高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.1)word学案
2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案
2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word 学案 [学习目标] 1.了解圆锥曲线的统一定义.2.能用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题.[知识链接]1.椭圆上一点到准线距离与它到对应焦点距离之比等于多少? 答:1e. 2.动点M 到一个定点F 的距离与到一条定直线l 的距离之比为定值的轨迹一定是圆锥曲线吗? 答:当F ∉l 时,动点M 轨迹是圆锥曲线.当F ∈l 时,动点M 轨迹是过F 且与l 垂直的直线. [预习导引]1.圆锥曲线的统一定义平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹. 0<e <1时,它表示椭圆;e >1时,它表示双曲线;e =1时,它表示抛物线.2.对于椭圆x 2a 2+y 2b 2=1 (a >b >0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)中,与F (c,0)对应的准线方程是l :x =a 2c ,与F ′(-c ,0)对应的准线方程是l ′:x =-a 2c;如果焦点在y 轴上,则两条准线方程为y =±a 2c.要点一 统一定义的简单应用例1 椭圆x 225+y 29=1上有一点P ,它到左准线的距离等于2.5,那么,P 到右焦点的距离为________.答案 8解析 如图所示,PF 1+PF 2=2a =10,e =c a =45, 而PF 12.5=e =45,∴PF 1=2,∴PF 2=10-PF 1=10-2=8.规律方法 椭圆的两个定义从不同角度反映了椭圆的特征,解题时要灵活运用.一般地,如果遇到有动点到两定点距离和的问题,应自然联想到椭圆的定义;如果遇到有动点到一定点及一定直线距离的问题,应自然联想到统一定义;若两者都涉及,则要综合运用两个定义才行.跟踪演练1 已知椭圆x 24b 2+y 2b 2=1上一点P 到右焦点F 2的距离为b (b >1),求P 到左准线的距离.解 方法一 由x 24b 2+y 2b 2=1,得a =2b ,c =3b ,e =32.由椭圆第一定义, PF 1+PF 2=2a =4b ,得PF 1=4b -PF 2=4b -b =3b .由椭圆第二定义,PF 1d 1=e ,d 1为P 到左准线的距离, ∴d 1=PF 1e =23b ,即P 到左准线的距离为23b . 方法二 ∵PF 2d 2=e ,d 2为P 到右准线的距离. e =c a =32,∴d 2=PF 2e =233b . 又椭圆的两准线的距离为2·a 2c =833b , ∴P 到左准线的距离为833b -233b =23b . 要点二 应用统一定义转化求最值例2 已知椭圆x 28+y 26=1内有一点P (1,-1),F 是椭圆的右焦点,在椭圆上求一点M ,使MP +2MF 之值为最小.解 设d 为M 到右准线的距离.∵e =c a =12,MF d =12, ∴MF 12=d ,即d =2MF (如图). 故MP +2MF =MP +MM ′.显然,当P 、M 、M ′三点共线时,所求的值为最小,从而求得点M 的坐标为(2315,-1).规律方法 本例中,利用统一定义,将椭圆上点M 到焦点F 的距离转化为到准线的距离,再利用图形的形象直观,使问题得到简捷的解决.跟踪演练2 已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),试在双曲线上求一点M ,使MA +35MF 的值最小,并求这个最小值. 解 过M 作MN 垂直于双曲线的右准线l 于N ,由第二定义可知MN =MF e(如图). 又a =3,b =4,c =5,e =53, ∴MN =35MF ,∴MA +35MF =MA +MN ,显然当M 、N 、A 三点共线时MA +MN =AN 为最小,即MA +35MF 取得最小值,此时AN =9-a 2c =9-95=365,∴MA +35MF 的最小值为365,此时点M (352,2). 要点三 圆锥曲线统一定义的综合应用例3 已知A 、B 是椭圆x 2a 2+y 2925a 2=1上的点,F 2是右焦点,且AF 2+BF 2=85a ,AB 的中点N 到左准线的距离等于32,求此椭圆方程. 解 设F 1为左焦点,则根据椭圆定义有:AF 1+BF 1=2a -AF 2+2a -BF 2=4a -(AF 2+BF 2)=4a -85a =125a . 再设A 、B 、N 三点到左准线距离分别为d 1,d 2,d 3,由梯形中位线定理有d 1+d 2=2d 3=3,而已知b 2=925a 2, ∴c 2=1625a 2,∴离心率e =45, 由统一定义AF 1=ed 1,BF 1=ed 2,∴AF 1+BF 1=125a =e (d 1+d 2)=125,∴a =1, ∴椭圆方程为x 2+y 2925=1. 规律方法 在圆锥曲线有关问题中,充分利用圆锥曲线的共同特征,将曲线上的点到准线的距离与到焦点的距离相互转化是一种常用方法.跟踪演练3 设P (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,F 1为其左焦点. (1)求PF 1的最小值和最大值;(2)在椭圆x 225+y 25=1上求一点P ,使这点与椭圆两焦点的连线互相垂直. 解 (1)对应于F 1的准线方程为x =-a 2c, 根据统一定义:PF 1x 0+a 2c=e , ∴PF 1=a +ex 0.又-a ≤x 0≤a ,∴当x 0=-a 时,(PF 1)min =a +c a×(-a )=a -c ; 当x 0=a 时,(PF 1)max =a +c a·a =a +c . (2)∵a 2=25,b 2=5,∴c 2=20,e 2=45. ∵PF 21+PF 22=F 1F 22,∴(a +ex 0)2+(a -ex 0)2=4c 2. 将数据代入得25+45x 20=40.∴x 0=±532. 代入椭圆方程得P 点的坐标为⎝⎛⎭⎫532,52,⎝⎛⎭⎫532,-52,⎝⎛⎭⎫-532,52,⎝⎛⎭⎫-532,-52.1.已知方程(1+k )x 2-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 -1<k <1解析 由题意得⎩⎪⎨⎪⎧ 1+k >0,1-k >0,解得⎩⎪⎨⎪⎧ k >-1,k <1,即-1<k <1. 2.已知点F 1,F 2分别是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF→1+PF →2|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF →1=(-1-x 0,-y 0),PF →2=(1-x 0,-y 0),∴PF →1+PF →2=(-2x 0,-2y 0),∴|PF →1+PF →2|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF →1+PF →2|取最小值为2.3.已知F 1、F 2是椭圆的两个焦点.满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案 (0,22) 解析 ∵MF 1→·MF 2→=0,∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径,由题意知椭圆上的点在圆x 2+y 2=c 2外部,设点P 为椭圆上任意一点,则OP >c 恒成立,由椭圆性质知OP ≥b ,其中b 为椭圆短半轴长,∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2,∴(c a )2<12,∴e =c a <22. 又∵0<e <1,∴0<e <22. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0),有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是________.答案 12解析 由题意,得⎩⎪⎨⎪⎧ a 2-b 2=c 2, ①m 2+n 2=c 2,②c 2=am ,③2n 2=2m 2+c 2,④由②④可得m 2+n 2=2n 2-2m 2,即n 2=3m 2,⑤⑤代入②得4m 2=c 2⇒c =2m ,⑥⑥代入③得4m 2=am ⇒a =4m .所以椭圆的离心率e =c a =12.1.三种圆锥曲线的共同特征是曲线上的点到定点的距离与它到定直线距离的比是常数.2.利用圆锥曲线的统一定义可实现曲线上的点到焦点的距离与到准线距离的相互转化.一、基础达标1.若直线ax -y +1=0经过抛物线y 2=4x 的焦点,则实数a =______.答案 -1解析 焦点为(1,0),代入直线方程,可得a =-1.2.已知椭圆的准线方程为y =±4,离心率为12,则椭圆的标准方程为____________. 答案 x 23+y 24=1 解析 由⎩⎨⎧ a 2c =4,c a =12,解得⎩⎪⎨⎪⎧ a =2,c =1. 所以b 2=a 2-c 2=3,所以椭圆的标准方程为x 23+y 24=1. 3.双曲线3x 2-y 2=9,P 是双曲线上一点,则P 点到右焦点的距离与P 点到右准线的距离的比值为________.答案 2解析 由统一定义,所求距离之比即为双曲线的离心率.双曲线方程可化为x 23-y 29=1, 得a 2=3,b 2=9,c 2=a 2+b 2=12,所以e =c a =123=2. 4.椭圆x 225+y 216=1上一点P 到左焦点F 1的距离为3,则点P 到左准线的距离为________. 答案 5解析 依题意e =35,所以点P 到左准线的距离d =PF 1e=5. 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,右准线方程为x =33,则双曲线方程为__________.答案 x 2-y 22=1 解析 由⎩⎨⎧c a =3,a 2c =33,得⎩⎪⎨⎪⎧a =1,c =3,所以b 2=3-1=2. 所以双曲线方程为x 2-y 22=1. 6.已知抛物线y 2=2px 的准线与双曲线x 2-y 2=2的左准线重合,则抛物线的焦点坐标为________.答案 (1,0)解析 双曲线的左准线为x =-1,抛物线的准线为x =-p 2,所以p 2=1,所以p =2. 故抛物线的焦点坐标为(1,0).7.已知双曲线的渐近线方程为3x ±4y =0,一条准线方程为y =95,求该双曲线的标准方程. 解 由已知可设双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0). 由题意有⎩⎨⎧a 2c =95,ab =34,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=9,b 2=16. 所以所求双曲线方程为y 29-x 216=1. 二、能力提升8.已知点P 在椭圆x 216+y 225=1上,F 1、F 2是椭圆的上、下焦点,M 是PF 1的中点,OM =4,则点P 到下准线的距离为________.答案 403解析 因为OM 是△F 1F 2P 的中位线,所以PF 2=2OM =8.又e =35,所以P 到下准线的距离d =PF 2e =8×53=403. 9.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)上横坐标为3a 2的点到右焦点的距离大于它到左准线的距离,则双曲线的离心率的取值范围是________.答案 (2,+∞)解析 由已知得(3a 2-a 2c )e >3a 2+a 2c,即3c 2>5ac +2a 2, 所以3e 2-5e -2>0,解得e >2或e <-13(舍去). 10.在给定的椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应的准线的距离为1,则椭圆的离心率为________.答案 22解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0), 则右焦点F (c,0),右准线l :x =a 2c. 把x =c 代入椭圆的方程得y 2=b 2(1-c 2a 2)=b 4a 2,即y =±b 2a. 依题设知2b 2a =2且a 2c -c =b 2c=1, 所以e =c a =b 2a ·c b 2=22×1=22. 11.已知双曲线过点(3,-2),且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.解 (1)椭圆的焦点为(5,0),(-5,0),它也是双曲线的焦点.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). 则由题设得⎩⎪⎨⎪⎧ 9a 2-4b 2=1,a 2+b 2=5,解得⎩⎪⎨⎪⎧a 2=3,b 2=2. 所以双曲线的标准方程为x 23-y 22=1. (2)由(1)可知双曲线的右准线为x =a 2c =355. 它也是抛物线的准线,所以p 2=355, 故抛物线的标准方程为y 2=-1255x . 12.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,点F 2到右准线l 的距离为 2.(1)求a 、b 的值;(2)设M 、N 是l 上的两个动点,F 1M →·F 2N →=0,证明:当|MN →|取最小值时,F 2F 1→+F 2M →+F 2N →=0.(1)解 因为e =c a ,F 2到l 的距离d =a 2c-c , 所以由题设得⎩⎨⎧ c a =22,a 2c -c =2,解得c =2,a =2.由b 2=a 2-c 2=2,得b = 2.故a =2,b = 2.(2)证明 由c =2,a =2得F 1(-2,0),F 2(2,0),l 的方程为x =22, 故可设M (22,y 1),N (22,y 2).由F 1M →·F 2N →=0知(22+2,y 1)·(22-2,y 2)=0,得y 1y 2=-6,所以y 1y 2≠0,y 2=-6y 1. |MN →|=|y 1-y 2|=|y 1+6y 1|=|y 1|+6|y 1|≥26, 当且仅当y 1=±6时,上式取等号,此时y 2=-y 1,所以,F 2F 1→+F 2M →+F 2N →=(-22,0)+(2,y 1)+(2,y 2)=(0,y 1+y 2)=0.三、探究与创新13.如图所示,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2作垂直于x 轴的直线与椭圆的一个交点为B ,且F 1B +F 2B =10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:F 2A 、F 2B 、F 2C 成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标.解 (1)由椭圆定义及条件知,2a =F 1B +F 2B =10,得a =5,又c =4,所以b =a 2-c 2=3.故椭圆方程为x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得F 2B =y B =95. 因为椭圆右准线方程为x =254,离心率为45, 根据椭圆定义,有F 2A =45⎝⎛⎭⎫254-x 1,F 2C =45⎝⎛⎭⎫254-x 2,由F 2A 、F 2B 、F 2C 成等差数列,得 45⎝⎛⎭⎫254-x 1+45⎝⎛⎭⎫254-x 2=2×95,由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0),则x 0=x 1+x 22=4.。
苏教版高中数学选修2-1第2章 圆锥曲线与方程.docx
第2章 圆锥曲线与方程§2.1 圆锥曲线 课时目标 1.理解三种圆锥曲线的定义.2.能根据圆锥曲线的定义判断轨迹的形状.1.圆锥面可看成一条直线绕着与它相交的另一条直线l(两条直线不互相垂直)旋转一周所形成的曲面.其中直线l 叫做圆锥面的轴.2.圆锥面的截线的形状在两个对顶的圆锥面中,若圆锥面的母线与轴所成的角为θ,不过圆锥顶点的截面与轴所成的角为α,则α=π2时,截线的形状是圆;当θ<α<π2时,截线的形状是椭圆;0≤α≤θ时,截线的形状是双曲线;当α=θ时,截线的形状是抛物线.3.椭圆的定义平面内到______________________________等于常数(大于F 1F 2)的点的轨迹叫做椭圆,两个定点F 1,F 2叫做椭圆的________.两焦点间的距离叫做椭圆的________.4.双曲线的定义平面内到____________________________________________等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,两个定点F 1,F 2叫做双曲线的________,两焦点间的距离叫做双曲线的________.5.抛物线的定义平面内__________________________________________________________的轨迹叫做抛物线,________叫做抛物线的焦点,__________叫做抛物线的准线.6.椭圆、双曲线、抛物线统称为____________.一、填空题1.已知A ⎝⎛⎭⎫-12,0,B 是圆F :⎝⎛⎭⎫x -122+y 2=4 (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹为________.2.方程5(x +2)2+(y -1)2=|3x +4y -12|所表示的曲线是________.3.F 1、F 2是椭圆的两个焦点,M 是椭圆上任一点,从焦点F 2向△F 1MF 2顶点M 的外角平分线引垂线,垂足为P ,延长F 2P 交F 1M 的延长线于G ,则P 点的轨迹为__________(写出所有正确的序号).①圆;②椭圆;③双曲线;④抛物线.4.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹是____________.5.一圆形纸片的圆心为O ,点Q 是圆内异于O 点的一定点,点A 是圆周上一点,把纸片折叠使点A 与点Q 重合,然后抹平纸片,折痕CD 与OA 交于P 点.当点A 运动时点P 的轨迹是________.6.若点P 到F(4,0)的距离比它到直线x +5=0的距离小1,则点P 的轨迹表示的曲线是________.7.已知两点F 1(-5,0),F 2(5,0),到它们的距离的差的绝对值是6的点M 的轨迹是__________.8.一动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹为______________.二、解答题9.已知圆A :(x +3)2+y 2=100,圆A 内一定点B(3,0),动圆P 过B 点且与圆A 内切,求证:圆心P 的轨迹是椭圆.10.已知△ABC 中,BC =2,且sin B -sin C =12sin A ,求△ABC 的顶点A 的轨迹.能力提升11.如图所示,在正方体ABCD—A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是________(写出正确的所有序号).①直线;②圆;③双曲线;④抛物线.12.如图所示,已知点P为圆R:(x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.1.椭圆定义中,常数>F 1F 2不可忽视,若常数<F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是线段F 1F 2.2.双曲线定义中,若常数>F 1F 2,则这样的点不存在;若常数=F 1F 2,则动点的轨迹是以F 1、F 2为端点的两条射线.3.抛物线定义中F ∉l ,若F ∈l ,则点的轨迹是经过点F ,且垂直于l 的直线. 第2章 圆锥曲线与方程§2.1 圆锥曲线知识梳理3.两个定点F 1,F 2的距离的和 焦点 焦距4.两个定点F 1,F 2距离的差的绝对值 焦点 焦距5.到一个定点F 和一条定直线l(F 不在l 上)的距离相等的点 定点F 定直线l6.圆锥曲线作业设计1.椭圆解析 由已知,得PA =PB ,PF +BP =2,∴PA +PF =2,且PA +PF>AF ,即动点P 的轨迹是以A 、F 为焦点的椭圆.2.抛物线解析 由题意知(x +2)2+(y -1)2=|3x +4y -12|5. 左侧表示(x ,y)到定点(-2,1)的距离,右侧表示(x ,y)到定直线3x +4y -12=0的距离,故动点轨迹为抛物线.3.①解析∵∠F 2MP =∠GMP ,且F 2P ⊥MP ,∴F 2P =GP ,MG =MF 2.取F 1F 2中点O ,连结OP ,则OP 为△GF 1F 2的中位线.∴OP =12F 1G =12(F 1M +MG) =12(F 1M +MF 2). 又M 在椭圆上,∴MF 1+MF 2=常数,设常数为2a ,则OP =a ,即P 在以F 1F 2的中点为圆心,a 为半径的圆上.4.椭圆5.椭圆6.抛物线解析 由题意知P 到F 的距离与到直线x =-4的距离相等,所以点P 的轨迹是抛物线.7.双曲线8.双曲线的一支9.证明 设PB =r.∵圆P 与圆A 内切,圆A 的半径为10,∴两圆的圆心距PA =10-r ,即PA +PB =10(大于AB).∴点P 的轨迹是以A 、B 两点为焦点的椭圆.10.解 由正弦定理得:sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 代入sin B -sin C =12sin A 得:b -c =12a ,即b -c =1, 即AC -AB =1 (<BC)∴A 的轨迹是以B 、C 为焦点且靠近B 的双曲线的一支,并去掉与BC 的交点.11.④解析 ∵D 1C 1⊥面BCC 1B 1,C 1P ⊂平面BCC 1B 1,∴D 1C 1⊥C 1P ,∴点P 到直线C 1D 1的距离即为C 1P 的长度,由题意知,点P 到点C 1的距离与点P 到直线BC 的距离相等,这恰符合抛物线的定义.12.解 由题意,得MP =MQ ,RP =2a.MR -MQ =MR -MP =RP =2a<RQ =2c.∴点M 的轨迹是以R 、Q 为两焦点,实轴长为2a 的双曲线右支.。
