2016年八年级数学上册第十四章整式的乘法与因式分解同底数幂的乘法导学案(新版)新人教版

合集下载

人教版数学八年级上册第14章整式的乘法与因式分解学案

人教版数学八年级上册第14章整式的乘法与因式分解学案

同底数幂的乘法 学习目标: 1、理解同底数幂的乘法法则; 2、运用同底数幂的乘法法则解决一些实际问题; 3、在进一步体会幂的意义时,发展推理能力和有条理的表达能力;4、通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊到一般,一般到特殊的认知规律。

结论。

学习重点:同底数幂的乘法法则及其简单应用,同底数幂的乘法运算性质学习难点:理解同底数幂的乘法法则的推导过程。

课前知识回顾:n a 表示 ,这种运算叫做 ,这种运算的结果叫 ,其中叫做 ,是 。

(观察右图,体会概念)问题:一种电子计算机每秒可进行1210次运算,它工作310秒可进行多少次运算?应用乘方的意义可以得到: 1012×103=121010)⨯⨯个(10×(10×10×10)=15101010)⨯⨯⨯个(10=1015. 通过观察可以发现1012、103这两个因数是底数相同的幂的形式,所以我们把像1012×103的运算叫做同底数...幂的乘法....。

学习过程:课前预习(预习教材P141—142,找出疑惑之处)用学过的知识做下面的习题,在做题的过程中,认真观察,积极思考,互相研究,看看发现了什么。

检测一1计算(1)25×22 (2)a 3·a 2 (3)5m ·5n (m 、n 都是正整数) (1)5222(22222)(22)⨯=⨯⨯⨯⨯⨯⨯=(2)32a a ⨯=(3)把指数用字母m 、n (m 、n 为正整数)表示,你能写出a m • a n 的结果吗? a m • a n= 个)) ( a a a a a a (⋅⋅⋅⋅⋅⋅⋅⋅⋅ 个)) (a a a a a (a ⋅⋅⋅⋅⋅⋅⋅⋅⋅= )个( a a a ⋅⋅⋅⋅⋅⋅⋅=a ( ) 有 a m • a n =a ( )(m 、n 为正整数)这就是说,同底数幂相乘,______不变,______相加。

第14章《整式乘法与因式分解》集体备课

第14章《整式乘法与因式分解》集体备课

(三)注意把握教学要求
课标:会进行简单的整式乘法(其中的多项式相乘 仅指一次式之间以及一次式与二次式相乘)运算, 会推导平方差公式和完全平方公式,并了解公式 的几何背景,能利用公式进行简单的计算。会用 提公因式法和公式法进行因式分解(指数是正整 数)。
• 乘法公式——平方差公式和完全平方公式 • 因式分解——提公因式法和公式法(平方
6课时 3课时 3课时
2课时
三、编写特点
(一)强调重要数学思想方法的渗透
(二)充分体现从具体到抽象再到具体的认知过 程
(三)根据数学知识的逻辑关系安排教学内容
(一)强调重要数学思想方法的渗透
• 本章重要数学思想有: • 转化,类比,数形结合,整体思想等
转化 • 对于整式乘法法则的教学,教科书注意渗透 思想
am+an+bm+bn
转化 思想
• 在整式除法的教学中也要注意“转化” 的思想方法。例如,多项式与单项式相 除的法则,第一步是“转化”为单项式 与单项式相除,第二步则是“转化”为 有理数的除法与同底数幂的除法。
数形 结合
整体 • (一)、强调重要的数学思想方法的渗透 思想
1、添括号; 2、乘法公式; 3、整体思想
(七)利用好选学内容
• 教学中除了要关注学生在数学知识和数学能力 方面的提高外,还要考虑在传承数学史知识及 数学文化修养方面做出努力,以使学生在获得 数学知识的同时人文精神也得到陶冶。
• 本章安排了两个“阅读与思考”的选学栏目, 这些选学内容是本章有关内容的拓展与延伸。 不失时机地安排学生阅读这些材料,可以开阔 他们的视野,拓展他们的知识面。
“转化”的思想方法。例如,多项式与多项 式相乘的法则,第一步是转化为多项式与单 项式相乘,第二步则是转化为单项式与单项 式相乘,而单项式与单项式相乘则转化为有 理数的乘法与同底数幂的乘法。

初中数学人教版八年级上册:第14章《整式的乘除与因式分解》全章教案(22页)

初中数学人教版八年级上册:第14章《整式的乘除与因式分解》全章教案(22页)

初中数学人教版八年级上册实用资料第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点正确理解同底数幂的乘法法则.难点正确理解和应用同底数幂的乘法法则.一、提出问题,创设情境复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.[师]1015×103如何计算呢?[生]根据乘方的意义可知1015×103=(10×10×…×10)15个10×(10×10×10)=(10×10×…×10)18个10=1018.[师]很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015,103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.二、探究新知1.做一做(出示投影片)计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n.(m,n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)(a·a)=a5=a3+2.5m·5n=(5×5·…·5),\s\do4(m个5))×(5×5·…·5),\s\do4(n个5))=5m+n.[生]我们可以发现下列规律:a m·a n等于什么(m,n都是正整数)?为什么?(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议(出示投影片)[师生共析]a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a×a·…·a)m个a·(a×a·…·a)n个a=a·a·…·a(m+n)个a=a m+n于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m表示m个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[例1]计算:(1)x2·x5; (2)a·a6;(3)2×24×23; (4)x m·x3m+1.[例2]计算a m·a n·a p后,能找到什么规律?[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1),(2),(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算两个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7;(2)解:a·a6=a1·a6=a1+6=a7;(3)解:2×24×23=21+4·23=25·23=25+3=28;(4)解:x m·x3m+1=x m+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.解法一:a m·a n·a p=(a m·a n)·a p=a m+n·a p=a m+n+p;解法二::a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p;解法三:a m·a n·a p=(a·a…a)m个a·(a·a…a)n个a·(a·a…a)p个a=a m+n+p归纳:解法一与解法二都直接应用了运算法则,同时还运用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]am1·am2·am3·…am n=am1+m2+m3+…m n.[师]鼓励学生.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三、随堂练习1.m14可以写成()A.m7+m7B.m7·m7C.m2·m7D.m·m142.若x m=2,x n=5,则x m+n的值为()A.7 B.10 C.25D.523.计算:-22×(-2)2=________;(-x)(-x2)(-x3)(-x4)=________.4.计算:(1)(-3)2×(-3)5;(2)106·105·10;(3)x2·(-x)5;(4)(a+b)2·(a+b)6.四、课堂小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义,了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n是正整数).五、课后作业教材第96页练习.本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加. 在课堂教学时,通过幂的意义引导学生得出这一性质,接着再引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.重点会进行幂的乘方的运算.难点幂的乘方法则的总结及运用.一、复习引入(1)叙述同底数幂乘法法则,并用字母表示:(2)计算:①a2·a5·a n;②a4·a4·a4.二、自主探究1.思考:根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:(1)(32)3=32×32×32=3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a().(m是正整数)2.小组讨论对正整数n,你认识(a m)n等于什么?能对你的猜想给出验证过程吗?幂的乘方(a m)n=a m·a m·a m…a m n个=am+m+m+…m,\s\up6(n个m))=a mn字母表示:(a m)n=a mn(m,n都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.注意:幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.三、巩固练习1.下列各式的计算中,正确的是()A.(x3)2=x5B.(x3)2=x6C.(x n+1)2=x2n+1D.x3·x2=x62.计算:(1)(103)5; (2)(a4)4;(3)(a m)2; (4)-(x4)3.四、归纳小结幂的乘方的意义:(a m)n=a mn.(m,n都是正整数)五、布置作业教材第97页练习.运用类比方法,得到了幂的乘方法则.这样的设计起点低,学生学起来更自然,对新知识更容易接受.类比是一种重要的数学思想方法,值得引起注意.14.1.3积的乘方1.经历探索积的乘方和运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.重点积的乘方运算法则及其应用.难点幂的运算法则的灵活运用.一、问题导入[师]提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?[生]它的体积应是V=(1.1×103)3cm3.[师]这个结果是幂的乘方形式吗?[生]不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理.[师]积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙.二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.(出示投影片)1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b();(2)(ab)3=________=________=a()b();(3)(ab)n=________=________=a()b().(n是正整数)2.把你发现的规律先用文字语言表述,再用符号语言表达.3.解决前面提到的正方体体积计算问题.4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法.5.完成教材第97页例3.学生探究的经过:1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2),(3)题;(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n=(ab)·(ab)·…·(ab)n个ab=a·a·…·an个a·b·b·…·bn个b=a n b n.2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.用符号语言叙述便是:(ab)n=a n·b n.(n是正整数)3.正方体的V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3).通过上述探究,我们可以发现积的乘方的运算法则:(ab)n=a n·b n.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.再考虑如下问题:(abc)n如何计算?是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)n=a n·b n·c n.(n为正整数) 4.积的乘方法则可以进行逆运算.即a n·b n=(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.对于a n·b n=(a·b)n(n为正整数)的证明如下:a n·b n=(a×a×…×a)n个a(b×b×…×b)n个b——幂的意义=(ab)(ab)(ab)(ab)…(ab)n个(ab)——乘法交换律、结合律=(a·b)n——乘方的意义5.[例3](1)(2a)3=23·a3=8a3;(2)(-5b)3=(-5)3·b3=-125b3;(3)(xy2)2=x2·(y2)2=x2·y2×2=x2·y4=x2y4;(4)(-2x3)4=(-2)4·(x3)4=16·x3×4=16x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=a n·b n.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质.如(abc)n=a n·b n·c n;(n为正整数)(3)积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n.(n为正整数)三、随堂练习1.教材第98页练习.(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(-2xy)3;(2)(5x3y)2;(3)[(x+y)2]3;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。

