In situ production of Fe–TiC surface composite coatings by tungsten-inert gas heat source
激光熔覆原位生长TiB2
第52卷第7期表面技术2023年7月SURFACE TECHNOLOGY·397·激光熔覆原位生长TiB2/TiC增强铁基涂层组织及性能佘红艳1,屈威1,杨柳1,叶宏1,2(1.重庆理工大学 材料科学与工程学院,重庆 400054;2.重庆市高校模具技术重点实验室,重庆 400054)摘要:目的采用激光熔覆技术在45钢表面制备原位生长的TiB2、TiC陶瓷相,以提高铁基涂层的耐磨性能。
方法利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和能谱仪(EDS)研究铁基复合涂层的相组织、显微组织。
使用显微硬度计、磨损实验机等仪器进行显微硬度和耐磨性的测试。
结果在铁基粉末中添加Ti、B4C后,涂层原位生长出均匀分布的TiB2、TiC陶瓷相,其数量随着(Ti+B4C)添加量的增加而增多。
经过扫描电镜结合EDS判定TiB2多呈矩形形貌,TiC呈球形或花瓣状。
在原位生长过程中,TiB2优先形成,而TiC多依附在TiB2周围,以颗粒状存在。
铁基复合涂层的显微硬度随着(Ti+B4C)添加量的增加逐级增加,质量分数为30%的(Ti+B4C)复合涂层的硬度最高(1 086HV0.2),比铁基涂层(611HV0.2)的硬度提高了约0.78倍。
复合涂层的磨损性能得到明显改善,其中质量分数为30%的(Ti+B4C)复合涂层的磨损率最小,为5.48×10−6 mm3/(N·m),铁基涂层的磨损率为2.01×10−5 mm3/(N·m),表明其耐磨性提高了约2.67倍。
随着原位生长的TiB2、TiC陶瓷相数量的增多,铁基涂层的磨损机制由黏着磨损逐渐转为轻微的磨粒磨损。
结论在铁基粉末中添加Ti、B4C,通过激光熔覆技术能够原位生长出TiB2和TiC,显著提高了铁基涂层的硬度和耐磨性能。
关键词:激光熔覆;原位生长;TiB2/TiC;微观组织;显微硬度;摩擦磨损性能中图分类号:TG174.442 文献标识码:A 文章编号:1001-3660(2023)07-0397-09DOI:10.16490/ki.issn.1001-3660.2023.07.036Microstructure and Properties of TiB2/TiC ReinforcedFe-based Coating Grown in Situ by Laser CladdingSHE Hong-yan1, QU Wei1, YANG Liu1, YE Hong1,2(1. School of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China;2. Chongqing University Key Laboratory of Mould Technology, Chongqing 400054, China)ABSTRACT: The preparation of ceramic phase reinforced metal matrix composites by laser cladding is currently an important research direction of wear resistant coatings. According to the way of adding the reinforcing phase, they are generally classified into two categories, i.e., the ex-situ method and the in-situ growth method. The significant advantage of in-situ growth is that收稿日期:2022−06−22;修订日期:2022−11−12Received:2022-06-22;Revised:2022-11-12作者简介:佘红艳(1998—),女,硕士生,主要研究方向为激光熔覆表面改性。
钛基体上碳纳米管的原位合成及其复合材料的制备与性能研究
钛基体上碳纳米管的原位合成及其复合材料的制备与性能研究Preparation and Properties Research of Titanium matrix composite reinforced with in-situ synthesized CNTs学科专业:材料学研究生:雷红指导教师:赵乃勤教授天津大学材料科学与工程学院二零一三年十二月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。
特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日摘要钛基复合材料具有低密度、高比强度、良好耐蚀性以及高温性能等优点,成为最具潜力的新一代航空航天用结构材料之一。
碳纳米管(CNTs)具有高比强度、高比模量以及优异的综合性能,被认为是金属基复合材料最理想的增强相。
要使CNTs的优异性能在复合材料中得到充分发挥,关键要实现其在金属基体上的均匀分散,与基体形成良好的界面结合,并避免材料成形过程中CNTs与基体的反应。
因此,探索CNTs/Ti复合材料新的制备方法,对于发展钛基复合材料在航空航天领域的应用具有重要的理论意义和实用价值。
本论文采用化学气相沉积法在钛基体表面原位合成均匀分散的CNTs,研究了催化剂与碳源种类、合成温度、合成时间、碳源气体与载气比例对合成的CNTs 结构、分布以及产率的影响,并探讨了CNTs的生长机理。
不同后处理对MT-TiCN涂层刀具组织与切削性能的影响
不同后处理对MT-TiCN涂层刀具组织与切削性能的影响杜丽业;邱联昌;杜勇;钟志强;史海东【摘要】目的研究不同后处理工艺(包括热处理、湿喷砂和刃口处理)对MT-TiCN 涂层组织与刀片切削性能的影响.方法采用中温化学气相沉积技术在硬质合金刀片上制备TiCN涂层;利用光学显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、纳米压痕仪分析MT-TiCN涂层的组织形貌、相结构、硬度和弹性模量;在AISI 4340合金钢上进行车削试验.结果 MT-TiCN涂层呈柱状晶结构,涂层沿(422)晶面方向择优生长,且织构系数达5.5;涂层表面和断口平均硬度分别为26.6 GPa和30.7~31.8 GPa,平均弹性模量分别为528.6 GPa和467.7~494.4 GPa;在连续车削条件下,经湿喷砂处理的涂层刀片切削性能最佳;在低切深、低进给断续车削工况下,湿喷砂后又经热处理和刃口处理的涂层刀片使用寿命最长;湿喷砂后再进行热处理,对刀具的切削性能影响较小.结论湿喷砂和热处理对MT-TiCN涂层组织的影响较小;不同后处理工艺对涂层刀具切削性能的影响较大,这主要是因为刃口处理会减小涂层厚度同时提高涂层韧性.【期刊名称】《精密成形工程》【年(卷),期】2017(009)003【总页数】6页(P83-88)【关键词】MT-TiCN;涂层;热处理;湿喷砂;刃口处理;切削性能【作者】杜丽业;邱联昌;杜勇;钟志强;史海东【作者单位】中南大学粉末冶金国家重点实验室,长沙 410083;中南大学粉末冶金国家重点实验室,长沙 410083;赣州澳克泰工具技术有限公司,江西赣州 341000;中南大学粉末冶金国家重点实验室,长沙 410083;中南大学粉末冶金国家重点实验室,长沙 410083;赣州澳克泰工具技术有限公司,江西赣州 341000;赣州澳克泰工具技术有限公司,江西赣州 341000【正文语种】中文【中图分类】TG306化学气相沉积技术的历史可追溯至 19世纪 80年代,SAWYER和MAN为了增加灯丝的使用寿命,把碳和金属沉积到灯丝表面。
1T型二硫化钼的制备与应用现状
Vol.7 No.2Apr. 2021生物化工Biological Chemical Engineering第 7 卷 第 2 期2021 年 4 月1T 型二硫化钼的制备与应用现状汪芃,刘圆圆,武钰,刘晓文*(中南大学 资源加工与生物工程学院,湖南长沙 410083)摘 要:1T 型二硫化钼(MoS 2)具有较高的导电率和较宽的离子扩散通道,有利于电化学储能中的电子传输和离子扩散,因此光电催化性能优异,但因亚稳定性而导致实际应用受到了限制。
本文归纳了1T 型MoS 2的制备及改性方法,介绍了1T 型MoS 2在超级电容器、电池及电催化析氢等领域的应用。
关键词:1T 型MoS 2;制备方法;应用中图分类号:TB32 文献标识码:APreparation and Applications Status of 1T-phase MoS 2WANG Peng, LIU Yuanyuan, WU Yu, LIU Xiaowen *(School of Minerals processing and Bioengineering, Central South University, Hunan Changsha 410083)Abstract: 1T-phase Molybdenum Disulfide (MoS 2) has high conductivity and wide ion diffusion channel, which is conducive to the electron transport and ion diffusion in electrochemical energy storage, so it has excellentphotoelectrocatalytic performance, but its practical application is limited due to its metastability. This paper summarizes the preparation and modification methods of 1t type MoS 2, and introduces the application of 1t type MoS 2 in supercapacitor, battery and electrocatalytic hydrogen evolution.Keywords: 1T-Phase MoS 2; preparation method; applications二维层状过渡金属硫族化合物物理化学性质独特,近年来被人们进行广泛的研究[1]。
激光熔融技术
Journal of Materials Processing Technology 211(2011)750–758Contents lists available at ScienceDirectJournal of Materials ProcessingTechnologyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /j m a t p r o t ecPerformance of a cutting tool made of steel matrix surface nano-composite produced by in situ laser melt injection technologyO.Verezub a ,Z.Kálazi b ,A.Sytcheva c ,L.Kuzsella d ,G.Buza b ,N.V.Verezub e ,A.Fedorov f ,G.Kaptay g ,h ,∗aUni.Miskolc,Dep.Production Eng.,Egyetemvaros,3515Miskolc,HungarybBAY-ATI (RI for Materials Science and Engineering),Fehervari ut 130,Budapest,Hungary cBAY-NANO (RI for Nanotechnology),Dep.Nano-metrology,3515Miskolc,Egyetemvaros,E/7,Hungary dUni.Miskolc,Dep.Polimer Eng.,Egyetemvaros,3515Miskolc,Hungary eNational Technical University (“Kharkov Polytechnical Institute”),Frunze st.21,Dep.Integrated Technologies in Machine Building,Kharkov,Ukraine fARC -The Australian Reinforcing Company,518Ballarat Road,Sunshine,3020VIC,Melbourne,Australia gBAY-NANO (RI for Nanotechnology),Dep.Nano-composites and Uni.Miskolc,Egyetemvaros,E/7,3515Miskolc,Hungary hUniversity of Miskolc,Dep.Nanotechnology,Egyetemvaros,E/7,3515Miskolc,Hungarya r t i c l e i n f o Article history:Received 15May 2010Received in revised form 4December 2010Accepted 7December 2010Available online 15December 2010Keywords:Cutting toolMetal matrix nano-composite Laser processing Tool-lifea b s t r a c tSteel-matrix (105WCr6steel)surface nano-composites with (Ti,W)C micron-sized and (Fe,W)6C nano-sized carbide precipitates were produced by in situ laser melt injection technology with subsequent heat treatment.The microhardness of a 1mm thick nano-composite layer was found to be higher than that of the initial matrix.The machinability of the surface nano-composite by a cubic boron nitride (CBN)wheel was found lower,but still reasonable compared to the initial matrix.Cutting tools produced from our new nano-composite by the CBN wheel were found to have higher wear resistance,longer tool life and provided lower cutting forces against a C45steel workpiece compared to the initial matrix of the nano-composite.©2010Elsevier B.V.All rights reserved.1.IntroductionMaterial removal and machining processes play a key role in generating value-added activities to materials and machine parts since their introduction about 3centuries ago (Shaw,2005).Nev-ertheless,there is a constant interest in this field due to the high variety of newly developed materials (Biswas,2006)and superhard coatings (Veprek and Veprek-Heijman,2008)that can be used as cutting tools.The optimum combination of hard particles and duc-tile metallic matrices can lead to higher wear resistance.As this principle is widely recognized,particles reinforced metal matrix composites (MMCs)have been developed for cutting tools in a Al-matrix composites (Uday et al.,2009)and in steel matrix com-posites (Li et al.,2010).Among many requirements to cutting tools,cost is always at the top of the list.That is why this research was concentrated on the∗Corresponding author at:BAY-NANO (RI for Nanotechnology),Dep.Nano-composites and Uni.Miskolc,Egyetemvaros,E/7,3515Miskolc,Hungary.Tel.:+36304150002;fax:+3646362916.E-mail addresses:olga ver79@mail.ru (O.Verezub),kalazi@bzaka.hu (Z.Kálazi),kubaisy@mail.ru (A.Sytcheva),femkuzsy@uni-miskolc.hu(L.Kuzsella),buza@bzaka.hu (G.Buza),nikverezub@mail.ru (N.V.Verezub),FedorovA@.au (A.Fedorov),kaptay@ (G.Kaptay).cheapest possible steel matrix.To keep the cost of the cutting tool low,only the surface layer of the cutting tool will be improved,i.e.steel -matrix surface composites will be considered in this paper.It has been established by Iglesias et al.(2007)that the wear resistance of the composite increases with decreasing the size of the hard,reinforcing particles.That is why a special technology has been developed by Verezub et al.(2009)to ensure that the reinforc-ing particles are as small as ing smaller hard particles in the steel matrix of the cutting tool is expected to improve the performance of the cutting tool.There is a wide variety of reinforcing particles for the steel matrix.The most ‘popular’particles are TiC particles (Ala-Kleme et al.,2007)and WC particles embedded in the matrix of M2high-speed tool steels (Riabkina-Fishman et al.,2001)or in Ni–Cr matrix (St-Georges,2007).These particles are hard and thermodynami-cally stable.While TiC has superiority in both hardness (Kalpakjian,1995)and thermodynamic stability (Barin,1993)over WC,both of these particles are metallic in nature,and thus are well wettable by the steel matrix ensuring strong adhesion between the matrix and the reinforcing particles.This is essential to prevent reinforc-ing particles to turn out of the matrix without being worn,what is known to be one of the wear mechanisms of MMCs (Kaptay et al.,1997).In this respect WC is superior to TiC,as WC is perfectly wet-ted,while TiC is only moderately wetted by liquid steel as reviewed0924-0136/$–see front matter ©2010Elsevier B.V.All rights reserved.doi:10.1016/j.jmatprotec.2010.12.009O.Verezub et al./Journal of Materials Processing Technology211(2011)750–758751Table1Composition(in wt%)of the HVG steel(similar to105WCr6steel)(balance:Fe).C Mn Si S P Cu Cr Ni Al Ti Mo Nb W V O0.99 1.000.380.0140.0210.14 1.030.190.0280.0050.10.01 1.340.030.0056by Eustathopoulos et al.(1999)and shown theoretically by Kaptay (2005).Among the many possible technologies to produce steel matrix surface nano-composites,the laser melt injection(LMI)technology has been selected by the authors.This technology was developed 3decades ago by Ayers and Tucker(1980)to produce a surface composite layer.In this technique large(around100m)carbide particles are blown by a gas stream into a moving laser melted pool of a substrate metal.The method is superior to all coating technologies in providing perfect adhesion between the compos-ite and the substrate and also in providing large thickness(around 1mm)allowing to re-ground the cutting ter the LMI tech-nology has been proven to be efficient to produce WC particles reinforced steel matrix composites by Liu et al.(2008),using par-ticularly X40CrMoV5–1steel surface layer by Dobrzanski et al. (2005)and duplex stainless steels matrix by Do Nascimento et al. (2008).The combination of WC+Co particles was used by Bitay and Roósz(2006).TiC particles were added into liquid steel by Fábián et al.(2003).The drawback of LMI technology is that only large carbide par-ticles with a sufficiently large kinetic energy can break the high surface tension liquid metal/gas interface,as was proven for liq-uid steel by Farias and Irons(1985)and for liquid aluminum by Vreeling et al.(2000).This is especially true for low-density TiC particles(compared to the density of liquid steel)that are not‘per-fectly’wetted by liquid steel as shown by Verezub et al.(2005). In fact,incorporation problems for the TiC/liquid steel couple was mentioned in the veryfirst paper by Ayers and Tucker(1980)and was later confirmed by Králik et al.(2003).Thus,the steel rein-forcing matrix,the TiC particles,the LMI technique and the desire to produce surface nano-composite seem to be contradictory.To solve this problem,an in situ LMI technology was developed by Verezub et al.(2009)to produce steel matrix carbide reinforced surface nano-composites.The in situ production route of steel-matrix TiC reinforced composites has been known since the work by Terry and Chinyamakobvu(1991).This method has been developed further by using reaction casting by Feng et al.(2005)and high-energy electron beam irradiation by Lee et al.(2006).The method was extended to produce Fe/(TiW)C composite powder by Correa et al. (2007).Good tribological behaviour of TiC–ferrous matrix com-posites was shown by Kattamis and Suganuma(1990).The Fe/TiC composites were found to have excellent wear properties by Galgali et al.(1999),confirmed also for elevated temperatures by Degnan et al.(2001).The samefinding was extended by Dogan et al.(2001) for cast chromium steels reinforced by TiC particles.Nevertheless, the in situ production of Fe/TiC composites and the LMI technology was combined for thefirst time by Verezub et al.(2009).The goal of the present paper is to evaluate the machinability(upon producing a cutting tool from it)and also the performance as a cutting tool of a steel matrix(TiW)C reinforced surface nano-composite produced on a cheap steel matrix by the in situ LMI process.2.Materials and methods2.1.MaterialsLow-alloyed tool steel plates of grade HVG(Russian GOST5950-73,1973being the analogue of steel105WCr6)have been selected as a base material for the current research.Detailed chemical com-position of the HVG substrate is given in Table1.The initial size of the substrates was8mm×8mm×4mm.Additionally,tungsten carbide and metallic titanium powders of chemical purity,both with a particle size of45–70m were used.These two powders were mixed at a1:1molar ratio.This molar ratio was chosen as the most stable carbides in the Ti–W–C system are the TiC and WC car-bides,and in this way the exchange reaction Ti+WC=W+TiC can be ensured between them.Of-course,the C-content of the original steel will also play some role(see below).2.2.Production of the nano-compositesSchematic diagram of LMI-equipment used in the current study is shown in Fig.1.The upper8mm×8mm plane of the HVG sub-strate was coated by a thin layer of graphite to increase laser beam absorption efficiency during the LMI process.The other side of the steel substrate was brazed onto a large,water-cooled Cu-plate to ensure fast cooling of the substrate.The top surface of the substrate was melted by a2.5kW CO2continuous wave laser(type Trumph TLC105),with a laser spot of2mm in diameter.The laser spot was moving along the sample with a scanning speed of400mm/min. The(WC+Ti)powder mixture was blown into the melted pool at an angle of45◦using argon as carrier gas.The following three pow-der feeding rates were used during our experiments:1.3g/min, 2.3g/min and3.8g/min.Several laser tracks were drawn parallel to each other with a50%overlapping.After the LMI process,the rapidly cooled samples were heat treated under the following conditions:austenitizing at a tempera-ture of1000–1050◦C during10–15s in a high frequency induction furnace,followed by rapid cooling and tempering at a temperature of350◦C for1h.The second round of tempering was performed during1h at560◦C.For reasons of more correct comparison,the initial HVG samples were heat treated under usual conditions (hardening at840◦C and tempering at170◦C).The samples were grinded,polished,etched and analyzed uti-lizing special techniques.The microstructure of the substrates was observed using an AMRAY1810i SEM(Scanning Electron Microscopy with micro resolution),equipped with EDS(Energy Dispersive X-ray Spectroscopy).The identification of nano-sized particles was performed by a high resolution SEM(HitachiS-4800,Fig.1.The schematic diagram of the laser melt injection(LMI)equipment(1–laser, 2–powder nozzle,3–steel substrate to be treated,4–copper cooling plate,5–working table,6–cooling water input and output).752O.Verezub et al./Journal of Materials Processing Technology211(2011)750–758Japan).Quantitative analysis of the samples was performed by ImageJ software.In different parts of the paper the following short sample names are used:i.“LMI”is the sample produced here by the LMI procedure includ-ing heat treatment.ii.“HVG”is the original HVG sample(see Table1)heat treated as described above.iii.“HSS”is a commercially available high speed steel sample with 6%W+5%Mo.2.3.Microhardness measurement of the nano-compositeThe microhardness profiles were measured using TUKON2100B equipment(Wilson Instr.)using load of500g and time of pressing of10s.The samples were polished and etched before the micro-hardness measurements.Microhardness was scanned along two lines:(i)perpendicular to the surface,as function of depth,and(ii) parallel along the surface,at the depth of0.40mm.2.4.Machinability of the nano-composite by cubic BN wheelA cubic boron nitride(CBN)grindingflaring cup wheel of type L010(125/100)–100%–B1–58(Russian standard)which cor-responds to grinding wheel B120C100vitrified bond(Stephenson and Agapiou,2006)was used to remove small quantities of the sur-face composite material to produce the required shape and surface quality for the cutting tool insert.Additionally,the grinding ratio of the CBN wheel was studied by removing the same thickness of 1mm from each substrate(HVG,LMI,HSS).The grinding ratio G,is defined as the ratio of worn mass of the grinding wheel(mg)to the mass of the removed material(g).The CBN wheel was studied by SEM+EDS after the grinding experiments.2.5.Performance of a cutting tool made of LMI nano-composite materialSteel C45(0.45%C+0.6%Mn+0.25%Si)was used as a workpiece for the cutting experiments.Machining of the steel C45workpiece was performed by the HVG,LMI and HSS cutting tools.All the exper-iments were run with the following cutting conditions:cutting speed V=20–60m/min,feed f=0.05–0.3mm/rev and depth of cut d=0.25–1.75mm.The cutting force components were measured by a piezoelectric dynamometer(Kistler).SEM and EDS analysis of the cutting tool and the removed chips were applied after the cutting experiments.3.Results and discussion3.1.Structure and composition of the nano-compositeFig.2shows SEM pictures of cross section of the characteristic LMI sample.Fig.2a shows that the depth of the surface composite layer is approximately1mm.Due to multiple scanning by the laser beam,the depth of the melted layer shows a certain pattern in Fig.2a,with minima in the depth separated by a distance of about 1mm(what is half of the2mm laser spot diameter due to50% of overlapping).As one can see from Fig.2,the microstructure of the melted layer seems to be macroscopically homogeneous.This is due to the high velocity of Marangoni convection of the laser melted pool during the LMI process.Fig.3shows enlarged SEM pictures of the LMI sample with two types of precipitates.The several micron sized(Ti,W)C carbide pre-cipitates(Fig.3a)formed during fast cooling at the latest stage ofthe Fig.2.SEM pictures of the cross sections of the steel substrate after the LMI treat-ment(a)and the general view of the microstructure within the laser treated zone (b)(powder feeding rate is2.3g/min).LMI process by in situ precipitation from the molten steel matrix. The core of these precipitates is rich in Ti,while the outer region of the precipitates is rich in W.This is so due to higher thermodynamic stability of TiC compared to WC.The second type of precipitates is below100nm in diameter and is formed only during the subse-quent heat treatment.These nano-particles are(Fe,W)6C carbides (Fig.3a and b),precipitating from the supersaturated solid steel matrix(for more details see Verezub et al.,2009).The volume%of micron sized(Ti,W)C particles are shown in Fig.4as function of the powder feeding rate.The theoretical maximum,shown in Fig.4was calculated from the technologi-cal parameters and from the cross section of the melted zone(see Fig.2a).One can see that in the as-received LMI samples the amount of incorporated(Ti,W)C particles is somewhat lower compared to the theoretical maximum.The incorporation ratio decreases from 89%(for1.3g/min)to76%(for3.8g/m)with increasing the pow-der feeding rate.It is probably due to the gradual increase in the effective viscosity of the suspension with increasing its solid con-tent,what makes further incorporation and dissolution of(Ti+WC) particles more difficult.During heat treatment of the LMI samples, the volume%of micron-sized(Ti,W)C particles is decreased further by about20%.This is due to the partial dissolution of the W-rich outer region of the micron-sized(Ti,W)C precipitates.The amount of nano-sized(Fe,W)6C particles is found around25±5vol%,being independent of the powder feeding rate.These nano-sized particles form during the heat treatment,from the over-saturated matrix and partially from the dissolved outer regions of the micron-sized precipitates.As follows from materials balance,the majority of the content of these(Fe,W)6C nano-particles originate from the mate-rial of the matrix.Further investigation is needed to clarify howO.Verezub et al./Journal of Materials Processing Technology 211(2011)750–758753Fig.3.SEM micrographs of the cross section of the LMI sample in two different magnifications (powder feeding rate is 2.3g/min).the conditions of heat treatment influence the micro-and nano-structure of the composite and the amount and size distribution of (Fe,W)6C particles.It should be mentioned that at the highest powder feeding rate of 3.8g/min the LMI samples appeared to be cracked.This is probably due to the too high volume %of the carbide phase in the matrix.The two other samples (produced at the powder feeding rates of 1.3and 2.3g/min)are free of cracks.The latter is more promising as the higher amount of carbide phase leads to improved mechanical properties of the composite,if the formation of cracks is avoided.3.2.Microhardness of the LMI nano-composite sampleThe depth profile of microhardness of the LMI nano-composite sample with powder feeding rate of 2.3g/min is shown in Fig.5.All measurements are made after the heat treatment described in the experimental part.The depth profile can be divided into three regions:010*******12345powder feeding rate, g/min(T i ,W )C , v o l %Fig.4.The