A density functional study of pressure induced superconductivity in P and its implication f

合集下载

密度函数

密度函数

Electronic structure and optical properties of Zn X(X=O,S,Se,Te):A density functional study S.Zh.Karazhanov,1,2P.Ravindran,1A.Kjekshus,1H.Fjellvåg,1and B.G.Svensson3 1Centre for Material Science and Nanotechnology,Department of Chemistry,University of Oslo,P.O.Box1033Blindern,N-0315Oslo,Norway2Physical-Technical Institute,2B Mavlyanov Street,Tashkent700084,Uzbekistan3Department of Physics,University of Oslo,P.O.Box1048Blindern,N-0316Oslo,Norway͑Received5July2006;revised manuscript received15November2006;published6April2007͒Electronic band structure and optical properties of zinc monochalcogenides with zinc-blende-and wurtzite-type structures were studied using the ab initio density functional method within the local-density approxima-tion͑LDA͒,generalized-gradient approximation,and LDA+U approaches.Calculations of the optical spectrahave been performed for the energy range0–20eV,with and without including spin-orbit coupling.Reflec-tivity,absorption and extinction coefficients,and refractive index have been computed from the imaginary partof the dielectric function using the Kramers-Kronig transformations.A rigid shift of the calculated opticalspectra is found to provide a goodfirst approximation to reproduce experimental observations for almost all thezinc monochalcogenide phases considered.By inspection of the calculated and experimentally determinedband-gap values for the zinc monochalcogenide series,the band gap of ZnO with zinc-blende structure hasbeen estimated.DOI:10.1103/PhysRevB.75.155104PACS number͑s͒:71.15.Ϫm,71.22.ϩiI.INTRODUCTIONThe zinc monochalcogenides͑Zn X;X=O,S,Se,and Te͒are the prototype II-VI semiconductors.These compoundsare reported to crystallize in the zinc-blende-͑z͒and wurtzite ͑w͒-type structures.The Zn X-z phases are optically isotropic, while the Zn X-w phases are anisotropic with c as the polaraxis.Zn X phases are a primary candidate for optical devicetechnology such as visual displays,high-density opticalmemories,transparent conductors,solid-state laser devices,photodetectors,solar cells,etc.So,knowledge about opticalproperties of these materials is especially important in thedesign and analysis of Zn X-based optoelectronic devices.Optical parameters for some of the Zn X phases havewidely been studied experimentally in the past.Detailed in-formation on this subject is available for ZnO-w,1–9ZnS-w,9ZnS-z,9–11ZnSe-z,9,10and ZnTe-z,9,10,12,13and see the sys-tematized survey in Ref.14.However,there are no experi-mental data on optical properties of ZnSe-w,ZnTe-w,andZnO-z.Furthermore,there is a lack of consistency betweensome of the experimental values for the optical spectra.Thisis demonstrated in Fig.1,which displays reflectivity spectrafor ZnO-w measured at T=300K by three different groups.Dielectric-response functions were calculated using theKramers-Kronig relation.As is seen in Fig.1,intensity of theimaginary part of the dielectric function͑⑀2͒and reflectivity ͑R͒corresponding to the fundamental absorption edge of ZnO-w are higher8than those at the energy range10–15eV, while in Ref.14it is vice versa.The optical spectra in Fig.1 measured using the linearly polarized incident light for elec-tricfield͑E͒parallel͑ʈ͒and perpendicular͑Ќ͒to the c axes are somehow close to those of Ref.7using nonpolarized incident light.Using the experimental reflectivity data,a full set of op-tical spectra for ZnO has been calculated15for the wide en-ergy range0–26eV.Density functional theory16͑DFT͒in the local-density approximation17͑LDA͒has also been used to calculate optical spectra for ZnO-w͑Ref.18͒and ZnS-w ͑Ref.18͒by linear combination of atomic orbitals and for ZnS-z19and ZnSe-z19by self-consistent linear combination of Gaussian orbitals.The optical spectra of ZnO͑including excitons͒has been investigated20by solving the Bethe-Salpeter equation.Band-structure studies have been per-formed by linearized-augmented plane-wave method plus lo-cal orbitals͑LAPW+LO͒within the generalized gradient and LDA with the multiorbital mean-field Hubbard potential ͑LDA+U͒approximations.The latter approximation is found to correct not only the energy location of the Zn3d electrons and associated band parameters͑see also Refs.21 and22͒but also to improve the optical response.Despite the shortcoming of DFT in relation to underestimation of band gaps,the locations of the major peaks in the calculated en-ergy dependence of the optical spectra are found to be in good agreement with experimental data.It should be noted that the error in calculation of the band gap by DFT within LDA and generalized-gradient approxi-mation͑GGA͒is more severe in semiconductors with strong Coulomb correlation effects than in other solids.21–25This is due to the mean-field character of the Kohn-Sham equations and the poor description of the strong Coulomb correlation and exchange interaction between electrons in narrow d bands͑viz.,the potential U͒.Not only the band gap͑E g͒but also the crystal-field͑CF͒and spin-orbit͑SO͒splitting ener-gies͑⌬CF and⌬SO͒,the order of states at the top of the valence band͑VB͒,the location of the Zn3d band and its width,and the band dispersion are found21,22,26,27to be incor-rect for ZnO-w by the ab initio full potential͑FP͒and atomic-sphere-approximation͑ASA͒linear muffin-tin orbital ͑LMTO͒methods within the pure LDA͑Refs.26and27͒and by the projector-augmented wave͑PAW͒method within LDA and GGA.21,22Thesefindings were ascribed21,22to strong Coulomb correlation effects.DFT calculations within LDA plus self-interaction correction͑LDA+SIC͒and LDA +U are found21,22,26to rectify the errors related to⌬CF andPHYSICAL REVIEW B75,155104͑2007͒⌬SO ,order of states at the top VB,and width and location of the Zn 3d band,as well as effective masses.In other semi-conductors,in which the Coulomb correlation is not suffi-ciently strong,the ⌬CF and ⌬SO values derived from DFT calculations within LDA are found to be quite accurate.This was demonstrated for diamondlike group IV ,z -type group III-V ,II-VI,and I-VII semiconductors,28w -type AlN,GaN,and InN,29using the LAPW and V ASP -PAW,the w -type CdS and CdSe,27z -type ZnSe,CdTe,and HgTe,30using the ab initio LMTO-ASA,and z -and w -type ZnSe and ZnTe ͑Refs.21and 22͒as well as z -type CdTe,31using the V ASP -PAW and FP LMTO methods.Although the SO splitting at the top of VB is known to play an important role in electronic structure and chemical bonding ofsemiconductors,21,22,26,28–30,32,33there is no systematic study of the role of the SO coupling in optical properties of these materials.Several attempts have been undertaken to resolve the DFT eigenvalue problem.One such approach is the utilization of the GW approximation ͑“G”stands for one-particle Green’s function as derived from many-body perturbation theory and “W”for Coulomb screened interactions ͒.Although GW re-moves most of the problems of LDA with regard to excited-state properties,it fails to describe the semiconductors with strong Coulomb correlation effects.For example,two studies of the band gap of ZnO calculated using the GW correction underestimated E g by 1.2eV ͑Ref.34͒and overestimated it by 0.84eV.35Calculations for Zn,Cd,and Hg monochalco-genides by the GW approach showed 36that the band-gap underestimation is in the range 0.3–bination of exact-exchange ͑EXX ͒DFT calculations and the optimized-effective GW potential approach is found 37to improve the agreement with the experimental band gaps and Zn 3d en-ergy levels.Band gaps calculated within the EXX treatment are found to be in good agreement with experiment for thes -p semiconductors.38,39Excellent agreement with experi-mental data was obtained 39also for locations of energy levels of the d bands of a number of semiconductors and insulators such as Ge,GaAs,CdS,Si,ZnS,C,BN,Ne,Ar,Kr,and Xe.Another means to correct the DFT eigenvalue error is to use the screened-exchange LDA.40Compared to LDA and GW,this approximation is found to be computationally much less demanding,permitting self-consistent determination of the ground-state properties and giving more correct band gaps and optical properties.Other considered approaches for ab initio computations of optical properties involve electron-hole interaction,41partial inclusion of dynamical vertex cor-rections that neglect excitons,42and empirical energy-dependent self-energy correction according to the Kohn-Sham local-density theory of excitation.19However,the simplest method is to apply the scissor operator,43which displaces the LDA eigenvalues for the unoccupied states by a rigid energy ing the latter method,excellent agree-ment with experiments has been demonstrated for lead monochalcogenides 44and ferroelectric NaNO 2.45However,the question as to whether the rigid energy shift is generally applicable to semiconductors with strong Coulomb correla-tion effects is open.In this work,electronic structure and optical properties of the Zn X -w and -z phases have been studied in the energy range from 0to 20eV based on first-principles band-structure calculations derived from DFT within the LDA,GGA,and LDA+U .PUTATIONAL DETAILSExperimentally determined lattice parameters have been used in the present ab initio calculations ͑Table I ͒.The ideal positional parameter u for Zn X -w is calculated on the as-sumption of equal nearest-neighbor bond lengths:27u =13ͩa cͪ2+14.͑1͒The values of u for the ideal case agree well with the experi-mental values u *͑see Table I ͒.Self-consistent calculations were performed using a 10ϫ10ϫ10mesh according to the Monkhorst-Pack scheme for the Zn X -z phases and the ⌫-centered grid for the Zn X -w phases.A.Calculations byV ASPpackageOptical spectra have been studied based on the band-structure data obtained from the V ASP -PAW package,55which solves the Kohn-Sham eigenvalues in the framework of the DFT ͑Ref.16͒within LDA,17GGA,56and the simplified ro-tationally invariant LDA+U .23,24The exchange and correla-tion energies per electron have been described by the Perdew-Zunger parametrization 57of the quantum Monte Carlo results of Ceperley and Alder.58The interaction be-tween electrons and atomic cores is described by means of non-norm-conserving pseudopotentials implemented in the V ASP package.55The pseudopotentials are generated in accor-dance with the PAW ͑Refs.59and 60͒method.The use of the PAW pseudopotentials addresses the problem ofinad-FIG.1.Reflectivity spectra R ͑␻͒for ZnO-w determined experi-mentally at 300K in Refs.9and 14͑solid circles ͒,Ref.8͑open circles ͒,and Ref.7͑solid lines ͒,along with the imaginary part of the dielectric-response function ͓⑀2͑␻͔͒calculated using the Kramers-Kronig relation.The results of Ref.7͑open circles ͒are used for both E ʈc and E Ќc ,because no polarized incident light was used in the experiments.KARAZHANOV et al.PHYSICAL REVIEW B 75,155104͑2007͒equate description of the wave functions in the core region ͑common to other pseudopotential approaches61͒,and its ap-plication allows us to construct orthonormalized all-electron-like wave functions for Zn3d and4s and s and p valence electrons of the X atoms under consideration.LDA and GGA pseudopotentials have been used,and the completelyfilled semicore Zn3d shell has been considered as valence states.It is well known that DFT calculations within LDA and GGA locate the Zn3d band inappropriately close to the top-most VB,hybridizing the O p band,falsifying the band dis-persion,and reducing the band gap.Nowadays,the problem is known to be solved by using the LDA+SIC and LDA +U.21,22,26,62–64For the DFT calculations within LDA+U, explicit values of the parameters U and J are required as input.In previous papers,21,22we have estimated the values of the U and J parameters within the constrained DFT theory65and in a semiempirical way by performing the cal-culations for different values of U and forcing it to match the experimentally established66location of the Zn3d bands. Based on the results,21,22the values of the parameters U and J listed in Table I are chosen to study the optical spectra.B.Calculations by MINDLAB packageFor investigation of the role of the SO coupling in elec-tronic structure and optical properties of Zn X,DFT calcula-tions have been performed using the MINDLAB package,67 which uses the full potential linear muffin-tin orbital͑FP LMTO͒method.For the core charge density,the frozen-core approximation is used.The calculations are based on LDA with the exchange-correlation potential parametrized accord-ing to Gunnarsson-Lundquist68and V osko-Wilk-Nussair.69The base geometry in this computational method consists of a muffin-tin part and an interstitial part.The basis set is comprised of linear muffin-tin orbitals.Inside the muffin-tin spheres,the basis functions,charge density,and potential are expanded in symmetry-adapted spherical harmonic functions together with a radial function and a Fourier series in the interstitial.C.Calculation of optical propertiesFrom the DFT calculations,the imaginary part of the di-electric function⑀2͑␻͒has been derived by summing transi-tions from occupied to unoccupied states for energies much larger than those of the phonons:⑀2ij͑␻͒=Ve22␲បm2␻2͵d3k͚nnЈ͗kn͉p i͉knЈ͘ϫ͗knЈ͉p j͉kn͘f kn͑1−f knЈ͒␦͑⑀knЈ−⑀kn−ប␻͒.͑2͒Here,͑p x,p y,p z͒=p is the momentum operator,f kn the Fermi distribution,and͉kn͘the crystal wave function correspond-ing to the energy⑀kn with momentum k.Since the Zn X-w phases are optically anisotropic,components of the dielectric function corresponding to the electricfield parallel͑Eʈc͒and perpendicular͑EЌc͒to the crystallographic c axis have been considered.The Zn X-z phases are isotropic;conse-quently,only one component of the dielectric function has to be analyzed.The real part of the dielectric function⑀1͑␻͒is calculated using the Kramer-Kronig transformation.The knowledge ofTABLE I.Theoretically and experimentally͑in brackets͒determined unit-cell dimensions a and c,vol-umes V,ideal u͓calculated by Eq.