人教版八年级数学第十四章《整式的乘法与因式分解》教案

人教版八年级数学第十四章《整式的乘法与因式分解》教案

第十四章整式的乘法与因式分解1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算,能根据幂的各种运算性质解决数学问题和简单的实际问题.2.了解零指数幂的意义;探索整式乘除法的法则,会进行简单的乘除法运算.3.要求学生说出平方差公式和完全平方式的特点,能正确地利用平方差公式和完全平方式进行多项式的乘法.4.了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以相互转化的思想,学会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).让学生主动参与到一些探索过程中来,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的能力.通过本章中一些生活实例的学习,体会数学与生活之间的密切联系,在一定程度上了解数学的应用价值,提高学生学习的兴趣.本章是整式的加减的后续学习,首先,从幂的运算开始入手,逐步展开整式的乘除法运算;接着,在整式的乘法中提炼出两种特殊的乘法运算,即两个乘法公式;最后,从整式乘法的逆过程出发,引入因式分解的相关知识.本章主要有如下特点:1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟的过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.5.教材的安排、例题的讲解与习题的处理都给教师留有较大的余地与足够的空间,教师能根据各地学生的实际情况,充分发挥自己的教学主动性和积极性,创造性地进行教学.【重点】1.理解和掌握幂的运算性质.2.掌握整式的乘除运算方法,理解乘法公式,能对多项式进行因式分解.【难点】1.整式的乘除运算.2.利用乘法公式进行计算,利用提公因式法和因式分解法对多项式进行因式分解.1.幂的运算是整式乘除的基础,在教学幂的运算性质时,要让学生经历探索的过程,通过特例计算,自己概括出有关运算法则,理解并掌握这些法则,并能用来进行简单的计算.要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.在教学中要注意渗透化归的思想.对于整式的乘除法要让学生通过适当的尝试,获得一些直接体验,体验单项式与单项式相乘的运算规律,在此基础上总结出整式乘除法的一些运算法则,对于一些法则的获得要注意结合图形,让学生体会特点,从而加深对知识的理解和掌握.2.对于乘法公式的教学,要留出更多的时间和空间让学生自主探索,发现规律,体验乘法公式的来源,理解公式的意义和作用,降低对公式的记忆要求.教学时可以让学生直接计算较为简单的情况,在此基础上指出这一乘法结果的普遍性.教师要注意从已有的整式乘法的知识中提炼出这一乘法公式,让学生明确公式来源于整式的乘法,又应用于整式乘法的辩证性.3.对于因式分解这部分内容,要注意留给学生讨论的时间,引导学生进行归纳、概括.注意教给学生因式分解的方法和步骤,强化提公因式法和公式法的结构特点,让学生在不断练习中得以巩固和提高.总之,在本章的教学中,教师要创造性地使用教材,充分发挥自己在教学中的组织、引导、合作的作用,通过创设一定的问题情境,帮助学生在做一做、探索、交流与讨论中,主动地去获取知识.本章的教学中,教师不要人为地增加学生的记忆负担,提高对学生的要求,也不要人为地补充一些繁、难、偏、旧的内容,根据学生的具体情况,可以在某些具体问题上,让一部分学有余力的学生得到更好的发展,体现教材的弹性.14.1整式的乘法1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算.2.从幂的运算入手,逐步展开整式的乘法,要了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法的计算.3.通过计算,提高学生独立思考、主动探索的能力.1.在推理的过程中,让学生学会类比的方法,培养学生的观察、抽象、概括的能力.2.在观察的过程中,让学生掌握整式乘法的一些计算方法,并能运用这些方法进行计算.1.让学生体验从特殊到一般的过程,能自己在实践中总结概括法则.2.培养学生学习数学的积极性,让学生树立热爱数学的情感.【重点】1.同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法法则.2.整式的乘法法则.【难点】1.能正确进行同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法计算.2.整式的乘法的一些计算.14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.能运用同底数幂的乘法法则解决一些实际问题.1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律.体会科学的思想方法,激发学生探索创新的精神.【重点】正确理解同底数幂的乘法法则.【难点】正确理解和应用同底数幂的乘法法则.【教师准备】多媒体课件(1,2,3).【学生准备】复习幂的意义.导入一:复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.提出问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?【师】能否用我们学过的知识来解决这个问题呢?【生】运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.【师】1015×103如何计算呢?【生】根据乘方的意义可知:1015×103=(10× (10)15个10×(10×10×10)=(10×10× (10)18个10=1018.【师】很好,通过观察大家可以发现1015,103这两个因数是同底数幂的形式,所以我们把像1015×103的运算叫做同底数幂的乘法,根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.[设计意图]首先让学生回忆幂的一些知识,然后根据教材中的问题1让学生列式、观察并计算出结果,从而导入到本节课的学习之中.导入二:“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混沌的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【师】盘古的左眼变成了太阳,那么太阳离我们多远呢?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远吗?【生】可以列出算式:3×105×5×102=15×105×102=15ד?”.(引入课题)[设计意图]从远古到现代,让学生感受传说,极大地激发了学生的学习热情,同时相应问题的提出,也为学习同底数幂的乘法埋下了伏笔.导入三:北京奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量.那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?【师】你们能列式吗?(学生讨论得出108×105)【师】108,105我们称之为什么?(幂)【师】我们再来观察底数有什么特点?【生1】都是10.【生2】是一样的.【师】像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法.(揭示课题) [设计意图]利用提问题,一方面可以集中学生注意力,使之较快进入课堂学习状态,另一方面可以对学生进行爱国主义教育,增强学生的环保意识.问题1【课件1】计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n(m,n都是正整数).你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.【师】根据乘方的意义,同学们可以独立解决上述问题.【生】25×22 =(2×2×2×2×2)×(2×2)=27 =25+2.25表示5个2相乘,22表示2个2相乘,根据乘方的意义:a3·a2=(a·a·a)·(a·a)=a5=a3+2.5m.5n=(5×5× (5)m个5×(5×5× (5)n个5=5m+n.(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述)【生】我们可以发现下列规律:(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.【师生共析】a m·a n表示同底数幂的乘法,根据幂的意义可得:a m·a n=(a×a×…×a)m个a ×(a×a×…×a)n个a=a m+n.于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[知识拓展]同底数幂是具有相同底数的幂.(1)幂可以看做是代数式中的一类,是形如a n的代数式.目前,在我们研究的这类式子中,可以是任何有理数,也可以是整式,而a n中的n只能是正整数.(2)35与155不是同底数幂,因为它们的底数一个是3,一个是15,是不一样的,这说明两个幂是不是同底数幂,与它们的指数是否相同毫无关系.(3)53与515是同底数幂,因为它们的底数相同(都是5).同理,x3与x5,(a+b)2与(a+b)5也都是同底数幂.同底数幂的乘法法则的关键在于底数,底数一定要相同,并且二者是相乘关系,这样指数才能相加,否则不能运用此法则.问题2(针对导入三)1.探索108×105等于多少.(鼓励学生大胆猜想)学生可能会出现以下几种情况:①10013;②1040;③10040;④1013.[设计意图]猜想产生疑问,激发兴趣,为学生推导公式做好情感铺垫.【师】那到底谁的猜想正确呢?小组合作讨论,生回答,师板演:108× 105=(10× 10×…×10) 8个10×(10 × 10× (10)5个10=10×10×…×10 13个10=1013.即108× 105=108+5. [设计意图]师给出适当的提示后,相信学生能在已有的知识基础上,利用集体的智慧,找出猜想中的正确答案,并通过“转化”思想得出结论,也找到了正确的推理过程.2.出示问题:(学生口答,课件显示过程)a 6·a 9=(a ·a ·…·a ) 6个a·(a ·a ·…·a )9个a=a ·a ·…·a 15个a=a 15. 即a 6·a 9=a 6+9.3.观察以上两个式子,你有什么发现? 【师】这是两个特殊的式子,它们的指数分别是8,5;6,9.底数相同的两数的任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗?a m ·a n 怎么计算?[设计意图]a6·a9和a m·a n的推导过程由于108·105打好了坚实的基础,所以用填空的形式简化公式的推导过程,既避免了重复教学过程,也节约时间,同时也能达到让学生经历从具体到一般的推导过程.【板书】a m·a n=a m+n(m,n都是正整数).师补充解释m,n都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述.【板书】同底数幂相乘,底数不变,指数相加.[设计意图]全班学生参与活动,经历从理解法则的含义的概括到用十分准确简练的语言概括过程,从而提高学生的表达能力.问题3【课件2】(教材例1)计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.计算a m·a n·a p后,能找到什么规律?【师】我们先来看例1,是不是可以用同底数幂的乘法法则呢?【生1】(1)(2)(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.【生2】(3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.【师】同学们分析得很好.请自己做一遍,每组出一名同学板演,看谁算得又准又快.【生板演】(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1+6=a7.(3)解:(-2)×(-2)4×(-2)3=(-2)5×(-2)3=(-2)8=256.(4)解:x m·x3m+1=x m+3m+1=x4m+1.【师】接下来我们来看例2.受例1中第(3)题的启发,能自己解决吗?与同伴交流一下解题方法.解法1:a m·a n·a p=(a m·a n)·a p=a m+n·a p =a m+n+p.解法2:a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p.解法3:a m·a n·a p= (a×a×…×a)m个a ×(a×a×…×a)n个a×(a×a×…×a)p个a=a m+n+p.【归纳】解法1与解法2都直接应用了运算法则,同时还运用了乘法的结合律;解法3是直接应用乘方的意义.三种解法得出了同一结果,我们需要这种开拓思维的创新精神.【生】那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加呢?【师】是的,能不能用符号表示出来呢?【生】a m1·a m2·a m3·…·a m n=a m1+m2+m3+…+m n.【师】(鼓励学生)那么例1中的第(3)题我们就可以直接应用法则运算了.(-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256.1.同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n 都是正整数).2.推广:a m·a n·a p=a m+n+p.3.(课件3)注意:在应用同底数幂乘法法则时,注意以下几点:(1)底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x-y)2与(x-y)5等.(2)a可以是单项式,也可以是多项式.(3)按照运算性质,只有相乘时才是底数不变,指数相加.1.计算a6×a3的结果是()A.a9B.a2C.a18D.a3解析:原式=a6+3=a9.故选A.2.下列计算正确的是()A.x·x2=x2B.x2·x2=2x2C.x2+x3=x5D.x2·x=x3解析:A.底数不变,指数相加,故A错误;B.底数不变,指数相加,故B错误;C.不是同底数幂的乘法,指数不能相加,故C错误;D.底数不变,指数相加,故D正确.故选D.3.计算(-a)3·(-a)2的正确结果是()A.a5B.-a5C.a6D.-a6解析:原式=(-a)3+2=(-a)5=-a5.故选B.4.计算.(1)(-5)×(-5)2×(-5)3;(2)(-a)·(-a)3;(3)-a3·(-a)2;(4)(a-b)2·(a-b)3;(5)(a+1)2·(1+a)·(a+1)3.解析:利用同底数幂乘法法则进行计算,底数不同的利用互为相反数的奇偶次幂的性质进行转化.解:(1)(-5)×(-5)2×(-5)3=(-5)6=56.(2)(-a)·(-a)3=(-a)4=a4.(3)-a3·(-a)2=-a3·a2=-a5.(4)(a-b)2·(a-b)3=(a-b)5.(5)(a+1)2·(1+a)·(a+1)3=(a+1)6.14.1.1同底数幂的乘法1.法则2.公式例题讲解例1例2一、教材作业【必做题】教材第96页练习.【选做题】教材第104页习题14.1第9,10题.二、课后作业【基础巩固】1.计算(-x2)·x3的结果是()A.x5B.-x5C.x6D.-x62.下列计算正确的是()A.a3·a2=a6B.b4·b4=2b4C.x5+x5=x10D.y7·y=y83.