.40113-21.440.085-190.38-13913.00.6117510.50 3.3491-21.320.086-250.37-14914.00.6016110.41 3.315-12-21.190.087-320.35-16015.00.5814710.36 3.296-24-21.040.089-390.33-17116.00.5713110.34 3.289-37-20.870.091-470.3117717.00.5611410.34 3.289-50-20.690.092-550.2916418.00.579710.35 3.291-64-20.530.094-650.26148 ATF-36077 Typical “Off” Scattering Parameters,Common Source, Z O = 50 Ω, V DS = 1.5 V, I D = 0 mA, V GS = -2 VFreq.S11S21S21S22 GHz Mag.Ang.dB Mag.Ang.dB Mag.Ang.Mag.Ang.11.00.96-139-14.20.19-43-14.20.19-430.97-12512.00.95-152-14.00.20-56-14.00.20-560.97-13713.00.94-166-13.80.20-69-13.80.20-680.96-149ATF-36077 Typical Noise Parameters, Common Source, Z= 50 Ω, V = 1.5 V, I = 10 mA(0.021)(0.004)TYPICAL DIMENSIONS ARE IN MILLIMETERS (INCHES).。

Altivar Process ATV630C13N4产品数据手册说明书

Altivar Process ATV630C13N4产品数据手册说明书
Local signalling
Width Height Depth Product weight Analogue input number Analogue input type Discrete input number
Digital and analog I/O extension module slot A/slot B Output relay extension module slot A/slot B Communication module Ethernet IP/Modbus TCP/MD-Link slot A
Display unit Analog input
Removable screw terminals 0.5...1.5 mm² AWG 20...AWG 16 control Screw terminal 2 x 70...3 x 120 mm² 2 x AWG 2/0...2 x 300 kcmil line side Screw terminal 2 x 70...3 x 120 mm² 2 x AWG 2/0...2 x 300 kcmil motor
Prospective line Isc
50 kA
Apparent power
161.4 kVA 480 V normal duty 121.8 kVA 480 V heavy duty
Continuous output current
250 A 2.5 kHz normal duty 211 A 2.5 kHz heavy duty
3 LEDs local diagnostic 3 LEDs dual colour embedded communication status 4 LEDs dual colour communication module status 1 LED red presence of voltage

卫星通信解决方案

卫星通信解决方案

我要留言返回列表卫星通信解决方案一、产品1 综合业务VSAT卫星通信系统1.1 概述综合业务VSAT通信系统是由卫星、地球站和网控中心构成的卫星通信系统,可支持话音、数据和传真等业务,系统可工作在L、C和Ku频段。

VSAT系统地球站组成主要包括:天线、射频设备、信道设备和终端设备。

1.2 天线VSAT地球站天线包括动中通、静中通天线和便携式天线等系列天线。

1.2.1 车载动中通天线采用悬浮隔离三轴稳定技术设计,具有自动对星、跟踪功能,能够存储多颗卫星参数,可设置成自动跟踪、半自动跟踪和手动跟踪等多种工作模式。

主要技术指标:a) 工作频段:Ku;b) 天线口径:0.6米、1米,1.2米;c) 天线增益:1) 0.6米:收35.6dBi,发36.6dBi;2) 1米:收40.0dBi,发41.2dBi;d) 极化方式:线极化(自动调整);;︒无极限,俯仰15~75︒e) 跟踪范围:方位360f) 初始开通时间:≤4min;g) 目标丢失3分钟以内的再捕获时间:≤1s;h) 馈源接口:WR-75。

1.2.2 车载静中通天线具有自动对星、跟踪功能,能够存储多颗卫星参数,可设置成自动跟踪、半自动跟踪和手动跟踪等多种工作模式。

主要技术指标:a) 工作频段:Ku;b) 天线口径:1.2米、1.8米、2.4米;c) 天线增益:1) 1.2米:收42.1dBi,发43.2dBi;2) 1.8米:收45.6dBi,发46.7dBi;3) 2.4米:收48.1dBi,发49.2dBi;d) 极化方式:线极化(自动调整);e) 跟踪范围:方位:±180°,俯仰:10°~85°。

;f) 初始开通时间:≤10min;g) 馈源接口:WR-75。

1.2.3 便携式天线采用2~4片拼装式结构,电子罗盘和液晶显示辅助手动对星方式,具有:体积小、重量轻,便于携带,辅助对星手段使得对星操作快捷方便。

中特威电调

中特威电调
无刷马达电子调速器说明书
尊敬的用户:感谢您使用中特威科技有限公司设计、制造的无刷电子调速器(ESC)。我们强烈建议您在使用之前阅读本使用手册 深圳市中特威科技有限公司有权不经通知变更其产品,包括其外观和性能参数及使用要求;对其产品是否适合特定用途不作任何保证 、 申明或承诺。不承担因第三方产品相关修改所造成的任何责任,中特威科技有限公司亦不承担因应用或使用任何产品或电路而引起的任何责 任,包括但不限于对附带损失或间接损失的赔偿责任 一、主要特性: 无刷电机电子调速器主要特性: ● 无限制的转速支持:对目前市面所见所有工业化生产之无刷电机,最高转速可无限制支持 ● 循环菜单设置,操作简单方便 ● 超平稳和精确的油门线性 ● 安全通电功能:接通电源时无论遥控器的油门拉杆在任何位置均不会立即启动电机,防止电机突然旋转 ● 遥控信号丢失保护 ● 超温保护,110℃时自动降低功率一半输出,温度低于 110℃时功率输出恢复 ● 带舵能力强,超越目前市面所见电调 ● 适合无刷电机的所有类型 ● 支持编程功能 二、无刷电机电子调速器功能: 我们的电子速度控制器允许您针对自身需求来编程所有功能,充分体现了产品以用户为本的特点 1. 用户可编程刹车设置 2. 用户可编程电池类型(LiPo 或 NiMh/NiCd) 3. 用户可编程低压中止点设置 4. 用户可编程出厂默认设置恢复 5. 用户可编程马达进角设置(提高电调的效率和平稳性) 6. 用户可编程加速启动设置(针对精密变速箱和直升机应用) 7. 用户可编程直升机模式(针对直升机应用) 8. 用户可编程马达转向(顺时针/逆时针) 9. 用户可编程工作频率 10.用户可编程低压中止类型(降低功率或立即关机) 三、调速器连接线说明:
五、编程菜单顺序、与说明
●● _*
油门行程设置 ●● ●●

