通用版2019版高考数学(文)二轮复习:4套“12+4”限时提速练(含解析)
2019高考数学(文)通用版二轮精准提分练:12+4满分练(1)Word版含解析
12+4满分练 12+4 满分练(1)1.复数4-2i 1+i 等于( )A.1+3iB.1-3iC.-1+3iD.-1-3i答案 B解析 4-2i 1+i =(4-2i )(1-i )(1+i )(1-i )=4-4i -2i +2i 21-i 2=2-6i 2=1-3i.2.(2018·河北省石家庄二中模拟)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x 2-x ≥0,B ={-1,0,1,2,3},则A ∩B 等于( ) A.{-1,0,3} B.{0,1} C.{0,1,2} D.{0,2,3}答案 B解析 由题意得A ={x |0≤x <2},所以A ∩B ={0,1}.3.如图,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污染,则甲的平均成绩超过乙的平均成绩的概率为( )A.12B.35C.45D.710 答案 C解析 由茎叶图可知,甲的平均成绩为x甲=88+89+90+91+925=90,乙的平均成绩为x乙=83+83+87+99+x5,因为x甲>x 乙,即352+x <450,得x <98,又由题意可知x≥90,且x 是整数,故基本事件为从90到99共10个,而满足条件的为从90到97共8个,故甲的平均成绩超过乙的平均成绩的概率为P =810=45,故选C.4.(2018·宁德模拟)已知等差数列{a n }满足a 3+a 5=14, a 2a 6=33,则a 1a 7等于( )A.33B.16C.13D.12答案 C解析 由题意得a 2+a 6=a 3+a 5=14, a 2a 6=33,所以a 2=3,a 6=11或a 2=11,a 6=3. 当a 2=3,a 6=11时, d =11-36-2=2,a 1=1,a 7=13,∴a 1a 7=13;当a 2=11,a 6=3时, d =3-116-2=-2,a 1=13,a 7=1,∴a 1a 7=13.5.在△ABC 中,点D 满足=3,则( ) A.=13-23B.=13+23C.=23-13D.=23+13答案 D解析 因为=3,所以-=3(-),即=23+13.6.阅读如图所示的程序框图,若输出的数据为58,则判断框中应填入的条件为( )A.k ≤3?B.k ≤4?C.k ≤5?D.k ≤6? 答案 B解析 第一次循环,S =12=1,k =2; 第二次循环,S =2×1+22=6,k =3; 第三次循环,S =2×6+32=21,k =4; 第四次循环,S =2×21+42=58,k =5, 最后输出的数据为58,所以判断框中应填入k ≤4?,故选B. 7.已知x ,y 满足不等式组⎩⎪⎨⎪⎧2x +y -4≥0,x -y -2≤0,y -3≤0,则z =|x +y -1|的最小值为( )A.2B.22C. 2D.1 答案 D解析 不等式组对应的可行域如图阴影部分所示(含边界),因为z =2·|x +y -1|2,所以z 表示可行域内一点到直线x +y -1=0距离的2倍.由可行域可知,点A (2,0)到直线x +y -1=0的距离最短,故z min =1.8.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为(2,0),且双曲线C 的离心率为22,则双曲线C 的渐近线方程为( ) A.y =±2x B.y =±22xC.y =±77xD.y =±7x答案 D解析 依题意知,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一个焦点为(2,0),∴c =2,∵双曲线的离心率为22,∴c a =2a =22,∴a =22,∵c 2=a 2+b 2,∴b =142, ∴渐近线方程为y =±bax =±7x .9.已知在正四棱柱ABCD -A 1B 1C 1D 1中,AB =BC ,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于( ) A.23 B.33 C.23 D.13 答案 A解析 设AC ∩BD =O ,连接OC 1,过C 点作CH ⊥OC 1于点H ,连接DH .∵BD ⊥AC ,BD ⊥AA 1,AC ∩AA 1=A ,AC ,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又CH ⊂平面ACC 1A 1, ∴BD ⊥CH ,又CH ⊥OC 1,BD ∩OC 1=O ,BD ,OC 1⊂平面C 1BD , ∴CH ⊥平面C 1BD ,则∠CDH 为CD 与平面BDC 1所成的角,设AA 1=2AB =2, 则OC 1=CC 21+OC 2=4+⎝⎛⎭⎫222=322,由等面积法得OC 1·CH =OC ·CC 1,代入得CH =23,∴sin ∠CDH =CH CD =23,故选A.10.(2018·西宁模拟)函数f (x )=2x -ln x -1的图象大致为( )答案 A解析 由函数f (x )的定义域为{x |x >0且x ≠1},可排除C ;又f ⎝⎛⎭⎫1e >0,可排除B ;当x →+∞时,f (x )>0,可排除D ,故正确答案为A.11.为测一建筑物的高度,在地面上选取A ,B 两点,从A ,B 两点分别测得建筑物顶端的仰角为30°,45°,且A ,B 两点间的距离为60 m ,则该建筑物的高度为( )A.()30+303 mB.()30+153 mC.()15+303 mD.()15+153 m答案 A解析 在△P AB 中,∠P AB =30°,∠APB =15°,AB =60, sin 15°=sin ()45°-30°=sin 45°cos 30°-cos 45°sin 30°=6-24.由正弦定理,得AB sin ∠APB =PBsin ∠P AB ,即PB =AB ·sin 30°sin 15°=30()6+2,∴建筑物的高度h =PB sin 45°=30()6+2×22=()30+303 m. 12.已知函数f (x )是定义在R 上的奇函数,且当x <0时, f (x )=(x +1)e x ,则对任意m ∈R ,函数F (x )=f (f (x ))-m 的零点个数至多有( ) A.3个 B.4个 C.6个 D.9个答案 A解析 当x <0时, f ′(x )=(x +2)e x ,由此可知f (x )在(-∞,-2)上单调递减,在(-2,0)上单调递增, f (-2)=-e -2,f (-1)=0,且f (x )<1.又f (x )是R 上的奇函数, f (0)=0,而当x ∈(-∞,-1)时, f (x )<0,所以f (x )的图象如图所示.令t =f (x ),则当t ∈(-1,1)时,方程f (x )=t 至多有3个根,当t ∉(-1,1)时,方程f (x )=t 没有根,而对任意m ∈R ,方程f (t )=m 至多有一个根t ∈(-1,1),从而函数F (x )=f (f (x ))-m 的零点个数至多有3个,故选A.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,cos(α-β)=________.答案 -79解析 ∵角α与角β均以Ox 为始边,它们的终边关于y 轴对称, ∴sin α=sin β=13,cos α=-cos β,∴cos ()α-β=cos αcos β+sin αsin β=-cos 2α+sin 2α=2sin 2α-1=29-1=-79.14.下表是某工厂1—4月份用电量(单位:万度)的一组数据:由散点图(图略)可知,用电量y 与月份x 之间有较好的线性相关关系,其线性回归方程是=-0.7x +,则=________. 答案 5.25解析 因为x =1+2+3+44=2.5,y =4.5+4+3+2.54=3.5,所以点(2.5,3.5)在回归直线=-0.7x +上, 即3.5=-0.7×2.5+, 解得=5.25.15.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 1且与x 轴垂直的直线交椭圆于A ,B 两点,直线AF 2与椭圆的另一个交点为C ,若=2,则椭圆的离心率为________. 答案55解析 设C (x ,y ),由=2,得⎩⎪⎨⎪⎧|y |b 2a=12,x =2c ,∴C ⎝⎛⎭⎫2c ,±b22a .又C 为椭圆上一点, ∴(2c )2a 2+⎝⎛⎭⎫±b 22a 2b 2=1,解得e =55.16.(2018·河北省石家庄二中模拟)已知正四面体P -ABC 的棱长均为a ,O 为正四面体P -ABC 的外接球的球心,过点O 作平行于底面ABC 的平面截正四面体P -ABC ,得到三棱锥P -A 1B 1C 1和三棱台ABC -A 1B 1C 1,那么三棱锥P -A 1B 1C 1的外接球的表面积为________. 答案27π32a 2解析 设底面△ABC 的外接圆半径为r , 则asin π3=2r ,所以r =33a . 所以正四面体的高为a 2-⎝⎛⎭⎫33a 2=63a , 设正四面体的外接球半径为R ,则R 2=⎝⎛⎭⎫33a 2+⎝⎛⎭⎫63a -R 2,∴R =64a . 因为64∶63=3∶4, 所以三棱锥P -A 1B 1C 1的外接球的表面积为 4π×⎝⎛⎭⎫64a 2×⎝⎛⎭⎫342=27π32a 2.。
2019高考数学(文科)二轮专题小题提速练(四) Word版含解析
小题提速练(四)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合A ={x |y =lg(x 2+3x -4)},B ={y |y =21-x 2},则A ∩B =( ) A .(0,2] B .(1,2] C .[2,4)D .(-4,0)解析:选B.∵A ={x |x 2+3x -4>0}={x |x >1或x <-4},B ={y |0<y ≤2},∴A ∩B =(1,2],故选B.2.已知复数z 满足z (1-i)2=1+i(i 为虚数单位),则|z |为( ) A.12 B .22C. 2D .1解析:选B.解法一:因为复数z 满足z (1-i)2=1+i ,所以z =1+i (1-i )2=1+i -2i=-12+12i ,所以|z |=22,故选B. 解法二:因为复数z 满足z (1-i)2=1+i ,所以|z |=⎪⎪⎪⎪⎪⎪1+i (1-i )2=|1+i||1-i|2=22,故选B.3.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A .y =-x 3 B .y =ln|x | C .y =cos xD .y =2-|x |解析:选D.显然函数y =2-|x |是偶函数,当x >0时,y =2-|x |=⎝⎛⎭⎫12|x |=⎝⎛⎭⎫12x,函数y =⎝⎛⎭⎫12x在区间(0,+∞)上是减函数.故选D.4.命题“∀x >0,xx -1>0”的否定是( )A .∃x <0,xx -1≤0B .∃x >0,0≤x ≤1C .∀x >0,xx -1≤0D .∀x <0,0≤x ≤1解析:选B.∵x x -1>0,∴x <0或x >1,∴x x -1>0的否定是0≤x ≤1,∴命题的否定是∃x >0,0≤x ≤1,故选B.5.某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则分别应抽取老年人、中年人、青年人的人数是( )A .7,11,18B .6,12,18C .6,13,17D .7,14,21解析:选D.因为该单位共有27+54+81=162(人),样本容量为42,所以应当按42162=727的比例分别从老年人、中年人、青年人中抽取样本,且分别应抽取的人数是7、14、21,选D.6.把边长为1的正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,形成的三棱锥C ABD 的正视图与俯视图如图所示,则侧视图的面积为( )A.12 B .22C.24D .14解析:选D.由三棱锥C ABD 的正视图、俯视图得三棱锥C ABD 的侧视图为直角边长是22的等腰直角三角形,如图所示,所以三棱锥C ABD 的侧视图的面积为14,故选D.7.已知平面上的单位向量e 1与e 2的起点均为坐标原点O ,它们的夹角为π3.平面区域D由所有满足OP →=λe 1+μe 2的点P 组成,其中⎩⎪⎨⎪⎧λ+μ≤1,0≤λ,0≤μ,那么平面区域D 的面积为( )A.12 B .3 C.32D .34解析:选D.建立如图所示的平面直角坐标系,不妨令单位向量e 1=(1,0),e 2=⎝⎛⎭⎫12,32,设向量OP →=(x ,y ),因为OP →=λe 1+μe 2,所以⎩⎨⎧x =λ+μ2,y =3μ2,即⎩⎨⎧λ=x -3y 3,μ=23y 3,因为⎩⎪⎨⎪⎧λ+μ≤1,λ≥0,μ≥0,所以⎩⎨⎧3x +y ≤3,3x -y ≥0,y ≥0表示的平面区域D 如图中阴影部分所示,所以平面区域D 的面积为S =12×1×32=34,故选D.8.函数f (x )=A sin (ωx +φ)(A ,ω,φ是常数,A >0,ω>0,⎭⎫|φ|≤π2的部分图象如图所示,若方程f (x )=a 在⎣⎡⎦⎤-π4,π2上有两个不相等的实数根,则a 的取值范围是( )A.⎣⎡⎭⎫22,2 B .⎣⎡⎭⎫-22,2C.⎣⎡⎭⎫-62,2D .⎣⎡⎭⎫62,2 解析:选B.由函数f (x )的部分图象可得,T 4=7π12-π3=π4,∴函数f (x )的最小正周期为π,最小值为- 2,所以A = 2,ω=2ππ=2,所以f (x )=2sin(2x +φ),将点⎝⎛⎭⎫7π12,-2的坐标代入得,sin ⎝⎛⎭⎫7π6+φ=-1,因为|φ|≤π2,所以φ=π3,所以f (x )= 2sin ⎝⎛⎭⎫2x +π3.若f (x )=a 在⎣⎡⎦⎤-π4,π2上有两个不等的实根,即在⎣⎡⎦⎤-π4,π2函数f (x )的图象与直线y =a 有两个不同的交点,结合图象(略),得-22≤a < 2,故选B. 9.设{a n }是公比q >1的等比数列,若a 2 016和a 2 017是方程4x 2-8x +3=0的两根,则a 2 018+a 2 019=( )A .18B .10C .25D .9解析:选A.∵a 2 016,a 2 017是方程4x 2-8x +3=0的两根, ∴⎩⎪⎨⎪⎧a 2 016+a 2 017=2,a 2 016·a 2 017=34,即⎩⎪⎨⎪⎧a 2 016(1+q )=2,a 22 016q =34,解得⎩⎪⎨⎪⎧a 2 016=12,q =3或⎩⎨⎧a 2 016=32,q =13,∵q >1,∴⎩⎪⎨⎪⎧a 2 016=12,q =3,∴a 2 018+a 2 019=a 2 016(q 2+q 3)=18,故选A.10.在平面直角坐标系xOy 中,已知双曲线C 1:2x 2-y 2=1,过C 1的左顶点引C 1的一条渐近线的平行直线,则该直线与另一条渐近线及x 轴所围成的三角形的面积为( )A.24 B .22 C.28D .216解析:选C.设双曲线C 1的左顶点为A ,则A ⎝⎛⎭⎫-22,0,双曲线的渐近线方程为y =±2x ,不妨设题中过点A 的直线与渐近线y =2x 平行,则该直线的方程为 y =2⎝⎛⎭⎫x +22,即y =2x +1.联立,得⎩⎨⎧y =- 2x ,y =2x +1,解得⎩⎨⎧x =-24,y =12.所以该直线与另一条渐近线及x 轴所围成的三角形的面积S =12|OA |·12=12×22×12=28,故选C.11.在球O 内任取一点P ,则点P 在球O 的内接正四面体中的概率是( ) A.112π B .312πC.2 39πD .36π解析:选C.设球O 的半径为R ,球O 的内接正四面体的棱长为 2a ,所以正四面体的高为233a ,所以R 2=⎝⎛⎭⎫63a 2+⎝⎛⎭⎫23a 3-R 2,即3a =2R ,所以正四面体的棱长为26R 3,底面面积为12×26R 3×2R =233R 2,高为4R 3,所以正四面体的体积为8 327R 3,又球O 的体积为4π3R 3,所以P 点在球O 的内接正四面体中的概率为2 39π,故选C. 12.设函数f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2,a n =f (n )(n ∈N *),若数列{a n }是单调递减数列,则实数a 的取值范围为( )A .(-∞,2)B .⎝⎛⎭⎫-∞,74 C.⎝⎛⎦⎤-∞,138 D .⎣⎡⎭⎫138,2解析:选B.∵f (x )=⎩⎪⎨⎪⎧(a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2,∴a n =f (n )=⎩⎪⎨⎪⎧(a -2)n ,n ≥2,-12,n =1,∵数列{a n }是单调递减数列,∴⎩⎪⎨⎪⎧a -2<0,-12>2a -4,解得a <74,故选B.二、填空题(本题共4小题,每小题5分,共20分.)13.若P (2,-1)为圆(x -1)2+y 2=25的弦AB 的中点,则直线AB 的方程是________________________________________________________________________.解析:记题中圆的圆心为O ,则O (1,0),因为P (2,-1)是弦AB 的中点,所以直线AB 与直线OP 垂直,易知直线OP 的斜率为-1,所以直线AB 的斜率为1,故直线AB 的方程为y +1=x -2,即x -y -3=0.答案:x -y -3=014.某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润以及运输限制如表:解析:设该货运员运送甲种货物x 件,乙种货物y 件,获得的利润为z 元,则由题意得⎩⎪⎨⎪⎧20x +10y ≤110,10x +20y ≤100,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧2x +y ≤11,x +2y ≤10,x ∈N ,y ∈N ,z =8x +10y ,作出不等式组表示的可行域,如图中阴影部分所示,结合图象可知,当直线z =8x +10y 经过点A (4,3)时,目标函数z =8x +10y 取得最小值,z min =62,所以获得的最大利润为62元.答案:6215.已知0<x <32,则y =2x +93-2x的最小值为________.解析:解法一:∵y =2x +93-2x =5x +6x (3-2x ),设5x +6=t ,则x =t -65,∵0<x <23,∴6<t <283,∴y =5x +6x (3-2x )=25t-2t 2+39t -162=25-2⎝⎛⎭⎫t +81t +39⎝⎛⎭⎫6<t <283,记f (t )=t +81t ⎝⎛⎭⎫6<t <283,易知f (t )在(6,9)上是减函数,在⎣⎡⎭⎫9,283上是增函数,∴当t=9时函数f (t )=t +81t 取得最小值,最小值为18,∴当t =9时函数y =25-2⎝⎛⎭⎫t +81t +39取得最小值,最小值为253.解法二:y =42x +93-2x =13[2x +(3-2x )]·⎝⎛⎭⎫42x +93-2x =13⎣⎢⎡⎦⎥⎤13+18x 3-2x +4(3-2x )2x ≥13⎣⎢⎡⎦⎥⎤13+2 18x 3-2x ·4(3-2x )2x =253(当且仅当18x 3-2x =4(3-2x )2x 即x =35∈⎝⎛⎭⎫0,32时取等号).答案:25316.已知函数f (x )=a ln x +12x 2(a >0),若对任意两个不相等的正实数x 1,x 2,都有f (x 1)-f (x 2)x 1-x 2>2恒成立,则a 的取值范围是________.解析:因为x 1≠x 2,所以f (x 1)-f (x 2)x 1-x 2表示函数f (x )图象上任意两点的连线的斜率,若对任意两个不相等的正实数x 1,x 2,都有f (x 1)-f (x 2)x 1-x 2>2恒成立,则f ′(x )=x +ax ≥2(a>0)对任意正实数x 恒成立,又x +ax≥2 a ,所以2 a ≥2,所以a ≥1.答案:a ≥1。
2019版二轮复习数学(理·普通生)通用版检测:附:4套“12+4”限时提速练
2019年4月附:4套“12+4”限时提速练“12+4”限时提速练(一) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.已知N 是自然数集,设集合A =⎩⎨⎧⎭⎬⎫x |6x +1∈N ,B ={0,1,2,3,4},则A ∩B =( )A .{0,2}B .{0,1,2}C .{2,3}D .{0,2,4}详细分析:选B ∵6x +1∈N ,∴x +1应为6的正约数,∴x +1=1或x +1=2或x +1=3或x +1=6,解得x =0或x =1或x =2或x =5,∴集合A ={0,1,2,5},又B ={0,1,2,3,4},∴A ∩B ={0,1,2}.故选B.2.若复数z 满足(1+i)z =2i ,则z =( ) A .-1+i B .-1-i C .1+iD .1-i详细分析:选C 因为(1+i)z =2i , 所以z =2i1+i =2i (1-i )(1+i )(1-i )=1+i.3.设向量a =(1,2),b =(m ,m +1),若a ∥b ,则实数m 的值为( ) A .1 B .-1 C .-13D .-3 详细分析:选A 因为a =(1,2),b =(m ,m +1),a ∥b , 所以2m =m +1,解得m =1.4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8详细分析:选B 由题意可得,数列{a n }的通项公式为a n =2n ,又a m =a 41q 6=210,所以m =10.5.已知圆C 的圆心在坐标轴上,且经过点(6,0)及椭圆x 216+y 24=1的两个顶点,则该圆的标准方程为( )A .(x -2)2+y 2=16B .x 2+(y -6)2=72 C.⎝⎛⎭⎫x -832+y 2=1009D.⎝⎛⎭⎫x +832+y 2=1009详细分析:选C 由题意得圆C 经过点(0,±2), 设圆C 的标准方程为(x -a )2+y 2=r 2, 由a 2+4=r 2,(6-a )2=r 2, 解得a =83,r 2=1009,所以该圆的标准方程为⎝⎛⎭⎫x -832+y 2=1009. 6.若⎝⎛⎭⎫x -2y n 的展开式中所有项的系数的绝对值的和为243,则⎝⎛⎭⎫x -2y n 的展开式中第3项的系数为( )A .80B .-80C .40D .-40详细分析:选C 令x =1,y =-1,得3n =243,故n =5,所以T 3=C 25x 3⎝⎛⎭⎫-2y 2=40x 3y -2,故选C.7.某几何体的三视图如图所示,俯视图是一个圆,其内有一个边长为2的正方形,正视图和侧视图是两个全等的等腰直角三角形,它们的底边长和圆的直径相等,它们的内接矩形的长和圆内正方形的对角线长相等,宽和正方形的边长相等,则俯视图中圆的半径是( )A .2B .2 2C .3D.2+1详细分析:选D 因为正方形的边长为2,所以正方形的对角线长为2, 设俯视图中圆的半径为R , 如图,可得R =2+1.8.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为( )A .121B .81C .74D .49详细分析:选B 第一次循环:S =1,n =2,a =8;第二次循环:S =9,n =3,a =16; 第三次循环:S =25,n =4,a =24;第四次循环:S =49,n =5,a =32;第五次循环:S =81,n =6,a =40,不满足a ≤32,退出循环,输出S 的值为81.9.函数f (x )=A sin(2x +θ)A >0,|θ|≤π2的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数详细分析:选B 由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32,又|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增,所以选项B 正确.10.已知正四棱柱ABCD -A 1B 1C 1D 1的体积为36,点E ,F 分别为棱B 1B ,C 1C 上的点(异于端点),且EF ∥BC ,则四棱锥A 1-AEFD 的体积为( )A .2B .4C .6D .12详细分析:选D 连接AF ,易知四棱锥A 1-AEFD 的体积为三棱锥F -A 1AD 和三棱锥F -A 1AE 的体积之和.设正四棱柱的底面边长为a ,高为h ,则VF -A 1AD =13×12×a ×h ×a=16a 2h ,V F -A 1AE =13×12×a ×h ×a =16a 2h ,所以四棱锥A 1-AEFD 的体积为13a 2h ,又a 2h =36,所以四棱锥A 1-AEFD 的体积为12.11.函数f (x )=(2x 2+3x )e x 的图象大致是( )详细分析:选A 由f (x )的解+析式知,f (x )只有两个零点x =-32与x =0,排除B 、D ;又f ′(x )=(2x 2+7x +3)e x ,由f ′(x )=0知函数有两个极值点,排除C ,故选A. 12.已知函数f (x )=ln x +x 与g (x )=12ax 2+ax -1(a >0)的图象有且只有一个公共点,则a 所在的区间为( )A.⎝⎛⎭⎫12,23B.⎝⎛⎭⎫23,1 C.⎝⎛⎭⎫32,2D.⎝⎛⎭⎫1,32 详细分析:选D 设T (x )=f (x )-g (x )=ln x +x -12ax 2-ax +1,由题意知,当x >0时,T (x )有且仅有1个零点.T ′(x )=1x +1-ax -a =x +1x -a (x +1)=(x +1)·⎝⎛⎭⎫1x -a =(x +1)·1x ·(1-ax ). 因为a >0,x >0,所以T (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减,如图, 当x →0时,T (x )→-∞,x →+∞时,T (x )→-∞, 所以T ⎝⎛⎭⎫1a =0,即ln 1a +1a -12a -1+1=0, 所以ln 1a +12a=0.因为y =ln 1x +12x 在x >0上单调递减,所以ln 1a +12a =0在a >0上最多有1个零点.当a =12时,ln 1a +12a >0,当a =1时,ln 1a +12a =12>0,当a =32时,ln 1a +12a <0,当a =2时,ln 1a +12a <0,所以a ∈⎝⎛⎭⎫1,32. 二、填空题(本大题共4小题,每小题5分,共20分) 13.若函数f (x )=x 2+axx 3是奇函数,则常数a =______.详细分析:函数f (x )的定义域为(-∞,0)∪(0,+∞), 则由f (x )+f (-x )=0, 得x 2+ax x 3+x 2-ax -x 3=0,即ax =0,则a =0. 答案:014.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤-1,3x -5y +25≥0,x +4y -3≥0,则目标函数z =3x +y 的最大值为________.详细分析:作出不等式组所表示的可行域如图中阴影部分所示,作出直线3x +y =0,平移该直线, 当直线经过点A 时,z 取得最大值.联立⎩⎪⎨⎪⎧x =-1,3x -5y +25=0,解得⎩⎪⎨⎪⎧x =-1,y =225,所以z max =3×(-1)+225=75.答案:7515.在平面直角坐标系xOy 中,与双曲线x 23-y 2=1有相同渐近线,焦点位于x 轴上,且焦点到渐近线距离为2的双曲线的标准方程为________.详细分析:与双曲线x 23-y 2=1有相同渐近线的双曲线的标准方程可设为x 23-y 2=λ,因为双曲线焦点在x 轴上,故λ>0,又焦点到渐近线的距离为2, 所以λ=4,所求方程为x 212-y 24=1.答案:x 212-y 24=116.如图所示,在△ABC 中,∠ABC 为锐角,AB =2,AC =8,sin ∠ACB =26,若BE =2DE ,S △ADE =423,则sin ∠BAE sin ∠DAE=________.详细分析:因为在△ABC 中,AB =2,AC =8,sin ∠ACB =26, 由正弦定理得AB sin ∠ACB =ACsin ∠ABC ,所以sin ∠ABC =223.又∠ABC 为锐角,所以cos ∠ABC =13.因为BE =2DE ,所以S △ABE =2S △ADE . 又因为S △ADE =423,所以S △ABD =4 2.因为S △ABD =12×BD ×AB ×sin ∠ABC ,所以BD =6.由余弦定理AD 2=AB 2+BD 2-2AB ×BD ×cos ∠ABD ,可得AD =4 2. 因为S △ABE =12×AB ×AE ×sin ∠BAE ,S △DAE =12×AD ×AE ×sin ∠DAE ,所以sin ∠BAEsin ∠DAE =2×ADAB =4 2.答案:4 2“12+4”限时提速练(二) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.若复数z =a1+i+1为纯虚数,则实数a =( ) A .-2 B .-1 C .1D .2详细分析:选A 因为复数z =a 1+i +1=a (1-i )(1+i )(1-i )+1=a 2+1-a2i 为纯虚数,所以a 2+1=0,且-a2≠0,解得a =-2.故选A.2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x < 2,B ={x |ln x ≤0},则A ∩B =( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1D .[-1,1]详细分析:选A ∵12≤2x < 2,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x |-1≤x <12.∵ln x ≤0,∴0<x ≤1,∴B ={x |0<x ≤1}, ∴A ∩B =⎩⎨⎧⎭⎬⎫x |0<x <12.3.已知函数f (x )=2x (x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是( )A.12B.13C.14D.23详细分析:选B 因为函数y =2x 是R 上的增函数,所以函数f (x )的值域是(0,1),由几何概型的概率公式得,所求概率P =1-02-(-1)=13.4.已知B 是以线段AC 为直径的圆上的一点(异于点A ,C ),其中|AB |=2,则 AC ―→·AB ―→=( )A .1B .2C .3D .4详细分析:选D 连接BC ,∵AC 为直径,∴∠ABC =90°, ∴AB ⊥BC ,AC ―→在AB ―→上的投影|AC ―→|cos 〈AC ―→,AB ―→〉=|AB ―→|=2, ∴AC ―→·AB ―→=|AC ―→||AB ―→|cos 〈AC ―→,AB ―→〉=4. 5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .-3 B.32C .3D .4详细分析:选C 作出不等式组所表示的可行域如图中阴影部分所示,作出直线2x +y=0,平移该直线,当直线过点B 时,z =2x +y 取得最大值.由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,所以B (2,-1),故z max =2×2-1=3.6.执行如图所示的程序框图,若输出的s =25,则判断框中可填入的条件是( )A .i ≤4?B .i ≥4?C .i ≤5?D .i ≥5?详细分析:选C 执行程序框图,i =1,s =100-5=95;i =2,s =95-10=85;i =3,s =85-15=70;i =4,s =70-20=50;i =5,s =50-25=25;i =6,退出循环.此时输出的s =25.结合选项知,选C.7.将函数y =2sin ⎝⎛⎭⎫x +π3cos ⎝⎛⎭⎫x +π3的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数为奇函数,则φ的最小值为( )A.π12 B.π6C.π4D.π3详细分析:选B 根据题意可得y =sin ⎝⎛⎭⎫2x +2π3,将其图象向左平移φ个单位长度,可得y =sin ⎝⎛⎭⎫2x +2π3+2φ的图象,因为该图象所对应的函数恰为奇函数,所以2π3+2φ=k π(k ∈Z),φ=k π2-π3(k ∈Z),又φ>0,所以当k =1时,φ取得最小值,且φmin =π6,故选B.8.南宋数学家秦九韶早在《数书九章》中就提出了已知三角形的三边求其面积的公式:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂,减上,余四约之,为实.一为从隅,开平方,得积.”即△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,其中△ABC 的三边分别为a ,b ,c ,且a >b >c ,并举例“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”则该三角形沙田的面积为( )A .82平方里B .83平方里C .84平方里D .85平方里详细分析:选C 由题意知三角形沙田的三边长分别为15里、14里、13里,代入三角形的面积公式可得三角形沙田的面积S =14×⎣⎢⎡⎦⎥⎤132×152-⎝ ⎛⎭⎪⎫132+152-14222=84(平方里).故选C.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6详细分析:选C 由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6.10.已知f (x )是定义在[-2b,1+b ]上的偶函数,且在[-2b ,0]上为增函数,则f (x -1)≤f (2x )的解集为( )A.⎣⎡⎦⎤-1,23 B.⎣⎡⎦⎤-1,13 C .[-1,1]D.⎣⎡⎦⎤13,1详细分析:选B ∵函数f (x )是定义在[-2b,1+b ]上的偶函数, ∴-2b +1+b =0,∴b =1,函数f (x )的定义域为[-2,2], 又函数f (x )在[-2,0]上单调递增,∴函数f (x )在[0,2]上单调递减, ∵f (x -1)≤f (2x ),∴f (|x -1|)≤f (|2x |),∴⎩⎪⎨⎪⎧-2≤x -1≤2,-2≤2x ≤2,|x -1|≥|2x |,解得-1≤x ≤13.11.在各项均为正数的等比数列{a n }中,a 1a 11+2a 5a 9+a 4a 12=81,则1a 6+4a 8的最小值是( )A.73B .9C .1D .3详细分析:选C 因为{a n }为等比数列,所以a 1a 11+2a 5a 9+a 4a 12=a 26+2a 6a 8+a 28=(a 6+a 8)2=81,又因为等比数列{a n }的各项均为正数,所以a 6+a 8=9, 所以1a 6+4a 8=19(a 6+a 8)⎝⎛⎭⎫1a 6+4a 8=195+a 8a 6+4a 6a 8≥19⎝⎛⎭⎫5+2a 8a 6×4a 6a 8=1, 当且仅当a 8a 6=4a 6a 8,a 6+a 8=9,即a 6=3,a 8=6时等号成立,所以1a 6+4a 8的最小值是1.12.过抛物线y =14x 2的焦点F 的直线交抛物线于A ,B 两点,点C 在直线y =-1上,若 △ABC 为正三角形,则其边长为( ) A .11 B .12 C .13D .14详细分析:选B 由题意可知,焦点F (0,1),易知过焦点F 的直线的斜率存在且不为零,则设该直线方程为y =kx +1(k ≠0), 联立⎩⎪⎨⎪⎧y =14x 2,y =kx +1,消去y ,得x 2-4kx -4=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=4k ,x 1x 2=-4, 设线段AB 的中点为M ,则M (2k,2k 2+1), |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)(16k 2+16)=4(1+k 2).设C (m ,-1),连接MC , ∵△ABC 为等边三角形,∴k MC =2k 2+22k -m =-1k ,m =2k 3+4k ,点C (m ,-1)到直线y =kx +1的距离|MC |=|km +2|1+k 2=32|AB |,∴|km +2|1+k 2=32×4(1+k 2), 即2k 4+4k 2+21+k 2=23(1+k 2),解得k =±2, ∴|AB |=4(1+k 2)=12.二、填空题(本大题共4小题,每小题5分,共20分)13.从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法有n 种,在这些取法中,若以取出的三条线段为边可组成钝角三角形的取法种数为m ,则mn =________.详细分析:由题意得n =C 35=10,结合余弦定理可知组成钝角三角形的有(2,3,4),(2,4,5),共2个,所以m =2,故m n =210=15.答案:1514.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙比学习委员的年龄大,甲与体育委员的年龄不同,体育委员比乙的年龄小,据此推断班长是________.详细分析:若甲是班长,由于体育委员比乙的年龄小,故丙是体育委员,乙是学习委员,但这与丙比学习委员的年龄大矛盾,故甲不是班长;若丙是班长,由于体育委员比乙的年龄小,故甲是体育委员,这和甲与体育委员的年龄不同矛盾,故丙不是班长;若乙是班长,由于甲与体育委员的年龄不同,故甲是学习委员,丙是体育委员,此时其他条件均成立,故乙是班长.答案:乙15.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若AB ―→=3FA ―→,则此双曲线的离心率为________.详细分析:由F (-c,0),A (0,b ), 得直线AF 的方程为y =bc x +b .根据题意知,直线AF 与渐近线y =ba x 相交,联立得⎩⎨⎧y =bc x +b ,y =ba x ,消去x 得,y B =bc c -a. 由AB ―→=3FA ―→,得y B =4b , 所以bc c -a =4b ,化简得3c =4a ,所以离心率e =43.答案:4316.一个直角三角形的三个顶点分别在底面边长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为________.详细分析:记该直角三角形为△ABC ,且AC 为斜边.法一:如图,不妨令点A 与正三棱柱的一个顶点重合, 取AC 的中点O ,连接BO , ∴BO =12AC ,∴AC 取得最小值即BO 取得最小值,即点B 到平面ADEF 的距离. ∵△AHD 是边长为2的正三角形, ∴点B 到平面ADEF 的距离为3, ∴AC 的最小值为2 3.法二:如图,不妨令点A 与正三棱柱的一个顶点重合, 设BH =m (m ≥0),CD =n (n ≥0),∴AB 2=4+m 2,BC 2=4+(n -m )2,AC 2=4+n 2. ∵AC 为Rt △ABC 的斜边, ∴AB 2+BC 2=AC 2,即4+m 2+4+(n -m )2=4+n 2, ∴m 2-nm +2=0,∴m ≠0,n =m 2+2m =m +2m ,∴AC 2=4+⎝⎛⎭⎫m +2m 2≥4+8=12,当且仅当m =2m ,即m =2时等号成立, ∴AC ≥23,故AC 的最小值为2 3. 答案:2 3“12+4”限时提速练(三) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知a ,b ∈R ,复数a +b i =2i1-i,则a +b =( ) A .2 B .1 C .0D .-2详细分析:选C 因为a +b i =2i1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=-1+i ,所以a =-1,b =1,a +b =0.2.设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( ) A .(-∞,2] B .(-∞,1] C .[1,+∞)D .[2,+∞)详细分析:选D 由A ∩B =A ,可得A ⊆B ,又A ={x |1<x <2},B ={x |x <a },所以a ≥2. 