下列运算正确的是()A.a5·a5=2a5B.a5+a5=a10C.a5·a5=2a10D.a5·a5=a104.a2014可以写成()A.a2010+a4B.a2010·a4C.a2014·aD.a2007·a20075.下列运算错误的是()A.(-a)(-a)=(-a)2B.-32·(-3)4=(-3)6C.(-a)3·(-a)2=(-a)5D.(-a)3·(-a)3=a6【能力提升】6.设a m=8,a n=16,则a m+n等于()A.24B.32C.64D.1287.下列各式成立的是()A.(x-y)2=-(y-x)2B.(x-y)n=-(y-x)n(n为正整数)C.(x-y)2(y-x)2=-(x-y)4D.(x-y)3(y-x)3=-(x-y)6【拓展探究】8.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得2S-S=22014-1,即S=22014-1,即1+2+22+23+24+…+22013=22014-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).【答案与解析】1.B(解析:(-x2)·x3=-x2+3=-x5.故选B.)2.D(解析:A.应为a3·a2=a5,故本选项错误;B.应为b4·b4=b8,故本选项错误;C.应为x5+x5=2x5,故本选项错误;D.y7·y=y8,正确.故选D.)3.D(解析:A.应为a5·a5=a10,故本选项错误;B.应为a5+a5=2a5,故本选项错误;C.应为a5·a5=a10,故本选项错误;D.a5·a5=a10,正确.故选D.)4.B(解析:A.a2010+a4不能进行计算;B.a2010·a4 =a2014;C.a2014·a=a2015;D.a2007·a2007=a4014,故选B.)5.B(解析:A.(-a)(-a)=(-a)2,故本选项正确;B.-32·(-3)4=-32·34=-36,故本选项错误;C.(-a)3·(-a)2=(-a)3+2=(-a)5,故本选项正确;D.(-a)3·(-a)3=(-a)3+3=(-a)6=a6,故本选项正确.故选B.)6.D(解析:∵a m=8,a n=16,∴a m+n=a m·a n=8×16=128.故选D.)7.D(解析:A.(x-y)2=(y-x)2,故本选项错误;B.(x-y)n=-(y-x)n(n为奇数),故本选项错误;C.(x-y)2(y-x)2=(x-y)4,故本选项错误;D.(x-y)3(y-x)3=-(x-y)6,故本选项正确.故选D.)8.解:(1)设S=1+2+22+23+24+…+210,将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将两式相减得2S-S=211-1,即S=211-1,则1+2+22+23+24+…+210=211-1.(2)设S=1+3+32+33+34+…+3n①,两边同(3n+1-1),则1+3+32+33+34+…时乘以3得3S=3+32+33+34+…+3n+3n+1②,②-①得3S-S=3n+1-1,即S=12(3n+1-1).+3n=12在教学中教师通过实际问题创设情境,导入新课,激发了学生学习数学的兴趣,通过学生的自主探索,让学生经历观察——类比——抽象——概括等过程,归纳出同底数幂的乘法法则,提高了学生的自主意识和自我解题的能力.在归纳出同底数幂的乘法法则之后,教师通过例1、例2的学习,让学生加深了对同底数幂的乘法法则的理解.整个过程学生对知识的接受和理解较好,突出了学生的主体地位和教师的主导作用,学生学得开心,知识掌握较好.因为本节课的内容较简单,所以在习题的设计上,教师可增加些难度,让学生通过变式训练,使学生的能力得到进一步的提高.另外,对于法则的概括和理解要尽量让学生自己去独立完善,教师要少说,多讲评.教学中要适当增加难度,增加变式训练,如法则的逆应用和底数为负数的习题.法则的逆应用要重点让学生掌握,以提高学生解决问题的能力.同时,一定要让学生分清幂的底数,明确只要在同底数幂相乘的时候才能用法则进行计算,否则不行.另外,对于法则的概括以及延伸的a m·a n·a p=a m+n+p,一定要让学生尽量发挥小组合作的能力,发现计算方法,从而总结出规律.教学过程能让学生独立完成的,教师绝不包办代替,把课堂应尽量还给学生.练习(教材第96页)解:(1)原式=b5+1=b6.(2)原式=-121+2+3=-126=164.(3)原式=a2+6=a8.(4)原式=y2n+n+1=y3n+1.题型1一般的同底数幂的乘法问题计算:(1)x2·x3;(2)(-2)4·(-2)3;(3)(a-1)4·(a-1)2.〔解析〕(1)可以直接得到x5;(2)中将(-2)看作相同的底数,由法则可得(-2)7;(3)中将(a-1)看作一个整体作为相同的底数.解:(1)x2·x3=x5.(2)(-2)4·(-2)3=(-2)7 =-27.(3)(a-1)4·(a-1)2=(a-1)6.题型2间接运用同底数幂的乘法法则计算:(1)-t3·(-t)4·(-t)5;(2)(z-y)3·(z-y)·(y-z)2.〔解析〕虽然底数不同,但仅仅只有符号之差,如z-y与y-z,可以先把底数变为相同的底数,再用法则计算.解:(1)-t3·(-t)4·(-t)5 =-t3·t4·(-t5)=t3·t4·t5=t12.(2)(z-y)3·(z-y)·(y-z)2=(z-y)3·(z-y)·(z-y)2=(z-y)6.〔方法提示〕对于不能直接运用同底数幂乘法法则的问题,通常先将题目中各项进行转化,化为同底数幂再运用法则计算,此过程中注意符号的确定.题型3同底数幂乘法法则的逆用计算:(-2)2007+(-2)2008.〔解析〕若直接计算,则相当麻烦,可以运用同底数幂的逆运算,将(-2)2008化成(-2)2007×(-2),再进行计算,比较简便.解:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-2)2007×(-1)=22007.(2014·温州中考)计算m 6·m3的结果是()A.m18B.m9C.m3D.m2〔解析〕根据同底数幂的乘法法则,底数不变,指数相加可知m6·m3=m9.故选B.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.2.了解幂的乘方的运算性质,并能解决一些实际问题.通过分组探究,培养学生合作交流的意识、提高学生勇于探究数学的品质.【重点】会进行幂的乘方的运算.【难点】幂的乘方法则的总结及运用.【教师准备】预设学生学习中容易混淆的知识.【学生准备】复习同底数幂的乘法法则.导入一:(1)叙述同底数幂乘法法则,并用字母表示.(2)计算:①a2·a5·a3;②a4·a4·a4.大家已经会进行同底数幂的乘法运算:a m·a n=a m+n(m,n都是正整数),那么幂的乘方运算又应该如何进行呢?[设计意图]通过复习巩固上节课所学的同底数幂的乘法法则的内容,为探索幂的乘方做好准备.导入二:(1)有甲、乙两个球,如果甲球的半径是乙球半径的n倍,那么甲球的体积是乙球体积的多少倍?学生口答:n3倍.(2)引导学生计算:(102)3=,怎样计算?(102)3=106.方法一:(102)3=102×102×102=102+2+2=106.方法二:(102)3=(100)3=1000000=106.[设计意图]在独立思考的基础上,组织学生交流、讨论,培养学生思维的严密性,让学生体验在交流中获益的乐趣.并在此过程中,引导学生主动反思,回顾解决问题的方法,为进入新课做准备.一、法则的探究1.思考.【课件1】根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3=32×32×32 =3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a()(m是正整数).【师】教师要加强引导,强调应用中的注意事项.2.小组讨论.对正整数n,你认为(a m)n等于什么?能对你的猜想给出检验过程吗?【生】小组互相探索、交流,积极思考,然后各组派代表回答,相互点评,补充得出关于幂的乘方法则.幂的乘方法则:(a m)n=a m·a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.字母表示:(a m)n=a mn(m,n是正整数).语言叙述:幂的乘方,底数不变,指数相乘.教师说明法则中a可以是一个具体的数,也可以是单项式或多项式.[知识拓展]理解法则注意两点:(1)在形式上,幂的乘方的底数本身就是一个幂;(2)法则可推广到[(a m)n]k=a mnk(m,n,k是正整数);(3)幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2写成a7,也不能把a5·a2的计算结果写成a10;(4)幂的乘方是变乘方为乘法(底数不变,指数相乘),如(a3)2=a3×2=a6;而同底数幂的乘法是变乘法为加法(底数不变,指数相加),如a3·a2=a3+2=a5.[设计意图]在探索幂的乘方法则的过程中,学生经历了由特殊到一般的过程,让学生学会了归纳,同时培养学生的合作意识.思路二探索练习1.32表示个相乘;(32)3表示个相乘;a2表示个相乘;(a2)3表示个相乘.2.(32)3=××=(根据a m·a n=a m+n)=;(a2)3=××=(根据a m·a n=a m+n)=.引导学生观察、猜测(32)3与(a2)3的底数、指数,并用乘方的概念解答问题.3.(a m)3=××=(根据a m·a n=a m+n)=;(a m)n=××…×=(根据a m·a n=a m+n)=.通过上面的探索活动,你发现了什么?【归纳】幂的乘方,底数不变,指数相乘.(a m)n=a mn(m,n是正整数).【说明】 在此过程中教师应当鼓励学生,自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化),并运用自己的语言进行描述,然后再让学生回顾这一性质的得出过程,进一步体会幂的意义.[设计意图]学生在探索练习的指引下,自主完成有关的练习,并在练习中发现幂的乘方的法则,经历由猜测到探索的过程,从而理解法则的实际意义,在本质上认识、学习幂的乘方的来历.思路三1.x 3表示什么意义?2.如果把x 换成a 4,那么(a 4)3表示什么意义?3.怎样把a 2·a 2·a 2·a 2 =a 2+2+2+2写成比较简单的形式?4.由此你会计算(a 4)5吗?5.根据乘方的意义及同底数幂的乘法填空: (1)(53)2 =53×53=5();(2)(52)3=()×( )×()=5();(3) (a 3)5 =a 3×()×( )×( )×()=a ().6.用同样的方法计算(a 3)4,(a 11)9,(b 3)n (n 为正整数).这几道题学生都不难做出,在处理这类问题时,关键是如何得出3+3+3+3=12,教师应多举几例.(a 11)9=a 11·a 11·…·a 11=a 11+11+11+…+119个11=a 99.(b 3)n =b 3·…·b 3=b 3+3+3+…+3n 个3=b 3n .教师应指出这样处理既麻烦,又容易出错,此时应让学生思考,有没有简捷的方法?引导学生认真思考,并得到:(23)2 =23×2=26;(32)3=32×3 =36;(a 11)9=a 11×9=a 99;(b 3)n =b 3×n = b 3n .观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?怎样说明你的猜想是正确的?(a m )n =a m ·a m ·a m·…·a m n 个a m(乘方的意义)=a m +m +m +…+mn 个m(同底数幂的乘法) =a mn (乘法定义),即(a m )n =a mn (m ,n 是正整数).这就是幂的乘方法则.你能用语言叙述这个法则吗?幂的乘方,底数不变,指数相乘. [设计意图]通过层层导入与渗透,让学生通过类比总结出幂的乘方的计算法则,整个过程由浅入深,体现了循序渐进的原则.二、例题讲解(教材例2)计算: (1)(103)5; (2)(a 4)4; (3)(a m )2;(4)-(x 4)3.〔解析〕要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.启发学生共同完成例题.学生在教师启发下,完成例题的问题,并进一步理解幂的乘方法则.解:(1)(103)5=103×5=1015.(2)(a4)4=a4×4=a16.(3)(a m)2=a m×2=a2m.(4)-(x4)3=-x4×3=-x12.想一想:a mn等于(a m)n(m,n是正整数)吗?学生类比同底数幂的乘法运算得出a mn=(a m)n(m,n是正整数),也就是说对于幂的乘方法则,它的逆应用同样成立.当一个幂的指数是积的形式时,就可以写成幂的乘方的形式.a20=(a4)()=(a5)()=(a2)()=(a10)().已知x m=4,x n=5,试求代数式x3m+2n的值.〔解析〕x3m+2n x3m·x2n(x m)3·(x n)2,整体代入,x m=4,x n=5即可求解.解:x3m+2n=x3m·x2n=(x m)3·(x n)2=43×52=1600.1.(a m)n=a mn(m,n都是正整数)的使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于一个是“指数相乘”,一个是“指数相加”.1.下列运算正确的是()A.2a2+3a=5a3B.a2·a3=a6C.(a3)2=a6D.a3-a3=a解析:A.2a2+3a,不是同类项不能相加,故A选项错误;B.a2·a3=a5,故B选项错误;C.(a3)2=a6,故C选项正确;D.a3-a3=0,故D选项错误.故选C.2.下列运算中,计算结果正确的是()A.3x-2x=1B.2x+2x=x2C.x·x=x2D.(a3)2=a4解析:A.3x-2x=x,所以A选项不正确;B.2x+2x=4x,所以B选项不正确;C.x·x=x2,所以C选项正确;D.(a3)2=a6,所以D选项不正确.故选C.3.计算.(1)x n-2·x n+2;(n是大于2的整数)(2)-(x3)5;(3)[(-2)2]3;(4)[(-a)3]2.解析:(1)根据同底数幂的乘法法则求解;(2)(3)(4)根据幂的乘方的法则求解.解:(1)原式=x n-2+n+2=x2n.(2)原式=-x15.(3)原式=43=64.(4)原式=a6.14.1.2幂的乘方一、法则的探究推理过程:(a m)n=a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.公式:(a m)n=a mn(m,n都是正整数).法则:幂的乘方,底数不变,指数相乘.二、例题讲解一、教材作业【必做题】教材第97页练习.【选做题】教材第104页习题14.1第1题(1)~(4).二、课后作业【基础巩固】1.计算(-a3)2的结果是()A.a6B.-a6C.a8D.-a82.计算:(a3)2·a3=.3.若9x=3x+2,则x=.4.已知2m=3,2n=22,则22m+n=.5.若2·8m=42m,则m=.【能力提升】6.若m,n都是正整数,且a>1,则(a n)m和(a m)n是否一定相等?若一定相等,请给予证明;若不一定相等,请举出反例.7.已知a m=2,a n=3,m,n是正整数且m>n.求下列各式的值:(1)a m+1;(2)a3m+2n.【拓展探究】8.试比较35555,44444,53333三个数的大小.【答案与解析】1.A(解析:(-a3)2=a3×2=a6.故选A.)2.a9(解析:先计算幂的乘方,再计算同底数幂的乘法.所以原式=a6·a3=a9.)3.2(解析:9x=32x=3x+2,2x=2+x,解得x=2,故答案为2.)4.36(解析:∵2m=3,2n=22,∴22m+n=22m·2n=(2m)2·2n=32·22=9×4=36.)5.1(解析:∵2·8m=42m,∴2×23m=24m,∴1+3m=4m,解得m=1.)。

