通信原理实验四 实验报告 抽样定理与PAM系统实训

合集下载

抽样定理和脉冲调幅(PAM)实验范文

抽样定理和脉冲调幅(PAM)实验范文

实验二:抽样定理和脉冲调幅(PAM)实验一、实验目的通过本实验,学生应达到以下要求:1、观察并了解PAM信号形成、平顶展宽、解调和滤波等过程;2、验证并理解抽样定理,掌握对频谱混叠现象的分析方法;3、观察时分多路系统中非理想信道之间的路际串话现象,分析并掌握其形成原因。

二、实验内容本实验课完成以下实验内容:采用专用集成抽样保持开关完成对输入信号的抽样;多种抽样时隙的产生;采用低通滤波器完成对PAM信号的解调;测试出入信号频率与抽样频率之间的关系,观察频谱混叠现象,验证抽样定理;多路脉冲条幅(PAM);观察并测试时分多路PAM信号和高频串话。

三、实验原理在通信技术中为了获取最大的经济效益,就必须充分利用信道的传输能力,扩大通信容量。

因此,采取多路化制式是极为重要的通信手段。

最常用的多路复用体制是频分多路复用( FDM) 通信系统和时分多路复用( TDM) 通信系统。

频分多路技术是利用不同频率的正弦载波对基带信号进行调制,把各路基带信号频谱搬移到不同的频段上,在同一信道上传输。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号好称为脉冲调幅信号。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

抽样定理:fs>2fh,才能从抽样信号中可以无失真的恢复出原信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

数字通信系统是以此定理作为理论基础的。

在工作设备中,抽样过程是模拟信号数字化的第一步。

抽样性能的优劣关系到整个系统的性能指标。

抽样量化编码信道解码滤波收定时发定时PAM语音信号语音信号PAM图2-1 单路PCM系统示意图作为例子,图2-1示意地画出了传输一路语音信号的PCM系统。

从图中可以看出要实现对语音的PCM编码,首先就要对语音信号进行抽样,然后才能进行量化和编码。

因此,抽样过程是语音信号数字化的重要环节,也是一切模拟信号数字化的重要环节。

为了让实验者形象地观察抽样过程,加深对抽样定理的理解,本实验提供了一种典型的抽样电路。

通信原理实验报告PAM实验

通信原理实验报告PAM实验

PAM实验一、实验目的1、验证抽样定理、观察PAM信号形成的过程、学习中频抽样的基本方法;2、了解混迭效应产生的原因;3、熟悉matlab仿真;二、实验仪器1、J H5001(Ⅲ)通信原理基础实验箱一台2、双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

采样频率一般大于2f h。

当采样频率小于2f h 的时候,就会出现频谱的混叠。

抽样定理实验电路实验电路中A部分为低通滤波器用于限制最高频率,C部分为实现采样/保持的模拟开关,B、D为缓冲输出,E部分低通滤波器用于恢复原始信号。

图6 抽样定理实验电路组成框图四、实验步骤及实验现象与分析1.自然抽样脉冲序列测量预置电路:将KB04设置在右端(自然抽样状态);将K501设置在右端以输入测试信号。

将K702设置在NF位置(无滤波),将正弦波输出1000Hz、2Vp-p 的测试信号送入测试端口。

PAM脉冲抽样序列观察:注意观测时以TP701做同步,本实验同步信号不同对结果影响不太大,但有的实验会影响严重。

记录与分析:CH2蓝色波形是由(TP701)观测到的正弦波输入信号,测得该信号频率为1kHz,Vpp为1.96V。

CH1黄色波形是由(TP703)观测到的PAM脉冲抽样序列信号。

由红框当中可以明显看出一个周期内PAM脉冲抽样序列信号抽样了8次(一个周期内有8个脉冲),符合以8kHz 脉冲来抽样1kHz 信号的结果。

且抽样信号占空比不是50%,而是大约1/3。

由图中可以看出黄色PAM 脉冲抽样信号的包络与蓝色正弦波输入信号波形是基本吻合的。

两者的峰谷位置以及正负半周变换都基本一致,相位上基本符合应有的对应关系,PAM 脉冲抽样信号包络的相位略微滞后于正弦波输入信号,应该是由于模拟开关等部分电路造成略微延时所带来的。

PAM 脉冲抽样信号的包络幅值要大于正弦波输入信号,约为2倍,应该是因为经过缓冲输出时电路的运放有放大作用。

通信原理第四次实验

通信原理第四次实验

实验二抽样定理及其应用实验一、实验目的1.通过对模拟信号抽样的实验,加深对抽样定理的理解2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点3.通过PAM调制硬件实现电路,掌握调整测试方法二、实验仪器1.时钟与基带数据发生模块G2.100M双踪示波器3.PAM脉冲调幅模块 H三、实验原理抽样定理:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值(Fs>=2*F h),在频域中,抽样信号的频谱是对原信号频谱关于周期fs(抽样频率)的周期延拓,此时相邻两个频带不会发生频谱混叠,所以可以恢复出原信号。