3.若点⎝⎛⎭⎫sin 5π6,cos 5π6在角α的终边上,则sin α=( ) A.32B.12C .-32D .-12详细分析:选C 因为sin5π6=sin ⎝⎛⎭⎫π-π6=sin π6=12,cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6=-32, 所以点⎝⎛⎭⎫12,-32在角α的终边上,且该点到角α顶点的距离r =⎝⎛⎭⎫122+⎝⎛⎭⎫-322=1, 所以sin α=-32. 4.从某校的一次数学考试中,随机抽取50名同学的成绩,算出平均分为72分,若本次成绩X 服从正态分布N (μ,196),则该校学生本次数学成绩在86分以上的概率约为( )(附:若Z ~N (μ,σ2),则P (μ-σ<Z <μ+σ)=0.682 7, P (μ-2σ<Z <μ+2σ)=0.954 5) A .0.022 8 B .0.045 5 C .0.158 7D .0.317 3详细分析:选C 这50名同学成绩的平均数为72,由题意知X 服从正态分布N (72,142), 故P (72-14<X <72+14)=0.682 7, ∴P (X >86)=12(1-0.682 7)≈0.158 7.5.某几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A.33B.233C. 3D .2详细分析:选D 由三视图知,该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图,该四棱锥的高h =3,底面ABCD 是边长分别为2,3的矩形,所以该四棱锥的体积V =13S 四边形ABCD ×h =13×2×3×3=2.故选D.6.已知直线l :y =3x +m 与圆C :x 2+(y -3)2=6相交于A ,B 两点,若∠ACB =120°,则实数m 的值为( )A .3+6或3- 6B .3+26或3-2 6C .9或-3D .8或-2详细分析:选A 由题知圆C 的圆心为C (0,3),半径为6,取AB 的中点为D ,连接CD ,则CD ⊥AB ,在△ACD 中,|AC |=6,∠ACD =60°,所以|CD |=62,由点到直线的距离公式得|-3+m |(3)2+1=62,解得m =3±6.7.在如图所示的程序框图中,如果输入a =1,b =1,则输出的S =( )A .7B .20C .22D .54详细分析:选B 执行程序,a =1,b =1,S =0,k =0,k ≤4,S =2,a =2,b =3;k =2,k ≤4,S =7,a =5,b =8;k =4,k ≤4,S =20,a =13,b =21;k =6,不满足k ≤4,退出循环.则输出的S =20.8.若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x <k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π4≤x <k π+π2,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x <k π+π2,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π-π4≤x ≤k π+π4,k ∈Z 详细分析:选B 由正切函数的图象知,直线x =a π(0<a <1)与函数y =tan x 的图象没有公共点时,a =12,所以tan x ≥2a ,即tan x ≥1,其解集是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π4≤x <k π+π2,k ∈Z . 9.已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 017b 2 018的值是( )A.4 0352 018B.4 0332 017C.2 0172 018D.2 0162 017详细分析:选B 由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n .当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2.当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n ,所以1b 1b 2+1b 2b 3+…+1b 2 017b 2 018=1+1-12+12-13+…+12 016-12 017=2-12 017=4 0332 017.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5]详细分析:选C 法一:当x ≥1时,由ln x +1=2,得x =e.由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象如图所示,由图象知,要使f (x )=2有两个解,则 a -3<2,得a <5.11.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若|PF |=2|Q F |,且∠PF Q =120°,则椭圆E 的离心率为( )A.13B.12C.33D.22详细分析:选C 设F 1是椭圆E 的右焦点,如图,连接PF 1,Q F 1.根据对称性,线段FF 1与线段P Q 在点O 处互相平分,所以四边形PF Q F 1是平行四边形,|F Q |=|PF 1|,∠FPF 1=180°-∠PF Q =60°,根据椭圆的定义得|PF |+|PF 1|=2a ,又|PF |=2|Q F |,所以|PF 1|=23a ,|PF |=43a ,而|F 1F |=2c ,在△F 1PF 中,由余弦定理,得(2c )2=⎝⎛⎭⎫23a 2+⎝⎛⎭⎫43a 2-2×23a ×43a ×cos 60°,化简得c 2a 2=13,所以椭圆E 的离心率e =c a =33.12.已知函数f (x )=e xx2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( )A.⎝⎛⎦⎤-∞,e 24 B.⎝⎛⎦⎤-∞,e2 C .(0,2]D .[2,+∞)详细分析:选A f ′(x )=e x (x -2)x 3+k (2-x )x =(x -2)(e x -kx 2)x 3(x >0),令f ′(x )=0,得x =2或e x =kx 2(x >0).由x =2是函数f (x )的唯一极值点知e x ≥kx 2(x >0)恒成立或e x ≤kx 2(x >0)恒成立, 由y =e x (x >0)和y =kx 2(x >0)的图象可知,只能是e x ≥kx 2(x >0)恒成立. 当x >0时,由e x≥kx 2,得k ≤e xx2.设g (x )=e xx2,则k ≤g (x )min .由g ′(x )=e x (x -2)x 3,得当x >2时,g ′(x )>0,g (x )单调递增,当0<x <2时,g ′(x )<0,g (x )单调递减,所以g (x )min =g (2)=e 24,所以k ≤e 24.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a ,b 满足a ⊥b ,|a |=1,|2a +b |=22,则|b |=________.详细分析:法一:因为|2a +b |=22, 所以4a 2+4a ·b +b 2=8. 因为a ⊥b ,所以a ·b =0.又|a |=1,所以4×1+4×0+b 2=8,所以|b |=2. 法二:如图,作出OA ―→=2a ,OB ―→=b ,OC ―→=2a +b ,因为a ⊥b ,所以OA ⊥OB ,因为|a |=1,|2a +b |=22, 所以|OA ―→|=2,|OC ―→|=22, 所以|OB ―→|=|b |=2.法三:因为a ⊥b ,所以以O 为坐标原点,以a ,b 的方向分别为x 轴,y 轴的正方向建立平面直角坐标系(图略),因为|a |=1,所以a =(1,0),设b =(0,y )(y >0),则2a +b =(2,y ),因为|2a +b |=22,所以4+y 2=8,解得y =2,所以|b |=2.答案:214.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3≥0,x -y +4≥0,2x +y -4≤0,则z =x +3y 的最大值为________.详细分析:作出不等式组所表示的可行域如图中阴影部分所示,作出直线x +3y =0,并平移该直线,当直线经过点A (0,4)时,目标函数z =x +3y 取得最大值,且z max =12.答案:1215.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos C =14,c =3,且a cos A =bcos B,则△ABC 的面积等于________. 详细分析:由a cos A =b cos B 及正弦定理,得sin A cos A =sin Bcos B ,即tan A =tan B ,所以A =B ,即a =b .由cos C =14且c =3,结合余弦定理a 2+b 2-2ab cos C =c 2,得a =b =6,又sin C=1-cos 2 C =154,所以△ABC 的面积S =12ab sin C =3154. 答案:315416.如图,等腰三角形PAB 所在平面为α,PA ⊥PB ,AB =4,C ,D 分别为PA ,AB 的中点,G 为CD 的中点.平面α内经过点G 的直线l 将△PAB 分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点P ′(P ′∉平面α).若点P ′在平面α内的射影H 恰好在翻折前的线段AB 上,则线段P ′H 的长度的取值范围是________.详细分析:在等腰三角形PAB 中,∵PA ⊥PB ,AB =4, ∴PA =PB =2 2.∵C ,D 分别为PA ,AB 的中点, ∴PC =CD =2且PC ⊥CD . 连接PG ,P ′G ,∵G 为CD 的中点,∴PG =P ′G =102. 连接HG ,∵点P ′在平面α内的射影H 恰好在翻折前的线段AB 上, ∴P ′H ⊥平面α,∴P ′H ⊥HG ,∴HG <P ′G =102. 易知点G 到线段AB 的距离为12,∴HG ≥12,∴12≤HG <102.又P ′H =⎝⎛⎭⎫1022-HG 2, ∴0<P ′H ≤32.答案:⎝⎛⎦⎤0,32“12+4”限时提速练(四) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.复数z =2+i1-i的共轭复数对应的点在复平面内位于( ) A .第一象限B .第二象限C .第三象限D .第四象限详细分析:选D 复数z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=1+3i 2=12+32i ,则复数z 的共轭复数为z=12-32i ,所以复数z 的共轭复数对应的点的坐标是⎝⎛⎭⎫12,-32,该点位于第四象限. 2.已知集合M =⎩⎨⎧⎭⎬⎫x |2x ≥1,N ={}y |y =1-x 2,则M ∩N =( )A .(-∞,2]B .(0,1]C .[0,1]D .(0,2]详细分析:选B 由2x ≥1得x -2x ≤0, 解得0<x ≤2,则M ={x |0<x ≤2}; 函数y =1-x 2的值域是(-∞,1], 则N ={y |y ≤1},因此M ∩N ={x |0<x ≤1}=(0,1].3.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( ) A .52 B .78 C .104D .208详细分析:选C 依题意得3a 7=24,a 7=8,S 13=13(a 1+a 13)2=13a 7=104,选C.4.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )= -2x ,则f (1)+f (4)等于( )A.32 B .-32C .-1D .1详细分析:选B 由f (x +4)=f (x )知f (x )是周期为4的周期函数, 又f (x )是定义在R 上的偶函数,故f (4)=f (0)=-1,f (1)=f (-1),又-1∈[-2,0],所以f (-1)=-2-1=-12,所以f (1)=-12,f (1)+f (4)=-32.5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( ) A.322B .-322C .3 5D .-3 5详细分析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5,因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5. 6.若二项式⎝⎛⎭⎫55x 2+1x 6的展开式中的常数项为m ,则⎠⎛1m (x 2-2x)d x =( )A.13 B .-13C .-23D.23详细分析:选D 因为二项式的通项公式为T r +1=C r 6⎝⎛⎭⎫55x 26-r ·⎝⎛⎭⎫1x r =⎝⎛⎭⎫556-r C r6x 12-3r ,令12-3r =0,得r =4,所以m =⎝⎛⎭⎫552C 46=3,所以⎠⎛1m (x 2-2x )d x =⎠⎛13(x 2-2x)d x =⎝⎛⎭⎫13x 3-x 2⎪⎪⎪31=⎝⎛⎭⎫13×33-32-⎝⎛⎭⎫13-1=23,故选D.7.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( )A .34 B.23C .12D.14详细分析:选D 作出不等式表示的平面区域如图所示,故所求概率P (y ≤2x)=12×12×11×1=14.8.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,则其俯视图中椭圆的离心率为( )A .12B.24C .22D.32详细分析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎫a 2a 2=22. 9.已知点P ,A ,B 在双曲线x 2a 2-y 2b 2=1上,直线AB 过坐标原点,且直线PA ,PB 的斜率之积为13,则双曲线的离心率为( )A.233B.153 C .2D.102详细分析:选A 根据双曲线的对称性可知点A ,B 关于原点对称, 设A (x 1,y 1),P (x 2,y 2),则B (-x 1,-y 1),所以⎩⎨⎧x 21a 2-y 21b2=1,x22a2-y 22b2=1,两式相减得x 21-x 22a 2=y 21-y 22b 2,即y 21-y 22 x 21-x 22=b 2a2, 因为直线PA ,PB 的斜率之积为13,所以k PA ·k PB =y 1-y 2 x 1-x 2·-y 1-y 2-x 1-x 2=y 21-y 22 x 21-x 22=b 2a 2=13, 所以双曲线的离心率为e =1+b 2a2= 1+13=233.10.将函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位长度后的图象关于原点对称,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A.32B.12C . -12D .-32详细分析:选D 依题意得,函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+φ=sin ⎝⎛⎭⎫2x +π3+φ是奇函数,则sin ⎝⎛⎭⎫π3+φ=0,又|φ|<π2,因此π3+φ=0,φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3.当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,所以f (x )=sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤0,π2上的最小值为-32. 11.设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( )A .48πB .32πC .20πD .12π详细分析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+(23)2+42=22,因此三棱锥外接球的表面积为4πR 2=32π.12.已知函数f (x )=x 3-3x ,则方程f [f (x )]=1的实根的个数是( ) A .9 B .7 C .5D .3详细分析:选A 依题意得f ′(x )=3(x +1)(x -1), 当x <-1或x >1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.所以函数f (x )在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,且 f (-1)=f (2)=2,f (1)=-2,f (±3)=f (0)=0.在平面直角坐标系内画出直线y =1与函数y =f(x )的图象(图略),结合图象可知,它们共有三个不同的交点,记这三个交点的横坐标由小到大依次为x 1,x 2,x 3, 则-3<x 1<-1<x 2<0,3<x 3<2.再画出直线y =x 1,y =x 2,y =x 3,结合图象可知,直线y =x 1,y =x 2,y =x 3与函数y =f (x )的图象的交点个数均为3,且这些交点的横坐标各不相同,所以方程f [f (x )]=1的实根个数是9.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f(x)是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________. 详细分析:因为当x <0时,f (x )=2x ,令x >0,则-x <0,故f (-x )=2-x ,又因为f (x )是定义在R 上的奇函数,所以当x >0时,f (x )=-2-x ,又因为log 49=log 23>0,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1314.若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________. 详细分析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α), 所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件; 由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516.答案:151615.已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以F 为圆心,|FA |为半径的圆交准线于B ,C 两点,若△FBC 为正三角形,且△ABC 的面积为1283,则抛物线的方程为________.详细分析:如图,可得|BF |=2p3,则由抛物线的定义知点A 到准线的距离也为2p 3,又△ABC 的面积为1283,所以12×2p 3×2p 3=1283,解得p=8,故抛物线的方程为y 2=16x .答案:y 2=16x16.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n+1b n,则数列{c n }的前2 018项和为________.详细分析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,得a n +1+b n +1=2(a n +b n ),所以a n +1+b n +1a n +b n=2,所以数列{a n +b n }是首项为2,公比为2的等比数列, 即a n +b n =2n ,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n相乘,得a n +1b n +1a n bn=2,所以数列{a n b n }是首项为1,公比为2的等比数列, 所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036. 答案:4 036。
【高考汇编】(通用版)2019版高考二轮数学(文)检测试卷 汇编195页(18份含答案)
(通用版)2019版高考二轮数学(文)检测试卷汇编目录2019版二轮复习数学(文)通用版:附:4套“12+4”限时提速练含解析专题检测(一) 集合、复数、算法一、选择题1.(2018·福州质检)已知集合A ={x |x =2k +1,k ∈Z },B ={x |-1<x ≤4},则集合A ∩B 中元素的个数为( )A .1B .2C .3D .4解析:选B 依题意,集合A 是由所有的奇数组成的集合,故A ∩B ={1,3},所以集合A ∩B 中元素的个数为2.2.(2018·全国卷Ⅱ)1+2i 1-2i =( )A .-45-35iB .-45+35iC .-35-45iD .-35+45i解析:选D 1+2i 1-2i =(1+2i )2(1-2i )(1+2i )=-3+4i 5=-35+45i.3.(2019届高三·湘东五校联考)已知i 为虚数单位,若复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,则a =( )A .-5B .-1C .-13D .-53解析:选D z =a1-2i +i =a (1+2i )(1-2i )(1+2i )+i =a 5+2a +55i ,∵复数z =a1-2i+i(a ∈R )的实部与虚部互为相反数,∴-a 5=2a +55,解得a =-53.4.设全集U =R ,集合A ={x |x ≥1},B ={x |(x +2)(x -1)<0},则( ) A .A ∩B =∅ B .A ∪B =U C .∁U B ⊆AD .∁U A ⊆B解析:选A 由(x +2)(x -1)<0,解得-2<x <1,所以B ={x |-2<x <1},则A ∩B =∅, A ∪B ={x |x >-2},∁U B ={x |x ≥1或x ≤-2},A ⊆∁U B ,∁U A ={x |x <1},B ⊆∁U A ,故选A.5.(2019届高三·武汉调研)已知复数z 满足z +|z |=3+i ,则z =( ) A .1-iB .1+iC.43-iD.43+i解析:选D 设z =a +b i ,其中a ,b ∈R ,由z +|z |=3+i ,得a +b i +a 2+b 2=3+i ,由复数相等可得⎩⎪⎨⎪⎧a +a 2+b 2=3,b =1,解得⎩⎪⎨⎪⎧a =43,b =1,故z =43+i.6.(2018·开封高三定位考试)“欧几里得算法”是有记载的最古老的算法,可追溯至公元前300年前,如图所示的程序框图的算法思路就是来源于“欧几里得算法”.执行该程序框图(图中“a MOD b ”表示a 除以b 的余数),若输入的a ,b 分别为675,125,则输出的a =( )A .0B .25C .50D .75解析:选B 初始值:a =675,b =125,第一次循环:c =50,a =125,b =50;第二次循环:c =25,a =50,b =25;第三次循环:c =0,a =25,b =0,此时不满足循环条件,退出循环.输出a 的值为25.7.(2018·全国卷Ⅰ)已知集合A ={x |x 2-x -2>0},则∁R A =( ) A .{x |-1<x <2} B .{x |-1≤x ≤2} C .{x |x <-1}∪{x |x >2}D .{x |x ≤-1}∪{x |x ≥2}解析:选B ∵x 2-x -2>0,∴(x -2)(x +1)>0, ∴x >2或x <-1,即A ={x |x >2或x <-1}. 则∁R A ={x |-1≤x ≤2}.故选B.8.(2018·益阳、湘潭调研)设全集U =R ,集合A ={x |log 2x ≤2},B ={x |(x -2)(x +1)≥0},则A ∩∁U B =( )A .(0,2)B .[2,4]C .(-∞,-1)D .(-∞,4]解析:选A 集合A ={x |log 2x ≤2}={x |0<x ≤4},B ={x |(x -2)(x +1)≥0}={x |x ≤-1或x ≥2},则∁U B ={x |-1<x <2}.所以A ∩∁U B ={x |0<x <2}=(0,2).9.(2019届高三·南宁二中、柳州高中联考)执行如图所示的程序框图,若输出的结果s =132,则判断框中可以填( )A .i ≥10?B .i ≥11?C .i ≤11?D .i ≥12?解析:选B 执行程序框图,i =12,s =1;s =12×1=12,i =11;s =12×11=132, i =10.此时输出的s =132,则判断框中可以填“i ≥11?”.10.执行如图所示的程序框图,输出的结果是( )A .5B .6C .7D .8解析:选B 执行程序框图,第一步:n =12,i =1,满足条件n 是3的倍数,n =8,i =2,不满足条件n >123; 第二步:n =8,不满足条件n 是3的倍数,n =31,i =3,不满足条件n >123; 第三步:n =31,不满足条件n 是3的倍数,n =123,i =4,不满足条件n >123; 第四步:n =123,满足条件n 是3的倍数,n =119,i =5,不满足条件n >123; 第五步:n =119,不满足条件n 是3的倍数,n =475,i =6,满足条件n >123,退出循环,输出i 的值为6.11.若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,13,12,1,2,3,4 的所有非空子集中,具有伙伴关系的集合的个数为( )A .15B .16C .28D .25解析:选A 本题关键看清-1和1本身也具备这种运算,这样所求集合即由-1,1,3和13,2和12这“四大”元素所能组成的集合.所以满足条件的集合的个数为24-1=15. 12.(2018·太原模拟)若复数z =1+m i1+i在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)解析:选A 法一:因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i 在复平面内对应的点为⎝ ⎛⎭⎪⎫1+m 2,m -12,且在第四象限,所以⎩⎪⎨⎪⎧1+m2>0,m -12<0,解得-1<m <1.法二:当m =0时,z =11+i =1-i (1+i )(1-i )=12-12i ,在复平面内对应的点在第四象限,所以排除选项B 、C 、D ,故选A.13.(2018·安徽知名示范高中联考)执行如图所示的程序框图,如果输出的n =2,那么输入的a 的值可以为()A .4B .5C .6D .7解析:选D 执行程序框图,输入a ,P =0,Q =1,n =0,此时P ≤Q 成立,P =1, Q =3,n =1,此时P ≤Q 成立,P =1+a ,Q =7,n =2.因为输出的n 的值为2,所以应该退出循环,即P >Q ,所以1+a >7,结合选项,可知a 的值可以为7,故选D.14.(2019届高三·广西五校联考)已知a 为实数,若复数z =(a 2-1)+(a +1)i 为纯虚数,则a +i 2 0171-i=( )A .1B .0C .iD .1-i解析:选C 因为z =(a 2-1)+(a +1)i 为纯虚数,所以⎩⎪⎨⎪⎧a 2-1=0,a +1≠0,得a =1,则有1+i 2 0171-i =1+i 1-i =(1+i )2(1+i )(1-i )=i.15.(2018·新疆自治区适应性检测)沈括是我国北宋著名的科学家,宋代制酒业很发达,为了存储方便,酒缸是要一层一层堆起来的,形成了堆垛.沈括在其代表作《梦溪笔谈》中提出了计算堆垛中酒缸的总数的公式.图1是长方垛:每一层都是长方形,底层长方形的长边放置了a 个酒缸,短边放置了b 个酒缸,共放置了n 层.某同学根据图1,绘制了计算该长方垛中酒缸总数的程序框图,如图2,那么在◇和▭两个空白框中,可以分别填入( )A .i <n ?和S =S +a ·bB .i ≤n ?和S =S +a ·bC .i ≤n ?和S =a ·bD .i <n ?和S =a ·b解析:选B 观察题图1可知,最下面一层酒缸的个数为a ·b ,每上升一层长方形的长边和短边放置的酒缸个数分别减少1,累加即可,故执行框中应填S =S +a ·b ;计算到第n 层时,循环n 次,此时i =n ,故判断框中应填i ≤n ?,故选B.16.已知集合A =⎩⎨⎧⎭⎬⎫(x ,y )|x 2+y 2=π24,y ≥0,B ={(x ,y )|y =tan(3π+2x )},C =A ∩B ,则集合C 的非空子集的个数为( )A .4B .7C .15D .16解析:选C 因为B ={(x ,y )|y =tan(3π+2x )}={(x ,y )|y =tan 2x },函数y =tan 2x 的周期为π2,画出曲线x 2+y 2=π24,y ≥0与函数y =tan 2x 的图象(如图所示),从图中可观察到,曲线x 2+y 2=π24,y ≥0与函数y =tan 2x 的图象有4个交点.因为C =A ∩B ,所以集合C 中有4个元素,故集合C 的非空子集的个数为24-1=15,故选C.二、填空题 17.已知复数z =1+3i2+i,则|z |=________. 解析:法一:因为z =1+3i 2+i =(1+3i )(2-i )(2+i )(2-i )=5+5i5=1+i ,所以|z |=|1+i|= 2.法二:|z |=⎪⎪⎪⎪⎪⎪1+3i 2+i =|1+3i||2+i|=105= 2. 答案: 218.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3}, 所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3}. 则∁U (M ∪P )={(2,3)}. 答案:{(2,3)}19.已知复数z =x +4i(x ∈R )(i 是虚数单位)在复平面内对应的点在第二象限,且|z |=5,则z1+i的共轭复数为________. 解析:由题意知x <0,且x 2+42=52, 解得x =-3,∴z1+i =-3+4i 1+i =(-3+4i )(1-i )(1+i )(1-i )=12+72i ,故其共轭复数为12-72i.答案:12-72i20.已知非空集合A ,B 满足下列四个条件: ①A ∪B ={1,2,3,4,5,6,7}; ②A ∩B =∅;③A 中的元素个数不是A 中的元素; ④B 中的元素个数不是B 中的元素.(1)如果集合A 中只有1个元素,那么A =________; (2)有序集合对(A ,B )的个数是________.解析:(1)若集合A 中只有1个元素,则集合B 中有6个元素,6∉B ,故A ={6}. (2)当集合A 中有1个元素时,A ={6},B ={1,2,3,4,5,7},此时有序集合对(A ,B )有1个; 当集合A 中有2个元素时,5∉B,2∉A ,此时有序集合对(A ,B )有5个; 当集合A 中有3个元素时,4∉B,3∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有4个元素时,3∉B,4∉A ,此时有序集合对(A ,B )有10个; 当集合A 中有5个元素时,2∉B,5∉A ,此时有序集合对(A ,B )有5个;当集合A 中有6个元素时,A ={1,2,3,4,5,7},B ={6},此时有序集合对(A ,B )有1个. 综上可知,有序集合对(A ,B )的个数是1+5+10+10+5+1=32. 答案:(1){6} (2)32专题检测(三) 不等式一、选择题1.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式 x 2+ax +b <0的解集为A ∩B ,则a +b =( )A .1B .0C .-1D .-3解析:选D 由题意得,不等式x 2-2x -3<0的解集A =(-1,3),不等式x 2+x -6<0的解集B =(-3,2),所以A ∩B =(-1,2),即不等式x 2+ax +b <0的解集为(-1,2),所以a =-1,b =-2,所以a +b =-3.2.若x >y >0,m >n ,则下列不等式正确的是( ) A .xm >ym B .x -m ≥y -n C.x n >y mD .x >xy解析:选D A 不正确,因为同向同正不等式相乘,不等号方向不变,m 可能为0或负数;B 不正确,因为同向不等式相减,不等号方向不确定;C 不正确,因为m ,n 的正负不确定.故选D.3.已知a ∈R ,不等式x -3x +a ≥1的解集为p ,且-2∉p ,则a 的取值范围为( )A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析:选D ∵-2 ∉ p ,∴-2-3-2+a<1或-2+a =0,解得a ≥2或a <-3.4.(2018·成都一诊)若关于x 的不等式x 2+2ax +1≥0在[0,+∞)上恒成立,则实数a 的取值范围为( )A .(0,+∞)B .[-1,+∞)C .[-1,1]D .[0,+∞)解析:选B 法一:当x =0时,不等式为1≥0恒成立;当x >0时,x 2+2ax +1≥0⇒2ax ≥-(x 2+1)⇒2a ≥-⎝⎛⎭⎫x +1x ,又-⎝⎛⎭⎫x +1x ≤-2,当且仅当x =1时取等号,所以2a ≥-2⇒a ≥-1,所以实数a 的取值范围为[-1,+∞).法二:设f (x )=x 2+2ax +1,函数图象的对称轴为直线x =-a .当-a ≤0,即a ≥0时,f (0)=1>0,所以当x ∈[0,+∞)时,f (x )≥0恒成立; 当-a >0,即a <0时,要使f (x )≥0在[0,+∞)上恒成立,需f (-a )=a 2-2a 2+1= -a 2+1≥0,得-1≤a <0.综上,实数a 的取值范围为[-1,+∞).5.已知函数f (x )=⎩⎪⎨⎪⎧x 2-ax ,x >0,2x -1,x ≤0,若不等式f (x )+1≥0在R 上恒成立,则实数a 的取值范围为( )A .(-∞,0)B .[-2,2]C .(-∞,2]D .[0,2]解析:选C 由f (x )≥-1在R 上恒成立,可得当x ≤0时,2x -1≥-1,即2x ≥0,显然成立;又x >0时,x 2-ax ≥-1,即为a ≤x 2+1x =x +1x ,由x +1x ≥2x ·1x =2,当且仅当x =1时,取得最小值2,可得a ≤2,综上可得实数a 的取值范围为(-∞,2].6.若1a <1b <0,给出下列不等式:①1a +b <1ab ;②|a |+b >0;③a -1a >b -1b ;④ln a 2>ln b 2.其中正确的不等式的序号是( )A .①④B .②③C .①③D .②④解析:选C 法一:因为1a <1b <0,故可取a =-1,b =-2.显然|a |+b =1-2=-1<0,所以②错误;因为ln a 2=ln(-1)2=0,ln b 2=ln(-2)2=ln 4>0,所以④错误,综上所述,可排除A 、B 、D ,故选C.法二:由1a <1b <0,可知b <a <0.①中,因为a +b <0,ab >0,所以1a +b <1ab,故①正确; ②中,因为b <a <0,所以-b >-a >0,故-b >|a |,即|a |+b <0,故②错误; ③中,因为b <a <0,又1a <1b <0,则-1a >-1b >0,所以a -1a >b -1b ,故③正确;④中,因为b <a <0,根据y =x 2在(-∞,0)上为减函数,可得b 2>a 2>0,而y =ln x 在定义域(0,+∞)上为增函数,所以ln b 2>ln a 2,故④错误.由以上分析,知①③正确.7.(2018·长春质检)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12D .16解析:选B 由4x +y =xy ,得4y +1x =1,则x +y =(x +y )⎝⎛⎭⎫ 4y +1x =4x y +y x +1+4≥24+5=9,当且仅当4x y =yx,即x =3,y =6时取“=”,故选B.8.如果实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0, x -2y -3≤0,x ≥1,目标函数z =kx -y 的最大值为6,最小值为0,则实数k 的值为( )A .1B .2C .3D .4解析:选B 作出不等式组所表示的平面区域如图中阴影部分所示.则A (1,2),B (1,-1),C (3,0), 因为目标函数z =kx -y 的最小值为0,所以目标函数z =kx -y 的最小值可能在A 或B 处取得,所以若在A 处取得,则k -2=0,得k =2,此时,z =2x -y 在C 点有最大值,z =2×3-0=6,成立;若在B 处取得,则k +1=0,得k =-1,此时,z =-x -y , 在B 点取得最大值,故不成立,故选B.9.(2019届高三·湖北五校联考)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )A .15万元B .16万元C .17万元D .18万元解析:选D 设生产甲产品x 吨,乙产品y 吨,获利润z 万元,由题意可知⎩⎪⎨⎪⎧ 3x +2y ≤12,x +2y ≤8, x ≥0,y ≥0,z =3x +4y ,作出不等式组所表示的可行域如图中阴影部分所示,直线z =3x +4y 过点M 时取得最大值,由⎩⎪⎨⎪⎧3x +2y =12,x +2y =8,得⎩⎪⎨⎪⎧x =2,y =3,∴M (2,3), 故z =3x +4y 的最大值为18,故选D.10.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +5≥0, x +y ≥0,x ≤3,若y ≥kx -3恒成立,则实数k 的取值范围是( )A.⎣⎡⎦⎤-115,0 B.⎣⎡⎦⎤0,113 C .(-∞,0]∪⎣⎡⎭⎫115,+∞ D.⎝⎛⎦⎤-∞,-115∪[0,+∞)解析:选A 由约束条件⎩⎪⎨⎪⎧x -y +5≥0, x +y ≥0,x ≤3,作出可行域如图中阴影分部所示, 则A ⎝⎛⎭⎫-52,52,B (3,-3),C (3,8), 由题意得⎩⎪⎨⎪⎧-3≥3k -3,52≥- 52k -3,解得-115≤k ≤0.所以实数k 的取值范围是⎣⎡⎦⎤-115,0.11.若两个正实数x ,y 满足13x +3y =1,且不等式x +y 4-n 2-13n 12<0有解,则实数n 的取值范围是( )A.⎝⎛⎭⎫-2512,1 B.⎝⎛⎭⎫-∞,-2512∪(1,+∞) C .(1,+∞)D.⎝⎛⎭⎫-∞,-2512 解析:选B 因为不等式x +y 4-n 2-13n12<0有解,所以⎝⎛⎭⎫x +y 4min <n 2+13n12, 因为x >0,y >0,且13x+3y =1,所以x +y 4=⎝⎛⎭⎫x +y 4⎝⎛⎭⎫13x +3y =1312+3x y +y 12x ≥1312+2 3x y ·y 12x =2512, 当且仅当3x y =y 12x ,即x =56,y =5时取等号,所以⎝⎛⎭⎫x +y 4min =2512, 故n 2+13n 12-2512>0,解得n <-2512或n >1, 所以实数n 的取值范围是⎝⎛⎭⎫-∞,-2512∪(1,+∞). 12.(2019届高三·福州四校联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -3≤0,2x -2y -1≤0,x -a ≥0,其中a >0,若x -yx +y的最大值为2,则a 的值为( ) A.12 B.14C.38D.59解析:选C 设z =x -yx +y ,则y =1-z 1+z x ,当z =2时,y =-13x ,作出x ,y 满足的约束条件⎩⎪⎨⎪⎧2x +y -3≤0,2x -2y -1≤0,x -a ≥0,所表示的平面区域如图中阴影部分所示,作出直线y =-13x ,易知此直线与区域的边界线2x -2y -1=0的交点为⎝⎛⎭⎫38,-18,当直线x =a 过点⎝⎛⎭⎫38,-18时,a =38,又此时直线y =1-z 1+z x 的斜率1-z 1+z 的最小值为-13,即-1+2z +1的最小值为-13,即z 的最大值为2,符合题意,所以a 的值为38,故选C.二、填空题13.