volume %of the micron-sized (Ti,W)C particles as function of powder feeding rate after the LMI process (before and after the heat treatment procedure).020040060080010001200140000.51 1.52M i c r o h a r d n e s s , HVDistance from surface, mmFig.5.Depth profile of microhardness of the LMI nano-composites (powder feeding rate is 2.3g/min).i.The upper surface layer of about 500m thickness has a highest microhardness of about 1200HV.ii.The initial substrate (below 1mm from the top surface)has a lowest microhardness of about 1000HV.iii.There is a transition zone between 500and 1000m measuredfrom the top surface,within which the microhardness gradually changes between the above mentioned limits.In evaluation of these results let us remind that carbon can diffuse from the non-melted part of the substrate into the melted LMI part of the substrate during the heat treatment.The increased microhardness of the upper surface layer of LMI nano-composite sample is obviously due to the precipitated micron-sized (Ti,W)C and nano-sized (Fe,W)6C hard carbide par-ticles.The existence of the intermediate zone could be due to the interplay between solidification rate (solidification goes from the bottom of the melted zone upwards)and the feeding and mixing rates of the added powder mixture (powder mixture is added to the top and the incorporated particles together with the dissolved atoms move downwards mainly by the Marangoni convection).In Fig.6a the measured microhardness is shown parallel along the sample surface,at the depth of about 0.4mm for both the as received LMI sample and the heat treated LMI sample.One can see that the microhardness of the LMI samples increase due to the heat treatment,what is probably due to the formation of (Fe,W)6C02004006008001000120014000.511.522.53M i c r o h a r d n e s s , H VDistance, mm00.20.40.60.8100.511.52 2.53d e p t h , m mdistance, mmFig.6.Microhardness scanned parallel along the surface,at the depth of about 0.4mm for both as received LMI sample and the heat treated LMI sample (a)and the depth of the melted pool as function of the same path (b)(see the pattern in Fig.2a).754O.Verezub et al./Journal of Materials Processing Technology 211(2011)750–7580.0340f , m m /p a s sv f ,/m i nFig.7.The grinding ratio of the LMI nano-composite sample (powder feeding rate is 2.3g/min,V =25m/s).nanoparticles.It is also obvious that the heat treatment flatters out the large fluctuations in the microhardness of the as received LMI sample.The minima in the microhardness fluctuations (Fig.6a)approximately coincide with the minima in the depth of the melted zone (see Fig.6b and the pattern in Fig.2a).This can be explained by Fig.5,measured at the largest depth of the melted zone.The smaller is the depth of the melted zone,the higher becomes the relative depth of the same absolute depth of 0.4mm,and thus,in accordance with Fig.5,the smaller is the microhardness.As follows from Figs.5–6,the microhardness of the produced nano-composite layer is around 12GPa.For this value the optimum grinding wheel and the optimum workpiece to be machined should be selected such that the ratio of microhardnesses of the machining and that of the to be machined materials should be at least 3.As a machining tool,CBN (cubic boron-nitride)has been selected with its microhardness of about 50GPa (Kalpakjian,1995)being about 4.2times stronger compared to the hardness of our LMI sample.On the other hand,the C45workpiece has been selected with its microhardness of about 2.7GPa,being about 4.4times less strong compared to our LMI sample.Thus,the microhardness of our LMI nano-composite sample is positioned almost in the middle (in a logarithmic scale)of the interval between the microhardness val-ues of the machining CBN tool and that of the to be machined C45workpiece.3.3.Machinability of the LMI nano-composite by cubic BN wheel During the LMI treatment the surface of the substrate melts,and thus it becomes quite uneven after solidification (the subsequent heat treatment does not provide any significant improvement).As a result,the as-received LMI nano-composite sample cannot be used as a cutting tool.Therefore,the as-received LMI nano-composite sample was grinded by a CBN wheel to obtain the shape and surface quality required for cutting tools.Fig.7shows the grinding ratio of the LMI nano-composite sam-ple as function of the feed rate of the workpiece (v f ,m/min)and a feed (f ,mm/pass).The combination of a feed of f =0.04m/pass and a feed rate of v f =3m/min leads to a maximum grinding ratio of about G =45–50mg/g.Based on the results shown in Fig.7,the optimal grinding conditions are selected as:f =0.01–0.02mm/pass,v f =1–2m/min and V =25m/s.Under these conditions the grinding ratio can be kept at a reasonable level of G =8–15mg/g.In compari-son,under the same conditions the grinding ratio for the HVG steel was found to be 6.8mg/g,while the grinding ratio for HSS is known to be about 5–6mg/g (Lisanov,1978).The increased grinding ratio of our LMI sample is obviously due to the hard (Ti,W)C and (Fe,W)6C particles in the surface of newly developed material.Fig.8.The EDS spectra of CBN wheels after grinding HVG (a)and LMI (b)samples (powder feeding rate is 2.3g/min).In Fig.8the energy dispersive X-ray spectra of two CBN wheels are compared after identical grinding runs of the HVG and LMI samples.In addition to the C-and Fe-peaks after grinding the HVG sample,large W and Ti peaks are observed after grinding the LMI nano-composite sample.This can be explained by stabilisation of the C-content of the initial steel substrate by added Ti and by the attraction between (Ti,W)and (B,N)atoms,respectively,being due to the existence of stable titanium boride,titanium nitride and tungsten boride compounds as reported by Barin (1993).Thus,dur-ing the grinding process part of the Ti-and W-content of the LMI nano-composite substrate adheres to the CBN surface.The pres-ence of solid titanium and tungsten carbides causes loosening of the CBN grains and their fallout,leading to intensive wear of the wheel,also shown by Klimenko et al.(1996).Forming the rake and flank surfaces during grinding of the LMI nano-composite samples resembles the grinding of high-speed steel cutting tools as shown by Mamalis et al.(2002).When the high quality alloyed layer is achieved,cutting edge without visible chip-ping is obtained.At the same time the edge roughness,as well as the radius of the cutting edge are higher for the HVG substrate com-pared to the LMI nano-composite substrate (Table 2).Increase of the feed rate and that of the feed lead to further increase in roughness of the tool’s cutting edge.Table 2Roughness of tool’s cutting edge and surfaces after grinding by CBN wheels (param-eters:V =25m/s,v f =2m/min,f =0.01mm/pass).Tool material Cutting edgeroughness R a ,m Roughness of rake and flank surfaces R a ,m HSS 1.2–1.30.15–0.18LMI 1.3–1.50.17–0.20HVG1.4–1.60.21–0.24O.Verezub et al./Journal of Materials Processing Technology 211(2011)750–75875500,10,20,30,40,5050100150200machining time, minV B , m mFig.9.The influence of machining time on flank wear for different cutting tool materials (V =25m/min,f =0.1mm/rev,d =0.5mm).Curves correspond to the HVG steel,LMI nano-composite produced with different powder feeding rates (figures on curves correspond to the unit of g/min),and HSS.Overall it can be concluded that CBN wheels can be used with optimum grinding parameters of f =0.01–0.02mm/pass,v f =1–2m/min and V =25m/s to convert the as-received LMI nano-composite into the cutting tool.The required shape and roughness of the cutting tool can be obtained with a reasonable grinding ratio of about G =8–15mg/g.3.4.Tool life of the cutting tool made of our nano-composite During testing of a new LMI nano-composite cutting tool on C45workpiece,crater wear was found to be negligible compared to flank wear.These two types of wear are the most common measured forms of tool wear.Thus,the tool life of this newLMI2040608010012014016018001234powder feeding rate, g/mint o o l l i f e , m i nFig.10.Tool life as function of the powder feeding rate during the LMI process (V =25m/min,f =0.1mm/rev,d =0.5mm)(the point at zero feeding rate refers to a different heat history of a sample,that is why this point is connected to other points by a thin line).nano-composite cutting tool is determined from the measured flank wear.Fig.9shows flank wear measurements for HVG steel used as a base material,LMI nano-composite produced with different pow-der feeding rates and HSS.The critical flank wear of 0.45mm was chosen based on values recommended for replacing or re-grounding alloyed tool materials (Kalpakjian,1995).The machining time during which the actual flank wear achieves the critical value is called tool life (T ,min).Tool life as function of the powder feeding rate is shown in Fig.10.It shows that an optimum value of the powder feeding rate exists for the maximum tool life.When Fig.10is rationalized in combination with Fig.4,it can be seenthat the volume %of carbide particles in the compositeFig.11.SEM images of the cutting tool made of the LMI sample after its service (a–c)and EDS spectrum (d)of the worn surface.756O.Verezub et al./Journal of Materials Processing Technology211(2011)750–758Fig.12.Removed chip from steel C45by the LMI cutting tool(a)and its EDS spec-trum(b).gradually increases with the increase of powder feeding rate and,as a consequence,tool life also increases.However,as was mentioned above,cracks were formed in the substrate,made by the powder feeding rate of3.8g/min.As a result,a cutting tool made of this substrate has a lower tool life.One can suppose that there is an optimum feeding rate in the interval between2.3and3.8g/min, when the volume%of carbide particles is somewhat larger than for the2.3g/min feeding rate,but still without crack formation.The SEM images of the LMI nano-composite cutting tool faces after machining of C45steel are shown in Fig.11.Fig.11a shows the overlapping of the LMI tracks and the traces of theflank wear(mea-sured as0.45mm).In Fig.11b–c carbide particles being similar to those shown in Figs.2–3are shown.The difference is that the steel matrix is worn away in between the hard carbide particles after machining compared to the initial state of the LMI nano-composite substrate(compare Fig.11b–c to Figs.2–3).Therefore,it is evident that theflank wear is the result of abrasive wear of the LMI cutting tool.The EDS spectrum(Fig.11d)of the worn surface shows Fe,Ti, W as basic components.In Fig.12the SEM picture and EDS spectrum of the removed chip from the C45workpiece is shown,after its machining by the LMI nano-composite cutting tool.It can be seen that the removed chip is continuous,and the main elements of the nano-composite (Ti and W)are missing from its X-ray spectrum.Thus,there was no adhesion of Ti and/or W to the C45steel workpiece during its machining by the LMI nano-composite cutting tool.In order to position our cutting tool made of the LMI substrate on a tool-life scale,tool-life tests have been conducted.The effect of cutting speed V on tool-life T has been assessed using Taylor’s tool life equation(Eq.(1))(Taylor,1907)and the results are shown Table3Experimental tool life(T,min)of different cutting tool materials against C45work-piece(f=0.1mm/rev and d=0.5mm).V,m/min T,min(experimental)HVG LMI HSS20385500535 2550160190 30157088 3542550 40–1726 45–715 50–47 60–24in Table3.C1=V·T n(1) Eq.(1)is widely used and recognized in the industry.It relates tool life to the cutting speed through empirical tool life constants n and C1.Table4shows the range of values n and C1for different cutting tool materials obtained from the data in Table3.The data(Table4)indicate that the LMI process of inserting (TiW)C particles into HVG substrate improved tool life of the base material by300–400%when cutting speed V was25–35m/min. However,this new material was felt short to surpass tool life of HSS cutting material by just20%in the same cutting speed range.No sig-nificant difference between tool life of HSS and LMI was observed during machining at20m/min.Performance of cutting tools made of LMI nano-composite is similar to the performance of HSS and is limited by wear resistance at cutting speeds above40–45m/min (Stephenson and Agapiou,2006).Cutting tools made of HVG steel can be used at speeds up to30m/min.3.5.Cutting force componentsDuring machining of the C45workpieces by the cutting tool made of HVG and LMI substrates,the two main force components F z (N)and F x(N)have been measured as function of the depth of cut d (mm)and feed f(mm/rev).The effects of depth of cut and feed on the measured F z and F x force components for the two different cutting materials(HVG and LMI nano-composite)are shown in Figs.13–14. The cutting speed increase within limits of V c=20–60m/min does not sufficiently influence the value of the cutting force(Fedorov, 2005)and therefore has not been tested in this paper.The effect of depth of cut d on the measured force components for two different cutting tool materials is shown in Fig.13a and b. Forces F z and F x increase with the increase in depth of cut because the increase in depth of cut leads to increase in the area of cut and length of the cutting edge in contact.The influence of feed f on the forces F z and F x is shown in Fig.14a and b.The increases in feed lead to increase in cut thickness,which,in turn,increases the area of cut and as a consequence,the force components.Figs.13–14show that machining with LMI nano-composite cut-ting tool material decreases cutting forces F z and F x in comparison with HVG cutting tool material.However,significant force reduc-tions can only be observed when depth of cut is greater than1mm and feed is greater than0.2mm/rev.The force components can be described as function of parameters d and f by the followingTable4Values of n and C1for different tool materials(f=0.1mm/rev,d=0.5mm).Cutting tool material n C1HSS0.2280.89 LMI0.1967.18 HVG0.1241.58。
激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性
激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性马世榜;夏振伟;徐杨;施焕儒;王旭;郑越【摘要】采用预置粉末法在45钢表面进行激光熔覆镍基Ni60A+x%(SiC+Ti)(质量分数,下同)复合粉末涂层的实验研究.使用往复式磨损试验机对不同涂层材料的熔覆层进行干摩擦磨损实验,利用金相显微镜、扫描电镜(SEM)观察和分析熔覆层的显微组织与磨损形貌.结果表明:复合粉末通过原位反应生成弥散分布的TiC颗粒增强复合涂层,随着(SiC+Ti)含量的增加,颗粒状TiC的尺寸和数目逐渐增加;复合粉(SiC+Ti)含量达到60%时,微观组织有气孔和夹杂缺陷;复合粉(SiC+Ti)含量为48%时,熔覆层耐磨性最佳;复合涂层的磨损主要为磨粒磨损,机理为微观切削和挤压剥落.%Laser cladding of Ni-based Ni60A+x% (SiC+Ti)(mass fraction,the same below) composite powder coating on 45 steel substrate was studied by using the method of preplaced powder.The dry friction and wear experiments of different material coatings were carried out by reciprocating friction wear tester.The microstructure and worn morphology of cladding layers were observed and analyzed by using metallographic microscope, scanning electron microscope(SEM) respectively.The results show that the prepared composite coating with dispersively distributed TiC enhanced particles are obtained in-situ, the size and number of the granular TiC gradually increase with the increase of the composite powder SiC+Ti.When the composite powder SiC+Ti reaches 60%, pores and inclusions defects exist in microstructure.When the composite powder SiC+Ti reaches 48%, wear resistance of cladding coating is the best.Thewear behavior of the composite coating is abrasive wear, and the mechanism is micro cutting and extrusion spalling.【期刊名称】《材料工程》【年(卷),期】2017(045)006【总页数】7页(P24-30)【关键词】激光熔覆;原位自生;TiC;耐磨性;强化机理【作者】马世榜;夏振伟;徐杨;施焕儒;王旭;郑越【作者单位】中国农业大学工学院,北京 100083;南阳师范学院机电工程学院,河南南阳 473061;中国农业大学工学院,北京 100083;中国农业大学工学院,北京100083;中国农业大学工学院,北京 100083;中国农业大学工学院,北京 100083;中国农业大学工学院,北京 100083【正文语种】中文【中图分类】TG115.5+8激光熔覆原位自生技术是指采用激光加工工艺,利用不同元素或化合物之间熔融状态下发生化学反应,在金属基体内生成一种或几种陶瓷相颗粒,以达到改善单一金属合金性能的方法[1-3]。
原位法制备介孔SiO_(2)@TiO_(2)粉体及其性能研究
第36卷第1期2251年3月西南科技大学学报Jo/rnai of So/thwest University of Scie/ce and TechnologaVo/36No.1Mar,2021原位法制备介孔SiO2@TiO2粉体及其性能研究尹梦康明孙蓉李昌林赵宇航(西南科技大学材料科学与工程学院四川绵阳651010)摘要:介孔S i O2@T i O2粉体具有较大比表面积及有序的孔径分布,在吸附、药物控释以及催化剂载体等领域应用前景广阔。
以正硅酸乙酯为硅源、钛酸正丁酯为钛源、十六烷基三甲基漠化铵为模板剂,结合并改进溶胶凝胶法和水解沉淀法,设计了一种原位制备介孔S i O2@T i O2粉体的方法。
通过对不同酸碱条件下所得样品进行结构与性能分析表明,碱性条件有利于介孔S1O2@T1O2粉体的制备,在pH值为3和5时,其孔径分布不集中,比表面积在10 m2/g以下,当pH值为0〜11时,其比表面积为150〜200m5/g,孔体积为0.213〜0.369mL/g,孔径集中分布在5nm 左右。
相较于传统的溶胶凝胶法,原位法制备的介孔S i O2@T i O2粉体比表面积和孔体积均有增大,孔径减小但分布集中,使其更适合作为催化剂载体。
关键词:原位法介孔S1O2@T1O2粉体比表面积孔体积孔径中图分类号:0643.36文献标志码:A文章编号:1671-8755(2021)01-0023-05In-siti Preyaration and Praperties of Mesoporaus SiO2@TiO2PowderYIN Msg,KANG Ming,SUN Rong,L)Chapglia,ZHAO YuUapg(School of Materiad ang Engineering,Southwest Universita of angTechnolofa,MianyaTig621212,Sichuan,China)Abstract:Meso/oro/o SiO2@T1O2powder has a larpe specific surface area and orbereC pore size distri/u-tioc,which UPngo a wi/e applicatio/prospect in the fields of aPsorptioc,co/trolleC release of drugs and catalyst suupoU.In t hio stuUy ,with chyl orthosilicate as silicoc so/rce,n-Putyl titanate as titanium so/rce and cCyt tCoChyt ammo/ium Uromine as template agent,a metho/for in-situ pcpdction of mco-poro/o SiO2@T1O2powder wao invecteC Oa。
基于贝叶斯方法的网络安全态势感知模型
第46卷第6期 计算机工程2020年6月V o l . 46 N o . 6C o m p u te r E n g in e e rin gJune 2020•网络空间安全•文章编号:1000#428(2020)06-01$0-06文献标志码:A中图分类号:TP309基于贝叶斯方法的网络安全态势感知模型丁华东,许华虎,段然,陈帆(上海大学计算机工程与科学学院,上海200444)摘要:为全面、准确地分析旣定 的 给 定, 种基于贝叶斯方法的知混合模型。
对旣定 环境中 的 指标数据 散化预处理,利用同的评价方法建立相应的态指标分级模型,并将分级模 层的 指标 贝叶斯 模 层向上融合 层, 价指标 定。
实验结果表明,该模型满足实际应用要求,评估结果准确、有,能 环境的稳定性和可 。
关键词" 知;态势指标;贝叶斯网络;分级模型;数据融合开放科学(资源服务)标志码(O S I D ):中文引用格式:丁华东,许华虎,段然,等.基于贝叶斯方法的网络安全态势感知模型(1.计算机工程,2020,46(6): 130-135. 英文引用格式:D IN G H u a d o n g ,X U H u a h u ,D U A N R a n ,e t a l . N e tw o rk secu rity situ atio n a w aren ess m o d e l bB ay esian m e t h o d [J ].C o m p u te r E n g in e e r in g ,2020,46(6): 130-135.Network Security Situation Awareness Model Based on Bayesian MethodD IN G H u a d o n g ,X U H u a h u ,D U A N R a n ,C HE N Fan(School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China)[A b s t r a c t] T o c o m p re h e n siv e ly an d ac c u ra te ly a n aly z e th e secu rity situ atio n o f a g iv en n e tw o rk an d ev a lu a te the s itu a tio n , th is p a p e r p ro p o se s a m ix e d N e tw o rk S ecu rity S itu atio n A w aren ess (N A S S ) m o d e l b a se d o n B ay esian m e th o d. T h e m o d e l p re p ro c e sse s th e situ atio n in d ic a to r d a ta co lle c te d fro m a g iv en n e tw o rk e n v iro n m e n t by d isc re tiz in g th em.T h en a cco rd in g to th e d iffe re n t ev a lu a tio n m e th o d s ,th e h ie ra rc h ic a l m o d e l o f situ atio n in d ic a to rs is esta b lish e d. F in a lly , th e situ atio n in flu e n c e in d ic a to rs at th e b o tto m la y e r o f th e h ie ra rc h ic a l m o d e l are m e rg e d u p w a rd la y e r by la y e r b y u sin g th e B ay esian n e tw o rk m o d e l, an d th e fin a l ev alu a tio n in d ex o f n e tw o rk secu rity situ atio n is o b ta in e d to g iv e th e status ra tin g. E x p e rim e n ta l resu lts show th a t th e p ro p o se d m o d e l m eets th e p ra c tic a l re q u ire m e n ts o f a p p lic a tio n s , an d the ev alu a tio n resu lts are a c cu rate an d e ff e c tiv e , im p ro v in g th e stab ility an d re lia b ility o f n e tw o rk e n v iro n m e n t.[K e y w o r d s ] N etw o rk S ecu rity S itu atio n A w areness ( N S S A ); situ atio n in d ic a to r; B ay esian n e tw o rk ; h ierarch ical m o d e l; d ata fusionD O I :10. 19678/j. issn. 1000-3428.0055219o概述随着互联网的发展 基础设施的不断完,基互联网的技术带给人们的便利,但与此同时 在的。
(论文)微量元素硒、锰、氟对sod活性的影响
不高,我们的结果也证实了这一点。
所提RNA经TE 70C孵育60min去修饰处理后,RT-PCR效率得到相当程度的提高,其中福尔马林固定16h的FFPE淋巴组织扩增出19个片段(总共22个预期片段)。
但是,这种RT-PCR效率的恢复随福尔马林固定时间的延长而降低,表明不可逆修饰(相邻碱基二聚体形成)增加。
由于碱基A的修饰率最高,形成相邻碱基二聚体的可能性增加,因此,寡聚(dT)作为逆转录引物与mRNA多聚A退火可能受到抑制。
同时,不同固定时间淋巴组织所提RNA经RT-PCR扩出的片段并不完全重合,表明RNA的这些修饰是随机的。
综上所述,我们认为从FFPE组织提取RNA是可行的,但要注意5个要点:t宜采用蛋白酶K消化后提取;o用磷酸盐缓冲的10%中性福尔马林固定,时间应限制在24h以内;@提取的RNA最好经TE70C孵育60min去修饰处理;@所选择扩增的目的片段限制在1000bp以内,100~300bp片段的扩增效率更高。
@综合应用寡聚(dT)和随机引物作为逆转录引物,可能有助于提高逆转录效率。
关键词:RNA;淋巴组织;RT-PCR中图法分类号:R322.2文献标识码:B参考文献:[1]章容,郭乔楠,麻莉,等.PCR检测非霍奇金淋巴瘤IgH和TCR@基因重排[J].第三军医大学学报,2003,25(4):347-348.[2]Korbler T,Grskovic M,Dominis M,et al.A simple method for RNA iso-lation from formalin-fixed and paraffin-embedded lymphatic tissues[J].Exp Mol Pathol,2003,74(3):336-340.[3]Ohe N,Saio M,Kijima M,et al.In situ detection of O6-methylguanine-DNA methyltransferase messenger RNA in paraffin-embedded human astro-cytic tumor tissues by nested in situ RT-PCR is useful in predicting chemotherapy-resistance of tumors[J].Int J Oncol,2003,22(3):543-549.[4]Lehmann U,Kreipe H.Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies[J].Methods,2001,25(4):409-418.[5]Beaulieux F,Berger M M,Tcheng R,et al.RNA extraction and RT-PCR procedures adapted for the detection of enterovirus seguences from frozen and paraffin-embedded formalin-fixed spinal cord samples[J].J Virol Me-thods,2003,107(2):115-120.[6]Masuda N,Ohnishi T,Kawamoto S,et al.Analysis of chemical modifica-tion of RNA from formalin-fixed samples and optimization of molecular biolo-gy applications for such samples[J].Nucleic Acids Res,1999,27(22):4436-4443.[7]Kurt R A,Park J A,Panelli M C,et al.T lymphocytes infiltrating sites of tumor rejection and progression display identical V beta usage but different cytotoxic activities[J].J Immunol,1995,154(8):3969-3974.(编辑汪勤俭)文章编号:1000-5404(2004)02-0171-02技术方法微量元素硒、锰、氟对SOD活性的影响Effects of microelements Se,Mn,and F on SOD activity赵先英,刘毅敏,覃军,王祥智,赵华文(第三军医大学基础医学部化学教研室,重庆400038)提要:目的探讨微量元素硒、锰、氟对SOD活性的影响。
国外期刊英文论文
Influence of Deformation
Li CL, Chen Mater. Sci. & 2002, 325: SCI a
14 Temperature on Shape Memory
DJ, Jin ZH Eng. A
375-379
EI
Effect of Fe-Mn-Si-Cr-Ni Alloy
Wang TJ
Comparison between fatigue
Qiao GJ,
Int. J. Fatigue 2002, 24(5): SCI a
17
behavior of some ceramics: a new concept of intrinsic stress-corrosion
Wang HJ, Jin ZH
Ding HF, Jin
258-264
EI
ZH
The interfacial stability of the
Tang WM,
Mater. Chem. 2002, 77:
SCI a
21 coated-SiC/Fe couple
Zheng ZX,
Phys.