͑1͔͒,and experimental u*,as well as values of the parameters U and J from Refs.21and22,were used in the present calculations.For w-type structure,a=b.For the z-type structure, a=b=c and all atoms are infixed positions.Phasea͑Å͒c͑Å͒V͑Å3͒u*uU͑eV͒J͑eV͒ZnO-w a 3.244͑3.250͒ 5.027͑5.207͒45.82͑47.62͒0.3830.38091ZnS-w b,c 3.854͑3.811͒ 6.305͑6.234͒81.11͑78.41͒0.3750.37561ZnSe-w a,d 4.043͑3.996͒ 6.703͑6.626͒94.88͑91.63͒0.3750.37181ZnTe-w e,f 4.366͑4.320͒7.176͑7.100͒118.47͑114.75͒0.3750.37371ZnO-z g 4.633͑4.620͒99.45͑98.61͒81ZnS-z h,i 5.451͑5.409͒161.99͑158.25͒91ZnSe-z a 5.743͑5.662͒189.45͑181.51͒81ZnTe-z i,j 6.187͑6.101͒236.79͑227.09͒81Reference46.b Reference18.c Reference47.d Reference48.e Reference49.f Reference50.g Reference51.h Reference52.i Reference53.j Reference54.ELECTRONIC STRUCTURE AND OPTICAL PROPERTIES…PHYSICAL REVIEW B75,155104͑2007͒both the real and imaginary parts of the dielectric tensor allows one to calculate other important optical spectra.In this paper,we present and analyze the reflectivity R ͑␻͒,the absorption coefficient ␣͑␻͒,the refractive index n ͑␻͒,and the extinction coefficient k ͑␻͒:R ͑␻͒=ͯͱ⑀͑␻͒−1ͱ⑀͑␻͒+1ͯ2,͑3͒␣͑␻͒=␻ͱ2ͱ⑀12͑␻͒+⑀22͑␻͒−2⑀1͑␻͒,͑4͒n ͑␻͒=ͱͱ⑀12͑␻͒+⑀22͑␻͒+⑀1͑␻͒2,͑5͒k ͑␻͒=ͱͱ⑀12͑␻͒+⑀22͑␻͒−⑀1͑␻͒2.͑6͒Here,⑀͑␻͒=⑀1͑␻͒+i ⑀2͑␻͒is the complex dielectric function.The calculated optical spectra yield unbroadened functions and,consequently,have more structure than the experimental ones.44,45,70,71To facilitate a comparison with the experimen-tal findings,the calculated imaginary part of the dielectric function has been broadened.The exact form of the broad-ening function is unknown.However,analysis of the avail-able experimentally measured optical spectra of Zn X shows that the broadening usually increases with increasing excita-tion energy.Also,the instrumental resolution smears out many fine features.These features have been modeled using the lifetime broadening technique by convoluting the imagi-nary part of the dielectric function with a Lorentzian with a full width at half maximum of 0.002͑ប␻͒2eV,increasing quadratically with the photon energy.The experimental reso-lution was simulated by broadening the final spectra with a Gaussian,where the full width at half maximum is equal to 0.08eV.III.RESULTS AND DISCUSSIONA.Band structureThe optical spectra are related to band dispersion and probabilities of interband optical transitions.So,it is of in-terest to analyze the electronic structure in detail.Band dis-persions for Zn X -w and Zn X -z calculated by DFT within LDA and LDA+U are presented in Fig.2.The general fea-tures of the band dispersions are in agreement with previous studies ͑see,e.g.,Refs.26,62,and 72͒.It is seen from Fig.2that the conduction-band ͑CB ͒minima for Zn X -w and Zn X -z are much more dispersive than the VB maximum,which shows that the holes are much heavier than the CB electrons in agreement with experimental data 73,74for the effective masses and calculated with FP LMTO and ͑Ref.26͒linear combination of atomic orbitals,18as well as with our findings.21,21Consequently,mobility of electrons is higher than that of holes.Furthermore,these features indicate that p electrons of X ͑that form the topmost VB states ͒are tightly bound to their atoms and make the VB holes less mobile.Hence,the contribution of the holes to the conductivity is expected to be smaller than that of CB electrons even though the concentration of the latter is smaller than that of the former.These features emphasize the predominant ionic na-ture of the chemical bonding.Another interesting feature of the band structures is that the VB maximum becomes more dispersive with increasing atomic number of X from O to Te.As noted in our previous contributions,21,22the band gaps of Zn X calculated by DFT within LDA,GGA,and LDA +U are underestimated and the question as to whether it is possible to shift the CB states rigidly was kept open.As found from the optical spectra discussed on the following sections,rigid shifts of the CB states up to the experimen-tally determined locations can provide a good first approxi-mation for the stipulation of the band gap.So,for the band dispersions in Fig.2,we have made use of this simple way for correcting the band gaps calculated by DFT.The only problem in this respect was the lack of an experimental band-gap value for ZnO-z .To solve this problem,the experi-mental and calculated ͑by DFT within LDA ͒band gaps ͑E g ͒of the Zn X series were plotted as a function of the atomic number of X .As seen from Fig.3,E g for the Zn X -w phases are very close to the corresponding values for the Zn X -z phases and the shape of the experimentaland calculated functional dependencies is in conformity.On this basis,theFIG.2.Band dispersion for ZnO-w ,ZnS-w ,ZnSe-w ,ZnTe-w ,ZnO-z ,ZnS-z ,ZnSe-z ,and ZnTe-z calculated according to LDA ͑solid lines ͒and LDA+U ͑dotted lines ͒.The Fermi level is set to zero energy.KARAZHANOV et al.PHYSICAL REVIEW B 75,155104͑2007͒band gap of ZnO-z is estimated by extrapolating the findings for Zn X -z from ZnS-z to ZnO-z .This procedure gave E g Ϸ3.3eV for ZnO-z .It is well known that not only band gaps are underesti-mated within LDA and GGA,but also band dispersions come out incorrectly,whereas location of energy levels of the Zn 3d electrons are overestimated ͑see,e.g.,Refs.20–22and 63͒.As also seen from Fig.2,calculations within the LDA+U approach somewhat correct the location of the en-ergy levels of the Zn 3d electrons.The elucidation of the eigenvalue problem and the order of states at the topmost VB from LDA,GGA,and LDA+U calculations are discussed in Refs.20–22and 26and will not be repeated here.Examination of Fig.2shows that the VB comprises three regions of bands:first a lower region consists of s bands of Zn and X ,a higher-lying region of well localized Zn 3d bands,and on top of this a broader band dispersion originat-ing from X -p states hybridized with Zn 3d states.The latter subband is more pronounced in ZnO than in the other Zn X phases considered.The hybridization is most severe accord-ing to the LDA and GGA calculations,whereas the LDA +U calculations somehow suppress this and improve the band-gap underestimation.A more detailed discussion of these aspects is found in Refs.21and 22.The SO splitting at the topmost VB is known to play an important role for the electronic structure and chemical bonding of solids.28,29,32In semiconductors with z -type struc-ture,the SO splitting energy is determined as the difference between energies of the topmost VB states with symmetry ⌫8v and ⌫7v .28,29,32In the w -type compounds,the topmost VB is split not only by SO interaction but also by CF,giving rise to three states at the Brillouin-zone center.To calculate theSO splitting energy for w -type phases,the quasicubic model of Hopfield 75is commonly used.It is well known that the SO splitting energy derived from ab initio calculations agrees well with experimental data only for some of the semiconductors.This is demonstrated,for example,for all diamondlike group IV and z -type group III-V ,II-VI,and I-VII semiconductors,28w -type AlN,GaN,and InN,29Zn X -w and -z ͑X =S,Se,and Te ͒,21,22and CdTe.31However,the errors in estimated SO and CF splitting ener-gies by LDA calculations are significant for semiconductors with strong Coulomb correlation effects,as demonstrated,e.g.,for ZnO.21,22,26For such systems,DFT calculations within LDA+U ͑Refs.21,22,and 26͒are shown to provide quite accurate values for ⌬CF and ⌬SO .Overestimation of the p -d hybridization in various variants of the DFT can also lead to the wrong spin-orbit coupling of the valence bands.76,77Systematic study of the SO coupling parameters was per-formed for zinc-blende II-VI semiconductors ͑Ref.30͒using the TB and LMTO methods,as well as for all diamondlike and zinc-blende semiconductors ͑Ref.28͒using the FLAPW method with and without the p 1/2local orbitals and the frozen-core PAW method implemented into V ASP .The cor-rections coming from the inclusion of the local p 1/2orbitals are found to be negligible for the compounds with light at-oms.Analysis of these results shows that the SO splitting energy coming from calculations using the V ASP -PAW shows good agreement with the experimental data.This result was also obtained 21recently for Zn X of wurtzite and zinc-blende structures.As demonstrated in Refs.21and 22the SO split-ting energy ͑⌬SO ͒increases when one moves from ZnO-z to ZnTe-z ,in agreement with earlier findings of Ref.28.To study the role of the SO coupling in band dispersion,the present ab initio calculations have been performed by V ASP and MINDLAB packages and spin-orbit splitting energy is found.The results are presented in Table II .Analysis of Table II shows that ͑⌬SO ͒calculated by MINDLAB is quite accurate.As expected,band dispersions calculated with and with-out the SO coupling differ little when the SO splittingenergyFIG.3.Band gaps for Zn X -w ͑circles ͒and Zn X -z ͑triangles ͒phases determined experimentally ͑filled symbols,from Refs.21and 22͒and calculated ͑open symbols ͒by DFT within LDA as a function of the atomic number of the X component of Zn X .TABLE II.Calculated SO splitting energy ͑in meV ͒using the MINDLAB package along with the previous theoretical and experi-mental findings.ZnO-z ZnS-z ZnSe-z ZnTe-z –3166432914–3166432914−34a 66a 393a 889a −34b 66b 398b 916b −37c 64c 392c 898c −33d64d 393d 897d 65e420f910fLAPW,Ref.28.b LAPW+p1/2,Ref.28.c V ASP -PAW,Ref.28.dV ASP -PAW,Ref.21.eExperiment,Ref.78.f Experiment,Ref.79.ELECTRONIC STRUCTURE AND OPTICAL PROPERTIES …PHYSICAL REVIEW B 75,155104͑2007͒is small.However,the difference increases when one moves from ZnO to ZnTe.This feature is demonstrated in Table II and Fig.4for band dispersions of ZnO-z ,ZnO-w ,ZnTe-z ,and ZnTe-w calculated by V ASP with and without including the SO coupling.As is well known ͑see,e.g.,Refs.21,26,and 27͒,without the SO coupling,the top of the VB of Zn X -w is split into a doublet and a singlet state.In the band structure,the Fermi level is located at the topmost one ͑Fig.4͒,which is the zero energy.Upon inclusion of the SO cou-pling into calculations,the doublet and singlet states are split into three twofold degenerate states called A ,B ,and C states with energies E g ͑A ͒,E g ͑B ͒,and E g ͑C ͒,respectively,80ar-ranged in order of decreasing energy,i.e.,E g ͑A ͒ϾE g ͑B ͒ϾE g ͑C ͒.The center of gravity of the A ,B ,and C states,located at ͓E g ͑A ͒−E g ͑C ͔͒/3below the topmost A state,re-mains to be nearly the same as the topmost VB,correspond-ing to the case without the SO coupling.26,27Consequently,to compare band structures calculated with and without the SO coupling,one should plot the band structure with the Fermi energy at the center of gravity of the A ,B ,and C states for the former and at the topmost VB for the latter.Hence,when the SO coupling is applied,the A and B states as well as the bottommost CB move upwards to ͓E g ͑A ͒−E g ͑C ͔͒/3in en-ergy,whereas the C state moves downwards to ͓E g ͑A ͒−E g ͑C ͔͒2/3compared to the center of gravity.Then,posi-tions of the lowest VB region calculated with and without the SO coupling remain nearly identical.B.General features of optical spectra of Zn XSince optical properties of solids are based on the band structure,the nature of the basic peaks in the optical spectracan be interpreted in terms of the interband transitions re-sponsible for the peaks.Such an interpretation is available for semiconductors with z -and w -type structures.11,14,81In order to simplify the presentation of the findings of this work,the labels E 0,E 1,and E 2of Ref.11͑from the reflec-tivity spectra ͒were retained in Table III and Fig.4.The subscript 0is ascribed to transitions occurring at ⌫,the sub-script 1to transitions at points in the ͓111͔direction,and the subscript 2to transitions at points in the ͓100͔direction ͑re-ferring to the k space for the z -type structure ͒.Assignment of the E 0,E 1,and E 2peaks to optical transitions at high-symmetry points is presented in Table III and Fig.4.The optical spectra ⑀1͑␻͒,⑀2͑␻͒,␣͑␻͒,R ͑␻͒,n ͑␻͒,and k ͑␻͒calculated by DFT within LDA,GGA,and LDA+U are displayed in Figs.5–8and compared with available experi-mental findings.14The spectral profiles are indeed very simi-lar to each other.Therefore,we shall only give a brief ac-count mainly focusing on the location of the interband optical transitions.The peak structures in Figs.5–8can be explained from the band structure discussed above.All peaks observed by experiments ͑see,e.g.,Refs.11and 14͒are reproduced by the theoretical calculations.Because of the underestimation of the optical band gaps in the DFT calculations,the locations of all the peaks in the spectral profiles are consistently shifted toward lower energies as compared with the experimentally determined spectra.Rigid shift ͑by the scissor operator ͒of the optical spectra has been applied,which somewhat removed the discrepancy between the theoretical and experimental results.In general,the cal-culated optical spectra qualitatively agree with the experi-mental data.In our theoretical calculations,the intensity of the major peaks are underestimated,while the intensity of some of the shoulders is overestimated.This result is in good agreement with previous theoretical findings ͑see,e.g.,Ref.19͒.The discrepancies are probably originating from the ne-glect of the Coulomb interaction between free electrons and holes ͑excitons ͒,overestimation of the optical matrix ele-ments,and local-field and finite-lifetime effects.Further-more,for calculations of the imaginary part of the dielectric-response function,only the optical transitions from occupied to unoccupied states with fixed k vector are considered.Moreover,the experimental resolution smears out many fine features,and,as demonstrated in Fig.1,there is inconsis-tency between the experimental data measured by the same method and at the same temperature.However,as noted in the Introduction,accounting for the excitons and Coulomb correlation effects in ab initio calculations 20by the LAPW +LO within LDA+U allowed correcting not only theenergyFIG. 4.Band dispersion for ZnO-z ,ZnO-w ,ZnTe-z ,and ZnTe-w calculated by the V ASP -PAW method within LDA account-ing for SO coupling ͑solid lines ͒and without SO coupling ͑open circles ͒.Topmost VB of the band structure without SO coupling and center of gravity of that with SO coupling are set at zero energy.Symmetry labels for some of the high-symmetry points are shown for ͑c ͒ZnTe-z and ͑d ͒ZnTe-w to be used for interpretation of the origin of some of the peaks in the optical spectra of Zn X -w and Zn X -z .TABLE III.Relation of the basic E 0,E 1,and E 2peaks in the optical spectra of Zn X to high-symmetry points ͑see Refs.11and 14͒in the Brillouin zone at which the transitions seem to occur.Peak z type w type,E ʈc w type,E Ќc E 0⌫8→⌫6⌫1→⌫1⌫6→⌫1E 1L 4,5→L 6A 5,6→A 1,3M 4→M 1E 2X 7→X 6KARAZHANOV et al.PHYSICAL REVIEW B 75,155104͑2007͒。