(2018·岳阳模拟)不等式3x -12-x≥1的解集为________. 解析:不等式3x -12-x ≥1可转化成3x -12-x -1≥0,即4x -32-x≥0,等价于⎩⎪⎨⎪⎧(4x -3)(x -2)≤0,2-x ≠0,解得34≤x <2,故不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2. 答案:⎩⎨⎧⎭⎬⎫x ⎪⎪34≤x <2 14.(2018·全国卷Ⅱ)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示.由图可知当直线x +y =z 过点A 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点A (5,4),∴z max =5+4=9. 答案:915.已知关于x 的不等式ax 2+bx +c <0的解集为xx <-1或x >12,则关于x 的不等式c (lg x )2+lg x b +a <0的解集为________.解析:由题意知-1,12是方程ax 2+bx +c =0的两根,所以⎩⎨⎧-12=-b a ,-12=ca ,且a <0,所以⎩⎨⎧b =12a ,c =-12a .所以不等式c (lg x )2+lg x b +a <0化为 -12a (lg x )2+b lg x +a <0, 即-12a (lg x )2+12a lg x +a <0.所以(lg x )2-lg x -2<0,所以-1<lg x <2,所以110<x <100.答案:⎩⎨⎧⎭⎬⎫x |110<x <10016.设x >0,y >0,且⎝⎛⎭⎫x -1y 2=16y x ,则当x +1y 取最小值时,x 2+1y 2=________. 解析:∵x >0,y >0,∴当x +1y 取最小值时,⎝⎛⎭⎫x +1y 2取得最小值, ∵⎝⎛⎭⎫x +1y 2=x 2+1y 2+2xy ,⎝⎛⎭⎫x -1y 2=16y x , ∴x 2+1y2=2x y +16yx ,⎝⎛⎭⎫x +1y 2=4x y +16y x ≥2 4x y ·16yx=16, ∴x +1y ≥4,当且仅当4x y =16y x ,即x =2y 时取等号,∴当x +1y 取最小值时,x =2y ,x 2+1y 2+2x y =16,即x 2+1y 2+2×2yy =16,∴x 2+1y2=16-4=12.答案:12专题检测(四)常用逻辑用语、推理与证明、函数的实际应用一、选择题1.(2018·南宁联考)命题“∃x0∈R,x0+cos x0-e x0>1”的否定是()A.∃x0∈R,x0+cos x0-e x0<1B.∃x0∈R,x0+cos x0-e x0≥1C.∀x∈R,x+cos x-e x≥1D.∀x∈R,x+cos x-e x≤1解析:选D因为所给命题是一个特称命题,所以其否定是一个全称命题,即“∀x∈R,x+cos x-e x≤1”.2.(2018·长春质检)命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1解析:选D命题的形式是“若p,则q”,由逆否命题的知识,可知其逆否命题为“若綈q,则綈p”的形式,所以“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”.故选D.3.(2018·南昌调研)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选D当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.4.(2018·安徽八校联考)某参观团根据下列约束条件从A,B,C,D,E五个镇选择参观地点:①若去A镇,也必须去B镇;②D,E两镇至少去一镇;③B,C两镇只去一镇;④C,D两镇都去或者都不去;⑤若去E镇,则A,D两镇也必须去.则该参观团至多去了()A.B,D两镇B.A,B两镇C.C,D两镇D.A,C两镇解析:选C若去A镇,根据①可知一定去B镇,根据③可知不去C镇,根据④可知不去D镇,根据②可知去E镇,与⑤矛盾,故不能去A镇;若不去A镇,根据⑤可知也不去E镇,再根据②知去D镇,再根据④知去C镇,再根据③可知不去B镇,再检验每个条件都成立,所以该参观团至多去了C,D两镇.故选C.5.下列命题是真命题的是()A.∀x∈(2,+∞),x2>2xB.“x2+5x-6>0”是“x>2”的充分不必要条件C.设{a n}是公比为q的等比数列,则“q>1”是“{a n}为递增数列”的既不充分也不必要条件D.a⊥b的充要条件是a·b=0解析:选C A选项,当x=4时,x2与2x显然相等.B选项,由x2+5x-6>0,得{x|x>1或x<-6},{x|x>2}⊆{x|x>1或x<-6},故“x2+5x-6>0”是“x>2”的必要不充分条件.C 选项,当a1<0,q>1时,数列{a n}递减;当a1<0,数列{a n}递增时,0<q<1.D选项,当a=0或b=0时,a·b=0但不垂直,故选C.6.已知条件p:x+y≠-2,条件q:x,y不都是-1,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A因为p:x+y≠-2,q:x≠-1或y≠-1,所以綈p:x+y=-2,綈q:x=-1且y=-1,因为綈q⇒綈p但綈p綈q,所以綈q是綈p的充分不必要条件,即p是q的充分不必要条件.7.给出下面四个类比结论:①实数a,b,若ab=0,则a=0或b=0;类比复数z1,z2,若z1z2=0,则z1=0或z2=0.②实数a,b,若ab=0,则a=0或b=0;类比向量a,b,若a·b=0,则a=0或b=0.③实数a ,b ,有a 2+b 2=0,则a =b =0;类比复数z 1,z 2,有z 21+z 22=0,则z 1=z 2=0.④实数a ,b ,有a 2+b 2=0,则a =b =0;类比向量a ,b ,若a 2+b 2=0,则a =b =0.其中类比结论正确的个数是( ) A .0 B .1 C .2D .3解析:选C 对于①,显然是正确的;对于②,若向量a ,b 互相垂直,则a ·b =0,所以②错误;对于③,取z 1=1,z 2=i ,则z 21+z 22=0,所以③错误;对于④,若a 2+b 2=0,则|a |=|b |=0,所以a =b =0,故④是正确的.综上,类比结论正确的个数是2.8.某商场为了解商品的销售情况,对某种电器今年一至五月份的月销售量Q (x )(台)进行统计,得数据如下:根据表中的数据,你认为能较好地描述月销售量Q (x )(台)与时间x (月份)变化关系的模拟函数是( )A .Q (x )=ax +b (a ≠0)B .Q (x )=a |x -4|+b (a ≠0)C .Q (x )=a (x -3)2+b (a ≠0)D .Q (x )=a ·b x (a ≠0,b >0且b ≠1)解析:选C 观察数据可知,当x 增大时,Q (x )的值先增大后减小,且大约是关于Q (3)对称,故月销售量Q (x )(台)与时间x (月份)变化关系的模拟函数的图象是关于x =3对称的,显然只有选项C 满足题意,故选C.9.(2018·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C 若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.10.在下列结论中,正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定形式为綈p :“∀x ∈R ,x 2-2<0”;②O 是△ABC 所在平面上一点,若OA ―→·OB ―→=OB ―→·OC ―→=OC ―→·OA ―→,则O 是△ABC 的垂心;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的充分不必要条件;④命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”. A .1 B .2 C .3D .4解析:选C 由特称(存在性)命题与全称命题的关系可知①正确. ∵OA ―→·OB ―→=OB ―→·OC ―→,∴OB ―→·(OA ―→-OC ―→)=0,即OB ―→·CA ―→=0, ∴OB ―→⊥CA ―→.同理可知OA ―→⊥BC ―→,OC ―→⊥BA ―→,故点O 是△ABC 的垂心,∴②正确. ∵y =⎝⎛⎭⎫23x是减函数,∴当M >N 时,⎝⎛⎭⎫23M <⎝⎛⎭⎫23N ,当⎝⎛⎭⎫23M >⎝⎛⎭⎫23N 时,M <N . ∴“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的既不充分也不必要条件,∴③错误. 由逆否命题的写法可知,④正确. ∴正确的结论有3个.11.(2018·福州高三期末考试)不等式组⎩⎪⎨⎪⎧x -y ≥1,x +2y ≤2的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x -2y ≥2; p 2:∃(x ,y )∈D ,x -2y ≥3; p 3:∀(x ,y )∈D ,x -2y ≥23;p 4:∃(x ,y )∈D ,x -2y ≤-2. 其中的真命题是( ) A .p 2,p 3B .p 1,p 4C .p 1,p 2D .p 1,p 3解析:选A 不等式组表示的可行域为如图所示的阴影部分.由⎩⎪⎨⎪⎧x -y =1,x +2y =2,解得⎩⎨⎧x =43,y =13,所以M ⎝⎛⎭⎫43,13.由图可知,当直线z =x -2y 过点M ⎝⎛⎭⎫43,13时, z 取得最小值,且z min =43-2×13=23,所以真命题是p 2,p 3,故选A.12.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶和玻璃杯的形状都是圆柱形,桶口的半径是杯口半径的2倍,其正视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h 与注水时间t 之间关系的大致图象是( )解析:选C 向玻璃杯内匀速注水,水面逐渐升高,当玻璃杯中水满时,开始向塑料桶内流,这时水位高度不变,因为杯子和桶底面半径比是1∶2,则底面积的比为1∶4,在高度相同情况下体积比为1∶4,杯子内水的体积与杯子外水的体积比是1∶3,所以高度不变时,杯外注水时间是杯内注水时间的3倍,当桶的水面高度与玻璃杯的水面高度一样后,继续注水,水面高度再升高,升高的速度开始慢,结合图象知选C.13.观察下列各式:55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,…,则52 018的末四位数字为( )A .3 125B .5 625C .0 625D .8 125解析:选B 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,……,可得59与55的后四位数字相同,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 018=4×503+6,所以52 018与56的后四位数字相同,为5 625,故选B.14.埃及数学中有一个独特现象:除23用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式,例如25=13+115.可以这样理解:假定有两个面包,要平均分给5个人,若每人分得一个面包的12,不够,若每人分得一个面包的13,还余13,再将这13分成5份,每人分得115,这样每人分得13+115.形如2n (n =5,7,9,11,…)的分数的分解:25=13+115,27=14+128,29=15+145,按此规律,2n =( ) A.2n +1+2n (n +1) B.1n +1+1n (n +1)C.1n +2+1n (n +2)D.12n +1+1(2n +1)(2n +3)解析:选A 根据分面包原理知,等式右边第一个数的分母应是等式左边数的分母加1的一半,第二个数的分母是第一个数的分母与等式左边数的分母的乘积,两个数的原始分子都是1,即2n =1n +12+1n (n +1)2=2n +1+2n (n +1).15.一个人骑车以6 m/s 的速度匀速追赶停在交通信号灯前的汽车,当他离汽车25 m 时,交通信号灯由红变绿,汽车开始做变速直线行驶(汽车与人的前进方向相同),若汽车在时刻t 的速度v (t )=t (m/s),那么此人( )A .可在7秒内追上汽车B .不能追上汽车,但其间最近距离为16 mC .不能追上汽车,但其间最近距离为14 mD .不能追上汽车,但其间最近距离为7 m解析:选D 因为汽车在时刻t 的速度v (t )=t (m/s),所以加速度a =v (t )t =1,所以汽车是匀加速运动,以汽车停止位置为参照,人所走过的位移为S 1=-25+6t ,汽车在时间t 内的位移为S 2=t 22,故设相对位移为y m ,则y =-25+6t -t 22=-12(t -6)2-7,故不能追上汽车,且当t =6时,其间最近距离为7 m ,故选D.16.“干支纪年法”是中国历法上自古以来使用的纪年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字开始,“地支”以“子”字开始,两者按干支顺序相配,组成了干支纪年法,其相配顺序为:甲子、乙丑、丙寅……癸酉、甲戌、乙亥、丙子……癸未、甲申、乙酉、丙戌……癸巳……共得到60个组合,周而复始,循环记录.已知1894年是“干支纪年法”中的甲午年,那么2020年是“干支纪年法”中的( )A .己亥年B .戊戌年C .辛丑年D .庚子年解析:选D 由题知,天干的周期为10,地支的周期为12,因为1894年为甲午年,所以2014年为甲午年,从2014年到2020年,经过了6年,所以天干中的甲变为庚,地支中的午变为子,即2020年是庚子年,故选D.二、填空题17.(2018·沈阳质检)在推导等差数列前n 项和的过程中,我们使用了倒序相加的方法,类比可求得sin 21°+sin 22°+…+sin 289°=________.解析:令S =sin 21°+sin 22°+sin 23°+…+sin 289°, ① S =sin 289°+sin 288°+sin 287°+…+sin 21°, ② 则①+②得2S =89,S =892. 答案:89218.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :_____________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点19.命题p :“∀x ∈R ,ax 2-2ax +3>0恒成立”,命题q :“∃x ∈R ,使x 2+(a -1)x +1<0”,若p ∨q 为假命题,则实数a 的取值范围是________.解析:因为p ∨q 为假命题,所以命题p 和q 都是假命题,命题p 是真命题的充要条件是a =0或⎩⎪⎨⎪⎧a >0,Δ=4a 2-12a <0⇒0≤a <3,所以其为假的充要条件是a <0或a ≥3,命题q 的否定是真命题,即∀x ∈R ,x 2+(a -1)x +1≥0,则Δ=(a -1)2-4≤0,解得-1≤a ≤3,所以-1≤a <0或a =3.答案:[-1,0)∪{3}20.已知某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓房能全部租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设已出租的每套房子每月需要公司花费100元的日常维修等费用(设没有出租的房子不需要花这些费用),则要使公司获得最大利润,每套房月租金应定为________元.解析:设利润为y 元,租金定为3 000+50x (0≤x ≤70,x ∈N )元.则y =(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤50⎝ ⎛⎭⎪⎫58+x +70-x 22=204 800,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.答案:3 30021.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e=2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.解析:由题意得⎩⎪⎨⎪⎧192=e b ,48=e 22k +b ,解得⎩⎪⎨⎪⎧e b=192,e 11k =12,当x =33时,y =e 33k +b =(e 11k )3e b =⎝⎛⎭⎫123×192=24. 答案:2422.使用“□”和“○”按照如下规律从左到右进行排位:□,○,□,○,○,○,□,○,○,○,○,○,□,○,○,○,○,○,○,○,…,若每一个“□”或“○”占一个位置,如上述图形中,第1位是“□”,第4位是“○”,第7位是“□”,则第 2 019位之前(不含第2 019位),共有______个“○”.解析:记“□,○”为第1组,“□,○,○,○”为第2组,“□,○,○,○,○,○”为第3组,以此类推,第k 组共有2k 个图形,故前k 组共有k (k +1)个图形,因为44×45=1 980<2 018<45×46=2 070,所以在这2 018个图形中有45个“□”,1 973个“○”.答案:1 97323.(2018·东北三校联考)甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A ,B ,C ,已知:①甲不在哈尔滨工作,乙不在长春工作; ②在哈尔滨工作的教师不教C 学科; ③在长春工作的教师教A 学科; ④乙不教B 学科.可以判断乙教师所在的城市和所教的学科分别是________________.解析:由于乙不在长春工作,而在长春工作的教师教A 学科,则乙不教A 学科;又乙不教B 学科,所以乙教C 学科,而在哈尔滨工作的教师不教C 学科,故乙在沈阳教C 学科.综上可知,乙教师所在的城市为沈阳,所教的学科为C .答案:沈阳、C24.某班主任在其工作手册中,对该班每个学生用12项能力特征加以描述.每名学生的第i (i =1,2,…,12)项能力特征用x i 表示,x i =⎩⎪⎨⎪⎧0,如果某学生不具有第i 项能力特征,1,如果某学生具有第i 项能力特征.若学生A ,B 的12项能力特征分别记为A =(a 1,a 2,…,a 12),B =(b 1,b 2,…,b 12),则A ,B 两名学生的不同能力特征项数为________(用a i ,b i 表示).如果两个同学不同能力特征项数不少于7,那么就说这两个同学的综合能力差异较大.若该班有3名学生两两综合能力差异较大,则这3名学生两两不同能力特征项数总和的最小值为________.解析:若第i (i =1,2,…,12)项能力特值相同,则差为0,特征不同,差的绝对值为1,则用a i ,b i 表示A ,B 两名同学的不同能力特征项数为:|a 1-b 1|+|a 2-b 2|+|a 3-b 3|+…+|a 11-b 11|+|a 12-b 12|=∑i =112|a i -b i |.设第三个学生为C =(c 1,c 2,…,c 12),则d i =|a i -b i |+|b i -c i |+|c i -a i |,1≤i ≤12,因为d i 的奇偶性与a i -b i +b i -c i +c i -a i =0一样,所以d i 是偶数,3名学生两两不同能力特征项数总和为S =d 1+d 2+…+d 12为偶数,又S ≥3×7=21,则S ≥22,取A =(0,1,1,0,1,1,0,1,1,0,1,1),B =(1,0,1,1,0,1,1,0,1,1,0,1),C =(1,1,0,1,1,0,1,1,0,1,1,1),则不同能力特征项数总和正好为22.答案: i =112|a i -b i | 22专题检测(五) 函数的图象与性质A 组——“12+4”满分练一、选择题1.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x ,x <0,则f (f (-2))=( )A .4B .3C .2D .1解析:选A 因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x ,x <0,所以f (-2)=-(-2)=2,所以f (f (-2))=f (2)=22=4.2.(2018·潍坊统一考试)下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( )A .y =1xB .y =-x 2+1C .y =2xD .y =log 2|x |解析:选B 因为函数的图象是轴对称图形,所以排除A 、C ,又y =-x 2+1在 (0,+∞)上单调递减,y =log 2|x |在(0,+∞)上单调递增,所以排除D.故选B.3.已知函数f (x )=4|x |,g (x )=2x 2-ax (a ∈R ).若f (g (1))=2,则a =( ) A .1或52B.52或32C .2或52D .1或32解析:选B 由已知条件可知f (g (1))=f (2-a )=4|2-a |=2,所以|a -2|=12,得a =52或32.4.已知函数f (x )=x 2-2ax +5的定义域和值域都是[1,a ],则a =( ) A .1 B .2 C .3D .4解析:选B 因为f (x )=(x -a )2+5-a 2,所以f (x )在[1,a ]上是减函数,又f (x )的定义域和值域均为[1,a ],所以⎩⎪⎨⎪⎧ f (1)=a ,f (a )=1,即⎩⎪⎨⎪⎧1-2a +5=a ,a 2-2a 2+5=1,解得a =2.5.(2018·全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:选D 法一:令f (x )=-x 4+x 2+2, 则f ′(x )=-4x 3+2x ,令f ′(x )=0,得x =0或x =±22,则f ′(x )>0的解集为⎝⎛⎭⎫-∞,-22∪⎝⎛⎭⎫0,22, f (x )单调递增;f ′(x )<0的解集为⎝⎛⎭⎫-22,0∪⎝⎛⎭⎫22,+∞,f (x )单调递减,结合图象知选D.法二:当x =1时,y =2,所以排除A 、B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.故选D.6.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( )A .-12B .-54C .-1D .-2解析:选C 由图象可得a ×(-1)+b =3,ln(-1+a )=0,∴a =2,b =5,∴f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,故f (-3)=2×(-3)+5=-1.7.设函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,则实数m 的值为( )A .-1B .1C .2D .-2解析:选A 法一:因为函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数, 所以f (-x )=f (x )对任意的x ∈R 恒成立, 所以-x 3(a -x +m ·a x )=x 3(a x +m ·a -x ),即x 3(1+m )(a x +a -x )=0对任意的x ∈R 恒成立, 所以1+m =0,即m =-1.法二:因为f (x )=x 3(a x +m ·a -x )是偶函数,所以g (x )=a x +m ·a -x 是奇函数,且g (x )在x =0处有意义, 所以g (0)=0,即1+m =0,所以m =-1.8.(2018·福建第一学期高三期末考试)已知函数f (x )=⎩⎪⎨⎪⎧log 2x +a ,x >0,4x -2-1,x ≤0.若f (a )=3,则f (a -2)=( )A .-1516 B .3 C .-6364或3 D .-1516或3 解析:选A 当a >0时,若f (a )=3,则log 2a +a =3,解得a =2(满足a >0);当a ≤0时,若f (a )=3,则4a -2-1=3,解得a =3,不满足a ≤0,所以舍去.于是,可得a =2.故f (a -2)=f (0)=4-2-1=-1516.9.函数f (x )=1sin x -x的图象大致为( )解析:选A 由题意知,函数f (x )为奇函数,且函数的定义域为(-∞,0)∪(0,+∞),故排除C 、D ,又f ⎝⎛⎭⎫π2=1sin π2-π2<0,故排除选项B. 10.已知函数f (x )在(-1,1)上既是奇函数,又是减函数,则满足f (1-x )+f (3x -2)<0的x 的取值范围是( )A.⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫12,1 C.⎝⎛⎭⎫34,+∞D.⎝⎛⎭⎫34,1解析:选B 由已知得f (3x -2)<f (x -1), ∴⎩⎪⎨⎪⎧-1<3x -2<1,-1<x -1<1,3x -2>x -1,解得12<x <1,故选B.11.已知函数f (x )=⎩⎪⎨⎪⎧3(a -3)x +2,x ≤1,-4a -ln x ,x >1,对于任意的x 1≠x 2,都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,3)C .(3,+∞)D .[1,3)解析:选D 由(x 1-x 2)[f (x 2)-f (x 1)]>0,得函数f (x )为R 上的单调递减函数,则⎩⎪⎨⎪⎧a -3<0,3(a -3)+2≥-4a ,解得1≤a <3.故选D. 12.(2018·洛阳一模)已知a >0,设函数f (x )=2 019x +1+2 0172 019x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 017B .2 019C .4 038D .4 036解析:选D 由题意得f (x )=2 019x +1+2 0172 019x +1=2 019-22 019x +1.因为y =2 019x +1在[-a ,a ]上是单调递增的,所以f (x )=2 019-22 019x+1在[-a ,a ]上是单调递增的,所以M =f (a ),N =f (-a ), 所以M +N =f (a )+f (-a )=4 038-22 019a +1-22 019-a +1=4 036. 二、填空题 13.函数y =log 5(x +1)5-x的定义域是________. 解析:由⎩⎪⎨⎪⎧x +1>0,5-x >0得-1<x <5,∴函数y =log 5(x +1)5-x 的定义域是(-1,5).答案:(-1,5)14.函数f (x )=ln 1|x |+1的值域是________.解析:因为|x |≥0,所以|x |+1≥1. 所以0<1|x |+1≤1.所以ln 1|x |+1≤0,即f (x )=ln 1|x |+1的值域为(-∞,0].答案:(-∞,0]15.(2018·福州质检)已知函数f (x )对任意的x ∈R 都满足f (x )+f (-x )=0,f ⎝⎛⎭⎫x +32为偶函数,当0<x ≤32时,f (x )=-x ,则f (2 017)+f (2 018)=________.解析:依题意,f (-x )=-f (x ), f ⎝⎛⎭⎫-x +32=f ⎝⎛⎭⎫x +32, 所以f (x +3)=f (-x )=-f (x ),所以f (x +6)=f (x ), 所以f (2 017)=f (1)=-1,f (2 018)=f (2)=f ⎝⎛⎭⎫12+32=f ⎝⎛⎭⎫-12+32=f (1)=-1,所以f (2 017)+f (2 018)=-2. 答案:-216.若当x ∈(1,2)时,函数y =(x -1)2的图象始终在函数y =log a x (a >0,且a ≠1)的图象的下方,则实数a 的取值范围是________.解析:如图,在同一平面直角坐标系中画出函数y =(x -1)2和y =log a x 的图象,由于当x ∈(1,2)时,函数y =(x -1)2的图象恒在函数y =log a x 的图象的下方,则⎩⎪⎨⎪⎧a >1,log a 2≥1,解得1<a ≤2.答案:(1,2]B 组——“12+4”提速练一、选择题1.已知函数f (x )的定义域为[3,6],则函数y =f (2x )log 12(2-x )的定义域为( )A.⎣⎡⎭⎫32,+∞B.⎣⎡⎭⎫32,2C.⎝⎛⎭⎫32,+∞D.⎣⎡⎭⎫12,2解析:选B 要使函数y =f (2x )log 12(2-x )有意义,需满足⎩⎨⎧3≤2x ≤6,log 12(2-x )>0,即⎩⎪⎨⎪⎧32≤x ≤3,0<2-x <1,解得32≤x <2.2.下列各组函数中,表示同一函数的是( ) A .y =x 与y =log a a x (a >0且a ≠1)B .y =x 2-9x -3与y =x +3C .y =x 2-8与y =x -8D .y =ln x 与y =12ln x 2解析:选A 对于选项A ,y =x 与y =log a a x =x (a >0且a ≠1)的定义域都为R ,解析式相同,故A 中两函数表示同一函数;B 、D 中两函数的定义域不同;C 中两函数的对应法则不同,故选A.3.下列函数中,满足“∀x 1,x 2∈(0,+∞),且x 1≠x 2,(x 1-x 2)[f (x 1)-f (x 2)]<0”的是( )A .f (x )=1x -x B .f (x )=x 3 C .f (x )=ln xD .f (x )=2x解析:选A “∀x 1,x 2∈(0,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”等价于f (x )在(0,+∞)上为减函数,易判断f (x )=1x -x 满足条件.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,则g (f (-7))=( )A .3B .-3C .2D .-2解析:选D 函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,g (x ),x <0,令x <0,则-x >0,f (-x )=log 2(-x +1), 因为f (-x )=-f (x ),所以f (x )=-f (-x )=-log 2(-x +1), 所以g (x )=-log 2(-x +1)(x <0), 所以f (-7)=g (-7)=-log 2(7+1)=-3, 所以g (-3)=-log 2(3+1)=-2.5.(2018·合肥质检)函数y =ln(2-|x |)的大致图象为( )。
2019年高考数学(文科)二轮专题辅导附:4套“12+4”限时提速练
附:4套“12+4”限时提速练“12+4”限时提速练(一) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.已知N 是自然数集,设集合A =⎩⎨⎧⎭⎬⎫x |6x +1∈N ,B ={0,1,2,3,4},则A ∩B =( )A .{0,2}B .{0,1,2}C .{2,3}D .{0,2,4}解析:选B ∵6x +1∈N ,∴x +1应为6的正约数,∴x +1=1或x +1=2或x +1=3或x +1=6,解得x =0或x =1或x =2或x =5,∴集合A ={0,1,2,5},又B ={0,1,2,3,4},∴A ∩B ={0,1,2}.故选B.2.若复数z 满足(1+i)z =2i ,则z =( ) A .-1+i B .-1-i C .1+iD .1-i解析:选C 因为(1+i)z =2i , 所以z =2i1+i =2i (1-i )(1+i )(1-i )=1+i.3.设向量a =(1,2),b =(m ,m +1),若a ∥b ,则实数m 的值为( ) A .1 B .-1 C .-13D .-3 解析:选A 因为a =(1,2),b =(m ,m +1),a ∥b , 所以2m =m +1,解得m =1.4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:选B 由题意可得,数列{a n }的通项公式为a n =2n ,又a m =a 41q 6=210,所以m =10.5.已知圆C 的圆心在坐标轴上,且经过点(6,0)及椭圆x 216+y 24=1的两个顶点,则该圆的标准方程为( )A .(x -2)2+y 2=16B .x 2+(y -6)2=72 C.⎝⎛⎭⎫x -832+y 2=1009D.⎝⎛⎭⎫x +832+y 2=1009解析:选C 由题意得圆C 经过点(0,±2), 设圆C 的标准方程为(x -a )2+y 2=r 2, 由a 2+4=r 2,(6-a )2=r 2, 解得a =83,r 2=1009,所以该圆的标准方程为⎝⎛⎭⎫x -832+y 2=1009.6.据统计,2018年春节期间,甲、乙两个抢红包群抢红包的金额(单位:元)的茎叶图如图所示,其中甲群抢得红包金额的平均数是88元,乙群抢得红包金额的中位数是89元,则m ,n 的等差中项为( )A .5B .6C .7D .8解析:选B 因为甲群抢得红包金额的平均数是88, 所以78+86+84+88+95+(90+m )+927=88,解得m =3.因为乙群抢得红包金额的中位数是89,所以n =9. 所以m ,n 的等差中项为m +n 2=3+92=6.7.某几何体的三视图如图所示,俯视图是一个圆,其内有一个边长为2的正方形,正视图和侧视图是两个全等的等腰直角三角形,它们的底边长和圆的直径相等,它们的内接矩形的长和圆内正方形的对角线长相等,宽和正方形的边长相等,则俯视图中圆的半径是( )A .2B .2 2C .3D.2+1解析:选D 因为正方形的边长为2,所以正方形的对角线长为2, 设俯视图中圆的半径为R , 如图,可得R =2+1.8.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为( )A .121B .81C .74D .49解析:选B 第一次循环:S =1,n =2,a =8;第二次循环:S =9,n =3,a =16; 第三次循环:S =25,n =4,a =24;第四次循环:S =49,n =5,a =32; 第五次循环:S =81,n =6,a =40,不满足a ≤32,退出循环,输出S 的值为81. 9.函数f (x )=A sin(2x +θ)A >0,|θ|≤π2的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:选B 由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32,又|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增,所以选项B 正确.10.已知正四棱柱ABCD -A 1B 1C 1D 1的体积为36,点E ,F 分别为棱B 1B ,C 1C 上的点(异于端点),且EF ∥BC ,则四棱锥A 1-AEFD 的体积为( )A .2B .4C .6D .12解析:选D 连接AF ,易知四棱锥A 1-AEFD 的体积为三棱锥F -A 1AD 和三棱锥F -A 1AE 的体积之和.设正四棱柱的底面边长为a ,高为h ,则V F -A 1AD =13×12×a ×h ×a =16a 2h ,V F -A 1AE =13×12×a ×h ×a =16a 2h ,所以四棱锥A 1-AEFD 的体积为13a 2h ,又a 2h =36,所以四棱锥A 1-AEFD 的体积为12.11.函数f (x )=(2x 2+3x )e x 的图象大致是( )解析:选A 由f (x )的解析式知,f (x )只有两个零点x =-32与x =0,排除B 、D ;又f ′(x )=(2x 2+7x +3)e x ,由f ′(x )=0知函数有两个极值点,排除C ,故选A.12.已知函数f (x )=ln x +x 与g (x )=12ax 2+ax -1(a >0)的图象有且只有一个公共点,则a 所在的区间为( )A.⎝⎛⎭⎫12,23B.⎝⎛⎭⎫23,1C.⎝⎛⎭⎫32,2D.⎝⎛⎭⎫1,32 解析:选D 设T (x )=f (x )-g (x )=ln x +x -12ax 2-ax +1,由题意知,当x >0时,T (x )有且仅有1个零点.T ′(x )=1x +1-ax -a =x +1x -a (x +1)=(x +1)·⎝⎛⎭⎫1x -a =(x +1)·1x ·(1-ax ). 因为a >0,x >0,所以T (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减,如图, 当x →0时,T (x )→-∞,x →+∞时,T (x )→-∞, 所以T ⎝⎛⎭⎫1a =0,即ln 1a +1a -12a -1+1=0, 所以ln 1a +12a=0.因为y =ln 1x +12x 在x >0上单调递减,所以ln 1a +12a =0在a >0上最多有1个零点.当a =12时,ln 1a +12a >0,当a =1时,ln 1a +12a =12>0,当a =32时,ln 1a +12a <0,当a =2时,ln 1a +12a <0,所以a ∈⎝⎛⎭⎫1,32. 二、填空题(本大题共4小题,每小题5分,共20分) 13.若函数f (x )=x 2+axx 3是奇函数,则常数a =______.解析:函数f (x )的定义域为(-∞,0)∪(0,+∞), 则由f (x )+f (-x )=0, 得x 2+ax x 3+x 2-ax -x 3=0,即ax =0,则a =0. 答案:014.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤-1,3x -5y +25≥0,x +4y -3≥0,则目标函数z =3x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示, 作出直线3x +y =0,平移该直线,当直线经过点A 时,z 取得最大值.联立⎩⎪⎨⎪⎧x =-1,3x -5y +25=0,解得⎩⎪⎨⎪⎧x =-1,y =225,所以z max =3×(-1)+225=75.答案:7515.在平面直角坐标系xOy 中,与双曲线x 23-y 2=1有相同渐近线,焦点位于x 轴上,且焦点到渐近线距离为2的双曲线的标准方程为________.解析:与双曲线x 23-y 2=1有相同渐近线的双曲线的标准方程可设为x 23-y 2=λ,因为双曲线焦点在x 轴上,故λ>0,又焦点到渐近线的距离为2, 所以λ=4,所求方程为x 212-y 24=1.答案:x 212-y 24=116.如图所示,在△ABC 中,∠ABC 为锐角,AB =2,AC =8,sin ∠ACB =26,若BE =2DE ,S △ADE =423,则sin ∠BAE sin ∠DAE=________.解析:因为在△ABC 中,AB =2,AC =8,sin ∠ACB =26, 由正弦定理得AB sin ∠ACB =ACsin ∠ABC ,所以sin ∠ABC =223.又∠ABC 为锐角,所以cos ∠ABC =13.因为BE =2DE ,所以S △ABE =2S △ADE . 又因为S △ADE =423,所以S △ABD =4 2.因为S △ABD =12×BD ×AB ×sin ∠ABC ,所以BD =6.由余弦定理AD 2=AB 2+BD 2-2AB ×BD ×cos ∠ABD ,可得AD =4 2. 因为S △ABE =12×AB ×AE ×sin ∠BAE ,S △DAE =12×AD ×AE ×sin ∠DAE ,所以sin ∠BAE sin ∠DAE=2×ADAB =4 2.答案:4 2“12+4”限时提速练(二) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.若复数z =a1+i +1为纯虚数,则实数a =( )A .-2B .-1C .1D .2解析:选A 因为复数z =a 1+i +1=a (1-i )(1+i )(1-i )+1=a 2+1-a2i 为纯虚数,所以a 2+1=0,且-a2≠0,解得a =-2.故选A.2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x < 2,B ={x |ln x ≤0},则A ∩B =( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1D .[-1,1]解析:选A ∵12≤2x < 2,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x |-1≤x <12.