Ding HF, Jin
236-241
EI
ZH
31
Unlubricated wear of Si/SiC and its composite with nickel Si/SiC-Ni
Sang KZ, Jin ZH
Tribology Int.
2001, 34(5): SCI a
315 -319
EI
Effects of crystalline morphology Xu T, Yu J, Jin Mater.
妇产英文词汇词汇解读
Aabactio 人工流产abactus venter 人工流产abdomen circumference 腹围abdominal 腹部的abdominal cellotomy 腹式开腹术abdominal cesarean section 腹式剖宫产abdominal delivery 剖宫产abdominal drainage 经腹引流abdominal hysterectomy 腹式子宫切除术abdominal part 腹部abdominal pregnancy 腹腔妊娠abdominal pressure 腹压abdominal salpingectomy 腹式输卵管切除术,剖腹输卵管切除术abdominal salpingo-oophorectomy 腹式输卵管卵巢切除术,剖腹输卵管卵巢切除术abdominal stalk 脐带,腹蒂abdominal tubal sterilization 腹式输卵管绝育术abdominal version 外倒转术abdominopelvic cavity 盆腹腔abdominoscopy 腹腔镜检法abdominouterectomy 腹式子宫切除术,剖腹子宫切除术abdominouterotomy 腹式子宫切开术,剖腹子宫切开术aberratio mensium 月经迷乱,倒经aberratio menstruorum 月经迷乱,倒经ability to conceive 受孕能力ablatio placentae 胎盘早期剥离abnormal bleeding 异常出血abnormal labor 异常分娩abnormal pregnancy 异常妊娠abnormal uterine action 产力异常ABO blood group ABO血型ABO incompatibility ABO血型不合,ABO不合aborticide 堕胎,堕胎药abortifacient agents 堕胎药abortion 流产abortion applicant 要求流产者abortion on demand 要求流产abortionist 堕胎者abortus 流产儿abruptio placenta 胎盘早期剥离abruption of normally implanted placenta 正常位置胎盘早期剥离abscess 脓肿abscess of Bartholin gland 前庭大腺脓肿absence of uterus 无子宫absence of vagina 无阴道accessory placentae 副胎盘accessory placenta 副胎盘accidental abortion 意外流产accouchee 产妇accouchement 生产,分娩acquired dysmenorrhea 继发性痛经acquired immune deficiency syndrome 获得性免疫缺陷综合征,爱滋病acromio-iliac presentation 肩髋先露,横产位active pill days 有效避孕期acute cervicitis 急性宫颈炎acute fatty liver of pregnancy 妊娠急性脂肪肝acute pelvic inflammatory disease 急性盆腔炎acute salpingitis 急性输卵管炎acute salpingo-oophoritis 急性输卵管卵巢炎acyesis 不孕,不育acyeterion 避孕药adenexa 附件adenomas endometrioides ovarii 卵巢子宫内膜异位adenomatous glandular hyperplasia of endometham 子宫内膜腺型增生过长adenomatous hyperplasia 腺瘤型增生过长adenomyosis 子宫内膜异位症,子宫腺肌病,肌腺瘤adenomyosis externa 子宫外子宫内膜异位症adenomyosis interna 子宫内子宫内膜异位症adherent placenta 粘连性胎盘adhesion of cervical cannel 宫颈粘合adhesion of IUD 宫内节育器粘连aditus ad pelvis 骨盆上口aditus pelvis 骨盆入口,骨盆口aditus vaginae 阴道口adnexa uteri 子宫附件adnexal disease 子宫附件疾病adnexectomy 子宫附件切除术,附件切除adnexitis 子宫附件炎,附件炎adosculation 体外受精afterpains 产后宫缩痛afterwaters 后羊水air embolism 空气栓塞algomenorrhea 痛经amenia 闭经,停经amenorrhea due to uterine lesion 子宫性闭经amnionic fliud embolism 羊水栓塞ampullar lactiferae 输乳管壶腹,输乳管瘘ampullary pregnancy 输卵管壶腹部妊娠amputation of cervix 宫颈切除术anastomosis of tube 输卵管吻合术anatomic internal os 解剖学内口anatomy 解剖学angle of subpubic arch 耻骨弓角度ankylocolpos 阴道闭锁annexitis 子宫附件炎,附件炎anovaria 无卵巢anovular menstruation 无排卵性月经,不排卵性月经anovulatory bleeding 无排卵性出血anovulatory dysfunctional uterine bleeding 无排卵性功能失调性子宫出血anoxia neonatorum 新生儿缺氧anoxic ischemic encephalopathy 缺氧缺血性脑病anteflexion of uterus 子宫前屈antenatal 产前的,出生前的antenatal care 产前保健,产前护理antenatal diagnosis 产前诊断antenatal genetic diagnosis 产前遗传诊断antepartum eclampsia 产前子痫antepartum fetal death 产前胎儿死亡anterior colporrhaphy 阴道前壁修补术anthropoid pelvis 类人猿型骨盆anti-sperm antibody 抗精子抗体anticonceptive 避孕药anticoncipiens 避孕药apoplexia uteroplacenta 子宫胎盘卒中arrested labor 产程停滞art insem 人工受精arteria ovarica 卵巢动脉arteria urerina 子宫动脉arteria vaginalis 阴道动脉arteriae pudendae externae 阴部外动脉artificial abortion 人工流产artificial abortion-vacuum aspiration 负压吸引人工流产术artificial vagina 人工阴道Asherman syndrome 子宫腔粘连综合征,阿谢曼综合征,阿氏综合征,宫腔粘连综合征asphyxia livida 青紫窒息asphyxia neonatorum 新生儿窒息asphyxia pallida 苍白窒息atresia hymenalis 处女膜闭锁atresia of cervix 子宫颈闭锁aresia of hymen 处女膜闭锁atresia of vagina 阴道闭锁atypical epithelium 不典型上皮atypical hyperplasia 不典型增生atypical hyperplasia of endometrium 子宫内膜不典型增生Bbarrenness 不孕症,不育症bartholinitis 前庭大腺炎basal body temperature 基础体温baseline heart rate 胎心率基线badeline oscillation 基线摆动benign mole 良性葡萄胎benign trophoblastic disease 良性滋养细胞疾病bilanual gynecological examination 妇科双合诊检查biparietal diameter 双顶径bispinous diameter 坐骨棘间径blennometritis 子宫内膜炎blood brain barrier 血脑屏障blood group 血型bloody show 见红bony birth canal 骨产道bony pelvis 骨盆borderline ovarian tumors 卵巢交界性肿瘤botryoid sarcoma of uterus 子宫葡萄状肉瘤Bowen disease 鲍文病broad ligament 阔韧带bruit placentaire 胎盘杂音Ccancer in situ 原位癌carcinoma cervicis uteri 子宫颈癌carcinoma colli uteri 子宫颈癌carcinoma in situ of cervix 宫颈原位癌carcinoma in situ of uterine cervix 宫颈原位癌carcinoma of ovary 卵巢癌carcinoma of vulva 外阴癌carcinoma ovarii 卵巢癌carcinoma tubae 输卵管癌carcinoma vulvae 外阴癌cardinal ligament 主韧带cavity of uterus 子宫腔celio-salpingo-oothecectomy 腹式输卵管卵巢切除术central placenta previa 中央前置胎盘,完全前置胎盘cephalotomy 穿颅术cephalotracter 产钳cervical adeno-squamous carcinoma 宫颈腺-鳞癌cervical dilatation 宫颈扩张cervical dysplasia 宫颈非典型增生cervical ectropion 宫颈外翻cervical endometritis 宫颈内膜炎cervical hypertrophy 宫颈肥大cervical laceration 宫颈裂伤cervical mucus 宫颈黏液cervical pregnancy 宫颈妊娠cervical squamous cell dysplasia 宫颈鳞状上皮非典型增生cervlcal laccration 宫颈裂伤childbirth without pain 无痛分娩chorioadenoma 绒毛膜腺癌,恶性葡萄胎choriocarcinoma 绒毛膜癌chorionic gonadotropin hormone 绒毛膜促性腺激素chronic pelvic inflammatory disease 慢性盆腔炎chronic pelvic parametritis 慢性盆腔结缔组织炎chronic salpingitis 慢性输卵管炎chronic salpingo-ocphoritis 慢性输卵管卵巢炎chronic vulvar dystrophy 慢性外阴营养不良claustrum virginale 处女膜colpoplasty 阴道成形术colpopoiesis 阴道成形术colporrhaphia anterior 阴道前壁缝合术colporrhaphia anterior-posterior 阴道前后壁修补术colporrhaphia posterior 阴道后壁修补术colposcope 阴道镜commissura labiorum posterior 阴唇后联合complete hysterectomy 全子宫切除术complete placenta previa 中央前置胎盘,完全前置胎盘condom 阴茎套condyloma 湿疣condyloma acuminata 外阴尖锐湿疣congenital absence of uterus 先天性无子宫congenital absence of vagina 先天性无阴道,先天性阴道阙如congenital adrenal cortical hyperplasia 先天性肾上腺皮质增生症conization of cervix 宫颈锥切术conization of the cervix 宫颈锥形切除术conjugata diagonalis 对角径conjugata vera obstetrica 产科结合径,产科直径conjugata of inlet 入口前后径conjugata of outlet 出口前后径conjugata vera 真结合径conservative myomectomy 保守性肌瘤摘除术constriction rings 子宫痉挛性狭窄环contact bleeding 接触性出血contracted pelvic inlet 骨盆入口狭窄contracted pelvic outlet 骨盆出口狭窄contraction stress test 宫缩应激试验cord around neck 脐带绕颈cornual pregnancy 宫角妊娠,子宫角妊娠corona radiata 辐射冠,放射冠corpora atretica 闭锁卵泡corpora luteum graviditatis 妊娠黄体,真黄体corpora pampiniforme 卵巢冠corporeal cesarean section 古典式剖宫产术cortex of ovary 卵巢皮质crown-heel length 顶踵长,冠踵长,立高crowning of head 胎头着冠culdocentesis 后穹隆穿刺术curettage of the uterine cavity 刮宫术cyesiognosis 妊娠诊断cysthitis 女阴炎cystic hyperplasia of endometrium 子宫内膜囊腺型增生过长cysto urethrocele 尿道膀胱膨出cystocele 膀胱膨出cystocele perinealis 会阴膀胱膨出cystocele vaginalis 阴道膀胱膨出cystoma ovarii 卵巢囊肿cydtoma paraovarii 卵巢冠囊肿Ddecidua 蜕膜decidua basalis 底蜕膜,基蜕膜decidua capsularis 包蜕膜decidua interuteroplacentalis 底蜕膜,基蜕膜decidua parietalis 壁蜕膜decidua reaction 蜕膜反应decidua reflexa 包蜕膜decidua serotina 底蜕膜decidual cast 蜕膜管型deep lying placenta 低置胎盘deep transverse arrest 持续性枕横位defloration 处女膜破裂delayed amniotic fluid embolism 迟发型羊水栓塞delivery before arrival 急产delivery date rule 分娩日期规律delivery mechanism 分娩机制delivery room 分娩室,产房denticular hymen 锯齿状处女膜descensus uteri 子宫脱垂descensus vaginae anterior 阴道前壁脱垂descent vaginae posterior 阴道后壁脱垂diabetic vulvitis 糖尿病性外阴炎diagnostic curettage 诊断性刮宫diagnostic fractional curettage 诊断性分段刮宫diagnostic puncture 诊断性穿刺diagonal 对角线,斜的diaphragma pelvis 盆膈diaphragma urogenitale 尿生殖膈diastematelytria 阴道纵裂diastematometria 子宫纵裂difficult delivery 难产difficult labour 难产dilatation of uterine cervix 宫颈扩张术disseminated intravascular coagulation 播散性血管内凝血,弥散性血管内凝血dysfunctional uterine bleeding 功能失调性子宫出血Eearly deceleration 早期减速early delivery 早产early invasive carcinoma 早期浸润癌eccyesis 异位妊娠,子宫外孕eclampsia 子痫eclampsia intrapartum 产时子痫,产间子痫eclampsia puerperalis 产惊,产后子痫eclamptic coma 子痫昏迷ectopia of IUD 宫内节育器异位ectopic fetation 异位妊娠ectopic gestation 异位妊娠electrocauterization of cervix 宫颈电烙术emmenia 月经endocervical scraping smear 宫颈管刮片endometiosis externa 外在性子宫内膜异位症endometrial carcinoma of uterus 子宫内膜癌endometrial tuberculosis 子宫内膜结核endometrorrhagia 子宫出血,血崩episiohematoma 外阴血肿episioitis 外阴炎epithelial tumor of ovary 卵巢上皮性肿瘤excision of Bartholin gland cyst 前庭大腺囊肿切除术excision of cervical polyp 宫颈息肉摘除术excision of cervical stump 宫颈残端切除术excision of imperforate hymen 无孔性处女膜切开术expulsion of IUD 宫内节育器脱落extended hysterectomy 次广泛子宫全切除术extraperitoneal cesarean section 腹膜外剖宫产术Ffallectomy 输卵管切除术falling of womb 子宫脱垂fetal heart rate 胎心率fetal heart rate-baseline 胎心率基线fetal heart rate-baseline variability 胎心率基线变异fetal heart rate monitoring 胎心率监测fetal heart sound 胎心音,胎儿心音fetal lung maturity 胎儿肺成熟度fetal macrosomia 巨大胎儿fetal position 胎方位,胎位fetal posture 胎势fetal presentation 胎先露foetal membranes 胎膜foetus papyraceus 纸样胎儿,压扁胎forceps delivery 产钳分娩fractional curettage of uterus 分段刮宫术frenulum clitoridis 阴蒂系带frenulum labiorum pudendi 阴唇系带frenulum of clitoris 阴蒂系带fronto-anterior position 额前位fronto-dextra anterior 右额前位fronto-dextra posterior 右额后位fronto-dextra transverse 右额横位fronto-laeva anterior 左额前位fronto-laeva posterior 左额后位fronto-lavea transverse 左额横位fronto-occipital diameter 枕额径,前后径fronto-posterior position 额后位fronto-transverse position 额横位frontomental diameter 枕颏径frozen pelvis 冰冻骨盆full-term birth 足月产full-term living birth 足月活婴full-term normal delivery 足月顺产full-term normal vaginal delivery 足月正常阴道分娩fundus of uterus 子宫底Ggalactorrhea-amenorrhea syndrome 乳泌-闭经综合征galea forceps 头皮钳gestational diabetes mellitus 妊娠糖尿病granulosa theca cell tumor 颗粒-卵泡膜细胞瘤gravida 产妇graviditas fimbriae tubarica 输卵管伞graviditas tubaria 输卵管妊娠graviditas tubaria ampullaris 输卵管壶部妊娠graviditas tubaria infundibularis 输卵管漏斗部妊娠graviditas tubaria interstitialis 输卵管间质部妊娠graviditas tubaria isthmica 输卵管峡部妊娠graviditas tuboabdominalis 输卵管腹腔妊娠graviditas tuboovarialis 输卵管卵巢妊娠greater lip of pudendum 大阴唇greater pelvis 大骨盆greater vestibular gland 前庭大腺greater length 最大长度,最大身长Hhabitual abortion 习惯性流产haemophilis vaginitis 嗜血杆菌阴道炎haemorrhagia ovulations 排卵出血head locking 胎头交锁height-weight-age table 身高体重年龄对照表heterotopic endometriosis 子宫内膜异位症hiphasic basal body temperature 双相基础体温Hunter ligament 亨特韧带,子宫圆韧带hydatid pregnancy 葡萄胎妊娠hydatidenmole 葡萄胎,水泡状胎块hydatidiform mole 葡萄胎hydrocephalus 脑积水,水脑hydrosalpinx 输卵管积水hymen 处女膜hymen cribriformis 筛状处女膜hymen falciformia 镰状处女膜hymen fimbriatus 伞状处女膜hymen imperforatus 无孔处女膜,处女膜闭锁hymenalatresic 处女膜闭锁hyperprolactinaemic amenorrhoea 高生乳素血症性闭经,高泌乳素血症性闭经hypertension syndrome of pregnancy 妊娠高血压综合征hyperthyroidism 甲状腺功能亢进hypofunction of corpus luteum 黄体功能不足hypoplasia of the uterus 子宫发育不全hypothalamic-pituitary-ovarian axis 下丘脑-垂体-卵巢轴Iinclination of pelvis 骨盆倾斜度Llaparotrachelotomy 子宫颈切开剖宫产术,子宫下段剖宫产术last menstrual period 末次月经left fronto-anterior 左额前位left fronto-posterior 左额后位left fronto-transverse 左额横位left mentoanterior 左颏前位left mentotransverse 左颏横位left mintoposterior 左颏后位left occipitoanterior 左枕前位left occipitoposterior 左枕后位left occipitotransverse 左枕横位left sacroanterior 左骶前位left sacroposterior 左骶后位left sacrotransverse 左骶横位left scapuloanterior 左肩前位left scapuloposterior 左肩后位leiomyoma-uteri 子宫平滑肌瘤lochia alba 白色恶露lochia cruenta 红色恶露lochia rubra 血性恶露lochia serosa 浆液恶露low cesarean section 子宫下段剖宫产Mmalignant hydatidiform mole 恶性葡萄胎Manchester operation 曼澈斯特手术maternal mortality rate 孕产妇死亡率,母体死亡率mediolateral episiotomy 会阴正中旁切开,会阴侧切术membrana agnina 羊膜membrana caduca 蜕膜metastatic carcinoma of ovary 卵巢转移性癌metastatic choriocarcinoma 转移性绒毛膜癌metroscopy 子宫镜检查,宫腔镜检查missed abortion 稽留流产myoma of the uterus 子宫肌瘤myoma of uterus 子宫肌瘤myoma submucosum 黏膜下肌瘤myoma subserosum 浆膜下肌瘤myoma uteri 子宫肌瘤myomectomy 子宫肌瘤切除术,肌瘤挖出术myxoma peritonei 腹膜黏液瘤NNaboth cyst 子宫颈腺囊肿,纳博特囊肿,纳氏囊natural labor 顺产,自然分娩Oobstetric forceps delivery 产钳术obstetrician 产科医师obstetrician-gynaecologist 妇产科医师old primipara 高年初产妇oophoritic cysts 卵巢囊肿oothecocyesis 卵巢妊娠oothecoma 卵巢瘤oothecorrhexis 卵巢破裂ovariam-ascites-pleural effusion syndrome 卵巢-腹水-胸水综合征,麦格斯综合征ovarian amenorrhea 卵巢性闭经ovarian ligament 卵巢固有韧带ovariosalpingectomy 卵巢输卵管切除术,输卵管卵巢切除术ovarium 卵巢ovulatory dysfunctional uterine bleeding 排卵功能失调性子宫出血oxytocin challenge test 催产素激惹试验Ppainless delivery 无痛分娩painless labor 无痛分娩partus immaturus 早产partus maturus 足月产partus precipitatus 急产partus serotinus 过期产pelvic axis 骨盆轴pelvic cavity 骨盆腔pelvic congestion syndrome 盆腔淤血综合征pelvic diaphragm 盆膈pelvic inlet plane 入口平面pelvic midplane 中骨盆平面pelvic outlet plane 出口平面pelvimeter 骨盆测量器perimenopausal syndrome 围绝经期综合征,更年期综合征perineal laceration 1°会阴1°撕裂perineal laceration 2°会阴2°撕裂perineal laceration 3°会阴3°撕裂perineal lateralis 会阴侧切开术periodoscope 分娩日期计算表peritoneal dropsy 腹水physiologic retraction ring 生理性缩复环placenta accreta 侵入性胎盘,植入性胎盘plural pregnancy 多胎妊娠post term infant 过期产儿postmenopausal bleeding 绝经后出血,绝经后流血postmenopausal genital hemorrhage 绝经后生殖道出血postmenopausal osteoporosis 绝经后骨质疏松postpartum hemorrhage 产后出血pregnancy with IUD in situ 带器妊娠proper ligament 卵巢固有韧带protracted active phase dilatation 活跃期宫口扩张停滞puncture of posterior fornix of vagina 阴道后穹隆穿刺pyometra 宫腔积脓pyometritis 化脓性子宫炎pyometrium 子宫积脓Rrepair of old perineal laceration 陈旧性会阴裂伤修补术retention of menses 经血潴留rupture of tubal pregnancy 输卵管妊娠破裂Ssafe period contraception 安全期避孕sarcoma botryoides 葡萄状肉瘤,葡萄样肉瘤Ttocomonitor 分娩监护仪trichomonous vaginitis 滴虫性阴道炎Uuterine sarcoma 子宫肉瘤uterine serosa 子宫浆膜Vvaginal cuff 阴道断端vaginal hysterectomy 阴道式子宫切除术,阴道子宫切除术vaginal secretion 阴道分泌物vaginal smear 阴道涂片vaginitis hemoptulus vaginalis 阴道嗜血杆菌性阴道炎velamentous insertion 帆状附着,脐带帆状附着velamentous placenta 帆状胎盘venae ovarica dextra 右卵巢静脉venae ovarica sinistra 右卵巢静脉vesico-uterine fistula 膀胱子宫瘘vesico-vaginal fistula 膀胱阴道瘘vesicocervical fistula 膀胱子宫颈瘘vesicular mole 水泡状胎块,葡萄胎vulneratio hymenalis 处女膜损伤vulva condyloma acuminata 外阴尖锐湿疣vulval basal cell carcinoma 女阴基底细胞癌vulval Bowen disease 女阴原位癌vulvopathy 外阴病阿普加评分Apgar score癌性腹膜炎cancerous peritonitis,carcinomatous peritonitis,peritonitis carcinomatosa癌转移cancerometastasis爱滋病病毒human immunodeficiency virus按期服用避孕丸sequential pills按期口服避孕丸sequentials巴氏腺Bartholin gland白斑leukoplakia,leukasmus,tacheblanche白斑病leukopathia,leucoderma白斑病外阴炎leukoplakic vulvitis白斑病性角化不良leukoplakic dyskeratosis白带leulomatorrhea vaginalis,leukorrhea,fluor albus,leukomatorrhea vaginalis,profluvium muliebre,whites白色恶露lochia alba,alba lochia白色念珠菌Saccharomyces albicans,candida albicans白色念珠菌性阴道炎Candida albicans vaginitis包蜕膜decidua capsularis,decidua reflexa,capsular deciduas保守性肌瘤摘除术conservative myomectomy鲍文病Bowen disease暴发子痫fulminant eclampsia闭经suppression of menses,suppressed menstruation,amenia ,amenorrhea闭经的amenorrheal,amenerrheic,amenorrheic壁内的intramural壁内肌瘤intraparietal myoma壁内平滑肌瘤intramural leiomyoma壁蜕膜decidua parietalis,decidua vera避孕药anticoncipiens,anticonceptive,acyeterion,contraceptive agents 避孕药膜contraceptive film边缘性前置胎盘placenta praevia marginalis扁平骨盆platypelloid pelvis,Deventer diameter pelvis,flat pelvis,pelvis plana扁平骨盆flat pelvis,flattened pelvis扁平湿疣condyloma lata变异减速variable deceleration变异型心率减慢variable decelerations表皮epiderm表皮癌epidermal carcinoma表皮样畸胎瘤epidermoid teratoma表皮样微小癌epidermoid microcarcinoma表皮样原位癌epidermoid carcinoma in situ表皮增殖如疣epidermoma冰冻骨盆frozen pelvis并发先兆子痫superimposed preeclampsia并合肌瘤synaetosis并脑独眼畸胎cyclocephalus并脑畸形cyclencephalus并胚duplicitas,duplicity并躯联胎syssomus并头联胎symphyocephalus,syncephalus,synencephalus,sycephalus,deradelphus,duplicitas cruciata并腿畸形sireniform fetus,symphysoskelia,symmelus,symmelia并眼畸形symphysopsia,synopsia,synophthalmia,synophthalmus,synopsy,anophthalmus cyclopica,fused eyeball并指/趾dactylium,dactylosymphysis并指/趾缺指/趾畸形ectrosyndactylia并指/趾者syndactylus并指并趾畸形syndactyly并指畸形symphysodactylia,aschistodactylia病毒学Virology病毒诱发的肿瘤virus induced tumor病理缩复环pathologic retraction ring不典型增生atypical hyperplasia不全中隔子宫uterus subseptus不完全流产incomplete abortion不完全破裂incomplete rupture不协调性子宫收缩incoordinated uterine action不锈钢麻花环宫内节育器stainless steel“ma-hua”ring IUD不锈钢圆环宫内节育器stainless steel ring IUD不孕症barrenness,infertility部分性葡萄胎partial hydatid mole部分性前置胎盘partial placenta praevia,placenta praevia partialis,incomplete placenta previa部分子宫切除术partial hysteretomy残端妊娠stump pregnancy残角妊娠pregnancy in rudimentary born残角子宫rudimentary horn of uterus残留卵巢综合征residual ovary syndrome产程停滞arrested labor产程图partogram产道裂伤laceration of birth canal产妇parturient,puerpera,puerperant,accouchee,lying-in woman 产后出血postpartum hemorrhage产后宫缩痛afterpains产后静脉炎puerperal phlebitis产后血栓形成puerperal thrombosis产后子宫内膜炎puerperal endometritis产后子宫炎lochiometritis产后子痫eclampsia postpartum,eclampsia puerperalis产间子痫eclampsia intrapartum产科出血obstetric hemorrhage产科医师obsterist,obstetrician,accoucheur产科医师助理obstetrical physician assistant产力异常abnormal uterine action产前保健prenatal care,antenatal care产前估计胎儿成熟度prenatal estimation of fetal maturity产前遗传诊断antenatal genetic diagnosis产前子痫antepartum eclampsia产钳分娩forceps delivery产钳术obstetric forceps delivery,instrumental extraction产褥感染puerperal infection,infection puerperalis产褥股白肿phlegmasia alba dolens puerperarum产褥期puerperium,puerperal state,ramus pubicus arteriae epigapuerperal state,lying-in,stegmonth产褥期精神病puerperal psychosis产伤birth trauma,birth injury,birth injuries陈旧性会阴裂伤修补术repair of old perineal laceration成熟卵泡Graafian follicle持续性枕横位persistent occipitotransverse position,deep transverse arrest,transverse arrest持续性枕后位persistent occipitoposterior position,persistant