ADS应用中的器件建模

ADS应用中的器件建模

Advanced Topics in Circuit Design (using ADS 2002) LAB 1: Modeling TechniquesOBJECTIVES• Use various devices in simulations• Extract parameters for a model• Use an SDD in an optimization• Use Model Binning• Use SDD’s to model an amplifier and nonlinear resistor• Use an FDD to model a doublerLab 1: Modeling Techniques1-2 Copyright Agilent Technologies 2002 TABLE OF CONTENTS1. Start ADS on your computer and copy the project (3)2. MODELS_prj...............................................................................................................3 2.1. DIODE Model. (3)2.1.1. BB535_Model.dsn.........................................................................................3 2.1.2. DIODE_Extraction_of_N.dsn. (6)2.2. BJT Model..........................................................................................................10 2.2.1. AT30500.dsn (10)2.2.2. AT30500_IC_VCE_Curves.dsn..................................................................12 2.2.3. AT30500_IC_and_IB_vs_VBE.dsn (13)2.2.4. AT30500_Extraction_of_IS_and_NF.dsn.................................................14 2.3. Model Binning. (16)2.3.1. Model_Binning_BJT_Example.dsn..........................................................16 2.3.2. Model_Binning_MOSFET_Example.dsn. (19)3. VENDOR_MODELS_prj ..........................................................................................23 3.1. AT36 Chip PHEMT.. (23)3.1.1. ATF36_CHIP_MODEL.dsn.........................................................................23 3.2. ATF36077 Packaged PHEMT (25)3.2.1. ATF36077_HB_Convergence.dsn .............................................................25 4. SDD_EXAMPLES_prj. (27)4.1.1. Amplifier_Model_DC.dsn..........................................................................27 4.1.2. Amplifier_Model_HB.dsn.. (30)4.1.3. Nonlinear_Resistor_DC.dsn......................................................................31 4.1.4. Nonlinear_Resistor_HB.dsn. (32)5. FDD_EXAMPLES_prj..............................................................................................33 5.1.1. FDD_DOUBLER_HB.dsn (33)6. References (37)Lab 1: Modeling TechniquesCopyright Agilent Technologies 2002 1-3PROCEDURE1. Start ADS on your computer and copy the project Project files used in this course should be copied to your computer as needed. The project files are located in the ADS Examples\Training\ADVCKT directory. You can use the ADS main window command: File > Copy Project, then select the Examples Directory and Browse to each project as you need it, as shown here: NOTE: The instructions for copying the project files will not be given again.2. MODELS_prj2.1. DIODE Model2.1.1. BB535_Model.dsn2.1.1.1. Copy and Open the project “MODELS_prj”, and then open thered text is just comment text.Lab 1: Modeling Techniques2.1.1.2. Here is our diode:2.1.1.3. Here are the equations that describe the DC forward andreverse characteristics of our diode junction:(forward biased: VD > 0)ID = IS * (e (q*VD / (N*k*T) ) – 1 )(reverse biased: VD < 0)ID = - ISwhere: k = 1.38 x 10-23 J/K (Boltzmann’s Constant)q = 1.602 x 10-19 C (charge on electron)T = 298.15 Kelvin (25 deg C)(you can also see this on page 19 of Massobrio andAntognetti, see references at end of lab)2.1.1.4. Note the value of N for our BB535 diode.N = 1.027831N is the forward emission coefficient of the diode.For ideal diodes, N = 1.0.1-4 Copyright Agilent Technologies 2002Lab 1: Modeling TechniquesCopyright Agilent Technologies 2002 1-52.1.1.5. Note the value of IS for our BB535 diode.IS = 0.919 fAIS is the saturation current of the diode.IS relates to both the forward and reverse characteristics ofthe diode, as seen above.2.1.1.6. Note the value of RS for our BB535 diode.RS = 0.094949 OhmsRS denotes a parasitic resistance in series with our diode.Our value of 0.094949 Ohms is almost negligible unless highcurrents are run through the diode.2.1.1.7. Note the value of LS for our BB535 diode.LS = 1.97 nHLS is a parasitic inductance in series with our diode.LS causes a change in the effective capacitance of our diode. This effective capacitance change will be an important effect in a later lab when we use this BB535 diode as a varactor(voltage tunable capacitor).2.1.1.8. Here is the equation for the diode’s reverse-bias junction capacitance(reverse biased : VD < 0)CJ = CJO / (1 – VD / VJ )M2.1.1.9. Note the values of CJO, VJ, and M for our diode.CJO = 28.7 pFVJ = 1.959931 VoltsM = 0.953817CJO is the zero-bias junction capacitance.VJ is the built-in junction voltage.M is the junction grading coefficient.2.1.1.10. Close the design “BB535_Model.dsn”.Lab 1: Modeling Techniques1-6 Copyright Agilent Technologies 20022.1.2. DIODE_Extraction_of_N.dsn2.1.2.1. Open the schematic “DIODE_Extraction_of_N.dsn”.2.1.2.2. In this schematic a voltage is applied across the diode and thecurrent running though the diode is measured. In this way, an I-V curve for the diode can be generated.A forward bias of 0 to +1.2 volts is applied across the diode, using the DC voltage source (SRC1). The bias is increasedslowly, in 2 mV steps, giving fine resolution for the I-V curve. This is a swept DC simulation, where the variable VD isswept. The Var equation (VAR1) is used to initialize VD for the sweep.A measurement equation (Meas1) is used to take the natural log ofthe diode current that is measured. This quantity,“ln_of_ID”, will be useful in the extraction of the diode emission coefficient, N.2.1.2.3. Run the simulation and view the results in theData Display. Note that the Data Display automatically opens when the simulation isfinished.Lab 1: Modeling TechniquesCopyright Agilent Technologies 2002 1-72.1.2.4. Look at the first page in the Data Display. It is titled, “I-VCurve”. This page should come up automatically.Here the current, “ID”, is graphed versus the swept biasvoltage, “VD”.2.1.2.5. Change to the second Data Display page, by using the Pagemenu and selecting the second page, “Extraction of N”.2.1.2.6.A plot is generated of ln(ID) versus VD.Two markers denote the estimated linear region of the curve. The slope ofthe line is extracted from these twomarkers via Data Display equations. N is related to the slope.Lab 1: Modeling Techniques1-8 Copyright Agilent Technologies 20022.1.2.7.Change to the third Data Display page, “Alternative Extraction of N”. Note that the “diff( )” function is used here to obtain the slope, or derivative, of the “ln_of_ID” curve. This is another method of estimating the linear region (the flat portion of the “Alternative_N” curve”) and extracting N. 2.1.2.8.Insert an equation (Eqn) and click the “Functions Help” button. Under the “MeasEqn Function Reference” topic, check out the “diff( )” function help page. The “diff( )” function can be used to take derivatives of any data. Close the Help page and click “Cancel”. 2.1.2.9.Create a new Data Display page by using the “New Page” command under the “Page” menu. Name this new page “page 4”.Lab 1: Modeling TechniquesCopyright Agilent Technologies 2002 1-92.1.2.10. In this new Data Display page, insert a listing column for “ln_of_ID”. Insert another listingcolumn for “ln_of_ID_slope”.Note that the derivative array “ln_of_ID_slope” has one lessentry, and that the independent variable values are between those of “ln_of_ID”.2.1.2.11. Change back to the “I-V Curves” Data Display page. Save yourData Display changes. Close the Data Display and Simulation Status Window. Close the design“DIODE_Extraction_of_N.dsn”.Lab 1: Modeling Techniques1-10 Copyright Agilent Technologies 20022.2. BJT Model2.2.1. AT30500.dsn2.2.1.1. Open the schematic “AT30500.dsn”.Note the bipolar transistor, BJT1. The “Model” field on this device points to the model card “BJTM1”. Every active semiconductor device in an ADS schematic must have an associated model card, just like SPICE.This schematic is an actual device model for the AT30500 chip from Agilent Semiconductor. It is available on the Agilent Semiconductor website at: 2.2.1.2. Turn on pin numbers and names. Start by going to the Options >Preferences menu:2.2.1.3. Select thePin/Tee taband checkboth the PinNumbers andPin Namesboxes. ClickOk.2.2.1.4. View the schematic symbol pageusing View > Create/EditSchematic Symbol. You mayneed to also “Zoom out by 2”.This symbol was created by copyingartwork from the ADS BJT symbol and attaching the 3 pins(Collector = 1, Base = 2, Emitter = 3) associated with our 3ports.View the schematic page again using View > Create/EditSchematic.You can also see the ADS BJT symbol artwork when youopen the following schematic (use Open Design and theBrowse button):D:\Ads2001\circuit\symbols\SYM_BJT_NPN.dsn2.2.1.5. Close