∵ln x ≤0,∴0<x ≤1,∴B ={x |0<x ≤1}, ∴A ∩B =⎩⎨⎧⎭⎬⎫x |0<x <12.3.已知函数f (x )=2x (x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是( ) A.12 B.13C.14D.23解析:选B 因为函数y =2x 是R 上的增函数, 所以函数f (x )的值域是(0,1),由几何概型的概率公式得,所求概率P =1-02-(-1)=13.4.已知B 是以线段AC 为直径的圆上的一点(异于点A ,C ),其中|AB |=2,则 AC ―→·AB ―→=( ) A .1 B .2 C .3D .4解析:选D 连接BC ,∵AC 为直径,∴∠ABC =90°,∴AB ⊥BC ,AC ―→在AB ―→上的投影|AC ―→|cos 〈AC ―→,AB ―→〉=|AB ―→|=2, ∴AC ―→·AB ―→=|AC ―→||AB ―→|cos 〈AC ―→,AB ―→〉=4. 5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .-3 B.32C .3D .4解析:选C 作出不等式组所表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线过点B 时,z =2x +y 取得最大值.由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,所以B (2,-1),故z max =2×2-1=3.6.执行如图所示的程序框图,若输出的s =25,则判断框中可填入的条件是( )A .i ≤4?B .i ≥4?C .i ≤5?D .i ≥5?解析:选C 执行程序框图,i =1,s =100-5=95;i =2,s =95-10=85;i =3,s =85-15=70;i =4,s =70-20=50;i =5,s =50-25=25;i =6,退出循环.此时输出的s =25.结合选项知,选C.7.将函数y =2sin ⎝⎛⎭⎫x +π3cos ⎝⎛⎭⎫x +π3的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数为奇函数,则φ的最小值为( )A.π12 B.π6C.π4D.π3解析:选B 根据题意可得y =sin ⎝⎛⎭⎫2x +2π3,将其图象向左平移φ个单位长度,可得y =sin ⎝⎛⎭⎫2x +2π3+2φ的图象,因为该图象所对应的函数恰为奇函数,所以2π3+2φ=k π(k ∈Z),φ=k π2-π3(k ∈Z),又φ>0,所以当k =1时,φ取得最小值,且φmin =π6,故选B.8.南宋数学家秦九韶早在《数书九章》中就提出了已知三角形的三边求其面积的公式:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂,减上,余四约之,为实.一为从隅,开平方,得积.”即△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,其中△ABC 的三边分别为a ,b ,c ,且a >b >c ,并举例“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”则该三角形沙田的面积为( )A .82平方里B .83平方里C .84平方里D .85平方里解析:选C 由题意知三角形沙田的三边长分别为15里、14里、13里,代入三角形的面积公式可得三角形沙田的面积S =14×⎣⎡⎦⎤132×152-⎝⎛⎭⎫132+152-14222=84(平方里).故选C.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6解析:选C 由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6.10.已知f (x )是定义在[-2b,1+b ]上的偶函数,且在[-2b ,0]上为增函数,则f (x -1)≤f (2x )的解集为( ) A.⎣⎡⎦⎤-1,23 B.⎣⎡⎦⎤-1,13C .[-1,1]D.⎣⎡⎦⎤13,1解析:选B ∵函数f (x )是定义在[-2b,1+b ]上的偶函数, ∴-2b +1+b =0,∴b =1,函数f (x )的定义域为[-2,2], 又函数f (x )在[-2,0]上单调递增,∴函数f (x )在[0,2]上单调递减, ∵f (x -1)≤f (2x ),∴f (|x -1|)≤f (|2x |),∴⎩⎪⎨⎪⎧-2≤x -1≤2,-2≤2x ≤2,|x -1|≥|2x |,解得-1≤x ≤13.11.在各项均为正数的等比数列{a n }中,a 1a 11+2a 5a 9+a 4a 12=81,则1a 6+4a 8的最小值是( )A.73 B .9 C .1D .3解析:选C 因为{a n }为等比数列,所以a 1a 11+2a 5a 9+a 4a 12=a 26+2a 6a 8+a 28=(a 6+a 8)2=81,又因为等比数列{a n }的各项均为正数,所以a 6+a 8=9, 所以1a 6+4a 8=19(a 6+a 8)⎝⎛⎭⎫1a 6+4a 8=195+a 8a 6+4a 6a 8≥19⎝⎛⎭⎫5+2a 8a 6×4a 6a 8=1, 当且仅当a 8a 6=4a 6a 8,a 6+a 8=9,即a 6=3,a 8=6时等号成立,所以1a 6+4a 8的最小值是1.12.过抛物线y =14x 2的焦点F 的直线交抛物线于A ,B 两点,点C 在直线y =-1上,若 △ABC 为正三角形,则其边长为( )A .11B .12C .13D .14解析:选B 由题意可知,焦点F (0,1),易知过焦点F 的直线的斜率存在且不为零,则设该直线方程为y =kx +1(k ≠0), 联立⎩⎪⎨⎪⎧y =14x 2,y =kx +1,消去y ,得x 2-4kx -4=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=4k ,x 1x 2=-4, 设线段AB 的中点为M ,则M (2k,2k 2+1), |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)(16k 2+16)=4(1+k 2). 设C (m ,-1),连接MC , ∵△ABC 为等边三角形,∴k MC =2k 2+22k -m =-1k ,m =2k 3+4k ,点C (m ,-1)到直线y =kx +1的距离|MC |= |km +2|1+k 2=32|AB |,∴|km +2|1+k 2=32×4(1+k 2), 即2k 4+4k 2+21+k 2=23(1+k 2), 解得k =±2, ∴|AB |=4(1+k 2)=12.二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =2x +1,则f (1)+f ′(1)=________. 解析:因为f (x )的图象在点M (1,f (1))处的切线方程为y =2x +1,所以f ′(1)=2,又因为点M (1,f (1))也在直线y =2x +1上,所以f (1)=2×1+1=3,所以f (1)+f ′(1)=3+2=5.答案:514.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙比学习委员的年龄大,甲与体育委员的年龄不同,体育委员比乙的年龄小,据此推断班长是________.解析:若甲是班长,由于体育委员比乙的年龄小,故丙是体育委员,乙是学习委员,但这与丙比学习委员的年龄大矛盾,故甲不是班长;若丙是班长,由于体育委员比乙的年龄小,故甲是体育委员,这和甲与体育委员的年龄不同矛盾,故丙不是班长;若乙是班长,由于甲与体育委员的年龄不同,故甲是学习委员,丙是体育委员,此时其他条件均成立,故乙是班长.答案:乙15.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若AB ―→=3FA ―→,则此双曲线的离心率为________.解析:由F (-c,0),A (0,b ), 得直线AF 的方程为y =bc x +b .根据题意知,直线AF 与渐近线y =ba x 相交,联立得⎩⎨⎧y =bc x +b ,y =ba x ,消去x 得,y B =bcc -a. 由AB ―→=3FA ―→,得y B =4b ,所以bcc -a=4b ,化简得3c =4a , 所以离心率e =43.答案:4316.一个直角三角形的三个顶点分别在底面边长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为________.解析:记该直角三角形为△ABC ,且AC 为斜边. 法一:如图,不妨令点A 与正三棱柱的一个顶点重合, 取AC 的中点O ,连接BO , ∴BO =12AC ,∴AC 取得最小值即BO 取得最小值,即点B 到平面ADEF 的距离. ∵△AHD 是边长为2的正三角形, ∴点B 到平面ADEF 的距离为3, ∴AC 的最小值为2 3.法二:如图,不妨令点A 与正三棱柱的一个顶点重合,设BH =m (m ≥0),CD =n (n ≥0),∴AB 2=4+m 2,BC 2=4+(n -m )2,AC 2=4+n 2. ∵AC 为Rt △ABC 的斜边, ∴AB 2+BC 2=AC 2,即4+m 2+4+(n -m )2=4+n 2, ∴m 2-nm +2=0,∴m ≠0,n =m 2+2m =m +2m,∴AC 2=4+⎝⎛⎭⎫m +2m 2≥4+8=12,当且仅当m =2m ,即m =2时等号成立, ∴AC ≥23,故AC 的最小值为2 3. 答案:2 3“12+4”限时提速练(三) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知a ,b ∈R ,复数a +b i =2i1-i,则a +b =( ) A .2 B .1 C .0 D .-2解析:选C 因为a +b i =2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=-1+i ,所以a =-1,b =1,a +b =0.2.设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( ) A .(-∞,2] B .(-∞,1] C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又A ={x |1<x <2},B ={x |x <a },所以a ≥2. 3.若点⎝⎛⎭⎫sin 5π6,cos 5π6在角α的终边上,则sin α=( ) A.32B.12C .-32D .-12解析:选C 因为sin5π6=sin ⎝⎛⎭⎫π-π6=sin π6=12,cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6= -32, 所以点⎝⎛⎭⎫12,-32在角α的终边上,且该点到角α顶点的距离r =⎝⎛⎭⎫122+⎝⎛⎭⎫-322=1, 所以sin α=-32. 4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.搜索指数越大,表示网民搜索该关键词的次数越多,对该关键词相关的信息关注度也越高.如图是2017年9月到2018年2月这半年来,某个关键词的搜索指数变化的统计图.根据该统计图判断,下列结论正确的是( )A .这半年来,网民对该关键词相关的信息关注度呈周期性变化B .这半年来,网民对该关键词相关的信息关注度不断减弱C .从该关键词的搜索指数来看,2017年10月的方差小于11月的方差D .从该关键词的搜索指数来看,2017年12月的平均值大于2018年1月的平均值解析:选D 由统计图可知,这半年来,该关键词的搜索指数变化的周期性并不显著,排除A ;由统计图可知,这半年来,该关键词的搜索指数的整体减弱趋势不显著,排除B ;由统计图可知,2017年10月该关键词的搜索指数波动较大,11月的波动较小,所以2017年10月的方差大于11月的方差,排除C ;由统计图可知,2017年12月该关键词的搜索指数大多高于10 000,该月平均值大于10 000,2018年1月该关键词的搜索指数大多低于10 000,该月平均值小于10 000,故选D.5.某几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A.33B.233C. 3D .2解析:选D 由三视图知,该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图,该四棱锥的高h =3,底面ABCD 是边长分别为2,3的矩形,所以该四棱锥的体积V =13S 四边形ABCD ×h =13×2×3×3=2.故选D.6.在如图所示的程序框图中,如果输入a =1,b =1,则输出的S =( )A .7B .20C .22D .54解析:选B 执行程序,a =1,b =1,S =0,k =0,k ≤4,S =2,a =2,b =3;k =2,k ≤4,S =7,a =5,b =8;k =4,k ≤4,S =20,a =13,b =21;k =6,不满足k ≤4,退出循环.则输出的S =20.7.已知直线l :y =3x +m 与圆C :x 2+(y -3)2=6相交于A ,B 两点,若∠ACB =120°,则实数m 的值为( )A .3+6或3- 6B .3+26或3-2 6C .9或-3D .8或-2解析:选A 由题知圆C 的圆心为C (0,3),半径为6,取AB 的中点为D ,连接CD ,则CD ⊥AB ,在△ACD 中,|AC |=6,∠ACD =60°,所以|CD |=62,由点到直线的距离公式得|-3+m |(3)2+1=62,解得m =3±6. 8.若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x <k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π4≤x <k π+π2,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x <k π+π2,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π-π4≤x ≤k π+π4,k ∈Z解析:选B 由正切函数的图象知,直线x =a π(0<a <1)与函数y =tan x 的图象没有公共点时,a =12,所以tan x ≥2a ,即tan x ≥1,其解集是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π4≤x <k π+π2,k ∈Z . 9.已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 017b 2 018的值是( )A.4 0352 018 B.4 0332 017C.2 0172 018D.2 0162 017解析:选B 由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n . 当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2.当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n , 所以1b 1b 2+1b 2b 3+…+1b 2 017b 2 018=1+1-12+12-13+…+12 016-12 017=2-12 017=4 0332 017.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5]解析:选C 法一:当x ≥1时,由ln x +1=2,得x =e.由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象如图所示,由图象知,要使f (x )=2有两个解,则 a -3<2,得a <5.11.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,经过原点O 的直线l 与椭圆E交于P ,Q 两点,若|PF |=2|Q F |,且∠PF Q =120°,则椭圆E 的离心率为( )A.13 B.12C.33D.22解析:选C 设F 1是椭圆E 的右焦点,如图,连接PF 1,Q F 1.根据对称性,线段FF 1与线段P Q 在点O处互相平分,所以四边形PF Q F 1是平行四边形,|F Q |=|PF 1|,∠FPF 1=180°-∠PF Q =60°,根据椭圆的定义得|PF |+|PF 1|=2a ,又|PF |=2|Q F |,所以|PF 1|=23a ,|PF |=43a ,而|F 1F |=2c ,在△F 1PF 中,由余弦定理,得(2c )2=⎝⎛⎭⎫23a 2+⎝⎛⎭⎫43a 2-2×23a ×43a ×cos 60°,化简得c 2a 2=13, 所以椭圆E 的离心率e =c a =33.12.已知函数f (x )=e xx 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( )A.⎝⎛⎦⎤-∞,e 24 B.⎝⎛⎦⎤-∞,e2 C .(0,2] D .[2,+∞)解析:选A f ′(x )=e x (x -2)x 3+k (2-x )x =(x -2)(e x -kx 2)x 3(x >0),令f ′(x )=0,得x =2或e x =kx 2(x >0).由x =2是函数f (x )的唯一极值点知e x ≥kx 2(x >0)恒成立或e x ≤kx 2(x >0)恒成立, 由y =e x (x >0)和y =kx 2(x >0)的图象可知,只能是e x ≥kx 2(x >0)恒成立. 当x >0时,由e x≥kx 2,得k ≤e xx2.设g (x )=e xx2,则k ≤g (x )min .由g ′(x )=e x (x -2)x 3,得当x >2时,g ′(x )>0,g (x )单调递增,当0<x <2时,g ′(x )<0,g (x )单调递减,所以g (x )min =g (2)=e 24,所以k ≤e 24.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a ,b 满足a ⊥b ,|a |=1,|2a +b |=22,则|b |=________. 解析:法一:因为|2a +b |=22, 所以4a 2+4a ·b +b 2=8. 因为a ⊥b ,所以a ·b =0.又|a |=1,所以4×1+4×0+b 2=8,所以|b |=2. 法二:如图,作出OA ―→=2a ,OB ―→=b ,OC ―→=2a +b ,因为a ⊥b ,所以OA ⊥OB ,因为|a |=1,|2a +b |=22, 所以|OA ―→|=2,|OC ―→|=22,所以|OB ―→|=|b |=2.法三:因为a ⊥b ,所以以O 为坐标原点,以a ,b 的方向分别为x 轴,y 轴的正方向建立平面直角坐标系(图略),因为|a |=1,所以a =(1,0),设b =(0,y )(y >0),则2a +b =(2,y ),因为|2a +b |=22,所以4+y 2=8,解得y =2,所以|b |=2.答案:214.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3≥0,x -y +4≥0,2x +y -4≤0,则z =x +3y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示,作出直线x +3y =0,并平移该直线,当直线经过点A (0,4)时,目标函数z =x +3y 取得最大值,且z max =12.答案:1215.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos C =14,c =3,且a cos A =b cos B ,则△ABC的面积等于________.解析:由a cos A =b cos B 及正弦定理,得sin A cos A =sin B cos B ,即tan A =tan B ,所以A =B ,即a =b .由cos C =14且c =3,结合余弦定理a 2+b 2-2ab cos C =c 2,得a =b =6,又sin C =1-cos 2 C =154,所以△ABC 的面积S =12ab sin C =3154.答案:315416.如图,等腰三角形PAB 所在平面为α,PA ⊥PB ,AB =4,C ,D 分别为PA ,AB 的中点,G 为CD 的中点.平面α内经过点G 的直线l 将△PAB 分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点P ′(P ′∉平面α).若点P ′在平面α内的射影H 恰好在翻折前的线段AB 上,则线段P ′H 的长度的取值范围是________.解析:在等腰三角形PAB 中,∵PA ⊥PB ,AB =4,∴PA =PB =2 2.∵C ,D 分别为PA ,AB 的中点, ∴PC =CD =2且PC ⊥CD . 连接PG ,P ′G ,∵G 为CD 的中点,∴PG =P ′G =102.连接HG ,∵点P ′在平面α内的射影H 恰好在翻折前的线段AB 上, ∴P ′H ⊥平面α,∴P ′H ⊥HG ,∴HG <P ′G =102. 易知点G 到线段AB 的距离为12,∴HG ≥12,∴12≤HG <102.又P ′H =⎝⎛⎭⎫1022-HG 2, ∴0<P ′H ≤32.答案:⎝⎛⎦⎤0,32“12+4”限时提速练(四) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.复数z =2+i1-i的共轭复数对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选D 复数z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=1+3i 2=12+32i ,则复数z 的共轭复数为z =12-32i ,所以复数z的共轭复数对应的点的坐标是⎝⎛⎭⎫12,-32,该点位于第四象限. 2.已知集合M =⎩⎨⎧⎭⎬⎫x |2x ≥1,N ={}y |y =1-x 2,则M ∩N =( )A .(-∞,2]B .(0,1]C .[0,1]D .(0,2]解析:选B 由2x ≥1得x -2x ≤0, 解得0<x ≤2,则M ={x |0<x ≤2}; 函数y =1-x 2的值域是(-∞,1],则N ={y |y ≤1},因此M ∩N ={x |0<x ≤1}=(0,1].3.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( ) A .52 B .78 C .104D .208解析:选C 依题意得3a 7=24,a 7=8,S 13=13(a 1+a 13)2=13a 7=104,选C. 4.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )= -2x ,则f (1)+f (4)等于( )A.32 B .-32C .-1D .1解析:选B 由f (x +4)=f (x )知f (x )是周期为4的周期函数, 又f (x )是定义在R 上的偶函数,故f (4)=f (0)=-1,f (1)=f (-1),又-1∈[-2,0],所以f (-1)=-2-1=-12,所以f (1)=-12,f (1)+f (4)=-32.5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( ) A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5, 因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5.6.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行 A .07 B .25 C .42D .52解析:选D 依题意得,依次选出的个体分别是12,34,29,56,07,52,…因此选出的第6个个体是52.7.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( ) A .34 B.23C .12D.14解析:选D 作出不等式表示的平面区域如图所示, 故所求概率P (y ≤2x)=12×12×11×1=14.8.设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( ) A .48π B .32π C .20πD .12π解析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+(23)2+42=22,因此三棱锥外接球的表面积为4πR 2=32π.9.已知点P ,A ,B 在双曲线x 2a 2-y 2b 2=1上,直线AB 过坐标原点,且直线PA ,PB 的斜率之积为13,则双曲线的离心率为( )A.233B.153 C .2D.102解析:选A 根据双曲线的对称性可知点A ,B 关于原点对称,设A (x 1,y 1),P (x 2,y 2),则B (-x 1,-y 1),所以⎩⎨⎧x 21a 2-y 21b2=1,x22a2-y 22b2=1,两式相减得x 21-x 22a 2=y 21-y 22b 2,即y 21-y 22x 21-x 22=b 2a2,因为直线PA ,PB 的斜率之积为13,所以k PA ·k PB =y 1-y 2 x 1-x 2·-y 1-y 2-x 1-x 2=y 21-y 22x 21-x 22=b 2a2=13,所以双曲线的离心率为e =1+b 2a2= 1+13=233. 10.将函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位长度后的图象关于原点对称,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( )A.32B.12C .-12D .-32解析:选D 依题意得,函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+φ=sin ⎝⎛⎭⎫2x +π3+φ是奇函数,则sin ⎝⎛⎭⎫π3+φ=0,又|φ|<π2,因此π3+φ=0,φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3.当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,所以f (x )=sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤0,π2上的最小值为-32. 11.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,则其俯视图中椭圆的离心率为( )A .12 B.24 C .22D.32解析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎫a 2a 2=22. 12.已知函数f (x )=x 3-3x ,则方程f [f (x )]=1的实根的个数是( ) A .9 B .7 C .5D .3解析:选A 依题意得f ′(x )=3(x +1)(x -1), 当x <-1或x>1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.所以函数f (x )在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,且f(-1)=f (2)=2,f (1)=-2,f (±3)=f (0)=0.在平面直角坐标系内画出直线y =1与函数y =f(x )的图象(图略),结合图象可知,它们共有三个不同的交点,记这三个交点的横坐标由小到大依次为x 1,x 2,x 3, 则-3<x 1<-1<x 2<0,3<x 3<2.再画出直线y =x 1,y =x 2,y =x 3,结合图象可知,直线y =x 1,y =x 2,y =x 3与函数y =f (x )的图象的交点个数均为3,且这些交点的横坐标各不相同,所以方程f [f (x )]=1的实根个数是9.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为当x <0时,f (x )=2x ,令x >0,则-x <0,故f (-x )=2-x ,又因为f (x )是定义在R 上的奇函数,所以当x >0时,f (x )=-2-x ,又因为log 49=log 23>0,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1314.若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________. 解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α), 所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,21 因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件; 由cos α-sin α=14, 两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:1516 15.已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以F 为圆心,|FA |为半径的圆交准线于B ,C 两点,若△FBC 为正三角形,且△ABC 的面积为1283,则抛物线的方程为________. 解析:如图,可得|BF |=2p 3,则由抛物线的定义知点A 到准线的距离也为2p 3,又△ABC 的面积为1283,所以12×2p 3×2p 3=1283,解得p =8,故抛物线的方程为y 2=16x .答案:y 2=16x16.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,得a n +1+b n +1=2(a n +b n ),所以a n +1+b n +1a n +b n=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n ,将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘,得a n +1b n +1a n b n=2, 所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n, 所以c n =a n +b n a n b n =2n2n -1=2, 数列{c n }的前2 018项和为2×2 018=4 036.答案:4 036。
(全国通用版)2019高考数学二轮复习 12 4标准练4 文
12+4标准练41.在复平面内,复数z 1和z 2对应的点分别是A (2,1)和B (0,1),则z 1z 2等于( ) A .-1-2i B .-1+2i C .1-2i D .1+2i答案 C解析 由复数z 1和z 2对应的点分别是A (2,1)和B (0,1),得z 1=2+i ,z 2=i ,故z 1z 2=2+i i=1-2i. 2.已知集合M ={x |x <1},N ={x |2x>1},则M ∩N 等于( ) A .{x |0<x <1} B .{x |x <0} C .{x |x <1} D .∅答案 A解析 N ={x |2x>1}={x |x >0}, ∵M ={x |x <1},∴M ∩N ={x |0<x <1}.3.已知函数f (x )=ln x ,若f (x -1)<1,则实数x 的取值范围是( ) A .(-∞,e +1) B .(0,+∞) C .(1,e +1) D .(e +1,+∞)答案 C解析 已知函数f (x )=ln x ,若f (x -1)<1,则f (x -1)<ln e =f (e), 由函数f (x )为(0,+∞)上的增函数, 得0<x -1<e ,解得1<x <1+e.4.若tan ⎝ ⎛⎭⎪⎫α-π4=-13,则cos 2α等于( )A.35B.12C.13 D .-3 答案 A解析 已知tan ⎝ ⎛⎭⎪⎫α-π4=-13=tan α-11+tan α,解得tan α=12,cos 2α=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α,将正切值代入得cos 2α=35. 5.正四棱锥P -ABCD 的底面积为3,体积为22,E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A .30°B .60°C .45°D .90°答案 B解析 过顶点作垂线,交底面于正方形对角线交点O ,连接OE ,∵正四棱锥P -ABCD 的底面积为3,体积为22, ∴PO =22,AB =3,AC =6,PA =2,OB =62, ∵OE 与PA 在同一平面,是△PAC 的中位线, ∴OE ∥PA 且OE =12PA ,∴∠OEB 即为PA 与BE 所成的角,OE =22, 在Rt△OEB 中,tan∠OEB =OB OE=3, ∴∠OEB =60°. 故选B.6.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一”.就是说:圆堡瑽(圆柱体)的体积为V =112×(底面圆的周长的平方×高),则由此可推得圆周率π的取值为( )A .3B .3.1C .3.14D .3.2 答案 A解析 设圆柱体的底面半径为r ,高为h , 由圆柱的体积公式得V =πr 2h . 由题意知V =112×(2πr )2×h .所以πr 2h =112×(2πr )2×h ,解得π=3.7.已知向量a =(3,-4),|b |=2,若a ·b =-5,则向量a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.2π3答案 D解析 由题意可知,cos θ=a ·b |a ||b |=-510=-12, 所以向量a 与b 的夹角为2π3.8.已知数列{a n }的前n 项和为S n ,且满足a 1=1,a n +a n +1=2n +1,则S 2 0172 017等于( )A .1 009B .1 008C .2D .1 答案 A解析 S 2 017=a 1+(a 2+a 3)+(a 4+a 5)+…+(a 2 016+a 2 017) =(2×0+1)+(2×2+1)+(2×4+1)+…+(2×2 016+1) =(1+2×2 016+1)×1 0092=2 017×1 009,∴S 2 0172 017=1 009. 9.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +y (a >0)的最大值为18,则a 的值为( )A .3B .5C .7D .9 答案 A解析 根据不等式组得到可行域是一个封闭的四边形区域(图略),目标函数化为y =-ax +z ,当直线过点(4,6)时,有最大值,将点代入得到z =4a +6=18,解得a =3.10.已知某简单几何体的三视图如图所示,若正(主)视图的面积为1,则该几何体最长的棱的长度为( )A. 5B. 3 C .2 2 D. 6 答案 C解析 如图该几何体为三棱锥A -BCD ,BC =2,CD =2,因为正(主)视图的面积为1,故正(主)视图的高为1,11.已知函数f (x )=e x+x 2+(3a +2)x 在区间(-1,0)上有最小值,则实数a 的取值范围是( ) A.⎝⎛⎭⎪⎫-1,-1e B.⎝⎛⎭⎪⎫-1,-e 3C.⎝ ⎛⎭⎪⎫-3e ,-1D.⎝⎛⎭⎪⎫-1,-13e 答案 D解析 由f (x )=e x+x 2+(3a +2)x , 可得f ′(x )=e x+2x +3a +2,∵函数f (x )=e x +x 2+(3a +2)x 在区间(-1,0)上有最小值, ∴函数f (x )=e x +x 2+(3a +2)x 在区间(-1,0)上有极小值, 而f ′(x )=e x+2x +3a +2在区间(-1,0)上单调递增, ∴e x+2x +3a +2=0在区间(-1,0)上必有唯一解.由零点存在性定理可得⎩⎪⎨⎪⎧f ′(-1)=e -1-2+3a +2<0,f ′(0)=1+3a +2>0,解得-1<a <-13e,∴实数a 的取值范围是⎝⎛⎭⎪⎫-1,-13e . 12.如图,已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过点F 2作以F 1为圆心,|OF 1|为半径的圆的切线,P 为切点,若切线段PF 2被一条渐近线平分,则双曲线的离心率为( )A .2 B. 2 C. 3 D.52答案 A解析 ∵O 是F 1F 2的中点, 设渐近线与PF 2的交点为M , ∴OM ∥F 1P , ∵∠F 1PF 2为直角, ∴∠OMF 2为直角.∵F 1(-c,0),F 2(c,0),一条渐近线方程为y =b ax ,则F 2到渐近线的距离为bcb 2+a 2=b , ∴|PF 2|=2b . 在Rt△PF 1F 2中,由勾股定理得4c 2=c 2+4b 2,3c 2=4(c 2-a 2), 即c 2=4a 2,解得c =2a , 则双曲线的离心率e =c a=2.13.执行如图所示的程序框图,输出S 的值为________.答案 48解析 第1次运行,i =1,S =2,S =1×2=2,i =2>4不成立; 第2次运行,i =2,S =2,S =2×2=4,i =3>4不成立; 第3次运行,i =3,S =4,S =3×4=12,i =4>4不成立; 第4次运行,i =4,S =12,S =4×12=48,i =5>4成立, 故输出S 的值为48.14.如图,在平面直角坐标系xOy 中,函数y =sin(ωx +φ)(ω>0,0<φ<π)的图象与x 轴的交点A ,B ,C 满足OA +OC =2OB ,则φ=________.答案3π4解析 不妨设ωx B +φ=0,ωx A +φ=π,ωx C +φ=2π, 得x B =-φω,x A =π-φω,x C =2π-φω.由OA +OC =2OB ,得3π-2φω=2φω,解得φ=3π4.15.函数y =x 2+x +1x 与y =3sin πx2+1的图象有n 个交点,其坐标依次为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则∑ni =1(x i +y i )=________. 答案 4解析 因为函数y =x 2+x +1x =x +1x +1,y =3sin πx2+1的对称中心均为(0,1).画出y =f (x )=x 2+x +1x =x +1x +1,y =g (x )=3sinπx2+1的图象,由图可知共有四个交点,且关于(0,1)对称,x 1+x 4=x 2+x 3=0,y 1+y 4=y 2+y 3=2,故∑4i =1(x i +y i )=4. 16.已知定义在R 上的函数f (x )是奇函数,且满足f (3-x )=f (x ),f (-1)=3,数列{a n }满足a 1=1且a n =n (a n +1-a n )(n ∈N *),则f (a 36)+f (a 37)=________. 答案 -3解析 因为函数f (x )是奇函数, 所以f (-x )=-f (x ), 又因为f (3-x )=f (x ), 所以f (3-x )=-f (-x ), 所以f (3+x )=-f (x ), 即f (x +6)=f (x ),所以f (x )是以6为周期的周期函数. 由a n =n (a n +1-a n ),即(n +1)a n =na n +1, 可得a n ≠0,a n +1a n =n +1n, 则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1 =nn -1×n -1n -2×n -2n -3×…×21×1=n ,即a n=n,n∈N*,所以a36=36,a37=37.又因为f(-1)=3,f(0)=0,所以f(a36)+f(a37)=f(0)+f(1) =f(1)=-f(-1)=-3.。
2019高考数学二轮复习“12+4”小题提速练一理(含答案)
一、选择题
1.设全集 U= R,集合 M={ y| y= lg( x2+10)} , N= { x|0< x<2} ,则 N∩(?UM) = (
)