新型高能氮杂环化合物的分子设计

新型高能氮杂环化合物的分子设计

硕士论文新型高能氮杂环化合物的分子设计摘要近年来,高能氮杂环化合物逐渐发展起来,被认为是具有良好应用前景的一类新型高能材料。

本文运用密度泛函理论(DFT)方法,系统地研究了四种类型多系列高能氮杂环化合物,并将计算的结果与传统炸药RDX和HMX的性能进行比较,从而筛选出性能和稳定性都较好的潜在候选物。

本研究可为设计和合成新型高能量密度化合物提供基本的信息。

主要内容如下:第一部分:运用DFT-B3LYP/6.31G宰木方法,研究了系列4,8.二呋咱【3,4.b,e】哌嗪衍生物的生成热、电子结构、爆轰性能以及热稳定性。

基于等键反应,通过利用总能量的方法计算了目标衍生物的生成热。

基于预测的理论密度,用Kamlet.Jacobs方程估算他们的爆速和爆压。

通过分析相对较弱键的键解离能和键级比较了化合物他们的热稳定性。

综合爆轰性能和热稳定性得出,2种4,8.二呋咱【3,4-b,e】哌嗪衍生物可作为潜在的高能量密度化合物的候选物。

第二部分:对含二氟氨基的四元、六元和八元氮环衍生物的生成热、密度、爆轰性能和热稳定性进行了系统的研究。

首先,借助于等键反应,利用总能量计算出他们的生成热。

然后在计算密度的基础上,利用Kamlet-Jacobs方程研究爆轰性能,最后,通过分析他们可能断裂化学键的键解离能判定热稳定性。

第三部分:在B3LYP/6.31G**水平上,优化了1,3.二硝基氮杂丁烷及其系列衍生物的几何构型,求得其总能量以及最高占有轨道(HOMO)和最低占未有轨道(LUM0)的能量。

然后设计等键反应,计算了他们的生成热。

讨论了取代基和杂环对生成热的影响规律。

在理论密度估算的基础上,运用Kamlet.Jacobs方程计算出其爆速爆压。

再通过比较衍生物中较弱化学键的键级和键解离能预测其稳定性,从而筛选出综合性能较好的候选物。

第四部分:研究了不同取代基对3,6.2H.1,2,4,5.四嗪的生成热、电子结构、爆轰性能和热稳定性的影响。

压力对CrSi2弹性及弹性各向异性影响的研究

压力对CrSi2弹性及弹性各向异性影响的研究

压力对 CrSi2弹性及弹性各向异性影响的研究摘要:本文采用密度泛函理论计算了压力下CrSi2的声子谱、电子结构、弹性常数和弹性各向异性。

结果表明,CrSi2的晶体结构参数随着压力的增加而减小。

声子色散曲线在不同外加压力下没有出现虚频,说明它们都是动力稳定的。

弹性常数也符合Born准则,表明机械学稳定性。

CrSi2的弹性常数、体积模量、剪切模量、杨氏模量、泊松比和B/G都随压力的增加而增加,表明适当的外界压力可以加强CrSi2的延展性,从而让其在工业应用上有望成为具有良好前景的可塑性金属合金的备选材料。

热容量随着压力的增大而轻微的减小。

关键词:密度泛函理论;弹性性能;各向异性1.引言随着科技的发展,现代工业对材料的强度与延展性的要求逐步提升,过渡金属铬化物因其熔化温度高、化学稳定性良好、热导率高、优益的耐高温抗氧化的性能以及相对较低的密度,令其有望作用于高温结构[1-3],这也是近几年的研究热点之一。

CrSi2可采用自蔓延高温合成法[4]和水冷铜模激光炉制备[5]。

CrSi2在室温下具有较低的断裂韧性,在高温(>1200℃)下强度和蠕变抗力有限,但是压力对于弹性各向异性的影响力尚不清楚[6]。

弹性性能与材料的热容量、热膨胀系数等基本性能有着密切的联系。

这些特征可以通过第一性原理[7]方法得到。

在以往的文献中,许多研究者在运用实验测量和密度泛函理论计算相互使用的方法来研究CrSi2的晶体结构、力学性能、电子结构、光学性质[6,7,8,9]。

为更好地理解压力下CrSi2 的弹性各向异性从而在高压环境中应用是极为重要的。

本文系统地研究了CrSi2在高压下的结构、声子谱、弹性性能及弹性各向异性,以期探索外界压力对CrSi2弹性性能及弹性各向异性的影响,从而开发设计出具有抗压力的高温合金材料。

2计算方法本文基于密度泛函理论中的赝势平面波的第一性原理方法,采用剑桥系列总能量包(CASTEP)代码[10-14]进行模拟计算。

百度学术的使用小结

百度学术的使用小结

百度学术的使用小结百度学术搜索是百度出品的一款学术资源搜索平台,可以用来检索大量的中/英文文献、会议论文等,不仅由此可以得到原文链接,有时还可以免费获取文献,为广大学术工作者提供了方便。

但是有不少群友不会正确使用百度学术,有些甚至不知道它的存在,并且在检索文献原文链接时老出错,因此我把自己使用百度学术的经验进行总结,希望对大家有所帮助。

百度学术的网址如下:/?tn=SE_baiduxueshu_c1gjeupa 1.如何通过百度学术获取原文链接(1)将文献名Structural, electronic, and optical properties of GaInO3: A hybrid density functional study粘贴到检索栏里进行搜索,结果如下:此时得到的链接/s?wd=%20Structural%2C%20electronic %2C%20and%20optical%20properties%20of%20GaInO3%3A%20 A%20hybrid%20density%20functional%20study并非原文链接,不可使用。

(2)接下来如图上箭头所示再打开一次,结果如下:此时的链接为/s?wd=paperuri%3A%2897b599ed09c3 ac5fe6940a9c70d8dfbd%29&filter=sc_long_sign&tn=SE_xueshus ource_2kduw22v&sc_vurl=http%3A%2F%%2Fc ontent%2Faip%2Fjournal%2Fjap%2F115%2F4%2F10.1063%2F1.4 863210&ie=utf-8有很多人到此就终止了,但是此时的链接仍然为非原文链接,不可以用来求助(3)按上图箭头所示再打开一次,此时得到的链接就是原文链接,可以用来求助:/content/aip/journal/jap/115/4/10.1063/ 1.4863210在这个过程中因为可选的链接比较多,需要注意哪些是文摘库链接,不可以用来求助,就是群规里的禁用链接,即链接中带有以下字符为非原文链接ncbi、baidu、google 、europemc、Researchgate、cat、scifinder、WOK、scopus、eivllage、adsabs.harvard、NTIS、inspec、CABAbstracts。