the design “SYM_BJT_NPN.dsn” and the design“AT30500.dsn”.2.2.2. AT30500_IC_VCE_Curves.dsn2.2.2.1. Open the design “AT30500_IC_VCE_Curves.dsn”.2.2.2.2. This design shows a typical curve tracer. The inner sweep iscollector-emitter voltage, VCE, from 50 mV to 20V. The outersweep is base current, IB, from 5 uA to 35 uA.2.2.2.3. Run the simulation and view the Data Display results.2.2.2.4. A forward Early plot is shown that displays IC vs. VCEcurves.These typical BJT curves describe how the collector current(IC) varies with base current (IB) and collector-emittervoltage (VCE).One of the parameters that can be extracted from this curveset is VAF, the forward Early voltage.If you were to extend linear fits to these curves, down pastVCE = 0 V, down to negative VCE values, the fitted lineswould all meet at one point, (x,y) = (-VAF,0).In our AT30500 model, the VAF parameter is 105 Volts, whichis quite good. VAF’s better than 50 Volts are very desirable.A VAF of infinity would be ideal. This ideal transistor, with aVAF of infinity, would provide a constant collector current nomatter what the collector-emitter voltage is.2.2.2.5. Close the Data Display and Simulation Status Window. Closethe design “AT30500_IC_VCE_Curves.dsn”.2.2.3. AT30500_IC_and_IB_vs_VBE.dsn2.2.3.1. Open the design “AT30500_IC_and_IB_vs_VBE.dsn”.2.2.3.2. This schematic shows the next test one might run on a BJTdevice. This test varies base-emitter voltage (VBE) andmeasures base current (IB) and collector current (IC).This test holds VCE constant at 5 Volts, a typical operatingpoint.2.2.3.3. Run the simulation andview the results in theData Display.2.2.3.4. The Data Display has two pages. The first is titled “Beta”. Itshows how forward current gain (Beta or BF) varies withVBE. The maximum Beta is calculated, as well as, the VBE atwhich it occurs.2.2.3.5. The second Data Display page is titled “IC and IB”. The graphon this page shows how IB and IC vary with VBE. Themarkers are located at the maximum Beta point of VBE =0.736 V. IB and IC at this maximum Beta point are alsodisplayed.log(Beta) is the vertical distance between the IC and IBtraces on this semi-log plot:Beta = IC / IB è log(Beta) = log(IC) – log(IB)2.2.3.6. Close the Data Display. Do not save DDS changes. Close theSimulation Status Window. Close the design.2.2.4. AT30500_Extraction_of_IS_and_NF.dsn2.2.4.1. Open the design “AT30500_Extraction_of_IS_and_NF.dsn”.2.2.4.2. In this schematic, VBE is being swept. The equations inVAR1 set VBE equal to VCE, so that the base-collectorjunction has 0 Volts across it and does not activate.Under these conditions, we can extract the BJT modelparameters IS and NF.Please note the measurement equationsbeing used to calculate the naturallogarithms of the base and collectorcurrents.2.2.4.3. Simulate and view the results in the Data Display.2.2.4.4. The Data Display has two pages. The first page is titled“Extracting NF and IS”.On this page, the natural logarithms of IB and IC are plottedversus VBE. Two markers are again inserted onto the linearportion of the ln(IC) curve.The slope is calculated and NF is computed from it.NF = 1.030Compare this to the NF model parameter in the“AT30500.dsn” schematic.The y-intercept is calculated and IS is computed from it.IS = 7.8 x 10-17Compare this to the IS model parameter in the “AT30500.dsn”schematic.2.2.4.5. The second Data Display page shows an alternative methodof calculating the slope and extracting NF, using the “diff( )”function.2.2.4.6. Close the Data Display. Do not save DDS changes. Close theSimulation Status Window. Close the design“AT30500_Extraction_of_IS_and_NF.dsn”.2.3. Model Binning2.3.1. Model_Binning_BJT_Example.dsn2.3.1.1. Open the schematic “Model_Binning_BJT_Example.dsn”.2.3.1.2. Sometimes, a device can be drastically different dependingon the device size. This is especially true with empirical(curve-fit) models. This design shows how Model Binningcan change model cards based on device size (Area).2.3.1.3. There are 3 different BJT size ranges in this schematic, eachwith its own Gummel-Poon model. “Beta” is the ONLYparameter that varies in this particular case:SmallBJT: Beta = 150Valid for emitter area scale factors(Area) between 20 and 30.MediumBJT: Beta = 50Valid for emitter area scale factors(Area) between 30 and 40.LargeBJT: Beta = 25Valid for emitter area scale factors(Area) between 40 and 50.2.3.1.4. Notice that the “Model” field on the BJT points to“BinModel1”, the Model Binning component, instead of amodel card.2.3.1.5. Double-click on theModel Binningcomponent(BinModel1). Noticethe parameter thatwill vary is “Area”.This parameter mustbe defined on the BJTdevice itself. Closethe dialog box byusing “Cancel”.2.3.1.6. The minimum areasand maximum areasshown here determine which model card will be used for agiven device area.2.3.1.7. Check the DC simulation component in the schematic. Thissimulation will sweep VBE while current probes measureboth IB and IC. Notice that VCE = 3 Volts for this example.The equation, “Meas1”, defines Beta as forward current gain.2.3.1.8. Nested around the DC simulation is a Parameter Sweep,“Sweep1”. This Parameter Sweep will change the “size” or“area” of the transistor from 25 to 45 in steps of 10. Thisshould enable the use of all three size models.2.3.1.9. Change the Component Palette to “Devices - BJT”. Note thatthe upper left icon in the palette is the Model Binningcomponent.2.3.1.10. Run the simulation and viewthe results in the Data Display.2.3.1.11. There are two pages to the Data Display. The first showscollector current (IC) and base current (IB) versus VBE. Thesecond page shows Beta versus VBE. Indeed, Beta isdifferent for the different size devices. Notice that for the“size=25” device, Beta does not quite reach 150. This is dueto the interaction of Beta with other parameters such as IKFand VAF.2.3.1.12. Go back to the schematic and change IKF to 80e-3 for allthree models. Re-simulate. View the results.Return to the schematic again and change IKF back to 40e-3for all three models. Change VAF on all three models to 75.Re-simulate.Notice the effect of IKF and VAF on measured Beta. Modelparameters can sometimes have significant interactions.2.3.1.13. View the first Data Display page where IC and IB are shownversus VBE. Double click on the plot grid. This will bring upthe “Plot Options” dialog box. Double clicking on the tracewould bring up the “TraceOptions” dialog box.Select the “Plot Options” tab.Select the “Y-Axis” on the left.Click “More” to the right of“Axis Label”. Notice the formatis “Engineering”. This makesthe Y-Axis list out in nA, uA,and mA instead of scientificexponential notation. Click“Cancel” and “Cancel” to closethe dialog boxes.2.3.1.14. Return to the first DDS page. Save the schematic and theData Display. Close the Data Display and Simulation StatusWindow. Close the design“Model_Binning_BJT_Example.dsn”.2.3.2. Model_Binning_MOSFET_Example.dsn2.3.2.1. Open the schematic“Model_Binning_MOSFET_Example.dsn”.2.3.2.2. This design shows the model binning concept in 2 dimensions(W and L). The previous BJT model binning design showedbinning only in one dimension (Area).2.3.2.3. The purpose of model binning is to enable device modelingengineers to have different models for a device depending onits size (Area) or geometry (W, L). This can be veryimportant for small devices (e.g. short-channel MOSFET’s),where the behavior of the device changes drastically withgate width and gate length.2.3.2.4. This schematic uses the SPICE Level 1 MOSFET model forsimplicity while demonstrating the model binning concept.In reality, modeling engineers and IC designers who workwith the Berkeley BSIM3 MOSFET model deal withgeometry-dependence all the time.2.3.2.5. BSIM3 is one of the most recent and most “accurate”MOSFET models. Where “accurate” means that the modelequations match the measured data in most instances andeffectively predict device performance over wide ranges ofbias, temperature, and device size.The BSIM3 model is a MOSFET model that deals with short-channel MOSFET’s. Short-channel MOSFET’s are verycommon technology today, found in many modern SiGe andBiCMOS processes.BSIM3 has over 100 model parameters total. The acronymBSIM stands for Berkeley Short-Channel Insulated Gate FETModel. The latest version is BSIM4. Both BSIM3 and BSIM4will be available shortly in ADS and IC-CAP.To see the BSIM3 model in the ADS schematic window,change to the “Devices-MOS” component palette. Thispalette contains many different MOSFET models includingBSIM1, BSIM2, BSIM3, and BSIM3SOI. BSIM3SOI is forsilicon-on-insulator technologies. Insert some model