整式的乘法与因式分解全章教案(最新整理)

整式的乘法与因式分解全章教案(最新整理)

十四章整式的乘除与因式分解14.1.1同底数幂的乘法教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.3.关键:幂的运算中的同底数幂的乘法教学,要突破这个难点, 必须引导学生,循序渐进,合作交流,获得各种运算的感性认识,进而上各项到理性上来,提醒学生注意-a2与(-a)2的区别.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒, 你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15 ×105×102=15×?(引入课题)【教师提问】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示. 计算过程:105×102=(10×10×10×10×10)×(10×10) =10×10×10×10×10×10×10=107【教师活动】下面引例.1.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)53×54=_____________=5( );(3)(-3)7×(-3)6=___________________=(-3)( );(4)(110)3×(110)=___________=(110)( ); (5)a 3·a 4=________________a ( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师拓展】计算a·a=?请同学们想一想.【学生总结】a·a=()()()()m a a m n aa a a a a a a a a a +=A A A A A A A A A A A A A A个n 个个=a m+n 这样就探究出了同底数幂的乘法法则.二、范例学习,应用所学【例】计算:(1)103×104; (2)a·a 3; (3)a·a 3·a 5; (4)x·x 2+x 2·x【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103×104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a 是a 的一次方, 提醒学生不要漏掉这个指数1,x 3+x 3得2x 3,提醒学生应该用合并同类项.(3)上述例题的探究, 目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.【教师活动】投影显示例题,指导学生学习.【学生活动】参与教师讲例,应用所学知识解决问题.三、随堂练习,巩固深化课本练习题.【探研时空】据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?四、课堂总结,发展潜能1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系, 使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立, 底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.五、布置作业,专题突破1.课本P96习题14.1第1(1),(2),2(1)题.2.选用课时作业设计.板书设计14.1.1同底数幂的乘法1、同底数幂的乘法法则例:练习:教学反思本节课的教学过程是探索发现性学习过程,注意同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.14.1.2 幂的乘方教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.重、难点与关键1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导, 要求对性质深入地理解.教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你, 木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么, 请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=43π·(102)3=?(引入课题).【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106, 因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a2)3;(2)(24)3;(3)(b n)3;(4)-(x2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(a m)n== a mn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P97练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母, 也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”, 一个是“指数相加”.五、布置作业,专题突破课本P104习题14.1第1、2题.板书设计14.1.2 幂的乘方1、幂的乘方的乘法法则例:练习:教学反思由于幂的乘方较抽象,引入课题时也可以从国情教育引入,搜集关于希望工程的图片展示给学生,如:有一个棱长为102cm的正方体,我们计算一下,可以装长为20cm,宽为15cm,厚为2cm的书多少本?14.1.3 积的乘方教学目标1.知识与技能通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.2.过程与方法经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.3.情感、态度与价值观通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.重、难点与关键1.重点:积的乘方的运算.2.难点:积的乘方的推导过程的理解和灵活运用.3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入, 层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用.教学方法采用“探究──交流──合作”的方法,让学生在互动中掌握知识.教学过程一、回顾交流,导入新知【教师活动】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.【课堂演练】计算:(1)(x4)3(2)a·a5(3)x7·x9(x2)3【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示, 然后再提出下面的问题.同学们思考怎样计算(2a3)4,每一步的根据是什么?【学生活动】先独立完成上面的问题,再小组讨论.(2a3)4=(2a3)·(2a3)·(2a3)·(2a3)(乘方的含义)=(2·2·2·2)·(a3·a3·a3·a3)(乘法交换律、结合律)=24·a12(乘方的意义与同底数幂的乘法运算)=16a12【教师活动】提出应用以上分析问题的过程,再计算(ab)4,说出每一步的根据是什么?【学生活动】独立思考之后,再与同学交流.(ab)4=(ab)·(ab)·(ab)·(ab)(乘方的含义)=(aaaa)·(bbbb)(交换律、结合律)=a4·b4(乘方的含义)【教师提问】(1)请同学们通过计算,观察乘方结果之后, 你能得出什么规律?(2)如果设n为正整数,将上式的指数改成n,即:(ab)n,其结果是什么?【学生活动】回答出(ab)n=a n b n.【师生共识】我们得到了积的乘方法则:(ab)n=a n b n(n为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘.(ab)n==a n b n【教师活动】拓展训练:三个或三个以上的积的乘方,如(abc)n,【学生活动】回答出结果是(abc)n =a n b n c n.二、范例学习,应用所学【例】计算:(1)(2b)3;(2)(2×a3)2;(3)(-a)3;(4)(-3x)4.【教师活动】组织、讲例、提问.【学生活动】踊跃抢答.三、随堂练习,巩固深化课本P98练习.【探研时空】计算下列各式:(1)(-35)2·(-35)3;(2)(a-b)3·(a-b)4;(3)(-a5)5;(4)(-2xy)4;(5)(3a2)n;(6)(xy3n)2-[(2x)2] 3;(7)(x4)6-(x3)8;(8)-p·(-p)4;(9)(t m)2·t;(10)(a2)3·(a3)2.四、课堂总结,发展潜能本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半”.1.积的乘方(ab)n=a n b n(n是正整数),使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数, 也可以是整式,对三个以上因式的积也适用.3.要注意运算过程,注意每一步依据,还应防止符号上的错误.4.在建构新的法则时应注意前面学过的法则与新法则的区别和联系.五、布置作业,专题突破1.课本P104习题15.1第1、2题.板书设计14.1.3 积的乘方1、积的乘方的乘法法则例:练习:教学反思计算(-2x)3学生易错误得出-2x3,本题错误在于:括号内应看成-2·x两个因式,而上述结论显然结积的乘方意义缺乏理解,-2漏乘方,正确的应是(-2)3·x3=-8x3.14.1.4 单项式乘以单项式教学目标1.知识与技能理解整式运算的算理,会进行简单的整式乘法运算.2.过程与方法经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.3.情感、态度与价值观培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.重、难点与关键1.重点:单项式乘法运算法则的推导与应用.2.难点:单项式乘法运算法则的推导与应用.3.关键:通过创设一定的问题情境, 推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点.教学方法采用“情境──探究”的教学方法,让学生在创设的情境之中自然地领悟知识.教学过程一、创设情境,操作导入【手工比赛】让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.【教师活动】组织学生参加“才艺比赛”.【学生活动】完成上述手工制作,与同伴交流.【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?【学生回答】加一个美丽的像框.【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?【学生活动】动手列式,图片的面积为mx·x=?【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.【学生活动】先独立思考,再与同伴交流.实际上mx·x=m(x·x)=m·x2=mx2.【拓展延伸】请同学们继续计算mx·54x=?【学生活动】先独立完成,再与同伴交流,踊跃上台演示.mx·54x=m·54x·x=m·54x2=54mx2.【教师活动】请部分学生上台演示,然后大家共同讨论.【继续探究】计算:(1)x·mx;(2)2a2b·3ab3;(3)(abc)·b2c.【学生活动】独立完成,再与同学交流.【教师活动】总结新知:我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.二、范例学习,应用所学【例1】计算.(1)3x2y·(-2xy3)(2)(-5a2b3)·(-4b2c)【思路点拨】例1的两个小题,可先利用乘法交换律、 结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒, 则卫星运行3×102秒所走的路程约是多少?【教师活动】:引导学生参与到例1,例2的解决之中.【学生活动】参与到教师的讲例之中,巩固新知.三、问题讨论,加深理解【问题牵引】1.a·a可以看作是边长为a的正方形的面积,a·ab又怎样理解呢?2.想一想,你会说明a·b,3a·2a以及3a·5ab的几何意义吗?【教师活动】问题牵引,引导学生思考,提问个别学生.【学生活动】分四人小组,合作学习.四、随堂练习,巩固深化课本P145练习第1、2题.五、课堂总结,发展潜能本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上.提问:(1)请同学们归纳出单项式乘以单项式的运算法则.(2)在应用单项式乘以单项式运算法则时应注意些什么?六、布置作业,专题突破1.课本P149习题15.1第3题.2.选用课时作业设计.板书设计14.1.4 单项式乘以单项式1、单项式乘以单项式的乘法法则例:练习:教学反思【思路点拨】对于单项式与单项式相乘的应用问题,首先要依据题意,列出算式,含10的幂相乘同样用单项式与乘法法则进行计算,还应将所得的结果用科学记数法表示.14.1.5 单项式与多项式相乘教学目标1.知识与技能让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.2.过程与方法经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.3.情感、态度与价值观培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.重、难点与关键1.重点:单项式与多项式相乘的法则.2.难点:整式乘法法则的推导与应用.3. 关键:应用乘法分配律把单项式与多项式相乘转化到单项式与单项式相乘上来,注意知识迁移.教学方法采用“情境──探究”教学方法,让学生直观地理解单项式与多项式相乘的法则.教学过程一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x)·(3x)2(2)(-3x)·(-x)(3)1 3xy·23xy2(4)-5m2·(-13mn)(5)-15x4y6-2x2y·(-12x2y5)【教师活动】组织练习,关注中下水平的学生.【学生活动】先独立完成上述“演练题”,再相互交流,部分学生上台演示.二、创设情境,引入新课小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了16a米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【教师活动】在学生讨论的基础上,提问个别学生.【情境问题2】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A牌空调,他们在一年内的销售量(单位:台)分别是x,y,z, 请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A牌空调的总量(单位:台), 再计算出总的收入(单位:元).即:n(x+y+z).方法二:采用分别计算出三家超市销售A牌空调的收入, 然后再计算出他们的总收入(单位:元).即:nx+ny+nz.由此可得:n(x+y+z)=nx+ny+nz.【教师活动】引导学生在不同的代数式呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.三、范例学习,应用所学【例1】计算:(-2a2)·(3ab2-5ab3).解:原式=(-2a2)(3ab2)-(-2a2)·(5ab3)=-6a3b2+10a3b3【例2】化简:-3x2·(13xy-y2)-10x·(x2y-xy2)解:原式=-x3y+3x2y2-10x3y+10x2y2=-11x3y+13x2y2【例3】解方程:8x(5-x)=19-2x(4x-3)40x-8x2=19-8x2+6x40x-6x=1934x=19x=1934四、随堂练习,巩固深化课本P146练习.【探研时空】计算:(1)5x2(2x2-3x3+8)(2)-16x(x2-3y)(3)-2a2(12ab2+b4)(4)(23x2y3-16xy)·12xy2【教师活动】巡视,关注中差生.五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘, 就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.六、布置作业,专题突破课本P104习题14.1第4、6题.板书设计14.1.5 单项式乘以多项式1、单项式乘以多项式的乘法法则例:练习:教学反思教学中,应紧扣法则,注意多项式的各项是带着前面的符号的.在实施“情境──探究”教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神.14.1.6 多项式与多项式相乘教学目标1.知识与技能让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.2.过程与方法经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理.3.情感、态度与价值观通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.重、难点与关键1.重点:多项式与多项式的乘法法则的理解及应用.2.难点:多项式与多项式的乘法法则的应用.3. 关键:多项式的乘法应先转化为单项式与多项式相乘而后再应用已学过的运算法则解决.教学方法采用“情境──探索”教学方法,让学生在设置的情境中,通过操作感知多项式与多项式乘法的内涵.教学过程一、创设情境,操作感知【动手操作】首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1 所示的四部分,标上字母.【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母.【教师活动】要求学生根据图中的数据,求一下这个矩形的面积.【学生活动】与同伴交流,计算出它的面积为:(m+b)×(n+a).【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和.【学生活动】分四人小组,合作探究,求出第一块的面积为m (n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3, 然后再求这四块长方形的面积.【学生活动】分四人小组合作学习,求出S1=mn;S2=nb;S3=am;S4=ab, 它们的和为S=mn+nb+am+ab.【教师提问】依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?【学生活动】分四人小组讨论,并交流自己的看法.(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.字母呈现:=ma+mb+na+nb.二、范例学习,应用所学【例1】计算:(1)(x+2)(x-3)(2)(3x-1)(2x+1)【例2】计算:(1)(x-3y)(x+7y)(2)(2x+5y)(3x-2y)【例3】先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去.【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.三、随堂练习,巩固新知课本P148练习第1、2题.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a 米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?四、课堂总结,发展潜能1.多项式与多项式相乘, 应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理, 在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.五、布置作业,专题突破课本P104习题14.1第5、6、7(2)、9、10题.板书设计14.1.6 多项式乘以多项式1、多项式乘以多项式的乘法法则例:练习:教学反思在实施情境探究教学过程中,应注意让学生感知问题的生成、发展与变化,培养学生善于发现的科学精神以及合作交流的精神和创新意识.14.2.1平方差公式(二)教学目标1.知识与技能探究平方差公式的应用,熟练地应用于多项式乘法之中.2.过程与方法经历平方差公式的运用过程,体会平方差公式的内涵.3.情感、态度与价值观培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.重、难点与关键1.重点:运用平方差公式进行整式计算.2.难点:准确把握运用平方差公式的特征.3.关键:弄清平方差公式的结构特点,左边:(1)两个二项式的积;(2) 两个二项式中一项相同,另一项互为相反数.右边:(1)二项式;(2)两个因式中相同项平方减去互为相反数的项的平方.教学方法采用“精讲.精练”分层递推的教学方法,让学生在训练中,熟练掌握平方差的特征.教学过程一、回顾交流,课堂演练1.用平方差公式计算:(1)(-9x-2y)(-9x+2y)(2)(-0.5y+0.3x)(0.5y+0.3x)(3)(8a2b-1)(1+8a2b)(4)20082-2009×20072.计算:(a+12b)(a-12b)-(3a-2b)(3a+2b)【教师活动】请部分学生上讲台“板演”,然后组织学生交流.【学生活动】先独立完成课堂演练,再与同学交流.二、范例学习,巩固深化【例1】计算:(1)(34y+212x)(212x-34y);(2)(-56x-0.7a2b)(56x-0.7a2b);(3)(2a-3b)(2a+3b)(4a2+9b2)(16a4+81b4).解:(1)原式=(52x+34y)(52x-34y)=2259416x y2(2)原式=(-0.7a2b-56x)(-0.7a2b+56x)=(-0.7a 2b )2-(56x )2=0.4 9a 4b 2-2536x 2 (3)原式=(4a 2-9b 2)(4a 2+9b 2)(16a 4+81b 4)=(16a 4-81b 4)(16a 4+81b 4)=256a 8-6561b 8【例2】运用乘法公式计算:734×814 【思路点拨】因为734可改写为8-14,814可改写成8+14,这样可用平方差公式计算.解:734×814=(8-14)(8+14)=82-(14)2=64-116=631516. 【教师活动】边讲例边引导学生学会应用平方差公式.【学生活动】参与到例1~2的学习中去.三、课堂演练,拓展思维【演练题1】想一想:(1)计算下列各组算式,并观察它们的共同特征.68?1315?6163?5961?77?1414?6262?6060?⨯=⨯=⨯=⨯=⎧⎧⎧⎧⎨⎨⎨⎨⨯=⨯=⨯=⨯=⎩⎩⎩⎩(2)从以上的过程中,你能寻找出什么规律?(3)请你用字母表现你所发现的规律,并得出结论.【演练题2】1.计算:(1)118×122 (2)105×95 (3)1007×9932.求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.【教师活动】组织学生进行课堂演练,并适时归纳.【学生活动】先独立完成上面的演练题,再与同伴交流.四、随堂练习,巩固提升【探研时空】1.计算:[2a 2-(a+b )(a -b )][(-a -b )(-a+b )+2b 2];2.解不等式:(3x+4)(3x -4)<9(x -2)(x+3);3.利用平方差公式计算:1.97×2.03;4.化简求值:x 4-(1-x )(1+x )(1+x 2)其中x=-2.【教师活动】引导学生通过探究,领会平方差公式的真正意义. 【学生活动】分四人小组合作学习,互相交流.。