赝势对计算石墨烯声子谱线的第一性原理研究

赝势对计算石墨烯声子谱线的第一性原理研究

赝势对计算石墨烯声子谱线的第一性原理研究郭富强;王艳丽;尹国盛【摘要】石墨烯是理论与实验方面研究的热点,而探究其声子谱线结构又为研究力学、热力学等提供基础.本文采用基于密度泛函理论的第一性原理,运用不同的交换关联和赝势方法,计算了石墨烯以及石墨的声子谱线.对比研究发现:在声子谱低频率阶段,不同的赝势计算的结果差别很小;而在声子谱的高频率阶段,不同赝势计算的结果差别显著.相对于GGA交换关联,LDA交换关联计算的高频光学支有所软化,计算结果与实验值更加接近.相对于US赝势方法,PAW赝势方法计算的结果与实验值更加接近.综合比较,PAW-LDA赝势的计算结果与实验值最为接近.【期刊名称】《物理与工程》【年(卷),期】2016(026)005【总页数】5页(P66-70)【关键词】声子谱;石墨烯;赝势【作者】郭富强;王艳丽;尹国盛【作者单位】郑州工业应用技术学院,河南郑州 451151;河南建筑职业技术学院,河南郑州 450007;郑州工业应用技术学院,河南郑州 451151【正文语种】中文碳原子不同的排列能形成金刚石、石墨、C60以及碳纳米管等不同的晶体结构,从而体现出不同的物理、化学性质.近来人们通过物理及化学的方法从石墨中分离出了单层的石墨片,称之为石墨烯.由于石墨烯具有非常优良的力学、热学、电学等特性,使得它从一出现就在理论与实验方面成了研究的热点,并取得了丰硕的成果.在实验方面,人们已经能够通过不同的方法制取石墨烯,这使其在生产生活中的应用成为了可能[1].声子谱线结构的研究是其他诸如力学、热力学性质研究的基础.因此研究石墨烯声子谱线结构对于石墨烯的应用具有非常重要的意义.实验方面对声子谱线的研究主要有下面几种方法:中子散射方法是经常使用的一种方法,但它不能得到高频支声子的频率[2,3];高分辨率电子谱镜虽能得到高频声子支的频率,但其结果与理论计算相差很大[4];拉曼谱方法虽很精确,但仅能对Γ点进行测量;非弹性X射线衍射方法仅在高频光学支的测量方面最为准确[5].由于以上方法各有缺陷,因此实验上仍需要综合以上几种方法对晶体声子谱线进行确定.理论计算方面,目前主要有力常量方法和第一性原理方法.力常量方法通过经验势函数,计算出原子之间的力矩阵,从力矩阵得出声子谱线.除了势函数的影响,力常量方法的计算精度还受所取原子作用力半径的影响 [6].相对而言,第一性原理的计算完全独立于经验参数,因此结果更值得信赖[7].但是第一性原理的计算精度受所选赝势的影响[8].基于此,本文比较全面地研究了赝势方法以及交换关联对于石墨烯以及石墨的声子谱线的影响.第一性原理对于声子结构的计算,主要采用冷冻声子方法(frozen-phonon)[9]和微扰密度泛函方法(Density Function Perturbation Theory,简称为DFPT方法)[10].冷冻声子方法是在严格分析晶体对称性的基础上引入一些微小的位移,这些位移使原子之间存在赫尔曼-费曼(Hellmann-Feynman)力,计算出原子间的赫尔曼-费曼力,进而通过动力学矩阵即可得到声子色散曲线.该方法的优点是,对于简单晶体结构计算简单准确,但是对于复杂结构,需要很大的超胞才能计算精确,因此对计算条件要求比较高.相对于直接方法,DFPT方法通过系统对外界能量的响应求解声子谱线,它克服了直接方法的缺点,能适用于复杂的体系.由于石墨以及石墨烯的结构比较简单,因此本文对于石墨及石墨烯声子谱线的计算选用了较为简单的冷冻声子方法,计算软件为vasp软件包和frophon软件.计算采用以密度泛函理论[11,12]平面波赝势法为基础的vasp软件包[13],由于研究的是不同赝势的对比,我们选取了几种vasp中常用的交换关联和赝势方法.电子-电子之间的交换关联作用分别采用了广义梯度近似(GGA)和局域梯度近似(LDA)两种方法;离子实与价电子间的作用分别选取了缀加平面波方法(PAW)和超软赝势(USPP).计算出赝势方法和交换关联不同组合时的声子谱线,进而研究赝势对于石墨烯及石墨声子谱线的影响.对于不同的赝势,选用不同的截断能,其中GGA取为300eV,LDA取400eV.对石墨烯声子谱线的计算,超原包采用2×2×1,K点网格由Monkhost-Pack方法[14]产生.K点网格,采用(9×9×1),单层石墨烯的真空层取为2nm.对于石墨声子谱线的计算,超胞为2×2×2,计算K点取为9×9×9.考虑到声子对力的依赖关系,计算选取了较高的收敛标准,为0.1eV/nm.石墨是层状晶体,其原子结构及布里渊区如图1所示.石墨层内为六角结构,层间为A-B-A堆栈.石墨烯是单层石墨构成的二维晶体,计算中一层石墨外加足够的真空层即可模拟石墨烯.石墨中碳原子为SP2杂化,层内原子间为共价键,所以层内碳原子作用较强.而层间碳原子之间为很弱的范德瓦尔斯力作用,因此石墨通常层间自然解理.对于第一性原理计算,现有的GGA以及LDA赝势均不能描述范德瓦尔斯力,所以第一性原理对于石墨层间性质的计算有很大的局限性.虽然如此,文献表明LDA赝势能够给出与实验较为一致的晶格常数及层间作用[16].我们运用不同的赝势方法得到的晶格常数如表1所示.由表1可以看出:对于层内晶格常数a,LDA赝势与实验一致,而GGA方法得到的结果较实验值大0.002nm;而对于层间参数c, LDA方法基本能够描述,仅仅较实验值大了0.002nm,但GGA赝势计算不到石墨间的层间距.对于赝势方法,US-LDA赝势计算的a值为2.44nm,而PAW-LDA赝势为0.245nm,实验值为0.244nm,因此从晶格优化的角度而言,US-LDA赝势是描述石墨晶体的最好的方法.本文的计算中,计算了所有4种赝势组合的石墨烯声子谱线,同时计算了LDA所对应的两种赝势组合的石墨的声子结构.首先研究一下石墨烯声子谱的特点,不同赝势的声子谱线如图2和图3所示.石墨烯原胞中含有两个原子,所以共有3支声学支(A)和3支光学支(O).在这6支声子支中,包括垂直于平面的模式(Z)以及平行于平面的模式.平行于平面模式又分成了纵模式(L)和横模式(T).为了直观表达,在图中对这些模式进行了标注.其中的高对称点的见图1的布里渊区图.由图2和图3可知,在布里渊区的高对称点,一些声子支是高度简并的.在布里渊区中心Γ点,TA和LA呈现出线性散射关系,而ZA模式呈现q2的散射关系,所以平行于平面以及垂直于平面的模式是不同的,这与别的文献研究结果一致,声子谱线的另外一个特点就是ZA与ZO在K点相交,LA与LO在K点也发生了相交[17].接下来对比几种赝势得到的声子谱线的差别.为了对比,将不同赝势方法与交换关联组合计算,得到4种组合赝势的声子谱线,按照赝势方法和交换关联分成了两组,第一组考虑赝势方法的不同造成的影响,如图2所示;第二组考虑芯电子之间交换关联的不同所造成的影响,如图3所示.首先考虑赝势方法对声子谱线的影响.由图2可知,价电子和离子实之间相互作用的不同对声子谱有一致的影响.无论对于LDA和GGA,在低频的声学支频带,两种方法得到的声子谱几乎完全重合,即在低频带,声子谱线对赝势方法的选择不敏感.但是可以明显看到,在高频带,无论对于LDA和GGA,相对于US赝势,PAW方法计算的结果总是有所软化,与实验值更接近.然后考虑赝势方法相同时,交换关联作用对声子谱线的影响.由图3可知,在低频带,不同交换关联作用得到的声子谱线几乎完全重合,即不同的交换关联对低频声子支影响不明显.但是在高频区域,不同交换关联作用得到的声子谱线分离开来,GGA方法得到的声子频率较小,LDA方法得出的频率比较大,即GGA软化了高频带的声子谱线.为了从量上区别出来,我们给出了几个高对称K点的声子频率值,如表2所示.在表2中列出了各种赝势计算的高对称点的声子谱线,同时列出了文献计算值以及各种实验测值.为了直观比较各种赝势方法得到的频率值的优越,我们做出了各种赝势下的计算与实验值之间的相对误差比值,其计算方法如公式(1)所示各种赝势计算的相对误差如图4所示,由图4可知,总体系上各种方法得到的结果与实验值的差别均不太大,在-4%~10%以内,与其他文献的计算结果也很吻合.从交换关联的角度考虑,US-GGA赝势产生的误差大于US-LDA,而PAW-GGA赝势的误差在某些点大于PAW-LDA,在其他点则小于PAW-LDA.总体上GGA要比LDA赝势误差大.从赝势方法的角度考虑,US-GGA的误差要大于PAW-GGA,而US-LDA的误差总体上小于PAW-LDA.总的比较,在所有方法中US-LDA赝势计算石墨烯声子谱最为准确.上面研究了赝势对于石墨烯声子谱线的影响,同时我们想把石墨烯的结果推广到石墨,研究赝势对于石墨声子谱线的影响.由前面的分析可以知道,由于GGA赝势不能正确计算范德瓦尔斯力作用,而石墨层间主要靠范德瓦尔斯力作用结合,因此该赝势不能用于块体石墨的计算.所以对于石墨烯的声子谱线的计算,仅考虑US-LDA和PAW-LDA两种赝势的情况.研究离子实与价电子之间的作用对石墨声子谱的影响,其结果如图5所示.由图5可见,石墨声子谱线较石墨烯声子谱线多A-Γ一段,这是由于考虑了石墨法向周期性的原因.其他各段,石墨与石墨烯的声子谱线结构几乎完全相同.这与别的计算值以及实验值相吻合[4,5].对于US-LDA与PAW-LDA两种赝势方法,对比石墨烯的结果,PAW-LDA方法计算在高频阶段要低于US-LDA方法,即 PAW-LDA方法在高频阶段也对声子有所软化,综合石墨烯的结果,可以知道US-LDA 与实验值也较为接近.这与石墨烯的研究相一致.基于密度泛函理论的第一性原理方法,应用不同赝势计算了石墨烯以及石墨的声子谱线,本文的计算结果与别的计算、理论以及实验比较吻合.对不同赝势计算结果的比较得出:对于低频声子支,赝势对声子谱影响不显著;在高频段, 对于相同的赝势方法,LDA交换关联较GGA交换关联计算的声子谱线更加精确;计算表明:在应用第一性原理方法计算石墨以及石墨烯声子谱线中,US-LDA赝势最为精确.【相关文献】[1] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 1530: 324.[2] Nicklow R, Wakabayashi N, Smith H G. Lattice dynamics of pyrolytic graphite[J]. Phys. Rev. B, 1972, 5: 4951.[3] Dolling G, Brockhouse B N. Lattice vibrations in pyrolitic graphite[J]. Phys. Rev., 1962, 128: 1120.[4] Oshima C, Aizawa T, Souda R, et al. Surface phonon dispersion curves of graphite (0001) over the entire energy region[J]. Solid State Commun., 1988, 65: 1601.[5] Maultzsch J, Reich S, Thomsen C, et al. Phonon dispersion in graphite[J]. Phys. Rev. Lett., 2004, 92: 075501.[6] Jishi R A, Venkataraman L, Dresselhaus M S, et al. Phonon modes in carbon nanotubules[J]. Chem. Phys. Lett., 1993, 209: 77.[7] Wirtz L, Rubio A. The phonon dispersion of graphite revisited[J]. Solid State Commun., 2004, 131: 141.[8] Favot F, Corso A D. Phonon dispersions: Performance of the generalized gradient approximation[J]. Phys. Rev. B, 1999, 60: 11427.[9] Fanidisa C, Van Dycka D, Van Landuyt J. Inelastic scattering of high-energy electrons ina crystal in thermal equilibrium with the environment I. Theoretical framework[J]. Ultramicroscopy, 1992, 41: 55.[10] Gonze X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm[J]. Phys. Rev. B, 1997, 55: 10337.[11] Kohn W, Sham L J. Quantum density oscillations in an inhomogeneous electron gas[J].Phys. Rev., 1965, 137: A1697.[12] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965, 140: A1133.[13] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54: 11169.[14] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B,1976, 13: 5188.[15] Ooi N, Rairkar A, Adams J B. Density functional study of graphite bulk and surface properties[J]. Carbon, 2006, 44: 231.[16] McKie D, McKie C. Essentials of crystallography[M]. Oxford: Oxford Press, 1986, 6-8.[17] Saito R, Dresselhaus G, Dresselhaus M S. Physical properties of carbon nanotubes, London: Imperial College Press, 1998.[18] Dubay O, Kresse G.Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes[J]. Phys. Rev. B, 2003, 67: 035401. [19] Touinstra F, Koenig J L. Raman spectrum of graphite[J]. J. Chem. Phys. 1970, 53: 1126.。

敬来教授 张敬来:教授,博士,硕士生导师

敬来教授 张敬来:教授,博士,硕士生导师

河南大学化学化工学院
翟翠萍 副教授
招生专业:物理化学 联系方式:zhaicuiping@
翟翠萍:副教授,博士,硕士生导师。先后承担本科生《物理化学》、《绿色化学与化工》
和《物理化学实验》等课程。发表SCI收录论文20余篇,出版教材一部。参与完成国家自然科 学基金等项目4项,一直致力于用波谱学技术研究溶液或离子液体中化合物之间的相互作用及 分子的微观结构。
研究方向:功能材料的结构与性能 设计合成富氮、富氧等多官能团金属有 机簇合物和聚合物,研究其结构及各种 光、磁、电及热性能,揭示物质的结构 与性质之间的相关性规律,以期获得光 功能、磁功能或光-磁功能复合材料。
主要在研项目
1.新颖磁性功能材料的研究 2.新型杂化功能化合物的合理合成和性能研究
近期主要工作
2.2008年度河南省教育厅自然科学研究资助计划项目
低能电子引起DNA损伤的机理研究 近期主要工作 1. Electronic spectra of the linear polyyne cations HC2 nH+ (n=2–8):An ab initio study The Journal of Chemical Physics 2009, 131, 144307 2. Electronic spectra of linear isoelectronic clusters C2 n1S and C2n1Cl (n=04): An ab initio study. Journal of Physical Chemistry A 2006, 110, 10324. 3.Electronic spectra of heteroatom-containing isoelectronic carton chains C2nS and C2nCl+ (n=1-5). The Journal of Chemical Physics. 2006, 124: 124319. 4. Electronic spectra of the linear magnesium-containing carbon chains MgC2nH (n = 1–5): A CASPT2 study Chemical Physics. 2009, 360, 27-31. 5. Ab initio studies of electronic spectra of the linear aluminum-bearing carbon chains AlC2nH (n = 1–5) Journal of molecular spectroscopy. 2009, 256, 242. 6. Theoretical strudies on structures and electronic spectra linear carbon chains C 2nH+(n=1-5) International Journal of Quantum Chemistry 2009,109:1116 7. Theoretical studies on the structures, electronic spectra and ionization energies of linear isoelectronic HC2n+1P and NC2nP (n=1-10). Journal of Molecular Structure: THEOCHEM. 2006, 761, 63. 8. Theoretical Study of Electronic Absorption Spectra of C3Cl and Its Ions. Journal of Molecular Structure: THEOCHEM. 2006, 773, 81-86. 9. Density functional theory study on lactides:Geometries,IR,NMR and electronic spectra Journal of Molecular Structure: THOCHEM 2007,816, 13. 10. CASPT2 studies on the electronic spectra of linear heteroatom-containing carbon chain anions C4O-, C4S- and C4Se-. Journal of Molecular Structure: THEOCHEM. 2006, 765:137.

航空发动机钛合金分子动力学计算技术研究进展

航空发动机钛合金分子动力学计算技术研究进展

2024 年第 44 卷航 空 材 料 学 报2024,Vol. 44第 2 期第 87 – 103 页JOURNAL OF AERONAUTICAL MATERIALS No.2 pp.87 – 103引用格式:弭光宝,孙若晨,吴明宇,等. 航空发动机钛合金分子动力学计算技术研究进展[J]. 航空材料学报,2024,44(2):87-103.MI Guangbao,SUN Ruochen,WU Mingyu,et al. Research progress of molecular dynamic calculation on titanium alloys for aero-engine[J]. Journal of Aeronautical Materials,2024,44(2):87-103.航空发动机钛合金分子动力学计算技术研究进展弭光宝1*, 孙若晨1, 吴明宇1,2, 谭 勇1,2, 邱越海1,2,李培杰2, 黄 旭1(1.中国航发北京航空材料研究院 先进钛合金航空科技重点实验室,北京 100095;2.清华大学新 材料国际研发中心,北京100084)摘要:未来航空发动机推重比等性能不断提升,对钛合金部件的高温力学及结构稳定性等提出更高的需求。

传统实物实验在时间、空间尺度的局限性日益凸显,对于微观瞬态现象及机理的深入研究存在一定难度。

而分子动力学(molecular dynamics,MD)计算技术以原子/分子模型为计算对象,在引入牛顿经典力学与经验参数的基础上,较量子计算方法大幅度提高了计算效率,从而成为实现航空发动机钛合金工艺参数优化与组织性能计算的重要技术途径。

本文在概述MD计算空间与时间尺度优势基本原理的基础上,重点介绍通过MD计算方法研究钛合金成形制造、微观组织与结构、力学与热力学性能、材料设计和力场开发等方面的研究进展,以及有助于航空发动机钛合金耐高温性能提升的代表性结论。

W110表面反常STM图像的密度泛函理论研究

W110表面反常STM图像的密度泛函理论研究

第37卷第1期2010年1月浙江大学学报(理学版)JournalofZhejiangUniversity(ScienceEdition)http://www.journals.zju.edu.cn/sciV01.37Jan.2010DOI:10.3785/j.issn.1008—9497.2010.01.012W(110)表面反常STM图像的密度泛函理论研究蔡建秋h“,尚学府2,陶向明2(1.温州大学物理与电子信息工程学院,浙江温州325035;2。

浙江大学物理系。

浙江杭州310027)摘要:采用密度泛函理论的第一性原理方法研究了W(110)P(1×1)表面的STM图像对于衬底偏压的依赖性.计算结果表明:在衬底负偏压条件下,w(110)声(1X1)表面的钨原子在sTM图像中显示为暗点而非通常在其它过渡金属中观察到的亮斑,并且暗点随偏压绝对值的减小而逐渐弱化.计算还模拟了恒流模式的STM测量时针尖的起伏变化.当衬底偏压在O~100meV区间时,针尖起伏高度最为明显(~0.006nm).在更高的正偏压下,STM的针尖起伏随偏压改变而线性变化(0.0015~O.0035nm).这些结果说明了W(110)p(1×1)表面是非常平坦的.由于钨原子的价电子为5d态。