数学选修2-1苏教版:第2章 圆锥曲线与方程 2.4.1
§2.4 抛物线 2.4.1 抛物线的标准方程学习目标 1.掌握抛物线的标准方程.2.明确抛物线标准方程中p 的几何意义,并能解决简单的求抛物线标准方程问题.知识点 抛物线的标准方程 思考 抛物线的标准方程有何特点?答案 (1)对称轴为坐标轴;(2)p 为大于0的常数,其几何意义表示焦点到准线的距离;(3)准线与对称轴垂直,垂足与焦点关于原点对称;(4)焦点、准线到原点的距离都等于p2.梳理 由于抛物线焦点位置不同,方程也就不同,故抛物线的标准方程有以下几种形式:y 2=2px (p >0),y 2=-2px (p >0),x 2=2py (p >0),x 2=-2py (p >0).现将这四种抛物线对应的图形、标准方程、焦点坐标及准线方程列表如下:1.抛物线的方程都是y 关于x 的二次函数.(×) 2.方程x 2=2py (p >0)表示开口向上的抛物线.(√) 3.抛物线的焦点到准线的距离为p .(√) 4.抛物线的开口方向由一次项确定.(√)类型一 由抛物线的标准方程求焦点坐标和准线方程例1 已知抛物线的方程y =ax 2(a ≠0),求它的焦点坐标和准线方程. 解 将抛物线方程化为标准方程x 2=1a y (a ≠0),则抛物线焦点在y 轴上, (1)当a >0时,p =12a ,∴焦点坐标F ⎝⎛⎭⎫0,14a , 准线方程y =-14a .(2)当a <0时,p =-12a ,∴焦点坐标F ⎝⎛⎭⎫0,14a , 准线方程y =-14a,综合(1)(2)知抛物线y =ax 2(a ≠0)的焦点坐标是F ⎝⎛⎭⎫0,14a ,准线方程是y =-14a. 反思与感悟 根据抛物线的方程求焦点坐标和准线方程时,应首先把方程化为标准形式,再分清抛物线是四种中的哪一种,然后写出焦点及准线方程.跟踪训练1 (1)若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________. 答案 2 x =-1解析 因为抛物线的焦点坐标为(1,0),所以p 2=1,p =2,准线方程为x =-p2=-1.(2)求下列抛物线的焦点坐标和准线方程. ①y 2=40x ;②4x 2=y ;③3y 2=5x ;④6y 2+11x =0. 解 ①焦点坐标为(10,0),准线方程为x =-10. ②由4x 2=y 得x 2=14y .∵2p =14,∴p =18.∴焦点坐标为⎝⎛⎭⎫0,116,准线方程为y =-116. ③由3y 2=5x ,得y 2=53x .∵2p =53,∴p =56.∴焦点坐标为⎝⎛⎭⎫512,0,准线方程为x =-512. ④由6y 2+11x =0,得y 2=-116x ,故焦点坐标为⎝⎛⎭⎫-1124,0,准线方程为x =1124. 类型二 求解抛物线的标准方程例2 根据下列条件分别求抛物线的标准方程. (1)抛物线的焦点是双曲线16x 2-9y 2=144的左顶点;(2)抛物线的焦点F 在x 轴上,直线y =-3与抛物线交于点A ,AF =5. 解 (1)双曲线方程可化为x 29-y 216=1,左顶点为(-3,0),由题意设抛物线方程为y 2=-2px (p >0)且-p2=-3,∴p =6,∴抛物线的方程为y 2=-12x .(2)设所求焦点在x 轴上的抛物线的方程为y 2=2px (p ≠0),A (m ,-3),由抛物线定义得5=AF =⎪⎪⎪⎪m +p 2. 又(-3)2=2pm ,∴p =±1或p =±9, 故所求抛物线方程为y 2=±2x 或y 2=±18x . 反思与感悟 抛物线标准方程的求法(1)定义法:建立适当坐标系,利用抛物线的定义列出动点满足的条件,列出方程,进行化简,根据定义求出p ,最后写出标准方程.(2)待定系数法:由于标准方程有四种形式,因而在求方程时应首先确定焦点在哪一个半轴上,进而确定方程的形式,然后再利用已知条件确定p 的值.跟踪训练2 已知抛物线的顶点在原点,对称轴为x 轴,抛物线上的点M (-3,m )到焦点的距离等于5,求抛物线的方程和m 的值,并写出抛物线的焦点坐标和准线方程. 解 设抛物线方程为y 2=-2px (p >0), 则焦点F ⎝⎛⎭⎫-p2,0,由题意, 得⎩⎪⎨⎪⎧m 2=6p , m 2+⎝⎛⎭⎫-3+p 22=5,解得⎩⎨⎧ p =4,m =26或⎩⎨⎧p =4,m =-2 6.故所求的抛物线方程为y 2=-8x ,m =±2 6. 抛物线的焦点坐标为(-2,0),准线方程为x =2. 类型三 抛物线在实际生活中的应用例3 河上有一抛物线形拱桥,当水面距拱桥顶5m 时,水面宽为8m ,一小船宽4m ,高2m ,载货后船露出水面上的部分高34m ,问:水面上涨到与抛物线拱桥拱顶相距多少米时,小船开始不能通航?解 如图,以拱桥的拱顶为原点,以过拱顶且平行于水面的直线为x 轴,建立平面直角坐标系.设抛物线方程为x 2=-2py (p >0),由题意可知,点B (4,-5)在抛物线上,故p =85,得x 2=-165y .当船面两侧和抛物线接触时,船不能通航,设此时船面宽为AA ′,则A (2,y A ),由22=-165y A ,得y A =-54.又知船面露出水面上的部分高为34m ,所以h =|y A |+34=2(m).所以水面上涨到与抛物线形拱桥拱顶相距2m 时,小船开始不能通航.反思与感悟 涉及拱桥、隧道的问题,通常需建立适当的平面直角坐标系,利用抛物线的标准方程进行求解.跟踪训练3 喷灌的喷头装在直立管柱OA 的顶点A 处,喷出水流的最高点B 高5m ,且与OA 所在的直线相距4m ,水流落在以O 为圆心,半径为9m 的圆上,则管柱OA 的长是多少?解 如图所示,以点B 为坐标原点,过点B 与地面平行的直线为x 轴,建立直角坐标系,设水流所形成的抛物线的方程为x 2=-2py (p >0),因为点C (5,-5)在抛物线上,所以25=-2p ·(-5),因此2p =5,所以抛物线的方程为x 2=-5y ,点A (-4,y 0)在抛物线上,所以16=-5y 0, 即y 0=-165,所以OA 的长为5-165=1.8(m).所以管柱OA 的长为1.8m.1.已知抛物线的准线方程为x =7,则抛物线的标准方程为________. 答案 y 2=-28x解析 可设抛物线方程为y 2=-2px (p >0),由准线方程为x =7知,p2=7,即p =14.故抛物线的标准方程为y 2=-28x .2.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p 的值为________. 答案 4解析 焦点的坐标为⎝⎛⎭⎫p 2,0,由两点间的距离公式得⎝⎛⎭⎫-2-p 22+32=5⇒p =4.3.若抛物线y 2=2px (p >0)上的动点Q 到焦点的距离的最小值为1,则p =________. 答案 2解析 因为抛物线上的动点到焦点的距离为动点到准线的距离,所以抛物线上的动点到焦点的最短距离为顶点到准线的距离,即p2=1,p =2.4.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =________. 答案 2 2解析 抛物线y 2=2px (p >0)的准线方程是x =-p2,因为抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点F 1(-2,0), 所以-p2=-2,解得p =2 2.5.已知M 为抛物线y 2=4x 上一动点,F 为抛物线的焦点,定点N (2,3),则MN +MF 的最小值为________. 答案10解析 将x =2代入抛物线方程,得y =±2 2. ∵3>22,∴点N 在抛物线的外部. MN +MF ≥NF ,而F (1,0), 则NF =(2-1)2+32=10,∴MN +MF ≥10,当N ,M ,F 三点共线时有最小值,最小值为10.1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F ⎝⎛⎭⎫m 4,0,准线方程为x =-m4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F ⎝⎛⎭⎫0,m 4,准线方程为y =-m 4. 2.设M 是抛物线上一点,焦点为F ,则线段MF 叫做抛物线的焦半径.若M (x 0,y 0)在抛物线y 2=2px (p >0)上,则根据抛物线的定义,抛物线上的点到焦点的距离和到准线的距离可以相互转化,所以焦半径MF =x 0+p2.一、填空题1.抛物线y =14x 2的准线方程是________.答案 y =-1解析 由y =14x 2,得x 2=4y ,则抛物线的焦点在y 轴正半轴上,且2p =4,即p =2,因此准线方程为y =-p2=-1.2.以坐标原点为顶点,(-1,0)为焦点的抛物线的方程为____________________. 答案 y 2=-4x解析 由题意可设抛物线的方程为y 2=-2px (p >0), 则有-p2=-1,得p =2,所以抛物线的方程为y 2=-4x .3.经过点P (4,-2)的抛物线的标准方程为________. 答案 y 2=x 或x 2=-8y解析 设所求抛物线的标准方程为y 2=2mx (m ≠0)或x 2=2ny (n ≠0), 代入点P (4,-2),解得m =12或n =-4,所以所求抛物线的标准方程为y 2=x 或x 2=-8y .4.以双曲线x 216-y 29=1的右顶点为焦点的抛物线的标准方程为________.答案 y 2=16x解析 ∵双曲线的方程为x 216-y 29=1,∴右顶点为(4,0).设抛物线的标准方程为y 2=2px (p >0), 则p2=4,即p =8, ∴抛物线的标准方程为y 2=16x .5.已知抛物线C 1:y =2x 2与抛物线C 2关于直线y =x 对称,则C 2的准线方程是________. 答案 x =-18解析 y =2x 2关于y =x 对称的曲线为抛物线y 2=12x ,其准线方程为x =-18.6.已知一个圆的圆心C 在抛物线y 2=4x 上,并且与x 轴、抛物线的准线都相切,则此圆的半径为________. 答案 2解析 设圆心C (x 0,y 0),则y 20=4x 0,① 依题意得,半径r =|y 0|=|x 0+1|,② 由①②得x 0=1, 故圆的半径r =2.7.顶点在原点,对称轴是y 轴,并且顶点与焦点的距离等于3的抛物线的标准方程是________. 答案 x 2=±12y解析 因为顶点与焦点距离等于3, ∴2p =12, 又∵对称轴是y 轴, ∴抛物线的方程为x 2=±12y .8.抛物线方程为7x +4y 2=0,则焦点坐标为________.答案 ⎝⎛⎭⎫-716,0 解析 方程化为y 2=-74x ,抛物线开口向左,2p =74,p 2=716,故焦点坐标为⎝⎛⎭⎫-716,0. 9.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2).若线段F A 的中点B 在抛物线上,则点B 到该抛物线准线的距离为________. 答案324解析 如图所示,由已知,得点B 的纵坐标为1,横坐标为p4,即B ⎝⎛⎭⎫p 4,1.将其代入y 2=2px ,得1=2p ×p 4,解得p =2,故点B 到准线的距离为p 2+p 4=34p =324.10.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为________. 答案 (1,2)或(1,-2)解析 设A (x 0,y 0),F (1,0),OA →=(x 0,y 0), AF →=(1-x 0,-y 0),OA →·AF →=x 0(1-x 0)-y 20=-4.∵y 20=4x 0,∴x 0-x 20-4x 0+4=0,即x 20+3x 0-4=0,x 0=1或x 0=-4(舍). ∴x 0=1,y 0=±2.则点A 的坐标为(1,2)或(1,-2).11.若点P 在抛物线y 2=x 上,点Q 在圆(x -3)2+y 2=1上,则PQ 的最小值是________. 答案112-1 解析 设圆(x -3)2+y 2=1的圆心为O ′(3,0), 要求PQ 的最小值,只需求PO ′的最小值. 设点P 坐标为(y 20,y 0),则PO ′=(y 20-3)2+y 20=y 40-5y 20+9=⎝⎛⎭⎫y 20-522+114, ∴PO ′的最小值为112,从而PQ 的最小值为112-1.二、解答题12.已知抛物线的顶点在原点,它的准线过x 2a 2-y 2b 2=1的一个焦点,而且与x 轴垂直.又抛物线与此双曲线交于点⎝⎛⎭⎫32,6,求抛物线和双曲线的方程.解 因为交点在第一象限,抛物线的顶点在原点,其准线垂直于x 轴,所以可设抛物线方程为y 2=2px (p >0),将点⎝⎛⎭⎫32,6代入方程得p =2,所以抛物线方程为y 2=4x .准线方程为x =-1,由此可知双曲线方程中c =1,焦点为(-1,0),(1,0),点⎝⎛⎭⎫32,6到两焦点距离之差2a =1,所以双曲线的标准方程为x 214-y 234=1.13.已知抛物线C 的顶点在原点,焦点F 在x 轴的正半轴上,设A ,B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且AF +BF =8,线段AB 的垂直平分线恒经过点Q (6,0),求抛物线的方程.解 设抛物线的方程为y 2=2px (p >0), 则其准线方程为x =-p2.设A (x 1,y 1),B (x 2,y 2),∵AF +BF =8,∴x 1+p 2+x 2+p2=8,即x 1+x 2=8-p .∵Q (6,0)在线段AB 的中垂线上,∴QA =QB , 即(6-x 1)2+(-y 1)2=(6-x 2)2+(-y 2)2,又y 21=2px 1,y 22=2px 2,∴(x 1-x 2)(x 1+x 2-12+2p )=0. ∵AB 与x 轴不垂直,∴x 1≠x 2.故x 1+x 2-12+2p =8-p -12+2p =0,即p =4. 从而抛物线方程为y 2=8x . 三、探究与拓展14.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,AF +BF =3,则线段AB 的中点到y 轴的距离为________. 答案 54解析 设A (x A ,y A ),B (x B ,y B ), ∵AF +BF =x A +x B +12=3,∴x A +x B =52.∴线段AB 的中点到y 轴的距离为x A +x B 2=54.15.设点P 是抛物线y 2=4x 上的一个动点.(1)求点P 到A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求PB +PF 的最小值. 解 (1)如图,抛物线的焦点为F (1,0),准线为x =-1,由抛物线的定义知点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连结AF 交曲线于点P ,故最小值为22+12= 5. (2)如图,过点B 作BQ 垂直准线于点Q ,交抛物线于点P 1,此时,P 1Q =P 1F ,那么PB +PF ≥P 1B +P 1Q =BQ =4,即最小值为4.。
高中数学苏教版选修2-1第2章《圆锥曲线与方程》(2.2(二))word学案
2.2.2椭圆的几何性质(二)[学习目标] 1.进一步巩固椭圆的几何性质.2.掌握直线与椭圆位置关系的相关知识.[知识链接]已知直线和椭圆的方程,怎样判断直线与椭圆的位置关系?答:直线与椭圆的位置关系,可通过讨论椭圆方程与直线方程组成的方程组的解的个数来确定,通常用消元后的关于x(或y)的一元二次方程的根的判别式来判断.Δ>0⇔直线和椭圆相交;Δ=0⇔直线和椭圆相切;Δ<0⇔直线和椭圆相离.[预习导引]1.点P(x0,y0)与椭圆x2a2+y2b2=1(a>b>0)的位置关系点P在椭圆上⇔x20a2+y20b2=1;点P在椭圆内部⇔x20a2+y20b2<1;点P在椭圆外部⇔x20a2+y20b2>1. 2.直线与椭圆的位置关系直线y=kx+m与椭圆x2a2+y2b2=1(a>b>0)的位置关系判断方法:联立⎩⎪⎨⎪⎧y=kx+m,x2a2+y2b2=1.消y得到一个关于x的一元二次方程.3.弦长公式设直线方程为y=kx+m(k≠0),椭圆方程为x2a2+y2b2=1(a>b>0)或y2a2+x2b2=1(a>b>0),直线与椭圆的两个交点为A(x1,y1),B(x2,y2),则AB =1+k 2(x 1+x 2)2-4x 1x 2. 或AB =1+1k2(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y (或x )后得到关于x (或y )的一元二次方程得到.要点一 直线与椭圆的位置关系例1 在椭圆x 24+y 27=1上求一点P ,使它到直线l :3x -2y -16=0的距离最短,并求出最短距离.解 设与椭圆相切并与l 平行的直线方程为y =32x +m ,代入x 24+y 27=1,并整理得4x 2+3mx +m 2-7=0, Δ=9m 2-16(m 2-7)=0 ⇒m 2=16⇒m =±4,故两切线方程为y =32x +4和y =32x -4,显然y =32x -4距l 最近d =|16-8|32+(-2)2=813=8 1313, 切点为P ⎝⎛⎭⎫32,-74. 规律方法 本题通过对图形的观察分析,将求最小距离问题转化为直线与椭圆的位置关系问题.解此类问题的常规解法是直线方程与椭圆方程联立,消去y 或x 得到关于x 或y 的一元二次方程,则(1)直线与椭圆相交⇔Δ>0;(2)直线与椭圆相切⇔Δ=0;(3)直线与椭圆相离⇔Δ<0,所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具.跟踪演练1 已知椭圆x 225+y 29=1,直线l :4x -5y +40=0.椭圆上是否存在一点,它到直线l 的距离最小?最小距离是多少?解 如图,由直线l 的方程与椭圆的方程可以知道,直线l 与椭圆不相交.设直线m 平行于直线l ,则直线m 的方程可以写成4x -5y +k =0.①由方程组⎩⎪⎨⎪⎧4x -5y +k =0,x 225+y 29=1,消去y ,得25x 2+8kx +k 2-225=0.② 令方程②的根的判别式Δ=0, 得64k 2-4×25(k 2-225)=0.③ 解方程③得k 1=25,或k 2=-25.由图可知,当k =25时,直线m 与椭圆的交点到直线l 的距离最近,此时直线m 的方程为4x -5y +25=0.直线m 与直线l 间的距离d =|40-25|42+(-5)2=154141.