初二数学八上第十四章整式乘法与因式分解知识点总结温习和常考题型练习

初二数学八上第十四章整式乘法与因式分解知识点总结温习和常考题型练习

第十四章 整式的乘除与分解因式一、知识框架:二、知识概念:1.大体运算:⑴同底数幂的乘法:m n m n a a a +⨯= ⑵幂的乘方:()n m mn a a = ⑶积的乘方:()n n n ab a b =2.整式的乘法:⑴单项式⨯单项式:系数⨯系数,同字母⨯同字母,不同字母为积的因式.⑵单项式⨯多项式:用单项式乘以多项式的每一个项后相加.⑶多项式⨯多项式:用一个多项式每一个项乘以另一个多项式每一个项后相加.3.计算公式:⑴平方差公式:()()22a b a b a b -⨯+=- ⑵完全平方公式:()2222a b a ab b +=++;()2222a b a ab b -=-+4.整式的除法:⑴同底数幂的除法:m n m n a a a -÷=⑵单项式÷单项式:系数÷系数,同字母÷同字母,不同字母作为商的因式. ⑶多项式÷单项式:用多项式每一个项除以单项式后相加.⑷多项式÷多项式:用竖式.5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方式:⑴提公因式法:找出最大公因式.⑵公式法:①平方差公式:()()22a b a b a b -=+- ②完全平方公式:()2222a ab b a b ±+=± ③立方和:3322()()a b a b a ab b +=+-+ ④立方差:3322()()a b a b a ab b -=-++ ⑶十字相乘法:()()()2x p q x pq x p x q +++=++ ⑷拆项法 ⑸添项法常考例题精选1.(2021·襄阳中考)下列运算正确的是( )A.4a-a=3 ·a2=a3C.(-a3)2=a5÷a2=a32.(2021·烟台中考)下列运算中正确的是( )A.3a+2a=5a2B.(-3a3)2=9a6÷a2=a3 D.(a+2)2=a2+43.(2021·遵义中考)计算(−12ab2)3的结果是( )3 232518184.(2021·沈阳中考)下面的计算必然正确的是( ) +b3=2b6 B.(-3pq)2=-9p2q2·3y5=15y8÷b3=b35.(2021·凉山州中考)下列各式正确的是( )=(−a)2=(−a)3=|−a2|=|a3|6.(2021·长春中考)计算:7a2·5a3= .7.(2021·广州中考)分解因式:x2+xy= .8.(2021·东营中考)分解因式2a2-8b2= .9.(2021·无锡中考)分解因式:2x2-4x= .10.(2021·连云港中考)分解因式:4-x2= .11.(2021·盐城中考)分解因式a2-9= .12.(2021·长沙中考)x2+2x+1= .13.(2021·临沂中考)分解因式4x-x3= .14.(2021·安徽中考)分解因式:x2y-y= .15.(2021·潍坊中考)分解因式:(a+2)(a-2)+3a= .16.(2021·遂宁中考)为庆贺“六·一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,依照下面的规律,摆第(n)个图案,需用火柴棒的根数为.17.(2021·潍坊中考)当n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形别离如图所示.则第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)18.(2021·牡丹江中考)一件商品的进价为a元,将进价提高100%后标价,再按标价打七折销售,则这件商品销售后的利润为元.19.(2021·株洲中考)先化简,再求值:(x-1)(x+1)-x(x-3),其中x=3.1.(2021·徐州)下列运算正确的是( )A.3a2-2a2=1 B.(a2)3=a5C.a2·a4=a6D.(3a)2=6a22.下列计算错误的是( )A.(5-2)0=1 B.28x4y2÷7x3=4xy2C.(4xy2-6x2y+2xy)÷2xy=2y-3x D.(a-5)(a+3)=a2-2a-153.(2021·毕节)下列因式分解正确的是( )A.a4b-6a3b+9a2b=a2b(a2-6a+9) B.x2-x+14=(x-12)2C.x2-2x+4=(x-2)2D.4x2-y2=(4x+y)(4x-y)4.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于( ) A.2 B.4 C.6 D.85.若m=2100,n=375,则m,n的大小关系是( )A.m>n B.m<n C.m=n D.无法肯定6.已知a+b=3,ab=2,则a2+b2的值为( )A.3 B.4 C.5 D.67.计算:(a-b+3)(a+b-3)=( )A.a2+b2-9 B.a2-b2-6b-9C.a2-b2+6b-9 D.a2+b2-2ab+6a+6b+98.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部份拼成一个长方形(如图乙),按照两个图形中阴影部份的面积相等,可以验证( )A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b)D.(a+2b)(a-b)=a2+ab-2b29.若x2+mx-15=(x-3)(x+n),则m,n的值别离是( )A.4,3 B.3,4 C.5,2 D.2,510.(2021·日照)观察下列各式及其展开式:(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5…请你猜想(a+b)10的展开式第三项的系数是( )A.36 B.45 C.55 D.6611.计算:(x-y)(x2+xy+y2)=.12.(2021·孝感)分解因式:(a-b)2-4b2=.13.若(2x+1)0=(3x-6)0,则x的取值范围是.14.已知a m=3,a n=2,则a2m-3n=.15.若一个正方形的面积为a 2+a +14,则此正方形的周长为 .16.已知实数a ,b 知足a 2-b 2=10,则(a +b)3·(a -b)3的值是 .17.已知△ABC 的三边长为整数a ,b ,c ,且知足a 2+b 2-6a -4b +13=0,则c 为 .18.观察下列各式,探索发现规律:22-1=1×3;32-1=2×4;42-1=3×5;52-1=4×6;….按此规律,第n 个等式为 .19.计算:(1)(2021·重庆)y(2x -y)+(x +y)2; (2)(-2a 2b 3)÷(-6ab 2)·(-4a 2b).20.用乘方公式计算:(1)982; (2)899×901+1.21.分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n.22.先化简,再求值:(1)(2021·随州)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-1 2;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,计划部门计划将阴影部份进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.学习了分解因式的知识后,老师提出了这样一个问题:设n为整数,则(n+7)2-(n-3)2的值必然能被20整除吗?若能,请说明理由;若不能,请举出一个反例.25.阅读材料并回答问题:讲义中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a +b)(a +b)=2a 2+3ab +b 2就可以够用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a +b)(a +3b)=a 2+4ab +3b 2;(3)请仿照上述方式另写一个含有a ,b 的代数恒等式,并画出与之对应的几何图形.26. 概念2a b a b *=-,则(12)3**= .。

第十四章整式的乘法与因式分解 作业设计 数学人教版八年级上册

第十四章整式的乘法与因式分解 作业设计 数学人教版八年级上册

赣州市义务教育“作业设计我来评”优秀作业征集评比参赛作品一、作业设计内容人教版八年级上册第十四章整式的乘法与因式分解。

二、作业设计类型单元每课时的作业(包括单元复习课作业)。

三、作业目标在中考中,本章是必考内容,主要考查幂的运算、乘法公式、因式分解,所以,本章的作业目标是:1.让学生充分掌握运用整式的乘(除)法法则、乘法公式、添括号法则进行相关计算。

2.能灵活运用提公因式法和公式法进行因式分解。

3.体会转化、数形结合等数学思想,体会和掌握类比的学习方法。

4.提高学生运用所学知识解决问题的能力。

四、作业设计方案见附件。

五、设计理念阐述1.作业设计理念:深入贯彻落实《中共中央办公厅国务院办公厅关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》《教育部办公厅关于加强义务教育学校作业管理的通知》等精神,进一步提升作业设计的科学性、针对性和规范性,增强作业实施的有效性,减轻学生过重的作业负担,依据《义务教育数学课程标准》设计作业。