cardsand check them out. Delete these model cards when you arefinished reviewing them.2.3.2.6. Take another look at the schematic. Notice that only one DCbias point is being simulated here:VGS = 2.5 Volts VDS = 5.0 VoltsSince VTO = 0.827 Volts, VGS is greater than VTO. Therefore,the device must be in the “ohmic” or “saturation” regions.However, VDS is much greater than (VGS-VTO). Therefore,this device is in the “saturation” region, where the VGSsquare-law characteristic applies:IDS = 0.5*KP*(W/L)*(VGS-VTO)2*(1+LAMBDA*VDS) 2.3.2.7. Look closely at VAR4. Here, the variable “Ratio” is defined asthe ratio of W/L. This is an important quantity in IC design, asmentioned earlier.2.3.2.8. Notice the VAR variables passed to the Data Display in theDC simulation (DC1):LAMBDA, Ratio, VDS, VGS, and VTOThese will be important in the extraction of KP for each ofour different sized devices.2.3.2.9. The parameters “Length” and Width” are part of the MOSFETdevice “MOSFET1”. Model binning can ONLY be done withparameters that are part of the actual device (like Length,Width, and Temp.2.3.2.10. Take a close look at the Parameter Sweep, “Sweep1”, and theDC simulation, “DC1”. Notice that there will be a total of fourdevices simulated, over a range of two different lengths andtwo different widths:Device 1: W = 100 um, L = 10 um (W/L = 10)Device 2: W = 100 um, L = 50 um (W/L = 2)Device 3: W = 500 um, L = 10 um (W/L = 50)Device 4: W = 500 um, L = 50 um (W/L = 10)2.3.2.11. Take a look at the four device models. Notice the onlydifference is the KP (transconductance) parameter:ShortNarrow: KP = 20uA/V2ShortWide: KP = 60 uA/V2LongNarrow: KP = 10 uA/V2LongWide: KP = 30 uA/V22.3.2.12. Double-click on the Model Binning component (BinModel1):Notice the Length and Width ranges for the four models.Close the model binning window with “Cancel”.2.3.2.13. When the simulation is run, the four devicetransconductances should come out like this:Device 1: W = 100 um, L = 10 um, KP = 20 uA/V2Device 2: W = 100 um, L = 50 um, KP = 10 uA/V2Device 3: W = 500 um, L = 10 um, KP = 60 uA/V2Device 4: W = 500 um, L = 50 um, KP = 30 uA/V22.3.2.14. Run the simulation andview the results in theData Display.2.3.2.15. View the first Data Display page, “Operating Region”. Thecalculations here verify that the devices are in the“saturation” region. Thus, the following formula can be usedto extract KP:KP = IDS / (0.5*Ratio*(VGS-VTO)2*(1+LAMBDA*VDS))To use this formula, the following parameters were sentforward from the schematic:Ratio, VGS, VTO, LAMBDA, VDS2.3.2.16. View the second Data Display page, “Calculated KP’s”. Thevalues of the passed parameters are listed out. KP’s areextracted using the above formula. The KP’s match thevalues listed in the four models.2.3.2.17. Note that the W (width) and L (length) values are shown inmicrons. Double click on any listing column. Change to the“Plot Options” tab. Notice the format is “Engineering”.2.3.2.18. Close the Data Display. Do not save DDS changes. Close theSimulation Status Window. Close the design“Model_Binning_MOSFET_Example.dsn”.3. VENDOR_MODELS_prj3.1. AT36 Chip PHEMT3.1.1. ATF36_CHIP_MODEL.dsn3.1.1.1. Copy and Open the project “VENDOR_MODELS_prj”.3.1.1.2. Open the schematic “ATF36_CHIP_MODEL.dsn”.3.1.1.3. This is the model of the ATF36 PHEMT chip from AgilentSemiconductor.3.1.1.4. A PHEMT is a pseudomorphic high mobility electron device.Think of a PHEMT like a GaAsFET with a heterojunction.Similarly, think of HBT’s (heterojunction bipolar transistors)as BJT’s with heterojunctions.3.1.1.5. A heterojunction is a semiconductor junction where twodissimilar semiconductor materials meet (like InGaAs andGaAs).3.1.1.6. Before heterojunctions were developed in HBT’s andHEMT’s, semiconductor devices used homojunctions whereboth the p-doped and n-doped materials were silicon, or bothGaAs.3.1.1.7. Heterojunctions add another degree of freedom for devicedesigners. They allow device designers to optimizeproperties like HBT base resistance and HBT current gainindependent of each other. Whereas, before with siliconBJT’s, these two properties were inextricably linked together.3.1.1.8. With heterojunctions of different materials, device designerscan now control the bandgap voltage of the junction bychanging the junction materials on either side (InGaAs –GaAs junction) or by changing their stoichiometric ratios(e.g. Ga0.47In0.53As - GaAs). This is important for LED’s sincethe bandgap voltage of an LED is directly related to thewavelength of light emitted.3.1.1.9. Look back at the AT36_CHIP_MODEL schematic. Notice thatthe Statz GaAsFET model is being used here. Agilent choseto use this model because it best fits the measured data (eventhough the Statz model was developed for GaAsFET’s, notPHEMT’s). However, GaAsFET’s and PHEMT’s aresomewhat similar in construction, concept, and operation.3.1.1.10. Currently, there are few industry-standard PHEMT models,because PHEMT’s are relatively new devices. Some modelsthat are used for PHEMT’s come from GaAsFET models, likeEEFET3 and Statz. However, the EEHEMT1 model wasdeveloped specifically for HEMT’s and PHEMT’s.3.1.1.11. Double-click on the Statz model card. Click “Help”. Thesehelp pages show the Statz I-V equations, as well as, otherrelated material. The reference for the Statz model is listedat the end of the help pages. Close the “Help” page. Click“Cancel”.Close the “ATF36_CHIP_MODEL.dsn” schematic.3.2. ATF36077 Packaged PHEMT3.2.1. ATF36077_HB_Convergence.dsn3.2.1.1. Open the schematic, “ATF36077_HB_Convergence.dsn”.3.2.1.2. Take a look at the schematic. Note the use of a circulatoragain to isolate the “Vsource” node.3.2.1.3. This design looks like a normal harmonic balance simulationwith the “RF_freq” variable setting the same frequency in theharmonic balance controller and on the source. The“RF_power” variable is also present to make changing theinput power level easy.3.2.1.4. However, notice the two extra blocks, “SwpPlan1” and“Sweep1”. Also notice the variable “Order” in VAR2, and inthe harmonic balance controller, “HB1”.“SwpPlan1” sets variable “Order” from 3 to 25 in steps of 1.“Sweep1” performs a harmonic balance simulation for eachvalue of “Order”. Thus, harmonic balance simulations areperformed with the Order parameter set from 3 to 25.3.2.1.5. Run the simulation and viewthe results in the Data Display.3.2.1.6. There are two pages in the Data Display. The first shows thevalues of the fundamental, second harmonic, and thirdharmonic versus Order. Please study these closely anddiscuss them with your instructor.Notice that all harmonic levels may not converge at the sameOrder. Notice the fundamental and second harmonicsconverge at about Order = 15. Whereas, the third harmonicconverges at about Order = 12.Harmonics can also converge at different Orders for eachcircuit.From these results, we can conclude that for a harmonicbalance simulation, the Order parameter should bedetermined by iteration for every circuit.Follow the general procedure:1) Start with Order = 3. Simulate. Check allharmonic power levels.2) Change the Order to 5. Simulate. Check allharmonic power levels again. Are they changing orare they the same?3) If they are changing, increase the Order until theharmonic power levels remain approximately thesame.Start with Order = 3 since this will be a fast simulation.Higher Orders result in longer simulation times, but moreaccurate results.3.2.1.7. Change to the second Data Display page. This page showsthe same data as the first page, but in tabular form. Noticethe number of frequencies increases directly with increasingorder.3.2.1.8. Stay on page 2 and save the Data Display. Close the DataDisplay. Re-open the same Data Display. Notice that it opensup starting on page 2 now. Change to page 1 and save theData Display.3.2.1.9. Close the Data Display. Close the Simulation Status Window.Close the schematic.4. SDD_EXAMPLES_prj4.1.1. Amplifier_Model_DC.dsn4.1.1.1. Copy and open the “SDD_EXAMPLES” project.4.1.1.2. Open the schematic “Amplifier_Model_DC.dsn”.4.1.1.3. This design performs a DC sweep from –2 Volts to +2 Voltson the input of this amplifier circuit. The output is loadedwith a 1 Megaohm resistor.4.1.1.4. The amplifier is a subcircuit. It has a small signal gain (A) of20, and input resistance (Ri) of 100 Megaohms, an outputresistance (Ro) of 0 Ohms, and a supply limit (Vs) of +/- 15Volts. These amplifier parameters are passed into thesubcircuit via “File > Design Parameters”.4.1.1.5. Let’s take a look at the amplifier subcircuitby pushing down into it:4.1.1.6. Notice the use of atwo-port SDD(SDD2P).An SDD is a“symbolically defineddevice” which isdefined in the timedomain.。