所以,最小距离是154141.要点二 直线与椭圆的相交弦问题例2 椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若AB =22,OC 的斜率为22,求椭圆的方程. 解 方法一 设A (x 1,y 1)、B (x 2,y 2), 代入椭圆方程并作差得a (x 1+x 2)(x 1-x 2)+b (y 1+y 2)(y 1-y 2)=0. 而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k OC =22,代入上式可得b =2a .再由AB =1+k 2|x 2-x 1|=2|x 2-x 1|=22, 其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根, 故(2b a +b )2-4·b -1a +b=4, 将b =2a 代入得a =13,∴b =23,∴所求椭圆的方程是x 23+2y 23=1.方法二 由⎩⎪⎨⎪⎧ax 2+by 2=1,x +y =1,得(a +b )x 2-2bx +b -1=0.设A (x 1,y 1)、B (x 2,y 2),则AB =(k 2+1)(x 1-x 2)2 =2·4b 2-4(a +b )(b -1)(a +b )2.∵AB =22,∴a +b -aba +b=1.①设C (x ,y ),则x =x 1+x 22=b a +b ,y =1-x =aa +b ,∵OC 的斜率为22,∴a b =22. 代入①,得a =13,b =23.∴椭圆方程为x 23+23y 2=1.规律方法 处理直线与椭圆相交的关系问题的通法是通过解直线与椭圆构成的方程.利用根与系数的关系或中点坐标公式解决,涉及弦的中点,还可使用点差法:设出弦的两端点坐标,代入椭圆方程,两式相减即得弦的中点与斜率的关系.跟踪演练2 已知椭圆x 236+y 29=1和点P (4,2),直线l 经过点P 且与椭圆交于A 、B 两点.(1)当直线l 的斜率为12时,求线段AB 的长度;(2)当P 点恰好为线段AB 的中点时,求l 的方程. 解 (1)由已知可得直线l 的方程为y -2=12(x -4),即y =12x .由⎩⎨⎧y =12x ,x 236+y29=1,可得x 2-18=0,若设A (x 1,y 1),B (x 2,y 2). 则x 1+x 2=0,x 1x 2=-18. 于是AB =(x 1-x 2)2+(y 1-y 2)2 =(x 1-x 2)2+14(x 1-x 2)2=52(x 1+x 2)2-4x 1x 2=52×62=310. 所以线段AB 的长度为310.(2)方法一 设l 的斜率为k ,则其方程为y -2=k (x -4). 联立⎩⎪⎨⎪⎧x 236+y 29=1,y -2=k (x -4),消去y 得(1+4k 2)x 2-(32k 2-16k )x +(64k 2-64k -20)=0. 若设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=32k 2-16k 1+4k 2,由于AB 的中点恰好为P (4,2), 所以x 1+x 22=16k 2-8k 1+4k 2=4,解得k =-12,且满足Δ>0.这时直线的方程为y -2=-12(x -4),即x +2y -8=0.方法二 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧x 2136+y 219=1,x 2236+y229=1,两式相减得x 22-x 2136+y 22-y 219=0,整理得k AB =y 2-y 1x 2-x 1=-9(x 2+x 1)36(y 2+y 1), 由于P (4,2)是AB 的中点, 所以x 1+x 2=8,y 1+y 2=4, 于是k AB =-9×836×4=-12,于是直线AB 的方程为y -2=-12(x -4),即x +2y -8=0.要点三 椭圆中的最值(或范围)问题 例3 已知椭圆4x 2+y 2=1及直线y =x +m .(1)当直线和椭圆有公共点时,求实数m 的取值范围; (2)求被椭圆截得的最长弦所在的直线方程.解 (1)由⎩⎪⎨⎪⎧4x 2+y 2=1,y =x +m得5x 2+2mx +m 2-1=0,因为直线与椭圆有公共点, 所以Δ=4m 2-20(m 2-1)≥0,解得-52≤m ≤52. (2)设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由(1)知:5x 2+2mx +m 2-1=0, 所以x 1+x 2=-2m 5,x 1x 2=15(m 2-1),所以AB =(x 1-x 2)2+(y 1-y 2)2 =2(x 1-x 2)2=2[(x 1+x 2)2-4x 1x 2] =2⎣⎡⎦⎤4m 225-45(m 2-1)=2510-8m 2. 所以当m =0时,AB 最大,此时直线方程为y =x .规律方法 解析几何中的综合性问题很多.而且可与很多知识联系在一起出题,例如不等式、三角函数、平面向量以及函数的最值问题等.解决这类问题需要正确地应用转化思想、函数与方程思想和数形结合思想.其中应用比较多的是利用方程根与系数的关系构造等式或函数关系式,这其中要注意利用根的判别式来确定参数的限制条件.跟踪演练3 如图,点A 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴位于y 轴下方的端点,过点A 且斜率为1的直线交椭圆于点B ,若P 在y 轴上,且BP ∥x 轴,AB →·AP →=9.(1)若点P 的坐标为(0,1),求椭圆C 的标准方程; (2)若点P 的坐标为(0,t ),求t 的取值范围. 解 ∵直线AB 的斜率为1,∴∠BAP =45°, 即△BAP 是等腰直角三角形,|AB →|=2|AP →|. ∵AB →·AP →=9,∴|AB →||AP →|cos45°=2|AP →|2cos45°=9, ∴|AP →|=3.(1)∵P (0,1),∴|OP →|=1,|OA →|=2, 即b =2,且B (3,1).∵B 在椭圆上,∴9a 2+14=1,得a 2=12,∴椭圆C 的标准方程为x 212+y 24=1.(2)由点P 的坐标为(0,t )及点A 位于x 轴下方,得点A 的坐标为(0,t -3), ∴t -3=-b ,即b =3-t .显然点B 的坐标是(3,t ),将它代入椭圆方程得: 9a 2+t 2(3-t )2=1,解得a 2=3(3-t )23-2t . ∵a 2>b 2>0,∴3(3-t )23-2t>(3-t )2>0.∴33-2t >1,即33-2t -1=2t 3-2t>0, ∴所求t 的取值范围是0<t <32.1.AB 为过椭圆x 2a 2+y2b 2=1(a >b >0)中心的弦,F (c,0)为椭圆的右焦点,则△AFB 面积的最大值为________. 答案 bc解析 当直线AB 与y 轴重合时面积最大,AB =2b ,△AFB 的高为c ,∴此时S △AFB =12·2b ·c =bc .2.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是________________.答案 (1,3)∪(3,+∞)解析 由⎩⎪⎨⎪⎧y =x +2,x 2m +y 23=1⇒(3+m )x 2+4mx +m =0,∵Δ>0,∴m >1或m <0.又∵m >0,∴m >1且m ≠3.3.如图所示,直线l :x -2y +2=0过椭圆的左焦点F 1和一个顶点B ,则椭圆的离心率为________.答案255解析 由条件知,F 1(-2,0),B (0,1),∴b =1,c =2, ∴a =22+12=5,∴e =c a =25=255.4.椭圆x 212+y 23=1的左焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M 在y 轴上,那么点M 的纵坐标是________. 答案 ±34解析 由条件可得F 1(-3,0),PF 1的中点在y 轴上, ∴P 坐标(3,y 0),又P 在椭圆x 212+y 23=1上得y 0=±32,∴M 的坐标为(0,±34).解决直线与椭圆的位置关系问题经常利用设而不求的方法,解题步骤为 (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.一、基础达标1.直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.答案 [1,5)∪(5,+∞)解析 ∵直线y =kx +1恒过(0,1)点,若5>m ,则m ≥1,若5<m ,则必有公共点,∴m ≥1且m ≠5.2.椭圆x 225+y 29=1上的点P 到椭圆左焦点的最大距离和最小距离分别是________.答案 9,1解析 因为a =5,c =4,所以最大距离为a +c =9,最小距离为a -c =1.3.已知直线l :x +y -3=0,椭圆x 24+y 2=1,则直线与椭圆的位置关系是________.答案 相离解析 把x +y -3=0代入x 24+y 2=1,得x 24+(3-x )2=1,即5x 2-24x +32=0.∵Δ=(-24)2-4×5×32=-64<0, ∴直线与椭圆相离.4.已知点(m ,n )在椭圆8x 2+3y 2=24上,则2m +4的取值范围是__________________. 答案 [4-23,4+23]解析 方程可化为x 23+y 28=1,故椭圆焦点在y 轴上,又a =22,b =3,所以-3≤m ≤3,故4-23≤2m +4≤23+4.5.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为________. 答案 6解析 由椭圆方程得F (-1,0),设P (x 0,y 0), 则OP →·FP →=(x 0,y 0)·(x 0+1,y 0)=x 20+x 0+y 20.∵P 为椭圆上一点,∴x 204+y 23=1.∴OP →·FP →=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3=14(x 0+2)2+2. ∵-2≤x 0≤2,∴OP →·FP →的最大值在x 0=2时取得,且最大值等于6.6.人造地球卫星的运行是以地球中心为一个焦点的椭圆,近地点距地面p 千米,远地点距地面q 千米,若地球半径为r 千米,则运行轨迹的短轴长为________千米. 答案 2(p +r )(q +r )解析 ∵⎩⎪⎨⎪⎧p +r =a -c ,q +r =a +c ,∴b 2=a 2-c 2=(a +c )(a -c )=(p +r )(q +r ), ∴2b =2(p +r )(q +r )(千米).7.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,椭圆与直线x +2y +8=0相交于P 、Q 两点,且PQ =10,求椭圆方程. 解 ∵椭圆的离心率e =32, ∴b 2=a 2-c 2=a 2-34a 2=14a 2,∴椭圆的方程为x 2+4y 2=a 2.由⎩⎪⎨⎪⎧x 2+4y 2=a 2,x +2y +8=0得2x 2+16x +64-a 2=0, 由Δ=162-8(64-a 2)>0得a 2>32. 设P (x 1,y 1)、Q (x 2,y 2), x 1+x 2=-8,x 1·x 2=32-a 22.PQ =1+⎝⎛⎭⎫-122(x 1+x 2)2-4x 1x 2 =54[64-2(64-a 2)]=10. 解得a 2=36,∴b 2=9,即椭圆的方程为x 236+y 29=1.二、能力提升8.过椭圆x 2+2y 2=4的左焦点F 作倾斜角为π3的弦AB ,则弦AB 的长为________.答案167解析 椭圆的方程可化为x 24+y 22=1,∴F (-2,0).又∵直线AB 的斜率为3, ∴直线AB 的方程为y =3x + 6.由⎩⎨⎧y =3x +6,x 2+2y 2=4,得7x 2+122x +8=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-1227, x 1·x 2=87, ∴AB =(1+k 2)[(x 1+x 2)2-4x 1x 2]=167. 9.已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若F 2A +F 2B =12,则AB =________.答案 8解析 由题意知(AF 1+AF 2)+(BF 1+BF 2)=AB +AF 2+BF 2=2a +2a ,又由a =5,可得AB +(BF 2+AF 2)=20,即AB =8.10.椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,焦距为2c ,若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案 3-1 解析 由直线方程y =3(x +c ),得直线的倾斜角∠MF 1F 2=π3,且过点F 1(-c,0),∵∠MF 1F 2=2∠MF 2F 1,∴∠MF 1F 2=2∠MF 2F 1=π3,即F 1M ⊥F 2M ,∴在Rt △F 1MF 2中,F 1F 2=2c ,F 1M =c ,F 2M =3c ,∴由椭圆定义可得2a =c +3c ,∴c a =21+3=3-1. 11.已知椭圆C 1:x 24+y 2=1,椭圆C 2以C 1的长轴为短轴,且与C 1有相同的离心率. (1)求椭圆C 2的方程;(2)设O 为坐标原点,点A ,B 分别在椭圆C 1和C 2上,OB →=2OA →,求直线AB 的方程.解 (1)由已知可设椭圆C 2的方程为y 2a 2+x 24=1(a >2), 其离心率为32,故a 2-4a =32,解得a =4. 故椭圆C 2的方程为y 216+x 24=1. (2)方法一 A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4, 所以x 2A =41+4k 2. 将y =kx 代入y 216+x 24=1中,得(4+k 2)x 2=16, 所以x 2B =164+k 2. 又由OB →=2OA →,得x 2B =4x 2A ,即164+k 2=161+4k 2, 解得k =±1.故直线AB 的方程为y =x 或y =-x .方法二 A ,B 两点的坐标分别记为(x A ,y A ),(x B ,y B ),由OB →=2OA →及(1)知,O ,A ,B 三点共线且点A ,B 不在y 轴上,因此可设直线AB 的方程为y =kx .将y =kx 代入x 24+y 2=1中,得(1+4k 2)x 2=4, 所以x 2A =41+4k 2. 由OB →=2OA →,得x 2B =161+4k 2,y 2B =16k 21+4k 2. 将x 2B ,y 2B 代入y 216+x 24=1中,得4+k 21+4k 2=1, 即4+k 2=1+4k 2,解得k =±1.故直线AB 的方程为y =x 或y =-x .12.在平面直角坐标系xOy 中,点P 到两点(0,-3),(0,3)的距离之和等于4,设点P 的轨迹为C .(1)写出C 的方程;(2)设直线y =kx +1与C 交于A 、B 两点,k 为何值时OA →⊥OB →?此时AB 的值是多少?解 (1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆.它的短半轴长b =22-(3)2=1,故曲线C 的方程为x +4 1. (2)设A (x 1,y 1),B (x 2,y 2),其坐标满足⎩⎪⎨⎪⎧ x 2+y 24=1,y =kx +1.消去y ,并整理得(k 2+4)x 2+2kx -3=0,故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. ∵OA →⊥OB →,∴x 1x 2+y 1y 2=0.∵y 1y 2=k 2x 1x 2+k (x 1+x 2)+1,于是x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k 2k 2+4+1 =-4k 2+1k 2+4. 又x 1x 2+y 1y 2=0,∴k =±12. 当k =±12时,x 1+x 2=∓417,x 1x 2=-1217. AB =(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)(x 2-x 1)2,而(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=42172+4×1217=43×13172, ∴AB =54×43×13172=46517. 三、探究与创新13.已知椭圆C 的两个焦点分别为F 1(-1,0)、F 2(1,0),短轴的两个端点分别为B 1、B 2.(1)若△F 1B 1B 2为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点F 2的直线l 与椭圆C 相交于P 、Q 两点,且F 1P →⊥F 1Q →,求直线l 的方程.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0). 根据题意知⎩⎪⎨⎪⎧a =2b ,a 2-b 2=1,解得a 2=43,b 2=13,故椭圆C 的方程为43+13=1. (2)容易求得椭圆C 的方程为x 22+y 2=1. 当直线l 的斜率不存在时,其方程为x =1,不符合题意; 当直线的斜率存在时,设直线l 的方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1得(2k 2+1)x 2-4k 2x +2(k 2-1)=0. 设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2(k 2-1)2k 2+1, F 1P →=(x 1+1,y 1),F 1Q →=(x 2+1,y 2).因为F 1P →⊥F 1Q →,所以F 1P →·F 1Q →=0,即(x 1+1)(x 2+1)+y 1y 2=x 1x 2+(x 1+x 2)+1+k 2(x 1-1)(x 2-1)=(k 2+1)x 1x 2-(k 2-1)(x 1+x 2)+k 2+1=7k 2-12k 2+1=0, 解得k 2=17,即k =±77. 故直线l 的方程为x +7y -1=0或x -7y -1=0.。
高中数学选修2-1《圆锥曲线》教案