2.作业设计思路:(1)尊重差异,体现自主性。

新课程强调学生学习的主体,承认并尊重学习上的差异,是主体性学习的一个重要特点。

(2)积累知识,厚积薄发。

使数学学习成为沟通课本与生活的桥梁,提高数学思维与解题能力。

(3)培养学生实际应用能力。

即使把所学知识与实际问题相联系,使学生从学数学向用数学方向推进。

(4)突出重点,强化练习。

作业设计体现新的课改理念,还应符合本年段学生的认识,心理特征,关注到学习兴趣的培养和个性发展的需要,体现多元化,多层次,因材施教。

3.作业形式:设计分“知识梳理,夯实基础,能力提升,思维拓展”四个层面,通过选择、填空、解答等形式达到作业目标。

附:作业设计方案第14章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法知识梳理知识点一:同底数幂的乘法运算法则a m⋅a n=a m+n(m,n都是正整数).即同底数幂相乘,底数________,指数________.同底数幂是指底数相同的幂,底数可以是___________,也可以是________或________.三个或三个以上同底数幂相乘时,也具有这一性质.即a m⋅a n⋅a P=a m+n+P(m,n,p都是正整数).知识点二:逆用同底数幂的乘法运算法则把一个幂分解成____个或____个同底数幂的积,其中他们的底数与原来的底数______,它们的指数之和等于原来幂的_______.即a m+n=a m⋅a n(m,n都是正整数).夯实基础1.下列计算正确的是().A.a3⋅a3=a6B.a3⋅a3=2a3C.a3⋅a3=a9D.a3+a3=a62.计算a3⋅(−a)的结果是( ).A.a2 B.−a2C.a4D.−a43.若2n+2n+2n+2n=8,则n=( ).A. 1B. 2C. 0D. 144.若x2⋅x m=x5,则m=______.5.若3×32m×33m=311,则m的值为_________.能力提升1.计算:(a−b)3⋅(b−a)⋅(a−b)5=.2.已知x m−n⋅x2n+1=x11,y m−1⋅y5−n=y6,求mn2的值.3. (1)−a2⋅a5+a⋅a3⋅a3;(2)a2⋅a3−(−a3)⋅a4+a6⋅(−a).思维拓展1.(1)若2x=3,2y=5,则2x+y=.(2)已知a x=5,a x+y=25,求a x+a y的值.(3)已知x2a+b⋅x3a−b⋅x a=x12,求−a100+2101的值.14.1.2幂的乘方知识梳理知识点一:幂的乘方运算法则(a m)n=a mn(m,n都是正整数),即幂的乘方,底数________,指数__________.公式的推广:((a m)n)P=a mnp(m,n,p都是正整数)注意:负号在括号内时,偶次方结果为______,奇次方结果为______;负号在括号外时,结果都为______.知识点二:逆用幂的乘方运算法则a mn=(a m)n=(a n)m(m,m都是正整数).根据题目的需要常常逆用幂的乘方运算将某些幂变形,从而解决问题.夯实基础1.计算(a2)3,结果是().A. a5B. a6C. a8D. a92.计算(−a5)2+(−a2)5的结果是()A. 0B. −2a7C. 2a10D. −2a103.若k为正整数,则A. k2kB. k2k+1C. 2k kD. k2+k4.计算:(1)(−a2)3⋅a3+(−a)2⋅a7−5(a3)3;(2)x5⋅x7+x6⋅(−x3)2+2(x3)4.能力提升1.已知3a=5,3b=10,则3a+2b的值为()A. −50B. 50C. 500D. −5002.已知a m=2,a n=−1,求a3m+2n的值.3.已知3x+5y−1=0,求8x⋅32y的值.思维拓展阅读下列解题过程:试比较2100与375的大小.解:因为2100=(24)25=1625,375=(33)25=2725,16<27,所以2100<375.请根据上述方法解答问题:比较255,344,433的大小.14.1.3积的乘方知识梳理知识点一:积的乘方运算法则(ab)n=a n⋅b n(n是正整数).即积的乘方,等于把积的每一个因式分别_______,再把所得的幂__________.公式的推广:(abc)n=a n⋅b n⋅c n(n是正整数).知识点二:逆用积的乘方运算法则a nb n=(ab)n(n是正整数).逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.夯实基础1.计算:(−23x2y)3=_______________.2.如果(a n b m)3=a9b15,那么m,n的值为_____________.3.计算(−4×103)2×(−2×103)3的结果为_____________________.能力提升1.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.2.若n为正整数,且x2n=3,则(3x3n)2=.3.用简便方法计算:(1)(−125)8×0.255×(57)8×(−4)5;(2)0.1252021×(−82022).思维拓展(1)已知a n=2,b2n=3,求(a3b4)2n的值.(2)若59=a,95=b,用a,b表示4545的值.(3)若n为正整数,且x2n=7,求(3x3n)2−13(x2)2n的值.14.1.4整式的乘法第一课时单项式的乘法知识梳理知识点:单项式的乘法运算法则单项式与单项式相乘,把它们的系数、同底数幂分别_________,对于只在一个单项式里含有的字母,则连同它的_______作为积的一个______.三个或三个以上的单项式相乘同样适用.夯实基础x⋅(−2x2)3=______.1.计算:122.计算(6×103)×(8×105)的结果是__________.a2)4⋅(−b2)5.3.计算:(−3a2b)3⋅(−12能力提升1.若x3⋅x m y2n=x9y8,则4m−3n=__________________.2.若−2x3m+1y2n与4x n−6y−3−m的积与−4x4y是同类项,求m、n.3.已知3a n+1b n+1与−a2m−1b n−1的积等于−3a3b6,求(2m+n)n的值.思维拓展若“三角”表示3abc,“方框”表示−4x y w z,则×=.14.1.4整式的乘法第二课时单项式与多项式相乘知识梳理知识点:单项式与多项式相乘的运算法则单项式与多项式相乘,就是用_______去乘________的每一项,再把所得的积_________.即P(a+b+c)=Pa+Pb+Pc.夯实基础1.下列运算正确的是().A.2a(a−1)=2a2−aB.a(a+3b)=a2+3abC.−3(a+b)=−3a+3bD.a(−a+2b)=−a2−2ab2.计算2x(3x2+1)=_______________________.xy2)2⋅[xy(2x−y)+xy2].3.计算:(−134.计算:(2x2)3−6x3(x3+2x2+x).能力提升1.若x−y+3=0,则x(x−4y)+y(2x+y)的值为().A. 9B. −9C. 3D. −32.若一个长方体的长、宽、高分别为2x,x,3x−4,则长方体的体积为().A.3x3−4x2B.6x2−8xC.6x3−8x2D.6x3−8x3.解不等式:45+(−x)2+6x(x+3)>(−x)(2x−13)+(−3x)2.思维拓展【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax−y+6+3x−5y−1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x−6y+5,所以a+3=0,则a=−3.【理解应用】(1)若关于x的多项式(2x−3)m+2m2−3x 的值与x的取值无关,求m值;【能力提升】(2)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1−S2的值始终保持不变,求a与b的等量关系.14.1.4整式的乘法第三课时多项式与多项式相乘知识梳理知识点:多项式与多项式相乘的运算法则多项式与多项式相乘,先用一个_______的每一项乘另一个_______,再把所得的积__________.即(a+b)(m+n)=____________________.夯实基础1.若(x+4)(x−2)=x2+mx+n,则m、n的值分别是().A. 2,8B.−2,−8C.2,−8D.−2,82.计算(x+2)(x−3)=_______________________.3.计算:2(x+3)(x−4)−(2x−3)(x+2).能力提升1.已知ab=a+b+2020,则(a−1)(b−1)的值为_________________.2.要使(6x−m)(3x+1)的结果中不含x的一次项,则m的值等于_____________.3.解方程或不等式:(1)(x−3)(x+8)=(x+4)(x−7)+2(x+5);(2)2x(x−4)>(x+4)(x+2)+(x−3)(x+6).思维拓展(1)填空:(a−b)(a+b)=______.(a−b)(a2+ab+b2)=______.(a−b)(a3+a2b+ab2+b3)=______.(2)猜想:(a−b)(a n−1+a n−2b+⋯+ab n−2+b n−1)=______(其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:27+26+25+24+23+2+1.14.1.4整式的乘法第四课时整式的除法知识梳理知识点一:同底数幂的除法运算法则a m÷a n=____________(a≠0,m,n都是正整数,并且m> n).即同底数幂相除,底数________,指数________.知识点二:零次指数幂a0=1(a≠0).任何不等于0的数的0次幂都等于________.知识点三:单项式的除法运算法则单项式相除,把______与_______分别相除作为商的_______,对于只在被除式里含有的_______,则连同它的_____ ___作为商的一个________.知识点四:多项式除以单项式的运算法则多项式除以单项式,先把这个多项式的__________除以这个_________,再把所得的商_________.夯实基础1.计算:28x4y2÷7x3y=______________________.2.(-2021)0=_______________.2.计算:(1)(4x 3y +6x 2y 2−xy 3)÷(2xy);(2)(−2x 3y 2−3x 2y 2+2xy)÷(2xy).能力提升1.已知5x =3,5y =2,则52x−3y =( )A. 34B. 1C. 23D. 98 2.若a >0,且a x =3,a y =2,则a 2x−y 的值为( ) A. 92B. 4C. 3D. 7 3.已知:2a =3,2b =5,2c =75.求2c−b+a 的值;思维拓展老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如图:×(−12xy)=3x 2y −xy 2+12xy . (1)求所捂的多项式;(2)若x =23,y =12,求所捂多项式的值.14.2乘法公式14.2.1平方差公式知识梳理知识点:平方差公式平方差公式:(a+b)(a−b)=a2−b2.即:两个数的_____与这两个数的_____的积,等于这两个数的平方差.注意:公式中的字母a,b可以是一个______、一个_______、一个_________.所以,当这个字母表示一个负数、单项式、多项式时,应加括号避免出现只把字母平方,而系数忘了平方的错误.夯实基础1.下列多项式乘法中可以用平方差公式计算的是()A. (x+y)(y−x)B. (−a+b)(a−b)C. (x+2)(2+x)D. (x−2)(x+1)2.已知a+b=10,a−b=8,则a2−b2=____________.3.计算:(2a−1)(−2a−1)=____________.4.如果一个长方形的长为(a+2b)米,宽为(a−2b)米,则该长方形的面积是平方米.能力提升1.若x2−y2=3,则(x+y)2(x−y)2的值是().A. 3B. 6C. 9D. 182.化简x2−(x+3)(x−3)的结果是.3.用乘法公式计算(2+1)(22+1)(24+1)…(22018+1)的结果.思维拓展【探究】如图1,边长为a的大正方形中有一个边长为b的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)(1)通过观察比较图2与图1中的阴影部分面积,可以得到乘法公式____________________.(用含a,b的等式表示)【应用】请应用这个公式完成下列各题:(2)已知4m2−n2=12,2m+n=4,则2m−n的值为_______________.(3)计算:20192−2020×2018.【拓展】(4)计算:1002−992+982−972+⋯+42−32+22−12.14.2.2完全平方公式(第一课时)知识梳理知识点:完全平方公式完全平方公式:(a+b)2=a2+2ab+b2, (a−b)2= a2−2ab+b2.即两个数的_____(或_____)的平方,等于它们的________,加上(或_______)它们的积的_____倍.注意:公式左边是两数的和(或差)的平方,右边是二次三项式,是这两个数的平方和加(或减)这两个数积的2倍.以下是常见的变形:a2+b2=(a+b)2−2ab=(a−b)2+2ab(a+b)2=(a−b)2+4ab夯实基础1.若(y+a)2=y2−8y+b,则a,b的值分别为().A.4,16B.−4,−16C.4,−16D.−4,162.计算(−a+2b)2=_______________.3.运用完全平方公式计算)2; (2)2992;(1)(60160(3)1012+992−98×102.能力提升1.若a−b=1,a2+b2=13,则ab的值为().A. 6B. 7C. 8D. 92.已知xy=10,(x−2y)2=1,则(x+2y)2的值为().A. 21B. 9C. 81D. 413.先化简,再求值:(x+1)2−x(x+1),其中x=2.4.先化简,再求值:(x−1)(3x+1)−(x+2)2+5,其中x2−3x−1=0.思维拓展已知(a+b)2=25,(a−b)2=9,求ab与a2+b2的值.14.2.2完全平方公式(第二课时)知识梳理知识点:添括号法则添括号时,如果括号前面是正号,括到括号里的各项都______符号;如果括号前面是负号,括到括号里的各项都要______符号.如a+b+c=a+(b______c),a−b−c=a−(b______c)夯实基础1.(a+b−c)(a−b+c)=[a+(_______)][a−(______)]2.已知x−2y=−2,则3−x+2y=__________________.3.计算(1)(a−b+c)2;(2)(2x−y+4)(2x+y−4).能力提升1.计算:(2x−2)(x+1)−( x−1 )2−( x+1 )2.2.利用乘法公式计算:(x+2y+1)(x−2y+1)−(x−2y−1)2.3.长方形中相邻两边的长分别是8−x,x−2,若(8−x)2+(x−2)2=13,求这个长方形的面积.思维拓展若m2+2mn+2n2−6n+9=0,求mn2的值解:因为m2+2mn+2n2−6n+9=0,所以(m+n)2+(n−3)2=0.所以n=3,m=−3.所以mn2=−332=−13.根据你的观察,探究下面的问题:(1)若x2+4x+4+y2−8y+16=0,求yx的值;(2)若x2+2y2−2xy+2y+1=0,求x+2y的值;(3)试说明:不论x,y取什么实数,多项式x2+y2−2x+ 2y+3的值总是正数;14.3因式分解14.3.1提公因式法知识梳理知识点一:因式分解的概念把一个_________化成几个________的______的形式,叫做把这个多项式_________,也叫做把这个多项式____________.知识点二:用提公因式法分解因式1.公因式:在多项式中,如果各项都有一个______的因式,就把这个因式称为_______.2.提公因式法分解因式(1)定义:一般地,如果多项式的各项有_________,可以把这个________提取出来,将多项式写成_______与另一个______的_______的形式,这种分解因式的方法叫做___________.(2)实质:提公因式法的实质是____________的逆用.(3)步骤:①确定______;②提______并确定另一个_____;③把多项式写成这两个因式的_______的形式.夯实基础1.下列等式中,从左到右的变形属于因式分解的是()A.a(a+2)=a2+2aB.a2−b2=(a+b)(a−b)C.m2+m+3=m(m+1)+3D.a2+6a+3=(a+3)2−62.多项式8x m y n−1−12x3m y n各项的公因式是_________.3.已知x+y=8,xy=15,则x2y+xy2的值为.4.用提公因式法分解因式:−3a n+2+2a n+1−5a n.能力提升1.计算(1)49×19.99+52×19.99−19.99(2)22022−5×22021+6×22020+2023.2.如图,把R1、R2、R3三个电阻串联起来,线路AB上的电流为I,电压为U,则U=IR1+IR2+IR3.当R1=19.7,R2= 32.4,R3=35.9,I=2.5时,则U的值为______.思维拓展先阅读下列分解因式的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]= (1+x)2(1+x)=(1+x)3.(1)上述分解因式的方法是,共应用了次;(2)若分解因式:1+x+x(x+1)+x(x+1)2+⋯+x(x+1)2022,则需应用上述方法次,结果是;(3)分解因式:1+x+x(x+1)+x(x+1)2+⋯+x(x+ 1)n(n为正整数).14.3.2公式法(第一课时)知识梳理知识点:平方差公式a2−b2=(a+b)(a−b),即两个数的平方差,等于这两个数的_____与这两个数的_____的____.夯实基础1.下列各式中,能运用平方差公式分解因式的是().A. x2+y2B. 1−x2C. −x2−y2D. x2−xy2.因式分解:m3n−mn3=______.能力提升1.对于任何整数m,多项式(4m+5)2−9都能().A.被8整除B.被m整除C.被m−1整除D.被2m−1整除2.分解因式:(2x−y)2−(4x+3y)2=.3.若a+b=4,a−b=1,则(a+1)2−(b−1)2的值为.4.利用因式分解进行计算:3.14×512−3.14×492.思维拓展利用因式分解进行计算:(1−122)(1−132)(1−142)·⋯·(1−120222).14.3.2公式法(第二课时)知识梳理知识点一:用完全平方公式分解因式两个数的________加上(或减去)这两个数的_____的____倍,等于这两个数的_____(或______)的_______.即a2+2ab+ b2=(a+b)2,a2−2ab+b2=(a−b)2.知识点二:公式法用来把某些具有特殊形式的多项式____________,这种分解因式的方法叫做公式法.夯实基础1.下列各式中,能用完全平方公式进行因式分解的是()A. x2−4B. x2−2x−1C. x2−4x+4D. x2+4x+12.分解因式:2xy−x2−y2=______________________.3.分解因式:ab2−2ab+a=______________________.能力提升1.若a+b=2,ab=−3,则a3b+2a2b2+ab3的值为.2.利用因式分解计算:(1)1012+492+101×98;(2)8002−1600×798+7982.思维拓展1.利用因式分解回答问题:已知x+y=3,x−y=−2,求(x2+y2)2−4x2y2的值.2.已知△ABC的三边长a,b,c满足a2−b2=ac−bc,试判断△ABC的形状.第十四章复习课作业夯实基础1.下列计算正确的是()A.(−a3)÷(−a)=−a2B.(a3)2=a5C.3x2⋅(−2x3)=−6x5D.(ab3)2=ab62.计算(−3x)·(2x2−5x−1)=_________________________.3.计算(28a3−28a2+7a)÷7a=_______________________.4.若x2+2(m−3)x+16是完全平方式,则m的值等于().A. 3B. −5C. 7D. 7或−15.计算:|−3|+(π+1)0−√4=.6.分解因式:x3y−4xy3=___________.7.分解因式:4ax2−4ax+a=______.能力提升1.把一个两位数交换十位数字和个位数字后得到一个新的两位数,若将这个新的两位数与原两位数相加,则所得的和一定是().A. 偶数B. 奇数C. 11的倍数D. 9的倍数2.已知多项式ax+b与2x2+2x+3的乘积展开式中不含x的一次项,且常数项为9,则a b的值为().A. 18B. −18C. −8D. −63.先化简,再求值:(x+y)(x−y)−(4x3y−8xy3)÷2xy,其中x=1,y=3.思维拓展南宋数学家杨辉在其著作《详解九章算法》中揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律如下,后人也将下图称为“杨辉三角”.(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4 (a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5则(a+b)9展开式中所有项的系数和是________________.。