A. (0,1)
B. (0,1]
C. (1,2)
D. ?
解析:选 A 由 M= { y| y=lg( x2+ 10)} 得 M= { y| y≥1} ,所以 ?UM= ( -∞, 1) ,故 N∩(?UM) = (0,1) ,故
满足条件②;
1
11
x
2+ 2 - 1
x
x
2 +1
- x 2-x+1 - x 2x+ 1
因为当
x≠0时,f 4( x) = x
x+ 2 -1 2
=x·
x- = 2· 2x- 1,所以 f 4( -x) = 2 ·2-x-1= 2 · 1
2x- 1
x
x 2 +1 = 2· 2x- 1= f 4( x) ,所以当 x≠0时, f 4( x) 是偶函数,所以当 x1<0<x2,且 | x1| = | x2| 时,有 f 4( x1) = f 4 ( x2) ,
xf ′(x)>0 ;③当 x1<0<x2,且 | x1| = | x2| 时,都有 f ( x1)< f ( x2) ,则称 f ( x) 为“偏对称函数”.现给出四个函
数:f
1(
x)
=-
x 3+
3x2 2
;f
2(
x)
=
ex-
x-1;f
3(
x)
=
- x+ 2x, x>0;
, x≤0,
11
f 4( x) =
2019高考数学二轮复习“12+4”小题提速练三理
“12+4”小题提速练(三)一、选择题1.(2019届高三·广东五校联考)复数z =3-i1-i 等于( )A .1+2iB .1-2iC .2+iD .2-i 解析:选C z =3-i1-i=-+-+=4+2i 2=2+i.2.(2018·惠州模拟)已知集合A ={x |x <a },B ={x |x 2-3x +2<0},若A ∩B =B ,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(2,+∞)D .[2,+∞)解析:选D 集合B ={x |x 2-3x +2<0}={x |1<x <2},由A ∩B =B 可得B ⊆A ,所以a ≥2.选D.3.(2018·天津模拟)已知等差数列{a n }的前n 项和为S n ,若a 3=3,S 13-S 10=36,则数列{a n }的公差为( )A .1B .-1C .-2D .2解析:选A 设等差数列{a n }的公差为d ,S 13-S 10=36,即a 13+a 12+a 11=36,从而3a 12=36,a 12=12,由a 12=a 3+9d ,得d =1.故选A.4.(2018·洛阳尖子生统考)执行如图所示的程序框图,若输入m =209,n =121,则输出的m 的值为( )A .0B .11C .22D .88解析:选B 当m =209,n =121时,m 除以n 的余数r =88,此时m =121,n =88,m 除以n 的余数r =33,此时m =88,n =33,m 除以n 的余数r =22,此时m =33,n =22,m 除以n 的余数r =11,此时m =22,n =11,m 除以n 的余数r =0,此时m =11,n =0,退出循环,输出m 的值为11,故选B.5.(2018·武昌模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.112B .94 C.92D .3解析:选D 如图,三棱锥P ABC 为三视图所对应几何体的直观图,由三视图可知,S △ABC=12×2×3=3,点P 到平面ABC 的距离h =3,则V P ABC =13S △ABC ·h =13×3×3=3,故选D.6.已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的图象在y轴右侧的第一个最高点为⎝⎛⎭⎪⎫π6,3,第一个最低点为⎝ ⎛⎭⎪⎫2π3,-3,则f (x )的解析式为( )A .f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6B .f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3C .f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3D .f (x )=3sin ⎝⎛⎭⎪⎫2x +π6 解析:选D 由题意得,A =3,设f (x )的最小正周期为T ,则T 2=2π3-π6=π2,所以T=π,ω=2.又函数f (x )的图象在y 轴右侧的第一个最高点为⎝ ⎛⎭⎪⎫π6,3,所以sin ⎝ ⎛⎭⎪⎫2×π6+φ=1,又|φ|<π2,所以φ=π6,所以f (x )=3sin ⎝⎛⎭⎪⎫2x +π6.7.(2018·河北五个一名校联考)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,直线4x -3y +20=0过点F 且与双曲线C 在第二象限的交点为P ,|OP |=|OF |,其中O 为原点,则双曲线C 的离心率为( )A .5B . 5 C.53D.43解析:选A 在直线4x -3y +20=0中,令y =0,得x =-5,故c =5,取右焦点为F ′,由|OF |=|OP |=|OF ′|,可得PF ⊥PF ′,由直线4x -3y +20=0,可得tan ∠F ′FP =43,又|FF ′|=10,故|PF |=6,|PF ′|=8,∴|PF ′|-|PF |=2=2a ,∴a =1,故双曲线C 的离心率e =c a=5,故选A.8.(2018·开封模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝ ⎛⎭⎪⎫12x -2y的最大值是( )A.132B .116C .32D .64解析:选C 作出不等式组表示的平面区域,如图中阴影部分所示,设u =x -2y ,由图知,当u =x -2y 经过点A (1,3)时取得最小值,即u min=1-2×3=-5,此时z =⎝ ⎛⎭⎪⎫12x -2y 取得最大值,即z max =⎝ ⎛⎭⎪⎫12-5=32,故选C.9.(2018·湖北八校第一次联考)如图,O 为△ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 为BC 边的中点,则AM ―→·AO ―→的值为( )A .2 3B .12C .6D .5解析:选D 如图,延长AO 交圆O 于点D ,连接BD ,CD ,则∠ABD =∠ACD =90°.因为M 为BC 边的中点,所以AM ―→=12(AB ―→+AC ―→).易知AO ―→=12AD ―→,所以AM ―→·AO ―→=14(AB ―→+AC ―→)·AD ―→=14(AB ―→·AD ―→+AC ―→·AD ―→)=14(|AB ―→|·|AD ―→|·cos∠BAD +|AC ―→|·|AD ―→|cos ∠CAD )=14(|AB ―→|2+|AC ―→|2)=14(42+22)=5.故选D.10.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2的部分图象如图所示,A ,B 两点之间的距离为10,且f (2)=0,若将函数f (x )的图象向右平移t (t >0)个单位长度后所得函数图象关于y 轴对称,则t 的最小值为( )A .1B .2C .3D .4解析:选B 由图可设A (x 1,3),B (x 2,-3),所以|AB |=x 1-x 22+62=10,解得|x 1-x 2|=8.所以函数f (x )的最小正周期T =2|x 1-x 2|=16,故2πω=16,解得ω=π8.所以f (x )=3sin ⎝ ⎛⎭⎪⎫π8x +φ,由f (2)=0得3sin ⎝ ⎛⎭⎪⎫π4+φ=0,又-π2≤φ≤π2,所以φ=-π4,故f (x )=3sin ⎝ ⎛⎭⎪⎫π8x -π4,向右平移t (t >0)个单位长度,所得图象对应的函数解析式为g (x )=f (x -t )=3sin ⎣⎢⎡⎦⎥⎤π8x -t -π4=3sin ⎣⎢⎡⎦⎥⎤π8x -⎝ ⎛⎭⎪⎫π8t +π4.由题意,该函数图象关于y 轴对称,所以π8t +π4=k π+π2(k ∈Z ),解得t =8k +2(k ∈Z ),故t 的最小值为2,选B.11.在正整数数列中,由1开始依次按如下规则,将某些数染成红色.先染1;再染两个偶数2,4;再染4后面最邻近的3个连续奇数5,7,9;再染9后面的最邻近的4个连续偶数10,12,14,16;再染此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直染下去,得到一红色子数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个红色子数列中,由1开始的第2 018个数是( )A .3 971B .3 972C .3 973D .3 974解析:选B 由题意可知,第1组有1个数,第2组有2个数……根据等差数列的前n 项和公式,可知前n 组共有n n +2个数.由于 2 016=+2<2018<+2=2 080,因此第2 018个数是第64组的第2个数.由于第1组最后一个数是1,第2组最后一个数是4,第3组最后一个数是9,……,第n 组最后一个数是n 2,因此第63组最后一个数为632,632=3 969,第64组为偶数组,其第1个数为3 970,第2个数为3 972.故选B.12.已知函数f (x )=ln 2x x,若关于x 的不等式f 2(x )+af (x )>0只有两个整数解,则实数a 的取值范围是( )A.⎝ ⎛⎦⎥⎤13,ln 2 B .⎝ ⎛⎭⎪⎫-ln 2,-13ln 6C.⎝ ⎛⎦⎥⎤-ln 2,-13ln 6D.⎝ ⎛⎭⎪⎫-13ln 6,ln 2解析:选C 由f (x )=ln 2x x得f ′(x )=1-ln 2xx2,令f ′(x )=1-ln 2x x 2=0得,x =e 2,当0<x <e 2时,f ′(x )>0,当x >e2时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,e 2上是增函数,在⎝ ⎛⎭⎪⎫e 2,+∞上是减函数,所以x=e 2时,f (x )取得极大值,也是最大值,为2e ,又x →0时,f (x )→-∞,当x →+∞时,f (x )→0,作出函数f (x )的大致图象如图所示,当0<x <e 2时,f (x )<2e 有且只有一个整数解1;当x >e2时,0<f (x )<2e 有无数个整数解.不等式f 2(x )+af (x )>0可化为f (x )[f (x )+a ]>0,当a =0时,不等式为f 2(x )>0,有无数个整数解,不满足条件;当a >0时,f (x )>0或f (x )<-a ,f (x )>0时,结合图象可知有无数个整数解,不满足条件;当a <0时,f (x )<0或f (x )>-a ,因为f (x )<0时没有整数解,所以f (x )>-a 有两个整数解.因为f (1)=ln 2,f (2)=ln 2,f (3)=ln 63<ln 2,所以f (x )≥ln 2时,不等式有两个整数解1,2,当f (x )≥ln 63时,不等式有三个整数解1,2,3,所以要使f (x )>-a 有两个整数解,则ln 63≤-a <ln 2,即-ln 2<a ≤-ln 63,故选C.二、填空题13.二项式⎝⎛⎭⎪⎫x 2-23x 5的展开式中x 4的系数为________.解析:二项展开式的通项T r +1=C r 5x 10-2r⎝ ⎛⎭⎪⎫-23x r =C r 5⎝ ⎛⎭⎪⎫-23r ·x 10-3r ,令10-3r =4,得r =2,所以x 4的系数为C 25⎝ ⎛⎭⎪⎫-232=409. 答案:40914.已知抛物线C :y 2=2px (p >0),A (1,-2)是抛物线上的点.若存在斜率为-2的直线l 与抛物线C 有公共点,且点A 到直线l 的距离等于55,则直线l 的方程是________. 解析:根据题意,得4=2p ,得p =2,所以抛物线C 的方程为y 2=4x .设直线l 的方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x得y 2+2y -2t =0,因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12.由点A 到直线l 的距离d =55,可得|-t |5=55,解得t=±1.因为t ≥-12,所以t =1,所以直线l 的方程为2x +y -1=0.答案:2x +y -1=015.(2018·云南调研)已知四棱锥P ABCD 的所有顶点都在体积为500π81的球面上,底面ABCD 是边长为2的正方形,则四棱锥P ABCD 体积的最大值为________.解析:依题意,设球的半径为R ,则有4π3R 3=500π81,R =53,正方形ABCD 的外接圆半径r =1,球心到平面ABCD 的距离h =R 2-r 2=⎝ ⎛⎭⎪⎫532-12=43,因此点P 到平面ABCD 的距离的最大值为h +R =43+53=3,因此四棱锥P ABCD 体积的最大值为13×(2)2×3=2.答案:216.(2018·贵州模拟)已知函数f (x )=x n-xn +1(n ∈N *),曲线y =f (x )在点(2,f (2))处的切线与y 轴的交点的纵坐标为b n ,则数列{b n }的前n 项和为________.解析:因为f ′(x )=nxn -1-(n +1)x n ,所以f ′(2)=n ×2n -1-(n +1)×2n,所以曲线y=f (x )在点(2,f (2))处的切线方程为y -f (2)=[n ×2n -1-(n +1)×2n](x -2),令x =0可得y =-2[n ×2n -1-(n +1)×2n ]+f (2)=-2[n ×2n -1-(n +1)×2n]+2n-2n +1=(n +1)×2n=b n ,设数列{b n }的前n 项和为S n ,则S n =2×21+3×22+…+(n +1)×2n,①2S n =2×22+3×23+…+n ×2n +(n +1)×2n +1,②①-②得,-S n =2×21+22+…+2n -(n +1)×2n +1=2+-2n1-2-(n +1)×2n +1=2+2(2n-1)-(n +1)×2n +1=2n +1-(n +1)×2n +1=-n ×2n +1,所以S n =n ×2n +1.答案:n ×2n +1。
通用版2019版高考数学(文)二轮复习:4套“12+4”限时提速练(含解析)
4套“12+4”限时提速练“12+4”限时提速练(一) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.已知N 是自然数集,设集合A =⎩⎨⎧⎭⎬⎫x |6x +1∈N ,B ={0,1,2,3,4},则A ∩B =( )A .{0,2}B .{0,1,2}C .{2,3}D .{0,2,4}解析:选B ∵6x +1∈N ,∴x +1应为6的正约数,∴x +1=1或x +1=2或x +1=3或x +1=6,解得x =0或x =1或x =2或x =5,∴集合A ={0,1,2,5},又B ={0,1,2,3,4},∴A ∩B ={0,1,2}.故选B.2.若复数z 满足(1+i)z =2i ,则z =( ) A .-1+i B .-1-i C .1+iD .1-i解析:选C 因为(1+i)z =2i , 所以z =2i1+i =2i (1-i )(1+i )(1-i )=1+i.3.设向量a =(1,2),b =(m ,m +1),若a ∥b ,则实数m 的值为( ) A .1 B .-1 C .-13D .-3 解析:选A 因为a =(1,2),b =(m ,m +1),a ∥b , 所以2m =m +1,解得m =1.4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:选B 由题意可得,数列{a n }的通项公式为a n =2n ,又a m =a 41q 6=210,所以m =10.5.已知圆C 的圆心在坐标轴上,且经过点(6,0)及椭圆x 216+y 24=1的两个顶点,则该圆的标准方程为( )A .(x -2)2+y 2=16B .x 2+(y -6)2=72 C.⎝⎛⎭⎫x -832+y 2=1009D.⎝⎛⎭⎫x +832+y 2=1009解析:选C 由题意得圆C 经过点(0,±2), 设圆C 的标准方程为(x -a )2+y 2=r 2, 由a 2+4=r 2,(6-a )2=r 2, 解得a =83,r 2=1009,所以该圆的标准方程为⎝⎛⎭⎫x -832+y 2=1009.6.据统计,2018年春节期间,甲、乙两个抢红包群抢红包的金额(单位:元)的茎叶图如图所示,其中甲群抢得红包金额的平均数是88元,乙群抢得红包金额的中位数是89元,则m ,n 的等差中项为( )A .5B .6C .7D .8解析:选B 因为甲群抢得红包金额的平均数是88, 所以78+86+84+88+95+(90+m )+927=88,解得m =3.因为乙群抢得红包金额的中位数是89,所以n =9. 所以m ,n 的等差中项为m +n 2=3+92=6.7.某几何体的三视图如图所示,俯视图是一个圆,其内有一个边长为2的正方形,正视图和侧视图是两个全等的等腰直角三角形,它们的底边长和圆的直径相等,它们的内接矩形的长和圆内正方形的对角线长相等,宽和正方形的边长相等,则俯视图中圆的半径是( )A .2B .2 2C .3D.2+1解析:选D 因为正方形的边长为2,所以正方形的对角线长为2, 设俯视图中圆的半径为R , 如图,可得R =2+1.8.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为( )A .121B .81C .74D .49解析:选B 第一次循环:S =1,n =2,a =8;第二次循环:S =9,n =3,a =16; 第三次循环:S =25,n =4,a =24;第四次循环:S =49,n =5,a =32; 第五次循环:S =81,n =6,a =40,不满足a ≤32,退出循环,输出S 的值为81. 9.函数f (x )=A sin(2x +θ)A >0,|θ|≤π2的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:选B 由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32,又|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增,所以选项B 正确.10.已知正四棱柱ABCD -A 1B 1C 1D 1的体积为36,点E ,F 分别为棱B 1B ,C 1C 上的点(异于端点),且EF ∥BC ,则四棱锥A 1-AEFD 的体积为( )A .2B .4C .6D .12解析:选D 连接AF ,易知四棱锥A 1-AEFD 的体积为三棱锥F -A 1AD 和三棱锥F -A 1AE 的体积之和.设正四棱柱的底面边长为a ,高为h ,则V F -A 1AD =13×12×a ×h ×a =16a 2h ,V F -A 1AE =13×12×a ×h ×a =16a 2h ,所以四棱锥A 1-AEFD 的体积为13a 2h ,又a 2h =36,所以四棱锥A 1-AEFD 的体积为12.11.函数f (x )=(2x 2+3x )e x 的图象大致是( )解析:选A 由f (x )的解析式知,f (x )只有两个零点x =-32与x =0,排除B 、D ;又f ′(x )=(2x 2+7x +3)e x ,由f ′(x )=0知函数有两个极值点,排除C ,故选A. 12.已知函数f (x )=ln x +x 与g (x )=12ax 2+ax -1(a >0)的图象有且只有一个公共点,则a 所在的区间为( )A.⎝⎛⎭⎫12,23B.⎝⎛⎭⎫23,1 C.⎝⎛⎭⎫32,2D.⎝⎛⎭⎫1,32 解析:选D 设T (x )=f (x )-g (x )=ln x +x -12ax 2-ax +1,由题意知,当x >0时,T (x )有且仅有1个零点.T ′(x )=1x +1-ax -a =x +1x -a (x +1)=(x +1)·⎝⎛⎭⎫1x -a =(x +1)·1x ·(1-ax ). 因为a >0,x >0,所以T (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减,如图,当x →0时,T (x )→-∞,x →+∞时,T (x )→-∞, 所以T ⎝⎛⎭⎫1a =0,即ln 1a +1a -12a -1+1=0, 所以ln 1a +12a=0.因为y =ln 1x +12x 在x >0上单调递减,所以ln 1a +12a =0在a >0上最多有1个零点.当a =12时,ln 1a +12a >0,当a =1时,ln 1a +12a =12>0,当a =32时,ln 1a +12a<0,当a =2时,ln 1a +12a <0,所以a ∈⎝⎛⎭⎫1,32. 二、填空题(本大题共4小题,每小题5分,共20分) 13.若函数f (x )=x 2+axx 3是奇函数,则常数a =______.解析:函数f (x )的定义域为(-∞,0)∪(0,+∞), 则由f (x )+f (-x )=0, 得x 2+ax x 3+x 2-ax -x 3=0,即ax =0,则a =0. 答案:014.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤-1,3x -5y +25≥0,x +4y -3≥0,则目标函数z =3x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示, 作出直线3x +y =0,平移该直线,当直线经过点A 时,z 取得最大值.联立⎩⎪⎨⎪⎧x =-1,3x -5y +25=0,解得⎩⎪⎨⎪⎧x =-1,y =225,所以z max =3×(-1)+225=75.答案:7515.在平面直角坐标系xOy 中,与双曲线x 23-y 2=1有相同渐近线,焦点位于x 轴上,且焦点到渐近线距离为2的双曲线的标准方程为________.解析:与双曲线x 23-y 2=1有相同渐近线的双曲线的标准方程可设为x 23-y 2=λ,因为双曲线焦点在x 轴上,故λ>0,又焦点到渐近线的距离为2, 所以λ=4,所求方程为x 212-y 24=1.答案:x 212-y 24=116.如图所示,在△ABC 中,∠ABC 为锐角,AB =2,AC =8,sin ∠ACB =26,若BE =2DE ,S △ADE =423,则sin ∠BAE sin ∠DAE=________.解析:因为在△ABC 中,AB =2,AC =8,sin ∠ACB =26, 由正弦定理得AB sin ∠ACB =ACsin ∠ABC ,所以sin ∠ABC =223.又∠ABC 为锐角,所以cos ∠ABC =13.因为BE =2DE ,所以S △ABE =2S △ADE . 又因为S △ADE =423,所以S △ABD =4 2. 因为S △ABD =12×BD ×AB ×sin ∠ABC ,所以BD =6.由余弦定理AD 2=AB 2+BD 2-2AB ×BD ×cos ∠ABD ,可得AD =4 2. 因为S △ABE =12×AB ×AE ×sin ∠BAE ,S △DAE =12×AD ×AE ×sin ∠DAE ,所以sin ∠BAE sin ∠DAE=2×ADAB =4 2.答案:4 2“12+4”限时提速练(二) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.若复数z =a1+i+1为纯虚数,则实数a =( ) A .-2 B .-1 C .1D .2解析:选A 因为复数z =a 1+i +1=a (1-i )(1+i )(1-i )+1=a 2+1-a2i 为纯虚数,所以a 2+1=0,且-a2≠0,解得a =-2.故选A.2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x < 2,B ={x |ln x ≤0},则A ∩B =( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1D .[-1,1]解析:选A ∵12≤2x < 2,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x |-1≤x <12.∵ln x ≤0,∴0<x ≤1,∴B ={x |0<x ≤1}, ∴A ∩B =⎩⎨⎧⎭⎬⎫x |0<x <12.3.已知函数f (x )=2x (x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是( )A.12B.13C.14D.23解析:选B 因为函数y =2x 是R 上的增函数, 所以函数f (x )的值域是(0,1),由几何概型的概率公式得,所求概率P =1-02-(-1)=13.4.已知B 是以线段AC 为直径的圆上的一点(异于点A ,C ),其中|AB |=2,则 AC ―→·AB ―→=( )A .1B .2C .3D .4解析:选D 连接BC ,∵AC 为直径,∴∠ABC =90°,∴AB ⊥BC ,AC ―→在AB ―→上的投影|AC ―→|cos 〈AC ―→,AB ―→〉=|AB ―→|=2, ∴AC ―→·AB ―→=|AC ―→||AB ―→|cos 〈AC ―→,AB ―→〉=4. 5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .-3 B.32C .3D .4解析:选C 作出不等式组所表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线过点B 时,z =2x +y 取得最大值.由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,所以B (2,-1),故z max =2×2-1=3.6.执行如图所示的程序框图,若输出的s =25,则判断框中可填入的条件是( )A .i ≤4?B .i ≥4?C .i ≤5?D .i ≥5?解析:选C 执行程序框图,i =1,s =100-5=95;i =2,s =95-10=85;i =3,s =85-15=70;i =4,s =70-20=50;i =5,s =50-25=25;i =6,退出循环.此时输出的s =25.结合选项知,选C.7.将函数y =2sin ⎝⎛⎭⎫x +π3cos ⎝⎛⎭⎫x +π3的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数为奇函数,则φ的最小值为( )A.π12 B.π6C.π4D.π3解析:选B 根据题意可得y =sin ⎝⎛⎭⎫2x +2π3,将其图象向左平移φ个单位长度,可得y =sin ⎝⎛⎭⎫2x +2π3+2φ的图象,因为该图象所对应的函数恰为奇函数,所以2π3+2φ=k π(k ∈Z),φ=k π2-π3(k ∈Z),又φ>0,所以当k =1时,φ取得最小值,且φmin =π6,故选B.8.南宋数学家秦九韶早在《数书九章》中就提出了已知三角形的三边求其面积的公式:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂,减上,余四约之,为实.一为从隅,开平方,得积.”即△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,其中△ABC 的三边分别为a ,b ,c ,且a >b >c ,并举例“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”则该三角形沙田的面积为( )A .82平方里B .83平方里C .84平方里D .85平方里解析:选C 由题意知三角形沙田的三边长分别为15里、14里、13里,代入三角形的面积公式可得三角形沙田的面积S =14×⎣⎡⎦⎤132×152-⎝⎛⎭⎫132+152-14222=84(平方里).故选C.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6解析:选C 由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6.10.已知f (x )是定义在[-2b,1+b ]上的偶函数,且在[-2b ,0]上为增函数,则f (x -1)≤f (2x )的解集为( )A.⎣⎡⎦⎤-1,23 B.⎣⎡⎦⎤-1,13 C .[-1,1]D.⎣⎡⎦⎤13,1解析:选B ∵函数f (x )是定义在[-2b,1+b ]上的偶函数, ∴-2b +1+b =0,∴b =1,函数f (x )的定义域为[-2,2], 又函数f (x )在[-2,0]上单调递增,∴函数f (x )在[0,2]上单调递减,∵f (x -1)≤f (2x ),∴f (|x -1|)≤f (|2x |),∴⎩⎪⎨⎪⎧-2≤x -1≤2,-2≤2x ≤2,|x -1|≥|2x |,解得-1≤x ≤13.11.在各项均为正数的等比数列{a n }中,a 1a 11+2a 5a 9+a 4a 12=81,则1a 6+4a 8的最小值是( )A.73 B .9 C .1D .3解析:选C 因为{a n }为等比数列,所以a 1a 11+2a 5a 9+a 4a 12=a 26+2a 6a 8+a 28=(a 6+a 8)2=81,又因为等比数列{a n }的各项均为正数,所以a 6+a 8=9, 所以1a 6+4a 8=19(a 6+a 8)⎝⎛⎭⎫1a 6+4a 8=195+a 8a 6+4a 6a 8≥19⎝⎛⎭⎫5+2a 8a 6×4a 6a 8=1, 当且仅当a 8a 6=4a 6a 8,a 6+a 8=9,即a 6=3,a 8=6时等号成立,所以1a 6+4a 8的最小值是1.12.过抛物线y =14x 2的焦点F 的直线交抛物线于A ,B 两点,点C 在直线y =-1上,若 △ABC 为正三角形,则其边长为( ) A .11 B .12 C .13D .14解析:选B 由题意可知,焦点F (0,1),易知过焦点F 的直线的斜率存在且不为零,则设该直线方程为y =kx +1(k ≠0), 联立⎩⎪⎨⎪⎧y =14x 2,y =kx +1,消去y ,得x 2-4kx -4=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=4k ,x 1x 2=-4, 设线段AB 的中点为M ,则M (2k,2k 2+1), |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)(16k 2+16)=4(1+k 2). 设C (m ,-1),连接MC , ∵△ABC 为等边三角形,∴k MC =2k 2+22k -m=-1k ,m =2k 3+4k ,点C (m ,-1)到直线y =kx +1的距离|MC |=|km +2|1+k 2=32|AB |, ∴|km +2|1+k 2=32×4(1+k 2), 即2k 4+4k 2+21+k 2=23(1+k 2), 解得k =±2, ∴|AB |=4(1+k 2)=12.二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =2x +1,则f (1)+f ′(1)=________.解析:因为f (x )的图象在点M (1,f (1))处的切线方程为y =2x +1,所以f ′(1)=2,又因为点M (1,f (1))也在直线y =2x +1上,所以f (1)=2×1+1=3,所以f (1)+f ′(1)=3+2=5.答案:514.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙比学习委员的年龄大,甲与体育委员的年龄不同,体育委员比乙的年龄小,据此推断班长是________.解析:若甲是班长,由于体育委员比乙的年龄小,故丙是体育委员,乙是学习委员,但这与丙比学习委员的年龄大矛盾,故甲不是班长;若丙是班长,由于体育委员比乙的年龄小,故甲是体育委员,这和甲与体育委员的年龄不同矛盾,故丙不是班长;若乙是班长,由于甲与体育委员的年龄不同,故甲是学习委员,丙是体育委员,此时其他条件均成立,故乙是班长.答案:乙15.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若AB ―→=3FA ―→,则此双曲线的离心率为________.解析:由F (-c,0),A (0,b ), 得直线AF 的方程为y =bc x +b .根据题意知,直线AF 与渐近线y =ba x 相交,联立得⎩⎨⎧y =bcx +b ,y =ba x ,消去x 得,y B =bc c -a. 由AB ―→=3FA ―→,得y B =4b ,所以bcc -a=4b ,化简得3c =4a , 所以离心率e =43.答案:4316.一个直角三角形的三个顶点分别在底面边长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为________.解析:记该直角三角形为△ABC ,且AC 为斜边. 法一:如图,不妨令点A 与正三棱柱的一个顶点重合, 取AC 的中点O ,连接BO , ∴BO =12AC ,∴AC 取得最小值即BO 取得最小值,即点B 到平面ADEF 的距离. ∵△AHD 是边长为2的正三角形, ∴点B 到平面ADEF 的距离为3, ∴AC 的最小值为2 3.法二:如图,不妨令点A 与正三棱柱的一个顶点重合,设BH =m (m ≥0),CD =n (n ≥0),∴AB 2=4+m 2,BC 2=4+(n -m )2,AC 2=4+n 2. ∵AC 为Rt △ABC 的斜边, ∴AB 2+BC 2=AC 2,即4+m 2+4+(n -m )2=4+n 2, ∴m 2-nm +2=0,∴m ≠0,n =m 2+2m =m +2m,∴AC 2=4+⎝⎛⎭⎫m +2m 2≥4+8=12,当且仅当m =2m ,即m =2时等号成立, ∴AC ≥23,故AC 的最小值为2 3. 答案:2 3“12+4”限时提速练(三) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知a ,b ∈R ,复数a +b i =2i1-i,则a +b =( ) A .2 B .1 C .0 D .-2解析:选C 因为a +b i =2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=-1+i ,所以a =-1,b =1,a +b =0.2.设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( ) A .(-∞,2] B .(-∞,1] C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又A ={x |1<x <2},B ={x |x <a },所以a ≥2. 3.若点⎝⎛⎭⎫sin 5π6,cos 5π6在角α的终边上,则sin α=( ) A.32B.12C .-32D .-12解析:选C 因为sin 5π6=sin ⎝⎛⎭⎫π-π6=sin π6=12,cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6= -32, 所以点⎝⎛⎭⎫12,-32在角α的终边上,且该点到角α顶点的距离r =⎝⎛⎭⎫122+⎝⎛⎭⎫-322=1, 所以sin α=-32. 4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.搜索指数越大,表示网民搜索该关键词的次数越多,对该关键词相关的信息关注度也越高.如图是2017年9月到2018年2月这半年来,某个关键词的搜索指数变化的统计图.根据该统计图判断,下列结论正确的是( )A .这半年来,网民对该关键词相关的信息关注度呈周期性变化B .这半年来,网民对该关键词相关的信息关注度不断减弱C .从该关键词的搜索指数来看,2017年10月的方差小于11月的方差D .从该关键词的搜索指数来看,2017年12月的平均值大于2018年1月的平均值 解析:选D 由统计图可知,这半年来,该关键词的搜索指数变化的周期性并不显著,排除A ;由统计图可知,这半年来,该关键词的搜索指数的整体减弱趋势不显著,排除B ;由统计图可知,2017年10月该关键词的搜索指数波动较大,11月的波动较小,所以2017年10月的方差大于11月的方差,排除C ;由统计图可知,2017年12月该关键词的搜索指数大多高于10 000,该月平均值大于10 000,2018年1月该关键词的搜索指数大多低于10 000,该月平均值小于10 000,故选D.5.某几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A.33B.233C. 3D .2解析:选D 由三视图知,该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图,该四棱锥的高h =3,底面ABCD 是边长分别为2,3的矩形,所以该四棱锥的体积V =13S 四边形ABCD ×h =13×2×3×3=2.故选D.6.在如图所示的程序框图中,如果输入a =1,b =1,则输出的S =( )A .7B .20C .22D .54解析:选B 执行程序,a =1,b =1,S =0,k =0,k ≤4,S =2,a =2,b =3;k =2,k ≤4,S =7,a =5,b =8;k =4,k ≤4,S =20,a =13,b =21;k =6,不满足k ≤4,退出循环.则输出的S =20.7.已知直线l :y =3x +m 与圆C :x 2+(y -3)2=6相交于A ,B 两点,若∠ACB =120°,则实数m 的值为( )A .3+6或3- 6B .3+26或3-2 6C .9或-3D .8或-2解析:选A 由题知圆C 的圆心为C (0,3),半径为6,取AB 的中点为D ,连接CD ,则CD ⊥AB ,在△ACD 中,|AC |=6,∠ACD =60°,所以|CD |=62,由点到直线的距离公式得|-3+m |(3)2+1=62,解得m =3±6. 8.若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x <k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π4≤x <k π+π2,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x <k π+π2,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π-π4≤x ≤k π+π4,k ∈Z 解析:选B 由正切函数的图象知,直线x =a π(0<a <1)与函数y =tan x 的图象没有公共点时,a =12,所以tan x ≥2a ,即tan x ≥1,其解集是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π4≤x <k π+π2,k ∈Z. 9.已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 017b 2 018的值是( )A.4 0352 018B.4 0332 017C.2 0172 018D.2 0162 017解析:选B 由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n .当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2.