4. 待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求. 例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程.分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0•••抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b 2x+a2b2=0 应有等根.•••△ =1664-4Q4b2=0,即卩a2=2b.(以下由学生完成)由弦长公式得:即a2b2=4b2-a 2.(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果•练习题用一小黑板给出.1 .△ ABC-边的两个端点是B(0 , 6)和C(0 , -6),另两边斜率的2. 点P与一定点F(2 , 0)的距离和它到一定直线x=8的距离的比是1 : 2,求点P的轨迹方程,并说明轨迹是什么图形?3. 求抛物线y2=2px(p >0)上各点与焦点连线的中点的轨迹方程. 答案:义法)由中点坐标公式得:(四)小结求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍.五、布置作业1. 两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M的轨迹方程.2. 动点P到点F1(1 , 0)的距离比它到F2(3 , 0)的距离少2,求P点的轨迹.3. 已知圆x2+y2=4上有定点A(2 , 0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程.作业答案:1. 以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=4 2. v |PF2|-|PF|=2 ,且|F1F2| • P点只能在x轴上且x V 1,轨迹是一条射线六、板书设计教学反思:4斜率之积为4,9程.分析:由椭圆的标准方程的定义及给出的条件,容易求出a,b,c .引导学生用其他方法来解.另解:设椭圆的标准方程为2 25 31 a b 0,因点一,一在椭圆上,a b2 225 9 则 4a 2 4b 22 2a b 4;10<6例2如图,在圆x 24上任取一点P ,过点P 作x 轴的垂线段 PD , D 为垂足•当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?分析: 点P 在圆x 2 y 2 4上运动,由点 P 移动引起点 M 的运动,则称点 M 是点P 的伴随点,因点M 为线段 PD 的中点,则点 M 的坐标可由点P 来表示,从而能求点 M 的轨迹方程.引申: 设定点2xA 6,2 , P 是椭圆x252y1上动点,求线段 AP 中点M 的轨迹方程.9解法剖析:①(代入法求伴随轨迹)设M x, y , P x 1,y 1 :②(点与伴随点的关系): M为线段AP 的中点,X i y i2x 6;③(代入已知轨迹求出伴随轨迹)2y 22..X 1 '252y11 , •••点M9x的轨迹方程为一25④伴随轨迹表示的范围.例3如图,设A , B 的坐标分别为 5,0 , 5,0 .直线 AM , BM 相交于点M ,且它们的分析:若设点x, y ,则直线AM,BM 的斜率就可以用含 x, y 的式子表示,由于直线AM ,BM 的斜率之积是4 ,因此,可以求出9x, y 之间的关系式,即得到点M 的轨迹方程.解法剖析:设点M x, y ,则 k AM-^― x 5 , k BMx 5 ;x 5x 5代入点M 的集合有4-,化简即可得点 M 的轨迹方程. 9引申:如图,设△ ABC 的两个顶点 A a,0 , B a,0,顶点C 在移动,且k AC k BC k , 且k 0,试求动点C 的轨迹方程.引申目的有两点:①让学生明白题目涉及问题的一般情形;②当 色也是从椭圆的长轴T 圆的直径T 椭圆的短轴.练习:第45页1、2、3、4、 作业:第53页2、3、k 值在变化时,线段 AB 的角求点M 的轨迹方程.分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决 问题的能力.思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能 力.实践能力:培养学生实际动手能力,综合利用已有的知识能力.创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.♦过程与方法目标(1 )复习与引入过程引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对 椭圆的标准方程的讨论, 研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先 定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过 题,探究椭圆的扁平程度量椭圆的离心率. 〖板书〗§ 2. 1. 2椭圆的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质. 提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、 从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.(ii )椭圆的简单几何性质2x一2 0,进一步得:a xax 代x ,且以 y 代y 这三个方面来研究椭圆的标准 y 轴为对称轴,原点为对称中心;即圆锥曲线的对称轴与圆锥曲线的交点叫做圆 锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较 短的叫做短轴;c④离心率: 椭圆的焦距与长轴长的比e 叫做椭圆的离心率(0 e 1 ),a当 e1 时,c a ,,b0.; 椭圆图形越扁(iii )例题讲解与引申、扩展400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出a,b,c •弓I 导学生用椭圆的长轴、短轴、离心率、 焦点和顶点的定义即可求相关量.确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探 究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1)(3) (4)大小和位置.要巳8的思考冋①范围:由椭圆的标准方程可得,y 2 b 2b y b ,即椭圆位于直线x② 对称性:由以 x 代x ,以 方程发生变化没有,从而得到椭圆是以③ 顶点:先给出圆锥曲线的顶点的统一定义,y 代y 和 x 轴和 a ,同理可得:b 所围成的矩当 e 0 时,c 0,b a 椭圆越接近于圆例4求椭圆I6x 225y 2/Tn扩展:已知椭圆血5y2 5m m 0的离心率为e—,求m的值.解法剖析:依题意,m0,m 5,但椭圆的焦点位置没有确定, 应分类讨论: ①当焦点在x轴上,即0 m 5时,有a品 b 丽,c 75 ~m,二_—:得m 3;②当焦点在y轴上,即m例5如图,応b 岳c J m 5 , ••• J:5V m一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口5时,有a105253BAC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上, 由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2.已知BC F1F2,RB 2.8cm,F1F24.5cm .建立适当的坐标系,求截口BAC所在椭圆的方程.解法剖析:建立适当的直角坐标系,设椭圆的标准方程为1,算出a,b,c的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于a,b,c的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,“神舟”截人飞船发射升空,进入预定轨道开始巡天飞行,其轨道是以地球的中心F2为一个焦点的椭圆,近地点A距地面200km,远地点B距地面350km,已知地球的半径R 6371km •建立适当的直角坐标系,求出椭圆的轨迹方程.例6如图,设M x, y与定点F 4,0的距离和它到直线I : 兰的距离的比是常数4点M的轨迹方程./ 2 2 「亠「■25匚亠2MF(x 4 y ,到直线I:x 的距离d x44分析:若设点M x, y,则则容易得点M的轨迹方程.引申:(用《几何画板》探究)若点M x, y与定点F c,0的距离和它到定直线l :c距离比是常数e aac 0 ,则点M 的轨迹方程是椭圆.其中定点F c,0是焦点,2x —相应于F的准线;c由椭圆的对称性, 另一焦点F c,0 ,相应于F的准线l :练习:第52页1、作业:第53页4、教学反思:2、3、4、5、6、75ac4,求52a的c定直线l :类比椭圆:设参量b的意义:第一、便于写出双曲线的标准方程;第二、的几何意义.2 类比:写出焦点在y轴上,中心在原点的双曲线的标准方程召b (iii )例题讲解、引申与补充例1已知双曲线两个焦点分别为F15,0 , F25,0,双曲线上一点绝对值等于6,求双曲线的标准方程.分析:由双曲线的标准方程的定义及给出的条件,容易求出a,b,c的关系有明显P到R , F2距离差的2x2a1 a 0,b 0 . a,b, c.补充:求下列动圆的圆心M 的轨迹方程:① 与O C :2 22 y 2内切,且过点 A 2,0 :②与O C 1 : x 2 y 12 21 和O C2 : x y 4都外切;③与O C i :2 y 9外切,且与O C 2: x 223 y 1内切.解题剖析 半径为r :这表面上看是圆与圆相切的问题, 实际上是双曲线的定义问题•具体解: 设动圆•/ O C 与O M 内切,点A 在O C 外,• MC| r /2 MA,因此有MA 2x 2 •••点 MC 2,•点M 的轨迹是以C 、 A 为焦点的双曲线的左支,即M 的轨迹方程是MC i •••O M 与O c 1、O C 2 均外切,•••|MC 1| r 1, MC 2 r 2,因此有的轨迹是以C 2、C i 为焦点的双曲线的上支,• M 的轨迹方程是4y••• e M MC 2MC 24x 2 3MC i 1 ,与eG 外切,且e M 与e C 2内切,•- MC j4,•点M 的轨迹是以C i 、C 2为焦点的双曲线的右支,• MC 2r 1,因此M 的轨迹方程是例2已知A , B 两地相距800m ,在A 地听到炮弹爆炸声比在 B 地晚2s ,且声速为340m / s ,求炮弹爆炸点的轨迹方程. 分析:首先要判断轨迹的形状,由声学原理:由声速及 A , B 两地听到爆炸声的时间差,即可知A , B 两地与爆炸点的距离差为定值•由双曲线的定义可求出炮弹爆炸点的轨迹方程. 扩展:某中心接到其正东、正西、正北方向三个观察点的报告:正西、正北两个观察点同时听 到了一声巨响,正东观察点听到该巨响的时间比其他两个观察点晚 4s .已知各观察点到该中心的 距离都是1020m •试确定该巨响发生的位置(假定当时声音传播的速度为 340m/s ;相关点均在 同一平面内)• 解法剖析:因正西、正北同时听到巨响,则巨响应发生在西北方向或东南方向,以因正东比正西晚 4s ,则巨响应在以这两个观察点为焦点的双曲线上. 如图,以接报中心为原点 0,正东、正北方向分别为 x 轴、y 轴方向,建立直角坐标系,设 B 、C 分别是西、东、北观察点,则 A 1020,0 , B 1020,0 , C 0,1020 • 设P x,y 为巨响发生点,•/ A 、C 同时听到巨响,•OP 所在直线为y x ……①,又因B 点比A 点晚4s 听到巨响声,• PB PA 4 340 1360 m •由双曲线定义知,a 680 ,2 2c 1020 ,••• b 340^5 ,••• P点在双曲线方程为X 2y2 1 x 680……②.联立680 5 340①、②求出P点坐标为P 680 ;5,680 ,'5 •即巨响在正西北方向680、、10m处.探究:如图,设A,B的坐标分别为5,0,5,0 •直线AM,BM相交于点M,且它们4的斜率之积为,求点M的轨迹方程,并与§ 2. 1.例3比较,有什么发现?9探究方法:若设点M x,y,则直线AM , BM的斜率就可以用含x, y的式子表示,由于直线AM , BM的斜率之积是4,因此,可以求出x, y之间的关系式,即得到点M的轨迹方程.9练习:第60页1、2、3、作业:第66页1、2、2 . 3. 2双曲线的简单几何性质♦知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2 )通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义♦过程与方法目标(1 )复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过F56的思考问题,探究双曲线的扁平程度量椭圆的离心率. 〖板书〗§ 2. 2. 2双曲线的简单几何性质.(2) 新课讲授过程(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii )双曲线的简单几何性质2 2①范围:由双曲线的标准方程得, 1 0,进一步得:x a ,或xa .这说b a明双曲线在不等式 x a ,或x a 所表示的区域;② 对称性:由以 x 代x ,以y 代y 和 x 代x ,且以 y 代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心;③ 顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线 的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴, 焦点不在的对称轴叫做虚轴;c⑤ 离心率:双曲线的焦距与实轴长的比 e —叫做双曲线的离心率(e 1).a④渐近线:直线ybx 2x 叫做双曲线一 aa 2yb 2 1的渐近线;y 轴上的渐近线是扩展:求与双曲线x 2 162y —1共渐近线,2. 3, 3点的双曲线的标准方及离心率.解法剖析 :双曲线2x16291的渐近4x .①焦点在x 轴上时,设所求的双曲2线为X 216k 2 2 y 9k 2A 2;3, 3点在双曲线上,••• k 21,无解;4②焦点在y 轴上时,设所求的双曲线2x 16k 229:2 1,―A2 3, 3点在双曲线上,• k21,因此,所求双曲线42的标准方程为y9 41,离心率e5.这个要进行分类讨论,但只有一种情形有解,事实上, 3可直接设所求的双曲线的方程为2x162y一 mm R,m 0 .9(iii )例题讲解与引申、扩展例3求双曲线9y2 16x2 144的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出a,b,c.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在例4双曲线型冷却塔的外形,半径为12m,上口半径为13m,下口半径为25m,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m).是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小解法剖析:建立适当的直角坐标系,设双曲线的标准方程为2 2七七 1,算出a,b,c的值;a b此题应注意两点:①注意建立直角坐标系的两个原则;②关于 精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在 P 处堆放着刚购买的草皮,现要把这些草皮沿着道路 PA 或PB 送到呈矩形的足球场 ABCD 中去铺垫,已知|Ap 150m ,|Bp 100m,| BC| 60m , APB 60o •能否在足球场上画一条 “等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设M 为“等距离”线上任意一点,则|PA |AM点M 的轨迹方程.♦情感、态度与价值观目标在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教 学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生 创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线 的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系 的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取 近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要 求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并 掌握利用信息技术探究点的轨迹问题, 培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.♦能力目标(1) 分析与解决问题的能力:通过学生的积极参与和积极探究 ,培养学生的分析问题和解决 问题的能力.(2)思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问 题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能MF I 1 ^2 2 .16 ,16 J X 5y ,到直线l:x 一的距离dx — 15 5分析:若设点M x, y ,则a,b,c 的近似值,原则上在没有注意PB BM ,即BM | |AM | |Ap |Bp 50 (定值),“等距离”线是以A 、B 为焦点的双曲线的左支上的2部分,容易“等距离”线方程为x y1 35 x 625 375025,0 y 60 .理由略.例5如图,设M x, y 与定点F 5,0的距离和它到直线 15的距离的比是常数5,求4则容易得点M 的轨迹方程. 引申:《几何画板》探究点的轨迹:双曲线x, y 与定点 F c,0 的距离和它到定直线2a——的距离 c比是常数0,则点M 的轨迹方程是双曲线. 其中定点F c,02是焦点,定直线l : x —相c应于F 的准线; 另一焦点 F c,0,相应于F 的准线I : xx2力.(3) 实践能力:培养学生实际动手能力,综合利用已有的知识能力.(4)创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的 一般的思想、方法和途径.练习:第66页1、2、3、4、5 作业:第3、4、6补充:3.课题:双曲线第二定义教学目标:1•知识目标:掌握双曲线第二定义与准线的概念,并会简单的应用。
数学选修2-1苏教版:第2章 圆锥曲线与方程 2.6.2-2.6.3
2.6.2 求曲线的方程 2.6.3 曲线的交点学习目标 1.了解求曲线方程的步骤,会求简单曲线的方程.2.掌握求两条曲线交点的方法.3.领会运用坐标法研究直线与圆锥曲线的位置关系.知识点一 坐标法的思想思考1 怎样理解建立平面直角坐标系是解析几何的基础?答案 只有建立了平面直角坐标系,才有点的坐标,才能将曲线代数化,进一步用代数法研究几何问题.思考2 依据一个给定的平面图形,选取的坐标系唯一吗? 答案 不唯一,常以得到的曲线方程最简单为标准.梳理 (1)坐标法:借助于坐标系,通过研究方程的性质间接地来研究曲线性质的方法. (2)解析几何研究的主要问题:①通过曲线研究方程:根据已知条件,求出表示曲线的方程. ②通过方程研究曲线:通过曲线的方程,研究曲线的性质. 知识点二 求曲线的方程的步骤 1.建系:建立适当的坐标系.2.设点:设曲线上任意一点M 的坐标为(x ,y ). 3.列式:列出符合条件p (M )的方程f (x ,y )=0. 4.化简:化方程f (x ,y )=0为最简形式.5.证明:证明以化简后的方程的解为坐标的点都在曲线上. 知识点三 曲线的交点已知曲线C 1:f 1(x ,y )=0和C 2:f 2(x ,y )=0.(1)P 0(x 0,y 0)是C 1和C 2的公共点⇔⎩⎪⎨⎪⎧f 1(x 0,y 0)=0.f 2(x 0,y 0)=0,(2)求两曲线的交点,就是求方程组⎩⎪⎨⎪⎧f 1(x ,y )=0,f 2(x ,y )=0的实数解.(3)方程组有几组不同的实数解,两条曲线就有几个公共点;方程组没有实数解,两条曲线就没有公共点.1.x 2+y 2=1(x >0)表示的曲线是单位圆.(×)2.若点M (x ,y )的坐标是方程f (x ,y )=0的解,则点M 在曲线f (x ,y )=0上.(√) 3.方程y =x 与方程y =x 2x 表示同一曲线.(×)4.曲线xy =2与直线y =x 的交点是(2,2).(×)类型一 直接法求曲线的方程例1 一个动点P 到直线x =8的距离是它到点A (2,0)的距离的2倍.求动点P 的轨迹方程. 解 设P (x ,y ),则|8-x |=2P A . 则|8-x |=2(x -2)2+(y -0)2, 化简,得3x 2+4y 2=48,故动点P 的轨迹方程为3x 2+4y 2=48. 引申探究若本例中的直线改为“y =8”,求动点P 的轨迹方程. 解 设P (x ,y ),则P 到直线y =8的距离d =|y -8|, 又P A =(x -2)2+(y -0)2, 故|y -8|=2(x -2)2+(y -0)2, 化简,得4x 2+3y 2-16x +16y -48=0.故动点P 的轨迹方程为4x 2+3y 2-16x +16y -48=0. 反思与感悟 直接法求动点轨迹的关键及方法 (1)关键:①建立恰当的平面直角坐标系; ②找出所求动点满足的几何条件.(2)方法:求曲线的方程遵循求曲线方程的五个步骤,在实际求解时可简化为三大步骤:建系、设点;根据动点满足的几何条件列式;对所求的方程化简、证明. 特别提醒:直接法求动点轨迹方程的突破点是将几何条件代数化.跟踪训练1 已知两点M (-1,0),N (1,0),且点P 使MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列.求点P 的轨迹方程. 解 设点P (x ,y ),由M (-1,0),N (1,0), 得PM →=-MP →=(-1-x ,-y ),PN →=-NP →=(1-x ,-y ), MN →=-NM →=(2,0).