iw3616、3617、3630datasheet中文翻译(绝对真实)

iw3616、3617、3630datasheet中文翻译(绝对真实)

产品特色大幅简化离线式LED驱动器设计●单级功率因数校正(PFC)与精确恒流(CC)输出相结合●输入/输出电容和变压器体积小●一次侧反馈控制,无需光耦电路,简化了电路设计●简化初级侧PWM调光接口●符合IEC61000-3-2标准高效节能和高兼容性●大幅提升效率,可达到85%以上●减少元件数量●总谐波失真<15%且PF>0.95●前沿、后沿和数字调光器●传感器和定时器精确稳定的性能●LED负载恒流精度不低于±5%●支持LED负载热插拔●1%-100%宽范围调光,调光无闪烁先进的保护及安全特性●通过自动重启动提供短路保护●开路故障检测模式●自动热关断重启动无论在PCB板上还是在封装上,都保证高压漏极引脚与其他所有信号引脚之间满足高压爬电要求应用●LED离线固态照明说明G7617 是一款的适用于LED调光控制的离线式两级交流/直流电源控制器,是适用于25W 输出功率的可调光LED 灯具的最优之选。

G7617符合电磁兼容性(EMC) IEC61000-3-2 标准,在120V AC或230V AC输入电压下其功率因数(PF) 可达到0.95 以上。

采用先进的数控技术来检测调光器的类型和相位,为调光器提供动态阻抗的同时可调节LED发光亮度,自动检测调光器类型和相位,从而实现了业内与模拟及数字调光器最广泛的兼容性。

G7617工作于准谐振工作模式,工作效率高,可工作于前沿后沿调光模式,也可工作于R 型、R-C型或R-L型调光控制模式。

G7617 符合热插拔LED 模块的固态照明行业标准Zhaga,同时还集成了调光功能的映射选项(位于白炽灯替代灯的NEMA SSL6 调光曲线内)。

G7617 系列有两个版本:针对120V AC输入应用进行优化的G7617-00 和针对230V AC 应用进行优化的G7617-01。

订购信息应用框图图1典型应用内部框图Vcc VinVcbVT CFGASU BisenseBdrvFdrvFisensePGNDAGND C O R E图2 内部框图引脚功能描述BV SENSE V IN BI SENSE B DRV CFG ASU V CCV CBV TFV SENSEFI SENSEF DRVAGNDPGND 图3. 引脚布局BV SENSE引脚:PFC电感电压反馈点,用于感知Boost电感的磁通状态。