posterior occipit position耻骨弓pubic arch耻骨弓角度angle of subpubic arch,subpubic angle出口产钳outlet forceps出口横径transverse outlet出口后矢状径posterior sagittal diameter of outlet,posterior sagittal diameter,posterior sagittal of outlet出口平面pelvic outlet plane出口前后径the anterior-posterior outlet diameter,conjugate of outlet出生缺陷birth defect,birth defects出血点petechia初产妇unipara,primipara初潮first menstruation初次妊娠的primigravid初级卵母细胞primary oocyte,first oocyte初级卵泡primary follicle,folliculi ovarici primarii,folliculi oophori primarii初乳colostrum,breastings,neogala,fore milk处女膜闭锁atresia of hymen,imperforate hymen,atresia hymenalis,unperforated hymen,hymen imperforatus,hymen occlutus,hymenalatresic处女膜裂伤leceration of the hymen处女膜破裂defloration处女膜破损ruptured hymen处女膜切除hymenectomy处女膜损伤vulneratio hymenalis处女膜完整hymen intactus,intact hymen穿颅术craniotomy,cephalotomy,eccephalosis,transforation垂体功能减退症hypopituitarism雌激素撤退性出血estrogen withdrawal bleeding雌激素试验estrogen test雌激素替代疗法estrogen replacement therapy雌激素与肌酐比值estrogen/creatinine ratio,estrogen to creatinine ratio次广泛子宫全切除术extended hysterectomy单纯外阴切除术simple vulvectomy低位产钳术low forceps delivery滴虫病trichomoniasis滴虫性阴道炎trichomonous vaginitis,Trichomonas vaginitis,colpitistrichomonadis滴虫阴道炎trichomonal vaginitis底蜕膜decidua basalis,decidua serotina,decidua interuteroplacentalis第二产程second stage of labor第三产程third stage of labor,placental stage,opsitocia第一产程first stage of labor堕胎abort,feticide,foeticide,aborticide堕胎药abortive,abortifacient,ambiotic remedy,abortifacient agents,abortient,abortigenic,aborticide恶露lochia,lyma恶性子宫绒毛膜上皮癌malignant uteri chorion-epithelioma负压吸引人工流产术artificial abortionvacuum aspiration附件切除术ecphyadectomy,annexectomy腹膜外剖宫产术extraperitoneal cesarean section,Latzko cesarean section腹膜外引流extraperitoneal drainage腹膜外子宫切除术extraperitoneal hysterectomy腹腔积血hematocelia,hemoperitoneum,hematocoelia腹式输卵管绝育术abdominal tubal sterilization腹式输卵管卵巢切除术abdominal salpingo-oophorectomy,celio-salpingo-oothecectomy腹式输卵管切除术abdominal salpingectomy,celiosalpingectomy腹式子宫卵巢输卵管切除术celiohysterosalpingo-oothecectomy感染性休克septic shock高龄初产妇elderly primipara高泌乳素血症性闭经hyperprolactinaemic amenorrhoea高张性子宫乏力hypertonic uterine inertia更年期climacteric period,climacterium,climacter,perimenopausal period,perimenopause,age critique,climacteric,involution period 功能失调性子宫出血dysfunctional uterine bleeding宫颈cervix,cervix uteri宫颈癌carcinoma of uterine cervix,cancer of cervix宫颈电烙术electrocauterization of cervix宫颈电灼术cauterization of cervix宫颈刮片cervical scraping smear宫颈管刮片endocervical scraping smear宫颈非典型增生cervical dysplasia宫颈浸润癌invasive carcinoma of cervix宫颈鳞型细胞癌squamous cell carcinoma of cervix宫颈鳞状上皮非典型增生cervical squamous cell dysplasia宫颈黏液检查cervical mucus examination宫颈锥切术conization of cervix宫内发育迟缓intrauterine growth retardation宫内感染intrauterine infection宫内节育器intrauterine device,intrauterine contraceptive device 宫内节育器排出intrauterine device expulsion宫内节育器嵌顿incarceration of IUD宫内节育器脱落expulsion of IUD宫内节育器移位displacement of IUD宫内节育器异位ectopia of IUD宫内节育器粘连adhesion of IUD宫内节育器子宫完全性穿孔complete perforation of uterus by宫腔镜hysteroscope,uteroscope宫腔镜检查hysteroscopy,uteroscopy宫缩乏力uterine inertia宫缩应激试验contraction stress test古典式剖宫产术classical cesarean section,corporeal cesarean section骨盆漏斗韧带ligament infundibulum pelvicun,infundibulopelvic ligament,ligamenta infundibulo-pelvinum骨盆入口狭窄contracted pelvic inlet骨盆外测量external pelvimetry刮宫术dilatation and curettage,curettage of the uterine cavity,intrauterine curettage过期产儿post term infant过期妊娠prolonged pregnancy,postterm pregnancy红色恶露rubra lochia,lochia cruenta后穹隆posterior fornix后穹隆穿刺术puncture of posterior fornix后穹隆切开术posterior colpotomy壶腹部妊娠graviditas ampullaris黄体功能不足inadepuate luteal function会阴1°撕裂perineal laceration1°会阴2°撕裂perineal laceration2°会阴3°撕裂perineal laceration3°会阴侧切术lateral episiotomy基线摆动baseline oscillation计划分娩programed delivery计划生育planned childbirth,planning parenthood,family planning 经闭-乳溢综合征amenorrhea-galactorrhea syndrome痉挛性痛经spasmodic dysmenorrhea痉挛性狭窄环constriction ring扩张宫颈和刮宫术dilation and curettage,dilatation and curettage扩张宫颈和清宫术dilatation and evacuation卵巢浆液乳头状癌sero-papillary cancer of the ovary卵巢浆液性囊腺瘤ovarian serous cystadenoma,serous cystadenoma of ovary卵巢交界性肿瘤borderline ovarian tumors卵巢颗粒泡膜细胞瘤granulose theca cell tumor of ovary卵巢颗粒细胞瘤granulose cell tumor of ovary卵巢克鲁肯伯格瘤Krukenberg tumor of ovary卵巢破裂oothecorrhexis,ovariorrhexis卵巢巧克力囊肿chocolate cyst of ovary难免流产inevitable abortion,imminent abortion女性生殖系统female reproductive system女性外生殖器官demale external genital organs排卵ovulation,ovulatio排卵期月经kleine regel排卵功能失调性子宫出血ovulatory dysfunctional uterine bleeding 前庭大腺囊肿Bartholin cyst前庭大腺脓肿abscess of Bartholin gland,Bartholin gland abscess全子宫切除术panhysterectomy,complete hysterectomy全子宫输卵管卵巢切除术panhysteros-alpingo-oophorectomy全子宫输卵管切除术panhysteros-alpingectomy人工阴道成形术Baldwin operation妊娠高血压综合征pregnancy induced hypertension syndrome,hypertension syndrome of pregnancy,edema-proteinuria-hypertension syndrome生殖器脱垂edeoptosis输卵管积脓pyosalpinx输卵管间质部妊娠interstitial tubal pregnancy,graviditas tubariainterstitialis,interstitial pregnancy,salpingysterocyesis输卵管流产tubal abortion输卵管卵巢脓肿tubo-ovarian abscess输卵管切除术salpingectomy,tubal resection,fallectomy,fallotoimy 输卵管妊娠破裂rupture of tubal pregnancy,tubal rupture双相基础体温biphasic basal body temperature,hiphasic basal body temperature胎盘早期剥离premature separation of placenta,premature separation of normally implanted placenta胎盘滞留placental retention,retentio placentae,retained placenta,retention of placenta头颅血肿cephalohematoma,cephalhematoma头盆不称cephalopelvic disproportion外阴尖锐湿疣condyloma acuminata外阴阴道炎vulvovaginitis完全性前置胎盘total placenta praevia,placenta praevia tolalis 无脑儿anencephaly,anencephalus无排卵性功能失调性子宫出血anovulatory dysfunctional uterine bleeding无痛分娩painless labor,painless delivery,garturition insensibilis,childbirth without pain无阴道absence of vagina无应激试验non stress test腺瘤型增生过长adenomatous hyperplasia血性恶露lochia rubra,lochia sanguinea要求流产abortion on demand要求流产者abortion applicant阴道膀胱瘘colpocystosyrinx阴道膀胱瘘修补术repair of vesicovaginal fistula阴道后壁膨出douglascele阴道后壁脱垂prolapse vaginae posterior,descent vaginae posterior阴道后穹隆posterior vaginal fornix阴道后穹隆切开术posterior colpotomy阴道毛滴虫Trichomonas vaginalis阴道毛滴虫病trichomoniasis vaginalis阴道嗜血杆菌haemophilus vaginalis阴道嗜血杆菌性阴道炎vaginitis hemoptulus vaginalis原发性宫缩无力primary uterine inertia原发性痛经primary dysmenorrhea诊断性分段刮宫diagnostic fractional curettage诊断性刮宫diagnostic curettage,exploratory curettage子宫肌腺病endometriosis interna子宫颈展平effacement子宫颈锥形切除术endocervicectomy子宫痉挛性狭窄环constriction rings子宫内膜囊腺型增生过长cystic hyperplasia of endometrium子宫内膜息肉polyp of endometrium,endometrial polyp子宫内膜腺型增生过长adenomatous glandular hyperplasia of endometham子宫内膜样腺癌endometrium like adenocarcinoma,endometrioid adenocarcinoma,endometrioid adenoma子宫内膜异位症endometriosis,endometriosis uterina,adenomyosis,heterotopic endometriosis子宫托pessary,hysterophore。
CurriculumVitae
Curriculum VitaeProfessor Li Mao Guo, Ph.D. College of Chemistry and Materials Science, Anhui Normal University Beijing East Road No.1, Wuhu 241000, ChinaTel.: +86 553 3869302; Fax: +86 553 3869303E-mail: ******************Full Professor of Analytical ChemistryB.S., Anhui Normal University, China (1997)M.S., Anhui Normal University, China (2002)Ph. D., Anhui Normal University, China (2008)Research Fellow (Postdoctoral), National University of Singapore, Singapore (2009.10-2011.5)Research InterestsUsing synthetic inorganic chemistry and analytical chemistry as major tools to study the important enzymes (proteins) and other biomolecules. Currently, I have three projects in my lab.1. Direct electrochemistry of heme proteins.2. Enzyme mimetics based on metal or metal oxide nanostructures.3. Biosensors based on polydopamine or derivatives.Social ServiceThe member of Chinese Chemical Society.The Editorial Board Member of Scientific Reports (Chemistry).All Publications1.Mengmeng Guo, Muping Yu, Xiang Li, Maoguo Li*, “Immobilised cytochrome c onthe carbon dots functionalised MWCNTs and its application to hydrogen peroxide detection” International Journal of Environmental Analytical Chemistry 2017, 97, 1107–1118.2.Ding Hou, Haisheng Tao*, Xuezhen Zhu, Maoguo Li*, “Polydopamine and MnO2core-shell composites for high-performance supercapacitors” Applied Surface Science 2017, 419, 580–585.3.Yinling Wang*, Shengye Dong, Xiaoqin Wu, Xiaowang Liu, Maoguo Li*, “Core-shellN-doped carbon spheres for high-performance supercapacitors”,Journal of Materials Science2017, 52, 9673–7682.4.Yinling Wang,* Xiaoqin Wu, Xuemei Zhang, Maoguo Li*, “Chitosan, EDTA and cobaltsalts derived metal-N-C sub-micrometer spheres for high-performance oxygen reduction”, Journal of the Electrochemical Society 2017, 164, H389–H395.5.Xiujuan Wu, Miaomiao Yu, Xiaowang Liu, Maoguo Li*, “Low potentialdetermination of NADH at 1-Hydroxypyrene/reduced graphene oxide modified electrode”, International Journal of Electrochemical Science2017, 12, 4488–4501.6.Mengmeng Guo, Qikang Wu, Miaomiao Yu, Yinling Wang, Maoguo Li*, “One-stepliquid phase chemical method to prepare carbon-based amorphous molybdenum sulfides: As the effective hydrogen evolution reaction catalysts”, Electrochimica Acta 2017, 236, 280–287.7.Anna Li, Yuzhe Hu, Muping Yu, Xiaowang Liu, Maoguo Li*, “In situ growth of MoS2on carbon nanofibers with enhanced electrochemical catalytic activity for the hydrogen evolution”, International Journal of Hydrogen Energy2017, 42, 9419–9427.8.Jian Pang, Xiujuan Wu, Anna Li, Xiaowang Liu, Maoguo Li*,“Detection of catechinin Chinese green teas at N-doped carbon modified electrode”,Ionics2017,23, 1889–1895.9.Yinling Wang*, Shengye Dong, Xiaoqin Wu, Maoguo Li,“One-StepElectrodeposition of MnO2@NiAl Layered Double Hydroxide Nanostructures on the Nickel Foam for High-Performance Supercapacitors”, Journal of the Electrochemical Society 2017 164, H56–H62.10.Yinling Wang, Zhangcui Wang, Xiaoqin Wu, Xiaowang Liu, Maoguo Li*, "SynergisticEffect between Strongly Coupled CoAl Layered Double Hydroxides and Graphene for the Electrocatalytic Reduction of Oxygen", Electrochimica Acta2016, 192, 196–204.11.Yinling Wang*, Fajun Li, Shengye Dong, Xiaowang Liu, Maoguo Li*, “A facileApproach for Synthesizing Fe-Based Layered Double Hydroxides with High Purity and Its Exfoliation”, Journal of Colloid and Interface Science2016, 467, 28–34. 12.Yinling Wang*, Xuemei Zhang, Anna Li, Maoguo Li*,"Intumescent FlameRetardant-Derived P,N co-Doped Porous Carbon As an Efficient Electrocatalyst for the Oxygen Reduction Reaction", Chemical Communications2015,51, 14801–14804.13.Xuemei Zhang, Yinling Wang*, Shengye Dong, Maoguo Li*, "Dual-SitePolydopamine Spheres/CoFe Layered Double Hydroxides for Electrocatalytic Oxygen Reduction Reaction", Electrochimica Acta2015, 170, 248–255.14.Yinling Wang*, Zhangcui Wang, Yeping Rui, Maoguo Li*,“Horseradish PeroxidaseImmobilization on Carbon Nanodots/CoFe Layered Double Hydroxides: Direct Electrochemistry and Hydrogen Peroxide Sensing",Biosensors & Bioelectronics 2015,64, 57–62.15.Xiaoli Jiang, Yinling Wang*, Maoguo Li*,“Selecting Water-Alcohol Mixed Solventfor Synthesis of Polydopamine Nano-spheres Using Solubility Parameter”, Scientific Reports 2014, 4, Article Number 6070. DOI:10.1038/srep06070.16.Chang Guo, Lin Wang, Maoguo Li*,“Functionalization of Carbon Nanotubes withCopper for Nonenzymatic Electrochemical Detection of Glucose”, Nanoscience and Nanotechnology Letters 2014, 6(6), 481–487.17.Chang Guo, Maoguo Li*,“Synthesis and Cell Imaging of LaF3Nanocrystals withSmall Particle Size and Novel Upconversion Luminescence”, Acta Chimica Sinica 2014, 72(2): 215-219.18.Li Huang, Shoufeng Jiao, Maoguo Li*, “Determination of uric acid in human urineby eliminating ascorbic acid interference on copper(II)-polydopamine immobilized electrode surface”, Electrochim. Acta 2014, 121, 233–239.19.Yinling Wang*, Yeping Rui, Fajun Li, Maoguo Li,“Electrodeposition of NickelHexacyanoferrate/Layered Doublehydroxide Hybrid Film on the Gold Electrode and Its Application in the Electroanalysis of Ascorbic Acid”, Electrochim. Acta2014, 117, 398–404.20.Qian Song, Maoguo Li*, Li Huang, Qikang Wu, Yunyou Zhou*, Yinling Wang,“Bifunctional Polydopamine@Fe3O4 Core-Shell Nanoparticles for Electrochemical Determination of Lead (II) and Cadmium (II)”, Anal. Chim. Acta2013, 787, 64–70.21.Huiqing Ji, Maoguo Li*, Yinling Wang, Feng Gao, “Electrodeposition ofGraphene-Supported PdPt Nanoparticles with Enhanced Electrocatalytic Act ivity”, Electrochemistry Communications 2012,24, 17–20.22.Maoguo Li*, Huiqing Ji, Yinling Wang*, Lin Liu, Feng Gao, “MgFe-Layered DoubleHydroxide Modified Electrodes for Direct Electron Transfer of Heme Proteins”, Biosens. Bioelectron. 2012, 38, 239–244.23.Yinling Wang*, Huiqing Ji, Wei Peng, Lin Liu, Feng Gao, Maoguo Li*,“GoldNanoparticle-Coated Ni/Al Layered Double Hydroxides on Glassy Carbon Electrode for Enhanced Methanol Electro-Oxidation”, Int. J. Hydrogen Energy2012, 37, 9324–9329.24.Yinling Wang*, Wei Peng, Lin Liu, Feng Gao, Maoguo Li*, “The ElectrochemicalDetermination of L-Cysteine at a Ce-Doped Mg–Al Layered Double Hydroxide Modified Glassy Carbon Electrode”, Electrochim. Acta2012, 70, 193–198.25.Yinling Wang, Min Tang, Xinhua Lin, Feng Gao, Maoguo Li*, “Sensor for HydrogenPeroxide Using a Hemoglobin-Modified Glassy Carbon Electrode Prepared by Enhanced Loading of Silver Nanoparticle onto Carbon Nanospheres via Spontaneous Polymerization of Dopamine”, Microchim. Acta2012, 176, 405–410.26.Feng Gao*, Xinying Guo, Jun Yin, Dan Zhao, Maoguo Li and Lun Wang,“Electrocatalytic Activity of Carbon Spheres towards NADH Oxidation at Low Overpotential and Its Applications in Biosensors and Biofuel Cells”, RSC Adv.2011, 1, 1301–1309.27.Yinling Wang, Lin Liu, Maoguo Li*, Shudong Xu, Feng Gao*, “MultifunctionalCarbon Nanotubes for Direct Electrochemistry of Glucose Oxidase and GlucoseB ioassay”, Biosens. Bioelectron. 2011, 30, 107–111.28.Yan Wei, Qin-An Huang, Mao-Guo Li,Xing-Jiu Huang*, Bin Fang, Lun Wang*,“CeO2 Nanoparticles Decorated Multi-walled Carbon Nanotubes for Electrochemical Determination of Guanine and A denine”, Electrochim. Acta2011, 56, 8571–8575. 29.Feng Gao*, Peng Cui, Xiaoxiao Chen, Qingqing Ye, Maoguo Li, Lun Wang, “A DNAHybridization Detection Based on Fluorescence Resonance Energy Transfer between Dye-Doped Core-Shell Silica Nanoparticles and Gold N anoparticles”, Analyst2011, 136, 3973-398030.Yinling Wang*, Dandan Zhang, Wei Peng, Lin Liu, Maoguo Li*, “ElectrocatalyticOxidation of Methanol at Ni-Al Layered Double Hydroxide Film Modified Electrode in Alkaline M edium”, Electrochim. Acta2011, 56, 5754–5758.31.Yinling Wang*, Wei Peng, Lin Liu, Min Tang, Feng Gao, Maoguo Li*, “EnhancedElectrical Conductivity of Layered Double Hydroxide Modified Electrode by Graphene for Selectively Sensing of Dopamine”, Microchim. Acta2011, 174, 41–46. 32.Feng Gao*, Qingqing Ye, Peng Cui, Xiaoxiao Chen, Maoguo Li, Lun Wang,“Selective “turn-on” fluorescent sensing for biothiols based on fluorescence resonance energy transf er between acridine orange and gold nanoparticles”, Anal. Methods 2011, 3, 1180–1185.33.Lee Jin Tu Danence, Yaojun Gao, Maoguo Li,Yuan Huang, Jian Wang*,“Organocatalytic Enamide Azide Cycloaddition Reactions: Regiospecific Synthesis of 1,4,5-Trisubstituted-1,2,3-Triazoles”, Chem. Eur. J. 2011, 17, 3584–3587.34.Maoguo Li*,Shudong Xu, Min Tang, Lin Liu, Feng Gao, Yinling Wang*, “DirectElectrochemistry of Horseradish Peroxidase on Graphene-Modified Electrode for Electrocatalytic Reduction towards H2O2”, Electrochim. Acta2011,56, 1144–1149.35.Yaojun Gao, Qiao Ren, Hao Wu, Maoguo Li, Jian Wang*, “EnantioselectiveHeterocyclic Synthesis of Spiro Chromanone-Thiochroman Complexes Catalyzed by a Bifunctional Indane C atalyst”, Chem. Commun. 