和3d电子相比具有更为扩展的行为,表面态电子波函数交叠区间集中在原子周围,所以STM测量时亮点突起出现在原子的周围.关键词:w(110)多(1×1)表面;表面弛豫;STM图像中图分类号:O641;O647文献标志码:A文章编号:1008—9497(2010)01—051—05CAIJian-qiul’“,SHANGXue-fu2,TAOXiang—min92(1.CollegeofPhysicsandElectronicInformationEngineer—ing,WenzhouUniversity,Wenzhou325035,ZhejiangProvince,China;2.DepartmentofPhysics,ZhejiangU-niversity,Hangzhou310027,China)Density-functionaltheorystudytheSTMimagesofW(110)p(I×I)surface.JournalofZhejiangUniversity(Sci—Edition),2010,37(1):51—55Abstract:ThedependenceofSTMimagesbiasvoltageforreconstructedW(I10)p(1×1)surfacewasinvestiga—tedbyusingthedensity—functionaltheorycalculations.Thecalculatedresultsshowedthatinnegativebiasvoltageregionthepositionsthesurfaceatomsdarkwhiletheemptyhollowsitesbrightandthedarknessofatompositionssmoothedwhendecreasingbiasvoltages.Inconstant—currentmode。

H_(2)在Pt表面的吸附行为研究进展

H_(2)在Pt表面的吸附行为研究进展

DOI:10.19551/ki.issn1672-9129.2021.03.203H 2在Pt 表面的吸附行为研究进展毛雨萌(重庆师范大学化学学院㊀沙坪坝㊀401331)摘要:在多相催化反应中,催化剂表面的吸附是一个重要关键的步骤㊂Pt 作为一种常见的金属催化剂,具有良好的选择性㊁稳定性和活性,同时对H 2有良好的吸附行为,研究H 2在Pt 表面的吸附行为对于多相催化和储氢材料的研究具有重要的价值㊂本文简要介绍了H 2在Pt 表面的吸附态,吸附位置以及吸附的影响㊂通过对H 2在Pt 表面吸附行为的相关研究进行阐述和分析,推测H 2是直接在Pt 表面缺陷处发生物理吸附至化学吸附的转变解离活化的,H 2在Pt 表面的吸附行为有待进一步研究㊂关键词:H 2;Pt 表面;吸附中图分类号:O643.3㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1672-9129(2021)03-0206-02㊀㊀Pt 作为很多反应优异的催化剂,对H 2有良好的吸附行为[1]㊂大量实验事实表明,气 固相的多相催化作用是反应物分子首先吸附在固体表面的某些部位上,形成活化的表面中间化合物,使反应的能垒降低,反应加速,之后再经过脱附得到产物㊂研究H 2在Pt 表面的吸附对于催化氢解,催化脱氢,催化加氢等反应具有重大的意义,同时对更复杂体系的研究有一定的参考价值,所以,研究H 2在Pt 表面的吸附行为是很有必要的㊂目前,众多研究者关于H 2在Pt 表面的吸附行为做了大量的研究,主要采用的方法有理论计算和实验表征㊂理论计算的方法主要有运用第一性原理密度泛函理论[2]进行研究和采用半经验的势函数模型进行研究,其中势函数模型有:Morse 势㊁嵌入原子模型(EAM)㊁Lennard -Jones 势模型㊁LEPS 势模型等㊂实验方法主要有:扫描隧道显微镜(STM)㊁电子能量损失谱(EELS)㊁热脱附谱(TDS)[3]㊁X 射线光电子能谱(XPS)㊁俄歇电子能谱(AES)㊁低能电子衍射(LEED)等㊂因为不同研究者使用不同的研究方法,在实验和计算时的标准不一样,所以研究结果难以统一化,故H 2在Pt 表面的吸附行为暂时未能达成共识,许多问题需要进一步的研究㊂本文通过对近年来的一些相关研究进行综述,使得对H 2在Pt 表面的吸附行为有更深一步的了解㊂1㊀表面吸附行为的研究气体分子碰撞到固体表面后发生吸附,依照吸附分子与固体表面的作用力的性质不同,可以将吸附分为物理吸附和化学吸附两大类㊂物理吸附实质是van der Waals 引力,而化学吸附实质是在固体表面和吸附物之间形成了化学键,因而化学吸附一般是单分子层的㊂化学吸附相比物理吸附,吸附物与表面的间隔更近㊂化学吸附需要活化能,而物理吸附不需要活化能,化学吸附能比物理吸附能大得多㊂1.1吸附态㊂当吸附质被吸附后,可能会产生一种以上的吸附态,近年来,通过各种波谱,色谱等实验方法可以证实各种吸附态的存在,同时也可以通过测定活化能和吸附热来判别吸附态㊂H 2吸附在Pt 表面有四种吸附态,两种属于分子吸附,两种属于原子吸附㊂胡庚申等人[4]用等离子体溅射的方法制备了Pt 膜,利用原位衰减全反射红外光谱(ATR -IR)研究了H 2在Pt 膜表面的吸附,结果显示红外谱图由三个峰组成,他们又对光谱进行曲线拟合,发现H 2在Pt 表面有三个物种[5]㊂王春璐等人[6]通过Material Studio 软件的Adsorption Lo-cator 模块模拟H 2在Pt(111)表面的吸附过程,得到了物理吸附(记作H 2-Pt)和化学吸附(记作2H -Pt)两种吸附态,通过观察H 2在向Pt 表面慢慢接近这个过程中体系总能量变化时发现:当吸附距离大于0.32nm 时,为物理吸附,能量较稳定,当吸附距离从0.32nm 减小后,能量迅速下降,而当距离接近至不大于0,24nm 的时候,能量又升高了㊂由此可以推断出当吸附距离在0.32nm 左右时,该体系经历了物理吸附到化学吸附转变的过程㊂另外该推测结果也可以通过类比H 2在Fe 表面的吸附[7]得到㊂1.2吸附位置㊂郭玉宝等人[8]根据第一原理的密度泛函理论,通过构造表面层模型来计算H 2在Pt(111)表面的吸附机制,H 2在Pt 表面主要有3种吸附位:空穴吸附位(Hollow)㊁桥吸附位(Bridge)㊁顶吸附位(Top),发现H 2在顶吸附位的吸附能最小,桥吸附位居中,空穴吸附位的吸附能最大㊂侯路斌等人[9]采用Morse 函数和嵌入方法(EAM)构造了氢-氢㊁金属-金属和金属-氢之间的相互作用势,发现氢原子通常被吸附在Pt (100)㊁(110)㊁(111)表面的高配位数位置,也就是,Pt(100)的四重洞位,Pt(110)的长桥位,Pt(111)面心立方的三重洞位㊂在Pt(211)表面,台阶边缘的四重洞位H5是氢原子最稳定的吸附位置,而四重洞位H4是Pt(311)表面氢原子最稳定的吸附位置,另外,不同晶胞最稳定的吸附位置不同,同时最稳定的吸附位置还受到固体表面覆盖度的影响[10]㊂1.3吸附的影响㊂王春璐等人[11]在分析H 2在Pt 表面吸附过程中电子云密度分布变化时,发现H 2分子对Pt 原子有吸电子的效应,随着H 2在Pt 表面距离的接近,电子云密度增大,H -H 间距离增加,有利于氢的活化以及后续的催化加氢反应㊂郭玉宝等人[12]也发现,H 2在Pt 表面吸附过程中,H -H 键的键长变长了,吸附后H -H 键的振动频率比自由分子的振动频率降低,导致红移,H -H 键容易断裂,变成H 原子㊂另有实验发现[13]当H 2在Pt 表面吸附时,会使得氢活化,即H 2在Pt 表面的吸附催化了H 2的解离,利于形成H -Pt 成键的稳定吸附体系㊂总之,H 2在Pt 表面的吸附有利于H 2的活化与解离㊂在多相催化反应中,底物在催化剂表面的吸附㊁解离㊁活化过程尤为重要㊂因为这一系列过程都发生在微观层面,而且是动态过程,难以观察和确定,故其中的学术观点众多,争议性很大㊂H 2在Pt 表面吸附活化过程,当前的主流机理有两种:一种是先物理吸附,再扩散到缺陷处解离活化,另一种是直接在缺陷处吸附解离活化㊂2019年[14]来自荷兰莱顿大学的研究团队通过巧妙构建弯曲Pt 表面结构,并结合高空间分辨率的一种方法,量化确认了第二种直接吸附解离活化的机理更加合理,于是,H 2在Pt 表面吸附行为的研究又向前迈了一大步㊂2㊀结语H 2在Pt 表面有不同的吸附态,在吸附过程中,发生了从物理吸附到化学吸附的转变过程㊂H 2在Pt 表面的吸附存在最稳定吸附的位置,不同的晶胞类型最稳定的吸附位置不同㊂H 2在Pt 表面的吸附有利于H 2的活化与解离㊂H 2在Pt 表面吸附活化的机理是直接在缺陷处吸附解离活化,据此,也可以猜测H 2是直接在Pt 表面缺陷处发生物理吸附至化学吸附的转变解离活化的㊂本文所综述的内容仍在发展中,相信在不久的将来,我们会发现H 2在Pt 表面吸附行为的更多奥秘㊂参考文献:[1]GRAEME W,WATSOM R,WELLS P K,et al.A Com-parison of the Adsorption and Diffusion of Hydrogen on the (111)Surface of Ni,Pd,and Pt from Denstiy Theory Calcula-tions [J].Journal of Physical Chemistry B,2001,105(21):4889-4894.[2]CAROLINA P,ESTELA P,ALFREDO J.A DFT study of H adsorption on Pt(111)and Pt -Ru(111)surfaces[J].Ap-plied Surface Science,2008,254:5827-5830.[3]姜志全,黄伟新,包信和.气相原子氢与Pt(111)表面的相互作用[J].中国科学(B 辑化学),2006(4):304-309[4]胡庚申,胡鑫,谢冠群,等.H 2在Pt 催化剂上吸附㊁脱附和氧化的原位动态衰减全反射红外光谱研究[C]//全国催化学术会议.2012.[5]Paal Z,Hydrogen Effects in Catalysis:Fundamentals and Practical Applications,CRC Press,1987[6]王春璐,解增忠,赵毅,赵晓光,王丽新,任强,叶蔚甄.H_2在Fe,Pt,Ni 表面解离的模拟研究[J].石油炼制与化工,2019,50(02):50-56.[7]Xie Weiwei,Peng Liang,Peng Daoling,et al.Processes of H 2adsorption on Fe(110)surface:A density functional theory㊃602㊃DOI:10.19551/ki.issn1672-9129.2021.03.204中职体育教学有效性如何提高康㊀萌(江西省樟树市职业技术学校㊀331200)摘要:随着时代的进步,中职学生的生活水平变得越来越高,身体状况却变得日益低下,部分学生甚至都处在了亚健康状态㊂因此,中职院校要提升对学生体育教学的重视程度,让每个学生都能有一个健康的身体,来应对未来生活中遇到的风风雨雨㊂目前,中职体育教师的教学模式非常固化,很难真正了解学生的实际需求,导致教学效果不甚理想㊂鉴于此,本文对中职体育教学有效性的提高策略进行了探索㊂关键词:中职体育;教学有效性;提高策略中图分类号:G633.96㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1672-9129(2021)03-0207-01㊀㊀作为学生自我发展的主心骨,核心素养的主要内涵是指学生具备适应终身发展及社会需要的必备品性,是学生观念㊁感情㊁能力等的综合表现㊂在中职体育课堂中,体育核心素养是指学生通过体育学科学习而逐步形成的正确价值观念㊁必备品格与关键能力,应得到正视,需要学生从运动中去了解,也需要体育教师的正向指引,更需要学校的支持㊂但是,随着学生学习任务的不断加重㊁过长时间没有运动,导致许多学生对体育课存在抵触心理,或者在潜意识里觉得体育课就是被占的课程或只是简单的玩耍,并没有认真对待㊂1㊀中职体育教学开展的困境1.1教学体系不完善㊂当前,很多中职院校的教师严重低估了体育课程对学生的重要意义,单纯地认为学生上体育课只是跑跑步就可以了㊂这种想法是非常错误的㊂中职体育教学并非让学生随意锻炼身体,应该是在教师的指导下,系统性地学习必要的运动知识㊂这样不仅能帮助学生掌握更多的锻炼方式,还能有效避免学生在运动中受到伤害㊂因此,学校要制定一些规章制度,要求体育教师制定合理的教学计划,并将计划贯彻执行㊂这样才能让中职体育课程顺利㊁有效地开展下去㊂1.2教学模式没有新意㊂很多中职体育教师在授课时,只是简单地对学生进行运动理论的教授,并且在组织学生运动实践时,也只会做一些简单运动,如跳远㊁仰卧起坐等㊂这种教学模式根本无法满足学生的需求㊂相对枯燥的体育运动可能会让学生对体育课程倦怠,从而失去学习体育知识的兴趣㊂长此以往,学生很难达到教材规定的体育目标,体育教师的授课积极性也会逐渐降低㊂1.3教学观念老旧㊂中职体育教学应该随着社会的变化而不断升级,这样才能让学生在身体㊁心理上都跟上时代的进程㊂但是,中职体育教师在开展教学工作时,经常是利用以前的教学思路指导学生运动㊂由于现代信息普及化,学生对世界的了解变得更多,以往的运动模式已经很难吸引学生的兴趣㊂因此,教师若想改变体育教学现状,必须力求改变,才能有所收获㊂2㊀中职体育教学有效性的提高策略2.1完善教学体系㊂好的教学体系是成功开展体育教学的开始㊂因此,教师必须要加强对教学体系的认识,不断吸收新的教学观念㊂这样才能让体育教学工作又好又快地发展㊂体育教师要加强对学生的全面引导,让学生明白体育锻炼的重要意义,并针对不同学生的身体素质水平,结合相关的体育理论知识,构建出对学生有切实帮助的教学计划,真正强化学生体魄㊂同时,学校要严格管控体育教学课时,杜绝其他科目侵占体育课时的现象,保证每一位学生都能进行很好的体育锻炼,帮助学生舒缓课业压力,达到放松身心的目的㊂体育教师在进行教学时,要注重培养学生的体育精神㊂这样才能给中职体育教学注入灵魂,让学生在拥有好身体的同时,灵魂也能得到升华㊂2.2丰富教学方式㊂随着科技的进步,很多新兴技术已经被应用到了教学中㊂中职体育教师也要结合体育科目的特点,探索合适的教学方式㊂例如,体育教师可以通过网络,分享给学生一些优秀的体育视频,并引导学生观察视频中的运动技巧㊂这样不仅能激发学生的锻炼热情,还能扩充学生的体育知识㊂很多中职学生都喜欢 追星 ㊂根据这个现象,中职教师可以让学生看一些明星的比赛㊂同时,教师可以针对比赛内容进行分析㊂这样不仅能拉近师生距离,还能让学生对教师的博学产生仰慕心理,进而加深对体育课程的喜爱程度㊂2.3组织游戏教学㊂在中职学校中,大部分学生都处于十匕八岁的年龄段㊂这个年龄正是活泼好动的时候,他们对新鲜的事物有着强烈的好奇心,对游戏有着很大的兴趣㊂同时,他们也正处于身体和智力发展的黄金时期,因此在教学过程中促进他们的身心健康发展是体育教学的重要目标之一㊂和普通高中㊁大学不同的是,中职学校的学生对老师的抵触情绪较大,叛逆心较强,所以在进行体育教学时,要根据每个学生的情况进行适当引导㊂科学合理地采用游戏法,既可以提高教学的趣味性,又可以促进师生之间的和谐关系,能够收到很好的效果㊂作为游戏组织者的教师,必须时刻注意学生在游戏中的表现,发现有些学生注意力不集中或不知道游戏怎么做时,教师要及时给予帮助,让游戏顺利进行㊂在游戏过程中,教师还要加强学生规则意识的养成,对于不遵守规则的学生要及时制止并进行耐心的教育㊂游戏活动量要适中,不可以因为游戏有趣就让学生超负荷运动,教师要适时停止游戏,让学生得到休息㊂必须注意的是,游戏中也存在一些安全隐患,教师必须在游戏前对学生讲解游戏注意事项,一切要以安全为重㊂3㊀结语综上所述,中职体育教学是一个漫长的过程㊂教师需要不断发现教学中的问题,然后积极寻找相关的理论资料,并结合实际情况进行整改,才能让中职体育教学摆脱困境,走向光明㊂因此,中职体育教师要时刻警醒㊁时刻学习㊁不断进步,在面对体育教学中的问题时,才能保持一颗平常心,进而提升中职体育教学的效果,为我国的中职体育教学事业添砖加瓦㊂参考文献:[1]杨俊彪.论中职体育教学改革的创新与实践[J].考试周刊,2018,(18):132-133.[2]郭华斌.中职学校中体育教学中若干问题分析[J].中外交流,2018,(52):125.study[J].Applied Surface Science,2014,296:47-52 [8]郭玉宝,朱红,杨儒.H2在Pt(111)表面吸附及电催化的密度泛函理论[J].北京工业大学学报,2016,42 (11):1756-1760.[9]侯路斌.氢在贵金属Pd和Pt表面吸附特性的理论研究[D].湖南大学,2007.[10]许令顺,马运生,张玉林,滕波涛,姜志全,黄伟新. H/Pt(111)体系的H-D交换反应和第一性原理计算研究[J].中国科学:化学,2011,41(05):933.[11]王春璐,解增忠,赵毅,赵晓光,王丽新,任强,叶蔚甄.H2在Fe,Pt,Ni表面解离的模拟研究[J].石油炼制与化工,2019,50(02):50-56.[12]郭玉宝,朱红,杨儒.H2在Pt(111)表面吸附及电催化的密度泛函理论[J].北京工业大学学报,2016,42 (11):1756-1760.[13]FUKAI Y.The metal-hydrogen system:vol.21of springer series in material science[M].Berlin:Springer-Verleg, 1993:12-68.[14]Richard van Lent,Sabine V.Auras,Kun Cao,Anton J.Walsh,Michael A.Gleeson,Ludo B.F.Juurlink.Site-spe-cific reactivity of molecules with surface defects the case of H2 dissociation on Pt[J].Science,2019,363(6423):.作者简介:毛雨萌.1999年8月㊁女㊁汉㊁河南南阳㊁本科㊁重庆师范大学㊂㊃702㊃。