FP7 Motion Control Unit AFP7MC16EC 说明书

FP7 Motion Control Unit AFP7MC16EC 说明书

※Photo may vary from actual product.Product NumberAFP7MC16EC Part NumberAFP7MC16EC ProductFP7 Motion Control Unit DetailsEtherCAT type Product name FP7 Motion control unit AFP7MC16EC | FP7 Motion control unitSpec DetailAs of March 27, 2023Specifications and design of the products are subject to change without notice for the product improvement.ItemSpecificationsProduct NumberAFP7MC16EC Part Number AFP7MC16EC Connected slave Panasonic AC servo motor MINAS A6B / A5B series EtherCAT-compatible S-LINK V gateway controller SL-VGU1-EC (Note1) A6B and SL-VGU1-EC are compatible with the FP7 motion control unit Ver.1.2 or later.(Note2) One unit or more A6B or A5B must exist on the network. Also,A6B and A5B can both be used on the network.(Note3) The hub for EtherCAT / Ethernet cannot be used.Number of control axes Real axis : 16 axesVirtual axis : 8 axesCommunication cycle 0.5ms / 1ms / 2ms / 4msInterpolation control 2-axis linear interpolation, 2-axis circular interpolation,3-axis linear interpolation and 3-axis spiral interpolationNumber of occupied I/O points Input : 16 points, Output : 16 pointsAutomatic operation : Positioning control (CSP) : Position specification method Absolute (specified absolute position), Increment (specified relativeposition)Automatic operation : Positioning control (CSP) : Position specified unit pulseμm (select a minimum instruction unit of 0.1 μm or 1 μm)inch (select a minimum instruction unit of 0.00001 inch or 0.0001 inch)degree (select a minimum instruction unit of 0.1 degree or 1 degree)Automatic operation : Positioning control (CSP) : Position reference range pulse : -2,147,483,648 to 2,147,483,647pulseμm (0.1μm) : -214,748,364.8 to 214,748,364.7μmμm (1μm) : -2,147,483,648 to 2,147,483,647μminch (0.00001inch) : -21,474.83648 to 21,474.83647inchinch (0.0001inch) : -214,748.3648 to 214,748.3647inchdegree (0.1degree) : -214,748,364.8 to 214,748,364.7degreedegree (1degree) : -2,147,483,648 to 2,147,483,647degreeAutomatic operation : Positioning control (CSP) : Speed reference rangepulse : 1〜2,147,483,647ppsμm : 1〜2,147,483,647μm/sinch : 0.001〜2,147,483.647inch/sdegree : 0.001〜2,147,483.647rev/s Automatic operation : Positioningcontrol (CSP) : Acceleration /deceleration typeLinear acceleration/deceleration,S-shaped acceleration/deceleration Automatic operation : Positioningcontrol (CSP) : Acceleration /deceleration time0 to 10,000ms(adjustable in 1 ms increments)Automatic operation : Positioningcontrol (CSP) : Number of positioningtables Each axis : 1,000 pointsAutomatic operation : Positioning control (CSP) : Control method : Independent PTP control (E point control, C point control), CP control (P point control), Speed control (J point control)Automatic operation : Positioning control (CSP) : Control method : 2-axis interpolation : Linear interpolation E point, P point and C point controls : Specify synthesis speed or major axis speedAutomatic operation : Positioningcontrol (CSP) : Control method : 2-axis interpolation : CircularinterpolationE point, P point and C point controls : Center point or passing pointAutomatic operation : Positioning control (CSP) : Control method : 3-axis interpolation : Linear interpolation E point, P point and C point controls : Specify synthesis speed or major axis speedAutomatic operation : Positioningcontrol (CSP) : Control method : 3-axis interpolation : Spiral interpolationE point, P point and C point controls : Center point or passing pointAutomatic operation : Positioningcontrol (CSP) : Other function : Dwelltime0 to 32,767ms (adjustable in 1 ms increments)Manual operation : JOG/inching operation : Speed reference range pulse : 1〜2,147,483,647ppsμm : 1〜2,147,483,647μm/sinch : 0.001〜2,147,483.647inch/s degree : 0.001〜2,147,483.647rev/sManual operation : JOG/inching operation : Acceleration / deceleration type Linear acceleration/deceleration,S-shaped acceleration/decelerationManual operation : JOG/inchingoperation : Acceleration / decelerationtime0 to 10,000ms (adjustable in 1 ms increments)Manual operation : Home return : Speed reference range pulse : 1〜2,147,483,647ppsμm : 1〜2,147,483,647μm/sinch : 0.001〜2,147,483.647inch/s degree : 0.001〜2,147,483.647rev/sManual operation : Home return : Acceleration / deceleration type Linear acceleration/deceleration,S-shaped acceleration/decelerationManual operation : Home return :Acceleration / deceleration time0 to 10,000ms (adjustable in 1 ms increments)Manual operation : Home return : Return methods DOG method (4 types), Limit method (2 types), Data set method, Z phase method, Stop-on-contact method (2 types)Stop function : Deceleration stop :Deceleration timeAxis operation mode startup time of activated axisStop function : Emergency stop :Deceleration time0 to 10,000 ms (adjustable in 1 ms increments)Stop function : Limit stop :Deceleration time0 to 10,000 ms (adjustable in 1 ms increments)Stop function : Error stop :Deceleration time0 to 10,000 ms (adjustable in 1 ms increments)Stop function : System stop :Deceleration timeImmediate stop (1 ms), all axes stopSynchronous operation function :Synchronous basic setting : MasteraxisSelection possible of real axis and virtual axisSynchronous operation function :Synchronous basic setting : SlaveaxisMax. 8 axes/masterSynchronous operation function :Electronic gear function : OperationsettingGear ratio settingSynchronous operation function :Electronic gear function : OperationmethodDirect method, Acceleration/deceleration methodSynchronous operation function :Electronic clutch function : Clutch ONtriggerContact inputProductNumberAFPSMTEN Part Number AFPSMTENProduct name Control MotionIntegratorProductNumberAFPSMTKEYPart Number AFPSMTKEYProductnameControl MotionIntegratorSynchronous operation function :Electronic clutch function : ClutchmethodDirect method, Linear slide methodSynchronous operation function : Electronic cam function : Cam curve Select from 20 typesMultiple curves can be specified within a phase (0 to 100 %).Synchronous operation function :Electronic cam function : Resolution1024, 2048, 4096, 8192, 16384, 32768Synchronous operation function : Electronic cam function : Number of cam patterns 16 to 64(Depends on resolution)Other specifications : Software limit function : Set range pulse : -2,147,483,648 to 2,147,483,647pulseμm (0.1μm) : -214,748,364.8 to 214,748,364.7μmμm (1μm) : -2,147,483,648 to 2,147,483,647μminch (0.00001inch) : -21,474.83648 to 21,474.83647inch inch (0.0001inch) : -214,748.3648 to 214,748.3647inch degree (0.1degree) : -214,748,364.8 to 214,748,364.7degree degree (1degree) : -2,147,483,648 to 2,147,483,647degreeOther specifications : Monitor judgment : Torque judgment Torque judgmentSelection possible of active/non-active and error/warning 0.0 to ±500.0 %Other specifications : Monitor judgment : Actual speed judgment Actual speed judgmentSelection possible of active/non-active and error/warning 0.0 to ±5,000 rpmOther specifications : Backup Parameters and positioning data are saved to flash memory (battery free)Other specifications ・Limit input CWL, CCWL monitor and proximity (DOG) monitor・General-purpose input : 5 points, General-purpose output : 1 point (I/O from AMP)・Auxiliary output contact and auxiliary output cord[[COMMON GENERALSPECIFICATIONS]]Ambienttemperature0 to +55 ℃+32 to +131 ℉, Storage: -40 to +70 ℃-40 to +158 ℉[[COMMON GENERAL SPECIFICATIONS]]Ambient humidity 10 to 95 % RH (at +25 ℃+77 ℉, no condensation), Storage: 10 to 95 % RH (at +25 ℃+77 ℉, no condensation)[[COMMON GENERAL SPECIFICATIONS]]Vibration resistance 5 to 8.4 Hz, single amplitude of 3.5 mm 0.138 in, 1 sweep/min. (IEC 61131-2) ; 8.4 to 150 Hz, constant acceleration of 9.8 m/s2, 1 sweep/min. (IEC 61131-2), 10 times each in X, Y, and Z directions[[COMMON GENERALSPECIFICATIONS]]Shock resistance147 m/s2 or more ,3 times each in X, Y, and Z directions (IEC61131-2)[[COMMON GENERALSPECIFICATIONS]]Noise immunity1,000 V [p-p] with pulse width 50 ns and 1 μs (using a noise simulator)[[COMMON GENERALSPECIFICATIONS]]OperatingconditionFree from corrosive gasses and excessive dust[[INDIVIDUAL GENERALSPECIFICATIONS]]Rated voltagerange-[[INDIVIDUAL GENERALSPECIFICATIONS]]Currentconsumption180 mA approx.[[INDIVIDUAL GENERALSPECIFICATIONS]]Net weight150 g approx.Accessories© Panasonic Industry Co., Ltd.。

AX-18F AX-18A 微 denominator 小型禁 Beat motor 技术说明书

AX-18F AX-18A 微 denominator 小型禁 Beat motor 技术说明书
EEPROM Area
Model Number It represents the Model Number.
Firmware Version It represents the firmware version.
ID
It is a unique number to identify Dynamixel. The range from 0 to 253 (0xFD) can be used, and, especially, 254(0xFE) is used as the Broadcast ID. If the Broadcast ID is used to transmit Instruction Packet, we can command to all Dynamixels.
-
40 (0X28)
Present Load(L)
Lowest byte of Current Load R
-
41 (0X29)
Present Load(H) Highest byte of Current Load R
-
42 (0X2A)
Present Voltage
Current Voltage
RW 250 (0XFA)
CW Angle Limit(L)
Lowest byte of clockwise Angle Limit
RW
0 (0X00)
CW Angle Limit(H)
Highest byte of clockwise Angle Limit
RW
0 (0X00)
CCW Angle Limit(L)
Max Torque(L)
Lowest byte of Max. Torque RW 215 (0XD7)

IRFB3607PBF中文资料

IRFB3607PBF中文资料

Ω ns VDD = 49V
ID = 46A RG = 6.8Ω VGS = 10V g pF VGS = 0V VDS = 50V ƒ = 1.0MHz
Coss eff. (ER) Effective Output Capacitance (Energy Related)j ––– 380 ––– Coss eff. (TR) Effective Output Capacitance (Time Related)h ––– 610 –––
170 ––– ––– ––– 56 84 ––– 13 ––– ––– 16 ––– ––– 40 –––
S VDS = 50V, ID = 46A nC ID = 46A
VDS = 38V VGS = 10V g ID = 46A, VDS =0V, VGS = 10V
RG(int) td(on) tr td(off) tf Ciss Coss Crss
Internal Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
––– 0.55 ––– ––– 16 ––– ––– 110 ––– ––– 43 ––– ––– 96 ––– ––– 3070 ––– ––– 280 ––– ––– 130 –––
75 ––– ––– ––– 0.096 ––– ––– 7.34 9.0 2.0 ––– 4.0 ––– ––– 20
V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 5mAd mΩ VGS = 10V, ID = 46A g

atf低噪放的参数

atf低噪放的参数

atf低噪放的参数
ATF低噪声放大器(Low Noise Amplifier,LNA)是一种用于
增强微弱信号的放大器,通常用于无线通信系统和射频接收链路中。

其参数包括增益、噪声系数、带宽、输入/输出阻抗匹配等。

首先,ATF低噪声放大器的增益是指其输出信号与输入信号之
间的增加倍数,通常以分贝(dB)为单位。

增益的大小取决于应用
需求,一般在设计时需要根据具体的信号强度和系统要求来确定。

其次,噪声系数是衡量放大器引入的噪声相对于理想放大器
(不引入噪声)的影响程度的参数。

噪声系数越小,表示放大器引
入的噪声越少,这对于接收弱信号时尤为重要。

另外,带宽是指放大器能够有效放大信号的频率范围。

对于
ATF低噪声放大器来说,带宽需要足够宽,以覆盖所需的信号频率
范围,同时保持良好的增益和噪声性能。

此外,输入/输出阻抗匹配也是ATF低噪声放大器设计中需要考虑的重要参数。

良好的阻抗匹配可以最大限度地传输信号,减少信
号反射和损耗。

总的来说,ATF低噪声放大器的参数包括增益、噪声系数、带宽和输入/输出阻抗匹配等,这些参数在设计和选择时需要根据具体的应用需求和系统要求进行综合考虑。

Toyota Camry ATF保养指南说明书

Toyota Camry ATF保养指南说明书

說明及範例使用每一車廠別目錄查詢 車廠代號索引頁碼依 符號指示往後頁掀,找出本款車ATF 交換模式。

(在718頁)符號指示往後頁掀,找出本款車傳2023新潤滑‧保養年鑑介紹 俗稱紅皮書(無油尺式天書)‧全新公版菊8開‧832頁‧內頁黑白印刷‧軟精裝版‧全一冊售價NT$4,000元。