当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n , 所以1b 1b 2+1b 2b 3+…+1b 2 017b 2 018=1+1-12+12-13+…+12 016-12 017=2-12 017=4 0332 017.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5]解析:选C 法一:当x ≥1时,由ln x +1=2,得x =e.由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象如图所示,由图象知,要使f (x )=2有两个解,则 a -3<2,得a <5.11.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若|PF |=2|Q F |,且∠PF Q =120°,则椭圆E 的离心率为( )A.13 B.12C.33D.22解析:选C 设F 1是椭圆E 的右焦点,如图,连接PF 1,Q F 1.根据对称性,线段FF 1与线段P Q 在点O 处互相平分,所以四边形PF Q F 1是平行四边形,|F Q |=|PF 1|,∠FPF 1=180°-∠PF Q =60°,根据椭圆的定义得|PF |+|PF 1|=2a ,又|PF |=2|Q F |,所以|PF 1|=23a ,|PF |=43a ,而|F 1F |=2c ,在△F 1PF 中,由余弦定理,得(2c )2=⎝⎛⎭⎫23a 2+⎝⎛⎭⎫43a 2-2×23a ×43a ×cos 60°,化简得c 2a 2=13, 所以椭圆E 的离心率e =c a =33.12.已知函数f (x )=e xx 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( )A.⎝⎛⎦⎤-∞,e 24 B.⎝⎛⎦⎤-∞,e2 C .(0,2] D .[2,+∞)解析:选A f ′(x )=e x (x -2)x 3+k (2-x )x =(x -2)(e x -kx 2)x 3(x >0),令f ′(x )=0,得x =2或e x =kx 2(x >0).由x =2是函数f (x )的唯一极值点知e x ≥kx 2(x >0)恒成立或e x ≤kx 2(x >0)恒成立, 由y =e x (x >0)和y =kx 2(x >0)的图象可知,只能是e x ≥kx 2(x >0)恒成立. 当x >0时,由e x≥kx 2,得k ≤e xx2.设g (x )=e xx2,则k ≤g (x )min .由g ′(x )=e x (x -2)x 3,得当x >2时,g ′(x )>0,g (x )单调递增,当0<x <2时,g ′(x )<0,g (x )单调递减,所以g (x )min =g (2)=e 24,所以k ≤e 24.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a ,b 满足a ⊥b ,|a |=1,|2a +b |=22,则|b |=________. 解析:法一:因为|2a +b |=22, 所以4a 2+4a ·b +b 2=8. 因为a ⊥b ,所以a ·b =0.又|a |=1,所以4×1+4×0+b 2=8,所以|b |=2. 法二:如图,作出OA ―→=2a ,OB ―→=b ,OC ―→=2a +b ,因为a ⊥b ,所以OA ⊥OB ,因为|a |=1,|2a +b |=22, 所以|OA ―→|=2,|OC ―→|=22,所以|OB ―→|=|b |=2.法三:因为a ⊥b ,所以以O 为坐标原点,以a ,b 的方向分别为x 轴,y 轴的正方向建立平面直角坐标系(图略),因为|a |=1,所以a =(1,0),设b =(0,y )(y >0),则2a +b =(2,y ),因为|2a +b |=22,所以4+y 2=8,解得y =2,所以|b |=2.答案:214.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3≥0,x -y +4≥0,2x +y -4≤0,则z =x +3y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示,作出直线x +3y =0,并平移该直线,当直线经过点A (0,4)时,目标函数z =x +3y 取得最大值,且z max =12.答案:1215.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos C =14,c =3,且a cos A =bcos B,则△ABC 的面积等于________. 解析:由a cos A =b cos B 及正弦定理,得sin A cos A =sin Bcos B ,即tan A =tan B ,所以A =B ,即a =b .由cos C =14且c =3,结合余弦定理a 2+b 2-2ab cos C =c 2,得a =b =6,又sin C =1-cos 2 C =154,所以△ABC 的面积S =12ab sin C =3154. 答案:315416.如图,等腰三角形PAB 所在平面为α,PA ⊥PB ,AB =4,C ,D 分别为PA ,AB 的中点,G 为CD 的中点.平面α内经过点G 的直线l 将△PAB 分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点P ′(P ′∉平面α).若点P ′在平面α内的射影H 恰好在翻折前的线段AB 上,则线段P ′H 的长度的取值范围是________.解析:在等腰三角形PAB 中,∵PA ⊥PB ,AB =4,∴PA =PB =2 2.∵C ,D 分别为PA ,AB 的中点, ∴PC =CD =2且PC ⊥CD .连接PG ,P ′G ,∵G 为CD 的中点,∴PG =P ′G =102. 连接HG ,∵点P ′在平面α内的射影H 恰好在翻折前的线段AB 上, ∴P ′H ⊥平面α,∴P ′H ⊥HG ,∴HG <P ′G =102. 易知点G 到线段AB 的距离为12,∴HG ≥12,∴12≤HG <102.又P ′H =⎝⎛⎭⎫1022-HG 2, ∴0<P ′H ≤32.答案:⎝⎛⎦⎤0,32“12+4”限时提速练(四) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.复数z =2+i1-i的共轭复数对应的点在复平面内位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:选D 复数z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=1+3i 2=12+32i ,则复数z 的共轭复数为z =12-32i ,所以复数z 的共轭复数对应的点的坐标是⎝⎛⎭⎫12,-32,该点位于第四象限. 2.已知集合M =⎩⎨⎧⎭⎬⎫x |2x ≥1,N ={}y |y =1-x 2,则M ∩N =( )A .(-∞,2]B .(0,1]C .[0,1]D .(0,2]解析:选B 由2x ≥1得x -2x ≤0,解得0<x ≤2,则M ={x |0<x ≤2}; 函数y =1-x 2的值域是(-∞,1],则N ={y |y ≤1},因此M ∩N ={x |0<x ≤1}=(0,1].3.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( )A .52B .78C .104D .208解析:选C 依题意得3a 7=24,a 7=8,S 13=13(a 1+a 13)2=13a 7=104,选C. 4.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )= -2x ,则f (1)+f (4)等于( )A.32 B .-32C .-1D .1解析:选B 由f (x +4)=f (x )知f (x )是周期为4的周期函数, 又f (x )是定义在R 上的偶函数,故f (4)=f (0)=-1,f (1)=f (-1),又-1∈[-2,0],所以f (-1)=-2-1=-12,所以f (1)=-12,f (1)+f (4)=-32.5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( ) A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5, 因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5. 6.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54 第9行A .07B .25C .42D .52解析:选D 依题意得,依次选出的个体分别是12,34,29,56,07,52,…因此选出的第6个个体是52.7.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x的概率为( )A .34 B.23C .12D.14解析:选D 作出不等式表示的平面区域如图所示, 故所求概率P (y ≤2x)=12×12×11×1=14.8.设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( )A .48πB .32πC .20πD .12π解析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+(23)2+42=22,因此三棱锥外接球的表面积为4πR 2=32π.9.已知点P ,A ,B 在双曲线x 2a 2-y 2b 2=1上,直线AB 过坐标原点,且直线PA ,PB 的斜率之积为13,则双曲线的离心率为( )A.233B.153 C .2D.102解析:选A 根据双曲线的对称性可知点A ,B 关于原点对称,设A (x 1,y 1),P (x 2,y 2),则B (-x 1,-y 1),所以⎩⎨⎧x 21a 2-y 21b 2=1,x22a2-y 22b2=1,两式相减得x 21-x 22a 2=y 21-y 22b 2,即y 21-y 22x 21-x 22=b 2a 2,因为直线PA ,PB 的斜率之积为13,所以k PA ·k PB =y 1-y 2 x 1-x 2·-y 1-y 2-x 1-x 2=y 21-y 22x 21-x 22=b 2a 2=13,所以双曲线的离心率为e =1+b 2a2= 1+13=233. 10.将函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位长度后的图象关于原点对称,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( ) A.32B.12C .-12D .-32解析:选D 依题意得,函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+φ=sin ⎝⎛⎭⎫2x +π3+φ是奇函数,则sin ⎝⎛⎭⎫π3+φ=0,又|φ|<π2,因此π3+φ=0,φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3.当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,所以f (x )=sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤0,π2上的最小值为-32. 11.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,则其俯视图中椭圆的离心率为( )A .12 B.24 C .22D.32解析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎫a 2a 2=22. 12.已知函数f (x )=x 3-3x ,则方程f [f (x )]=1的实根的个数是( ) A .9 B .7 C .5D .3解析:选A 依题意得f ′(x )=3(x +1)(x -1), 当x <-1或x>1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.所以函数f (x )在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,且f(-1)=f (2)=2,f (1)=-2,f (±3)=f (0)=0.在平面直角坐标系内画出直线y =1与函数y =f(x )的图象(图略),结合图象可知,它们共有三个不同的交点,记这三个交点的横坐标由小到大依次为x 1,x 2,x 3, 则-3<x 1<-1<x 2<0,3<x 3<2.再画出直线y =x 1,y =x 2,y =x 3,结合图象可知,直线y =x 1,y =x 2,y =x 3与函数y=f (x )的图象的交点个数均为3,且这些交点的横坐标各不相同,所以方程f [f (x )]=1的实根个数是9.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________. 解析:因为当x <0时,f (x )=2x ,令x >0,则-x <0,故f (-x )=2-x ,又因为f (x )是定义在R 上的奇函数,所以当x >0时,f (x )=-2-x ,又因为log 49=log 23>0,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13.答案:-1314.若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________. 解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α), 所以cos α+sin α=0或cos α-sin α=14,由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件; 由cos α-sin α=14,两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151615.已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以F 为圆心,|FA |为半径的圆交准线于B ,C 两点,若△FBC 为正三角形,且△ABC 的面积为1283,则抛物线的方程为________.解析:如图,可得|BF |=2p3,则由抛物线的定义知点A 到准线的距离也为2p 3,又△ABC 的面积为1283,所以12×2p 3×2p 3=1283,解得p =8,故抛物线的方程为y 2=16x .答案:y 2=16x16.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,得a n +1+b n +1=2(a n+b n ),所以a n +1+b n +1a n +b n=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n , 将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘,得a n +1b n +1a n b n =2, 所以数列{a n b n }是首项为1,公比为2的等比数列, 所以a n b n =2n -1,因为c n =1a n +1b n ,所以c n =a n +b n a n b n =2n2n -1=2,数列{c n }的前2 018项和为2×2 018=4 036. 答案:4 036。
2019年高考数学“12+4”限时提速练4
“12+4”限时提速练(四)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合A ={y |y =lg x },B ={x |y =x },则集合A ∩B =( B ) A .(0,+∞) B .[0,+∞) C .(1,+∞) D .∅解析:集合A ={y |y =lg x }={y |y ∈R }=R ,B ={x |y =x }={x |x ≥0},则A ∩B ={x |x ≥0}=[0,+∞).2.已知复数z 满足z =2+a i 1+i (i 为虚数单位,a ∈R ),若复数z 对应的点位于直角坐标平面内的直线y =-x 上,则a 的值为( A )A .0B .1C .-1D .2解析:复数z 满足z =2+a i 1+i =(2+a i )(1-i )(1+i )(1-i )=2+a 2+a -22i ,复数z对应的点⎝ ⎛⎭⎪⎪⎫2+a 2,a -22位于直角坐标平面内的直线y =-x 上,∴-2+a 2=a -22,解得a =0.3.已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( B )A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析:由已知得p 真,q 假,故綈q 真,∴p ∧綈q 真.4.中国诗词大会的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为( A )A.2 B .4 C .5D .6解析:由茎叶图可得,获“诗词达人”称号的有8人,据该次比赛的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的学生中获得“诗词达人”称号的人数为8×1040=2(人).5.在△ABC 中,AC =13,BC =1,B =60°,则△ABC 的面积为( A )A. 3 B .2 C .2 3D .3解析:∵AC =13,BC =1,B =60°,∴由余弦定理得AC 2=AB 2+BC 2-2AB ·BC ·cos B ,即13=AB 2+1-AB ,解得AB =4或-3(舍去),∴S △ABC =12AB ·BC ·sin B =12×4×1×32= 3.6.已知圆O :x 2+y 2=4(O 为坐标原点)经过椭圆C :x 2a 2+y2b 2=1(a >b >0)的短轴端点和两个焦点,则椭圆C 的标准方程为( B )A.x 24+y 22=1 B.x 28+y 24=1 C.x 216+y 24=1D.x 232+y 216=1解析:由题意得b =2,c =2,则a 2=b 2+c 2=8. ∴椭圆C 的标准方程为x 28+y 24=1.7.某几何体的三视图如图所示,则该几何体的体积为( B ) A .3 3 B. 3 C.43 3D.53 3解析:由三视图可得,几何体是底面为直角梯形,高为3的四棱锥,体积为13×(1+2)×22×3= 3.8.执行两次如图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为( D )A .0,0B .1,1C .0,1D .1,0解析:第一次输入x 的值为7,流程如下:22<7,7不能被2整除,b =3,32>7,a =1.第二次输入x 的值为9,流程如下:22<9,9不能被2整除,b =3,b 2=9>x =9不成立,9能被3整除,a =0.9.已知|AB →|=3,|AC →|=23,∠BAC =30°,且2AC →+3DC →=5BC →,则AC →·CD →等于( B )A .-2B .3C .4D .-5解析:由2AC →+3DC →=5BC →得2AB →=3BD →,即AD →=53AB →,AC →·CD →=AC →·(CA →+AD →)=-12+|AC →|·|AD →|cos A =3.10.已知函数f (x )=2sin(ωx +φ)(x ∈R ,ω>0,|φ|<π)的部分图象如图所示,若将函数f (x )的图象向右平移π6个单位得到函数g (x )的图象,则函数g (x )的解析式是( A )A .2sin ⎝ ⎛⎭⎪⎫2x +π3B .2sin ⎝ ⎛⎭⎪⎫2x -π3 C .2sin ⎝ ⎛⎭⎪⎫2x +2π3 D .2cos2x解析:∵由图象知A =2,14T =π6-⎝ ⎛⎭⎪⎫-π12=π4,∴T =π⇒ω=2.∵2sin ⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-π12+φ=2, ∴可得2×⎝ ⎛⎭⎪⎫-π12+φ=2k π+π2,k ∈Z . ∵|φ|<π,∴φ=2π3,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3.f (x )的图象向右平移π6个单位后得到的图象解析式为g (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+2π3=2sin ⎝ ⎛⎭⎪⎫2x +π3.11.已知数列{a n }为等差数列,且a 1≥1,a 2≤5,a 5≥8,设数列{a n }的前n 项和为S n ,S 15的最大值为M ,最小值为m ,则M +m =( B )A .500B .600C .700D .800解析:由题意,可知公差最大值时,S 15最大;公差最小值,S 15最小.可得a 1=1,a 2=5,此时公差d =4是最大值,M =S 15=1×15+15×142×4=435.当a 2=5,a 5=8,此时d =1是最小值,a 1=4,m =S 15=4×15+15×142×1=165.M +m =435+165=600.12.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=6,则不等式f (lg x )<1lg x +5的解集为( D )A .(10,10)B .(0,10)C .(10,+∞)D .(1,10)解析:设g (x )=f (x )-1x -5,则g ′(x )=f ′(x )+1x 2=x 2f ′(x )+1x 2>0,故函数g (x )在(0,+∞)上单调递增,又g (1)=0,故g (x )<0的解集为(0,1),即f (x )<1x +5的解集为(0,1).由0<lg x <1,得1<x <10,则所求不等式的解集为(1,10).二、填空题(本大题共4小题,每小题5分,共20分) 13.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥0,x -y ≤0,x -2y +2≥0,则z =yx -3的最小值是-2.解析:画出约束条件的可行域,如图中阴影部分所示,联立⎩⎨⎧x -2y +2=0,x -y =0,解得A (2,2),z =yx -3的几何意义为可行域内的点与定点P (3,0)的连线的斜率.∵k P A =2-02-3=-2,∴z =y x -3的最小值等于-2.14.在平面直角坐标系中,直线x =32与双曲线x 23-y 2=1的两条渐近线分别交于点P ,Q .其焦点是F 1,F 2,则四边形F 1PF 2Q 的面积是2 3.解析:由双曲线方程x 23-y 2=1知a =3,b =1,c =2, 所以渐近线方程为y =±13x =±33x ,将直线x =32代入渐近线方程,得P ,Q 纵坐标的绝对值|y 0|=32.又|F 1F 2|=2c =4.所以S △F 1PF 2=12|F 1F 2|·|y 0|=12×4×32=3, 则S 四边形F 1PF 2Q =2S △F 1PF 2=2 3.15.已知△ABC 的三个顶点的坐标为A (0,1),B (1,0),C (0,-2),O 为坐标原点,动点M 满足|CM →|=1,则|OA →+OB →+OM →|的最大值是2+1.解析:设点M 的坐标是(x ,y ),∵C (0,-2),且|CM →|=1, ∴x 2+(y +2)2=1,x 2+(y +2)2=1,则点M 的轨迹是以C 为圆心、1为半径的圆.∵A (0,1),B (1,0),∴OA →+OB →+OM →=(x +1,y +1), 则|OA →+OB →+OM →|=(x +1)2+(y +1)2,其几何意义表示圆x 2+(y+2)2=1上的点与点P (-1,-1)间的距离.又点P (-1,-1)在圆C 的外部,∴|OA →+OB →+OM →|max =|AC |+1=(0+1)2+(-2+1)2+1=2+1.16.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为36π.解析:取SC 的中点O ,连接OA ,OB ,因为SA=AC,SB=BC,所以OA⊥SC,OB⊥SC.因为平面SAC⊥平面SBC,平面SAC∩平面SBC=SC,且OA⊂平面SAC,所以OA⊥平面SBC.设球的半径为r,则OA=OB=r,SC=2r,所以V A-SBC=13×S△SBC ×OA=13×12×2r×r×r=13r3,所以13r3=9⇒r=3,所以球的表面积为4πr2=36π.。
2019年高考数学“12+4”限时提速练2
“12+4”限时提速练(二)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A ={x |4<x 2<9},B ={x |x +1>0},则A ∩B =( C ) A .(-2,3) B .(-1,2) C .(2,3)D .(-3,-2)解析:由4<x 2<9得A =(-3,-2)∪(2,3),由x +1>0得B =(-1,+∞),则A ∩B =(2,3).2.-3i 1+3i =( A ) A .-34-34i B .-34+34i C .-12+32iD .-12-32i解析:z =-3i1+3i =-3i (1-3i )(1+3i )(1-3i )=-3-3i 4=-34-34i.3.已知向量m =(2,-4),n =(-2,x ),p =2m -3n ,若p ∥m ,则实数x 的值为( D )A .-4B .-3C .3D .4解析:由题意知,p =(10,-8-3x ),∵p ∥m ,∴10×(-4)=2×(-8-3x ),解得x =4.4.下列说法中正确的是( C )A .数据5,4,4,3,5,2的众数是4B .一组数据的标准差是这组数据的方差的平方C .数据2,3,4,5的标准差是数据4,6,8,10的标准差的一半D .频率分布直方图中各小长方形的面积等于相应各组的频数 解析:5.已知双曲线x a 2-y b 2=1(a >0,b >0)的右焦点与右顶点到渐近线的距离之比为2,则ba =( B )A. 2B. 3 C .2D .3 解析:双曲线的右焦点(c,0)到渐近线y =ba x 的距离为b ,双曲线的右顶点(a,0)到渐近线y =b a x 的距离为abc ,∴b =2·ab c ,c =2a ,∴b a =c 2-a 2a 2= 3.6.执行如图所示的程序框图,则输出S 的结果为( A ) A .1+2 B .1+22 C.22D .0解析:分析程序框图,结合已知条件,可知y =sin π4x 以8为周期,且y =sin0+sin π4+sin 2π4+…+sin 7π4=0,所以S =sin 16π4+sin 17π4+sin 18π4+sin 19π4+sin 20π4=sin0+sin π4+sin 2π4+sin 3π4+sinπ=1+ 2.7.图①是美丽的“勾股树”,它是一个直角三角形分别以它的每一边向外作正方形而得到,图②是第1代“勾股树”,重复图②的作法,得到图③为第2代“勾股树”,以此类推,已知最大的正方形面积为1,则第n 代“勾股树”所有正方形的面积的和为( D )A.n B.n2C.n-1 D.n+1解析:最大的正方形面积为1,当n=1时,由勾股定理知正方形面积的和为2,当n=2时,所有正方形面积的和为3,……以此类推,所有正方形面积的和为n+1.8.若函数y=f(x)为偶函数,且在(-∞,0)上单调递减,f(-5)=0,则f(3+x)>0的解集为(A)A.(-∞,-8)∪(2,+∞)B.(-∞,-8)C.(2,+∞)D.(-8,2)解析:因为函数y=f(x)为偶函数,所以f(5)=f(-5)=0.f(3+x)>0⇒f(3+x)>f(5)⇒f(|3+x|)>f(5)⇒|3+x|>5⇒x>2或x<-8.9.某几何体的三视图如图所示,当xy的值最大时,该几何体的体积为(C)A.967 B.487C.167 D.87解析:由三视图可知,该几何体为三棱锥P -ABC ,如图,底面ABC 是直角三角形,AB ⊥BC ,P A ⊥平面ABC ,且AB =y ,DC =x ,PB =10,BC =27,依题意得,P A 2+y 2=102,P A 2+(27)2=x 2,两式相减得y=128-x 2,则xy =x128-x 2≤x 2+(128-x 2)22=64,当且仅当x =128-x 2,即x =8时,等号成立,此时y =8,P A =6,所以V P -ABC=13×12×6×27×8=167.10.在斜△ABC 中,sin A =-2cos B ·cos C 且tan B ·tan C =1-2,则角A 为( A )A.π4B.π3C.π2D.3π4解析:因为tan B ·tan C =1-2,即sin B ·sin Ccos B ·cos C =1-2,则cos B ·cos C =-(2+1)sin B ·sin C ,由积化和差公式得,12[-cos A +cos(B -C )]=-(2+1)12·[cos(B -C )+cos A ],∴cos(B -C )=-cos A2+1,所以sin A =-2cos B ·cos C =-22·[-cos A +cos(B -C )]=cos A ,所以tan A =1,即A =π4.11.如图,已知l 1⊥l 2,圆心在l 1上,半径为1 m 的圆O 在t =0时与l 2相切于点A ,圆O 沿l 1以1 m/s 的速度匀速向上移动,圆被直线l 2所截上方圆弧长记为x ,令y =cos x ,则y 与时间t (单位:s)的函数y =f (t )的图象大致为( B )解析:依题意,当0<t ≤1时,圆心到直线l 2的距离为1-t ,所以圆心角θ满足cos θ2=1-t ,所以圆心角为cos θ=2cos 2θ2-1=2(1-t )2-1=2t 2-4t +1,而所截弧长x =θ,所以y =cos x =cos θ=2t 2-4t +1,此时y =f (t ),是对称轴为1的二次函数,故选B.12.设经过点C (-1,0)的直线交椭圆x 2a 2+y 2b 2=1(a >b >0)于A ,B 两点,且满足CA →=3BC →,e =63,若直线的斜率为1,则椭圆的长轴长为( C )A.76B.72 C.7 D .27解析:由e =c a =63,∴c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2,∴椭圆方程:x 23b 2+y 2b 2=1,将直线y =x +1代入并整理得:4x 2+6x +3-3b 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-32,x 1·x 2=3-3b 24,∵C (-1,0),∴CA →=(x 1+1,y 1),BC →=(-1-x 2,-y 2),由CA →=3BC →得:x 1+1=3(-1-x 2),即x 1=-4-3x 2代入x 1+x 2=-32得x 2=-54,从而x 1=-14,代入x 1·x 2=3-3b 24,∴3b 2=74,∴a 2=74,∴a =72,∴2a =7.二、填空题(本大题共4小题,每小题5分,共20分) 13.若x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,x +2y -3≥0,则z =x -2y 的最大值是3.解析:作出可行域如图中阴影部分所示,当目标函数z =x -2y 所对应的直线过点A (3,0)时,z 取得最大值3.14.(ax +x )9的展开式中x 3的系数为18,则实数a =2.解析:二项式的展开式的通项为T r +1=C r 9(a x)9-r (x )r =C r 9a 9-r x 3r 2-9,令3r 2-9=3,解得r =8,故C 89a 9-8=18,解得a =2. 15.四棱柱ABCD -A 1B 1C 1D 1的所有棱长均为1,且∠A 1AB =∠A 1AD =∠BAD =60°,则AC 1的长为 6.解析:四棱柱ABCD -A 1B 1C 1D 1的所有棱长均为1,且∠A 1AB =∠A 1AD =∠BAD =60°,∵AC 1→=AB →+AD →+AA 1→,∴AC 1→2=AB →2+AD →2+AA 1→2+2|AB →|·|AD →|·cos ∠BAD +2|AB →|·|AA 1→|·cos ∠A 1AB +2|AD →|·|AA 1→|·cos ∠A 1AD =1+1+1+1+1+1=6,∴AC 1的长为|AC 1→|= 6.16.已知函数f (x )=⎩⎨⎧1+ln x x,x >0,log 2|x |,x <0,方程f 2(x )+mf (x )=0(m ∈R )有五个不相等的实数根,则实数m 的取值范围是(-1,0).解析:当x >0时,f (x )=1+ln x x ,则f ′(x )=-ln xx 2.当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增;当x ∈(1,+∞)时,f ′(x )<0,函数f (x )单调递减,且f (x )>0.在此段上f (x )的最大值为f (1)=1;当x <0时,f (x )=log 2(-x ),所以可作出y =f (x )的图象如图所示,对于方程f 2(x )+mf (x )=0(m ∈R )可化简为f (x )[f (x )+m ]=0,可得f (x )=0或f (x )=-m ,当f (x )=0时,由图象可知有两个不相等的根,当f (x )=-m 时有三个不相等的根,此时0<-m <1,解得-1<m <0.。
2019年高考数学“12+4”限时提速练5
“12+4”限时提速练(五)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12<2x ≤2,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ln ⎝ ⎛⎭⎪⎫x -12≤0,则A ∩(∁R B )=( B )A .∅B.⎝ ⎛⎦⎥⎤-1,12 C.⎣⎢⎡⎭⎪⎫12,1 D .(-1,1]解析:∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<2x ≤2={x |-1<x ≤1},B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ ln ⎝ ⎛⎭⎪⎫x -12≤0=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x ≤32,∴∁R B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >32或x ≤12,则A ∩(∁R B )=⎝ ⎛⎦⎥⎤-1,12. 2.已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x ≤2},则A ∩B =( A )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:A ={x |x 2-2x -3≥0}={x |(x -3)(x +1)≥0}={x |x ≤-1或x ≥3},又B ={x |-2≤x ≤2},所以A ∩B =[-2,-1].3.某仪器厂从新生产的一批零件中随机抽取40个检测,如图是根据抽样检测后零件的质量(单位:克)绘制的频率分布直方图,样本数据分8组,分别为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],则样本的中位数落在( B )A .第3组B .第4组C .第5组D .第6组解析:由图可得,前四组的频率为(0.037 5+0.062 5+0.075+0.1)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.1×2=8.故中位数落在第4组.4.已知数列{a n }为等差数列,S n 为前n 项和,公差为d ,若S 2 0172 017-S 1717=100,则d 的值为( B )A.120B.110 C .10D .20解析:{a n }为等差数列,S n n =na 1+n (n -1)2dn=a 1+(n -1)×d2,则⎩⎨⎧⎭⎬⎫S n n 为等差数列,公差为d 2,所以S 2 0172 017-S 1717=100,即2 000×d2=100,d=110,故选B.5.记不等式组⎩⎪⎨⎪⎧4y +3x ≥10,y ≤3,x ≤4表示的平面区域为D ,过区域D中任意一点P 作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则cos ∠P AB 的最大值为( D )A.32 B.23 C.13D.12解析:如图所示,∠P AB =∠AOP ,设P (x ,y ),则cos ∠P AB =cos ∠AOP =OA OP =1x 2+y 2,当∠P AB 最小时,cos ∠P AB 最大,即x 2+y 2最小,P 点即为可行域内离原点最近的点,此时OP 垂直于3x +4y -10=0,|OP |=|-10|32+42=105=2,所以cos ∠P AB =12.6.已知角θ的终边过点⎝ ⎛⎭⎪⎫2sin 2π8-1,a ,若sin θ=23·sin 13π12cos π12,则实数a 等于( B )A .- 6B .-62 C .±6D .±62解析:2sin 2π8-1=-cos π4=-22.∵角θ的终边过点⎝ ⎛⎭⎪⎫2sin 2π8-1,a ,sin θ=23sin 13π12cos π12=-32,∴a 12+a 2=-32,∴a =-62.7.阅读程序框图(如图),如果输出的函数值在区间[1,3]上,那么输入的实数x 的取值范围是( C )A .{x ∈R |0≤x ≤log 23}B .{x ∈R |-2≤x ≤2}C .{x ∈R |0≤x ≤log 23,或x =2}D .{x ∈R |-2≤x ≤log 23,或x =2}解析:依题意及框图可得,⎩⎪⎨⎪⎧-2<x <2,1≤2x ≤3或⎩⎨⎧|x |≥2,1≤x +1≤3,解得0≤x ≤log 23或x =2.8.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( A )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1D.x 212+y 24=1解析:由e =33得c a =33.①又△AF 1B 的周长为43,由椭圆定义,得4a =43,得a =3,代入①得c =1,所以b 2=a 2-c 2=2,故C 的方程为x 23+y 22=1.9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,双曲线x 22-y 22=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为( D )A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1D.x 220+y 25=1 解析:由e =32可得a =2b ,则椭圆方程为x 24b 2+y 2b 2=1.双曲线x 22-y 22=1的渐近线方程为y =±x ,则以双曲线的渐近线与椭圆的四个交点为顶点的四边形为正方形,设在第一象限的小正方形边长为m ,则m 2=4,m =2,从而点(2,2)在椭圆上,即224b 2+22b 2=1,解得b 2=5.于是b 2=5,a 2=20.故椭圆方程为x 220+y25=1.10.在△ABC 中,|AB →+AC →|=3|AB →-AC →|,|AB →|=|AC →| =3,则CB →·CA →=( C ) A .3 B .-3 C.92 D .-92解析:由平面向量的平行四边形法则,在△ABC 中,|AB →+AC →|=3|AB →-AC →|,|AB →|=|AC →|=3,如图,设|OC |=x ,则|OA |=3x .所以|AO |2+|OC |2=|AC |2,即3x 2+x 2=9,解得x =32,所以|BC |=3,则△ABC 为等边三角形.因此CB →·CA →=3×3×cos60°=92.11.已知函数f (x )=2sin(ωx +φ)+1⎝ ⎛⎭⎪⎫ω>0,|φ|≤π2,其图象与直线y =-1相邻两个交点的距离为π,若f (x )>1对∀x ∈⎝ ⎛⎭⎪⎫-π12,π3恒成立,则φ的取值范围是( B )A.⎣⎢⎡⎦⎥⎤π12,π2 B.⎣⎢⎡⎦⎥⎤π6,π3 C.⎣⎢⎡⎦⎥⎤π12,π3 D.⎝ ⎛⎦⎥⎤π6,π2 解析:由已知得函数f (x )的最小正周期为π,则ω=2.当x ∈⎝ ⎛⎭⎪⎫-π12,π3时,2x +φ∈⎝ ⎛⎭⎪⎫-π6+φ,2π3+φ,因为f (x )>1,|φ|≤π2,所以⎩⎪⎨⎪⎧-π6+φ≥0,2π3+φ≤π,解得π6≤φ≤π3.12.已知函数f (x )=⎩⎨⎧sin ⎝ ⎛⎭⎪⎫π2x -1,x <0,log a x (a >0,a ≠1),x >0的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( A )A.⎝ ⎛⎭⎪⎫0,55 B.⎝ ⎛⎭⎪⎫55,1C.⎝ ⎛⎭⎪⎫33,1D.⎝⎛⎭⎪⎫0,33解析:f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫π2x -1,x <0,log a x (a >0,a ≠1),x >0,令φ(x )=sin ⎝ ⎛⎭⎪⎫π2x -1(x <0),则φ(x )关于y 轴对称的函数为g (x )=-sin ⎝ ⎛⎭⎪⎫π2x -1(x >0),则函数f (x )的图象上关于y 轴对称的点至少有3对,即函数g (x )的图象与函数h (x )=log a x (a >0,a ≠1)的图象至少有3个交点(如图所示),则0<a <1且g (5)<h (5),∴⎩⎨⎧0<a <1,-2<log a 5.解之得0<a <55.二、填空题(本大题共4小题,每小题5分,共20分)13.已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为90°.解析:由已知条件,AO →=12(AB →+AC →)得O 为线段BC 的中点,故BC 是⊙O 的直径.所以∠BAC =90°,所以AB →与AC →的夹角为90°.14.如图所示的正三角形是一个圆锥的侧视图,则这个圆锥的侧面积为2π.解析:由题意圆锥的侧面积S =π×1×2=2π.15.设S n 为数列{a n }的前n 项和,且满足S n =(-1)na n -12n ,则S 1+S 3+S 5+…+S 2 017=13⎝ ⎛⎭⎪⎫122 018-1.解析:由S n =(-1)na n -12n ,当n =1时,有a 1=(-1)a 1-12,得a 1=-14.当n ≥2时,a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1,即a n =(-1)na n +(-1)na n -1+12n ,若n 为偶数,则a n -1=-12n (n ≥2).若n 为正奇数,则a n =-12n +1;S 1+S 3+…+S 2 017=(-a 1-a 3-…-a 2 017)-⎝⎛⎭⎪⎫12+123+…+122 017=⎝⎛⎭⎪⎫122+124+…+122 018-⎝⎛⎭⎪⎫12+123+…+122 017=14⎝ ⎛⎭⎪⎫1-141 0091-14-12⎝ ⎛⎭⎪⎫1-141 0091-14=13⎝ ⎛⎭⎪⎫1-122 018-23⎝⎛⎭⎪⎫1-122 018=13⎝⎛⎭⎪⎫122 018-1.16.在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为32的正方形,AA 1=3,E 是线段A 1B 1上一点,若二面角A -BD -E 的正切值为3,则三棱锥A -A 1D 1E 外接球的表面积为35π.解析:过点E 作EF ∥AA 1交AB 于F ,过F 作FG ⊥BD 于G ,连接EG ,则∠EGF 为二面角A -BD -E 的平面角,∵tan ∠EGF =3,∴EFFG =3,∵EF =AA 1=3,∴FG =1,则BF =2=B 1E ,∴A 1E =22,则三棱锥A -A 1D 1E 外接球的直径为8+9+18=35,因此三棱锥A -A 1D 1E外接球的表面积S =35π.。