2010, 46, 9232–9234.36.Yinling Wang, Lin Liu, Dandan Zhang, Shudong Xu, Maoguo Li*, “A New Strategyfor Immobilization of Electroactive Species on the Surface of Solid Electrode”, Electrocatalysis2010, 1, 230–234.37.Fang Ni, Yinling Wang, Dandan Zhang, Feng Gao, Maoguo Li*,“Electroche micalOxidation of Epinephrine and Uric Acid at a Layered Double Hydroxide Film Modified Glassy Carbon Electrode and Its Application”, Electroanalysis2010,22, 1130–1135.38.Yinling Wang*, Dandan Zhang, Min Tang, Shudong, Xu, Maoguo Li*,“Electrocatalysis of Gold Nanoparticles/Layered Double Hydroxides Nanocomposites toward Methanol Electro-Oxidation in Alkaline Medium”, Electrochim. Acta2010, 55, 4045–4049.39.Feng Gao*, Jun Yin, Zhen Yao, Maoguo Li, Lun Wang, “A Nanocomposite ModifiedElectrode: Electrocatalytic Properties and Its Sensing Applications to Hydrogen Peroxide and Glucose”, J. Electrochem. Soc.2010, 157, F35–F39.40.Maoguo Li*, Fang Ni, Yinling Wang, Shudong Xu, Dandan Zhang, Lun Wang*,“LDH Modified Electrode for Sensitive and Facile Determination of Iodate”,Appl.Clay Sci. 2009, 46, 396–400.41.Yinling Wang, Shuihong Chen, Fang Ni, Feng Gao,Maoguo Li*, “Peroxidase-LikeLayered Double Hydroxide Nanoflakes for Electrocatalytic Reduction of H2O2”, Electroanalysis 2009, 21, 2125–2132.42.Maoguo Li*,Shudong Xu, Fang Ni, Yinling Wang, Shuihong Chen, Lun Wang*,“Fast and Sensitive Non-Enzymatic Glucose Concentration Determination Using Electroactive Anionic Clay Modified Electrode”, Microchim. Acta 2009,166, 203–208.43.Maoguo Li*, Fang Ni, Yinling Wang, Shudong Xu, Dandan Zhang, Shuihong Chen,Lun Wang*, “Sensitive and Facile Determination of Catechol and Hydroquinone Simultaneously under Coexistence of Resorcinol with a Zn/Al Layered DoubleHydroxide Film Modified Glassy Carbon Electrode”,Electroanalysis 2009, 21, 1521–1526.44.Maoguo Li*, Shuihong Chen, Fang Ni, Yinling Wang, Lun Wang*, “Layered DoubleHydroxides Functionalized with Anionic Surfactant: Direct Electrochemistry and Electrocatalysis of Hemoglobin”, Electrochim. Acta 2008, 53, 7255–7260.45.Bin Fang*, Shoufeng Jiao, Maoguo Li, Yuan Qu, Ximing Jiang, “Label-FreeElectrochemical Detection of DNA Using Ferrocene-Containing Cationic Polythiophene and PNA Probes on Nanogold Modified Electrodes”,Biosens.Bioelectron. 2008, 23, 1175–1179.46.Maoguo Li, Feng Gao, Ping Yang, Lun Wang*, Bin Fang, “Conveniently AssemblingDithiocarbamate and Gold Nanoparticles onto the Gold Electrode: A New Type of Electrochemical Sensors for Biomolecule Detection”,Surf. Sci. 2008, 602, 151–155.47.Yan Wei, Maoguo Li,Bin Fang*, “Fabrication of CeO2Nanoparticles ModifiedGlassy Carbon Electrode for Ultrasensitive Determination of Trace Amounts of Uric Acid in Urine”,Chin. J. Chem. 2007, 11, 1622–1626.48.Cai-yun Zheng, Shui-hong Chen, Yong-jia Shang*, Mao-guo Li*, “A Modified GlassyCarbon Electrode for Hydrogen Peroxide Sensing”,Annali Di Chimica2007,97, 1227–1235.49.Bin Fang*, Hongying Liu, Guangfeng Wang, Yunyou Zhou, Maoguo Li, Yan Yu, WeiZhang, “The Electrochemical Behavior and Direct Determination of Tyrosine at a Glassy Carbon Electrode Modified with Poly (9-Aminoacridine)”,Annali Di Chimica 2007, 97, 1005–1013.50.Bin Fang*, Yan Wei,Maoguo Li, Guangfeng Wang, Wei Zhang, “Study onElectrochemical Behavior of Tryptophan at a Glassy Carbon Electrode Modified with Multi-Walled Carbon Nanotubes Embedded Cerium Hexacyanoferrate”,Talanta 2007, 72, 1302–1306.51.Lun Wang*, Ping Yang, Yongxin Li, Hongqi Chen, Maoguo Li, Fabao Luo, “A FlowInjection Chemiluminescence Method for the Determination of Fluoroquinolone Derivative Using the Reaction of Luminol and Hydrogen Peroxide Catalyzed by Gold Nanoparticles”,Talanta 2007, 72, 1066–1072.52.Shoufeng Jiao, Maoguo Li, Cong Wang, Daolei Chen, Bin Fang*, “Fabrication ofFc-SWNTs Modified Glassy Carbon Electrode for Selective and Sensitive Determination of Dopamine in the Presence of AA and UA”,Electrochim. Acta 2007, 52, 5939–5944.53.Yan Wei, Guangfeng Wang, Maoguo Li, Cong Wang, and Bin Fang*, “Determinationof Rutin using a CeO2 Nanoparticle-Modified Electrode”, Microchim. Acta 2007, 158, 269–274.54.Yan Wei, Maoguo Li,Shoufeng Jiao, Qinan Huang, Guangfeng Wang, Bin Fang*,“Fabrication of CeO2Nanoparticles Modified Glassy Carbon Electrode and Its Application for Electrochemical Determination of UA and AA Simultaneously”, Electrochim. Acta 2006, 52, 766–772.55.Bin Fang*, Shoufeng Jiao, Maoguo Li, Haisheng Tao, “Simultaneous Determinationof Uric Acid and Ascorbic Acid at a Ferrocenium–Thioglycollate Modified Electrode”, Anal. Bioanal. Chem. 2006, 386, 2117–2122.56.Yongjia Shang*, Chenli Fan, Maoguo Li,Caiyun Zheng, “Synthesis and PropertiesStudy of Novel Ferrocenyl Isoxazole Derivatives”,Appl. Organometal. Chem. 2006, 20, 626–631.57.Bin Fang*, Wenzhi Zhang, Xianwen Kan, Haisheng Tao, Xianhui Deng, Maoguo Li,“Fabrication and Application of a Novel Modified Electrode Bas ed on β-Cyclodextrin/ Ferrocenecarboxylic Acid Inclusion Complex”,Sensor. Actuat. B2006,117, 230~235.58.Bin Fang*, Xiang-hui Deng, Xian-wen Kan, Hai-sheng Tao, Wen-zhi Zhang, MaoguoLi, “Electrochemical and Electrocatalytic Properties of Ferrocene Incorporated in L-Cysteine Self-Assembled Monolayers on a Gold Electrode”, Anal. Lett. 2006, 39, 697–707.59.Maoguo Li,Yong-Jia Shang, Ying-Chun Gao, Guang-Feng Wang, Bin Fang*,“Preparation of Novel Mercury-Doped Silver Nanoparticles Film Glassy Carbon Electrode and Its Application for Electrochemical Biosensor”, Anal. Biochem. 2005, 341, 52–57.60.Maoguo Li,Ying-Chun Gao, Xian-Wen Kan, Guang-Feng Wang, Bin Fang*, “Effectof Ag Nanoparticles for Electrochemical Sensing of Brilliant Cresyl Blue”,Chem. Lett.2005, 34, 386–387.61.Maoguo Li,Yin-Ling Wang, Guang-Feng Wang, Bin Fang*, “ElectrochemicalDetermination of 6-Mercaptopurine at Silver Microdisk Electrodes”,Annali Di Chimica 2005, 95, 685–693.62.Bin Fang*, Guangfeng Wang, Wenzhi Zhang, Maoguo Li,Xianwen Kan,“Fabrication of Fe3O4Nanoparticles Modified Electrode and Its Application for Voltammertric Sensing of Dopamine”,Electroanalysis 2005, 17, 744–748.63.Bin Fang*, Guangfeng Wang, Maoguo Li, Yingchun Gao, Xianwen Kan, Prepartionof Ag Nanoparticles/L-Cysteine Modified Gold Electrode and Its Application.Chimica Analyticzna 2005, 50, 419–423.64.Xianwen Kan, Xianghui Deng, Wenzhi Zhang, Guangfeng Wang,Maoguo Li,Haisheng Tao, Bin Fang*, “Electrocatalytical Oxidation of Hydroquinone with Ferrocene Covalently Bound to L-Cysteine Self-Assembled Monolayers on a Gold Electrode”,Annali Di Chimica 2005, 95, 593–600.65.Bin Fang, Yingchun Gao, Maoguo Li, Yongxin Li*, “Application of Functionalized AgNanoparticles for the Determination of Proteins at Nanogram Levels Using Resonance Light Scattering Method”,Microchim. Acta 2004, 147, 83–86.66.Guangfeng Wang, Maoguo Li, Yingchun Gao, Bin Fang*, “An Amperometric SensorUsed for Determination of Thiocyanate with Silver Nanoparticles Modified Electrode”, Sensors 2004, 4, 147–155.67.Yongxin Li, Changqin Zhu, Lun Wang*, Feng Gao, Maoguo Li,Leyu Wang,“Application of Manganese-Tetrasulfonatophthalocyanine as a New Mimetic Peroxidase in the Determination of Hydrogen Peroxide Based on the Chemiluminescence Reaction of Luminol with Hydrogen Peroxide”,Anal. Lett. 2001, 34, 1841–1850.68.阚显文, 张文芝, 邓湘辉, 陶海升, 李茂国, 方宾*, 抗坏血酸在β-环糊精/二茂铁甲酸修饰电极上的电化学行为及测定, 分析化学, 33 (2005) 1573-1576.69.杨小红, 王广凤, 邓湘辉, 张文芝, 李茂国, 阚显文, 方宾*, 纳米Fe3O4修饰电极的制备及其催化应用, 应用化学, 22 (2005) 776-779.70.王广凤, 李茂国, 阚显文, 高迎春, 方宾*, 纳米银粒子复合修饰电极的制备及对苯二酚的测定, 应用化学, 22(2005) 167-171.71.李茂国, 王广凤, 高迎春, 方宾*, 纳米银修饰电极对痕量硫氰根的测定, 理化检验,41(2005) 305-307.72.李茂国, 王广凤, 周运友, 方宾*, 银催化甲醛前行动力波的研究, 分析化学, 32 (2004)1223-1226.73.陶海升, 李茂国, 吴丽芳, 方宾*, 电化学氟化最新进展, 化学进展, 16 (2004) :213-219.74.高迎春, 李茂国, 王广凤, 方宾*, 银纳米修饰电极的制备及其对灿烂甲酚蓝的催化研究,分析试验室, 23 (2004) 78-81.75.阚显文, 李茂国, 陶海升, 张德兴, 杜俊, 方宾*, 电位滴定法同时测定电合成产物苯甲醛和苯甲酸, 应用化学, 20 (2003) 699-701.76.杜俊, 李茂国, 高迎春, 阚显文, 方宾*, Cu(II)-α-氨基酸配合物的紫外光谱性质及组成测定, 光谱实验室, 20 (2003) 415-418.77.汪乐余, 郭畅, 李茂国, 许发功, 朱昌青, 王伦*, 功能性硫化镉纳米荧光探针荧光猝灭法测定核酸, 分析化学, 31 (2003) 83-86.78.李茂国, 许发功, 方宾*, 银微盘电极上谷胱甘肽降解产物的伏安行为, 分析测试学报,22 (2002) 56-58.79.商永嘉*, 李茂国, 陆婉芳, 王彦广, 新型含酰胺键的噻二唑类液晶的合成, 高等学校化学学报, 23 (2002) 576-580.80.朱英贵, 张明翠, 李茂国, 王伦*, 含偶氮基的Schiff碱-高锰酸钾-硫酸化学发光体系研究,安徽师大学报, 25 (2002) 161-163.81.李茂国, 张龙, 方宾*, 微分电位溶出法测柠檬酸, 安徽师大学报, 23 (2000) 256-258.82.周运友, 方宾*, 李茂国, 1-4-巯甲基苯的合成及其电化学性质研究, 化学试剂, 21 (2000)121-122.83.张玉忠, 李蜀萍, 阚显文, 李茂国,方宾*, 头孢拉定降解产物在银亚微电极上的电化学行为, 分析化学, 28 (2000) 127.84.张玉忠, 李蜀萍, 阚显文, 李茂国, 方宾*, 头孢噻肟钠降解产物在银微电极上阴极溶出示差脉冲伏安法测定, 分析化学, 28 (2000) 1371-1374.85.李茂国, 方宾*, 间接碘量法误差问题讨论, 安徽师大学报, 21 (1998) 279-281.86.周运友, 郭荷民, 方宾*, 朱英贵, 李茂国, 陶海升, 对苄二硫醇在玻碳汞膜电极上吸附伏安行为的研究, 安徽师大学报, 21 (1998) 152-155.。
环境科学与工程专业英语词汇
环境科学与工程专业英语词汇Happy childhood is the best, June 12, 2023环境科学与工程专业词汇包括环境学总论、环境地学、环境生物学、环境化学、环境物理学、环境工程学、环境医学、环境经济学、环境管理学、环境法学、环境教育等11大类;环境学总论原生环境primary environment次生环境secondary environment生态示范区ecological demonstrate area 环境地质学environmental geology环境地球化学environmental geo-chemistry环境土壤学environmental soil science 环境微生物学environmental microbiology环境危机environmental crisis环境保护environmental protection环境预测environmental forecasting环境自净environmental self-purification环境效应environmental effect环境容量environmental capacity环境演化evolution of environment环境舒适度environmental comfort环境背景值本底值environmental background value环境保护产业环保产业environmental production industry环境壁垒绿色壁垒environmental barrier绿色革命green revolution可持续发展sustainable development第三类环境问题社会环境问题the third environmental problem悬浮物suspended solids一次污染物primary pollutant二次污染物secondary pollutant全球性污染global pollution 排污收费pollution charge可再生资源renewable resources不可再生资源non-renewable resources 自然保护区natural reserve area防护林protection forest公害public nuisance矿山公害mining nuisance工业废水industrial wastewater矿山废水mining drainage生活饮用水domestic potable water草原退化grassland degeneration沙漠化desertification人口压力population pressure人口净增率rate of population全球环境监测系统global environment monitoring system GEMS中国环境保护工作方针Chinese policy for environment protection“三同时”原则principle of “the three at the same time”二恶英公害dioxin nuisance马斯河谷烟雾事件disaster in Meuse Valley多诺拉烟雾事件disaster in Donora伦敦烟雾事件disaster in London水俣病事件minamata disease incident 骨痛病事件itai-itai disaster incident洛杉矶光化学烟雾事件Los Angeles photochemical smog episode四日市哮喘事件Yokkaichi asthma episode米糠油事件Yusho disease incident环境地学水圈hydrosphere水循环water circulation 地表水surface water 水位water level 下渗入渗sinking 蒸发evaporation最高水位highest water level 最低水位lowest water level 平均水位average water level 警戒水位warning water level 流速flow velocity流量discharge洪水期flood season枯水期low-water season冲刷washout含水层aquifer隔水层不透水层aquiclude透水层permeable stratum层间水interlayer water承压水有压层间水confined water 或自流水artesian water孔隙水void water岩溶水喀斯特水karst water径流runoff flow地表径流land runoff地下水groundwater流域保护water basin protection淡水fresh water咸水saltwater降水precipitation沉淀降水量amount of precipitation降水强度intensity of precipitation水环境容量carrying capacity of water environment水土流失土壤侵蚀soil and water loss 点源污染point source pollution面源污染non-point source pollution扩散diffusion涡流eddy current涡流扩散eddy diffusion富营养化废水eutrophic waste-water污水sewage漫灌flood irritation水底沉积物底质或底泥benthal deposit 总固体total solids悬浮固体suspended solids总溶解固体total dissolved solids河流复氧常数constant of river reoxygenation湖泊酸化lake acidification富营养化eutrophication富营养湖eutrophic lake中营养湖mesotrophic lake贫营养湖oligotrophic lake水库reservoir海洋处置sea disposal 海底采样sea floor sample赤潮红潮red tide海水淡化desalination of seawater海底沉积物sea bottom sediment海洋倾倒ocean dumping水质water quality水资源综合利用water resource integrated utilization水土保持soil and water conservation河道整治channel improvement水污染毒性生物评价biological assessment of water pollution toxicity水利工程hydro-engineering水体自净self-purification of water body 水环境保护功能区水质功能区functional district of water environment 土地处理系统land treatment system土地沙漠化land desertification土壤肥力soil fertility土壤酸碱度soil acidity and alkalinity 土壤污染防治prevention and treatment of soil pollution土壤盐渍化土壤盐碱化soil salination 土壤酸化soil acidification母质土壤母质或成土母质parent material土壤剖面soil profile腐殖质化humification淋溶作用leaching土壤改良soil improvement土壤粒级soil separate土壤质地soil texture缓冲作用buffering/buffer action缓冲剂buffering agent/buffer缓冲容量buffer capacity盐基饱和度base saturation percentage 灌溉irrigation富里酸fuvic acid胡敏素humin土壤团聚体soil aggregate土壤退化土壤贫瘠化soil degeneration 土壤地带性soil zonality污水灌溉wastewater irrigation臭氧层ozone layer降水precipitation降水量rainfall降水强度precipitation intensity 大气环境容量atmospheric environmental capacity 事后评价afterwards assessment烟尘消除elimination of smoke and dust 温室效应greenhouse effect大气扩散atmospheric diffusion烟羽烟流或羽流plume逆温inversion环境生物学生境habitat耐受极限limits of tolerance最小因子定律law of minimum生物检测bioassay环境胁迫environmental stress生物多样性bio-diversity生态位niche生命周期life cycle生态型ecotype自养生物autotrophy异养生物heterotroph指数增长exponential growth互利共生mutualism偏利共生commensalisms寄生parasitism衍生物derivative杀虫剂insecticide杀菌剂fungicide除草剂herbicide杀鼠剂rodenticide防腐剂preservative无残留农药non-persistent pesticide 植物性农药phytopesticide污水灌溉sewage irrigation世界自然历史遗产保护地world natural and historical heritage site储量stock过度捕获over-hunting; over-fishing 猎渔期open season农业残渣agricultural dregs赤潮red tide藻花algae bloom/水花water bloom 原生污染物primary pollutant次生污染物secondary pollutant急性毒性实验acute toxicity test慢性毒性实验chronic toxicity test 预备实验screening test; range-finding test; preliminary test稀释dilution归宿fate生物积累bioaccumulation生物浓缩bioconcentration生物放大biomagnification生物降解biological degradation; biodegradation生物营养物质biotic nutrient多污生物带polysaprobic zone中污生物带mesosaprobic zone寡污生物带oligosaprobic zone敏感种sensitive species; intolerant organism耐污种tolerant species生物滤池biological filter净化塘/氧化塘/生物塘purification pond生物膜biomembrane; biological film轮作crop rotation间作intercropping套种interplanting基塘模式farm land and fish pond model 防护林带shelter belt沼气marsh gas农家肥farm manure堆肥piled manure城市热岛效应urban heat island effect 城市生态规划urban ecological planning环境激素endocrine disrupting chemicals; endocrine disruptors边缘效应edge effect生态恢复ecological restoration恢复生态学restoration ecological环境化学甲基汞methyl mercury镉米cadmium rice农药残留pesticide residue有机氯农药organochlorine pesticide有机磷农药organophosphorous pesticide氨基甲酸酯杀虫剂carbamate insecticide拟除虫菊酯杀虫剂pyrethroid insecticide植物生长调节剂growth regulator化学致癌物chemical carcinogen表面活性剂surfactant多氯联苯类polychlorinated biphenyls;PCBs多环芳烃类polyaromtic hydrocarbon; PAH催化催化作用catalysis臭氧化ozonization光化学氧化剂photochemical oxidant过氧乙酰硝酸酯peroxyacetyl nitrate;PAN干沉降dry deposition湿沉降wet deposition光化学烟雾photochemical smog大气光化学atmospheric photochemistry降水化学precipitation chemistry气溶胶化学aerosol chemistry悬浮颗粒物suspended particulate总悬浮颗粒物total suspended particulatesTSP飘尘可吸入颗粒物或可吸入尘airborne particle降尘落尘dustfall;falling dust气溶胶aerosol水质water quality盐度salinity氧化还原电位oxidation-reduction potential;redox potential溶解氧dissolved oxygen化学需氧量chemical oxygen demand 生化需氧量biochemical oxygen demand总有机碳total organic carbon溶解度solubility 聚集aggregation絮凝flocculation凝聚coagulation离子交换ion exchange萃取extraction缓冲溶液buffer solution氧平衡模式氧垂曲线oxygen balance model吸收剂吸附剂absorbent活性炭active carbon氧化剂oxidant还原剂reductant胶团micelle胶体溶液colloidal solution脱硫剂desulfurization agent电渗析electrodialysis萃取剂extracting agent过滤filter絮凝剂flocculant;flocculating agent 无机絮凝剂inorganic flocculant有机高分子絮凝剂organic polymer flocculant中和法neutralization反渗透膜reverse osmosis membrane 硅胶silica gel蒸汽蒸馏steam distillation超滤膜ultrafilter membrane灵敏度sensitivity准确度accuracy精密度precision可靠性reliability检测限detection limit相对误差relative error绝对误差absolute error偶然误差accidental error平均偏差mean deviation采样误差sampling error标准溶液standard solution标准物质standard substance允许误差allowable error允许浓度allowable concentration微量分析microanalysis痕量分析trace analysis现场分析in-situ analysis仪器分析instrumental analysis水质分析water quality analysis比色分析colorimetric analysis沉降分析sedimentation analysis自动分析automatic analysis原子吸收分光光度法atomic absorption spectrophotometry原子吸收分光光度计atomic absorption spectrophotometer原子荧光光谱法atomic fluorescence spectrometry原子荧光光谱仪atomic fluorescence spectrometer电化学分析法electrochemical method 高效液相色谱法high performance liquid chromatography高效液相色谱仪high performance liquid chromatograph气相色谱分析gas chromatography气相色谱仪gas chromatograph采样器sampler大气采样器air sampler底泥采样器sediment samplerpH计pH meter湿度计hygrometer固定大气污染源stationary sources of air pollution移动大气污染源mobile sources of air pollution固定式水污染源stationary sources of water pollution移动式水污染源mobile sources of water pollution污染负荷pollution load污染源调查survey of pollution sources 无污染工艺pollution-free technology 无污染装置pollution-free installation 污染物总量控制total amount control of pollution水质参数water quality parameter水温water temperature色度color index透明度transparency混浊度turbidity硬度hardness感官污染指标sensuous pollution index 毒理学污染指标physical pollution index 化学污染指标chemical pollution index 细菌学污染指标bacteriological pollution index毒理学污染指标toxicological pollution index城市污水municipal sewage生活污水domestic sewage工业废水industrial wastewater常规分析指标index of routine analysis 环境监测environmental monitoring过程监测course monitoring污染物排放标准pollution discharge standard总量排放标准total amount of pollution discharge standard优先监测priority monitoring环境优先污染物environmental priority pollutant总固体total solids可吸入微粒可吸入尘和飘尘inhale particles浊度计turbidimeter实验室质量控制laboratory quality control空白实验值blank value平行样duplicate samples再现性重现性reproducibility重复性repeatability回收率recovery rate检出限detection limit冷原子吸收法cold-vapor atomic absorption method紫外吸收光谱法ultraviolet absorption spectrophotometry重量分析gravimetric analysis内标法internal marker method定性分析qualitative analysis定量分析quantitive analysis试样前处理pre-treatment均值mean value标准差standard error方差variation回归分析regression analysis相关分析correlation analysis相关系数correlation coefficient系统误差systematic error随机误差random error有效数字valid figure农药残留分析pesticide residue analysis 排污收费effluent charge室内空气污染indoor air pollution水体自净self-purification of water body 水土保持soil and water conservation水土流失soil erosion 土壤修复soil-remediation生物修复bioremediation光降解photodegradation温室气体greenhouse gases总量收费total quantity charge 超临界流体supercritical fluid 土壤采样soil pollution环境物理学光辐射光visible radiation 红外线infrared ray紫外线ultraviolet ray灭菌灯bactericidal lamp光污染light pollution噪声污染noise pollution混响reverberation听力损失hearing loss绝对湿度absolute humidity相对湿度relative