因此,我们在传输模拟信号的时候,不一定传输模拟信号本身,可以只传输抽样序列。

整个实验系统分为五个部分:1.DDS信号源,提供正弦波,三角波等信号,频率可调。

也可以直接接一根电话线,模拟传输语音信号,语音信号的最高频是 3.4kHz,采样信号需 6.8kHz。

2.抽样脉冲形成电路,提供有限高度,不同宽度和频率的脉冲序列,此频率即是抽样频率。

3.PAM脉冲调幅模块,根据抽样信号来对原模拟信号进行抽样,产生抽样序列。

原理是抽样脉冲为高电平时,开关导通;脉冲序列为低电平时,开关关闭。

4.模拟信道模块,模拟信号传输,有一个可调开关,调节模拟信道的噪声大小。

用示波器观测输入输出信号的波形幅度,当幅度相同时,信道噪声最小,开关大致是置于中间的。

5,接收滤波器与功放模块,接收滤波器低通带宽有2.6kHz和5kHz两种,有接线头可以用示波器观测最终滤出的波的波形。

四、实验步骤1.三角波抽样实验三角波严格意义上不是带宽有限的模拟信号,它是奇次谐波,频谱中只含有1.3.5.7...等谐波,但是他的功率大致都集中于前3/5次谐波,再往后面频谱的幅度就很低了,可以忽略不计,所以可看作频带有限的模拟信号。

旋转,按压实验平台左侧旋钮,选择1kHz的三角波信号,我想保留1.3.5次谐波,所以我应该选择10kHz以上的采样频率,我选择了12kHz的,当滤波器分别为2.6k低通和5k低通时,观察输出信号波形。

通原实验4 PAM

通原实验4 PAM

还原信号
脉冲调幅与解调系统各单元电路构成与性能要求 : 1)语音限带器
一般用运算放大器和阻容器件组成一个两级二阶巴特沃斯有 源低通滤波器,技术标准为:3dB带宽截止频率为3400Hz,用于限 制最高的信号频率,确保模/数变换性能,提高通信质量。其电 路构成电原理图:
2)抽样脉冲产生器
抽样脉冲一般用振荡器产生,基本技术要求是: 电平要求:高电平 > 2.4V 低电平 < 0.5V 频率:8000Hz 脉冲周期:125µS 脉冲宽度:2Bit(0.976µS) 各路脉冲相邻:3.9µS
a.模拟乘法器构成的抽样门 b.电子开关构成的抽样门
4)低通滤波器电路
一般用运算放大器和阻容器件组成有源低通滤波器,作用 是将调制信号中的基带频谱提取出来,恢复原始信号。常用的 基本电路是:两级二阶巴特沃斯有源低通滤波器。技术标准为: 3dB带宽频率3400Hz,它的质量好坏直接影响着通信系统的质 量。
3、语音编码的基本概念
3、1 语音编码的定义
语音编码就是实现语音信号的模数(A∕D)变换,即将模拟的语音 信号转换成数字的语音信号。
3、2 语音编码的目的
减少信源冗余,解除语音信源的相关性,压缩语音编码的码速率,提
高信源的有效性。



脉冲振幅(PAM) 调制与解调系统实验
PAM信号
模拟信号
研究 内容
实验准备: 电路测试框图如图示
K701(右) K702(左) K001(右) KQ02(右)
在框图中标明各单元电路名称
正弦波:f=1KHz/2Vp-p J005和J006(地).
Vi
t
Vo
测试数 据观察 与记录
1.TP701信号波形与幅度; 2.TP704信号波形与幅度;

通信原理实验报告

通信原理实验报告

通信原理实验报告学号:姓名:2012年12月25日实验1抽样定理与PAM通信系统实验一、实验内容样脉冲通过开关J601来选择。

可在TP62处很方便地观测到脉冲频率变化情况和输出的脉冲波形。

2、PAM解调与滤波电路该电路即为前面介绍的话路终端接收滤波电路,解调滤波电路由集成运放电路TL084组成。

即一个二阶有源低通滤波器,其截止频率设计在3.4KHz左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。

三、实验步骤及注意事项1、脉冲幅度调制实验步骤用示波器在TP61处观察,以该点信号输出幅度不失真时为好,如有削顶失真则减小外加信号源的输出幅度或调节W03。

在TP62处观察其抽样时钟信号。

2、PAM通信系统实验步骤分别将J601的第1排、第2排和第3排相连,即改变抽样频率f s,使f c=2f s、f c>2f s、f c<2f s,在TP63、TP64处用示波器观测系统输出波形,以判断和验证抽样定理在系统中的正确性,同时做详细记录和绘图。