第14章《整式》章末复习--新人教版初中数学导学案八年级上册《整式》【一流精品】

第14章《整式》章末复习--新人教版初中数学导学案八年级上册《整式》【一流精品】

课题:整式的乘法与因式分复习导学案【学习目标】1、记住整式乘法的计算法则,平方差公式和完全平方公式,掌握因式分解的方法和法则;2、会运用法则进行整式的乘除运算,会对多项式进行分解因式;3、培养学生的独立思考能力和合作交流的意识。

【学习重点】记住公式及法则【学习难点】会运用法则进行乘除运算,会正确进行因式分解。

一、 整式的乘法 (一)幂的乘法运算1、同底数幂相乘:=∙nm a a 2、幂的乘方:()=nm a 3、积的乘方:()=nab例1、(同底数幂相乘)计算:(1)52x x ⋅ (2)m m a a +-⋅11例2、(幂的乘方)计算:(1)(103)5(2)23)(m a - (3)()[]522y x - (4) 532])][()[(m n n m --例3、(积的乘方)计算:(1)(ab )2 (2)(-3x )2(3)332)3(c b a -(4)()3233y x - (5)32222)2()2(b a b a -⋅- (6) ()()1054125.0∙-(二)整式的乘法1、单项式单项式(1)系数相乘作为积的系数(2)相同字母的因式,利用同底数幂的乘法,作为一个因式 (3)单独出现的字母,连同它的指数,作为一个因式 注意点:单项式与单项式相乘,积仍然是一个单项式 2、单项式⨯多项式①单项式分别乘以多项式的各项; ②将所得的积相加注意:单项式与多项式相乘,积仍是一个多项式,项数与多项式的项数相同 3、多项式⨯多项式先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加。

例1、计算:(1)abc b a ab 2)3(322⋅-⋅ (2))34432()23(22y xy y x xy +-⋅-(3)(x-3y)(x+7y) (4))1)(1)(1(2++-x x x例2、先化简,后求值:(x -4)(x -2)-(x -1)(x +3),其中25-=x 。

(三)乘法公式()()=-+b a b a ;变式:(1)=+-+))((a b b a ; (2)=++-))((b a b a ;(3)))((b a b a --+-= ; (4)))((b a b a ---= 。

初中数学_第十四章整式的乘法与因式分解小结教学设计学情分析教材分析课后反思

初中数学_第十四章整式的乘法与因式分解小结教学设计学情分析教材分析课后反思

[教学设计]-整式的乘法与因式分解-数学-初中一、教学目标:1,掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2,会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3,掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

4,理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

二、教学重难点:单元重点:整式的乘除与乘法公式、因式分解。

单元难点:乘法公式的运用、添括号法则、因式分解的两种基本方法。

三、教学学法:自主探究、合作交流四、课前准备:教师准备:多媒体、课件、练习题学生准备:练习本五、教学过程:学生独立完成复习导学案关于整式的乘法知识点的填空1,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

数学符号表示:____________练习:判断下列各式是否正确。

a3·a3=2a3 ( ), b4+b4=b8 ( ), m2+m2=2m2 ( )(-x)3·(-x)2·(-x)= (-x)6=x6 ( )2,幂的乘方法则:幂的乘方,底数不变,指数相乘。

数学符号表示:____________练习:判断下列各式是否正确(a4)4=a8( ) [(b2)3]4=b24 ( )(-x2)2n-1=x4n-2 ( ) (a4)m= (a m)4=(a2m)2( )3,积得乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

数学符号表示:____________(2xyz)4= (1/2a2b)3= (-2xy2)3= (-a3b2)3=4,单项式乘单项式单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

初中数学_第十四章整式的乘法与因式分解小结教学设计学情分析教材分析课后反思

初中数学_第十四章整式的乘法与因式分解小结教学设计学情分析教材分析课后反思

[教学设计]-整式的乘法与因式分解-数学-初中一、教学目标:1,掌握正整数幂的乘、除运算性质,能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算。

2,会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算。

3,掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。

4,理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。

二、教学重难点:单元重点:整式的乘除与乘法公式、因式分解。

单元难点:乘法公式的运用、添括号法则、因式分解的两种基本方法。

三、教学学法:自主探究、合作交流四、课前准备:教师准备:多媒体、课件、练习题学生准备:练习本五、教学过程:学生独立完成复习导学案关于整式的乘法知识点的填空1,同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。

数学符号表示:____________练习:判断下列各式是否正确。

a3·a3=2a3 ( ), b4+b4=b8 ( ), m2+m2=2m2 ( )(-x)3·(-x)2·(-x)= (-x)6=x6 ( )2,幂的乘方法则:幂的乘方,底数不变,指数相乘。

数学符号表示:____________练习:判断下列各式是否正确(a4)4=a8( ) [(b2)3]4=b24 ( )(-x2)2n-1=x4n-2 ( ) (a4)m= (a m)4=(a2m)2( )3,积得乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

数学符号表示:____________(2xyz)4= (1/2a2b)3= (-2xy2)3= (-a3b2)3=4,单项式乘单项式单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级数学人教版上册第14章整式的乘除与因式分解14.1.4整式的乘法(第1课时图文详解)

八年级上册第14章整式的乘除与因式分解
1.下列计算中,正确的是( B )
A.2a3·3a2=6a6
B.4x3·2x5=8x8
C.2x·2x5=4x5
D.5x3·4x4=9x7
2.下列运算正确的是( D )
A.x2·x3=x6
B.x2+x2=2x4
C.(-2x)2=-4x2
D.(-2x2)(-3x3)=6x5
八年级上册第14章整式的乘除与因式分解
第14章 整式的乘除与因式分解
八年级上册
八年级上册第14章整式的乘除与因式分解
14.1.4 整式的乘法
第1课时
八年级上册第14章整式的乘除与因式分解
1.探索并了解单项式与单项式、单项式与多项式相乘的法则, 并运用它们进行运算. 2.让学生主动参与到探索过程中去,逐步形成独立思考、主 动探索的习惯,培养思维的批判性、严密性和初步解决问题 的能力.
八年级上册第14章整式的乘除与因式分解
2.填空:
a4 26
(1)6 2
a9 28
9 x2 y4 4
1
八年级上册第14章整式的乘除与因式分解
光的速度约为3×105千米/秒,太阳光照射到地球上需 要的时间大约是5×102秒,你知道地球与太阳的距离约是 多少千米吗? 分析:距离=速度×时间,即(3×105)×(5×102); 怎样计算(3×105)×(5×102)? 地球与太阳的距离约是: (3×105)×(5×102)=(3 ×5)×(105×102) =15×107=1.5×108(千米)
八年级上册第14章整式的乘除与因式分解
2.单项式与多项式相乘的法则: 单项式与多项式相乘,只要将单项式分别乘以多 项式的每一项,再将所得的积相加即可.

人教版八上数学第十四章整式的乘法与因式分解复习(知识点、典型例题)课件

人教版八上数学第十四章整式的乘法与因式分解复习(知识点、典型例题)课件
(3) (-2xy-1)(2xy-1) =1-2xy2
=(-1)2-(2xy)2 =1-4x2y2
填空:
(1)(a __3_)2 a2 6a _9__ (2)(2x _5__)2 4x2 _2_0x_ 25 (3)a2 b2 (a b)2 __2a_b__ (4)(x y)2 __4_x_y__ (x y)2
(2) 先化简,再求值:
(a2 -2b2) (a+2b) -2ab(a-b)
其中
a=1,b=
1 2
.
公式的 反向使用
amn am n an m
已知10a=4,1 0b=7,求下列各式的值 (1)1 02a3b (2)1 02a 103b
公式的 反向使用
(ab)n = an·bn(m,n都是正整数) 反向使用: an·bn = (ab)n
= abc mmm
你找到了 多项式除以单项式的规律 吗?
多项式除以单项式, 先把这个多项式的每一项分别除以单项式, 再把所得的商相加。
例题
例题解析
例3 计算:
(2)原式= =
xy2 (1 xy)
2
2 y
(1)(-2a4b3c)3÷(-8a4b5c) =a8b4c2
(2)(6x2y3)2÷(3xy2)2 =4x2y2
幂的乘方
a a ( m ) n = mn
整 式
积的乘方
( ab
n
)=
an b n
的 乘
单项式的乘法
4a2x5 ·(-3a3bx2)

单项式与多项式相乘 m(a+b)= ma+mb
多项式的乘法(a+b)(m+n)= am+an+bm+bn

八年级数学上册听课记录:第十四章整式的乘法与因式分解《整式的乘法:同底数幂的乘法》

八年级数学上册听课记录:第十四章整式的乘法与因式分解《整式的乘法:同底数幂的乘法》

新2024秋季八年级人教版数学上册第十四章整式的乘法与因式分解《整式的乘法:同底数幂的乘法》听课记录一、教学目标(核心素养)1.知识与技能:学生能够理解同底数幂的乘法法则,掌握其运算方法,并能准确进行运算。

2.过程与方法:通过具体实例的探究,引导学生发现同底数幂乘法的规律,培养学生的观察、归纳和推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养严谨、细致的学习态度,以及合作学习的精神。

二、导入教师行为:•教师首先展示几个同底数幂的乘法实例,如a2⋅a3、54⋅52,让学生观察这些表达式的结构特点。

•提出问题:“同学们,你们能发现这些表达式有什么共同之处吗?我们能否直接得出它们的结果,而不需要一步一步地展开计算呢?”引导学生思考同底数幂乘法可能存在的规律。

学生活动:•学生认真观察教师给出的例子,尝试找出它们之间的共同点。

•思考教师提出的问题,与同桌或小组内成员讨论可能的答案。

过程点评:•导入环节通过直观展示和问题引导,有效地激发了学生的好奇心和探究欲,为学习同底数幂的乘法法则做好了铺垫。

•学生积极参与讨论,初步感知了同底数幂乘法的规律,为后续学习打下了基础。

三、教学过程3.1 讲解同底数幂的乘法法则教师行为:•明确给出同底数幂的乘法法则:“am⋅an=am+n”,并解释其含义:同底数幂相乘时,底数不变,指数相加。

•通过具体例子演示法则的应用,如计算x2⋅x3、24⋅25等,让学生观察结果并验证法则的正确性。

学生活动:•认真听讲,记录同底数幂的乘法法则,并尝试理解其含义。

•跟随教师的演示,自己完成例题的计算,验证法则的正确性。

过程点评:•教师讲解清晰、准确,通过具体例子帮助学生理解同底数幂的乘法法则及其应用。

•学生通过动手计算,加深了对法则的理解和掌握。

3.2 探究与巩固教师行为:•设计一系列由易到难的练习题,要求学生独立完成,以巩固同底数幂的乘法法则。

•鼓励学生尝试自己编写同底数幂的乘法题目,并解答,以加深理解。

八年级数学 第十四章 整式的乘法与因式分解14.1 整式的乘法1 同底数幂的乘法教学5

八年级数学 第十四章 整式的乘法与因式分解14.1 整式的乘法1 同底数幂的乘法教学5

(2) a ·a6 ;
(3) 2× 24× 23 ; (4) xm ·x3m+1 ;
解(1) x2 ·x5 = x2+5 = x7
(2) a ·a6 = a1+6 = a7
(3) 2× 24× 23 = 21+4 +3 = 28
(4) xm ·x3m+1 =
12/11/2021
xm+3m+1 = y4m+1
(3) -a2 ·a6 = - a2+6 = - a8
(4) y2n ·yn+1 =
12/11/2021
y2n+n+1 = y3n+1
第七页,共十一页。
活动5
应用提高(tígāo)、拓展创新
计算(jìs(u1àn)) (a-b)2 (a-b).
(2) (x+y) 3× (x+y).
(3) 2-22-23-24-25-26-27-28-29+210.
1次014运算,
它工作(gō1n0gz3uò)
解:
秒可进行多少次运算?
1014× 103 =(10×···× 10 )×( 10×10×10 )
14个10
=(10×10×···×10)
12/11/2021
=1017
17个10
第三页,共十一页。
合作(hézuò)探究
请同学们根据乘方的意义理解,完成(wán chéng)下列填空.
15.1.1 同底数(dǐshù)幂的乘法
12/11/2021
第一页,共十一页。
活动1
回顾 思考
➢ an 表示的意义(yìyì)是什么?其中a、n、an分