2023~2016年共8年間(每8年出刊一次),全部國產、亞洲、歐洲進口車系(A~Z車系)。

A LL NEW2023年全新第5代AT∕CVT∕DSG∕AMT(S-6~S-14)1. 第5代前驅8~10速金屬鋼帶式無段變速箱CVTF換油模式及自我學習(S-15~16)2. 第5代油電車無段式變速箱E-CVT ATF換油模式及自我學習(S-19~20)3. 8~10速電腦控制自動變速箱ATF換油模式及自我學習(S-21~26)4. 7~8速溼式自手排變速箱DSGF換油模式及自我學習(S-27~30)5. 5.0噸商用車AMT-後∕4驅5/6速自手排變速箱換油模式(S-34~35)6. 主動式電腦控制AWD全輪傳動換油模式及自我學習(S-31~34)7. 行動載具與網路、社群數位營銷高手8. ATF銷售戰略與常見問題FAQA LL NEW全新第5代無油尺式天書免專用機手動CVTF∕ATF∕DSGF換油模式(S-15、S-16、S-18、S-19)獨家免專用機,更勝原廠機的路試實車自我學習:強勁、省油、順暢三必勝秘技!(S-16、S-24)48V輕油電車及I-stop怠速熄火起閉系統配備:ATF∕CVTF電子油泵獨門免專儀、免失誤、不亮燈之路試排除空氣丿步。

油孔位置:單獨1頁由車下往上仰視實車照片,看到全部加、檢、放三合一等全部自排及傳動系統之油孔位置。

(S-25、S-27)技術地雷:常見故障徵兆與預防對策,避免換一次油,賠一顆變速箱。

(S-20、S-31) 全額交換:原廠皆已實際採全容量交換,以維持最佳性能,避免新、舊油混合,電腦無法判定,引起變速箱故障。

FLIR T360 T-Series 红外相机说明书

FLIR T360 T-Series 红外相机说明书

FLIR T360•High Resolution IR Images — 76,800 pixels (320 x 240) Infrared resolution•Visible Light Digital Camera — 3.1MP resolution with flash provides sharp images regardless of lighting conditions•4X Continuous Zoom — Zoom with auto/ manual focus•Rotating Lens — Rotating lens detents up to 120° for easy viewing angle •Scalable Thermal Fusion — Blending of thermal and digital images in real-time •Scalable Picture in Picture (PIP) Fusion —Displays thermal image super-imposed over a digital image•Video Lamp — Allows the visual camera and fusion to be used in poorly lit environments•Hig h T emperature Rang e — measuring up to 1202°F (650°C) targeting electrical and industrial applications; Optional higher temperature up to 2192°F/1200°C available •± 2% Accuracy — reliable temperature measurement•Thumbnail Image Gallery — Allows quick search of stored images•Li-Ion Rechargable Battery— lasts >4hrs continuous use; replaceable•Copy to USB— Easy upload of an Instant Report, an image, or a folder from the camera to a USB memory stick •Laser LocatIR™ Pointer — Pinpoints areference spot with a laser and aligns amarker to it on the image•IR Window Correction — Menu settingsallow you to account for transmission lossthrough IR windows•Voice Comment Recording — on images& can be integrated onto report•Wireless Communication— Bluetooth®Transmitter with METERLiNK™•Instant Report— Create a T hermographicInspection report directly in the camera•T emperature Screening — Audible alarmsounds when temperature exceedsprogrammable set point•Includes — SD Memory Card (stores>1000 Radiometric JPEG images), Li-Ionrechargeable battery with 100-260V ACadaptor/charger, two rechargeablebatteries, 2-bay battery charger,QuickReport software, USB Mini-B cable,Bluetooth®USB micro adapter, sun shield,stylus pen & headset, camera lens cap,and hard transport case•Interchangeable Optics— Optional6°, 15°, 45°, 90°, Close up: 100, 50,25μm, easily attach to the camera Multifunction Touch Screen Thermal Fusion Differential Temperature• 0.05°C @ 30°C Thermal Sensitivity• Bright Video Lamp• Annotate Images with Voice, Textand Sketch• Thermal Fusion & Picture-in-Picture• 3.5" Touch-Screen LCD Display• Convenient 120° rotating lens• 4X Continuous Zoom• Delta T - Differential Temperature• Instant ReportFLIR T360 FeaturesWarranty extended to 2 years when the camera is registeredApplicationsUtility Market — Utilities worldwide use infrared cameras tolocate problems or to detect hot spots and other problemsbefore they turn into costly failures and production downtimeor dangerous electrical fires.Electrical Inspections — With FLIR thermal imagingcameras electrical contractors can scan electricalcabinets/panels and components for a non-contact viewof conditions.Part Number45302-0201..........................FLIR T360 Thermal Imaging InfraRed Camera (320x240)ACCESSORIES*1196398................................Li-Ion Rechargeable Battery1910399................................AC Adapter Charger (110-240V, U.S. Plug)1910490................................Cigarette Lighter Adapter Kit, 12VDC (1.2m cable)T197650................................2-Bay Battery Charger including Power Supply (multi plugs)1124545................................Camera Pouch CaseT197000................................High Temperature Option 2192°F/1200°CT197613................................BuildIR Software packageT197717................................FLIR Reporter Ver. 8.5 Professional4114887................................FLIR ThermaTrak™CERTIFICATION TRAININGITC LEVEL I ........................ITC Level I Certification Training per attendeeFLIR T360 Specifications*Optional Camera Lenses available. Please refer to the Camera Lens DatasheetSoftware PackagesQuickReport™PC software enables users to Organize, Analyze and Create Reports withFLIR Cameras.FLIR BuildIR Software package specifically designed to carry out advanced analysis ofbuilding structures. It is used to analyze images taken with an infrared camera, andcreate inspection reports based on these images.FLIR Reporter Ver. 8.5is a powerful software for creating compelling and professional,fully customized, easy-to-interpret reports in a standard MS Word Document. You cancreate a report by simply Dragging and Dropping your images on a desktop icon orusing the Wizards to guide you step-by-step through the process. The saved documentis a ‘live’ report with full access to the analysis tools and temperature measurementdata. The reports can be multi-page and include all of your IR inspection data -infraredand visual images, temperature measurements, voice comments and text notes.Panorama FunctionThis unique function allows you to conveniently piece together normal sized imagesto create one large image for a wide angle view of the area being measured by usingFLIR BuildIR or Reporter Software packageInfrared cameras quickly locate problemswith electrical equipmentCollecting current measurements andassociating them with the right componentidentified on an infrared image, can be aSpecifications and prices subject to change without notice. Rev. 03/09/10-R1Copyright © 2010 Extech Instruments Corporation (A FLIR Company). All rights reserved including the right of reproduction in whole or in part in any form.。