humidity饱和度saturation ratio冷凝condensation露点温度dew point temperature热辐射thermal radiation比热specific heat空气调节air conditioning通风ventilation环境工程学环境污染综合防治integrated prevention and control of pollution环境功能区划environmental function zoning稀释比dilution ratio迁移transfer紊流扩散turbulent diffusion氧亏亏氧量oxygen deficit复氧reaeration溶解氧下垂曲线dissolved-oxygen sag curve饱和溶解氧saturated dissolved无污染燃料pollution-free fuel燃烧combustion空气-燃料比air-to-fuel ratio烟气分析analysis of flue gas煤的综合利用comprehensive utilization of coal 脱硫desulfurization除尘效率particle collection efficiency 分割粒径cut diameter for particles压力损失压力降pressure drop机械除尘器mechanical collector重力沉降室gravity settling chamber 惯性除尘器inertial dust separator旋风除尘器cyclone collector回流式旋风除尘器reverse-flow cyclone collector直流旋风除尘器straight-through cyclone collector多管旋风除尘器multiple cyclone collector过滤除尘器filter袋式除尘器bag house滤料filtration media气布比air-to-cloth ratio机械振动清灰袋式除尘器bag house with shake cleaning逆气流清灰袋式除尘器bag house with reverse-flow cleaning脉冲喷吹清灰袋式除尘器bag house with pulse-jet cleaning 静电除尘electrostatic precipitator ESP 电晕放电corona discharge驱进速度drift velocity集尘极collecting electrode板间距distance between collecting electrodes电极清灰removal of collected particle from electrodes 宽间距静电除尘器wide space electrostatic precipitator高压脉冲静电除尘器pulse charging electrostatic precipitator湿式静电除尘器wet electrostatic precipitator 双区静电除尘器两段式电除尘器two-stage electrostatic precipitator湿式除尘器wet collector of particulates重力喷雾洗涤器gravitational spray scrubber旋风洗涤器centrifugal scrubber中心喷雾旋风洗涤器cyclone spray scrubber泡沫洗涤塔foam tower scrubber填料床洗涤器packed bed scrubber文丘里洗涤器venturi scrubber双膜理论two-film theory气膜控制gas film control液膜控制liquid film control穿透曲线break through curve催化剂catalyst催化剂中毒poisoning of catalyst烟气脱硫flue gas desulfurization FGD 湿法脱硫wet process of FGD石灰-石灰石法脱硫desulfurization by lime and limestone氨吸收法脱硫ammonia process of FGD 干法脱硫dry process FGD吸收法控制氮氧化物control of NO x by absorption水吸收法脱氮control of NO x by absorption process with water酸吸收法脱氮control of NO x by absorption process with acid碱吸收法脱氮control of NO x by absorption process with alkali吸附法控制氮氧化物control of NO x by adsorption 分子筛吸附法脱氮control of NO x by adsorption process with molecular sieve 硅胶吸附法脱氮control of NO x by adsorption process with silica gel气体生物净化biotreatment of gaseous pollutant生物过滤器biofilter汽车尾气污染pollution of automobile exhaust gal生物脱臭biotreatment of odor集气罩capture hood烟囱有效排放高度effective height of emission清洁生产cleaner production矿山废水mining drainage电镀废水electroplating wastewater给水处理厂water treatment plant污水处理厂wastewater treatment给水污水处理构筑物water sewagetreatment structure污水集水井swage joining well废水调节池wastewater flow equalization basin格栅grill筛网grid screen沉砂池grit settling tank曝气沉砂池aeration grit settling tank 平流式沉砂池horizontal grit settling tank立式圆形沉砂池vertical circular grit settling tank圆形周边运动沉砂池circular perimeter flow grit settling tank重力排砂grit discharge by gravity水力提升排砂grit discharge with hydraulic elevator水力旋流器hydraulic cyclone沉淀池settling tank重力沉淀池gravity settling tank 浓缩式沉淀池thickening settling tank 斜板斜管沉淀池sloping plankpipesettling tank辐流式沉淀池radial settling tank平流式沉淀池horizontal settling tank 竖流式沉淀池vertical settling tank悬浮污泥澄清池suspended sludge clarifier脉冲澄清池pulse clarifier水力循环澄清池hydraulic circulating clarifier竖流折板絮凝池vertical table flap flocculating tank机械搅拌絮凝池mechanical mixing flocculating tank 颗粒自由沉降particle free sediment 絮凝沉降flocculation sedimentation 拥挤沉降hindered sedimentation气浮池floatation basin加压溶气气浮法pressure dissolved-airfloatation微电解法micro electroanalysis过滤池filter重力过滤法gravity filtration process压力过滤法pressure filtration process 真空过滤法vacuum filtration process 快滤池rapid filtration慢滤池slow filtration接触滤池contact filter双向滤池bidirectional filter双层滤料滤池double layer filter无阀滤池non-valve filter虹吸滤池siphon filter压力滤池pressure filterV型滤池aquazur V-filter砂滤sand filtration微滤机microstrainer滤池冲洗强度backwashing intensity of filter滤层filter material layer滤料承托层holding layer for filter material斜板隔油沉淀池oil trap with slope plank冷却塔cooling tower湿式氧化法wet oxidation process反应池reaction basin叶轮搅拌器turbine mixer 膜分离法membrane separation method 半渗透膜semi-permeable membrane 电渗析electrodialysis反渗透reverse osmosis离子交换膜ion exchange membrane 萃取extraction汽提stripping吹脱法blow-off method臭氧氧化法ozonation臭氧发生器ozonator磁分离法magnetic isolation method光催化氧化optical catalysis oxidation 软化水处理softening water treatment 石灰-纯碱软化法lime-sodium carbonate softening method废水好氧/厌氧处理biological aerobic/anaerobic treatment of wastewater微生物内源代谢microorganism intrinsic metabolism微生物合成代谢microorganism synthetic metabolism基质分解代谢substrate degradation metabolism活性污泥法activated sludge process 回流污泥return sludge剩余污泥surplus sludge初次沉淀池primary sedimentationbasin曝气池aeration推流式曝气池plug-flow aeration basin完全混合曝气池completely mixed aeration basin二次沉淀池secondary sedimentation basin污泥沉降比sludge settling ratio污泥容积指数sludge velum index 污泥负荷volume loading 普通活性污泥法conventional activated sludge process分段曝气法step aeration method延时曝气法extended aeration method 加速曝气法accelerant aeration method 深井曝气法deep well aeration method纯氧曝气法oxygen aeration method 鼓风曝气装置blast aerator 扩散曝气设备diffusion aerator 射流曝气设备efflux aerator机械曝气装置mechanical aerator 表面曝气装置surface aerator曝气时间aeration time污泥龄sludge age活性污泥培养activated sludge culture 活性污泥驯化domestication of activated sludge粉末炭活性炭法powdered carbon activated sludge process污泥膨胀sludge bulking生物滤池biological filter高负荷生物滤池high-loading biological filter水力负荷hydraulic loading有机负荷organic loading塔式生物滤池tower biological filer生物转盘biological rotating disc生物流化床biological fluidized bed活性生物滤池activated biofilter化粪池septic tank污水硝化脱氮处理nitrogen removal from wastewater by nitrification污水反硝化脱氮处理nitrogen removal from wastewater by denitrification污水硝化—反硝化脱氮处理nitrogen removal from wastewater by nitridenitrification土地处理系统land treatment system氧化塘oxidation pond好氧塘aerobic pond兼性塘facultative pond厌氧塘anaerobic pond曝气氧化塘aerated oxidation pond ICEAS intermittent cyclic extended aeration system间歇循环延时曝气活性污泥法DAT-IAT工艺demand aeration tank intermittent aeration tank system需氧池-间歇池A1/O工艺anoxic/ oxicA2/O工艺anaerobic oxicPhostrip工艺phostriop process Bardenpho工艺Bardenpho process Phoredox工艺Phoredox processUCT工艺university of cape townVIP工艺Virginia initiative plant厌氧生物滤池AFanaerobic filter 厌氧接触法anaerobic contact process 厌氧生物转盘anaerobic biological rotating disc两相厌氧消化two-phase anaerobic digest序批式间歇反应器series batch reactor 氧化沟oxidation ditch上流式厌氧污泥床upflow anaerobic sludge blanketMSBR modified sequencing batch reactor消毒disinfection灭菌sterilization加氯机chlorinator氯化消毒chlorization disinfection漂白粉消毒disinfection by bleaching powder紫外线消毒disinfection with ultraviolet rays加氯消毒disinfection by chlorine液氯liquified chlorine gas需氯量chlorine demand余氯chlorine residual游离性余氯free chlorine residual化合性余氯combined chlorine residual 折点加氯chlorination breakpoint过氧化氢消毒disinfection by hydrogen peroxide除味taste removal除臭odor removal脱色decoloration生污泥undigested sludge熟污泥digested sludge污泥处置disposal of sludge污泥综合利用comprehensive utilization of sludge真空过滤法vacuum flotation process 污泥浓缩sludge thickening污泥消化sludge digestion污泥脱水sludge dewatering污泥干化sludge drying污泥焚烧sludge incineration真空过滤机脱水dewatering by vacuum filter板框压滤机脱水dewatering by plate frame press filter辊轧式脱水机脱水dewatering by roll press带式压滤机脱水dewatering by belt press filter离心式脱水机脱水dewatering by centrifuge中温消化处理middle temperature digestive treatment高温消化处理high temperature digestive treatment污泥堆肥发酵处理sludge composting and fermentation污泥浓缩池sludge thickener污泥消化池sludge digestion tank污泥产气率gas production rate of sludge污泥干化场sludge drying bed固体废物solid wastes城市生活垃圾municipal solid wastes 城市生活垃圾堆放处置法dumping of municipal solid wastes城市生活垃圾卫生填埋法sanitary landfilling of municipal solid wastes城市生活垃圾焚烧法incineration of municipal solid wastes城市生活垃圾分类sorting of municipal solid wastes 城市生活垃圾收集collection of municipal solid wastes垃圾收费refuse taxing废电池used battery有毒有害工业固体废物toxic industrial wastes医疗废物health care wastes堆肥composting填埋场landfill渗滤液leachate treatment焚烧炉incineration furnaces助燃空气系统air injection system余热利用heat utilization焚烧灰渣ash水泥固化技术cement solidification石灰固化lime solidification沥青固化技术asphalt solidification固体废物预处理preliminary treatment of solid wastes破碎crushing of solid wastes筛分screening of solid wastes风力分选wind separation放射性固体废物radioactive solid waste 声级计sound level meter消声室anechoic room; anechoic chamber; dead room混响室reverberation room隔声sound insulation吸声muffler环境医学环境卫生学environmental hygiene 环境毒理学environmental toxicology 口蹄疫foot-and-mouth disease流行病学epidemiology地方病endemic disease氟斑牙dental fluorosis职业病occupational disease慢性毒性chronic toxicity急性毒性acute toxicity致癌物carcinogen变异variation病原体pathogen抗体antibody抗原antigen突变mutation 病毒virus蓄积器官storage organ致突变作用mutagenesis致畸作用teratogenesis致癌作用carcinogensis摄入量intake dose吸收量absorbed dose卫生标准health standard最高容许浓度maximum permissible concentration致死量lethal dose半致死浓度median lethal concentrationLD50剂量-反应关系dose-response relationship恶臭offensive odor协同作用synergism拮抗作用antagonism因果关系cause-effect relationship相关关系correlation阈限值threshold limit valueTLV高危人群population at high risk易感人群susceptible population 环境管理学环境管理学environmental management science环境伦理学environmental ethics环境质量管理management of environmental quality环境适宜度environmental suitability环境区划environmental zoning环境预测environmental forecasting环境质量评价environmental quality evaluation环境影响评价environmental impact assessment环境规划environmental planning环境决策分析environmental decision analysis总量控制total discharge control of pollutant浓度控制concentration control排污收费effluent charge排污申报登记declaration and registration of pollutant discharge排污许可证permit for pollutant discharge生物安全biosafety环境监察environmental supervision and management环境宣传教育environmental propaganda and education环境意识environmental consciousness 环境质量报告书report on environmental quality 环境影响评价报告书report on environmental impact assessment公众意见听证会public hearing循环经济cyclic economy预防为主、防治结合、综合治理原则principle of giving priority to pollution prevention, combining prevention and control, and integrated control全面现划、合理布局原则principle of overall planning and rational layout谁污染谁治理polluter-treats综合利用、化害为利原则principle of comprehensive utilization and turning harm into good谁开发谁保护explorer-protects协调发展原则principle of coordinated development国家环境保护模范城市national environmental protection model city全国生态示范区national ecological demonstration area环境信息environmental information 环境管理信息系统information system for environmental management环境专家系统environmental expert system环境监测environment monitoring环境标志environmental label清洁生产cleaner production环境审计environmental audit产品生命周期life cycle of product环境法学环境法学science of environmental law 环境保护法environmental protection law公害法public nuisance law环境行政法规administrative regulations of environment 环境部门规章departmental rules of environment污染物排放标准pollutant discharge standard“三同时”制度three simultaneity system排污审报登记制度declaration and registration system of pollution discharge排污许可证制度permit system of pollutant discharge排污收费制度system of effluent限期治理制度system of eliminating and controlling environmental pollution within a prescribed time现场检查制度system of on-site inspection环境污染事故报告制度system of environmental pollution accident reporting中华人民共和国环境保护法Environmental Protection Law of the People’s Republic of China中华人民共和国水污染防治法law of the People’s Republic of China on prevention and control of water pollution 中华人民共和国大气污染防治法law of the People’s Republic of China on prevention and control of atmospheric pollution中华人民共和国环境噪声污染防治法law of the People’s Republic of China on prevention and control of pollution from environmental noise中华人民共和国固体废物污染环境法law of the People’s Republic of China on prevention and control of environmental pollution by solid waste中华人民共和国海洋环境保护法marine environment protection law of the People’s Republic of China全国生态环境建设规划national eco-environmental construction plan全国生态环境保护纲要national compendium on eco-environmental protection地表水环境质量标准environmental quality standard for surface water地下水质量标准quality standard for ground water农业灌溉水质标准standard for irrigation water quality污水综合排放标准integrated wastewater discharge standard大气污染物综合排放标准integrated emission standard of air pollutants环境经济学循环经济模式circular economy type牧童经济the shepherd economy3R原则the rules of 3Rreducing, reusing, recycling生态经济学eco-economics共有资源common resources外部经济性external economics外部不经济性external diseconomics外部成本external cost边际效用marginal utility边际收益marginal benefit粗放经营extensive management集约经营intensive management自然资本natural capital公平equity代际补偿compensation between generations绿色国民帐户green national account 可持续发展sustainable development 公共物品public goods环境保护贸易政策trade policy for environmental protection绿色壁垒green tariff barrier国民生产总值gross national productionGNP国民生产净值net national productionNNP国民收入national income环境污染弹性系数environmental pollution elasticity回收率reuse rate物质平衡material balance物料衡算material balance counting 影子价格shadow price现行价格present price贴现discount机会成本opportunity cost运行费用operation cost城市气化率urban population ratio of used gas城市绿化覆盖率urban green cover ratio 环境效益environmental benefit成本效益分析cost and benefit analysis 环境费用environmental cost排污权交易marketable pollution permits生态足迹the ecological footprint环境税environmental tax资源资产assets of resource资源产权property right of resource最低安全标准minimum standard of security代际公平equality between generation 末端控制terminal control公地的悲剧tragedy of the public pasture中间产品intermediate product最终产品final product直接污染物产生/排放系数direct pollutant generation/discharge coefficient 累积污染物产生/排放系数cumulate pollutant generation/discharge coefficient排污收费charge from discharge pollutant污染者负担原则polluter pay principle 资源税resource tax人口出生率population birth rate人口死亡率population mortality rate 人口自然增长率population nature growth rate人口计划生育率population planning fertility rate平均寿命average life人口年龄金字塔population age pyramid人口老化population aging人口过剩over-population人口爆炸population explosion计划生育family planning人口统计population statistics人口普查population census环境教育环境教育目标objectives of environmental education多学科环境教育课程模式multi-disciplinary model of environmental education 跨学科环境教育模式inter-disciplinary model of environmental education中学环境教育大纲environmental education standard for secondary school环境教育活动的设计design of environmental education activity野外环境教育基地environmental education field base公众参与public participation环境意识environmental awareness中国中小学绿色教育行动environmental educators initiative of china。
阴极等离子体电解沉积铁镍
表面技术第52卷第6期阴极等离子体电解沉积铁镍/氮掺杂碳及其电催化产氧姜艳丽1,戴鹏程2,王建康2,夏琦兴2,姚忠平2,姜兆华2(1.哈尔滨学院 化学系,哈尔滨 150086;2.哈尔滨工业大学 化工与化学学院,哈尔滨 150001)摘要:目的提高阳极产氧催化剂的催化活性与稳定性,降低电解水制氢能耗。
方法在含尿素、甲酰胺及三乙醇胺的有机体系电解液中,采用阴极等离子体电解沉积技术于TC4钛合金表面沉积了FeNi/N掺杂碳膜层,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、拉曼光谱仪(Raman)及X射线光电子能谱仪(XPS),对所合成材料的物相组成、形貌及表面元素价态进行表征。
采用三电极体系,所合成膜层作为工作电极,铂丝与饱和甘汞电极分别作为对电极与参比电极,通过线性扫描伏安法(LSV)、塔菲尔曲线、电化学阻抗谱及计时电位法于1.0 mol/L KOH溶液中评价了所合成材料的电催化产氧活性与稳定性。
结果所合成膜层物相主要由FeNi、N掺杂碳构成,表面呈粗糙多孔结构,电解沉积70 min所得FeNi/N掺杂碳在10 mA/cm2下的析氧过电位为0.20 V,显著低于反应10、40、100 min下所得样品,产氧性能优于贵金属IrO2和RuO2,同时该样品呈现出较低的电荷转移电阻(1.75 Ω)和塔菲尔斜率(38.3 mV/dec),以及优异的稳定性。
结论膜层表面粗糙多孔结构可有效增强传质,并为电催化产氧提供丰富的活性位点,进而改善其产氧性能。
此外,材料简易的制备方法及自支撑结构可简化电极制备成本,使其在电解水领域表现出潜在的应用前景。
关键词:TC4钛合金;阴极等离子体电解沉积;FeNi合金;N掺杂碳;电催化产氧中图分类号:TG174 文献标识码:A 文章编号:1001-3660(2023)06-0088-08DOI:10.16490/ki.issn.1001-3660.2023.06.009FeNi/N Doped Carbon Coating by Cathodic Plasma ElectrolyticDeposition and Its Electrocatalytic Oxygen ProductionJIANG Yan-li1, DAI Peng-cheng2, WANG Jian-kang2,XIA Qi-xing2, YAO Zhong-ping2, JIANG Zhao-hua2(1. Department of Chemistry, Harbin University, Harbin 150086, China;2. School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China)ABSTRACT: The work aims to improve the catalytic activity and stability of the anodic electrocatalyst for oxygen evolution收稿日期:2023–02–11;修订日期:2023–05–04Received:2023-02-11;Revised:2023-05-04基金项目:国家自然科学基金面上项目(51571076)Fund:General Program of the School of Chemistry and Chemical Engineering National Natural Science Foundation of China (51571076)作者简介:姜艳丽(1976—),女,博士,教授,主要研究方向为表面功能改性和应用。
EX Situ和In Situ Characterization辨析
EX Situ和In Situ Characterization辨析高振昕;周宁生【期刊名称】《耐火与石灰》【年(卷),期】2005(030)004【摘要】前缀词"in situ'"和"ex situ'"在耐火材料的科技文献中频现.二者都具泛义,在许多情况下可用,弄清其确切含义并贴切地译成汉语十分必要.本文对In Situ和Ex Situ Characterization的含义及其在不同场合的应用作了分析.在表征状态时,in situ和ex situ表达了"原位"和"移位"的不同,互为反义词.用于仪器分析方面,前者表示对被测物在真实环境中的多项同步分析,也表示单项目的连续分析,其连续的意义不可忽视;而后者则指在非原始的、非综合的条件下分别进行的检测,包括用前检测、模拟试验和用后残衬分析.可把在实际正在发生中的、连续的、综合的观察和分析,统称为In Situ Characterization;而用前的检测、模拟试验和用后残衬分析,可统称为Ex Situ Characterization.如何译成中文,要弄清具体的背景和含义,无需硬译.【总页数】6页(P34-39)【作者】高振昕;周宁生【作者单位】无【正文语种】中文【中图分类】TQ175.12【相关文献】1.Advances in in-situ characterizations of electrode materials for better supercapacitors [J], Xiaoli Su;Jianglin Ye;Yanwu Zhu2.Advances in in-situ characterizations of electrode materials for better supercapacitors [J], Xiaoli Su;Jianglin Ye;Yanwu Zhu3.Fabrication and Characterizations of Mechanical Properties of Al-4.5%Cu/10TiC Composite by <i>In-situ</i>Method [J], Anand Kumar;Manas Mohan Mahapatra;Pradeep Kumar Jha4.In‐situ structural characterizations of electrochemical intercalation of graphite compounds [J], Na Li;Dong Su5.In situ characterizations of solid-solid interfaces in solid-state batteries using synchrotron X-ray techniques [J], Marcos Lucero;Shen Qiu;Zhenxing Feng因版权原因,仅展示原文概要,查看原文内容请购买。