人教版八年级数学上册第14章 整式的乘法与因式分解 小结与复习

人教版八年级数学上册第14章   整式的乘法与因式分解 小结与复习

四、乘法公式 1. 平方差公式
两数___和___与这两数__差____的积,等于这两数的
_平__方__差___. (a + b)(a - b) = _a_2_-__b__2 .
2. 完全平方公式
两个数的和(或差)的平方,等于它们的_平__方__和__,
加上(或减去)它们的__积____的 2 倍.
针对训练
7.下列计算中,正确的是 ( C )
A.(a+b)2=a2-2ab+b2
B.(a-b)2=a2-b2
C.(a+b)(-a+b)=b2-a2
D.(a+b)(-a-b)=a2-b2
8.已知 (x+m)2=x2+nx+36,则 n 的值为 ( B )
A.±6 B.±12
C.±18 D.±72
9.若 a+b=5,ab=3,则 2a2+2b2=___3_8__.
(a + b)2 = _a_2_+__2_a_b__+__b_2.
五、因式分解 1. 因式分解的定义
把一个多项式化为几个__整__式__的__积____的形式,像
这样的式子变形叫做这个多项式的因式分解,也叫做
把这个多项式分解因式.
步骤:
2. 因式分解的方法
1. 提公因式;
(1) 提公因式法
2. 套用公式;
=a2-(b-3)2=a2-b2+6b-9. (3) 原式=[(3x-2y)(3x+2y)]2
=(9x2-4y2)2=81x4-72x2y2+16y4.
11. 用简便方法计算 (1) 2002-400×199+1992; (2) 999×1001.
解:(1) 原式 = (200-199)2 = 1. (2) 原式 = (1000-1)(1000+1) = 10002-1 = 999999.

人教版八年级数学上册第14章 整式的乘法与因式分解4 第1课时 单项式与单项式、多项式相乘

人教版八年级数学上册第14章   整式的乘法与因式分解4 第1课时 单项式与单项式、多项式相乘

pa + pb + pc
知识要点 单项式乘多项式的法则
单项式与多项式相乘,就 p p
是用单项式乘多项式的每一 项,再把所得的积相加.
a
b
注意(1)依据是乘法分配律; (2)积的项数与多项式的项数相同.
p c
典例精析 例3 计算:
(1) (-4x) ·(2x2 + 3x-1); 解:原式=(-4x) ·(2x2) + (-4x) ·3x + (-4x) ·(-1)
= 15x5. (3) (-x)3 ·(x2y)2;
= -8xy3. (4) (-2a)3(-3a)2.
解:原式 = (-x3) ·(x4y2) 解:原式 = -8a3·9a2
= -x7y2.
= [(-8)×9](a3·a2) = -72a5.
注意 有乘方运算,先算乘方,再算单项式相乘.
练一练 下面计算结果对不对?如果不对,应当怎样改正?
A+(-3x2)=x2-2x+1, ∴ A=4x2-2x+1. ∴ A ·(-3x2) = (4x2-2x+1)(-3x2)
=-12x4+6x3-3x2.
整 式 的
单项式乘 单项式
单项式乘 多项式
实质上是转化为同底数幂的运算 实质上是转化为单项式×单项式 (1) 计算时,要注意符号问题,多项式
乘 法
球上需要的时间大约是 5×102 s,你知道地球与太阳
的距离约是多少吗?
地球与太阳的距离约是 (3×105)×(5×102) km.
想一想:怎样计算 (3×105)×(5×102)?计算过程中 用到了哪些运算律及运算性质?
(3×105)×(5×102) = (3×5)×(105×102) 乘法交换律、结合律

八年级数学上册整式的乘法与因式分解 . 整式的乘法同底数幂的乘法

八年级数学上册整式的乘法与因式分解 . 整式的乘法同底数幂的乘法

算叫做乘方,乘方的结果叫做
幂.
2.乘方的性质:正数的任何次幂都是
,正负数数的偶次幂是
,负
数的正奇数次幂是
.
负数
第四页,共十五页。
学前温故
(wēn ɡù)
新课早知
1.同底数幂的乘法(chéngfǎ)法则:一般地,am·an= am+n
数),即同底数幂相乘,底数
不变,指数
相. 加
2.计算:a2·a3等于( A). A.a5 B.a6 C.a8 D.a9
第六页,共十五页。
第七页,共十五页。
2.同底数幂的乘法法则的逆用
【例2】 已知am=2,an=3,求下列各式的值:
(1)am+n;
(2)a2n;
(3)a2m+n.
分析先根据同底数幂的乘法法则对所求代数式进行(jìnxíng)变形,再根据已知代
入计算.
解:(1)am+n=am·an=2×3=6.
(2)a2n=an·an=3×3=9.
(4)29×28×23=29+8+3=220.
第十四页,共十五页。
关闭
答答à案n案)(dá
内容 总结 (nèiróng)
第十四章 整式的乘法与因式分解。(1)a3·a2·a。分析(fēnxī):(1)底数均为a,指数分别
为3,2,1,按照“底数不变,指数相加”的法则计算,结果应为a6。(2)先把底数化为同一底数,
第十四章 整式(zhěnɡ shì)的乘法与因式分解
第一页,共十五页。
14.1 整式(zhěnɡ shì)的乘法
第二页,共十五页。
14.1.1 同底数(dǐshù)幂的乘法
第三页,共十五页。

同底数幂的乘法导学案

同底数幂的乘法导学案

第十四章 整式的乘法与因式分解同底数幂的乘法学习目标:1.熟记同底数幂的乘法的运算性质,了解法则的推导过程.2.能熟练地进行同底数幂的乘法运算. 会逆用公式a m a n =a m+n .3.通过法则的习题教学,训练学生的归纳能力,感悟从未知转化成已知的思想.学习重点:掌握并能熟练地运用同底数幂的乘法法则进行乘法运算.学习难点:对法则推导过程的理解及逆用法则.学习过程:一、知识回顾,引入新课问题一:(用1分钟时间快速解答下面问题)二、观察猜想,归纳总结问题二:(用5分钟时间解答问题四9个问题,看谁做的快,思维敏捷!)1.根据乘方的意义填空:(1)23×24 =(2×2×2)×(2×2×2×2)=(2)53×54 =( )×( )=(3)a 3×a 4 = ( )×( )== (3.验证:a m ·a n=( )×( )=( )=()a4.归纳:同底数幂的乘法法则:a m ×a n = (m 、n 都是正整数)文字语言:5.法则理解:①同底数幂是指底数相同的幂.如(-3)2与(-3)5,(ab 3)2与(ab 3)5,(x-y)2与(x-y)3 等.②同底数幂的乘法法则的表达式中,左边:两个幂的底数相同,且是相乘的关系;右边:得到一个幂,且底数不变,指数相加.6.法则的推广: a m ·a n ·a p = (m,n,p 都是正整数).思考:三个以上同底数幂相乘,上述性质还成立吗?同底数幂的乘法法则可推扩到三个或三个以上的同底数幂的相乘.a m ·a n ·a p =a m+n+p ,a m ·a n ·…·a p =a m+n+…+p (m 、n…p 都是正整数)7.法则逆用可以写成同底数幂的乘法法则也可逆用,可以把一个幂分解成两个同底数幂的积,其中它们的底数与原来幂的底数相同,它的指数之和等于原来幂的指数.如:25=23·22=2·24等.8.应用法则注意的事项:①底数不同的幂相乘,不能应用法则.如:32·23≠32+3;②不要忽视指数为1的因数,如:a·a 5≠a 0+5.③底数是和差或其它形式的幂相乘,应把它们看作一个整体.共( )个三、理解运用,巩固提高(用3分钟自主解答例1-例2,看谁做的又快又正确!)例1.计算:(1)103×104;(2)a • a3 (3)a • a3•a5 (4) x m×x3m+1 例2.计算:(1)(-5) (-5)2 (-5)3 (2)(a+b)3 (a+b)5 (3)-a·(-a)3 (4)-a3·(-a)2 (5)(a-b)2·(a-b)3 (6)(a+1)2·(1+a)·(a+1)5四、深入探究、活学活用例3. (1)已知a m=3,a m=8,求a m+n 的值.(2)若3n+3=a,请用含a的式子表示3n的值.(3)已知2a=3,2b=6,2c=18,试问a、b、c之间有怎样的关系?请说明理由.五、总结反思,归纳升华通过本节课的学习,你有哪些感悟和收获,与同学交流一下:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

同底数幂的乘法
【学习目标】
1.会运用法则,熟练进行同底数幂的乘法运算.
2.经过知识点的专题训练,培养学生逆向思维能力.
【学习重点】
正确理解同底数幂的乘法运算.
【学习难点】
逆用同底数幂的乘法法则.
情景导入生成问题
1.复习乘方的意义,师生共同回忆.
a n表示n个a相乘,这种运算叫乘方,其结果叫做幂,a叫做底数,n是指数,即a n=(a·a·a…a),\s\do4(n个a)).
2.提出问题,要求学生根据乘方的意义求得结果.
一种电子计算机每秒进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?
自学互研生成能力
知识模块一探究同底数幂的乘法法则
(一)自主学习
阅读教材P95问题1,进一步理解乘方的意义.
(二)合作探究
阅读教材P95探究.
根据乘方的意义填空,观察计算结果,你能发现什么规律?
①25×22=2(7)
②a3·a2=a(5)
③5m×5n=5(m+n)
a m·a n表示同底数幂的乘法,根据幂的意义可得:
a m×a n=(a·a…·a),\s\do4(m个a))·(a·a…·a),\s\do4(n个a))=a·a…·a,\s\do4((m+n)个a))=a m+n(m,n都是正整数)
因此,我们有a m·a n=a m+n(m,n都是正整数)
即:同底数幂相乘,底数不变,指数相加.
自学教材P96例1,完成下列练习:
①b 3·b =b 4 ②⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-122×⎝ ⎛⎭⎪⎫-123=164 ③a 2·a 6=a 8 ④y 2n ·y
n +1=y 3n +1
⑤10×103×105=109 ⑥(x -y)(x -y)3(x -y)2=(x -y)6
知识模块二 底数是相反数的幂的乘法
偶次幂与奇次幂的符号变化:
(1)(-a)n =⎩⎪⎨⎪⎧a n (n 为偶数)-a n (n 为奇数); (2)(a -b)n =⎩⎪⎨⎪⎧(b -a )n
(n 为偶数),-(b -a )n (n 为奇数). 范例:计算:
(1)(-13)2·(-13)3·(13
)4 (2)(a -b)3·(b -a)4·(a -b)5 解:-(13
)9; 解:(a -b)12 变式计算:(a -b)5·(b -a)3+(a -b)2·(a -b)6
解:原式=(a -b)5·[-(a -b)3]+(a -b)2·(a -b)6
=-(a -b)5+3+(a -b)
2+6 =-(a -b)8+(a -b)8
=0.
知识模块三 同底数幂乘法法则的逆用
典例:(1)已知2
3x +2=32,求x 的值; 解:23x +2=25,∴3x +2=5,∴x =1.
(2)若x a =3,x b =4,x c =5,求2x
a +
b +
c 的值. 解:2x a +b +c =2x a ·x b ·x c
=120. 交流展示 生成新知
1.将阅读教材时“生成的问题”和通过“自主学习、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑. 2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块一 探究同底数幂的乘法法则
知识模块二 底数是相反数的幂的乘法
知识模块三 同底数幂乘法法则的逆用
检测反馈 达成目标
1.填空:
(1)105×104=109;b 3·b 2·b =b 6;100×103×102=107;
(2)a 8·a 8=a 16;⎝ ⎛⎭⎪⎫-122·⎝ ⎛⎭⎪⎫-123=-132;a 8·(-a )7=-a 15

(3)(a -b)5·(a -b)4=(a -b)9;(x -y)·(y-x)2=(x -y)3.
2.下列各式中运算正确的是( B )
A .a 3+a 4=a 7
B .b 3·b 4=b 7
C .c 3·c 4=c 12
D .d 3·d 4=2d 7
3.若a m =2,a n =3,求a m +n 的值.
解:∵a m =2,a n =3,∴a m +n =a m ·a n =2×3=6.
课后反思 查漏补缺
1.本节课学到了什么知识?还有什么困惑?
2.改进方法。

相关文档
最新文档