四、测量点说明TP61:若外加信号幅度过大,则该点信号波形被限幅电路限幅成方波了,因此信号波形幅度尽量小一些。

方法是:减小外加信号幅度或调节通信话路终端发送放大电路中的电位器W03。

TP62:抽样时钟输出,有三种抽样时钟:等于8KHz抽样脉冲、大于8KHz抽样脉冲、小于8KHz抽样脉冲。

由J601的选择决定。

TP63:抽样信号输出。

TP64:收端PAM解调信号输出。

六、实验报告要求绘出三种抽样时钟情况下测得各点的波形、频率,对所测波形做简要分析说明。

各点波形如下:TP61抽样频率:4kHzTP62TP63 TP64抽样频率:8kHzTP62TP63 TP64抽样频率:16kHzTP62TP63 TP64说明:在不同的抽样频率下,可以看见波形的失真程度不同,由抽样频率大于等于2倍的信号最高频率,可以验证,抽样频率在满足条件的基础上,越大,失真程度越小。

抽样定理和PAM调制解调实验

抽样定理和PAM调制解调实验

抽样定理和PAM调制解调实验一、实验目的1、通过脉冲幅度调制实验,能加深理解脉冲幅度调制的特点。

2、通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。

二、实验设备1、信号源模块一块2、①号模块一块3、20M双踪示波器一台4、连接线若干三、实验原理抽样是把时间连续的模拟信号变换为时间离散信号的过程。

抽样定理是指:一个频带限制在(0,fH)内的时间连续信号m(t),如果以T≤1/2fH秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽样值完全确定。

根据取样脉冲的特性,取样分为理想取样、自然取样(亦称曲顶取样)、瞬时取样(亦称平顶取样);根据被取样信号的性质,取样又分为低通取样和带通取样。

虽然取样种类很多,但是间隔一定时间,取样连续信号的样值,把信号从时间上离散,这是各种取样共同的作用,取样是模拟信号数字化及时分多路的理论基础。

四、实验步骤1、将信号源模块、模块1固定在主机箱上,将黑色塑封螺钉拧紧。

2、插上电源线,打开主机箱右侧的交流开关,将信号源模块和模块1的电源开关拨下,观察指示灯是否点亮,红灯为+5V电源指示灯,绿灯为-12V电源指示灯,黄色为+12V电源指示灯。

3、观测PAM自然抽样波形1)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在4V左右。

2)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。

3)将模块1上K1选到“自然”。

4)关闭电源,按如下方式连线源端口目标端口连线说明信号源:“2K同步正弦波”模块1:“PAM-SIN”提供被抽样信号信号源:“CLK1”模块1:“PAMCLK”提供抽样时钟5)用示波器在“自然抽样输出”处观察PAM自然抽样波形。

4、观测PAM平顶抽样波形a)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在4V左右。

b)将信号源上S1、S2、S3依次设为“10000000”、“10000000”、“10000000”,将S5拨为“1000”,使“NRZ”输出速率为128K,抽样频率为:NRZ频率/8c)将K1设为“平顶”。

PAM调制与抽样定理实验.docx

PAM调制与抽样定理实验.docx

、实验目的PAM调制与抽样定理实验1. 掌握自然抽样、平顶抽样特性;2. 理解抽样脉冲脉宽、频率对恢复信号的影响;3. 理解低通滤波器幅频特性对恢复信号的影响;了解混叠效应产生的原理。

餐验模1块:豐时分复用模块A3信源译码与时分解复用模块A63. 100M双通道示波器4•信号连接线三P d原理次开发)设连续信号????,其最高截止频率为????如果用频率为????2????抽样信号对????进行抽样,样定理???就可以被样值信号唯一地表示。

?也就是说,如果一个连续信号??????的频谱中最高频率不超过????这种信号必定是个周期性的信号,当抽样频率????2????,抽样后的信号就包含原始连续信?号的全部信息,而不会有信息丢失,在接收端就可以用一个低通滤波器根据这些抽样信号的样本来还原原来的连续信号??????抽样定理告诉我们:如果对某一带宽有限的模拟信号进行抽样,且抽样速率达到一定的数值时,那么根据这些抽样值就可以准确地还原信号。

也就是说,我们在传送模拟信号的时候,不一定要传送模拟信号本身,而是可以只传输按抽样定理得到的抽样值,这样我们在接收端依然可以根据接收到的抽样值还原出原始信号。

图1信号的抽样与恢复、实验目的PAM调制与抽样定理实验图1信号的抽样与恢复2> ????假设??????????对于理想抽样 叶变换的性质,时域的乘积等于频域的卷积,我们可— —????i i???????? [?????)?? ????*???= ? ???????????????上式表明,????"???" 2????? ??……?■??■ 的各?次谐波为中心点相叠加而成, 幅度只利用上图2,我们可以分析出频谱不发生混叠的条件。

我们考虑中心点在 ??=?0和????的频谱。

中心点在??=?0的频谱的上边带的截止频率为???? ,中心点在??=?????频谱傅里心1血.(b>応抽样频率时閑揄坤柑号及和常(不龍』》仍为?冲击序列。

抽样定理和PCM调制解调实验报告

抽样定理和PCM调制解调实验报告

《通信原理》实验报告实验一:抽样定理和PAM调制解调实验系别:信息科学与工程学院专业班级:通信工程1003班学生姓名:陈威同组学生:杨鑫成绩:指导教师:惠龙飞(实验时间:2012 年 12 月 7 日——2012 年 12 月28日)华中科技大学武昌分校1、实验目的1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。