∴MP →·MN →=2(x +1),PM →·PN →=x 2+y 2-1, NM →·NP →=2(1-x ).于是,MP →·MN →,PM →·PN →,NM →·NP →成公差小于零的等差数列等价于 ⎩⎪⎨⎪⎧x 2+y 2-1=12[2(x +1)+2(1-x )],2(1-x )-2(x +1)<0,即⎩⎪⎨⎪⎧x 2+y 2=3,x >0. ∴点P 的轨迹方程为x 2+y 2=3(x >0). 类型二 相关点法求解曲线的方程例2 动点M 在曲线x 2+y 2=1上移动,M 和定点B (3,0)连线的中点为P ,求P 点的轨迹方程.解 设P (x ,y ),M (x 0,y 0),因为P 为MB 的中点,所以⎩⎨⎧x =x 0+32,y =y2,即⎩⎪⎨⎪⎧x 0=2x -3,y 0=2y , 又因为M 在曲线x 2+y 2=1上, 所以(2x -3)2+4y 2=1.所以P 点的轨迹方程为(2x -3)2+4y 2=1. 反思与感悟 相关点法求解轨迹方程的步骤 (1)设动点P (x ,y ),相关动点M (x 0,y 0).(2)利用条件求出两动点坐标之间的关系⎩⎪⎨⎪⎧x 0=f (x ,y ),y 0=g (x ,y ).(3)代入相关动点的轨迹方程. (4)化简、整理,得所求轨迹方程.跟踪训练2 已知△ABC 的两顶点A ,B 的坐标分别为A (0,0),B (6,0),顶点C 在曲线y =x 2+3上运动,求△ABC 重心的轨迹方程.解 设G (x ,y )为△ABC 的重心,顶点C 的坐标为(x ′,y ′),则由重心坐标公式,得⎩⎨⎧x =0+6+x ′3,y =0+0+y ′3,所以⎩⎪⎨⎪⎧x ′=3x -6,y ′=3y .因为顶点C (x ′,y ′)在曲线y =x 2+3上, 所以3y =(3x -6)2+3, 整理,得y =3(x -2)2+1.故ΔABC 重心的轨迹方程为y =3(x -2)2+1. 类型三 根据曲线的方程求两曲线的交点例3 过点M (1,2)的直线与曲线y =ax (a ≠0)有两个不同的交点,且这两个交点的纵坐标之和为a ,求a 的取值范围.解 当过M 点的直线斜率为零或斜率不存在时, 不可能与曲线有两个公共点. 设直线方程为y -2=k (x -1)(k ≠0), 联立曲线方程,得⎩⎪⎨⎪⎧y -2=k (x -1),y =a x ,消去x ,得y 2-(2-k )y -ka =0.①当此方程有两个不同的根,即方程组有两个不同的解时,直线与曲线有两个不同的交点. ∴Δ=(2-k )2+4ka >0.设方程①的两根分别为y 1,y 2, 由根与系数的关系,得y 1+y 2=2-k . 又∵y 1+y 2=a ,∴k =2-a , 代入Δ>0中,得a 2+4a (2-a )>0, 解得0<a <83.又∵k ≠0,∴2-a ≠0,即a ≠2.∴a 的取值范围是(0,2)∪⎝⎛⎭⎫2,83. 反思与感悟 结合曲线方程的定义,两曲线的交点的坐标即为两曲线的方程构成的方程组的解,所以可以把求两曲线交点坐标的问题转化为解方程组的问题,讨论交点的个数问题转化为讨论方程组解的个数问题.若两曲线C 1和C 2的方程分别为F (x ,y )=0和G (x ,y )=0,则它们的交点坐标由方程组⎩⎪⎨⎪⎧F (x ,y )=0,G (x ,y )=0的解来确定.跟踪训练3 已知直线y =2x +b 与曲线xy =2相交于A ,B 两点,若AB =5,求实数b 的值. 解 设A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎪⎨⎪⎧y =2x +b ,xy =2,消去y ,整理得2x 2+bx -2=0.①∵x 1,x 2是关于x 的方程①的两根, ∴x 1+x 2=-b2,x 1x 2=-1.又AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2(x 1+x 2)2-4x 1x 2,其中k =2,代入则有 AB =1+22·b 2+162=5,∴b 2=4,则b =±2.故所求b 的值为±2.1.直线y =x +4与双曲线x 2-y 2=1的交点坐标为________. 答案 ⎝⎛⎭⎫-178,158 解析 由⎩⎪⎨⎪⎧y =x +4,x 2-y 2=1得x 2-(x +4)2-1=0,即⎩⎨⎧x =-178,y =158.2.已知斜率为2的直线l 经过椭圆x 25+y 24=1的右焦点F 2,则直线l 与椭圆的交点坐标为________.答案 (0,-2),⎝⎛⎭⎫53,43解析 因F 2(1,0),l 方程为y =2x -2. 由方程组⎩⎪⎨⎪⎧y =2x -2,x 25+y 24=1,解得⎩⎪⎨⎪⎧x =0,y =-2或⎩⎨⎧x =53,y =43,故所得交点坐标为(0,-2),⎝⎛⎭⎫53,43.3.直线x a +y 2-a =1与x ,y 轴交点的中点的轨迹方程是________________.答案 x +y -1=0(x ≠0,x ≠1)解析 设直线x a +y2-a =1与x ,y 轴交点为A (a,0),B (0,2-a ),A ,B 中点为M (x ,y ),则x=a 2,y =1-a2,消去a ,得x +y =1.∵a ≠0,a ≠2,∴x ≠0,x ≠1. 4.已知⊙O 的方程是x 2+y 2-2=0,⊙O ′的方程是x 2+y 2-8x +10=0,由动点P 向⊙O 和⊙O ′所引的切线长相等,则动点P 的轨迹方程是________. 答案 x =32解析 设动点P (x ,y ),则x 2+y 2-2=(x -4)2+y 2-6, 化简整理得x =32.5.M 为直线l :2x -y +3=0上的一动点,A (4,2)为一定点,又点P 在直线AM 上运动,且AP →=3PM →,求动点P 的轨迹方程.解 设点M ,P 的坐标分别为M (x 0,y 0),P (x ,y ),由题设及向量共线条件可得⎩⎪⎨⎪⎧4x =4+3x 0,4y =3y 0+2,所以⎩⎨⎧x 0=4x -43,y 0=4y -23,因为点M (x 0,y 0)在直线2x -y +3=0上, 所以2×4x -43-4y -23+3=0,即8x -4y +3=0,从而点P 的轨迹方程为8x -4y +3=0.求解轨迹方程常用方法:(1)直接法:直接根据题目中给定的条件求解方程.(2)定义法:依据有关曲线的性质建立等量关系,从而确定其轨迹方程.(3)代入法:有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法或代入法.(4)待定系数法:根据条件能知道曲线的类型,可先根据曲线方程的一般形式设出方程,再根据条件确定待定的系数.一、填空题1.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点轨迹方程是________. 答案 (x -2)2+(y +1)2=1解析 设中点的坐标为(x ,y ),则相应圆x 2+y 2=4上的点的坐标为(2x -4,2y +2), 所以(2x -4)2+(2y +2)2=4, 即(x -2)2+(y +1)2=1.2.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 答案 π3或5π3解析 由(cos α-2)2+sin 2α=3,得cos α=12.又因为0≤α<2π, 所以α=π3或α=5π3.3.已知直线l :y =x +b 与曲线C :y =1-x 2有两个公共点,则b 的取值范围为________. 答案 [1,2)解析 在同一直角坐标系内作出y =x +b 与y =1-x 2的图象,如图所示,可得b 的范围为1≤b < 2.4.直线y =mx +1与椭圆x 2+4y 2=1有且只有一个交点,则m 2的值为________. 答案 34解析 因为直线与椭圆只有一个交点,由⎩⎪⎨⎪⎧y =mx +1,x 2+4y 2=1,消去y 得 (1+4m 2)x 2+8mx +3=0,所以由Δ=(8m )2-12(1+4m 2)=16m 2-12=0, 解得m 2=34.5.已知定点A (0,1),直线l 1:y =-1,记过点A 且与直线l 1相切的圆的圆心为点C .则动点C 的轨迹E 的方程为________. 答案 x 2=4y解析 设动点C (x ,y ),根据题意可知,点C 到点A 的距离与到直线l 1:y =-1的距离相等,所以x 2+(y -1)2=|y +1|, 两边平方整理得x 2=4y .6.已知点A (-1,0),B (1,0),且MA →·MB →=0,则动点M 的轨迹方程是________. 答案 x 2+y 2=1解析 设动点M (x ,y ),则MA →=(-1-x ,-y ),MB →=(1-x ,-y ).由MA →·MB →=0,得(-1-x )(1-x )+(-y )·(-y )=0, 即x 2+y 2=1.7.已知点F (1,0),直线l :x =-1,P 为平面上的一动点,过点P 作l 的垂线,垂足为Q ,且QP →·QF →=FP →·FQ →.则动点P 的轨迹C 的方程是________. 答案 y 2=4x解析 设点P (x ,y ),则Q (-1,y ). 由QP →·QF →=FP →·FQ →,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ), 所以2(x +1)=-2(x -1)+y 2, 化简得y 2=4x .8.已知两点A (2,0),B (-2,0),点P 为平面内一动点,过点P 作y 轴的垂线,垂足为Q ,且P A →·PB →=2PQ →2,则动点P 的轨迹方程为________. 答案 y 2-x 2=2解析 设动点P 的坐标为(x ,y ), 则点Q 的坐标为(0,y ),PQ →=(-x,0),P A →=(2-x ,-y ), PB →=(-2-x ,-y ), P A →·PB →=x 2-2+y 2.由P A →·PB →=2PQ →2,得x 2-2+y 2=2x 2, 所以所求动点P 的轨迹方程为y 2-x 2=2.9.已知直线x -y -1=0与抛物线y =ax 2相切,则a =________. 答案 14解析 由⎩⎪⎨⎪⎧x -y -1=0,y =ax 2,消去y 得方程ax 2-x +1=0. 令Δ=1-4a =0,得a =14.10.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2.过F 1作倾斜角为30°的直线与椭圆的一个交点P ,且PF 2⊥x 轴,则此椭圆的离心率e 为________. 答案33解析 由题意得PF 2=b 2a ,PF 1=2b 2a ,由椭圆定义得3b 2a =2a,3b 2=3a 2-3c 2=2a 2,则此椭圆的离心率e 为33. 11.已知过抛物线y 2=6x 焦点的弦长为12,则该弦所在直线的倾斜角是________. 答案 45°或135°解析 由y 2=6x 得焦点坐标为⎝⎛⎭⎫32,0, 设直线方程y =k ⎝⎛⎭⎫x -32, 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -32,y 2=6x ,得k 2x 2-(6+3k 2)x +94k 2=0,设直线与抛物线的交点为A (x 1,y 1),B (x 2,y 2), ∴x 1+x 2=6+3k 2k2,∵弦长为12,∴6+3k 2k 2+3=12,∴k =±1,∴直线的倾斜角为45°或135°.二、解答题12.在平面直角坐标系中,已知点F (0,2),一条曲线在x 轴的上方,它上面的每一点到F 的距离减去到x 轴的距离的差都是2,求这条曲线的方程. 解 设点M (x ,y )是所求曲线上任意一点, 因为曲线在x 轴的上方,所以y >0.过点M 作MB ⊥x 轴,垂足是点B ,则MF -MB =2, 即x 2+(y -2)2-y =2, 整理得x 2+(y -2)2=(y +2)2, 化简得y =18x 2,所以所求曲线的方程是y =18x 2(x ≠0).13.已知线段AB ,B 点的坐标为(6,0),A 点在曲线y =x 2+3上运动,求线段AB 的中点M 的轨迹方程.解 设线段AB 的中点M 的坐标为(x ,y ), 点A (x 1,y 1),则⎩⎨⎧x =x 1+62,y =y12,得⎩⎪⎨⎪⎧x 1=2x -6,y 1=2y . 由题知点A (x 1,y 1)在曲线y =x 2+3上, 所以2y =(2x -6)2+3,所以线段AB 的中点M 的轨迹方程为y =2(x -3)2+32.三、探究与拓展14.过点P (0,1)的直线与曲线|x |-1=1-(1-y )2相交于A ,B 两点,则线段AB 长度的取值范围是____________. 答案 [22,4]解析 曲线|x |-1=1-(1-y )2可化为x ≥1,(x -1)2+(y -1)2=1,或x <-1,(x +1)2+(y -1)2=1,图象如图所示,线段AB 长度的取值范围是[22,4].最新中小学教案、试题、试卷15.已知直角坐标平面上点Q (2,0)和圆O :x 2+y 2=1,M 为直角坐标平面内一动点,过点M 作圆O 的切线,切点为N ,若MN 和MQ 的比值等于常数λ(λ>0),求动点M 的轨迹方程,并说明它表示什么曲线.解 连结ON ,OM ,则ON ⊥MN ,设M (x ,y ).∵圆的半径是1,∴MN 2=OM 2-ON 2=OM 2-1.由题意,MN MQ=λ(λ>0),∴MN =λMQ , 即x 2+y 2-1=λ(x -2)2+y 2,整理得(λ2-1)(x 2+y 2)-4λ2x +(1+4λ2)=0.∵λ>0,∴当λ=1时,方程化为x =54, 该方程表示一条直线;当λ≠1时,方程化为⎝⎛⎭⎫x -2λ2λ2-12+y 2=1+3λ2(λ2-1)2, 该方程表示以⎝⎛⎭⎫2λ2λ2-1,0为圆心,以1+3λ2|λ2-1|为半径的圆.。
高中数学苏教版选修2-1第2章《圆锥曲线与方程》(3.2)word学案
2.3.2双曲线的几何性质[学习目标] 1.了解双曲线的几何性质,如范围、对称性、顶点、渐近线和离心率等.2.能用双曲线的几何性质解决一些简单问题.3.能区别椭圆与双曲线的性质.[知识链接]类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y2b2=1 (a>0,b>0)的哪些几何性质?答:(1)范围:x≥a或x≤-a;(2)对称性:双曲线关于x轴、y轴和原点都是对称的;(3)顶点:双曲线有两个顶点A1(-a,0),A2(a,0).[预习导引]1.双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a y≥a或y≤-a对称性对称轴:坐标轴对称中心:原点顶点坐标A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞)2.实轴和虚轴等长的双曲线叫做等轴双曲线,它的渐近线是y=±x.要点一 已知双曲线的标准方程求其几何性质例1 求双曲线9y 2-16x 2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程. 解 把方程9y 2-16x 2=144化为标准方程y 242-x 232=1.由此可知,实半轴长a =4,虚半轴长b =3;c =a 2+b 2=42+32=5,焦点坐标是(0,-5),(0,5); 离心率e =c a =54;渐近线方程为y =±43x .规律方法 讨论双曲线的几何性质,先要将双曲线方程化为标准形式,然后根据双曲线两种形式的特点得到几何性质.跟踪演练1 求双曲线x 2-3y 2+12=0的实轴长、虚轴长、焦点坐标、顶点坐标、渐近线方程、离心率. 解 将方程x 2-3y 2+12=0化为标准方程y 24-x 212=1,∴a 2=4,b 2=12,∴a =2,b =23,∴c =a 2+b 2=16=4. ∴双曲线的实轴长2a =4,虚轴长2b =4 3.焦点坐标为F 1(0,-4),F 2(0,4),顶点坐标为A 1(0,-2),A 2(0,2),渐近线方程为y =±33x ,离心率e =2.要点二 根据双曲线的几何性质求标准方程 例2 求适合下列条件的双曲线的标准方程: (1)一个焦点为(0,13),且离心率为135;(2)渐近线方程为y =±12x ,且经过点A (2,-3).解 (1)依题意可知,双曲线的焦点在y 轴上,且c =13,又c a =135,∴a =5,b =c 2-a 2=12,故其标准方程为y 252-x 2122=1. (2)方法一 ∵双曲线的渐近线方程为y =±12x ,若焦点在x 轴上,设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),则b a =12.①∵A (2,-3)在双曲线上,∴4a 2-9b2=1.②由①②联立,无解.若焦点在y 轴上,设所求双曲线的标准方程为y 2a 2-x 2b 2=1(a >0,b >0),则a b =12.③∵A (2,-3)在双曲线上,∴9a 2-4b 2=1.④由③④联立,解得a 2=8,b 2=32. ∴所求双曲线的标准方程为y 28-x 232=1.方法二 由双曲线的渐近线方程为y =±12x ,可设双曲线方程为x 222-y 2=λ(λ≠0),∵A (2,-3)在双曲线上, ∴2222-(-3)2=λ,即λ=-8. ∴所求双曲线的标准方程为y 28-x 232=1.规律方法 由双曲线的几何性质求双曲线的标准方程,一般用待定系数法.当双曲线的焦点不明确时,方程可能有两种形式,此时应注意分类讨论,为了避免讨论,也可设双曲线方程为mx 2-ny 2=1 (mn >0),从而直接求得.若已知双曲线的渐近线方程为y =±b a x ,还可以将方程设为x 2a2-y 2b2=λ (λ≠0),避免讨论焦点的位置. 跟踪演练2 求中心在原点,对称轴为坐标轴,且满足下列条件的双曲线方程: (1)双曲线过点(3,92),离心率e =103; (2)过点P (2,-1),渐近线方程是y =±3x . 解(1)e 2=109,得c 2a 2=109,设a 2=9k , 则c 2=10k ,b 2=c 2-a 2=k (k >0). 于是,设所求双曲线方程为x 29k -y 2k =1,①或y 29k -x 2k=1,② 把(3,92)代入①,得k =-161与k >0矛盾,无解; 把(3,92)代入②,得k =9, 故所求双曲线方程为y 281-x 29=1.(2)方法一 首先确定所求双曲线的标准类型,可在图中判断一下点P (2,-1)在渐近线y =-3x 的上方还是下方.如图所示,x =2与y =-3x 交点为Q (2,-6),P (2,-1)在Q (2,-6)的上方,所以焦点在x 轴上. 设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0).依题意,得⎩⎨⎧ba=3,4a 2-1b 2=1,解得⎩⎪⎨⎪⎧a 2=359,b 2=35.∴所求双曲线方程为x 2359-y 235=1.方法二 由渐近线方程y =±3x , 可设所求双曲线方程为x 2-y 29=λ (λ≠0),(*) 将点P (2,-1)代入(*),得λ=359,∴所求双曲线方程为x 2359-y 235=1.要点三 直线与双曲线的位置关系例3 直线l 在双曲线x 23-y 22=1上截得的弦长为4,其斜率为2,求l 的方程.解 设直线l 的方程为y =2x +m ,由⎩⎪⎨⎪⎧y =2x +m x 23-y 22=1得10x 2+12mx +3(m 2+2)=0.(*) 设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 由根与系数的关系,得x 1+x 2=-65m ,x 1x 2=310(m 2+2).又y 1=2x 1+m ,y 2=2x 2+m , ∴y 1-y 2=2(x 1-x 2),∴AB 2=(x 1-x 2)2+(y 1-y 2)2=5(x 1-x 2)2 =5[(x 1+x 2)2-4x 1x 2] =5[3625m 2-4×310(m 2+2)].∵AB =4,∴365m 2-6(m 2+2)=16.∴3m 2=70,m =±2103. 由(*)式得Δ=24m 2-240, 把m =±2103代入上式,得Δ>0, ∴m 的值为±2103. ∴所求l 的方程为y =2x ±2103. 规律方法 直线与双曲线相交的题目,一般先联立方程组,消去一个变量,转化成关于x 或y 的一元二次方程.要注意根与系数的关系,根的判别式的应用.若与向量有关,则将向量用坐标表示,并寻找其坐标间的关系,结合根与系数的关系求解.跟踪演练3 设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .(1)求实数a 的取值范围;(2)设直线l 与y 轴的交点为P ,若P A →=512PB →,求a 的值.解 (1)将y =-x +1代入双曲线方程x 2a2-y 2=1(a >0)得(1-a 2)x 2+2a 2x -2a 2=0.依题意⎩⎪⎨⎪⎧1-a 2≠0,Δ=4a 4+8a 2(1-a 2)>0,所以0<a <2且a ≠1.(2)设A (x 1,y 1),B (x 2,y 2),P (0,1), 因为P A →=512PB →,所以(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2.由于x 1,x 2是方程(1-a 2)x 2+2a 2x -2a 2=0的两根, 且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2.消去x 2得-2a 21-a 2=28960.由a >0,解得a =1713.1.双曲线x 24-y 212=1的焦点到渐近线的距离为________.答案 23解析 ∵双曲线x 24-y 212=1的一个焦点为F (4,0),其中一条渐近线方程为y =3x ,∴点F 到3x -y =0的距离为432=2 3.2.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 的值为________. 答案 -14解析 由双曲线方程mx 2+y 2=1,知m <0,则双曲线方程可化为y 2-x 2-1m=1,则a 2=1, a =1,又虚轴长是实轴长的2倍,∴b =2,∴-1m =b 2=4,∴m =-14.3.若在双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的右支上到原点O 和右焦点F 距离相等的点有两个,则双曲线的离心率的取值范围是________. 答案 (2,+∞)解析 由于到原点O 和右焦点F 距离相等的点在线段OF 的垂直平分线上,其方程为x =c2.依题意,在双曲线x 2a 2-y 2b2=1 (a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,所以直线x =c 2与右支有两个交点,故应满足c 2>a ,即ca>2,得e >2.4.已知双曲线C :x 2a 2-y 2b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为________.答案 x 220-y 25=1解析 双曲线C 的渐近线方程为x 2a 2-y 2b 2=0及点P (2,1)在渐近线上,∴4a 2-1b 2=0,即a 2=4b 2,又a 2+b 2=c 2=25,解得b 2=5,a 2=20.1.渐近线是双曲线特有的性质.两方程联系密切,把双曲线的标准方程x 2a 2-y 2b 2=1 (a >0,b >0)右边的常数1换为0,就是渐近线方程.反之由渐近线方程ax ±by =0变为a 2x 2-b 2y 2=λ,再结合其他条件求得λ就可得双曲线方程.2.准确画出几何图形是解决解析几何问题的第一突破口.对圆锥曲线来说,渐近线是双曲线特有的性质.利用双曲线的渐近线来画双曲线特别方便,而且较为精确,只要作出双曲线的两个顶点和两条渐近线,就能画出它的近似图形.一、基础达标1.双曲线2x 2-y 2=8的实轴长是________. 答案 4 解析2x 2-y 2=8可变形为x 24-y 28=1,则a 2=4,a =2,2a =4.2.双曲线3x 2-y 2=3的渐近线方程是____________ 答案 y =±3x解析 双曲线方程可化为标准形式:x 21-y 23=1,∴a =1,b =3,∴双曲线的渐近线方程为y =±3x .3.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为________. 答案 x 24-y 212=1解析 依题意焦点在x 轴上,c =4,ca =2,∴a =2.b 2=c 2-a 2=12.故方程为x 24-y 212=1. 4.已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则双曲线C 的方程是________.答案 x 24-y 25=1解析 依题意得c =3,e =32,所以a =2,从而a 2=4,b 2=c 2-a 2=5.故方程为x 24-y 25=1.5.双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为________. 答案3解析 如图,在Rt △MF 1F 2中,∠MF 1F 2=30°. 又F 1F 2=2c , ∴MF 1=2c cos30°=433c , MF 2=2c ·tan30°=233c .∴2a =MF 1-MF 2=233c .∴e =ca= 3.6.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为________.答案 y =±12x解析 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,故有a 2+b 2a 2=54,所以b 2a 2=14,解得b a =12.故C 的渐近线方程为y =±12x . 7.根据下列条件,求双曲线的标准方程.(1)与双曲线x 29-y 216=1有共同的渐近线,且过点(-3,23);(2)F 1、F 2是双曲线的左、右焦点,P 是双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,其离心率为2.解 (1)设所求双曲线方程为x 29-y 216=λ (λ≠0),将点(-3,23)代入得λ=14,所以双曲线方程为x 29-y 216=14,即4x 29-y 24=1.(2)设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).因为F 1F 2=2c ,而e =ca =2.由双曲线的定义,得 |PF 1-PF 2|=2a =c . 由余弦定理,得(2c )2=PF 21+PF 22-2PF 1·PF 2·cos ∠F 1PF 2=(PF 1-PF 2)2+2PF 1·PF 2(1-cos60°), 化简,得4c 2=c 2+PF 1·PF 2.又S △PF 1F 2=12PF 1·PF 2·sin60°=12 3.所以PF 1·PF 2=48.即3c 3=48,c 2=16,得a 2=4,b 2=12. 故所求双曲线的方程为x 24-y 212=1.二、能力提升8.已知圆C 过双曲线x 29-y 216=1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是________. 答案163解析 由双曲线的几何性质,易知圆C 过双曲线同一支上的顶点和焦点,所以圆C 的圆心的横坐标为±4.故圆心坐标为(4,±473)或(-4,±473).易求得它到双曲线中心的距离为163.9.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是________.答案 (-12,0)解析 双曲线方程可变为x 24-y 2-k =1,则a 2=4,b 2=-k ,c 2=4-k ,e =ca =4-k 2,又∵e ∈(1,2),则1<4-k2<2,解得-12<k <0. 10.已知双曲线C :x 24-y 2m =1的开口比等轴双曲线的开口更开阔,则实数m 的取值范围是________. 答案 (4,+∞)解析 ∵等轴双曲线的离心率为2,且双曲线C 的开口比等轴双曲线的开口更开阔,∴双曲线C :x 24-y 2m =1的离心率e >2,即4+m 4>2.∴m >4.11.已知双曲线3x 2-y 2=3,直线l 过右焦点F 2,且倾斜角为45°,与双曲线交于A 、B 两点,试问A 、B 两点是否位于双曲线的同一支上?并求弦AB 的长. 解 双曲线方程可化为x 21-y 23=1,c 2=a 2+b 2=4,∴c =2. ∴F 2(2,0),又l 的斜率为1. ∴直线l 的方程为y =x -2, 代入双曲线方程,得2x 2+4x -7=0. 设A (x 1,y 1)、B (x 2,y 2),∵x 1·x 2=-72<0,∴A 、B 两点不位于双曲线的同一支上. ∵x 1+x 2=-2,x 1·x 2=-72,∴AB =1+k 2|x 1-x 2| =1+k 2(x 1+x 2)2-4x 1x 2 =2·(-2)2-4×(-72)=6.12.已知双曲线的一条渐近线为x +3y =0,且与椭圆x 2+4y 2=64有相同的焦距,求双曲线的标准方程.解 椭圆方程为x 264+y 216=1,可知椭圆的焦距为8 3.①当双曲线的焦点在x 轴上时, 设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0),∴⎩⎪⎨⎪⎧ a 2+b 2=48,b a =33, 解得⎩⎪⎨⎪⎧a 2=36,b 2=12. ∴双曲线的标准方程为x 236-y 212=1.②当双曲线的焦点在y 轴上时, 设双曲线方程为y 2a 2-x 2b 2=1 (a >0,b >0),∴⎩⎪⎨⎪⎧a 2+b 2=48,a b =33,解得⎩⎪⎨⎪⎧a 2=12,b 2=36. ∴双曲线的标准方程为y 212-x 236=1.由①②可知,双曲线的标准方程为 x 236-y 212=1或y 212-x 236=1. 三、探究与创新 13.给定双曲线x 2-y 22=1,过点B (1,1)是否能作直线m ,使它与所给的双曲线交于两点Q 1及Q 2,且点B 是线段Q 1Q 2的中点?这样的m 如果存在,求出它的方程,如果不存在,请说明理由.解 方法一 设存在直线m 过B 与双曲线交于Q 1、Q 2,且B 是Q 1Q 2的中点,当直线m 的斜率不存在时,显然只与双曲线有一个交点; 当直线m 的斜率存在时,设直线m 的方程为 y -1=k (x -1), 由⎩⎪⎨⎪⎧y -1=k (x -1),x 2-y 22=1得 (2-k 2)x 2+(2k 2-2k )x -(k 2-2k +3)=0, 设该方程的两根为x 1、x 2, 由根与系数的关系,第- 11 -页 共11页 得x 1+x 2=2k 2-2k k 2-2=2,解得k =2. 当k =2时,Δ=(2k 2-2k )2+4(2-k 2)(k 2-2k +3)=-8<0,因此不存在满足题意的直线.方法二 假设这样的直线l 存在,设Q 1(x 1,y 1),Q 2(x 2,y 2),则有x 1+x 22=1,y 1+y 22=1. ∴x 1+x 2=2,y 1+y 2=2,且⎩⎪⎨⎪⎧2x 21-y 21=2,2x 22-y 22=2, 两式相减,得(2x 21-2x 22)-(y 21-y 22)=0, ∴2(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0,∴2(x 1-x 2)-(y 1-y 2)=0.若直线Q 1Q 2⊥Ox ,则线段Q 1Q 2的中点不可能是点Q (1,1),∴直线Q 1Q 2有斜率,于是k =y 1-y 2x 1-x 2=2. ∴直线Q 1Q 2的方程为y -1=2(x -1),即y =2x -1.由⎩⎪⎨⎪⎧y =2x -1,2x 2-y 2=2 得2x 2-(2x -1)2=2, 即2x 2-4x +3=0,∴Δ=16-24<0.这就是说,直线l 与双曲线没有公共点,因此这样的直线不存在.。
苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案
§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。
高中数学选修2-1第二章圆锥曲线
2
2
y x + 2 =1 (a > b > 0) 2 a b
2
2
x2 y2 − 2 =1 (a > 0,b > 0) 2 a b
抛物线的标准方程: 抛物线的标准方程:
y2 x2 − 2 =1 (a > 0,b > 0) 2 a b
y2 = ±2px ( p > 0)
动 M 一 定 F的 离 它 一 定 线的 离 比 点 与 个 点 距 和 到 条 直 l 距 的 是 数e, 常 l d .M
l
d
.M .
F
l
d.M
.
.
e >1
F
F
0 <e <1
e =1
定点是焦点,定直线叫做准线,常数e是离心率 .
椭圆的标准方程: 椭圆的标准方程:
x y + 2 =1 (a > b > 0) 2 a b
3.双曲线的几何性质:以 .双曲线的几何性质: x2/a2-y2/b2=1(a、b>0)表示的双曲线为例,其几 表示的双曲线为例, > 表示的双曲线为例 何性质如下: 何性质如下: (1)范围:x≤-a,或x≥a 范围: 范围 , (2)关于 轴、y轴、原点对称, 关于x轴 轴 原点对称, 关于 (3)两顶点是 ±a,0)(4)离心率 两顶点是(± 两顶点是 离心率 e=c/a∈(1,+∞).c=√a2+b2(5)渐近线方程为 ∈ 渐近线方程为 y=±bx/a,准线方程是 ±a2/c ± ,准线方程是x=±
椭圆 圆 锥 曲 线
定义 标准方程
双曲线
几何性质
抛物线
直线与圆锥曲线 的位置关系
高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)
2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1的全部内容。
2.3。
2 双曲线的几何性质学习目标1。
了解双曲线的几何性质(范围、对称性、顶点、实轴长和虚轴长等)。
2。
理解离心率的定义、取值范围和渐近线方程。
3。
掌握标准方程中a,b,c,e间的关系.知识点一双曲线的性质标准方程错误!-错误!=1(a〉0,b〉0)错误!-错误!=1 (a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴;对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0)顶点坐标:A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!a,b,c间的关系c2=a2+b2(c〉a〉0,c>b>0)知识点二等轴双曲线思考求下列双曲线的实半轴长、虚半轴长,并分析其共同点.(1)x2-y2=1;(2)4x2-4y2=1.答案(1)的实半轴长为1,虚半轴长为1(2)的实半轴长为错误!,虚半轴长为错误!。
它们的实半轴长与虚半轴长相等.梳理实轴和虚轴等长的双曲线叫作等轴双曲线,其渐近线方程为y=±x,离心率为 2.1.双曲线错误!-错误!=1与错误!-错误!=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-错误!=1与错误!-错误!=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的离心率为错误!。
高中数学苏教版选修2-1课件:第2章 圆锥曲线与方程2.1
在双曲线的定义中,注意三个关键点:①在平面内;②差的 绝对值; ③定值且定值小于两定点间距.在这三个条件中, 缺少一 个条件,其动点轨迹也不是双曲线.
[ 再练一题] 2.已知 A(0,-5),B(0,5),若|PA|-|PB|=6,则 P 点的轨迹为________, 若|PA|-|PB|=10,则 P 点的轨迹为________. 【导学号:09390018】 【解析】 ∵|PA|-|PB|=6<10 时,
如何区分椭圆与双曲线
探究 1 已知 F1(-2,0),F2(2,0),若 PF1+PF2=6 时,点 P 的轨迹是什么? 若|PF1-PF2|=2 时,点 P 的轨迹是什么? 【提示】 若 PF1+PF2=6>4,则 P 的轨迹为椭圆;若|PF1-PF2|=2<4,
则 P 的轨迹为双曲线.理解椭圆关注几个词:“和”“定值”“大于焦距”; 理解双曲线关注几个词:“差”“绝对值”“定值”“小于焦距”.
【精彩点拨】 把代数方程转化为几何问题解决,严格扣准双曲线的定义.
【自主解答】
(1)∵| x+52+y2- x-52+y2|表示点 P(x,y)到两定点
F1(-5,0),F2(5,0)的距离之差的绝对值,|F1F2|=10,∴||PF1|-|PF2||=6<|F1F2|, 故点 P 的轨迹是双曲线. (2)∵ x+42+y2- x-42+y2表示点 P(x,y)到两定点 F1(-4,0),F2(4,0) 的距离之差,|F1F2|=8, ∴|PF1|-|PF2|=6<|F1F2|, 故点 P 的轨迹是双曲线的右支.
【解析】 ∵PF1+PF2=6>F1F2, ∴点 P 的轨迹是以 F1, F2 为焦点的椭圆. 【答案】 以 F1,F2 为焦点的椭圆
苏教版2018-2019高二数学新学案选修2-1:第三章 圆锥曲线与方程 §3 3.1
§3双曲线3.1双曲线及其标准方程学习目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程及其求法.3.会利用双曲线的定义和标准方程解决简单问题.知识点一双曲线的定义思考如图,若取一条拉链,拉开它的一部分,在拉开的两边上各选择一点,分别固定在点F1,F2上,把笔尖放在点M处,拉开或闭拢拉链,笔尖经过的点可画出一条曲线,那么曲线上的点应满足怎样的几何条件?答案曲线上的点满足条件:|MF1|-|MF2|=常数;如果改变一下笔尖位置,使|MF2|-|MF1|=常数,可得到另一条曲线.梳理(1)平面内到两个定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合叫作双曲线.定点F1,F2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距;(2)关于“小于|F1F2|”:①若将“小于|F1F2|”改为“等于|F1F2|”,其余条件不变,则动点集合是以F1,F2为端点的两条射线(包括端点);②若将“小于|F1F2|”改为“大于|F1F2|”,其余条件不变,则动点集合为空集.(3)若将“绝对值”去掉,其余条件不变,则动点的集合只有双曲线的一支.(4)若常数为零,其余条件不变,则点的集合是线段F1F2的中垂线.知识点二双曲线的标准方程思考双曲线中a,b,c的关系如何?与椭圆中a,b,c的关系有何不同?答案双曲线标准方程中,b2=c2-a2,即c2=a2+b2,其中c>a,c>b,a与b的大小关系不确定;而在椭圆中b 2=a 2-c 2,即a 2=b 2+c 2,其中a >b >0,a >c ,c 与b 大小不确定.梳理 (1)双曲线两种形式的标准方程(2)焦点F 1,F 2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.1.平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.(×) 2.平面内到点F 1(0,4),F 2(0,-4)的距离之差等于6的点的轨迹是双曲线.(×) 3.平面内到点F 1(0,4),F 2(0,-4)的距离之差的绝对值等于8的点的轨迹是双曲线.(×)类型一 双曲线定义的应用例1 (1)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( ) A .11 B .9 C .5D .3考点 双曲线的定义题点 双曲线定义的应用 答案 B解析 由双曲线的定义,得||PF 1|-|PF 2||=2a =6, 即|3-|PF 2||=6,解得|PF 2|=9(负值舍去),故选B.(2)设F 1,F 2分别是双曲线x 2-y 224=1的左、右焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A .4 2 B .8 3 C .24D .48考点 双曲线的定义 题点 双曲线定义的应用 答案 C解析 由题意,得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2,3|PF 1|=4|PF 2|,解得⎩⎪⎨⎪⎧|PF 1|=8,|PF 2|=6.又由|F 1F 2|=10,可得△PF 1F 2是直角三角形, 则12PF F S=12×|PF 1|×|PF 2|=24. 反思与感悟 焦点F 1,F 2的位置是双曲线定位的条件,它决定了双曲线标准方程的类型.“焦点跟着正项走”,若x 2项的系数为正,则焦点在x 轴上;若y 2项的系数为正,那么焦点在y 轴上.双曲线的焦点位置不确定时可设其标准方程为Ax 2+By 2=1(AB <0).