Bis-amides and Amine Bis-amides as Ligands for Olefin :双酰胺和胺双酰胺作为配体在烯烃

Bis-amides and Amine Bis-amides as Ligands for Olefin :双酰胺和胺双酰胺作为配体在烯烃
Binding an olefin will be significantly entropically unfavorable.
Entropy is calculated for this one example. It is not expected to differ substantially between these systems.
In most cases, the two chelating ligands are canted, making the environment asymmetric
Some experimentally known analogues are known.7
Some alkyls bind with an a-agostic rather than a b-agostic bond.
M acintosh PICT im age form at is not supported
M a c in to s h P IC T im a g e fo rm a t
is n o t s u p p o rte d
M acintosh PICT im age form at is not supported
metal; the transfer transition state has more bonds to C and H than the others,
and these bonds displace the metal-ligand p bonding.
7
Zr compounds
Many Zr catalysts are known Zr was used instead of Ti in a series of

阿昔洛韦的药理活性密度泛函研究_高立峰

阿昔洛韦的药理活性密度泛函研究_高立峰

收稿日期:2013-05-20基金项目:湖南省衡阳市科技局一般项目(10C1023)资助作者简介:龙威(1983-),男,汉族,湖南湘潭人,实验师,硕士,主要从事量子化学理论计算研究。

文章编号:1002-1124(2013)07-0027-03Sum214No.7化学工程师ChemicalEngineer2013年第7期脂质体作为药物载体一直在医药和保健上发挥着重要作用,基于脂质体的阿昔洛韦作为国内外[1,2]广泛使用的高度选择和低毒的核苷类高校光谱抗病毒药物。

在医药上主要用于各种疱疹病毒所致的各种感染,如初发或复发性皮肤、粘膜、外生殖器感染或HSV1、HSV2感染。

临床应用中阿昔洛韦可以作为乙肝治疗的高效药物,药理上它与细胞作用进入肝细胞,控制乙肝病毒的复制而提高发挥药力[3,4]。

阿昔洛韦的分子式为C8H11N5O3,其分子结构主要是一个苯环与一个咪唑联合,开链中有一个醚氧基和一个醇羟基基团(分子结构和原子编号见图1),它亦包含了一个醌式结构(C4=O16)。

图1阿昔洛韦分子结构及原子编号Fig.1Structare and atom number of acyclovir1计算方法密度泛函理论(DensityFunctionTheory,DFT)方法的计算精度高、速度快,已在量子化学领域中得到了充分的展现。

本文对阿昔洛韦分子采用DFT理论的B3LYP方法在6-311+G(d,p)基组水平上进行了优化计算,对生成的自由基进行优化计算的方法一致,但自旋多重度设置为2。

优化得到的稳定构型基础上,采用Freq方法进行了频率分析,结果表明所有简谐振动频率全部为正值,表明其计算结果是可信的。

类似的计算[5]已在国内报道过,本项目的全部计算工作通过Gaussian03程序在PC机上完成。

2计算结果和数据分析2.1分子几何构型分析利用Gaussian03程序在B3LYP/6-311+G(d,p)水平上进行优化计算得到了阿昔洛韦的分子几何阿昔洛韦的药理活性密度泛函研究*高立峰1a ,熊双喜1b ,龙威2*(1.台州学院a.生命科学学院;b.台州学院医药化工学院,浙江临海317000;2.南华大学化学化工学院,湖南衡阳421001)摘要:采用密度泛函理论B3LYP方法在6-311+G(d,p)基组上对阿昔洛韦进行了理论计算,对其分子构型、偶极矩、疏水参数、红外光谱、自旋密度分布和前线轨道结构进行了分析探究。

Material Studio 详解

Material Studio 详解

实例2. Hydrogen Storage For Fuel Cells - A Density Functional Theory Study of Hydrogen Adsorption on Aluminium Clusters
Electron density of Al13H isomers Phys. Chem. Chem. Phys., 1999, 1, 13-21
实例5. Understanding the Properties (structural, mechanical, vibrational, and electronic) of Carbon and Boron-nitride Nanotubes
Phys. Rev. B, 2003, 67, 245404
计 算 材 料 学
引言: 计算机越来越便宜,功能却越来越强大。
试验费用趋向于越来越昂贵(时间和金钱)。
如果计算机模拟能在某种程度上提供足够的进度,
会比真实的试验节省费用。
解释实验结果。
Wien2K, Gaussian,VASP, Material Studio….
第一章 Material Studio简介
J. Chem. Phys. 2000,113, 7756-7764.
实例3. Manipulation of Carbon Nanotubes using Nitrogen Impurities
the charge density
Physical Review Letters, 91, (2003) 105502
实例4. Oxygen Manipulation of the Structural and Optoelectronic Properties of Silicon Nanodots

中科大 Materials Studio 培训教程 1(包你学会!)

中科大 Materials Studio 培训教程 1(包你学会!)
Amorphous Cell
Blends

ONETEP


√√
√√
Polymorph
√ √ √ QMERA
√√
QSAR and QSAR Plus






CASTEP and NMR CASTEP

Reflex-Pattern √ √ √ Processing and
Powder Diffraction
晶体材料的性质半导体陶瓷金属分子筛等表面和表面重构的性质表面化学电子结构能带及态密度声子谱晶体的光学性质点缺陷性质如空位间隙或取代掺杂扩展缺陷晶粒间界位错成分无序等
计算材料学
引言:
➢ 计算机越来越便宜,功能却越来越强大。
➢ 试验费用趋向于越来越昂贵(时间和金钱)。
➢ 如果计算机模拟能在某种程度上提供足够的进度,

COMPASS
CCDC
Conformers Discover DMol3 DPD Equilibria Forcite Gaussian GULP
2021/8/9
MesoDyn




Reflex-Powder Indexing
√√
Reflex-Powder Refinement
√√
Reflex Plus
2021/8/9
Phys. Rev. B, 2003, 67, 245404
19
实例6. Study of the Effect of Alloying on the Surface Reactivity of Catalysts
The CASTEP simulations resulted in the following :

山东大学教授二级岗位评审情况一览表(精品)

山东大学教授二级岗位评审情况一览表(精品)

通讯作者 13010
2011 the electronic, optical, and lattice dynamic properties of XInSe2 PHYSICS
(X = Cu, Ag, Li) Density functional Study on electronic
properties of P-doped JOURNAL OF SOLID STATE 通讯作者
位次
撰写 字数
通讯作者 10120
通讯作者 11125
通讯作者 13768
通讯作者 12380
通讯作者 12100
通讯作者 11230
通讯作者 12260 通讯作者 11780 通讯作者 10030
通讯作者 14002
CRYST ENGCOMM
Computational insight into the effect of monovalent cations on JOURNAL OFAPPLIED
山东大学教授二级岗位评审情况一览表
单位(章):晶体材料研究所
2012 年 12 月 28 日
姓名
学历 本科 硕士
2003 年 9 月
赵显
性别

出生 年月
1970 年 6月
参加工 1994 作时间 年 7 月
学位
获得时间 理学博士
1998.07
博导任
教授聘
职时间 2006.06 任时间
Explored by Replica-Exchange Molecular Dynamics Simulation
2011 Electronic, optical and lattice dynamic properties of the novel diamond-like semiconductors Li2CdGeS4 and Li2CdSnS4

镍基配合物催化乙炔制苯

镍基配合物催化乙炔制苯

镍基配合物催化乙炔制苯黄伟;明瑞光;史雪君;史权;吴道洪【摘要】研究镍基配合物催化体系不同温度、压力和催化剂用量对乙炔环三聚制苯反应的影响,并提出相关的催化反应机理.结果表明,以(Ph3 P)2 Ni(CO)2为催化体系,四氢呋喃为溶剂,在反应压力1.5 MPa、反应温度85℃和反应时间3 h条件下,乙炔转化率99%,苯收率87%,副产物苯乙烯收率11.2%,杂质为微量的黏稠状乙炔低聚物.Ni(Ph3P)2(CO)2催化体系具有反应条件温和、反应进料组分简单和苯产率高等优点.【期刊名称】《工业催化》【年(卷),期】2018(026)007【总页数】5页(P67-71)【关键词】有机化学工程;乙炔;三聚;镍基配合物;苯;苯乙烯【作者】黄伟;明瑞光;史雪君;史权;吴道洪【作者单位】神雾科技集团股份有限公司,北京102200;湖北工业职业技术学院,湖北十堰442000;神雾科技集团股份有限公司,北京102200;中国石油大学(北京)化学工程学院,北京102249;神雾科技集团股份有限公司,北京102200【正文语种】中文【中图分类】TQ426.94;TQ241.1+1苯是一种石油化工基本原料,主要用来生产乙苯、异丙苯、环己烷和硝基苯等化学原料,主要来源于石油化工中的催化重整和烃类裂解(约95%),仅有约5%来源于煤炭化工。