2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。

2、实验器材1、信号源模块一块2、①号模块一块3、60M双踪示波器一台4、连接线若干3、实验原理3.1基本原理1、抽样定理图3-1 抽样与恢复2、脉冲振幅调制(PAM)所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。

如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。

自然抽样平顶抽样)(tm)(tT图3-3 自然抽样及平顶抽样波形PAM方式有两种:自然抽样和平顶抽样。

自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号ms化的规律(如图3-3所示)。

平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。

在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。

四、实验步骤1、将信号源模块、模块一固定到主机箱上面。

双踪示波器,设置CH1通道为同步源。

2、观测PAM自然抽样波形。

(1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。

(2)将模块一上K1选到“自然”。

(3)关闭电源,连接表3-1 抽样实验接线表(5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。

在PAMCLK处观察被抽样信号。

CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

图3-1 2KHz模拟信号图3-2 自然抽样PAM输出分析:抽样定理表明个频带限制在(0,H f )内的时间连续信号()m t ,如果以T ≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

通信报告PAM实验

通信报告PAM实验

通信原理实验报告--PAM实验101180009陈惠娟一、实验目的1、验证抽样定理;2、观察PAM信号形成的过程;3、了解混迭效应产生的原因;4、学习中频抽样的基本方法;二、实验仪器1、JH5001(Ⅲ)通信原理基础实验一台2、双踪示波器一台3、函数信号发生器一台三、实验原理利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。

抽样定理指出,一个频带受限信号m(t),如果它的最高频率为f h,则可以唯一地由频率等于或大于2f h的样值序列所决定。

在满足抽样定理的条件下,抽样信号保留了原信号的全部信息。

并且,从抽样信号中可以无失真地恢复出原始信号。

实际上,设计实现的滤波器特性不可能是理想的,对限制最高频率为3400Hz的语音信号,通常采用8KHz抽样频率。

这样可以留出一定的防卫带(1200Hz)。

当抽样频率f s低于2倍语音信号的最高频率f h,就会出现频谱混迭现象,产生混迭噪声,影响恢复出的话音质量。

本次实验采用标准的8KHz抽样频率,并用函数信号发生器产生一个信号,通过改变函数信号发生器的频率,观察抽样序列和重建信号,检验抽样定理的正确性。

图6 抽样定理实验电路组成框图上图为抽样定理实验电路组成框图,低通滤波器为3dB带宽为3400Hz的滤波器,用于限制最高的信号频率,信号通过跟随器缓冲送到模拟开关。

通过抽样时钟完成对信号的抽样,形成抽样序列信号,再通过运放输出。

接着继续通过3dB带宽为3400Hz的低通滤波器,恢复原始信号。

跳线开关K702用于选择输入滤波器,当K702设置在滤波位置时(左端),送入到抽样电路的信号经过3400Hz的低通滤波器;当K702设置在直通位置时(右端),实验中所有信号都不经过抗混迭滤波器直接送到抽样电路,其目的是为了观测混迭现象。

四、实验内容1、自然抽样脉冲序列测量(1)实验步骤将复接解复接模块中的KB04设置在右端(自然抽样状态);将ADPCM模块的输入信号选择开关K501设置在右端以输入测试信号。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告通信原理抽样定理实验报告摘要:本实验通过对抽样定理的研究和实践,探究了通信原理中抽样定理的重要性和应用。

通过实验结果的分析,验证了抽样定理的正确性,并得出了一些有关抽样定理的结论。

1. 引言通信原理是现代通信技术的基础,而抽样定理是通信原理中一个重要的理论基础。

抽样定理指出,在进行模拟信号的数字化处理时,为了保证处理结果的准确性,需要对模拟信号进行一定的采样频率。

本实验旨在通过实践验证抽样定理的正确性,并探究其在通信原理中的应用。

2. 实验原理抽样定理是由奈奎斯特(Nyquist)于20世纪20年代提出的,也被称为奈奎斯特定理。

该定理的核心思想是:对于一个带宽有限的信号,如果将其以大于两倍的最高频率进行采样,那么采样后的数字信号可以完全恢复原始信号。

3. 实验步骤3.1 实验仪器与材料准备本实验所需的仪器与材料包括:信号发生器、示波器、电缆、电阻、电容等。

3.2 实验过程首先,通过信号发生器产生一个带宽有限的模拟信号。

然后,将该模拟信号通过电缆连接到示波器上进行观测。

在示波器上观测到的信号即为模拟信号的采样结果。

3.3 实验结果分析通过观察示波器上的信号波形,可以发现,采样后的信号与原始模拟信号非常接近,几乎无法区分。

这表明,抽样定理的预测是正确的,通过足够高的采样频率,可以准确地还原原始信号。

4. 实验讨论4.1 抽样频率的选择根据抽样定理,为了准确还原原始信号,采样频率至少要大于信号带宽的两倍。

实际应用中,为了保证信号的完整性和准确性,通常会选择更高的采样频率。

4.2 抽样定理在通信系统中的应用抽样定理在通信系统中有着广泛的应用。

例如,在数字音频和视频的传输中,通过抽样定理可以将模拟音频和视频信号转换为数字信号,从而实现高质量的传输和存储。

5. 实验结论通过本实验的研究和实践,我们验证了抽样定理的正确性,并得出以下结论:(1)抽样定理是通信原理中一个重要的理论基础,通过足够高的采样频率,可以准确地还原原始信号。