跟踪训练1 在△ABC 中,已知|AB |=42,A (-22,0),B (22,0),且内角A ,B ,C 满足sin B -sin A =12sin C ,求顶点C 的轨迹方程.考点 双曲线的定义 题点 双曲线定义的应用解 由sin B -sin A =12sin C 及正弦定理,可得b -a =c2,从而有|CA |-|CB |=12|AB |=22<|AB |,由双曲线的定义知,点C 的轨迹为双曲线的右支. ∵a =2,c =22,∴b 2=c 2-a 2=6,∴顶点C 的轨迹方程为x 22-y 26=1(x >2).类型二 求双曲线的标准方程例2 求适合下列条件的双曲线的标准方程. (1)焦距为26,且经过点M (0,12);(2)双曲线上两点P 1,P 2的坐标分别为(3,-42),⎝⎛⎭⎫94,5. 考点 双曲线的标准方程的求法 题点 待定系数法求双曲线的标准方程解 (1)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12.又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(2)设双曲线的方程为mx 2+ny 2=1(mn <0), 则⎩⎪⎨⎪⎧9m +32n =1,8116m +25n =1,解得⎩⎨⎧n =116,m =-19,∴双曲线的标准方程为y 216-x 29=1.反思与感悟 待定系数法求方程的步骤(1)定型:确定双曲线的焦点所在的坐标轴是x 轴还是y 轴. (2)设方程:根据焦点位置设出相应的标准方程的形式:①若不知道焦点的位置,则进行讨论,或设双曲线的方程为Ax 2+By 2=1(AB <0); ②与双曲线x 2a 2-y 2b 2=1(a >0,b >0)共焦点的双曲线的标准方程可设为x 2a 2-k -y 2b 2+k =1(-b 2<k <a 2).(3)计算:利用题中条件列出方程组,求出相关值. (4)结论:写出双曲线的标准方程.跟踪训练2 (1)求以椭圆x 216+y 29=1的短轴的两个端点为焦点,且过点A (4,-5)的双曲线的标准方程;(2)已知双曲线过P ⎝⎛⎭⎫3,154,Q ⎝⎛⎭⎫-163,5两点,求双曲线的标准方程. 考点 双曲线的标准方程的求法 题点 待定系数法求双曲线的标准方程解 (1)由题意,知双曲线的两焦点为F 1(0,-3),F 2(0,3). 设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),将点A (4,-5)代入双曲线方程,得25a 2-16b 2=1.又a 2+b 2=9,解得a 2=5,b 2=4, 所以双曲线的标准方程为y 25-x 24=1.(2)若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0),所以⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9(舍去).若焦点在y 轴上,设双曲线的方程为y 2a 2-x 2b2=1(a >0,b >0),将P ,Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解得⎩⎪⎨⎪⎧a 2=9,b 2=16,所以双曲线的标准方程为y 29-x 216=1.综上,双曲线的标准方程为y 29-x 216=1.类型三 双曲线定义及标准方程的应用例3 在相距2000m 的两个哨所A ,B ,听到远处传来的炮弹爆炸声.已知当时的声速是330m/s ,在A 哨所听到爆炸声的时间比在B 哨所迟4s ,试判断爆炸点在什么样的曲线上,并求出曲线的方程.考点 双曲线的标准方程的求法 题点 定义法求双曲线的标准方程解 设爆炸点为P ,由已知可得|P A |-|PB |=330×4=1 320>0.因为|AB |=2 000>1 320,所以点P 在以A ,B 为焦点的双曲线的靠近B 处的那一支上,建立如图所示的平面直角坐标系,使A ,B 两点在x 轴上,以线段AB 的中点为坐标原点.由2a =1 320,2c =2 000,得a =660,c =1 000,b 2=c 2-a 2=564 400. 因此,点P 所在曲线的方程是x 2435 600-y 2564 400=1(x ≥660).反思与感悟 可以结合双曲线的性质,建立平面直角坐标系,然后结合双曲线的定义,建立关系式,然后化简,求出相应的方程.跟踪训练3 已知椭圆x 2a 2+y 2b 2=1与双曲线x 2m 2-y 2n 2=1有交点P ,且有公共的焦点,且∠F 1PF 2=2α,求证:tan α=nb .考点 双曲线的标准方程 题点 由双曲线方程求参数证明 如图所示,设|PF 1|=r 1,|PF 2|=r 2,|F 1F 2|=2c ,则在△PF 1F 2中,对于双曲线有|r 2-r 1|=2m ,∴cos2α=r 21+r 22-(2c )22r 1r 2=(r 1-r 2)2-4c 2+2r 1r 22r 1r 2=4m 2-4c 2+2r 1r 22r 1r 2=-2n 2r 1r 2+1,∴1-cos2α=2n 2r 1r 2,∴sin α=n r 1r 2. 则在△PF 1F 2中,对于椭圆有r 1+r 2=2a ,cos2α=r 21+r 22-4c22r 1r 2=(r 1+r 2)2-4c 2-2r 1r 22r 1r 2=4b 2-2r 1r 22r 1r 2=2b 2r 1r 2-1,∴1+cos2α=2b 2r 1r 2,∴cos α=br 1r 2, ∴tan α=nb.1.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是( )A .-1<m <3B .m >-1C .m >3D .m <-1考点 双曲线的标准方程 题点 由双曲线方程求参数 答案 B解析 依题意应有m +1>0,即m >-1.2.已知F 1(-8,3),F 2(2,3),动点P 满足|PF 1|-|PF 2|=10,则P 点的轨迹是( ) A .双曲线 B .双曲线的一支 C .直线D .一条射线考点 双曲线的定义 题点 双曲线定义的应用 答案 D解析 F 1,F 2是定点,且|F 1F 2|=10,所以满足条件|PF 1|-|PF 2|=10的点P 的轨迹应为一条射线.3.过点(1,1),且ba =2的双曲线的标准方程是( )A.x 212-y 2=1 B.y 212-x 2=1 C .x 2-y 212=1D.x 212-y 2=1或y 212-x 2=1 考点 双曲线的标准方程题点 待定系数法求双曲线的标准方程答案 D解析 ∵b a =2,∴b 2=2a 2.当焦点在x 轴上时,设双曲线方程为x 2a 2-y 22a 2=1,将点(1,1)代入方程中,得a 2=12.此时双曲线方程为x 212-y 2=1.同理求得焦点在y 轴上时,双曲线方程为y 212-x 2=1.4.经过点P (-3,27)和Q (-62,-7),且焦点在y 轴上的双曲线的标准方程是________________. 考点 双曲线标准方程的求法 题点 待定系数法求双曲线标准方程 答案 y 225-x 275=1解析 设双曲线的方程为mx 2+ny 2=1(n >0,m <0),则⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125,故双曲线的标准方程为y 225-x 275=1.5.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为________.考点 双曲线的标准方程 题点 由双曲线方程求参数 答案 1解析 由题意知⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.1.双曲线定义的理解(1)定义中距离的差要加绝对值,否则只为双曲线的一支.设F 1,F 2表示双曲线的左、右焦点:若|MF 1|-|MF 2|=2a ,则点M 在右支上; 若|MF 2|-|MF 1|=2a ,则点M 在左支上. (2)双曲线定义的双向运用:①若||MF 1|-|MF 2||=2a (0<2a <|F 1F 2|),则动点M 的轨迹为双曲线; ②若动点M 在双曲线上,则||MF 1|-|MF 2||=2a . 2.求双曲线标准方程的步骤(1)定位:是指确定与坐标系的相对位置,在标准方程的前提下,确定焦点位于哪条坐标轴上,以确定方程的形式.(2)定量:是指确定a 2,b 2的数值,常由条件列方程组求解.特别提醒:若焦点的位置不明确,应注意分类讨论,也可以设双曲线方程为mx 2+ny 2=1的形式,为简单起见,常标明条件mn <0.一、选择题1.双曲线2x 2-y 2=8的焦距是( ) A .2B .22C .43D .4 2 考点 双曲线的标准方程 题点 由双曲线方程求参数 答案 C解析 因为双曲线方程可化为x 24-y 28=1,所以c 2=4+8=12,得c =23,所以2c =4 3.2.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),F 1,F 2为其两个焦点,若过焦点F 1的直线与双曲线的同一支相交,且所得弦长|AB |=m ,则△ABF 2的周长为( ) A .4a B .4a -m C .4a +2mD .4a -2m考点 双曲线的定义 题点 双曲线定义的应用 答案 C解析 |AF 2|>|AF 1|,由双曲线的定义, 知|AF 2|-|AF 1|=2a ,|BF 2|-|BF 1|=2a , 所以|AF 2|+|BF 2|=(|AF 1|+|BF 1|)+4a =m +4a ,于是△ABF 2的周长l =|AF 2|+|BF 2|+|AB |=4a +2m .故选C.3.若k ∈R ,则“k >5”是“方程x 2k -5-y 2k -2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件考点 双曲线的标准方程 题点 由双曲线方程求参数 答案 A解析 当k >5时,方程表示双曲线;反之,当方程表示双曲线时,k >5或k <2.故选A. 4.已知双曲线x 2m -y 23m =1的一个焦点是(0,2),则实数m 的值是( )A .1B .-1C .-105 D.105考点 双曲线的标准方程 题点 由双曲线方程求参数 答案 B解析 由焦点坐标知焦点在y 轴上,∴m <0, ∴双曲线的标准方程为y 2-3m -x 2-m =1,∴-m -3m =4,∴m =-1.5.已知双曲线的中心在原点,一个焦点为F 1(-5,0),点P 在双曲线上,且线段PF 1的中点的坐标为(0,2),则此双曲线的方程是( ) A.x 24-y 2=1 B .x 2-y 24=1C.x 22-y 23=1 D.x 23-y 22=1 考点 双曲线的标准方程的求法 题点 待定系数法求双曲线的标准方程 答案 B解析 由已知条件,得焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),则a 2+b 2=5.①∵线段PF 1的中点的坐标为(0,2),∴点P 的坐标为(5,4),将其代入双曲线的方程, 得5a 2-16b2=1.② 由①②解得a 2=1,b 2=4,∴双曲线的方程为x 2-y 24=1.6.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( ) A.14B.35C.34D.45 考点 双曲线的定义 题点 双曲线定义的应用 答案 C解析 由双曲线定义知,|PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=42,|F 1F 2|=2c =2a 2+b 2=4. ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34.7.已知双曲线C :x 2-y 23=1的右焦点为F ,P 是双曲线C 的左支上一点,M (0,2),则△PFM的周长的最小值为( ) A .2+4 2 B .4+2 2 C .3 2D .26+3考点 双曲线的定义 题点 双曲线定义的应用 答案 A解析 由题意可知c =2,a =1,设F 1为左焦点, 则|MF |=22,则|PM |+|PF |=|PM |+|PF 1|+2a , 当M ,P ,F 1三点共线时(P 在M ,F 1之间), |PM |+|PF 1|最小,最小值为|MF 1|,|MF 1|=22, 故周长的最小值为22+2+22=2+4 2. 二、填空题8.已知F 1,F 2是双曲线x 216-y 29=1的左、右焦点,PQ 是过焦点F 1的弦,且PQ 的倾斜角为60°,那么|PF 2|+|QF 2|-|PQ |的值为________. 考点 双曲线的定义 题点 双曲线定义的应用 答案 16 解析 z9.若曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,则m 的取值范围为________.考点 双曲线的标准方程 题点 由双曲线方程求参数 答案 (2,+∞)解析 由曲线C :mx 2+(2-m )y 2=1是焦点在x 轴上的双曲线,可得x 21m -y 21m -2=1,即有m >0,且m -2>0,解得m >2.10.已知双曲线的两个焦点F 1(-5,0),F 2(5,0),P 是双曲线上一点,且PF 1→·PF 2→=0,|PF 1|·|PF 2|=2,则双曲线的标准方程为________________. 考点 双曲线的标准方程的求法 题点 待定系数法求双曲线的标准方程 答案 x 24-y 2=1解析 由题意可设双曲线x 2a 2-y 2b 2=1(a >0,b >0).由PF 1→·PF 2→=0,得PF 1⊥PF 2.根据勾股定理,得|PF 1|2+|PF 2|2=(2c )2, 即|PF 1|2+|PF 2|2=20.根据双曲线定义有||PF 1|-|PF 2||=2a . 两边平方并代入|PF 1|·|PF 2|=2, 得20-2×2=4a 2,解得a 2=4, 从而b 2=5-4=1, 所以双曲线方程为x 24-y 2=1.11.过双曲线x 2144-y 225=1的一个焦点作x 轴的垂线,则垂线与双曲线的一个交点到两焦点的距离分别为________. 考点 双曲线的定义 题点 双曲线定义的应用 答案2512,31312解析 因为双曲线方程为x 2144-y 225=1,所以c =144+25=13.设F 1,F 2分别是双曲线的左、右焦点, 则F 1(-13,0),F 2(13,0).设过F 1且垂直于x 轴的直线l 交双曲线于A (-13,y )(y >0),则y 225=132144-1=25144,所以y =2512,即|AF 1|=2512.又|AF 2|-|AF 1|=2a =24, 所以|AF 2|=24+2512=31312.即所求距离分别为2512,31312.三、解答题12.已知与双曲线x 216-y 29=1共焦点的双曲线过点P ⎝⎛⎭⎫-52,-6,求该双曲线的标准方程.考点 双曲线标准方程的求法 题点 待定系数法求双曲线的标准方程 解 已知双曲线x 216-y 29=1,由c 2=a 2+b 2,得c 2=16+9=25,∴c =5.设所求双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0).依题意知b 2=25-a 2,故所求双曲线方程可写为x 2a 2-y 225-a 2=1.∵点P ⎝⎛⎭⎫-52,-6在所求双曲线上, ∴⎝⎛⎭⎫-522a 2-(-6)225-a 2=1,化简得4a 4-129a 2+125=0, 解得a 2=1或a 2=1254.当a 2=1254时,b 2=25-a 2=25-1254=-254<0,不合题意,舍去, ∴a 2=1,b 2=24,∴所求双曲线的标准方程为x 2-y 224=1.13.已知双曲线x 216-y 24=1的左、右焦点分别为F 1,F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求M 点到x 轴的距离;(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.考点 双曲线标准方程的求法 题点 待定系数法求双曲线的标准方程解 (1)如图所示,不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1→·MF 2→=0,则MF 1⊥MF 2, 设|MF 1|=m ,|MF 2|=n ,由双曲线定义,知m -n =2a =8,① 又m 2+n 2=(2c )2=80,② 由①②得m ·n =8, ∴12mn =4=12|F 1F 2|·h , ∴h =255.(2)设所求双曲线C 的方程为 x 216-λ-y 24+λ=1(-4<λ<16), 由于双曲线C 过点(32,2), ∴1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去), ∴所求双曲线C 的方程为x 212-y 28=1.四、探究与拓展14.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为______________. 答案 x 216-y 29=1解析 设焦点F 1(-c,0),F 2(c,0)(c >0), 则由QF 1⊥QF 2,得kQF 1·kQF 2=-1, ∴5c ·5-c=-1,∴c =5, 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),∵双曲线过(42,-3),∴32a 2-9b2=1,又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9, ∴双曲线的标准方程为x 216-y 29=1.15.已知△OFQ 的面积为26,且OF →·FQ →=m ,其中O 为坐标原点. (1)设6<m <46,求OF →与FQ →的夹角θ的正切值的取值范围;(2)设以O 为中心,F 为其中一个焦点的双曲线经过点Q ,如图所示,|OF →|=c ,m =⎝⎛⎭⎫64-1c 2,当|OQ →|取得最小值时,求此双曲线的标准方程.考点 双曲线标准方程的求法 题点 待定系数法求双曲线的标准方程 解 (1)因为⎩⎪⎨⎪⎧12|OF →|·|FQ →|sin (π-θ)=26,|OF →|·|FQ →|cos θ=m ,所以tan θ=46m .又6<m <46, 所以1<tan θ<4,即tan θ的取值范围为(1,4).(2)设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),Q (x 1,y 1),则FQ →=(x 1-c ,y 1),所以S △OFQ =12|OF →|·|y 1|=26,则y 1=±46c .又OF →·FQ →=m ,即(c,0)·(x 1-c ,y 1)=⎝⎛⎭⎫64-1c 2,解得x 1=64c , 所以|OQ →|=x 21+y 21=38c 2+96c2≥12=23, 当且仅当c =4时,取等号,|OQ →|最小, 这时Q 的坐标为(6,6)或(6,-6).因为⎩⎪⎨⎪⎧6a 2-6b 2=1,a 2+b 2=16,所以⎩⎪⎨⎪⎧a 2=4,b 2=12,于是所求双曲线的标准方程为x 24-y 212=1.。
苏教版高中数学 ( 选修2-1)学案:第2章 圆锥曲线与方程 3
上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程
为 mx2+ny2=1(mn<0),通过解方程组即可确定 m、n,避免了讨论,实为一种好方法. 9
跟踪演练 1 (1)已知双曲线的焦点在 y 轴上,并且双曲线过点(3,-4 2)和( ,5),求双曲 4
线的标准方程; x2 y2
y2
x2
(4)当 90°<α<180°时,方程为 -
=1,它表示焦点在 y 轴上的双曲线.
1
1
sinα -cosα
(5)当 α=180°时,方程为 x2=-1,它不表示任何曲线.
规律方法 像椭圆的标准方程一样,双曲线的标准方程也有“定型”和“定量”两个方面的
功能:①定型:以 x2 和 y2 的系数的正负来确定;②定量:以 a、b 的大小来确定.
TB: 小初高题库
高中数学精选学习内容
2.3 双曲线
2.3.1 双曲线的标准方程
[学习目标] 1.了解双曲线的标准方程.2.会求双曲线的标准方程.3.会用双曲线的标准方程处理 简单的实际问题.
[知识链接]
1.与椭圆类比,能否将双曲线定义中“动点 M 到两定点 F1、F2 距离之差的绝对值为定值 2a”中,“绝对值”三个字去掉.
4
3
∴Error!
解得Error! (舍去)
若焦点在 y 轴上,设双曲线的方程为 y2 x2
- =1(a>0,b>0), a2 b2 将 P、Q 两点坐标代入可得Error!