2019年高考数学“12+4”限时提速练7
“12+4”限时提速练(七)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知i 是虚数单位,则复数4+2i1-2i -(1-i)2-4i =( A )A .0B .2C .-4iD .4i 解析:4+2i 1-2i-(1-i)2-4i =(4+2i )(1+2i )(1-2i )(1+2i )+2i -4i =2i +2i -4i =0.2.已知集合A ={x ∈Z |log 2(2-x )<2},B ={x |x 2-2x -3≥0},则A ∩(∁R B )=( C )A .(-1,2)B .(0,1)C .{0,1}D .{-1,0,1}解析:由题意,A ={x ∈Z |0<2-x <4}={x ∈Z |-2<x <2}={-1,0,1},∁R B ={x |x 2-2x -3<0}={x |-1<x <3},所以A ∩(∁R B )={0,1}.3.已知力F 1=(n 2-3n ,-14)(n >0),F 2=(m +4,12),F 3=(1,2),F 1⊥F 2,F 2∥F 3,在力F =(n ,m )作用下的物体从A (4,9)移动到B (5,10),则F 所做的功是( D )A .6B .7C .8D .9解析:由题知:F 2∥F 3,得:2×(m +4)=1×12,∴m =2,∵F 1⊥F 2,∴6×(n 2-3n )+12×(-14)=0,∴n =7,F =(7,2),AB →=(1,1),故力F 所做的功为F ·AB →=(7,2)·(1,1)=9.4.下列命题错误的是(B)A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.若p∧q为假命题,则p、q均为假命题C.命题p:存在x0∈R,使得x20+x0+1<0,则綈p:任意x∈R,都有x2+x+1≥0D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:根据逆否命题的定义,命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”,故A正确;若p∧q为假命题,则p、q至少存在一个假命题,但p、q不一定均为假命题,故B错误;命题p:存在x0∈R,使得x20+x0+1<0的否定为:任意x∈R,都有x2+x+1≥0,故C正确;∵x>2⇒x2-3x+2>0为真命题,x2-3x +2>0⇔x<1或x>2⇒x>2为假命题,故“x>2”是“x2-3x+2>0”的充分不必要条件,故D正确.5.我们知道,可以用模拟的方法估计圆周率π的近似值.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落到正方形内的豆子数为m,则圆周率π的估算值是(B)A.n mB.2n mC.3n mD.2m n解析:设圆的半径为r ,则P =m n =(2r )2πr 2,得π=2nm . 6.一个几何体的三视图如图所示,则这个几何体的( D ) A .外接球的体积为123π B .外接球的表面积为4π C .体积为 2 D .表面积为5+2+1解析:由三视图得到几何体为三棱锥,如图,表面积为12×2×1+12×2×2+12×2×102×2=1+2+5;体积为13×12×2×2×2=23.设外接球半径为r ,则有r 2-(2-r )2=1,得r =324,所以外接球体积为43π·(324)3=928π,外接球的表面积为4π·(324)2=92π.7.若f (x )=3sin(2x +φ)+cos(2x +φ)(|φ|<π2)的图象关于直线x =0对称,则( A )A .f (x )的最小正周期为π,且在(0,π2)上为减函数 B .f (x )的最小正周期为π,且在(0,π2)上为增函数 C .f (x )的最小正周期为π2,且在(0,π4)上为增函数 D .f (x )的最小正周期为π2,且在(0,π4)上为减函数解析:因为f (x )=3sin(2x +φ)+cos(2x +φ)=2sin(2x +φ+π6),所以T =2π2=π,又图象关于x =0对称,|φ|<π2,所以φ+π6=π2+k π,k ∈Z ,即φ=π3+k π,k ∈Z ,所以φ=π3,所以f (x )=2sin(2x +π3+π6)=2cos2x .由2k π≤2x ≤2k π+π,k ∈Z ,得k π≤x ≤k π+π2,k ∈Z ,所以函数f (x )的最小正周期为π,且在(0,π2)上为减函数.8.执行如图所示的程序框图,若输入n =4,则输出k =( C )A.2 B.3C.4 D.5解析:第一次循环,n=2×4+1=9,k=1;第二次循环,n=2×9+1=19,k=2;第三次循环,n=2×19+1=39,k=3;第四次循环,n=2×39+1=79,k=4;第五次循环,n=2×79+1=159,满足循环结束条件,退出循环,输出的k为4.9.函数f(x)=x·(3lg5+12lg64)cos x(x∈[-π,π])的图象大致是(B)解析:由题设可知f (-x )=-x ·3cos x =-f (x ),所以函数f (x )是奇函数,依据图象排除A 、C ,由于f (π2)=π2,f (π)=π·3-1=π3,即f (π2)>f (π),故排除答案D ,应选答案B.10.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 1(-c,0)作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A (x A ,y A ),B (x B ,y B )(点A 在点B 的左边),若-c ,x A ,x B 成等差数列,则双曲线的离心率是( B )A .2 3 B.10 C .3D .2 2解析:双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程分别是y =ba x 与y =-ba x ,过双曲线左焦点F 1(-c,0)作斜率为1的直线方程为y =x +c (其中c =a 2+b 2),由⎩⎪⎨⎪⎧y =b a x ,y =x +c解得⎩⎪⎨⎪⎧x =acb -a,y =bcb -a,此时x B =acb -a,又由⎩⎪⎨⎪⎧y =-b a x ,y =x +c解得⎩⎪⎨⎪⎧x =-ac a +b,y =bca +b,此时x A =-aca +b,因为-c ,x A ,x B 成等差数列,所以2x A =-c +x B ,即-2ac a +b =-c +acb -a ,化简并整理得b =3a ,所以双曲线的离心率为e =ca =1+(ba )2=10.11.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2π3-4x cos ⎝ ⎛⎭⎪⎫2x +π6的图象与g (x )的图象关于直线x =π12对称,则g (x )的图象的一个对称中心为( C )A.⎝ ⎛⎭⎪⎫π6,0B.⎝ ⎛⎭⎪⎫π3,0 C.⎝ ⎛⎭⎪⎫π4,0 D.⎝ ⎛⎭⎪⎫π2,0 解析:∵f (x )=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫2π3-4x cos ⎝⎛⎭⎪⎫2x +π6=sin ⎝ ⎛⎭⎪⎫4x +π3cos ⎝⎛⎭⎪⎫2x +π6 =2sin ⎝⎛⎭⎪⎫2x +π6⎝⎛⎭⎪⎫x ≠π6+k π2,k ∈Z ,∴g (x )=f ⎝ ⎛⎭⎪⎫π6-x =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-x +π6=2cos2x ⎝ ⎛⎭⎪⎫x ≠k π2,k ∈Z 的图象的一个对称中心为⎝ ⎛⎭⎪⎫π4,0.12.设函数f (x )对任意的x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=(12)x -1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰好有3个不同的实数根,则a 的取值范围是( D )A .(1,2)B .(2,+∞)C .(1,34)D .(34,2)解析:∵对x ∈R ,都有f (x -2)=f (x +2),∴f (x +4)=f (x ),即f (x )的周期为4.∵当x ∈[-2,0]时,f (x )=(12)x -1,∴当x ∈[0,2]时,-x ∈[-2,0],则f (-x )=(12)-x -1=2x -1.∴f (x )是偶函数,∴当x ∈[0,2]时,f (x )=f (-x )=2x -1.∵f (x )-log a (x +2)=0(a >1),∴f (x )=log a (x +2),∴作出在区间(-2,6]内f (x )的图象如图所示.∵在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰好有三个不同的实数根,∴函数f (x )与函数g (x )=log a (x +2)在区间(-2,6]内有三个不同的交点,∴只需满足g (x )的图象在点A (2,3)的下方且在点B (6,3)上方,即⎩⎨⎧log a (2+2)<3,log a (6+2)>3,解得34<a <2.二、填空题(本大题共4小题,每小题5分,共20分)13.某同学一个学期内各次数学测验成绩的茎叶图如图所示,则该组数据的中位数是83.解析:由茎叶图知,中位数是82与84的平均数,所以中位数是83.14.已知点P (x ,y )在不等式组 ⎩⎪⎨⎪⎧2x -y ≥0,x -y ≤0,y -2≤0表示的平面区域内运动,则z =x +y 的最大值是4.解析:画出不等式组表示的平面区域,如图阴影部分所示,平移直线y =-x ,由图知当直线过点A (2,2)时,直线截距z 最大,即z max =2+2=4.15.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF |=3|BF |,则l 的斜率是±3.解析:由抛物线y 2=4x ,知焦点F (1,0),易知直线l 的斜率存在且不为0,设直线l 的方程为y =k (x -1)(k ≠0).代入y 2=4x ,消去x ,得k4y 2-y -k =0.设A (x 1,y 1),B (x 2,y 2),可得y 1+y 2=4k ,y 1y 2=-4.①∵|AF |=3|BF |,∴y 1+3y 2=0,可得y 1=-3y 2,代入①得-2y 2=4k ,且-3y 22=-4,消去y 2得k 2=3,解之得k =±3.16.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且2cos A cos C (tan A tan C -1)=1.若D 为AC 的中点,且BD =1,则△ABC 面积最大值是33.解析:由2cos A cos C (tan A tan C -1)=1,得2cos A cos C ·(sin A sin Ccos A cos C -1)=1,∴2(sin A sin C -cos A cos C )=1,∴cos(A +C )=-12,∴cos B =12,又0<B <π,∴B =π3,在△ABD 中,由余弦定理得c 2=1+(b 2)2-2×1×b 2cos∠ADB ①.在△BDC 中,由余弦定理得a 2=1+(b 2)2-2×1×b 2cos ∠CDB ②,两式相加得a 2+c 2=2+b 22=2+a 2+c 2-2ac cos B 2,整理得a 2+c 2=4-ac ,∵a 2+c 2≥2ac ,∴ac ≤43,所以△ABC 的面积S =12ac sin B ≤12×43×32=33,当且仅当a =c =233时“=”成立.∴△ABC 的面积的最大值为33.。
2019年高考数学“12+4”限时提速练6
“12+4”限时提速练(六)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 为虚数单位,则i +i 2+i 3+i 4=( A ) A .0 B .i C .2iD .-i解析:由i 2=-1可知,i +i 2+i 3+i 4=i -1-i +1=0.2.已知集合A ={x |x 2-x +4>x +12},B ={x |2x -1<8},则A ∩(∁R B )=( B )A .{x |x ≥4}B .{x |>4}C .{x |x ≥-2}D .{x |x <-2或x ≥4}解析:由A ={x |x <-2或x >4},B ={x |x <4},故A ∩(∁R B )={x |x <-2或x >4}∩{x |x ≥4}={x |x >4}.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2,x <-1,2x -1,x ≥-1,则函数f (x )的值域为( B )A .[-1,+∞)B .(-1,+∞) C.⎣⎢⎡⎭⎪⎫-12,+∞ D .R解析:根据分段函数f (x )=⎩⎨⎧x 2-2,x <-1,2x-1,x ≥-1,的图象可知,该函数的值域为(-1,+∞).4.“中国珠算鼻祖”程大位是我国明末著名的数学家,他的著作《算法统宗》标志着我国的算法由筹算到珠算转变的完成.程大位在《算法统宗》中常以诗歌的形式呈现数学问题,其中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节三升九,上梢四节贮三升,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”([注释]三升九:3.9升;次第盛:盛米容积依次相差同一数量)则下面五节竹筒的容积之和为( C )A .5.6升B .5.8升C .6升D .6.4升解析:由题意,依次按盛米容积相差同一数量的方式盛米,即从下到上,每一节盛米的体积构成等差数列,设公差为d 升,下端第一节盛米a 1升.由题意可得⎩⎨⎧S 3=a 1+a 2+a 3=3.9,S 9-S 5=a 6+a 7+a 8+a 9=3,整理得⎩⎨⎧3a 2=3.9,2(a 7+a 8)=3,即⎩⎨⎧a 2=1.3,a 7+a 8=a 2+a 13=1.5,所以⎩⎨⎧a 2=1.3,a 13=0.2,故d =a 13-a 213-2=-0.1,所以a 1=a 2-d =1.3-(-0.1)=1.4,所以S 5=5a 1+5(5-1)2d =5×1.4+5×42×(-0.1)=6.5.底面边长为1,侧棱长为263的正三棱柱的各顶点均在同一个球面上,则该球的体积为( D )A.32π3 B .4π C .2πD.4π3解析:分别取上下底面三角形的中心O 1,O 2,则球心为O 1O 2的中点M .设底面三角形的外接圆半径为R ,则1sin60°=2R ,解得R =33,所以外接球半径为(33)2+(63)2=1,则该球的体积为43π×13=43π.6.某几何体的三视图如图所示,则该几何体的表面积为( B ) A .2 2 B .2+ 2 C .2+2 2D .2解析:由几何体的三视图,可得该几何体是一个四棱锥(如图所示),其中底面是边长为1的正方形(面积为1),且VA ⊥平面ABCD ,VA =1,则S △VAB =S △VAD =12.因为VA ⊥BC ,BC ⊥AB ,所以BC ⊥平面VAB ,即BC ⊥VB ,同理CD ⊥VD ,且VB =VD =2,S △VBC =S △VDC =22,则该几何体的表面积为1+2×12+2×22=2+ 2.7.函数f (x )=(x 2-2x )e x 的图象大致是( A )解析:由f (0)=0,解得x =0或x =2,所以函数f (x )有两个零点,排除C 、D ;因为f ′(x )=(x 2-2)e x ,由f ′(x )>0,解得x >2或x <-2,由f ′(x )<0,解得-2<x <2,即x =-2是函数的一个极大值点,排除B.故选A.8.执行如图所示的程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( C )A .S =2·i -2B .S =2·i -1C .S =2·iD .S =2·i +4解析:当空白矩形框中填入的语句为S =2i 时,执行程序框图,输入i =1,S =0;第一次循环:i =2,S =5;第二次循环:i =3,S =6;第三次循环:i =4,S =9;第四次循环:i =5,S =10;退出循环,输出i =5,符合题意.9.如图所示为函数f (x )=A sin(ωx +φ)(ω>0,|φ|<π2)的部分图象,A 、B 两点之间的距离为10,且f (2)=0,则f (4)=( D )A.334B.324C.332D.322解析:由图可设A (x 1,3),B (x 2,-3),所以|AB |=(x 1-x 2)2+62=10,解得|x 1-x 2|=8.所以T =2|x 1-x 2|=16,故2πω=16,解得ω=π8.所以f (x )=3sin(π8x +φ),由f (2)=0得3sin(π4+φ)=0,又-π2<φ<π2,所以φ=-π4.故f (x )=3sin(π8x -π4),所以f (4)=3sin(π2-π4)=3sin π4=322.10.已知抛物线C :y 2=2px (p >0)的焦点为F ,双曲线E :x 2a 2-y2b 2=1(a >0,b >0)的右焦点与抛物线C 的焦点重合,且抛物线C 的准线与双曲线E 的两条渐近线交于M ,N 两点,若△FMN 的垂心为坐标原点O ,则双曲线E 的离心率为( C )A.142 B. 5 C. 3D .3解析:由题意,双曲线的渐近线为y =±ba x ,则当x =-c 时,y =±bc a ,设M (-c ,bc a ),N (-c ,-bca ),∵坐标原点O 恰为△FMN 的垂心,∴OM ⊥NF ,即OM →·NF →=0,即(-c ,bc a )·(2c ,bc a )=0,则-2c 2+(bca )2=0,即b 2=2a 2,∵b 2=2a 2=c 2-a 2,∴c 2=3a 2,则c =3a ,则所求的离心率e =c a =3aa = 3.11.设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( A )A.2x ±y =0 B .x ±2y =0 C .x ±2y =0 D .2x ±y =0解析:不妨设P 为右支上一点,由双曲线的定义,可得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得,|PF 1|=4a ,|PF 2|=2a ,且|F 1F 2|=2c ,由于2a 最小,即有∠PF 1F 2=30°,由余弦定理,可得,cos30°=|PF 1|2+|F 1F 2|2-|PF 2|22|PF 1|·|F 1F 2|=16a 2+4c 2-4a 22×4a ·2c =32.则有c 2+3a 2=23ac ,即c =3a ,则b =c 2-a 2=2a ,所以双曲线的渐近线方程为y =±bax ,即y =±2x .12.已知函数f (x )=⎩⎨⎧sin ⎝ ⎛⎭⎪⎫π2x -1,x >0,log a (-x ),x <0,(a >0,且a ≠1)的图象上关于y 轴对称的点至少有5对,则实数a 的取值范围为( D )A.⎝ ⎛⎭⎪⎫0,55 B.⎝ ⎛⎭⎪⎫55,1 C.⎝ ⎛⎭⎪⎫77,1 D.⎝⎛⎭⎪⎫0,77解析:若x <0,则-x >0,因为x >0时,f (x )=sin ⎝ ⎛⎭⎪⎫π2x -1,所以f (-x )=sin ⎝ ⎛⎭⎪⎫-π2x -1=-sin ⎝ ⎛⎭⎪⎫π2x -1,则若f (x )=sin ⎝ ⎛⎭⎪⎫π2x -1(x >0)关于y 轴对称,则f (-x )=-sin ⎝ ⎛⎭⎪⎫π2x -1,即y =-sin ⎝ ⎛⎭⎪⎫π2x -1,x <0,设g (x )=-sin ⎝ ⎛⎭⎪⎫π2x -1,x <0,作出函数g (x )的图象,要使y =-sin ⎝ ⎛⎭⎪⎫π2x -1,x <0与f (x )=log a (-x ),x <0的图象至少有5个交点,则0<a <1且满足g (-7)<f (-7),即-2<log a 7,即log a 7>log a a -2,即7<1a 2,综上可得0<a <77.二、填空题(本大题共4小题,每小题5分,共20分)13.若(x 3+3)(1-a x)5的展开式中x 项的系数为80,则实数a 的值为±2.解析:(1-a x )5的展开式的通项为T r +1=C r5(-a x)r =(-a )r C r 5x -r2,故(x 3+3)(1-a x)5的展开式中x 项为x 3·(-a )r C r 5x -r2,即r =4,所以5a 4=80,解得a =±2.14.已知在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c,2a sin B =3b ,b =2,c =3,AD 是角A 的平分线,D 在BC 上,则BD =375.解析:因为2a sin B =3b ,所以由正弦定理可得2sin A sin B =3sin B ,因为sin B ≠0,可得sin A =32,因为A 为锐角,可得A =π3,因为b =2,c =3,所以由余弦定理可得a 2=b 2+c 2-2bc cos A =4+9-2×2×3×12=7,可得:a =BC =7,所以根据角分线定理可知,BD =375.15.已知三棱锥S -ABC 的体积为453,底面△ABC 是边长为2的正三角形,且所有顶点都在直径为SC 的球面上.则此球的半径为2 2.解析:设球心为O ,球的半径为R ,过A ,B ,C 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,作SD ⊥平面ABC 交CO 1的延长线于点D ,CO 1的延长线交AB 于点E ,因为△ABC 是正三角形,所以CE =32×2=3,O 1C =23CE =233,所以OO 1=R 2-43,所以高SD =2OO 1=2R 2-43;又△ABC 是边长为2的正三角形,所以S △ABC =12×2×3=3,所以V 三棱锥S -ABC=13·3·2R 2-43=453,解得R =2 2.16.已知数列{a n }的首项a 1=1,且满足a n +1-a n ≤n ·2n ,a n -a n +2≤-(3n +2)·2n ,则a 2 017=2_015×22_017+3.解析:因为a n +1-a n ≤n ·2n ,a n -a n +2≤-(3n +2)·2n ,所以a n +1-a n +2≤n ·2n -(3n +2)·2n =-(n +1)·2n +1.即a n +2-a n +1≥(n +1)·2n +1.又a n +2-a n +1≤(n +1)·2n +1.所以a n +2-a n +1=(n +1)·2n +1.可得:a n +1-a n =n ·2n ,(n =1时有时成立).所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(n -1)·2n -1+(n -2)·2n -2+…+2·22+2+1.2a n =(n -1)·2n +(n -2)·2n -1+…+22+2,可得:-a n =-(n -1)·2n +2n -1+2n -2+…+22+1=2(2n -1-1)2-1-1-(n -1)·2n .所以a n =(n -2)·2n +3.所以a 2017=2 015×22 017+3.。
2019年高考数学“12+4”限时提速练10
“12+4”限时提速练(十)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合A ={0,1,2},B ={2,3,4},如图阴影部分所表示的集合为( B )A .{2}B .{0,1}C .{3,4}D .{0,1,2,3,4}解析:根据题意,可知,阴影部分为A ∩(∁U B ),所以求得的结果为{0,1},故选B.2.若复数z =a -i1+i (a ∈R ,i 是虚数单位)是纯虚数,则复数3-z的共轭复数是( B )A .3+iB .3-iC .3+2iD .2-i解析:z =a -i 1+i =(a -i )(1-i )2=a -1-(a +1)i2是纯虚数,所以a =1,所以z =-i ,则3-z =3+i ,其共轭复数为3-i.3.已知m ∈R ,“方程e x +m -1=0有解”是“函数y =log m x 在区间(0,+∞)为减函数”的( B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:因方程e x +m -1=0有解,即1-m =e x 有解,所以m -1<0,即m <1,由函数y =log m x 在区间(0,+∞)为减函数可得0<m <1,所以“方程e x +m -1=0有解”是“函数y =log m x 在区间(0,+∞)为减函数”的必要不充分条件.4.已知向量a ,b 满足a +b =(2,4),a -b =(-6,8),则a ,b 夹角的余弦值为( B )A .-52B .-22 C.22D.52解析:因为a =(a +b )+(a -b )2=(-2,6).b =(a +b )-(a -b )2=(4,-2).则a ,b 夹角的余弦值为cos 〈a ,b 〉=a ·b |a ||b |=-2040×20=-22.5.已知各项均为正数的等比数列{a n }的公比为q ,前n 项和为S n ,a 2a 4=64,S 3=14,若{b n }是以a 2为首项、q 为公差的等差数列,则b 2016=(B )A .4 032B .4 034C .2 015D .2 016解析:因为在等比数列{a n }中,a 2a 4=64,S 3=14,依题意q ≠1,所以⎩⎪⎨⎪⎧a 1·q ·a 1·q 3=64,a 1(1-q 3)1-q=14,解得⎩⎨⎧a 1=2,q =2,所以a 2=4,所以数列{b n }的通项公式为b n =4+2(n -1)=2n +2,所以b 2 016=2×2 016+2=4 034.6.某几何体的三视图如图所示,则该几何体的体积为( A ) A.43 B.52 C.73D .3解析:根据几何体的三视图,得该几何体是下部为直三棱柱,上部为三棱锥的组合体,如图所示.则该几何体的体积是V 几何体=V 三棱柱+V 三棱锥=12×2×1×1+13×12×2×1×1=43. 7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a 2=b 2+14c 2,则a cos Bc 的值为( C )A.14B.54C.58D.38解析:因为a 2=b 2+14c 2,所以由余弦定理,得a cos B c =ac ·a 2+c 2-b 22ac=a 2+c 2-b 22c 2=b 2+14c 2+c 2-b 22c 2=58.8.阅读如图所示的程序框图,运行相应的程序,则输出的结果是( C)A .- 3B .0 C.32D .336 3解析:由框图知输出的结果s =sin π3+sin 2π3+…+sin 2 017π3,因为函数y =sin π3x 的周期是6,所以s =336⎝ ⎛⎭⎪⎫sin π3+sin 2π3+…+sin 6π3+sin 2 017π3=336×0+sin ⎝ ⎛⎭⎪⎫672π+π3=sin π3=32. 9.已知实数x ,y满足约束条件⎩⎪⎨⎪⎧x +y ≤5,3x -2y ≥0,x -2y +1≤0,则z =⎝ ⎛⎭⎪⎫123x +y的最小值为( A )A.12 048 B.11 024 C.1512D.1256解析:作出不等式组 ⎩⎪⎨⎪⎧x +y ≤5,3x -2y ≥0,x -2y +1≤0所表示的平面区域,如图中阴影部分所示,要使z =⎝ ⎛⎭⎪⎫123x +y取得最小值,则z ′=3x +y 取得最大值,结合图形可知当直线z ′=3x +y 过点B (3,2)时,z ′取得最大值,即z ′max =3×3+2=11,故z =⎝ ⎛⎭⎪⎫123x +y 的最小值为⎝ ⎛⎭⎪⎫1211=12 048.10.已知x =π12是函数f (x )=3sin(2x +φ)+cos(2x +φ)(0<φ<π)图象的一条对称轴,将函数f (x )的图象向右平移3π4个单位长度后得到函数g (x )的图象,则函数g (x )在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为( B )A .-2B .-1C .- 2D .- 3解析:∵x =π12是f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+φ图象的一条对称轴,∴π3+φ=k π+π2(k ∈Z ),∵0<φ<π,∴φ=π6,则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3,∴g (x )=-2sin ⎝ ⎛⎭⎪⎫2x -π6在⎣⎢⎡⎦⎥⎤-π4,π6上的最小值为g ⎝ ⎛⎭⎪⎫π6=-1. 11.已知抛物线T 的焦点为F ,准线为l ,过F 的直线m 与T 交于A ,B 两点,C ,D 分别为A ,B 在l 上的射影,M 为AB 的中点,若m 与l 不平行,则△CMD 是( A )A .等腰三角形且为锐角三角形B .等腰三角形且为钝角三角形C .等腰直角三角形D .非等腰的直角三角形解析:不妨设抛物线T 的方程为y 2=2px (p >0).∵点A 在抛物线y 2=2px 上,F 为抛物线的焦点,C ,D 分别为A ,B 在l 上的射影,M 为AB 的中点,NM 是M 到抛物线准线的垂线,垂足为N ,准线与x轴的交点为E,如图,∴△CMD中,|CN|=|ND|,所以△CMD是等腰三角形,又根据抛物线定义,|AC|=|AF|,|BD|=|BF|,∴∠CFD=∠CFE+∠DFE=∠ACF+∠BDF=∠AFC +∠BFD.可得∠CFD=90°,又|MN|>|EF|,可得∠CMD<90°.则△CMD是等腰三角形且为锐角三角形.12.如图,在△ABC中,AB=BC=6,∠ABC=90°,点D为AC的中点,将△ABD沿BD折起到△PBD的位置,使PC=PD,连接PC,得到三棱锥P-BCD,若该三棱锥的所有顶点都在同一球面上,则该球的表面积是(A)A.7πB.5πC.3πD.π解析:依题意可得该三棱锥的面PCD是边长为3的正三角形,且BD⊥平面PCD,设三棱锥P-BDC外接球的球心为O,△PCD外接圆的圆心为O1,则OO1⊥平面PCD,所以四边形OO1DB为直角梯形,由BD=3,O1D=1,及OB=OD,可得OB=72,则外接球的半径R=72.所以该球的表面积S球=4πR2=7π.二、填空题(本大题共4小题,每小题5分,共20分)13.已知⎝ ⎛⎭⎪⎫x +a x 6的展开式中含x 2项的系数为12,则展开式的常数项为160.解析:二项式的通项为T r +1=a r C r 6x 3-r ,令r =1得,a ·C 16=12,所以a =2.令r =3得,展开式的常数项为T 4=23C 36=160.14.已知数列{a n }满足a 1=0,a n +1=a n +2a n +1,则a 13=144. 解析:由a n +1=a n +2a n +1,可知a n +1=(a n +1)2,即a n +1=a n +1,所以数列a n 是公差为1的等差数列,a 13=a 1+12,则a 13=144.15.已知向量|a |=2,b 与(b -a )的夹角为30°,则|b |最大值为4. 解析:以a ,b 为邻边作平行四边形ABCD ,设AB→=a ,AD →=b ,则BD →=b -a ,由题意∠ADB =30°,设∠ABD =θ,因为|a |=2,所以在△ABD 中,由正弦定理可得,AB sin30°=AD sin θ,所以AD =4sin θ≤4.即|b |的最大值为4.16.若0<a <2,0<b <2,则函数f (x )=13x 3+ax 2+2bx -3存在极值的概率为14.解析:由题意可知,f ′(x )=x 2+2ax +2b ,则方程x 2+2ax +2b =0有两不同的实根,则Δ=4a -8b >0,即b <12a .由图形知,存在极值的概率P =12×2×14=14.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4套“12+4”限时提速练“12+4”限时提速练(一) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分)1.已知N 是自然数集,设集合A =⎩⎨⎧⎭⎬⎫x |6x +1∈N ,B ={0,1,2,3,4},则A ∩B =( )A .{0,2}B .{0,1,2}C .{2,3}D .{0,2,4}解析:选B ∵6x +1∈N ,∴x +1应为6的正约数,∴x +1=1或x +1=2或x +1=3或x +1=6,解得x=0或x =1或x =2或x =5,∴集合A ={0,1,2,5},又B ={0,1,2,3,4},∴A ∩B ={0,1,2}.故选B.2.若复数z 满足(1+i)z =2i ,则z =( ) A .-1+i B .-1-i C .1+iD .1-i解析:选C 因为(1+i)z =2i , 所以z =2i1+i =2i (1-i )(1+i )(1-i )=1+i.3.设向量a =(1,2),b =(m ,m +1),若a ∥b ,则实数m 的值为( ) A .1 B .-1 C .-13D .-3 解析:选A 因为a =(1,2),b =(m ,m +1),a ∥b , 所以2m =m +1,解得m =1.4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:选B 由题意可得,数列{a n }的通项公式为a n =2n ,又a m =a 41q 6=210,所以m =10. 5.已知圆C 的圆心在坐标轴上,且经过点(6,0)及椭圆x 216+y 24=1的两个顶点,则该圆的标准方程为( )A .(x -2)2+y 2=16B .x 2+(y -6)2=72 C.⎝⎛⎭⎫x -832+y 2=1009D.⎝⎛⎭⎫x +832+y 2=1009解析:选C 由题意得圆C 经过点(0,±2), 设圆C 的标准方程为(x -a )2+y 2=r 2, 由a 2+4=r 2,(6-a )2=r 2,解得a =83,r 2=1009,所以该圆的标准方程为⎝⎛⎭⎫x -832+y 2=1009. 6.据统计,2018年春节期间,甲、乙两个抢红包群抢红包的金额(单位:元)的茎叶图如图所示,其中甲群抢得红包金额的平均数是88元,乙群抢得红包金额的中位数是89元,则m ,n 的等差中项为( )A .5B .6C .7D .8解析:选B 因为甲群抢得红包金额的平均数是88, 所以78+86+84+88+95+(90+m )+927=88,解得m =3.因为乙群抢得红包金额的中位数是89,所以n =9. 所以m ,n 的等差中项为m +n 2=3+92=6.7.