基于我国富煤贫油少气的能源结构,同时随着苯及下游产品需求量的日益增长,开发苯的生产新技术势在必行。

随着煤制乙炔工艺的发展,如能让乙炔发生芳构化反应直接转变为苯,将具有重要的战略意义。

Reppe W等[1-6]首次采用金属催化剂Ni(Ph3P)2(CO)2进行乙炔衍生物、丙烯酸(或烯醇类)及丙烯酸酯环三聚反应合成各种取代苯衍生物。

Kletnieks P W等[7]通过固体核磁研究发现,铑化合物能够催化乙炔三聚。

Dachs A等[8]通过DFT模拟了三苯基膦氯化铑催化乙炔三聚的反应过程。

大学生的压力来源英语作文

大学生的压力来源英语作文

College students face a myriad of pressures that can significantly impact their mental and emotional wellbeing.Here are some of the primary sources of stress that students often encounter:1.Academic Pressure:The expectation to perform well academically is a common source of stress.Students are under constant pressure to maintain high grades,which can lead to anxiety and stress.2.Financial Strain:The cost of tuition,textbooks,and living expenses can be overwhelming.Many students work parttime jobs or take out loans to finance their education,adding to their stress levels.3.Time Management:Balancing coursework,extracurricular activities,parttime jobs, and social life can be challenging.The struggle to manage time effectively often leads to stress.4.Social Pressure:Making new friends,fitting in,and maintaining relationships can be stressful.The fear of rejection or not being accepted by peers can cause anxiety.5.Career Uncertainty:With the job market becoming increasingly competitive,students often worry about their future career prospects.The pressure to choose the right major and secure a good job after graduation can be daunting.6.Living Away from Home:For many,college is the first time away from home. Adjusting to a new environment,being responsible for oneself,and dealing with homesickness can be stressful.7.Health Issues:The physical demands of college life,such as maintaining a healthy diet and getting enough sleep,can be challenging.Additionally,mental health issues like depression and anxiety are not uncommon among students.8.Peer Influence:The influence of peers can be both positive and negative.While friends can provide support,they can also contribute to stress through unhealthy competition or by engaging in risky behaviors.9.Technology Overload:The constant connectivity and the need to be available on social media can lead to information overload and stress.The pressure to be constantly connected can be mentally exhausting.10.Cultural Adjustment:For international students,adapting to a new culture,language,and educational system can be a significant source of stress.11.Personal Expectations:Students often have high expectations for themselves,which can lead to selfimposed pressure and stress if they feel they are not meeting these expectations.12.Family Expectations:The pressure to meet the expectations of family members can be a significant burden,especially for students from families where education is highly valued.To cope with these pressures,its essential for students to develop healthy coping mechanisms,such as seeking support from friends,family,or professional counselors, engaging in physical activities,practicing mindfulness,and maintaining a balanced lifestyle.。

含氮杂环化合物抑制锂硫电池多硫化物穿梭效应的理论研究

含氮杂环化合物抑制锂硫电池多硫化物穿梭效应的理论研究

收稿日期:20200331 修回日期:20200520基金项目:通化师范学院2018年院级科研基金项目(201832);2020年度吉林省教育厅“十三五”科学技术项目(JJKH20200483KJ);吉林省教育科学“十三五”规划2019年度课题(GH19284).作者简介:郑艳萍,博士,通化师范学院化学学院副教授,研究方向:功能材料.E mail:zhengyanping369@126.com2020年11月第6期南京晓庄学院学报JOURNALOFNANJINGXIAOZHUANGUNIVERSITYNov.2020No.6含氮杂环化合物抑制锂硫电池多硫化物穿梭效应的理论研究郑艳萍1,刘 莉2,张悦悦1(1.通化师范学院化学学院,吉林通化134002;2.吉林省辉南县第一中学,吉林通化134002)摘 要:运用B3LYP D3方法对含氮杂环化合物对锂硫电池中间产物多硫化物的吸附进行了理论研究.研究发现,杂环吡啶和哒嗪属于中等强度吸附材料,吸附后多硫化物结构保持完整.吡咯和吡唑对多硫化物的吸附弱于前者.电荷在Li2S,Li2S2和含氮杂环间发生明显转移.关键词:氮原子;杂环化合物;Li S电池;多硫化物中图分类号:O64 文献标识码:A 文章编号:10097902(2020)06001304在所有电化学装置中,锂离子电池由于其高功率密度、长循环寿命和低成本以及环境友好而被广泛使 图1 含氮杂环pyrrole,pyrazole,pyridine,pyridazine,Li2S和Li2S2模型图用[18].但是,传统的锂离子电池由于能量密度相对较低,仍然存在许多问题.因此,探索新的电池系统至关重要.由于硫电极1675mAhg-1的高理论容量和2600Whkg-1的高理论能量密度,作为一种替代电化学装置,锂硫(Li S)电池引起了极大的关注.另外,元素硫在地球上含量高,无污染且成本低,使其更适合于开发和利用.尽管具有这些优点,Li S电池仍然存在几个主要问题阻碍了它们的商业应用.其中中间体多硫化物(LiPSs)在有机电解质中的高溶解性导致活性物质损失引起严重的“穿梭效应”,导致自放电率高,库仑效率差和容量迅速下降.将含氮杂环化合物作为吸附位点改性Li S电池隔膜材料可以有效地抑制LiPSs的穿梭效应.我们选取十一种单杂化结构进行了计算模拟,结果表明含氮杂环对Li2S和Li2S2的吸附作用强于含氧和含硫杂环结构.五元氮杂环结构中吡咯(pyrrole),吡唑(pyridine)和六元氮杂环结构中吡啶(pyrazole),哒嗪(pyridazine)对LiPSs的吸附作用最强.本文中,选择pyrrole,pyridine,pyrazole和pyridazine四种含氮杂环化合物,研究了含氮杂环与中间产物LiPSs的作用,并对其作用的本质进行了深入分析.图1给出含氮杂环pyrrole,pyrazole,pyridine,pyridazine,Li2S和Li2S2模型图,结构上的数字代表键长.—31— 图2 含氮杂环pyrrole,pyrazole,pyr idine,pyridazine,Li2S和Li2S2分子表面静电势图1 计算方法使用Gaussian09软件进行密度泛函理论(DFT)计算[9].在计算中使用B3LYP D3方法,6 311G(d,p)基组用于各个原子[1012].使用CYLview完成图1和图3的绘制[13].使用MULTIWFN软件和VMD程序分别完成图2和图4的分子表面静电势图和电荷密度差分图的绘制[1415].使用结合能计算公式Eb=E杂环-LiPSs-E杂环-ELiPSs描述含氮杂环pyrrole,pyrazole,pyridine和pyridazine对LiPSs的吸附能力.其中Eb为结合能,E杂环-LiPSs为含氮杂环吸附LiPSs体系的能量,E杂环为含氮杂环体系的能量,ELiPSs为LiPSs体系的能量.能量越负表示含氮杂环对多硫化物的吸附作用越强.2 结果与讨论2.1 分子表面静电势分析图2给出了pyrrole,pyrazole,pyridine,pyridazine和多硫化物Li2S,Li2S2分子表面静电势图.其中无氢N原子区域为带负电的位点,会为吸附提供亲电吸引力;而含氢N原子区域为带正电的位 图3 含氮杂环pyrrole,pyrazole,pyridine和pyridazine不同位点对Li2S和Li2S2的吸附点,会为吸附提供亲核吸引力.由图2可以看出Li2S和Li2S2分子表面Li原子区域为带正电的作用位点;pyrrole,pyrazole,pyri dine,pyridazine分子表面无氢N原子位点为带负电的作用位点.由此我们可以推断pyrrole,pyrazole,pyridine,pyridazine对Li2S和Li2S2的吸附位点主要集中在无氢N原子位置,通过无氢N原子和Li原子的作用吸附Li2S和Li2S2.2.2 含氮杂环对LiPSs的吸附图3给出含氮杂环pyrrole,pyrazole,pyridine和pyridazine不同位点对Li2S和Li2S2的吸附,结构上的数字代表键长.由图1我们知道pyrrole分子中C N键长为1.37?,C C键长为1.38?~1.42?;pyrazole分子中C N键长为1.34?~1.36?,N N键长为1.35?;pyridine分子中C N键长为1.34?,C C键长为1.39?;pyridazine分子中C N键长和N N键长均为1.33?.Li2S分子中Li S键长为2.10?,Li2S2分子中Li S键长为2.22?.图3给出pyrrole,pyrazole,pyridine,pyridazine对Li2S和Li2S2吸附最稳定的结构,pyrrole与Li2S作用时C N键和C C键均无变化;与Li2S2作用C N键和C C键有微小变化.pyrazole与Li2S作用时C N键和N N键均无变化;与Li2S2作用C N键长略缩短,N N键无变化.pyridine与Li2S和Li2S2作用时C N键和C C键无明显变化.pyridazine与Li2S作用时C N键均略有缩短,N N键无变化;pyridazine与Li2S2作用时C N键和N N键均略有缩短.在与pyrrole,pyrazole,pyridine和pyridazine作用时,靠近杂环化合物的Li2S和Li2S2分子中Li S键长均发生了不同程度的伸长,其它Li S键长均略有缩短.pyrrole,pyrazole,pyridine和pyridazine中靠近Li2S/Li2S2的C N、C C键长变化较大.含氮杂环和LiPSs分子的结构基本保持完整,无严重结构扭曲.2.3 结合能表1给出含氮杂环pyrrole,pyrazole,pyridine和pyridazine与LiPSs的结合能.第2列代表含氮杂环与Li2S的作用,第3列代表含氮杂环与Li2S2的作用.由表1给出的数据可以看到,四种含氮杂化结构中,含一个氮原子的五元杂环pyrrole对LiPSs的固定能力最弱,含一个氮原子的六元杂环pyridine略高于pyrrole,—41—pyrazole和pyridazine对LiPSs的作用最强.pyrazole对Li2S的吸附强于对Li2S2的吸附,而pyridazine对Li2S2的吸附强于对Li2S的吸附.由图3可以看到,pyrazole和pyridazine对LiPSs的吸附主要通过Li原子和N原子作用.pyrazole和pyridazine与LiPSs的结合能在-1.21eV~-1.39eV范围内,属于中等强度固定材料.图3中我们可以看到中等强度的pyrazole和pyridazine材料对Li2S和Li2S2的吸附不会引起结构严重扭曲.研究结果表明:五元和六元单杂环对LiPSs的作用强度相差不大,含2个氮原子的pyrazole和pyridazine对LiPSs的吸附比含1个氮原子的pyrrole和pyridine强.表1 含氮杂环pyrrole,pyrazole,pyridine和pyridazine与LiPSs的结合能含氮杂环Eb(eV)Li2SLi2S2pyrrole-0.83-0.57pyrazole-1.39-1.21pyridine-0.98-0.97pyridazine-1.30-1.37 图4 体系pyrrole LiPSs,pyrazole LiPSs,pyridine LiPSs和pyridazine LiPSs电荷密度差分图(isovalue=±0.0026e?-3)2.4 电荷密度差分图图4给出pyrrole LiPSs,pyrazole LiPSs,pyridineLiPSs和pyridazine LiPSs体系的电荷密度差分图,我们选取了图3中最稳定的结构进行了电荷密度变化的分析.由图4可以看到,电荷密度变化主要分布在Li原子和作用位点N原子周围.Li2S和Li2S2与含氮杂环pyr role,pyrazole,pyridine和pyridazine间发生明显的电荷转移,其中靠近作用位点的原子电荷密度也出现不同程度的变化.pyrrole LiPSs,pyrazole LiPSs,pyridine LiPSs和pyridazine LiPSs作用主要依靠Li N键.通过自然键轨道分析(NBO),表2给出了含氮杂环pyrrole,pyrazole,pyridine和pyridazine与LiPSs间具体的电荷转移数据.由表2可以看出,含氮杂环与LiPSs间发生明显的电荷转移.3 结论综上所述,含单个氮原子五元/六元杂环化合物pyrrole/pyridine对LiPSs的结合能在-0.57eV~-0 98eV范围内,弱于pyrazole和pyridazine.含两个氮原子的五/六元杂环化合物pyrazole和pyridazine对Li2S和Li2S2的结合能在-1.21eV~-1.39eV范围内,属于中等强度固定材料,对Li2S和Li2S2的吸附不会引起结构严重扭曲.含氮杂环化合物分子中吸附LiPSs位点主要由无氢N原子提供,在Li原子和N原子周围发生明显的电荷转移,LiPSs和含氮杂环化化合物间发生明显电荷转移.表2 含氮杂环pyrrole,pyrazole,pyridine和pyridazine与LiPSs间的电荷转移pyrrole LiPSspyrroleLi2SpyrroleLi2S2电荷转移0.0868-0.08680.0718-0.0718pyrazole LiPSspyrazoleLi2SpyrazoleLi2S2电荷转移0.008-0.0080.0488-0.0488pyridine LiPSspyridineLi2SpyridineLi2S2电荷转移0.0527-0.05270.0696-0.0696pyridazine LiPSspyridazineLi2SpyridazineLi2S2电荷转移-0.07330.07330.016-0.016—51—参考文献:[1]YinYB,YangXY,ChangZW,etal.Awater /fireproofflexibleLithium OxygenBatteryachievedbysynergyofnovelarchitectureandmultifunctionalseparator[J].Adv.Mater.,2018,30(1):17037911703797.[2]LiC,XiZ,GuoD,etal.ChemicalimmobilizationeffectonLithiumPolysulfidesforLithium SulfurBatteries[J].Small,2018,14(4):e1701986.[3]汪东煌.锂硫电池硫化锂/碳复合正极材料的制备及其电化学性能研究[D].浙江大学,2018.[4]GoodenoughJB,ParkKS.TheLi Ionrechargeablebattery:aperspective[J].J.Am.Chem.Soc.,2013,135(4):11671176.[5]OpitzA,BadamiP,ShenL,etal.CanLi Ionbatteriesbethepanaceaforautomotiveapplications?[J].Renew.Sustain.EnergyRev.,2017,68(1):685692.[6]曾帅波.高性能锂硫电池聚合物正极材料的设计及其电化学表征研究[D].华南理工大学,2018.[7]ZhangJ,HuH,LiZ,etal.Double shellednanocageswithcobalthydroxideinnershellandlayereddoublehydroxidesoutershellashigh efficiencypolysulfidemediatorforLithium SulfurBatteries[J].Angew.Chem.Int.Ed.,2016,55(12):39823986.[8]WangF,WuX,LiC,etal.Nanostructuredpositiveelectrodematerialsforpost lithiumionbatteries[J].Energy.Environ.Sci,2016,9(12):35703611.[9]FrischMJ,TrucksGW,SchlegelHB,etal.Gaussian09,RevisionD.01[M].Gaussian,Inc.,WallingfordCt,2009.[10]GrimmeS,AntonyJ,EhrlichS,etal.Aconsistentandaccurateabinitioparametrizationofdensityfunctionaldispersioncorrection(DFT D)forthe94elementsH Pu[J].J.Chem.Phys,2010,132(15):e154104.[11]ClarkT,ChandrasekharJ,SpitznagelGW,etal.Efficientdiffusefunction augmentedbasissetsforanioncalculations.III.The3 21+Gbasissetforfirst rowelements,Li F[J].J.Comput.Chem,1983,4(3):294301.[12]GillPMW,JohnsonBG,PopleJA,etal.TheperformanceoftheBecke—Lee—Yang—Parr(B LYP)densityfunctionaltheorywithvariousbasissets[J].Chem.Phys.Lett,1992,197(4):499505.[13]LegaultCY.CYLview,1.0b;UniversitédeSherbrooke,Sherbrooke,Quebec,Cananda,2009,http://www.cylview.org.[14]HumphreyW,DalkeA,SchultenK.VMD:visualmoleculardynamics[J].J.Mol.Graph,1996,14(1):3338.[15]LuT,ChenFW.Multiwfn:amultifunctionalwavefunctionanalyzer[J].J.Comput.Chem.,2012,33(5):580592.(责任编辑:桂 利)TheoreticalStudyonNitrogen containingHeterocyclicCompoundInhibitingtheShuttleEffectofPolysulfideinLi SBatteryZHENGYan ping1,LIULi2,ZHANGYue yue1(1.SchoolofChemistry,TonghuaNormalUniversity,Tonghua134002,China;2.No.1MiddleSchoolofHuinanCounty,Tonghua134002,China)Abstract:TheB3LYP D3methodwasusedtostudytheadsorptionofpolysulfideonheterocycliccompoundinclu dingnitrogenatoms.Itisfoundthatpyridineandpyridazinearemedium strengthadsorptionmaterial,andpyrroleandpyrazoleareweak strengthadsorptionmaterial.Thestructureofpolysulfidedoesnotchangeafteradsorption.ChargetransferforLi2SandLi2S2alongheterocycliccompounddirection.Keywords:nitrogenatoms;heterocycliccompound;Li Sbatteries;polysulfide—61—。