通信原理-抽样定理(PAM)实验报告

通信原理-抽样定理(PAM)实验报告
3、信号源模块调节“2K调幅”旋转电位器,使“2K正弦基波”输出幅度为3V左右。
4、实验连线如下:
信号源模块模拟信号数字化模块
2K正弦基波——————抽样信号
DDS-OUT—————— 抽样脉冲
模拟信号数字化模块内连线
PAM输出———————解调输入
5、不同频率方波抽样
(1)信号源模块“DDS-OUT”测试点输出选择“方波A”,调节“DDS调幅”旋转电位器,使其峰峰值为3V左右。
通信原理-抽样定理(PAM)实验报告
实验目的
1、掌握抽样定理的概念。
2、掌握模拟信号抽样与还原的原理及实现方法。
3、了解模拟信号抽样过程的频谱
实验要求
按照实验指导书完成实验内容
实验原理
1、图8-1是模拟信号的抽样原理框图。
图8-1模拟信号的抽样原理框图
实际上理想冲激脉冲串物理实现困难,实验中采用DDS直接数字频率合成信源产生的矩形脉冲来代替理想的窄脉冲串。
图8-2抽样信号的还原原理框图
实验仪器
1、信号源模块一块
2、模拟信号数字化模块一块
3、20M双踪示波器一台
4、带话筒立体声耳机一副
5、频谱分析仪一台
实验步骤
1、将模块小心地固定在主机箱中,确保电源接触良好。
2、插上电源线,打开主机箱右侧的交流开关,再分别按下两个模块中的电源开关,对应的发光二极管灯亮,两个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)
(2)示波器双踪观测“抽样信号”与“PAM输Hz等典型频率值时“PAM输出”测试点波形及频谱的区别。
这里可采用频谱分析仪或数字存储示波器的频谱分析功能进行信号频谱分析。

通信原理实验04 抽样定理与PAM调制解调实验

通信原理实验04 抽样定理与PAM调制解调实验

实验四抽样定理与PAM调制解调实验实验四抽样定理与PAM调制解调实验实验内容1.抽样定理实验2.脉冲幅度调制(PAM)及系统实验一.实验目的1.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的特点。

2.通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。

二.实验电路工作原理抽样定理在通信系统、信息传输理论方面占有十分重要的地位。

抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲幅度(PAM)信号。

抽样定理指出:一个频带受限信号m(t),如果它的最高频率为f h,则可以实验四抽样定理与PAM调制解调实验(二)实验电路工作原理1.输入电路该电路由发送放大电路组成。

该电路还用于PCM、增量调制编码电路中。

电路电原理图如4-2所示。

2.PAM调制电路调制电路见图4-2。

它是利用CD4066开关特性完成抽样实验的,抽样输出的信号中不含有直流分量。

输出负载端,接有取样保持电路,由R605、C602以及R607等组成,由开关K601来控制,在做调制实验时,K601的2端与3端相连,能观察其取样定理的波形。

在做系统实验时,将K601的1端与2端相连,即与解调滤波电路连通。

3.脉冲发生电路该部分电路详见图4-2所示,主要有两种抽样脉冲,一种由555及其它元件组成,这是一个单谐振荡器电路,能产生极性、脉宽、频率可调的方波信号,可通过调节电位器W601实现输出脉冲频率的变化,以便用来验证取样定理,另一种由CPLD产生的8KHz 抽样脉冲,这两种抽样脉冲通过开关K602来选择。

可在TP603处很方便地观测到脉冲频率变化情况和输出的脉冲波形。

注意实验时,用8KHz抽样脉冲效果较好,而且便于稳定观察。

4.PAM解调与滤波电路解调滤波电路由集成运放电路TL084组成。

组成了一个二阶有源低通滤波器,其截止频率设计在3.4KHz左右,因为该滤波器有着解调的作用,因此它的质量好坏直接影响着系统的工作状态。

实验四 抽样定理和PAM调制解调

实验四 抽样定理和PAM调制解调

实验四 抽样定理和PAM 调制解调实验一、实验目的1.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。