某几何体的三视图如图所示,俯视图是一个圆,其内有一个边长为2的正方形,正视图和侧视图是两个全等的等腰直角三角形,它们的底边长和圆的直径相等,它们的内接矩形的长和圆内正方形的对角线长相等,宽和正方形的边长相等,则俯视图中圆的半径是( )A .2B .2 2C .3D.2+1解析:选D 因为正方形的边长为2, 所以正方形的对角线长为2, 设俯视图中圆的半径为R , 如图,可得R =2+1.8.我国古代数学著作《孙子算经》中有如下问题:“今有方物一束,外周一匝有三十二枚,问积几何?”设每层外周枚数为a ,如图是解决该问题的程序框图,则输出的结果为( )A .121B .81C .74D .49解析:选B 第一次循环:S =1,n =2,a =8;第二次循环:S =9,n =3,a =16; 第三次循环:S =25,n =4,a =24;第四次循环:S =49,n =5,a =32; 第五次循环:S =81,n =6,a =40,不满足a ≤32,退出循环,输出S 的值为81. 9.函数f (x )=A sin(2x +θ)A >0,|θ|≤π2的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数 B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:选B 由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,∴2sin θ=3,sin θ=32,又|θ|≤π2,∴θ=π3,∴f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增,所以选项B 正确.10.已知正四棱柱ABCD -A 1B 1C 1D 1的体积为36,点E ,F 分别为棱B 1B ,C 1C 上的点(异于端点),且EF ∥BC ,则四棱锥A 1-AEFD 的体积为( )A .2B .4C .6D .12解析:选D 连接AF ,易知四棱锥A 1-AEFD 的体积为三棱锥F -A 1AD 和三棱锥F -A 1AE 的体积之和.设正四棱柱的底面边长为a ,高为h ,则V F -A 1AD =13×12×a ×h ×a =16a 2h ,V F -A 1AE =13×12×a ×h ×a =16a 2h ,所以四棱锥A 1-AEFD 的体积为13a 2h ,又a 2h =36,所以四棱锥A 1-AEFD 的体积为12.11.函数f (x )=(2x 2+3x )e x 的图象大致是( )解析:选A 由f (x )的解析式知,f (x )只有两个零点x =-32与x =0,排除B 、D ;又f ′(x )=(2x 2+7x +3)e x ,由f ′(x )=0知函数有两个极值点,排除C ,故选A.12.已知函数f (x )=ln x +x 与g (x )=12ax 2+ax -1(a >0)的图象有且只有一个公共点,则a 所在的区间为( )A.⎝⎛⎭⎫12,23B.⎝⎛⎭⎫23,1 C.⎝⎛⎭⎫32,2D.⎝⎛⎭⎫1,32 解析:选D 设T (x )=f (x )-g (x )=ln x +x -12ax 2-ax +1,由题意知,当x >0时,T (x )有且仅有1个零点.T ′(x )=1x +1-ax -a =x +1x -a (x +1)=(x +1)·⎝⎛⎭⎫1x -a =(x +1)·1x ·(1-ax ). 因为a >0,x >0,所以T (x )在⎝⎛⎭⎫0,1a 上单调递增, 在⎝⎛⎭⎫1a ,+∞上单调递减,如图, 当x →0时,T (x )→-∞,x →+∞时,T (x )→-∞, 所以T ⎝⎛⎭⎫1a =0,即ln 1a +1a -12a -1+1=0, 所以ln 1a +12a=0.因为y =ln 1x +12x 在x >0上单调递减,所以ln 1a +12a =0在a >0上最多有1个零点.当a =12时,ln 1a +12a >0,当a =1时,ln 1a +12a =12>0,当a =32时,ln 1a +12a <0,当a =2时,ln 1a +12a <0,所以a ∈⎝⎛⎭⎫1,32. 二、填空题(本大题共4小题,每小题5分,共20分)13.若函数f (x )=x 2+axx 3是奇函数,则常数a =______.解析:函数f (x )的定义域为(-∞,0)∪(0,+∞), 则由f (x )+f (-x )=0, 得x 2+ax x 3+x 2-ax -x 3=0,即ax =0,则a =0. 答案:014.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤-1,3x -5y +25≥0,x +4y -3≥0,则目标函数z =3x +y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示, 作出直线3x +y =0,平移该直线, 当直线经过点A 时,z 取得最大值.联立⎩⎪⎨⎪⎧x =-1,3x -5y +25=0,解得⎩⎪⎨⎪⎧x =-1,y =225,所以z max =3×(-1)+225=75.答案:7515.在平面直角坐标系xOy 中,与双曲线x 23-y 2=1有相同渐近线,焦点位于x 轴上,且焦点到渐近线距离为2的双曲线的标准方程为________.解析:与双曲线x 23-y 2=1有相同渐近线的双曲线的标准方程可设为x 23-y 2=λ,因为双曲线焦点在x 轴上,故λ>0,又焦点到渐近线的距离为2, 所以λ=4,所求方程为x 212-y 24=1.答案:x 212-y 24=116.如图所示,在△ABC 中,∠ABC 为锐角,AB =2,AC =8,sin ∠ACB =26,若BE =2DE ,S △ADE =423,则sin ∠BAEsin ∠DAE=________.解析:因为在△ABC 中,AB =2,AC =8,sin ∠ACB =26,由正弦定理得AB sin ∠ACB =ACsin ∠ABC ,所以sin ∠ABC =223.又∠ABC 为锐角,所以cos ∠ABC =13.因为BE =2DE ,所以S △ABE =2S △ADE . 又因为S △ADE =423,所以S △ABD =4 2. 因为S △ABD =12×BD ×AB ×sin ∠ABC ,所以BD =6.由余弦定理AD 2=AB 2+BD 2-2AB ×BD ×cos ∠ABD ,可得AD =4 2. 因为S △ABE =12×AB ×AE ×sin ∠BAE ,S △DAE =12×AD ×AE ×sin ∠DAE ,所以sin ∠BAE sin ∠DAE=2×ADAB =4 2.答案:4 2“12+4”限时提速练(二) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.若复数z =a1+i+1为纯虚数,则实数a =( ) A .-2 B .-1 C .1D .2解析:选A 因为复数z =a 1+i +1=a (1-i )(1+i )(1-i )+1=a 2+1-a2i 为纯虚数,所以a 2+1=0,且-a2≠0,解得a =-2.故选A.2.设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪12≤2x < 2,B ={x |ln x ≤0},则A ∩B =( ) A.⎝⎛⎭⎫0,12 B .[-1,0) C.⎣⎡⎭⎫12,1D .[-1,1]解析:选A ∵12≤2x < 2,∴-1≤x <12,∴A =⎩⎨⎧⎭⎬⎫x |-1≤x <12.∵ln x ≤0,∴0<x ≤1,∴B ={x |0<x ≤1},∴A ∩B =⎩⎨⎧⎭⎬⎫x |0<x <12.3.已知函数f (x )=2x (x <0),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是( ) A.12 B.13C.14D.23解析:选B 因为函数y =2x 是R 上的增函数, 所以函数f (x )的值域是(0,1),由几何概型的概率公式得,所求概率P =1-02-(-1)=13.4.已知B 是以线段AC 为直径的圆上的一点(异于点A ,C ),其中|AB |=2,则 AC ―→·AB ―→=( ) A .1 B .2 C .3D .4解析:选D 连接BC ,∵AC 为直径,∴∠ABC =90°,∴AB ⊥BC ,AC ―→在AB ―→上的投影|AC ―→|cos 〈AC ―→,AB ―→〉=|AB ―→|=2, ∴AC ―→·AB ―→=|AC ―→||AB ―→|cos 〈AC ―→,AB ―→〉=4. 5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,则z =2x +y 的最大值为( )A .-3 B.32C .3D .4解析:选C 作出不等式组所表示的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线过点B 时,z =2x +y 取得最大值.由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,所以B (2,-1),故z max =2×2-1=3.6.执行如图所示的程序框图,若输出的s =25,则判断框中可填入的条件是( )A .i ≤4?B .i ≥4?C .i ≤5?D .i ≥5?解析:选C 执行程序框图,i =1,s =100-5=95;i =2,s =95-10=85;i =3,s =85-15=70;i =4,s =70-20=50;i =5,s =50-25=25;i =6,退出循环.此时输出的s =25.结合选项知,选C.7.将函数y =2sin ⎝⎛⎭⎫x +π3cos ⎝⎛⎭⎫x +π3的图象向左平移φ(φ>0)个单位长度,所得图象对应的函数为奇函数,则φ的最小值为( )A.π12 B.π6C.π4D.π3解析:选B 根据题意可得y =sin ⎝⎛⎭⎫2x +2π3,将其图象向左平移φ个单位长度,可得y =sin ⎝⎛⎭⎫2x +2π3+2φ的图象,因为该图象所对应的函数恰为奇函数,所以2π3+2φ=k π(k ∈Z),φ=k π2-π3(k ∈Z),又φ>0,所以当k =1时,φ取得最小值,且φmin =π6,故选B.8.南宋数学家秦九韶早在《数书九章》中就提出了已知三角形的三边求其面积的公式:“以小斜幂,并大斜幂,减中斜幂,余半之,自乘于上.以小斜幂乘大斜幂,减上,余四约之,为实.一为从隅,开平方,得积.”即△ABC 的面积S =14⎣⎡⎦⎤c 2a 2-⎝⎛⎭⎫c 2+a 2-b 222,其中△ABC 的三边分别为a ,b ,c ,且a >b >c ,并举例“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里,里法三百步.欲知为田几何?”则该三角形沙田的面积为( )A .82平方里B .83平方里C .84平方里D .85平方里解析:选C 由题意知三角形沙田的三边长分别为15里、14里、13里,代入三角形的面积公式可得三角形沙田的面积S =14×⎣⎡⎦⎤132×152-⎝⎛⎭⎫132+152-14222=84(平方里).故选C.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6解析:选C 由三视图可知该几何体是由一个半圆柱和两个半球构成的,故该几何体的表面积为2×12×4π×12+2×12×π×12+2×3+12×2π×1×3=8π+6.10.已知f (x )是定义在[-2b,1+b ]上的偶函数,且在[-2b ,0]上为增函数,则f (x -1)≤f (2x )的解集为( ) A.⎣⎡⎦⎤-1,23 B.⎣⎡⎦⎤-1,13 C .[-1,1]D.⎣⎡⎦⎤13,1解析:选B ∵函数f (x )是定义在[-2b,1+b ]上的偶函数, ∴-2b +1+b =0,∴b =1,函数f (x )的定义域为[-2,2], 又函数f (x )在[-2,0]上单调递增,∴函数f (x )在[0,2]上单调递减, ∵f (x -1)≤f (2x ),∴f (|x -1|)≤f (|2x |),∴⎩⎪⎨⎪⎧-2≤x -1≤2,-2≤2x ≤2,|x -1|≥|2x |,解得-1≤x ≤13.11.在各项均为正数的等比数列{a n }中,a 1a 11+2a 5a 9+a 4a 12=81,则1a 6+4a 8的最小值是( )A.73 B .9 C .1D .3解析:选C 因为{a n }为等比数列,所以a 1a 11+2a 5a 9+a 4a 12=a 26+2a 6a 8+a 28=(a 6+a 8)2=81,又因为等比数列{a n }的各项均为正数,所以a 6+a 8=9, 所以1a 6+4a 8=19(a 6+a 8)⎝⎛⎭⎫1a 6+4a 8=195+a 8a 6+4a 6a 8≥19⎝⎛⎭⎫5+2a 8a 6×4a 6a 8=1, 当且仅当a 8a 6=4a 6a 8,a 6+a 8=9,即a 6=3,a 8=6时等号成立,所以1a 6+4a 8的最小值是1.12.过抛物线y =14x 2的焦点F 的直线交抛物线于A ,B 两点,点C 在直线y =-1上,若 △ABC 为正三角形,则其边长为( )A .11B .12C .13D .14解析:选B 由题意可知,焦点F (0,1),易知过焦点F 的直线的斜率存在且不为零,则设该直线方程为y =kx +1(k ≠0), 联立⎩⎪⎨⎪⎧y =14x 2,y =kx +1,消去y ,得x 2-4kx -4=0,设A (x 1,y 1),B (x 2,y 2),∴x 1+x 2=4k ,x 1x 2=-4, 设线段AB 的中点为M ,则M (2k,2k 2+1), |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+k 2)(16k 2+16)=4(1+k 2). 设C (m ,-1),连接MC , ∵△ABC 为等边三角形,∴k MC =2k 2+22k -m =-1k ,m =2k 3+4k ,点C (m ,-1)到直线y =kx +1的距离|MC |= |km +2|1+k 2=32|AB |, ∴|km +2|1+k2=32×4(1+k 2), 即2k 4+4k 2+21+k 2=23(1+k 2), 解得k =±2, ∴|AB |=4(1+k 2)=12.二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =2x +1,则f (1)+f ′(1)=________. 解析:因为f (x )的图象在点M (1,f (1))处的切线方程为y =2x +1,所以f ′(1)=2,又因为点M (1,f (1))也在直线y =2x +1上,所以f (1)=2×1+1=3,所以f (1)+f ′(1)=3+2=5.答案:514.甲、乙、丙三位同学,其中一位是班长,一位是体育委员,一位是学习委员,已知丙比学习委员的年龄大,甲与体育委员的年龄不同,体育委员比乙的年龄小,据此推断班长是________.解析:若甲是班长,由于体育委员比乙的年龄小,故丙是体育委员,乙是学习委员,但这与丙比学习委员的年龄大矛盾,故甲不是班长;若丙是班长,由于体育委员比乙的年龄小,故甲是体育委员,这和甲与体育委员的年龄不同矛盾,故丙不是班长;若乙是班长,由于甲与体育委员的年龄不同,故甲是学习委员,丙是体育委员,此时其他条件均成立,故乙是班长.答案:乙15.已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点,定点A 为双曲线虚轴的一个端点,过F ,A 两点的直线与双曲线的一条渐近线在y 轴右侧的交点为B ,若AB ―→=3FA ―→,则此双曲线的离心率为________.解析:由F (-c,0),A (0,b ), 得直线AF 的方程为y =bc x +b .根据题意知,直线AF 与渐近线y =ba x 相交,联立得⎩⎨⎧y =bcx +b ,y =ba x ,消去x 得,y B =bc c -a. 由AB ―→=3FA ―→,得y B =4b ,所以bcc -a=4b ,化简得3c =4a , 所以离心率e =43.答案:4316.一个直角三角形的三个顶点分别在底面边长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为________.解析:记该直角三角形为△ABC ,且AC 为斜边. 法一:如图,不妨令点A 与正三棱柱的一个顶点重合, 取AC 的中点O ,连接BO , ∴BO =12AC ,∴AC 取得最小值即BO 取得最小值,即点B 到平面ADEF 的距离. ∵△AHD 是边长为2的正三角形, ∴点B 到平面ADEF 的距离为3, ∴AC 的最小值为2 3.法二:如图,不妨令点A 与正三棱柱的一个顶点重合, 设BH =m (m ≥0),CD =n (n ≥0),∴AB 2=4+m 2,BC 2=4+(n -m )2,AC 2=4+n 2. ∵AC 为Rt △ABC 的斜边, ∴AB 2+BC 2=AC 2,即4+m 2+4+(n -m )2=4+n 2, ∴m 2-nm +2=0,∴m ≠0,n =m 2+2m =m +2m ,∴AC 2=4+⎝⎛⎭⎫m +2m 2≥4+8=12,当且仅当m =2m,即m =2时等号成立,∴AC ≥23,故AC 的最小值为2 3. 答案:2 3“12+4”限时提速练(三) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.已知a ,b ∈R ,复数a +b i =2i1-i,则a +b =( ) A .2 B .1 C .0 D .-2解析:选C 因为a +b i =2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=-1+i ,所以a =-1,b =1,a +b =0.2.设集合A ={x |1<x <2},B ={x |x <a },若A ∩B =A ,则a 的取值范围是( ) A .(-∞,2] B .(-∞,1] C .[1,+∞)D .[2,+∞)解析:选D 由A ∩B =A ,可得A ⊆B ,又A ={x |1<x <2},B ={x |x <a },所以a ≥2. 3.若点⎝⎛⎭⎫sin 5π6,cos 5π6在角α的终边上,则sin α=( ) A.32B.12C .-32D .-12解析:选C 因为sin5π6=sin ⎝⎛⎭⎫π-π6=sin π6=12,cos 5π6=cos ⎝⎛⎭⎫π-π6=-cos π6= -32, 所以点⎝⎛⎭⎫12,-32在角α的终边上,且该点到角α顶点的距离r =⎝⎛⎭⎫122+⎝⎛⎭⎫-322=1, 所以sin α=-32. 4.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.搜索指数越大,表示网民搜索该关键词的次数越多,对该关键词相关的信息关注度也越高.如图是2017年9月到2018年2月这半年来,某个关键词的搜索指数变化的统计图.根据该统计图判断,下列结论正确的是( )A .这半年来,网民对该关键词相关的信息关注度呈周期性变化B .这半年来,网民对该关键词相关的信息关注度不断减弱C .从该关键词的搜索指数来看,2017年10月的方差小于11月的方差D .从该关键词的搜索指数来看,2017年12月的平均值大于2018年1月的平均值解析:选D 由统计图可知,这半年来,该关键词的搜索指数变化的周期性并不显著,排除A ;由统计图可知,这半年来,该关键词的搜索指数的整体减弱趋势不显著,排除B ;由统计图可知,2017年10月该关键词的搜索指数波动较大,11月的波动较小,所以2017年10月的方差大于11月的方差,排除C ;由统计图可知,2017年12月该关键词的搜索指数大多高于10 000,该月平均值大于10 000,2018年1月该关键词的搜索指数大多低于10 000,该月平均值小于10 000,故选D.5.某几何体的三视图如图所示,其中正视图是等腰直角三角形,侧视图是边长为2的等边三角形,则该几何体的体积等于( )A.33B.233C. 3D .2解析:选D 由三视图知,该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图,该该四棱锥的体积V =13S四棱锥的高h =3,底面ABCD 是边长分别为2,3的矩形,所以四边形ABCD×h =13×2×3×3=2.故选D.6.在如图所示的程序框图中,如果输入a =1,b =1,则输出的S =( )A .7B .20C .22D .54解析:选B 执行程序,a =1,b =1,S =0,k =0,k ≤4,S =2,a =2,b =3;k =2,k ≤4,S =7,a =5,b =8;k =4,k ≤4,S =20,a =13,b =21;k =6,不满足k ≤4,退出循环.则输出的S =20.7.已知直线l :y =3x +m 与圆C :x 2+(y -3)2=6相交于A ,B 两点,若∠ACB =120°,则实数m 的值为( )A .3+6或3- 6B .3+26或3-2 6C .9或-3D .8或-2解析:选A 由题知圆C 的圆心为C (0,3),半径为6,取AB 的中点为D ,连接CD ,则CD ⊥AB ,在△ACD 中,|AC |=6,∠ACD =60°,所以|CD |=62,由点到直线的距离公式得|-3+m |(3)2+1=62,解得m =3±6. 8.若直线x =a π(0<a <1)与函数y =tan x 的图象无公共点,则不等式tan x ≥2a 的解集为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x <k π+π2,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π4≤x <k π+π2,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x <k π+π2,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π-π4≤x ≤k π+π4,k ∈Z 解析:选B 由正切函数的图象知,直线x =a π(0<a <1)与函数y =tan x 的图象没有公共点时,a =12,所以tan x ≥2a ,即tan x ≥1,其解集是⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π4≤x <k π+π2,k ∈Z . 9.已知S n 为数列{a n }的前n 项和,若a 1=2且S n +1=2S n ,设b n =log 2a n ,则1b 1b 2+1b 2b 3+…+1b 2 017b 2 018的值是( )A.4 0352 018 B.4 0332 017C.2 0172 018D.2 0162 017解析:选B 由S n +1=2S n 可知,数列{S n }是首项为S 1=a 1=2,公比为2的等比数列,所以S n =2n . 当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,所以b n =log 2a n =⎩⎪⎨⎪⎧1,n =1,n -1,n ≥2.当n ≥2时,1b n b n +1=1(n -1)n =1n -1-1n , 所以1b 1b 2+1b 2b 3+…+1b 2 017b 2 018=1+1-12+12-13+…+12 016-12 017=2-12 017=4 0332 017.10.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +a ,x <1,ln x +1,x ≥1,若方程f (x )=2有两个解,则实数a 的取值范围是( )A .(-∞,2)B .(-∞,2]C .(-∞,5)D .(-∞,5]解析:选C 法一:当x ≥1时,由ln x +1=2,得x =e.由方程f (x )=2有两个解知,当x <1时,方程x 2-4x +a =2有唯一解.令g (x )=x 2-4x +a -2=(x -2)2+a -6,则g (x )在(-∞,1)上单调递减,所以当x <1时,g (x )=0有唯一解,则g (1)<0,得a <5,故选C.法二:随着a 的变化引起y =f (x )(x <1)的图象上下平移,作出函数y =f (x )的大致图象如图所示,由图象知,要使f (x )=2有两个解,则 a -3<2,得a <5.11.已知F 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左焦点,经过原点O 的直线l 与椭圆E 交于P ,Q 两点,若|PF |=2|Q F |,且∠PF Q =120°,则椭圆E 的离心率为( )A.13 B.12C.33D.22解析:选C 设F 1是椭圆E 的右焦点,如图,连接PF 1,Q F 1.根据对称性,线段FF 1与线段P Q 在点O 处互相平分,所以四边形PF Q F 1是平行四边形,|F Q |=|PF 1|,∠FPF 1=180°-∠PF Q =60°,根据椭圆的定义得|PF |+|PF 1|=2a ,又|PF |=2|Q F |, 所以|PF 1|=23a ,|PF |=43a ,而|F 1F |=2c ,在△F 1PF 中,由余弦定理,得(2c )2=⎝⎛⎭⎫23a 2+⎝⎛⎭⎫43a 2-2×23a ×43a ×cos 60°,化简得c 2a 2=13, 所以椭圆E 的离心率e =c a =33.12.已知函数f (x )=e xx 2+2k ln x -kx ,若x =2是函数f (x )的唯一极值点,则实数k 的取值范围是( )A.⎝⎛⎦⎤-∞,e 24 B.⎝⎛⎦⎤-∞,e2 C .(0,2] D .[2,+∞)解析:选A f ′(x )=e x (x -2)x 3+k (2-x )x =(x -2)(e x -kx 2)x 3(x >0),令f ′(x )=0,得x =2或e x =kx 2(x >0).由x =2是函数f (x )的唯一极值点知e x ≥kx 2(x >0)恒成立或e x ≤kx 2(x >0)恒成立, 由y =e x (x >0)和y =kx 2(x >0)的图象可知,只能是e x ≥kx 2(x >0)恒成立.当x >0时,由e x ≥kx 2,得k ≤exx 2.设g (x )=e xx2,则k ≤g (x )min .由g ′(x )=e x (x -2)x 3,得当x >2时,g ′(x )>0,g (x )单调递增,当0<x <2时,g ′(x )<0,g (x )单调递减,所以g (x )min =g (2)=e 24,所以k ≤e 24.二、填空题(本大题共4小题,每小题5分,共20分)13.已知向量a ,b 满足a ⊥b ,|a |=1,|2a +b |=22,则|b |=________. 解析:法一:因为|2a +b |=22, 所以4a 2+4a ·b +b 2=8. 因为a ⊥b ,所以a ·b =0.又|a |=1,所以4×1+4×0+b 2=8,所以|b |=2. 法二:如图,作出OA ―→=2a ,OB ―→=b ,OC ―→=2a +b , 因为a ⊥b ,所以OA ⊥OB ,因为|a |=1,|2a +b |=22, 所以|OA ―→|=2,|OC ―→|=22, 所以|OB ―→|=|b |=2.法三:因为a ⊥b ,所以以O 为坐标原点,以a ,b 的方向分别为x 轴,y 轴的正方向建立平面直角坐标系(图略),因为|a |=1,所以a =(1,0),设b =(0,y )(y >0),则2a +b =(2,y ),因为|2a +b |=22,所以4+y 2=8,解得y =2,所以|b |=2.答案:214.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +3≥0,x -y +4≥0,2x +y -4≤0,则z =x +3y 的最大值为________.解析:作出不等式组所表示的可行域如图中阴影部分所示,作出直线x +3y =0,并平移该直线,当直线经过点A (0,4)时,目标函数z =x +3y 取得最大值,且z max =12.答案:1215.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos C =14,c =3,且a cos A =b cos B ,则△ABC的面积等于________.解析:由a cos A =b cos B 及正弦定理,得sin A cos A =sin B cos B ,即tan A =tan B ,所以A =B ,即a =b .由cos C =14且c=3,结合余弦定理a 2+b 2-2ab cos C =c 2,得a =b =6,又sin C =1-cos 2 C =154,所以△ABC 的面积S =12ab sin C =3154. 答案:315416.如图,等腰三角形PAB 所在平面为α,PA ⊥PB ,AB =4,C ,D 分别为PA ,AB 的中点,G 为CD 的中点.平面α内经过点G 的直线l 将△PAB 分成两部分,把点P 所在的部分沿直线l 翻折,使点P 到达点P ′(P ′∉平面α).若点P ′在平面α内的射影H 恰好在翻折前的线段AB 上,则线段P ′H 的长度的取值范围是________.解析:在等腰三角形PAB 中,∵PA ⊥PB ,AB =4, ∴PA =PB =2 2.∵C ,D 分别为PA ,AB 的中点, ∴PC =CD =2且PC ⊥CD . 连接PG ,P ′G ,∵G 为CD 的中点,∴PG =P ′G =102. 连接HG ,∵点P ′在平面α内的射影H 恰好在翻折前的线段AB 上, ∴P ′H ⊥平面α,∴P ′H ⊥HG ,∴HG <P ′G =102. 易知点G 到线段AB 的距离为12,∴HG ≥12,∴12≤HG <102.又P ′H =⎝⎛⎭⎫1022-HG 2, ∴0<P ′H ≤32.答案:⎝⎛⎦⎤0,32“12+4”限时提速练(四) (满分80分,限时45分钟)一、选择题(本大题共12小题,每小题5分,共60分) 1.复数z =2+i1-i的共轭复数对应的点在复平面内位于( ) A .第一象限B .第二象限C .第三象限D .第四象限解析:选D 复数z =2+i 1-i =(2+i )(1+i )(1-i )(1+i )=1+3i 2=12+32i ,则复数z 的共轭复数为z =12-32i ,所以复数z 的共轭复数对应的点的坐标是⎝⎛⎭⎫12,-32,该点位于第四象限. 2.已知集合M =⎩⎨⎧⎭⎬⎫x |2x ≥1,N ={}y |y =1-x 2 ,则M ∩N =( )A .(-∞,2]B .(0,1]C .[0,1]D .(0,2]解析:选B 由2x ≥1得x -2x ≤0, 解得0<x ≤2,则M ={x |0<x ≤2}; 函数y =1-x 2的值域是(-∞,1],则N ={y |y ≤1},因此M ∩N ={x |0<x ≤1}=(0,1].3.设等差数列{a n }的前n 项和为S n ,且a 2+a 7+a 12=24,则S 13=( ) A .52 B .78 C .104D .208解析:选C 依题意得3a 7=24,a 7=8,S 13=13(a 1+a 13)2=13a 7=104,选C. 4.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )= -2x ,则f (1)+f (4)等于( )A.32 B .-32C .-1D .1解析:选B 由f (x +4)=f (x )知f (x )是周期为4的周期函数, 又f (x )是定义在R 上的偶函数,故f (4)=f (0)=-1,f (1)=f (-1),又-1∈[-2,0],所以f (-1)=-2-1=-12,所以f (1)=-12,f (1)+f (4)=-32.5.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量CD ―→在AB ―→方向上的投影是( ) A.322B .-322C .3 5D .-3 5解析:选C 依题意得,AB ―→=(2,1),CD ―→=(5,5),AB ―→·CD ―→=(2,1)·(5,5)=15,|AB ―→|=5, 因此向量CD ―→在AB ―→方向上的投影是AB ―→·CD ―→|AB ―→|=155=3 5. 6.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是( )(注:下表为随机数表的第8行和第9行)⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79第8行⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 42 0744 38 15 51 00 13 42 99 66 02 79 54第9行 A .07 B .25 C .42D .52解析:选D 依题意得,依次选出的个体分别是12,34,29,56,07,52,…因此选出的第6个个体是52.7.在平面区域{(x ,y )|0≤x ≤1,1≤y ≤2}内随机投入一点P ,则点P 的坐标(x ,y )满足y ≤2x 的概率为( ) A .34 B.23C .12D.14解析:选D 作出不等式表示的平面区域如图所示, 故所求概率P (y ≤2x)=12×12×11×1=14.8.设三棱锥的三条侧棱两两互相垂直,且长度分别为2,23,4,则其外接球的表面积为( ) A .48π B .32π C .20πD .12π解析:选B 依题意,设题中的三棱锥外接球的半径为R ,可将题中的三棱锥补形成一个长方体,则R =1222+(23)2+42=22,因此三棱锥外接球的表面积为4πR 2=32π.9.已知点P ,A ,B 在双曲线x 2a 2-y 2b 2=1上,直线AB 过坐标原点,且直线PA ,PB 的斜率之积为13,则双曲线的离心率为( )A.233B.153 C .2D.102解析:选A 根据双曲线的对称性可知点A ,B 关于原点对称,设A (x 1,y 1),P (x 2,y 2),则B (-x 1,-y 1),所以⎩⎨⎧x 21a 2-y 21b 2=1,x 22a 2-y22b 2=1,两式相减得x 21-x 22a 2=y 21-y 22b 2,即y 21-y 22x 21-x 22=b 2a2,因为直线PA ,PB 的斜率之积为13,所以k PA ·k PB =y 1-y 2 x 1-x 2·-y 1-y 2-x 1-x 2=y 21-y 22 x 21-x 22=b 2a 2=13,所以双曲线的离心率为e =1+b 2a 2= 1+13=233. 10.将函数f (x )=sin(2x +φ)⎝⎛⎭⎫|φ|<π2的图象向左平移π6个单位长度后的图象关于原点对称,则函数f (x )在⎣⎡⎦⎤0,π2上的最小值为( )A.32B.12C .-12D .-32解析:选D 依题意得,函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+φ=sin ⎝⎛⎭⎫2x +π3+φ是奇函数,则sin ⎝⎛⎭⎫π3+φ=0,又|φ|<π2,因此π3+φ=0,φ=-π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3.当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3,所以f (x )=sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1,所以f (x )=sin ⎝⎛⎭⎫2x -π3在⎣⎡⎦⎤0,π2上的最小值为-32. 11.某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,则其俯视图中椭圆的离心率为( )A .12 B.24 C .22D.32解析:选C 依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-⎝⎛⎭⎫a 2a 2=22. 12.已知函数f (x )=x 3-3x ,则方程f [f (x )]=1的实根的个数是( ) A .9 B .7 C .5D .3解析:选A 依题意得f ′(x )=3(x +1)(x -1), 当x <-1或x>1时,f ′(x )>0; 当-1<x <1时,f ′(x )<0.所以函数f (x )在区间(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减,且f(-1)=f (2)=2,f (1)=-2,f (±3)=f (0)=0.在平面直角坐标系内画出直线y =1与函数y =f(x )的图象(图略),结合图象可知,它们共有三个不同的交点, 记这三个交点的横坐标由小到大依次为x 1,x 2,x 3, 则-3<x 1<-1<x 2<0,3<x 3<2.再画出直线y =x 1,y =x 2,y =x 3,结合图象可知,直线y =x 1,y =x 2,y =x 3与函数y =f (x )的图象的交点个数均为3,且这些交点的横坐标各不相同,所以方程f [f (x )]=1的实根个数是9.二、填空题(本大题共4小题,每小题5分,共20分)13.已知f (x )是定义在R 上的奇函数,且当x <0时,f (x )=2x ,则f (log 49)=________.解析:因为当x <0时,f (x )=2x ,令x >0,则-x <0,故f (-x )=2-x ,又因为f (x )是定义在R 上的奇函数,所以当x >0时,f (x )=-2-x ,又因为log 49=log 23>0,所以f (log 49)=f (log 23)=-2-log 23=-2log 213=-13. 答案:-1314.若α∈⎝⎛⎭⎫0,π2,cos ⎝⎛⎭⎫π4-α=22cos 2α,则sin 2α=________. 解析:由已知得22(cos α+sin α)=22(cos α-sin α)·(cos α+sin α), 所以cos α+sin α=0或cos α-sin α=14, 由cos α+sin α=0得tan α=-1,因为α∈⎝⎛⎭⎫0,π2,所以cos α+sin α=0不满足条件; 由cos α-sin α=14, 两边平方得1-sin 2α=116,所以sin 2α=1516. 答案:151615.已知点A 是抛物线y 2=2px (p >0)上一点,F 为其焦点,以F 为圆心,|FA |为半径的圆交准线于B ,C 两点,若△FBC 为正三角形,且△ABC 的面积为1283,则抛物线的方程为________. 解析:如图,可得|BF |=2p 3,则由抛物线的定义知点A 到准线的距离也为2p 3,又△ABC 的面积为1283,所以12×2p 3×2p 3=1283,解得p =8,故抛物线的方程为y 2=16x .答案:y 2=16x16.在数列{a n }和{b n }中,a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,a 1=1,b 1=1.设c n =1a n +1b n,则数列{c n }的前2 018项和为________.解析:由已知a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n ,得a n +1+b n +1=2(a n +b n ),所以a n +1+b n +1a n +b n=2,所以数列{a n +b n }是首项为2,公比为2的等比数列,即a n +b n =2n , 将a n +1=a n +b n +a 2n +b 2n ,b n +1=a n +b n -a 2n +b 2n 相乘,得a n +1b n +1a n b n=2, 所以数列{a n b n }是首项为1,公比为2的等比数列,所以a n b n =2n -1,因为c n =1a n +1b n, 所以c n =a n +b n a n b n =2n2n -1=2, 数列{c n }的前2 018项和为2×2 018=4 036. 答案:4 036。