中国光刻机英语作文范文
中国光刻机英语作文范文Lithography, also known as photolithography, is a crucial process in the manufacturing of semiconductors and microchips. It involves the use of a device called a photolithography machine, commonly known as a wafer stepper or a lithography tool, to transfer a pattern onto a substrate, typically a silicon wafer. This pattern is crucial as it determines the layout of the integrated circuits on the wafer, and therefore it plays a critical role in the overall functionality of the microchip.The lithography process begins with the design of the circuit pattern using specialized software. This pattern is then transferred onto a photomask, which is a high-precision quartz plate that contains the circuit pattern in the form of opaque and transparent regions. The photomask is then loadedinto the lithography machine, along with the silicon wafer coated with a light-sensitive material known as photoresist.During operation, the photomask is illuminated with ultraviolet light, and the pattern is projected onto the wafer. The light-sensitive photoresist undergoes a chemical reaction when exposed to the light, and the pattern is transferred onto the wafer. This process is repeated multiple times to create the desired circuit layout on the entire surface of the wafer.The precision and accuracy of the lithography machine are crucial, as any deviation or error in the pattern transfer can result in defective or non-functional microchips. Therefore, lithography machines are equipped with advanced optical systems, high-precision stages, and sophisticated control algorithms to ensure the highest level of accuracy and consistency in the pattern transfer process.In recent years, the semiconductor industry has witnessed a rapid evolution in lithography technology, driven by the demand for smaller and more complex microchips. This has led to the development of new generation lithography machines, such as extreme ultraviolet (EUV) lithography, which use shorter wavelength light sources to achieve even finercircuit patterns.In conclusion, the role of lithography machines in semiconductor manufacturing cannot be overstated. These high-precision, state-of-the-art devices are instrumental in shaping the future of microelectronics, enabling the production of smaller, faster, and more powerful microchips that drive innovation in various industries.。
电催化亚硝酸盐还原产铵
电催化亚硝酸盐还原产铵Electrocatalytic nitrite reduction for ammonia production.Electrocatalytic nitrite reduction for ammonia production.Introduction.Nitrite is an intermediate in the nitrogen cycle and can be produced from various sources, including biological processes, industrial wastewater, and agricultural runoff. Ammonia is an important chemical feedstock for the production of fertilizers, plastics, and other chemicals.Electrocatalytic nitrite reduction offers a promising approach for the production of ammonia from nitrite. This process involves the electrochemical reduction of nitrite to ammonia at a cathode. The reaction can be represented as follows:NO2+ 8H+ + 8e→ NH3 + 2H2O.The efficiency of electrocatalytic nitrite reduction is influenced by a number of factors, including the catalyst material, the electrolyte, and the operating conditions.Catalyst materials.A variety of catalyst materials have been investigated for electrocatalytic nitrite reduction. These materials include metals, metal oxides, and carbon-based materials.Metals such as copper, silver, and gold have shown high activity for nitrite reduction. However, these metals are often unstable under the reaction conditions and can be easily poisoned by impurities.Metal oxides such as CuO and Fe2O3 have also been shown to be active for nitrite reduction. These materials are more stable than pure metals, but they can be less active.Carbon-based materials such as graphene and carbon nanotubes have also been investigated for nitrite reduction. These materials have high surface area and conductivity, which make them good candidates for electrocatalysis. However, carbon-based materials can be difficult to functionalize with active sites for nitrite reduction.Electrolyte.The electrolyte used in electrocatalytic nitrite reduction can also affect the efficiency of the process.The electrolyte should be able to conduct electricity and provide a source of protons for the reaction.Common electrolytes used for nitrite reduction include aqueous solutions of KOH, NaOH, and H2SO4. The choice of electrolyte can affect the pH of the solution, which can in turn affect the activity of the catalyst.Operating conditions.The operating conditions for electrocatalytic nitritereduction can also affect the efficiency of the process. These conditions include the temperature, pressure, and applied potential.The temperature of the reaction can affect the activity of the catalyst and the rate of the reaction. The pressure of the reaction can affect the solubility of the reactants and products. The applied potential can affect the overpotential of the reaction, which is the difference between the applied potential and the equilibrium potential for the reaction.Challenges.Electrocatalytic nitrite reduction faces a number of challenges, including the selectivity of the reaction, the stability of the catalyst, and the cost of the process.The selectivity of the reaction is important to ensure that ammonia is the main product of the reaction. Other products that can be formed from nitrite reduction include nitrogen, hydrogen, and hydroxylamine.The stability of the catalyst is important to ensure that the catalyst can be used for a long period of time without losing activity. Catalysts can be deactivated by a number of factors, including poisoning by impurities, corrosion, and agglomeration.The cost of the process is important to ensure that electrocatalytic nitrite reduction is economically viable. The cost of the catalyst, the electrolyte, and the energy required for the reaction can all contribute to the overall cost of the process.Conclusion.Electrocatalytic nitrite reduction offers a promising approach for the production of ammonia from nitrite. However, the process faces a number of challenges,including the selectivity of the reaction, the stability of the catalyst, and the cost of the process. Further research is needed to overcome these challenges and make electrocatalytic nitrite reduction a viable commercialprocess.中文回答:电催化亚硝酸盐还原产氨。
退火温度对Ti-Si-C涂层显微结构和抗氧化性能的影响
退火温度对Ti-Si-C涂层显微结构和抗氧化性能的影响陈梓山;胡淼;冯浩宇;陈雨;杨青;董大超【摘要】采用磁控溅射工艺在Al2 O3基体表面制备了Ti-Si-C涂层,并利用真空退火的手段对涂层进行了高温热处理.通过改变退火温度,研究了Ti-Si-C涂层中Ti3 SiC2相的形核长大机制,评估了退火温度对涂层抗氧化性能的影响.使用X射线光谱仪(XPS)表征了涂层中的化学键态,使用X射线衍射仪(XRD)分析了涂层中的物相变化,借助电子扫描显微镜(SEM)观察了涂层的表面形貌.试验结果表明,退火前的Ti-Si-C涂层由非晶TiC、非晶硅和游离碳组成;退火温度较低时,涂层以非晶TiC的晶化反应为主;随着退火温度升高至950℃,硅原子的扩散系数增大,涂层中有少量SiC 相和TiSi2相生成;当退火温度高于1100℃时,涂层中的Ti3 SiC2相开始以TiC晶体为异质核心形核生长;在1000℃的空气静置氧化中,Ti-Si-C涂层的抗氧化性能随着退火温度的上升而提高.【期刊名称】《新技术新工艺》【年(卷),期】2018(000)005【总页数】4页(P73-76)【关键词】退火温度;显微结构;抗氧化性能;Ti3SiC2;涂层;磁控溅射【作者】陈梓山;胡淼;冯浩宇;陈雨;杨青;董大超【作者单位】凌云工业股份有限公司,上海 201708;凌云工业股份有限公司,上海201708;凌云工业股份有限公司,上海 201708;凌云工业股份有限公司,上海201708;凌云工业股份有限公司,上海 201708;凌云工业股份有限公司,上海201708【正文语种】中文【中图分类】TG174.44Ti3SiC2是Ti-Si-C三元系化学计量化合物,它既具有陶瓷的高熔点、高化学稳定性和高耐磨等特性,又具有金属的高韧性和高温塑性以及低的摩擦因数[1-3]等特点,在高温情况下还具有很好的抗氧化性能,其氧化所生成的TiO2和SiO2氧化层,对于基体可以产生很好的保护作用[4-7];因此,Ti3SiC2涂层在高温表面防护、耐磨减摩等领域具有广泛的应用前景。
病理学—名词解释
第二章:细胞、构制的符合与益伤:atrophy 收育平常的器官、构制大概细胞体积的缩小称为萎缩.:hypertrophy 细胞、构制战器官的体积的删大称为肥大.:hyperplasia由于真量细胞数量删加而产死构制战器官的体积删大称为删死.4..化死:metaplasia 一种已瓦解的构制变化为另一种本量相似的瓦解构制的历程称为化死.:degeneration细胞大概者间量内出现非常十分物量大概者平常物量的非常十分删加,并陪随分歧程度的功能障碍,称为变性.:由于心肌血管分集的特性,心肌各部位缺氧程度纷歧,故脂肪变性程度也纷歧,重者呈黄色条纹,沉者呈暗红色,二者相间排列,状似虎皮,故称为虎斑心.:hyaline degeneration指正在细胞内大概间量中,出现均量半透明的玻璃样物量,正在HE染色切片中呈均量性黑染.:necrosis指活体内局部构制、细胞的牺牲.:coagulative necrosis 坏死构制凝集成灰黑大概者黄红色、较搞燥、脆真的固体,那种坏死称为凝固样坏死.:ca搜索引擎劣化us necrosis 是凝固样坏死的一种特殊的典型,主要睹于结核病引起的坏死,其特性是坏死构制领会真足,构制结构消得,形成黑染颗粒状物量,肉眼呈浓黄色,量紧硬,似奶酪样物量,故称为搞酪样坏死.:liquefactive necrosis 坏死构制赶快溶解呈液态大概者产死坏死腔,那种坏死称为液化性坏死.:是间量胶本纤维以及小血管壁的一种变性,罕睹于免疫反应性徐病,病变呈小灶性坏死,本去的构制结构消得,形成一堆鸿沟没有浑、呈颗粒、小条、小块状物量,HE染色强嗜酸性,似纤维素样变性,由于有构制坏死,所以又称为纤维素样坏死.:sinus 深部构制坏死后产死启心于皮肤大概黏膜的吂性管讲.:fistula体表与空腔净器之间大概空腔器官与空腔器官之间二端启心的病理性通讲称为瘘管.:organization 由新死肉芽构制与代坏死构制大概其余非常十分物量的历程称为机化.16.凋亡:apoptosis 是指肌体细胞正在收育历程中大概正在某些果素效率下,通过细胞内基果及其产品的调控而爆收的一种步调性细胞牺牲.:骨战牙齿以中的构制内有固体钙盐(主假如磷酸钙战碳酸钙)的重积18.蜕变:构制细胞的变性战坏死,引导局部构制体积删大19.代偿性肥大:某器官的一部分大概成对于净器的一侧受到益伤大概切除时,残存部分大概残留的其余一侧净器则肥大,并出现功能巩固时称之为代偿性肥大大概代偿性功能巩固20.结核瘤:又称结核球,指有纤维包裹的独力的地步明隐的搞酪样坏死21.伤热细胞:巨噬细胞删死计跃时胞浆内吞噬有伤热杆菌,黑细胞战细胞碎片,而吞噬黑细胞明隐,那种细胞称伤热细胞第三章复活与建复1.肉芽构制:granulation tissue 由新死的毛细血管战成纤维细胞组成的幼稚结缔构制,陪随炎性细胞的浸润,由于其肉眼呈陈黑、颗粒状、柔硬干润似陈老肉芽,故称为肉芽构制.:scar tissue 指肉芽构制老练变化而去的老化阶段的纤维结缔构制.(keloid):瘢痕构制中胶本产死过多,成为大而没有准则的硬块称为瘢痕疙瘩.第四章:局部血液循环障碍:venous hyperemia 又称主动性充血 passive hyperemia ,简称淤血congestion 局部器官大概构制由于静脉血液回流受阻使血液淤积于小静脉战毛细血管内而爆收的充血,称为静脉性充血,又称为主动性充血,淤血.heart failure cell 左心衰竭引起肺淤血时,肺泡壁毛细血管扩弛、充血大概出血,若肺泡腔内的黑细胞被巨噬细胞吞噬,其血黑蛋黑形成含铁血黄素,使痰呈褐色,那种含有含铁血黄素的巨噬细胞称为心力衰竭细胞.:nutmeg liver 缓性肝淤血时,肝中央静脉及其附近的肝窦淤血呈红色,由于淤血缺氧,部分肝细胞萎缩战脂肪变性呈黄色,以致肝切里浮现黑黄相间,似槟榔状花环,故称槟榔肝.:thrombosis 正在活体的心血管内,血液爆收凝固大概者血液中某些有产死领会出,凝集成固体量块的历程,称血栓产死.:thrombus正在血栓产死历程中所产死的固体量块,称血栓.:organization and recanalization of thrombus 血栓产死后,从血管壁背血栓少进血管内由细胞战纤维母细胞,随即产死肉芽构制,肉芽构制少进血栓,渐渐加以与代血栓的历程,为血栓机化.血栓机化中的新死内皮细胞,被覆于血栓搞涸爆收的裂隙内,产死迷路状然而是不妨相互相通的管讲,使血栓上下游的血流得以部分的相通,称为再通.:embolism 正在循环血液中出现的没有溶于血液并阻塞血管的非常十分物量,随着血液震动阻塞血管管腔的历程,称为栓塞.:infarction 局部构制果血流中断引起的缺血性坏死称为梗死.9.接叉性栓塞:栓子从压力下的一侧通过房、室隔断缺益到压力矮的一侧引起的栓塞第五章:炎症:inflammation具备血管系统的活体构制对于百般益伤果子刺激所爆收的一种以防卫为手段的局部血管反应为核心枢纽战主要特性的病理历程.:alteration 炎症局部构制爆收的变性战坏死称为蜕变.3.炎症介量:inflammatory mediator介进大概引起炎症反应的化教活性物量:pseudomembranous inflammation爆收正在粘膜的、以纤维素渗出为主的炎症,其渗出的纤维素、黑细胞战坏死粘膜所有,产死一层灰红色的膜状物,称为假膜.那种炎症便为假膜性炎,比方黑喉、菌痢等.:phlegmonous inflammation爆收正在疏紧构制(皮下肌肉阑尾)的弥漫性化脓性炎症,普遍由溶血性链球菌引起,它们能分泌透明量酸酶、链激酶,能落解透明量酸战纤维蛋黑,果此,细菌易于通过构制间隙战淋巴管讲伸张扩集制成弥漫浸润,使病变于周围平常构制分别没有浑.6绒毛心: cor villosum 又称为纤维素性心包炎 fibrinous pericarditis 心包纤维素炎症时,渗出的纤维蛋黑没有克没有及被领会吸支,心净搏动使心包的净壁二层渗出的纤维蛋黑上呈绒毛状,称为绒毛心.7.菌血症:bacteremia 细菌由局部病灶进血,血液内可查出细菌,然而临床上无中毒症状,称为菌血症.:toxemia 指细菌的毒素大概毒性产品进血,引起下热、热战等齐身中毒症状以及心肝肾等真量细胞的变性、坏死等.9.败血症:septicemia 指毒力强的细菌进血,正在血液中死少繁殖、爆收毒素,引起齐身的中毒症状战心肝肾的真量细胞的变性坏死还常有皮肤战粘膜的出血乌面战齐身淋凑趣的肿大.10.脓毒血症:pyemia 即化脓菌引起的败血症,临床上除表示败血症的表示中,正在体内共时大概先后爆收多收性脓肿.第六章:肿瘤1.肿瘤:肌体正在百般致瘤果素效率下,局部构制的细胞爆收基果调控非常十分,引导非常十分删死而产死的新死物.2.同型性:肿瘤构制正在细胞形态战构制结构上,皆与其根源的平常构制有分歧程度的好别,那种好别称为同型性.:ectopic endocrine syndrome 非内分泌腺肿瘤能爆收战分泌激素大概激素类物量,引起内分泌的混治的临床症状,(paraneoplastic syndrome):由于肿瘤的产品(包罗同位激素爆收)大概非常十分免疫反应(包罗接叉免疫、自己免疫战免疫复合物重着等)大概其余没有明本果,可引起内分泌、神经、消化、制血、骨闭节、肾净及皮肤等系统爆收病变,出现相映的临床表示.那些表示没有是由本收肿瘤大概变化灶间接引起的,而是通过爆收某些物量间接引起的.:carcinoma in situ 上皮构制癌变后,癌构制已脱透基底膜时称为本位癌.(dysplasia,atypical hyperplasia):指删死上皮细胞的形态浮现一定程度的同型性,然而还缺乏以诊疗为癌.当与消刺激果素后上皮可回复平常.(cachexia):恶性肿瘤早期,肌体宽重消肥、无力、贫血战齐身衰竭的状态,称为恶病量.:keratin preal 正在瓦解佳的鳞癌的癌巢中央可出现呈共心圆层状排列的角化物量,称为角化珠,又称癌珠.是诊疗下瓦解鳞癌的要害依据.9.畸胎瘤:teratoma 是根源于性腺大概胚胎剩件中的齐能细胞,多含有二个以上胚层的多种百般构制身分,排列结构庞杂,根据其中瞅又可分为囊性战真性二种,根据其瓦解老练程度可分为老练型(良)畸胎瘤战没有老练型(恶)畸胎瘤.10.培植性变化:体腔内器官恶性肿瘤侵破表面,瘤细胞像支获一般培植正在体腔内器官表面,产死变化瘤11.癌基果:由本癌基果衍死而去的具备变化细胞本领的基果第八章心血管系统徐病(angina pectoris):是指冠状动脉供血缺乏战(大概)心肌耗氧量剧删,以致心肌慢遽的姑且性缺血、缺氧引起的临床概括征.(myocardial infarction):是指冠状动脉供血慢遽缩小大概中断,使相映的心肌宽重而持绝性缺血所致的心肌缺血性坏死.3.背心性肥大(concentric hypertrophy of heart):为下血压病时的心净改变,表示为心净体积删大,然而心腔没有夸大,而主假如心肌纤维爆收代偿性肥大.(Aschoff body):又称风干性肉芽肿,是风干病的特性性病变,其出现提示风干活动.典型的风干小体核心为纤维素样坏死灶,周围汇集成群的风干细胞及少量的淋巴细胞、浆细胞战巨细胞.5.继收性下血压:又称症状性下血压,继收于一些徐病如缓性肾炎,肾A渺小,肾上腺、垂体肿瘤的症状,传导系统受乏大概电死理混治所致6.颗粒性固缩肾:病变宽重天区的肾小球果缺血爆收纤维化战玻璃样变,所属肾小管果缺血及功能兴用而萎缩、消得.间量则有结缔构制删死及淋巴细胞浸润.纤维化肾小球及删死的间量结缔构制中断,使表面凸起.病变较沉天区健存的肾小球果功能代偿而肥大,所属肾小管相映的代偿性扩弛,背肾表面突起.从而产死肉眼所睹肾表面的细小颗粒.肉眼可睹单侧肾体积缩小,重量减少,量天变硬,表面呈匀称弥漫的细颗粒状,切里皮量变薄,皮量与髓量领会没有浑晰.具备那些特性的肾被称为颗粒性固缩肾,主要由下血压引起.第九章呼吸系统徐病1缓性支气管炎(chronic bronchitis):指气管、支气管粘膜及其周围构制的缓性非特同性炎症.临床上以反复以做的咳嗽、咳痰大概陪随喘息为特性.2肺气肿(pulmonary emphysema):指呼吸性细支气管、肺泡管、肺泡囊、肺泡果肺构制弹性减强而过分充气,呈永暂性扩弛,并陪随肺泡隔断益伤,以致肺容积删大的病理状态.(pulmonary carnification):由于肺泡腔内渗出的中性粒细胞数量少大概功能缺陷,释搁的蛋黑溶解酶缺乏以使渗出的纤维素真足溶解吸支,故由肉芽构制少进机化,使病变肺构制产死褐色肉样纤维构制.(silicotic nodule):硅肺时正在肺及肺门淋凑趣内产死的地步浑晰的圆形、椭圆形结节,曲径2-5mm,灰红色量硬,有砂粒感.根据病程的收达战结节成份的变更,可分为细胞性结节、纤维性结节战玻璃样结节.5肺本收概括症:本收性肺结核:由肺的本收灶、淋巴管炎战肺门淋凑趣结核三者组成,X线胸片上呈哑铃状阳影第十章消化系统徐病(linitis plastica):属于弥漫浸润型胃癌.当癌构制背胃壁弥漫浸润时致胃壁删薄、变硬、胃腔缩小,粘膜皱襞大多消得,状似皮革制成的囊袋.:为卵巢的变化性粘液癌,多为单侧性.最常由胃癌浸润胃壁后浆膜层培植性变化至卵巢,也可由大肠癌培植灶变化所致.(bridging necrosis):指肝细胞坏死灶混合后呈戴状背小叶内伸展形成中央静脉与汇管区之间、二其中央静脉间大概二个汇管区间,呈桥状对接坏死戴,坏死处陪随肝细胞没有准则复活战纤维构制删死,罕睹于中、重度缓性肝炎. (pseudolobule):常被视为肝硬化的要害构制教标记.是指平常肝小叶结构被益伤,由广大删死的纤维构制分隔本去的肝小叶并包绕成大小没有等、圆形大概椭圆形的肝细胞团第十一章淋巴制血系统徐病(mirror image cell):霍偶金淋巴瘤的典型R-S细胞的单核呈里对于里的排列,相互对于称,产死镜影样结构,该细胞的出现具备诊疗意思.第十二章泌尿系统徐病(crescent):由于肾小球毛细血管壁宽重益伤,血液中的有产死分如黑细胞、纤维蛋黑等漏出到肾球囊并凝集,刺激壁层细胞删死.早期主要由删死的肾小囊上皮细胞战单核-吞噬细胞、中性粒细胞战纤维蛋黑组成,称为细胞性月牙体;从而上述细胞变化为成纤维细胞,并爆收胶本纤维,产死细胞纤维性月牙体,后期细胞身分真足被纤维构制代替,产死纤维性大概硬化性月牙体.第十五章神经系统徐病(satellitosis):每以5个大概5个以上少突胶量细胞盘绕病变的神经元的局里.(neuronophagia):当神经元爆收牺牲后,罕睹其胞量被小胶量细胞大概血源性巨噬细胞包抄、吞噬,称为噬神经细胞局里.第十六章感染病1.伤热肉芽肿(Typhoid granuloma)伤热病时,一些删死计跃的巨噬细胞胞量内常吞噬有伤热杆菌、黑细胞战细胞碎片,那种巨噬细胞称伤热细胞.伤热细胞可汇集成团,产死小结节称伤热肉芽肿大概伤热小结(typhoidnodule),伤热肉芽肿是伤热的特性性病变,具备病理诊疗价格.2.树胶肿是一种类似结核的肉芽肿,中央为搞酪样坏死,周围可睹少量内上皮细胞战朗汉斯巨细胞,肉眼瞅灰红色,量韧有弹性,量天如树胶,睹于第三期梅毒。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
In situ production of Fe –TiC surface composite coatingsby tungsten-inert gas heat sourceX.H.Wang a,⁎,M.Zhang b ,Z.D.Zou a ,S.L.Song a ,F.Han c ,S.Y .Qu aaSchool of Materials Science and Engineering,Shandong University,Jinan 250061,China bSchool of Mechanical Engineering,Shandong University,Jinan 250061,ChinacDepartment of Mechanical and Electrical Engineering,College of Weifang,Weifang 261021,ChinaReceived 28June 2005;accepted in revised form 26September 2005Available online 2November 2005AbstractIn the present study,AISI 1045steel surfaces were alloyed with pre-placed graphite,ferrotitanium and Fe –Cr –B –Si powders by using a tungsten-inert gas (TIG)heat source.The effects of welding parameters and thickness of the pre-placed powder layers on the microstructure and properties of the coatings were also investigated.The results indicated that TiC particles can be obtained by direct metallurgical reaction between ferrotitanium and graphite during the TIG welding process.Most of TiC particles were uniformly distributed in the surface coating.The microhardness showed a gradient variation from the molten boundary to the top surface of the coatings,and it was influenced by the thickness of the pre-placed powder layer and the welding parameters.The surface composite coating exhibited a higher hardness and lower wear rate than that of the substrate due to the formation of TiC carbides.©2005Elsevier B.V .All rights reserved.Keywords:In situ TiC particles;Wear;Microstructure;In situ formation;Tungsten-inert gas1.IntroductionThe particle-reinforced metal matrix composites (MMCs)have demonstrated a high potential for manufacturing of wear and corrosion-resistant surface layers due to the ease of fabrication,lower costs,and more isotropic properties.In all of ceramic particles,TiC with high hardness and good thermal stability is a very good reinforcement in Fe-based composites,and Fe –TiC composites have been applied in wear resistance parts and high performance tooling [1–3].Traditionally,the majority of reinforced phases are directly added into coating materials [4–6].However,ceramic particles being added directly may partially dissolve during the melting process.When the surface of particles is not clean or is polluted,crack may propagate from the interface between the particles and matrix.In recent years,a novel technique,in situ formation method,has been extensively studied to produce composite materials [7–11].In this method,reinforcements are formed inthe matrix by reacting between added pure elements.The advantage is that this method eliminates interfacial incom-patibility of matrix with reinforcements.Therefore,the rein-forcements may be more compatible with the matrix.The service life of components usually relies on their surface wear resistance,and it is desirable that the surface layer of components is reinforced by ceramic particles to offer high wear resistance whilst retaining the high toughness and strength.Recently,surface modification techniques,such as laser beam [12],plasma spraying [13]and flame spraying [14],have been used to produce Fe –TiC surface composite coatings.However,for laser cladding,problems always exist owing to differences in the laser beam absorption rates of different cladded powders [15].Furthermore,comparing complex components using the tungsten inert gas (TIG)welding process is expensive and difficult.Interestingly,TIG heating source has a potential to be used for surface modification,however,very limited scientific information is available pertaining to the preparation of Fe-based surface composite coatings by this process [16,17].The aim of the present investigation was to prepare a Fe-based alloy surface composite coating reinforced byTiC⁎Corresponding author.Tel.:+8653188392208;fax:+8653182616431.E-mail address:xinhongwang@.ch (X.H.Wang).0257-8972/$-see front matter ©2005Elsevier B.V .All rights reserved.doi:10.1016/j.surfcoat.2005.09.021particles on AISI1045steel by means of a TIG heat source under a non-oxidizing atmosphere.TiC particles were synthesized by an in situ reaction of graphite and ferrotitanium powders during the TIG welding process,rather than the TiC particles being directly added into the welding pool.2.Materials and experimental procedureAISI1045steel specimens with dimensions of100×25×10 mm were used for substrate.The surfaces of the samples were thoroughly cleaned dried and finally rinsed by acetone.A powder mixture of Fe-based self-fluxing alloy,ferrotitanium (FeTi)alloy and graphite(99.5%purity)was used as the coating alloy.The ferrotitanium and graphite mixed powder was40vol.