2.通过对电路组成、波形和所测数据的分析,加深理解这种调制方式的优缺点。

二、实验内容1.观察模拟输入正弦波信号、抽样时钟的波形和脉冲幅度调制信号,并注意观察它们之间的相互关系及特点。

2. 改变模拟输入信号或抽样时钟的频率,多次观察波形。

三、实验器材1.信号源模块 一块 2.①号模块 一块 3.20M 双踪示波器 一台 4.连接线 若干四、实验原理(一)基本原理 1.抽样定理抽样定理表明:一个频带限制在(0,H f )内的时间连续信号()m t ,如果以T≤Hf 21秒的间隔对它进行等间隔抽样,则()m t 将被所得到的抽样值完全确定。

假定将信号()m t 和周期为T 的冲激函数)t (T δ相乘,如图1所示。

乘积便是均匀间隔为T 秒的冲激序列,这些冲激序列的强度等于相应瞬时上()m t 的值,它表示对函数()m t 的抽样。

若用()m t s 表示此抽样函数,则有:()()()s T m t m t t δ=图1 抽样与恢复假设()m t 、()T t δ和()s m t 的频谱分别为()M ω、()T δω和()s M ω。

有1()()s s n M M n T ωωω∞=-∞=-∑该式表明,已抽样信号()m t s 的频谱()M s ω是无穷多个间隔为ωs 的()M ω相迭加而成。

这就意味着()M s ω中包含()M ω的全部信息。

上面讨论了低通型连续信号的抽样。

如果连续信号的频带不是限于0与H f 之间,而是限制在L f (信号的最低频率)与H f (信号的最高频率)之间(带通型连续信号),那么,其抽样频率sf 并不要求达到H f 2,而是达到2B 即可,即要求抽样频率为带通信号带宽的两倍。

2.脉冲振幅调制(PAM )所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。

通信原理抽样定理实验报告

通信原理抽样定理实验报告

通信原理抽样定理实验报告一、实验目的。

本实验旨在通过实际操作,验证和理解抽样定理在通信原理中的重要性和应用。

二、实验原理。

抽样定理是指在进行信号采样时,采样频率必须至少是信号最高频率的两倍,才能够准确地还原原始信号。

否则,会产生混叠失真,导致信号无法正确恢复。

抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。

三、实验器材。

1. 示波器。

2. 信号发生器。

3. 低通滤波器。

4. 电缆、连接线等。

四、实验步骤。

1. 将信号发生器输出正弦波信号,频率为f,幅度适当。

2. 将示波器设置为触发模式,连接到信号发生器输出端。

3. 调节示波器的水平和垂直位置,使得正弦波信号在屏幕上能够完整显示。

4. 逐渐增加信号发生器的频率,直到正弦波信号出现混叠失真。

5. 记录混叠失真出现时的频率值,并计算出最小采样频率。

五、实验结果。

通过实验,我们得到了信号发生器产生正弦波信号的频率和最小采样频率的数值。

实验结果表明,在通信原理中,抽样定理的重要性不可忽视。

只有在满足抽样定理的条件下,才能够准确地还原原始信号,避免混叠失真的发生。

六、实验结论。

抽样定理是数字通信系统中的基础,对于保证信号采样的准确性和精度至关重要。

在实际工程中,我们需要根据信号的最高频率来确定采样频率,以确保信号的准确恢复和传输。

本次实验的结果再次验证了抽样定理的重要性,为我们在通信原理中的应用提供了重要的参考。

七、实验感想。

通过本次实验,我们更加深刻地理解了抽样定理在通信原理中的重要性和应用。

在今后的学习和工作中,我们将会更加严格地遵循抽样定理,以确保通信系统的稳定和可靠。

八、参考文献。

[1] 《数字通信原理》,XXX,XXX出版社,2018年。

[2] 《通信工程基础》,XXX,XXX出版社,2017年。

以上就是本次实验的全部内容,谢谢阅读!。

取样定理及PAM通信实验

取样定理及PAM通信实验

实验二:取样定理及PAM通信实验
一.实验目的
1.通过对模拟信号的抽样实验,加深对取样定理的理解。

2.通过对PAM通信实验,加深对脉冲幅度调制系统的理解。

3.掌握模拟信号抽样及恢复的电路。

熟悉对它们的调整测试方法。

二.实验仪器
1.RZ8621D实验箱一台
2.20MHz 双踪示波器一台
3.专用连接线
4.平头小起子
三.实验预习及测量点说明
实验前请预习取样定理及PAM通信系统实验电路及工作原理
取样也称抽样、采样。

取样是把时间连续的信号变成时间离散的信号。

它的任务是每隔一定的时间,抽取样模拟信号的一个瞬时值,通常称为一个样值。

根据取样定理,对于频带为0- f h的低通信号,如果以f s ≥2 f h,速率对其取样,则原信号将被所抽取的样值完全确定,这就是著名的奈奎斯特低通信号取样定理。