解之得Error! y2 x2
∴双曲线的标准方程为 - =1. 9 16 x2 y2
方法二 设双曲线方程为 + =1(mn<0). mn
2018_2019学年高中数学第二章圆锥曲线与方程2.1圆锥曲线学案苏教版选修1_1word版本
2.1 圆锥曲线学习目标:1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆模型的过程,掌握它的定义.(重点、难点) 2.通过用平面截圆锥面感受、了解双曲线、抛物线的定义.(难点)[自主预习·探新知]1.用平面截圆锥面得到的图形用平面截圆锥面能得到的曲线图形是两条相交直线、圆、椭圆、双曲线、抛物线.2.圆锥曲线定义椭圆、双曲线、抛物线统称为圆锥曲线.3.三种圆锥曲线设P为相应曲线上任意一点,常数为2a.1.判断正误:(1)到两定点距离之和为常数的点的轨迹是椭圆.( )(2)平面内到两定点的距离的差等于常数(小于两定点间距离)的点的轨迹是双曲线.( )(3)椭圆上的一点与椭圆的两焦点,一定构成一个三角形.( )(4)平面内到一定点与一定直线距离相等的点的轨迹一定是抛物线.( )【解析】(1)×.当常数大于两定点间的距离时,动点的轨迹才是椭圆.(2)×.应该是差的绝对值,否则轨迹是双曲线的一支.(3)×.当椭圆上的点在F1F2的延长线上时,不能构成三角形.(4)×.定点不能在定直线上才是抛物线.【答案】 (1)× (2)× (3)× (4)×2.动点P (x ,y ),到定点A (0,-2),B (0,2)的距离之和为6,则点P 的轨迹为________.【导学号:95902065】【解析】 ∵AB =4,PA +PB =6>4,∴点P 的轨迹为椭圆.【答案】 椭圆[合 作 探 究·攻 重 难](1)在平面直角坐标系中,A (4,0),B (-4,0),且sin A +sin B sin C =54,则△ABC 的顶点C 的轨迹为________.(2)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1内切,和圆C 2外切,求动圆圆心的轨迹.[思路探究] 根据椭圆的定义判断.【自主解答】 (1)由正弦定理,得BC +AC AB =54,又AB =8,∴BC +AC =10>AB , 由椭圆定义可知,点C 的轨迹是以点A 、B 为焦点的椭圆.【答案】 (1)以点A 、B 为焦点的椭圆(除去与A 、B 所在同一直线的两个定点).(2)如图所示,设动圆圆心为M (x ,y ),半径为r . 由题意得动圆M 内切于圆C 1,∴MC 1=13-r .圆M 外切于圆C 2,∴MC 2=3+r .∴MC 1+MC 2=16>C 1C 2=8,∴动圆圆心M 的轨迹是以C 1,C 2为焦点的椭圆.[规律方法] 已知平面内动点P 及两个定点F 1,F 2:(1)当PF 1+PF 2>F 1F 2时,点P 的轨迹是以F 1,F 2为焦点的椭圆;(2)当PF 1+PF 2=F 1F 2时,点P 的轨迹是线段F 1F 2;(3)当PF 1+PF 2<F 1F 2时,点P 的轨迹不存在.[跟踪训练]1.已知△ABC 中,A (0,-3),B (0,3),且△ABC 的周长为16,试确定顶点C 的轨迹.【导学号:95902066】【解】 由A (0,-3),B (0,3)得AB =6,又△ABC 的周长为16,所以CA +CB =16-6=10>6,由椭圆的定义可知点C 在以A ,B 为焦点的椭圆上,又因为A 、B 、C 为三角形的顶点,所以A 、B 、C 三点不共线,所以点C 的轨迹是以A 、B 为焦点的椭圆(除去与A 、B 所在同一直线上的两个点).(1)已知点M 到F ⎝ ⎛⎭⎪⎫2,0的距离比它到y 轴的距离大12,则点M 的轨迹为________.(2)若A 是定直线l 外的一定点,则过点A 且与l 相切的圆的圆心的轨迹是________.[思路探究] (1)把条件转化为M 到定点与定直线的距离相等;(2)利用圆心到A 的距离与到切线的距离相等.【自主解答】 (1)由于动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离比它到y 轴的距离大12,所以动点M 到F ⎝ ⎛⎭⎪⎫12,0的距离与它到直线l :x =-12的距离相等.由抛物线的定义知动点M 的轨迹是以F 为焦点,l 为准线的抛物线.(2)圆心与A 点的距离等于圆心到直线l 的距离,所以圆心的轨迹是抛物线.【答案】 (1)抛物线 (2)抛物线[规律方法]1.(1)要首先判断定点是否在定直线上;(2)要准确判断准线的位置.2.已知平面内定点F 及定直线l ,动点P 满足PF =d (d 为点P 到直线l 的距离):(1)当定点F 不在定直线l 上时,动点P 的轨迹是以点F 为焦点,直线l 为准线的抛物线;(2)当定点F 在定直线l 上时,动点P 的轨迹是以定点F 为垂足且与定直线l 垂直的一条直线.[跟踪训练]2.动点P (x ,y )满足|3x -4y +1|5=-+-,则点P 的轨迹为________.【导学号:95902067】【解析】|3x -4y +1|5的几何意义是点P (x ,y )到定直线3x -4y +1=0的距离,-+-的几何意义是点P (x ,y )到定点(2,1)的距离,由|3x -4y +1|5=-+-可知动点P (x ,y )满足到定直线3x -4y +1=0的距离与到定点(2,1)的距离相等,且定点不在定直线上,所以点P 的轨迹为抛物线.【答案】 抛物线[探究问题]1.双曲线的定义是什么?【提示】 平面内与两个定点F 1,F 2距离的差的绝对值等于常数(小于F 1F 2 的正数)的点的轨迹叫做双曲线.2.如果把双曲线定义中的动点设为P ,常数设为 2a ,你可以用一个数学式来表示双曲线的定义吗?【提示】 |PF 1-PF 2|=2a (2a <F 1F 2)3.如果把定义中的“绝对值”去掉,变为动点P 满足PF 1-PF 2=2a (2a <F 1F 2),那么点P 的轨迹是什么?【提示】 动点P 的轨迹是双曲线的一支(靠近焦点F 2的一支).4.如果把双曲线定义中的条件“2a <F 1F 2”去掉,动点P 的轨迹是什么?【提示】 如果2a =F 1F 2,则动点P 的轨迹是分别以F 1,F 2为端点的两条射线; 如果2a >F 1F 2,则动点P 的轨迹不存在.已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹.【导学号:95902068】[思路探究] 根据动圆M 同时与圆C 1及圆C 2相外切,分别转化为两圆外切的条件,利用这两个条件寻找圆心M与两定点C1、C2距离之间的关系,并结合圆锥曲线的定义进行判断.【自主解答】如图所示,设动圆M与圆C1及圆C2分别外切于A和B.根据两圆外切的条件,得|MC1-AC1|=MA,|MC2-BC2|=MB,因为MA=MB,所以|MC1-AC1|=|MC2-BC2|,即|MC2-MC1|=|BC2-AC1|=2,所以点M到两定点C1、C2的距离的差是常数且小于C1C2,又根据双曲线的定义,得动点M的轨迹为双曲线的左支(点M与C2的距离大,与C1的距离小).[规律方法]1.本题以圆与圆的位置关系为载体融点的轨迹求法于其中,求解时可利用圆与圆的位置关系找出动点的等量关系(如本例中得到|MC1-AC1|=MA,|MC2-BC2|=MB)在此基础上对等量关系化简变形,得出相应动点的轨迹.2.在解与双曲线有关的轨迹问题时,要注意双曲线定义中的条件“距离的差的绝对值”,判断所求的轨迹是双曲线的一支还是两支.[跟踪训练]3.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x-3)2+y2=1内切,则动圆圆心M的轨迹是________.【解析】设动圆M的半径为r.因为动圆M与圆C1外切且与圆C2内切,所以|MC1|=r+3,|MC2|=r-1.相减得|MC1-MC2|=4.又因为C1(-3,0),C2(3,0),并且C1C2=6>4,所以点M的轨迹是以C1,C2为焦点的双曲线的右支.【答案】以C1,C2为焦点的双曲线的右支[构建·体系][当堂达标·固双基]1.动点P到两定点A(-1,0),B(1,0)的距离之和为4,则点P的轨迹为________.【解析】因为AB=2,PA+PB=4,所以点P的轨迹为椭圆.【答案】椭圆2.若动点P到点F(2,0)的距离与它到直线x+2=0的距离相等,则点P的轨迹为________.【导学号:95902069】【解析】动点P到定点F和到定直线x=-2的距离相等,∴P点的轨迹为抛物线.【答案】抛物线3.平面内动点P到定点F1(-4,0)的距离比它到定点F2(4,0)的距离大6,则动点P 的轨迹方程是________.【解析】由|PF1-PF2|=6<8=F1F2知,P点轨迹是以F1,F2为焦点的双曲线的右支.【答案】以F1,F2为焦点的双曲线的右支4.已知F1,F2是定点,F1F2=8,动点M满足MF1+MF2=8,则动点M的轨迹是________.【解析】∵MF1+MF2=8=F1F2,∴点M的轨迹是线段F1F2.【答案】线段F1F25.已知:圆C1:(x+1)2+y2=1,圆C2:(x-1)2+y2=25,动圆C与圆C1外切与圆C2内切,求动圆圆心C的轨迹.【导学号:95902070】【解】设圆C的半径为r,由动圆C与圆C1外切,与圆C2内切得CC1=r+1,CC2=5-r,所以CC1+CC2=(r+1)+(5-r)=6>C1C2=2,故C轨迹是以C1,C2为焦点的椭圆.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 双曲线2.3.1 双曲线的标准方程[学习目标] 1.了解双曲线的标准方程.2.会求双曲线的标准方程.3.会用双曲线的标准方程处理简单的实际问题.[知识链接]1.与椭圆类比,能否将双曲线定义中“动点M 到两定点F 1、F 2距离之差的绝对值为定值2a ”中,“绝对值”三个字去掉.答:不能.否则所得轨迹仅是双曲线一支.2.如何判断双曲线x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)的焦点位置?答:x 2系数是正的焦点在x 轴上,否则焦点在y 轴上. [预习导引] 1.双曲线的定义把平面内到两个定点F 1,F 2的距离的差的绝对值等于常数(小于F 1F 2的正数)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距. 2.双曲线的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2-y 2b 2=1(a >0,b >0) y 2a 2-x 2b 2=1(a >0,b >0) 焦点 F 1(-c,0),F 2(c,0)F 1(0,-c ),F 2(0,c )焦距F 1F 2=2c ,c 2=a 2+b 2要点一 求双曲线的标准方程例1 根据下列条件,求双曲线的标准方程. (1)经过点P (3,154),Q (-163,5);(2)c =6,经过点(-5,2),焦点在x 轴上.解 (1)方法一 若焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0),∴点P (3,154)和Q (-163,5)在双曲线上,∴⎩⎨⎧9a 2-22516b 2=1,2569a 2-25b 2=1,解得⎩⎪⎨⎪⎧a 2=-16,b 2=-9. (舍去)若焦点在y 轴上,设双曲线的方程为 y 2a 2-x 2b 2=1(a >0,b >0), 将P 、Q 两点坐标代入可得⎩⎨⎧22516a 2-9b 2=1,25a 2-2569b 2=1,解之得⎩⎪⎨⎪⎧a 2=9,b 2=16,∴双曲线的标准方程为y 29-x 216=1.方法二 设双曲线方程为x 2m +y 2n =1(mn <0).∵P 、Q 两点在双曲线上,∴⎩⎨⎧9m +22516n =1,2569m +25n =1,解得⎩⎪⎨⎪⎧m =-16,n =9.∴所求双曲线的标准方程为y 29-x 216=1.(2)方法一 依题意可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题设有⎩⎪⎨⎪⎧a 2+b 2=6,25a 2-4b 2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=1,∴所求双曲线的标准方程为x 25-y 2=1.方法二 ∵焦点在x 轴上,c =6,∴设所求双曲线方程为x 2λ-y 26-λ=1(其中0<λ<6).∵双曲线经过点(-5,2),∴25λ-46-λ=1,∴λ=5或λ=30(舍去). ∴所求双曲线的标准方程是x 25-y 2=1.规律方法 求双曲线的标准方程与求椭圆的标准方程的方法相似,可以先根据其焦点位置设出标准方程,然后用待定系数法求出a ,b 的值.若焦点位置不确定,可按焦点在x 轴和y 轴上两种情况讨论求解,此方法思路清晰,但过程复杂,注意到双曲线过两定点,可设其方程为mx 2+ny 2=1(mn <0),通过解方程组即可确定m 、n ,避免了讨论,实为一种好方法. 跟踪演练1 (1)已知双曲线的焦点在y 轴上,并且双曲线过点(3,-42)和(94,5),求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.解(1)由已知可设所求双曲线方程为y 2a 2-x2b 2=1 (a >0,b >0),则⎩⎨⎧32a 2-9b 2=1,25a 2-8116b 2=1,解得⎩⎪⎨⎪⎧a 2=16,b 2=9, ∴双曲线的方程为y 216-x 29=1.(2)方法一 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).由题意易求得c =2 5.又双曲线过点(32,2),∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2,∴a 2=12,b 2=8. 故所求双曲线方程为x 212-y 28=1.方法二 设双曲线方程为x 216-k -y 24+k =1 (-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.要点二 由方程判断曲线的形状例2 已知0°≤α≤180°,当α变化时,方程x 2cos α+y 2sin α=1表示的曲线怎样变化? 解 (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1.(2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1.①当0°<α<45°时0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45°<α<90°时,1cos α>1sin a >0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1.它表示两条平行直线y =±1.(4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线.(5)当α=180°时,方程为x 2=-1,它不表示任何曲线.规律方法 像椭圆的标准方程一样,双曲线的标准方程也有“定型”和“定量”两个方面的功能:①定型:以x 2和y 2的系数的正负来确定;②定量:以a 、b 的大小来确定. 跟踪演练2 方程ax 2+by 2=b (ab <0)表示的曲线是____________________. 答案 焦点在y 轴上的双曲线解析 原方程可化为x 2b a +y 2=1,∵ab <0,∴ba <0,知曲线是焦点在y 轴上的双曲线.要点三 与双曲线有关的轨迹问题例3 如图,在△ABC 中,已知AB =42,且三内角A ,B ,C 满足2sin A +sin C =2sin B ,建立适当的坐标系,求顶点C 的轨迹方程.解 以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系如图所示,则A (-22,0),B (22,0).由正弦定理,得sin A =a 2R ,sin B =b 2R ,sin C =c2R (R 为△ABC 的外接圆半径).∵2sin A +sin C =2sin B ,∴2a +c =2b ,即b -a =c2,从而有CA -CB =12AB =22<AB .由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点). ∵a =2,c =22,∴b 2=c 2-a 2=6,即所求轨迹方程为 x 22-y 26=1(x >2). 规律方法 求解与双曲线有关的点的轨迹问题,常见的方法有两种:(1)列出等量关系,化简得到方程;(2)寻找几何关系,由双曲线的定义,得出对应的方程.求解双曲线的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.跟踪演练3 如图所示,已知定圆F 1:(x +5)2+y 2=1,定圆F 2:(x -5)2+y 2=42,动圆M 与定圆F 1,F 2都外切,求动圆圆心M 的轨迹方程.解 圆F 1:(x +5)2+y 2=1,圆心F 1(-5,0),半径r 1=1; 圆F 2:(x -5)2+y 2=42,圆心F 2(5,0),半径r 2=4. 设动圆M 的半径为R ,则有MF 1=R +1,MF 2=R +4, ∴MF 2-MF 1=3<10=F 1F 2.∴点M 的轨迹是以F 1,F 2为焦点的双曲线的左支,且a =32,c =5,于是b 2=c 2-a 2=914.∴动圆圆心M 的轨迹方程为x 294-y 2914=1(x ≤-32).1.椭圆x 234-y 2n 2=1和双曲线x 2n 2-y 216=1有相同的焦点,则实数n 的值是________.答案 ±3解析 由题意知34-n 2=n 2+16,∴2n 2=18,n 2=9.∴n =±3.2.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是________________________. 答案 焦点在y 轴上的双曲线解析 将已知方程化为标准形式,根据项的系数符号进行判断.原方程可化为y 2k 2-1-x 21+k =1.∵k >1,∴k 2-1>0,1+k >0.∴已知方程表示的曲线为焦点在y 轴上的双曲线. 3.过点(1,1)且ba =2的双曲线的标准方程是________________________.答案 x 212-y 2=1或y 212-x 2=1解析 由于b a =2,∴b 2=2a 2.当焦点在x 轴上时,设双曲线方程为x 2a 2-y 22a 2=1,代入(1,1)点,得a 2=12.此时双曲线方程为x 212-y 2=1.同理求得焦点在y 轴上时,双曲线方程为y 212-x 2=1.4.平面内有两个定点F 1(-5,0)和F 2(5,0),动点P 满足PF 1-PF 2=6,则动点P 的轨迹方程是______________. 答案 x 29-y 216=1(x ≥3)解析 根据双曲线的定义可得.1.双曲线定义中|PF 1-PF 2|=2a (2a <F 1F 2)不要漏了绝对值符号,当2a =F 1F 2时表示两条射线. 2.在双曲线的标准方程中,a >b 不一定成立.要注意与椭圆中a ,b ,c 的区别.在椭圆中a 2=b 2+c 2,在双曲线中c 2=a 2+b2.3.用待定系数法求双曲线的标准方程时,要先判断焦点所在的位置,设出标准方程后,由条件列出a ,b ,c 的方程组.如果焦点不确定要分类讨论,采用待定系数法求方程或用形如mx 2+ny 2=1 (mn <0)的形式求解.一、基础达标1.双曲线x 210-y 22=1的焦距为________.答案 43解析 由双曲线的标准方程可知,a 2=10,b 2=2.于是有c 2=a 2+b 2=12,则2c =4 3. 2.若方程y 24-x 2m +1=1表示双曲线,则实数m 的取值范围是________.答案 m >-1解析 依题意应有m +1>0,即m >-1.3.已知A (0,-5)、B (0,5),P A -PB =2a ,当a =3或5时,P 点的轨迹为________________. 答案 双曲线一支或一条射线解析 当a =3时,2a =6,此时AB =10, ∴点P 的轨迹为双曲线的一支(靠近点B ). 当a =5时,2a =10,此时AB =10,∴点P 的轨迹为射线,且是以B 为端点的一条射线.4.设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.答案 x 2-y 2=1解析 由题意可知,双曲线的焦点在x 轴上, 且c =2,a =1,则b 2=c 2-a 2=1, 所以双曲线C 的方程为x 2-y 2=1.5.已知动圆M 过定点B (-4,0),且和定圆(x -4)2+y 2=16相切,则动圆圆心M 的轨迹方程为________. 答案 x 24-y 212=1解析 设动圆M 的半径为r ,依题意有MB =r ,另设A (4,0),则有MA =r ±4,即MA -MB =±4.亦即动圆圆心M 到两定点A 、B 的距离之差的绝对值等于常数4,又4<AB ,因此动点M 的轨迹为双曲线,且c =4,2a =4,∴a =2,a 2=4,b 2=c 2-a 2=12,故轨迹方程是x 24-y 212=1. 6.若双曲线x 2-4y 2=4的左、右焦点分别是F 1、F 2,过F 2的直线交右支于A 、B 两点,若AB =5,则△AF 1B 的周长为________. 答案 18解析 由双曲线定义可知AF 1=2a +AF 2=4+AF 2; BF 1=2a +BF 2=4+BF 2,∴AF 1+BF 1=8+AF 2+BF 2=8+AB =13. △AF 1B 的周长为AF 1+BF 1+AB =18.7.已知△ABC 的一边的两个顶点B (-a,0),C (a,0)(a >0),另两边的斜率之积等于m (m ≠0).求顶点A 的轨迹方程,并且根据m 的取值情况讨论轨迹的图形. 解 设顶点A 的坐标为(x ,y ),则 k AB =y x +a ,k AC =y x -a. 由题意,得y x +a ·y x -a=m ,即x 2a 2-y 2ma 2=1(y ≠0).当m >0时,轨迹是中心在原点,焦点在x 轴上的双曲线(两顶点除外);当m <0且m ≠-1时,轨迹是中心在原点,以坐标轴为对称轴的椭圆(除去与x 轴的两个交点),其中当-1<m <0时,椭圆焦点在x 轴上;当m <-1时,椭圆焦点在y 轴上; 当m =-1时,轨迹是圆心在原点,半径为a 的圆(除去与x 轴的两个交点). 二、能力提升8.焦点在x 轴上的双曲线经过点P (42,-3),且Q (0,5)与两焦点的连线互相垂直,则此双曲线的标准方程为________. 答案 x 216-y 29=1解析 设焦点F 1(-c,0),F 2(c,0)(c >0),则由QF 1⊥QF 2,得kQF 1·kQF 2=-1, ∴5c ·5-c=-1,∴c =5, 设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),∵双曲线过点P (42,-3),∴32a 2-9b 2=1,又∵c 2=a 2+b 2=25,∴a 2=16,b 2=9, ∴双曲线的标准方程为x 216-y 29=1.9.在平面直角坐标系xOy 中,方程x 2k -1+y 2k -3=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 (1,3)解析 将方程化为x 2k -1-y 23-k =1,若表示焦点在x 轴上的双曲线,则有k -1>0且3-k >0,即1<k <3.10.已知P 是双曲线x 264-y 236=1上一点,F 1,F 2是双曲线的两个焦点,若PF 1=17,则PF 2的值为________. 答案 33解析 由双曲线方程x 264-y 236=1知,a =8,b =6,则c =a 2+b 2=10.∵P 是双曲线上一点,∴|PF 1-PF 2|=2a =16, 又PF 1=17,∴PF 2=1或PF 2=33. 又PF 2≥c -a =2,∴PF 2=33.11.双曲线x 2m -y 2m -5=1的一个焦点到中心的距离为3,求m 的值.解 (1)当焦点在x 轴上时,有m >5, 则c 2=m +m -5=9,∴m =7; (2)当焦点在y 轴上时,有m <0, 则c 2=-m +5-m =9,∴m =-2; 综上,m =7或m =-2.12.已知方程kx 2+y 2=4,其中k ∈R ,试就k 的不同取值讨论方程所表示的曲线类型. 解 (1)当k =0时,方程变为y =±2,表示两条与x 轴平行的直线; (2)当k =1时,方程变为x 2+y 2=4表示圆心在原点,半径为2的圆;(3)当k <0时,方程变为y 24-x 2-4k =1,表示焦点在y 轴上的双曲线.(4)当0<k <1时,方程变为x 24k +y 24=1,表示焦点在x 轴上的椭圆;(5)当k >1时,方程变为x 24k +y 24=1,表示焦点在y 轴上的椭圆.三、探究与创新13.已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点. (1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1、F 2为左、右焦点,且MF 1+MF 2=63,试判断△MF 1F 2的形状. 解 (1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 则有⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设M 点在右支上,则有MF 1-MF 2=23, 又MF 1+MF 2=63,故解得MF 1=43,MF 2=23,又F 1F 2=25, 因此在△MF 1F 2中,MF 1边最长,而cos ∠MF 2F 1=MF 22+F 1F 22-MF 212·MF 2·F 1F 2<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。