%.The ratio of FeTi alloy to carbon powder corresponds to that of stoichiometric TiC.The average size of the FeTi and graphite particles was less than10μm.The Fe-based alloy powder possessed an average size of20μm.The main chemical compositions of the Fe-based alloy,FeTi and substrate steel are listed in Table1.The first step of the cladding process was to mix powders to prepare the cladding materials in an attrition-milled machine for 1h.Then,the blended powders were mixed with a small amount of sodium silicate to keep the powders on the surface under the flow of argon during arc-melting.Finally,the powders mixed with sodium silicate were pre-placed on the substrate and dried in hot air.The pre-placed thickness of the coatings(δ)was about0.6–2.0mm.Cladding was carried out using a TIG heat source to produce a series of single clad tracks without overlap.A tungsten electrode with a diameter of2mm was used to create an arc between the tip of the electrode and the specimen surface.The TIG arc used for glazing action was produced with an operation current(I)ranging from90to180A.The voltage(U)and welding speed(v)were chosen as15–17V and70–85mm/min, respectively.The electrode height from the substrate surface was about2mm and the electrode polarity was chosen as DCSP. During the welding,surface oxidation was prevented by pure argon with the flowing rate of8l/min.The microstructure and compositions were analyzed by using a JXA-840scanning electron microscopy(SEM)and a JXA-8800R electron microprobe microanalysis(EPMA), respectively.Phase identification was carried out via D/max-Rc X-ray diffractometer with Cu-Kαradiation operated at60kV and40mA.The volume fraction of TiC particles in the MMC coatings was measured by an XQF-2000computerized image analyzer.The block-on-ring wear testing was carried out without lubrication at room temperature using a friction and wear tester (model MM200,China).The tester is composed of transfer motion device,frictional torque measuring device,and loading device in which a lever system(the ratio of the lever is1:3)was adopted for the sake of relatively stable loading force(as shown in Fig.1).The contact pressure of the two samples was applied by the dead weight.The frictional torque was measured by the swing-lever weight regulating system.The ring material of the wear couple was a cermet containing 92wt.%WC and8wt.%Co.The outer radius of the circular test ring is20mm,and its width is10mm.The test specimens were machined to block with size of30×10×10mm.Before the wear testing,the surfaces of specimens were ground with silicon carbide paper,and then polished with cool polishing powder solution.The alumina slurry was used for the specimen polishing.The specimens were then ultrasonically cleaned in alcohol and acetone until the surfaces were spotless.The wear conditions were a normal load of100N,a sliding speed of0.84 m s−1and a sliding distance of750m.The average width of the wear track was measured with the help of a microscope,and the wear volume was calculated using the following formula[18]:V¼w r2sin−1b2r−b2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir2−b24s()ð1Þwhere,w is width of the specimens(mm),b is width of the wear track(mm)and r is out radius of wear ring(mm).The wear volume loss and friction coefficient were calculated after aTable1Chemical composition(wt.%)of the specimen and powders for surface alloying Material Chemical composition1045steel0.45C,0.25Si,0.66Mn,bal.Fe Ferrotitanium41.5Ti,0.08C,0.035P,0.025S,bal.Fe Fe-based alloy0.1∼0.2C,8.0Ni,18Cr,2.5B,3.0Si,1.0Mo,1.0Mn,1.0V,bal.FeFig.1.A schematic diagram of wear testing:(a)scheme of MM200model friction and wear tester;(b)worn surface of specimen;(1—specimen;2—cermet ring;3—support axes;4—support;5—lever;6—spring;7—weight).TiCγ-Feα-FeM7C3FeB1.00k204060801001202 / degreeθCPSMMMMMGGGGNNNNNNLL L LIIIFig.2.XRD spectrum of the TIG processed composite coating(I=150A,U=15 V,v=78mm/min,δ=1.2mm).6118X.H.Wang et al./Surface&Coatings Technology200(2006)6117–6122certain time interval.The coefficient of friction was calculated according to the following formula:l¼TrPð2Þwhere,μrepresents the friction coefficient,T stands for the average frictional torque(N mm),P is the normal load(N) applied to wear specimens,and r is the outer radius of the ring(mm).3.Results and discussion3.1.Microstructure of coatingThe X-ray diffraction pattern of the composite coating isshown in Fig.2.It shows that the phases of the composite coating are mainly TiC,α-Fe,γ-Fe,(Fe,Cr)7C3and FeB.It clearly confirms that TiC phase can be synthesized by using TIG heat source.Fig.3(a)–(d)shows the phase distribution in the top surface of the composite coating based on the results of EPMA analysis for elements[Ti],[C]and[Cr].Fig.3(e)shows the energy dispersive spectrograph(EDS)result of[A]carbide in Fig.3(a). EPMA results revealed that carbides contained mainly C and Ti elements;however,Cr was mostly dissolved in the matrix.It is thus deduced that most of the Ti combined with carbon to form carbides.Fig.4shows the distribution of carbides in the top surface of the composite coatings produced by TIG welding process.It is found that TiC particles with average size1–4μm are distributed uniformly in the matrix.These fine TiC particles act as reinforcement and are expected to improve the tribological properties of the coatings significantly.The uniform distribution of the particles may attribute to the interaction between the particles and the advancing solid/liquid interface.This interac-tion may lead to trapping or pushing of particles by the solid/ liquid interface.Trapping may bring about a uniform distri-bution of particles within interdendritic zones whereas pushing results in the segregation at zones finally solidified.Addi-tionally,rapid solidification can also effectively decrease coarsening of particle which is detrimental for the structure-sensitive properties of the coatings.Fig.5shows the volume fraction of TiC particles distribution along the coating depth based on the observation of image analyzer.It indicates that the volume fraction of TiC particles possesses a gradient distribution as a function of the coating depth.The average volume fraction of TiC in the whole coatings is about13.4%.This distribution may be attributed to the differential—pared with the Fe-based(a)(b)10μm10μm A(c)(d)10μm10μm(e)Fig.3.EPMA area for scanning of elements in the clad coating:(a)EPMA morphology;(b)Ti;(c)C;(d)Cr;(e)the EDS result of[A]carbide phase(I=150 A;U=15V;v=78mm/min;δ=1.5mm).Fig.4.Distribution of carbides in the top surface of the composite coatings (I=150A,U=15V,v=78mm/min,δ=1.5mm).VolumefractionofTiCCoating depth /mmFig.5.Gradient distribution of TiC particles with the coating depth(I=150A, U=15V,v=78mm/min,δ=1.5mm).6119X.H.Wang et al./Surface&Coatings Technology200(2006)6117–6122alloy,the relative lower density of TiC particles (4.94g/cm 3)tended to segregate to the upper regions in the coating,which causes a gradient distribution on a macro-scale.Microhardness of the clad coatings was measured along the coating depth from the surface;all of the data were an average of three measurements.The typical microhardness profile of the coating along the coating depth is shown in Fig.6.It can be seen that the microhardness of the coating gradually increased with an increase of distance from the molten boundary of the coatings.The gradient distribution of TiC particles led to a gradual hardness distribution of the coating.3.2.Effect of thickness of the pre-placed powder layer Fig.7shows the general appearance of the coatings under the condition of welding current 150A and welding speed 78mm/min.The melted tracks were found to be free from gas porosity,crack and inclusions,when the thickness of pre-placed mixture powders layer is less than 1.5mm (as shown in Fig.6(a)–(c)).Melted tracks gave a smooth rippled surface topography.However,for the same heat input,when the pre-placed thickness is beyond 1.5mm,the formation of the tracks becomes poor and gas porosity and incomplete fusion can be found (as shown in Fig.7(d)and (e)).Fig.8shows the effect of the thickness of the pre-placed powder layer on the hardness.It can be seen that the hardness increases with an increase of the thickness.This may be ascribed to the dilution of the substrate.Dilution is defined as the change in chemical composition of a deposited metal caused by the admixture of the substrate in the weld bead.In general,the substrate is of less carbon and alloy content than the pre-placed powder layer.For the same heat input,the amount of elements in clad coating directly depends on the thickness of the pre-placed powder layer.As the thickness of the pre-placed powder layer increases,the amount of the elements in the clad coating coming from the powder layer increases.As a result,the hardness of the coating increased.However,due to the gas porosity and incomplete fusion in the coating,the hardness reduces when the thickness of the pre-placed powder layer is over 1.5mm.3.3.Effect of welding parametersFor the same thickness of the pre-placed powder layer,dilution rate is essentially governed by welding currents.0.10.30.70.50.9 1.1 1.3 1.5M i c r o h a r d n e s s H V 0.2Coating depth /mmFig.6.Microhardness of the clad coating vs.coating depth (I =150A,U =15V ,v =78mm/min,δ=1.5mm).(b)10mm(e)10mm(c)10mm10mm(a)(d)10mmFig.7.Melted track produced on the surface of specimen with a (a)0.9mm;(b)1.2mm;(c)1.5mm;(d)1.8mm;(e)2.0mm thickness of the pre-placed powder layer (I =150A,U =15V ,v =78mm/min).M i c r o h a r d n e s s /H V 0.2Thickness of the preplaced powder layer δ/mmFig.8.Effect of thickness of the pre-placed powder layer on the hardness (I =150A,U =15V ,v =78mm/min).Fig.9.A schematic diagram of the dilution rate for bead-on-plate weld.6120X.H.Wang et al./Surface &Coatings Technology 200(2006)6117–6122Dilution rate can be measured by the percentage of the substrate in the weld bead for bead-on-plate weld (as shown in Fig.9).It was calculated according to the following formula:d ¼BB þFÂ100%:ð3ÞIn the above equation,d represents the dilution rate;B and F are the areas of the melted metal of the substrate and the clad coating,respectively.The experimental data was taken as the mean value of more than three tests in the same conditions.Statistics showed that the error was less than 8%.Fig.10shows the effect of the welding current on the dilution rate of the coatings at 1.5mm thickness ofthe pre-placed powder layers.It is obvious that the dilution rate increases in proportion to an increase of welding current.Fig.10suggests that the control of welding current is very important in order to control the dilution rate that causes chemical composition of the coatings.A small welding current is helpful to reduce the dilution,but the formation of the track became poor due to the inadequacy of heat input (calculated by using the equation:heat input=(current×voltage×0.48)/travel speed [19]).Fig.11shows the effect of the welding travel speed on the microstructure of the clad pared with Fig.4,it is found that there are a few fine TiC particles in the coatings at a 3D i l u t i o n r a t e d /%Welding current I/AFig.10.The relationship between dilution and welding current (U =15V ,v =78mm/min,δ=1.5mm).(b)(a)7.5µmFig.11.Effect of processing speed on the microstructure of composite coating:(a)3mm/s;(b)0.5mm/s (I =150A,U =15V ,δ=1.5mm).W e a r v o l u m e / m m 3sliding distance /msliding distance /m0.00.51.01.52.02.53.0W e a r r a t e x 106 m m 3/( N m m ).Fig.12.The wear volume and wear rate vs.sliding distance (a)wear volume,(b)the wear rate (I =150A,U =15V ,v =78mm/min,δ=1.5mm).sliding distance /mF r i c t i o n c o e f f i c i e n t /µFig.13.The variation of the friction coefficient with the sliding distance (I =150A,U =15V ,v =78mm/min,δ=1.5mm).6121X.H.Wang et al./Surface &Coatings Technology 200(2006)6117–6122mm s−1welding travel speed.However,there are also a few coarse TiC particles in the clad coating at a0.5mm s−1welding travel speed.Rapid welding travel speed results in the small heat input and rapid solidification,the reaction between Ti and C is incomplete.However,for sallow welding travel speed,the heat input increases,there is enough time for a reaction between Ti and C,but TiC particles are easy to get together and then grow.Therefore,the welding travel speed has a key effect on the micro-distribution of TiC particles.3.4.Wear characterization of the coatingsCompared with the substrate and Fe-based alloy TIG clad coating,the wear volume and wear rate of TiC particle reinforced Fe-based composite coating at the same processing parameters as shown in Fig.12.It can be seen that the in situ TiC reinforced Fe-based composite coating is more effective in improving wear resistance and has the smallest wear volume and also the lowest wear rate with increasing sliding distance. The friction coefficient vs.the sliding distance at a normal load of100N is shown in Fig.13.It reveals that the friction coefficient of the in situ formed TiC particles which reinforced Fe-based composite coating is a little higher than that of the Fe-based alloy clad coating.Hence,the in situ TiC reinforced composite coating may enhance the hardness and wear resistance without evidently increasing the friction coefficient of the coatings.4.Conclusions1.TiC particle reinforced Fe-based alloy surface compositecoating has been successfully produced by using tungsten-inert gas welding process.The dispersed TiC particles are formed by in situ reacting ferrotitanium and graphite during TIG welding process,instead of TiC particles being added into welding pool directly.2.The microhardness of the coatings reveals a gradientvariation.It was affected by the thickness of the pre-placed powder layer and welding parameters obviously.When welding travel speed and thickness of the pre-placed powder are certain,the hardness of the clad coatings reduces with an increase of welding current.3.The in situ TiC reinforced composite coating enhanced thehardness and wear resistance without an evident increase in the friction coefficient of the coatings. AcknowledgementsThis research was supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No. 20020422032)and Doctoral Program of Shandong Province (2004BS04004).References[1]T.C.Lei,J.H.Ouyang,Y.T.Pei,Y.Zhou,Mater.Sci.Technol.11(5)(1995)520.[2]X.H.Wang,Z.D.Zou,S.L.Song,S.Y.Qu,Trans.Nonfeerous Met.Soc.China14(4)(2004)660.[3]V.K.Rai,R.Strivastava,S.K.Nath,S.Ray,Wear231(1999)265.[4]J.Q.Jiang,T.S.Lim,Y.J.Kim,B.K.Kim,H.S.Chun,Mater.Sci.Technol.12(1996)362.[5]Z.Fan,H.J.Niu,A.P.Miodownik,T.Saito,B.Cantor,Key Eng.Mater.127(1997)423.[6]D.B.Miracle,H.A.Lipsitt,J.Am.Ceram.Soc.66(1983)592.[7]W.H.Jiang,W.D.Pan,Y.L.Ren,X.L.Han,J.Mater.Sci.Lett.17(1998)1527.[8]N.Frage,L.Levin,E.Manor,R.Shneck,J.Zabicky,Scr.Mater.35(1996)799.[9]K.Murakami,A.Yoshimoto,T.Okamoto,Y.Miyamoto,Mater.Sci.Eng.,A Struct.Mater.:Prop.Microstruct.Process.160(1993)137.[10]S.Yang,M.L.Zhong,W.J.Liu,Mater.Sci.Eng.,A Struct.Mater.:Prop.Microstruct.Process.343(1–2)(2002)57.[11]L.Lu,J.Y.H.Fuh,Z.D.Chen,C.C.Leong,Y.S.Wong,Mater.Res.Bull.35(2000)1555.[12]Heung-il Park,Kazuhiro Nakata,Shogo Tomida,J.Mater.Sci.35(3)(2000)747.[13]U.Schulz,M.Peters,Fr.-W.Bach,G.Tegeder,Mater.Sci.Eng.,A Struct.Mater.:Prop.Microstruct.Process.362(1–2)(2003)61.[14]Z.W.Li,C.S.Liu,J.H.Huang,S.Yin,J.Mater.Sci.Technol.19(2)(2003)161.[15]Y.C.Lin,S.W.Wang,Tribol.Int.36(2003)1.[16]S.Mridha,H.S.Ong,L.S.Poh,P.Cheang,J.Mater.Process.Technol.113(2001)516.[17]M.Eroğglu,N.O.Zdemir,Surf.Coat.Technol.154(2002)209.[18]H.L.Wang,H.H.Li,F.Y.Yan,Wear258(2004)1562.[19]K.E.Easterling,Butterworth-Heinemann,London,1992.6122X.H.Wang et al./Surface&Coatings Technology200(2006)6117–6122。