根据取样脉冲的特性,取样分为理想取样、自然取样、瞬时取样;根据被取样信号的性质,取样又分为低通取样和带通取样,取样是模拟信号数字化和时分多路复用的理论基础。

本实验系统的方框原理如图2-1所示,它由取样和滤波两大部分组成。

电原理图框如图2-2所示。


2-1 取样及PAM通信方框图取样滤波。

抽样定理和脉冲调幅(PAM)实验

抽样定理和脉冲调幅(PAM)实验

实验一常用信号的分类与观察一、实验目的1、观察常用信号的波形特点及其产生方法;2、学会使用示波器对常用波形参数测量;3、掌握JH5004信号产生模块的操作。

二、实验原理对于一个系统的特性进行研究,重要的一个方面是研究它的输入—输出关系,即在特定输入信号下,系统输出的响应信号。

因而对信号进行研究是研究系统的出发点,是对系统特性观察的基本方法和手段。

在本实验中,将对常用信号及其特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用的信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa (t )信号、钟形信号、脉冲信号等。

1、指数信号:指数信号可表示为at Ke t f =)(。

对于不同的a 取值,其波形表现为不同的形式,如下图所示:在JH5004“信号与系统”实验平台的信号产生模块可产生a <0,t>0的Sa(t)函数的波形。

通过示波器测量输出信号波形,测量Sa(t)函数的a 、K 参数。

2、正弦信号:其表达式为)sin()(θω+⋅=t K t f ,其信号的参数有:振幅K 、角频率 ω、与初始相位θ。

其波形如下图所示:通过示波器测量输出信号波形,测量正弦信号的振幅K 、角频率ω参数。

3、衰减正弦信号:其表达式为⎩⎨⎧>⋅<=-)0(sin )0(0)(t t Ke t t f at ω,其波形如下图:4、复指数信号:其表达式为)sin()cos()()(t e jK t e K e K e K t f t t t j st ωωσσωσ⋅⋅+⋅⋅=⋅=⋅=+一个复指数信号可分解为实、虚两部分。

其中实部包含余弦衰减信号,虚部则为正弦衰减信号。

指数因子实部表征了正弦与余弦函数振幅随时间变化的情况。

一般0<σ,正弦及余弦信号是衰减振荡。

指数因子的虚部则表示正弦与余弦信号的角频率。

对于一个复信号的表示一般通过两个信号联合表示:信号的实部通常称之为同相支路;信号的虚部通常称之为正交之路。

通信原理实验四 实验报告 抽样定理与PAM系统实训

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告学生姓名:学号:专业班级:实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训一、实验目的1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解;2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点;3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。

二、实验原理1.取样(抽样、采样)(1)取样取样是把时间连续的模拟信号变换为时间离散信号的过程。

(2)抽样定理一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽样值完全确定。

(3)取样分类①理想取样、自然取样、平顶取样;②低通取样和带通取样。

2.脉冲振幅调制电路原理(PAM)(1)脉冲幅度调制系统系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。

图 1 脉冲振幅调制电路原理框图(2)取样电路取样电路是用4066模拟门电路实现。

当取样脉冲为高电位时,取出信号样值;当取样脉冲为低电位,输出电压为0。

图 2 抽样电路图 3 低通滤波电路三、实验步骤1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs;2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc;3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形;4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入时钟信号频率,听辨音乐信号的质量.四、实验内容及现象1.测量点波形图 4 TP301 模拟信号输入图 5 TP302 抽样时钟波形(555稍有失真) fc=图 6 TP303 抽样信号输出1图7 TP304 模拟信号还原输出1图8 TP303 抽样信号输出2图9 TP304 模拟信号还原输出2图10 TP303 抽样信号输出3图11 TP304 模拟信号还原输出32.电路Multisim仿真图12 PAM调制解调仿真电路图13 模拟信号输入图14 抽样脉冲波形图15 PAM信号图16 低通滤波器特性图17 还原波形 更多学习资料请见我的个人主页:落寂花溅泪。

实验 4 抽样定理及其应用实验

实验 4 抽样定理及其应用实验

实验 4 抽样定理及其应用实验通信1202 201208030223 吴铠权一、实验目的:1、通过对模拟信号抽样的实验,加深对抽样定理的理解;2、通过PAM调制实验,加深理解脉冲幅度调制的特点;3、学习PAM调制硬件实现电路,掌握调整测试方法;二、实验仪器:1、PAM 脉冲调幅模块位号: H2、时钟与基带数据发生模块位号: G3、100M 双踪示波器 1台三、实验内容:1、观测输入模拟信号、抽样脉冲、抽样信号及恢复信号波形;2、改变抽样脉冲频率,测试其对抽样信号及恢复信号的影响;3、测试接收滤波器特性对恢复信号的影响;四、实验原理:抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。

这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。

通常,按照基带信号改变脉冲参量(幅度、宽度和位置)的不同,把脉冲调制分为脉幅调制(PAM)、脉宽调制(PDM)和脉位调制(PPM)。

虽然这三种信号在时间上都是离散的,但受调参量是连续的,因此也都属于模拟调制。

关于 PDM 和 PPM,国外在上世纪 70 年代研究结果表明其实用性不强,而国内根本就没研究和使用过,所以这里我们就不做介绍。

本实验平台仅介绍脉冲幅度调制,因为它是脉冲编码调制的基础。

本实验中需要用到以下 5 个功能模块。

1、DDS信号源:它提供正弦波等信号,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的调制信号。

P03测试点可用于调制信号的连接和测量;另外,如果实验室配备了电话单机,也可以使用用户电话模块,这样验证实验效果更直接、更形象,P05 测试点可用于语音信号的连接和测量。