ATF_WS_变速器油

ATF_WS_变速器油
2. 在发动机运转的情况下举升车辆 3. 通过溢流塞孔中的 ATF 溢流检查
2. AT起F 动液发位动机 4. 再次紧固溢流塞
3. 激活测试模式
4. 调整 ATF 液位
车身
车身电气
ATF 温度警 告灯
溢流塞 规定扭矩: 20 N·m (205 kgf·cm, 15 ft·lbf)
车型概述
发动机
底盘
6. 安装加油螺塞
7. 降下车辆
4. 调整 ATF 液位
车身
车身电气
加油螺塞 溢流塞
车型概述
发动机
底盘
维修要点( A750E/F 自动变速器)
初始加注/更换 – 维修程序
• 初始加注量
车身
车身电气
维修零件
更换油底壳
更换阀体
更换变矩器
加注量 1.7 L (1.80 US qts., 1.50 lmp. qts.) 4.3 L (4.54 US qts., 3.78 lmp. qts.) 5.4 L (5.70 US qts., 4.75 lmp. qts.)
车身电气
加油螺塞
备注: 如果不遵守此注意事项,可能无法充分发挥其潜能
车型概述
发动机
底盘
维修要点( A750E/F 自动变速器)
液位检查 – 维修程序(测试模式)
1. 重新加注 ATF
2. 起动发动机
3. 激活测试模式 1. 使用 SST,连接 DLC3 的端子 2. 起动发动机 3. 将换档杆换至所有位置
车型概述
发动机
底盘
A750E/F 自动变速器
车身
车身电气
自动变速器油 (ATF) – 低粘度 ATF WS 通过降低其粘度来提高燃油经济性
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ATF-360772–18 GHz Ultra Low Noise Pseudomorphic HEMT Technical DataFeatures• PHEMT Technology• Ultra-Low Noise Figure:0.5 dB Typical at 12 GHz 0.3 dB Typical at 4 GHz • High Associated Gain:12 dB Typical at 12 GHz 17 dB Typical at 4 GHz • Low Parasitic Ceramic Microstrip Package • Tape-and-Reel Packing Option AvailableApplications• 12 GHz DBS LNB (Low Noise Block)• 4 GHz TVRO LNB (Low Noise Block)• Ultra-Sensitive Low Noise AmplifiersFigure 1. ATF-36077 Optimum Noise Figure and Associated Gain vs.Frequency for V DS = 1.5V, I D = 10 mA.Pin Configuration77 PackageN O I S E F I G U R E (d B )FREQUENCY (GHz)A S S O C I A T E D G AI N (d B )Note: 1. See Noise Parameter Table.DescriptionHewlett-Packard’s ATF-36077 is an ultra-low-noise Pseudomorphic High Electron Mobility Transistor (PHEMT), packaged in a low parasitic, surface-mountable ceramic package. Properly matched, this transistor will provide typical 12 GHz noisefigures of 0.5 dB, or typical 4 GHz noise figures of 0.3 dB. Addition-ally, the ATF-36077 has very low noise resistance, reducing the sensitivity of noise performance to variations in input impedance match, making the design of broadband low noise amplifiers much easier. The premium sensitivity of the ATF-36077makes this device the ideal choice for use in the first stage of extremely low noise cascades.The repeatable performance and consistency make it appropriate for use in Ku-band Direct Broad-cast Satellite (DBS) Television systems, C-band Television Receive Only (TVRO) LNAs, or other low noise amplifiers operating in the 2-18␣G Hz frequency range.This GaAs PHEMT device has a nominal 0.2 micron gate length with a total gate periphery (width)of 200 microns. Proven gold based metalization systems and nitride passivation assure rugged, reliable devices.ATF-36077 Electrical Specifications,T C = 25°C, Z O = 50 Ω, V ds = 1.5 V, I ds = 10 mA, (unless otherwise noted).Symbol Parameters and Test ConditionsUnits Min.Typ.Max.NF Noise Figure [1] f = 12.0 G Hz dB 0.50.6G A Gain at NF [1] f = 12.0 G HzdB 11.012.0g m Transconductance V DS = 1.5 V, V G S = 0 V mS 5055I dss Saturated Drain Current V DS = 1.5 V, V G S = 0 V mA 152545V p 10 %Pinch-off VoltageV DS = 1.5 V, I DS = 10% of I dssV-1.0-0.35-0.15Note:1. Measured in a fixed tuned environment with Γ source = 0.54 at 156°; Γ load = 0.48 at 167°.Thermal Resistance [2,3]:θch-c = 60°C/WNotes:1. Operation of this device above any one of these parameters may cause permanent damage.2. Measured at P diss = 15 mW and T ch =100°C.3. Derate at 16.7 mW/°C for T C > 139°C.ATF-36077 Absolute Maximum RatingsAbsolute Symbol ParameterUnits Maximum [1]V DS Drain – Source Voltage V +3V GS Gate – Source Voltage V -3V GD Gate-Drain Voltage V -3.5I D Drain CurrentmA I dss P T Total Power Dissipation [3]mW 180P in max RF Input Power dBm +10T ch Channel Temperature °C 150T STGStorage Temperature°C-65 to 150ATF-36077 Characterization Information,T C = 25°C, Z O = 50 Ω, V ds = 1.5 V, I ds = 10 mA, (unless otherwise noted).Symbol Parameters and Test ConditionsUnits Typ.NF Noise Figure (Tuned Circuit) f = 4 GHz dB 0.3[2]f = 12 G Hz dB 0.5G A Gain at Noise Figure (Tuned Circuit) f = 4 GHz dB 17f = 12 G HzdB 12S 12 off Reverse Isolationf = 12 G Hz, V DS = 1.5 V , V G S = -2 VdB 14P 1dB Output Power at 1 dB Gain Compression f = 4 GHz dBm 5f = 12 G Hz dBm 5V GS 10 mAGate to Source Voltage for I DS = 10 mAV DS = 1.5 VV-0.2Note:2. See noise parameter table.ATF-36077 Typical Scattering Parameters,Common Source, Z O = 50 Ω, V DS = 1.5 V, I D = 10 mAFreq.S11S21S12S22 GHz Mag.Ang.dB Mag.Ang.dB Mag.Ang.Mag.Ang.1.00.99-1714.00 5.010163-36.080.016780.60-142.00.97-3313.814.904147-30.330.030660.59-283.00.94-4913.534.745132-27.250.043540.57-414.00.90-6513.17 4.556116-25.320.054430.55-545.00.86-7912.78 4.357102-24.040.063330.53-666.00.82-9312.39 4.16288-23.170.069240.50-787.00.78-10712.00 3.98175-22.580.074160.48-898.00.75-12011.64 3.82062-22.170.07880.46-999.00.72-13311.32 3.68249-21.900.08010.44-10910.00.69-14611.04 3.56637-21.710.082-60.42-11911.00.66-15910.81 3.47325-21.570.083-130.40-12912.00.63-17210.63 3.40113-21.440.085-190.38-13913.00.6117510.50 3.3491-21.320.086-250.37-14914.00.6016110.41 3.315-12-21.190.087-320.35-16015.00.5814710.36 3.296-24-21.040.089-390.33-17116.00.5713110.34 3.289-37-20.870.091-470.3117717.00.5611410.34 3.289-50-20.690.092-550.2916418.00.579710.35 3.291-64-20.530.094-650.26148 ATF-36077 Typical “Off” Scattering Parameters,Common Source, Z O = 50 Ω, V DS = 1.5 V, I D = 0 mA, V GS = -2 VFreq.S11S21S21S22 GHz Mag.Ang.dB Mag.Ang.dB Mag.Ang.Mag.Ang.11.00.96-139-14.20.19-43-14.20.19-430.97-12512.00.95-152-14.00.20-56-14.00.20-560.97-13713.00.94-166-13.80.20-69-13.80.20-680.96-149ATF-36077 Typical Noise Parameters, Common Source, Z= 50 Ω, V = 1.5 V, I = 10 mA(0.021)(0.004)TYPICAL DIMENSIONS ARE IN MILLIMETERS (INCHES).。

相关文档
最新文档