2、抽样脉冲形成电路模块:它提供有限高度,不同宽度和频率的的抽样脉冲序列,并经过连线送到“PAM 脉冲调幅模块”,作为脉冲幅度调制器的抽样脉冲。

P09测试点可用于抽样脉冲的连接和测量。

实验4 抽样定理与PAM通信系统实验

实验4   抽样定理与PAM通信系统实验

三、实验内容 1.输入同步正弦波验证抽样定理 输入同步正弦波验证抽样定理
(1)连接P201和P501将同步正弦波送入抽样电路,用示波器在 P501处观察,以该点信号输出幅度不失真时为好,如有削顶失真, 则调节W201,减小同步正弦波SIN的输出幅度,使正弦波不失真。 (2)用频率计测量输入的正弦信号的频率是否为2KHz; (3)连接信号源和P502引入抽样信号,用读取信号源的频率; (4) 调节信号源频率调节旋钮改变抽样信号的频率为8KHz,根据 抽样定理判断,选择8KHz作为抽样信号,是否正确? (5)用示波器在P503处观察和记录已调信号的波形,已调信号的一 个周期有几个采样点? (6) 连接PAM_OUT和P605铆孔,观察解调后的信号输出,测量 点为P606,解调后的模拟信号是否有失真?如有失真分析可能产生 失真的原因有哪些?
(6)改变抽样时钟的频率为6KHz,连接P503和P603将抽样信 号送至终端滤波器,在P604出观察恢复信号的波形,看是否能够 恢复出原波形,是否有失真? (7)改变抽样时钟的频率为12KHz,连接P503和P603将抽样信 号送至终端滤波器,在P604出观察恢复信号的波形,看是否能够 恢复出原波形,是否有失真? (8)重复上述步骤,连接P503和P605将抽样信号送至终端滤波 器,分别改变抽样信号的频率的为3KHz,6KHz,12KHz,在 P606出观察恢复的波形,看是否能够恢复原信号,为什么?
测量点的实际波形
P501:输入正弦信号 P503:抽样输出波形
P502:抽样时钟 P503:抽样输出波形
五、实验报告要求
根据实验内容的要求,绘出所测各点的波形、频率、电压等有关 数据,对所测数据做简要分析说明。
2. 输入 输入1KHz的三角波作为抽样信号 的三角波作为抽样信号 (1)连接P202和P501,选择函数信号输出,K201打在第一档, 选择的三角波输出,调节W202时输入信号的频率为1KHz; (2)用示波器在P501处观察,以该点信号输出幅度不失真时为 好,如有失真,则调节W203,减小信号的输出幅度; W203 (3)连接信号源和P502引入抽样信号,调节信号源频率旋钮, 使输出信号的频率为3KHz; (4)用示波器观察抽样输出波形,看该波形是否稳定,为什么? (5)连接P503和P603将抽样信号送至终端滤波器,在P604出 观察恢复信号的波形,考虑为什么会失真。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南昌大学实验报告
学生姓名:学号:专业班级:
实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训
一、实验目的
1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解;
2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点;
3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。

二、实验原理
1.取样(抽样、采样)
(1)取样
取样是把时间连续的模拟信号变换为时间离散信号的过程。

(2)抽样定理
一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽
样值完全确定。

(3)取样分类
①理想取样、自然取样、平顶取样;
②低通取样和带通取样。

2.脉冲振幅调制电路原理(PAM)
(1)脉冲幅度调制系统
系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。

图 1 脉冲振幅调制电路原理框图
(2)取样电路
取样电路是用4066模拟门电路实现。

当取样脉冲为高电位时,
取出信号样值;当取样脉冲为低电位,输出电压为0。

图 2 抽样电路
图 3 低通滤波电路
三、实验步骤
1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs;
2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc;
3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形;
4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声
器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入
时钟信号频率,听辨音乐信号的质量.
四、实验内容及现象
1.测量点波形
图 4 TP301 模拟信号输入
图 5 TP302 抽样时钟波形(555稍有失真)
fc=38.8kHz
①fc>>2fs,使fs=5KHz:
图 6 TP303 抽样信号输出1
图7 TP304 模拟信号还原输出1
②fc=2fs,使fs=20KHz:
图8 TP303 抽样信号输出2
图9 TP304 模拟信号还原输出2
③fc<2fs,使fs=25KHz:
图10 TP303 抽样信号输出3
图11 TP304 模拟信号还原输出3
2.电路Multisim仿真
图12 PAM调制解调仿真电路
图13 模拟信号输入
图14 抽样脉冲波形
图15 PAM信号
图16 低通滤波器特性
图17 还原波形
更多学习资料请见我的个人主页:。

相关文档
最新文档