氮化镓结构和热力学性质第一性原理计算

氮化镓结构和热力学性质第一性原理计算

氮化镓结构和热力学性质第一性原理计算詹国富;杨斌;何莹【摘要】运用密度泛函理论广义梯度近似(GGA)方法,计算了零温零压下纤锌矿(Wurtzite)结构、岩盐(Rock-salt)矿结构及闪锌矿(Zinc blende)结构的氮化镓结构的参数.计算表明纤锌矿结构最稳定.通过状态方程(Equa-tion of State,EOS)结合状态方程拟合软件,模拟能量体积曲线得到,热容、热膨胀系数以及体积随着压强的变化关系.热容随温度的增大而逐渐增大,但随着压力的增大,变化微小;热膨胀系数随压力的增大而平缓增大,随温度的增大而增大;体积随压力增大而逐渐减小.【期刊名称】《上饶师范学院学报》【年(卷),期】2018(038)006【总页数】4页(P41-44)【关键词】密度泛函理论;氮化镓;结构参数;热力学性质【作者】詹国富;杨斌;何莹【作者单位】广东理工学院,广东肇庆 526100;广东理工学院,广东肇庆 526100;广东理工学院,广东肇庆 526100【正文语种】中文【中图分类】O469Ⅲ-Ⅴ族氮化物半导体GaN、AlN及其相关的三元合金化合物,具有禁带宽度大、介电常量小、耐高温、硬度高等特点,在高温器件、高密度集成的电子器件等方面拥有着广泛的应用前景[1-3]。

近来,晶体高压结构相变的性质引起人们的关注,诸如金刚石压砧技术及应用[4]。

实验上Perlin等人已经通过X射线吸收光谱方法得到相变压强(纤锌矿结构到氯化钠结构)为47.0 GPa[5]。

然而,对于GaN的热力学性质少有提及。

我们对热力学性质的研究,使得了解耐高温材料器件的制造及应用起到一定的帮助。

通过第一性原理广义梯度近似(Generalized Gradient Approximation ,GGA)方法,计算了纤锌矿(Wurtzite)结构、岩盐(Rocksalt)结构及闪锌矿(Zinc blende)结构的结构和热力学性质。

1 理论模型与计算方法计算基于密度泛函理论下的第一性原理从头算方法[6-7],采用Perdew-Burke-Ernergof(PBE)交换关联泛函[8-9]GGA交换关联势。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :c o n d -m a t /0301419v 1 [c o n d -m a t .s u p r -c o n ] 22 J a n 2003A density functional study of pressure induced superconductivity in P and itsimplication for spintronics.S.Ostanin 1,V.Trubitsin 2,J.B.Staunton 1,S.Y.Savrasov 31Department of Physics,University of Warwick,Coventry CV47AL,United Kingdom 2Physico-Technical Institute,Ural Branch of RAS,132Kirov Str.,426001Izhevsk,Russia and 3Department of Physics,New Jersey Institute of Technology,Newark,New Jersey 07102(Dated:February 2,2008)The stability of high-pressure phases of P has been studied using density functional theory and the local density ing a linear response technique,we have calculated the phonon spectrum and electron-phonon interaction for bcc P and predict it to be superconducting with T c of 19K.We propose that this phase might be realized in epitaxial thin films using templates such as V(100),Fe(100)or Cr(100)relevant to spintronics applications.PACS numbers:61.50.Ks,74.25.Jb,74.78.Fk,85.75.-dThe study of properties of materials under pressure is a key experimental technique and recent discoveries of superconductivity in such simple metals as compressed Fe [1]and Li [2]are currently generating enormous in-terest [3,4,5].Black insulating phosphorus,with an orthorhombic A17structure,which is the most stable form at ambient conditions,exhibits a series of pres-sure induced phase transitions.[6,7,8,9]The first is a transformation to a metallic phase with the simple cu-bic structure at 10GPa.This phase is known to su-perconduct with T c =10K [9].An observation of a new simple bcc structure above 262GPa has been made re-cently [7],which points out that similar or even stronger electron-phonon interaction and pressure induced super-conductivity may be also realized in bcc P.Growth of P containing materials by thin film techniques has been developed very recently [10]to fabricate the class of wide gap phosphide ferromagnetic semiconductors which may provide an ideal opportunity to stabilize the bcc phase of P at ambient conditions using suitable templates such as the V(100),Fe(100)or Cr(100)substrates.This may lead to a significant breakthrough in technological spin-tronics applications in which combined spin and super-conducting degrees of freedom will provide a new level of functionality for microelectronic devices.In this work we address both the issue of the phase sta-bility of P as well as the superconductivity of its highly pressurized bcc structure.We use density functional to-tal energy [11]and linear response [12]techniques which have proven to provide a reliable description of various ground state properites for a large class of materials.We also study the electronic structure of the Fe 5/P n /Fe 4(n =3,5)superlattices,with the lattice constant of bulk Fe to investigate the problem of how to stabilize the bcc phase under ambient pressure conditions.In the past,structural phase transformations in P have been the subject of many experimental [6,7,8,9]and theoretical [13,14,15]density functional theory (DFT)based studies.Orthorhombic A17structured P trans-forms to the rhombohedral A7phase at 4.5GPa.[6]The puckered P layers in the ambient-pressure A17structure have strong covalent intralayer bonding and weak bond-ing between layers that result in an anisotropic com-pressibility.Under pressure,the distance between the interlayer P atoms in the A17structure decreases faster than the intraplane distance forming the semimetallic A7structure.This A7phase,which is similar to the struc-ture of such group-V elements as As,Sb,and Bi,under-goes a transition to the simple cubic (sc)metallic phase at 10GPa.[6]In the group-V elements,this A7→sc tran-sition is observed also in Sb at 7GPa.With increasing pressure,at 137GPa,the sc struc-ture transforms into a simple hexagonal (sh)one.[7]This sc →sh transition,which is accompanied by a large vol-ume reduction of 7.6%,is the first such observation re-ported for an elemental system.The sc-sh transforma-tion probably occurs via an intermediate phase [7],and results in the change in the co-ordination number from 6to 8.Since the sh structure has a low atomic packing fraction,namely 0.605,a phase with a higher packing fraction such as bcc,fcc or hcp should be expected at higher pressures.Indeed,with increasing pressure,the c /a ratio of the sh phase increases from 0.948to 0.956,and,finally,above 262GPa,a new high-pressure phase is observed,which has been proposed to be bcc.[7]A high-pressure bcc structure has also been found in Sb at 28GPa and in Bi at 7.7GPa.[16]In contrast,the sh phase of Si and Ge transforms to the hcp structure.[17]To date,despite these data,no full theoretical descrip-tion of the phase stability in P under extreme high pres-sure has been reported.There are a few DFT calculations on the structural stability of P under pressure.[13,14]Us-ing the pseudopotential method,Chang and Cohen [13]reproduced the A17→A7→sc phase transitions,with the crystal energy of the A7phase being shifted by 2.3mRy,but failed to find any stable closed-packed P phase at high pressure.In contrast,Sasaki et al.[14]inferred a sc-bcc transition at a pressure of 135GPa,rather far from the recent experimental observations.[7]This paper shows that ab-initio DFT calculations can successfully describe all the structural transitions in the phase dia-gram in P and,in particular,quantifies the sh-bcc tran-sition,the highest-pressure structural transformation ob-served up to now for an elemental material.2100150200250300Pressure (GPa)300400500T e m p e r a t u r e (K )FIG.1:Phase diagram of P at high pressures.The use of the Debye-Gr¨u neisen theory within DFT calculations is the simplest way to investigate structural phase transitions at finite temperatures.The character-istic Debye temperature ΘD ,calculated in terms of the bulk modulus,can be used to constuct the free energy F (T,V )as the function of ΘD and V .The successful applicability of this model,in despite of its harmonic approximation for lattice vibrations,has been demon-strated [18]for some elemental materals under high pres-sure.To construct the phase diagram,the thermody-namical Gibbs potentials G (P,T )=F (V,T )+P V are calculated and compared for various structures while the isothermal pressure dependence P (V )is obtained by di-rect differentiation P =−(∂F/∂V )T for each structure.We use the full potential linearized augmented plane waves (WIEN)code [19],which is one of the most ac-curate DFT schemes.Exchange and correlation effects are treated using the generalized-gradient approxima-tions [20]while muffin-tin radii of 1.7a.u.are fixed for all structures.As Fig.1of the phase diagram of P shows,the calculations reproduce quantitatively well all avail-able experimental data on the pressure induced struc-tural transformations in P.In particular,at just above the critical pressure where the sh-bcc transition takes place,at 260GPa the bcc phase is a real possibility and the bcc phase remains stable at still higher pressures.The free energy calculation of the bcc phase shows a mini-mum at 3.05˚A .We predict also that the sh-bcc transition has a positive dT/dP slope at room temperature.Since the sc phase of P becomes superconducting (SC)below 10K,one may expect similar electron-phonon interaction (EPI)strengths in P at higher pressures.Hence,a conventional s -wave pairing state may also arise in bcc P.We investigate this possibility by using a linear-response full-potential LMTO DFT method [21],which can describe the SC properties for sp materials with high accuracy [22]as well as those of d -metals under high pressure.[23]The calculated FP-LMTO electronic structure of bcc P is practically identical to that of the0246810ω (THz)12α2(ω) F (ω)bcc PFIG.2:The Eliashberg spectral function of bcc P.WIEN-code calculation.The phonon dispersions ωm (q )and density of states F (ω)are obtained from this linear-response technique [21]and used to calculate the Eliash-berg spectral function α2(ω)F (ω)which defines the EPI strength λ= ωmax 0ω−1α2(ω)F (ω)dω.The function α2(ω)F (ω),shown in Fig.2,is dominated by the two optical peaks at 2.1THz and 8.3THz.The SC transition temperature is calculated by means of the Allen-Dynes modified McMillan expression [26]T c =<ω>λ−µ∗(1+0.62λ) using the calculated EPI strength and assuming a value of the Coulomb pseudopo-tential of µ∗=0.15which was also used to calculate T c for the sc phase of P.In bcc P we find T c =19K.Regarding the transport properties of bcc P in the normal state,the temperature dependence of the specific dc resistivity shows a crossover from power law to linear dependence at 50K.There is considerable current interest in technological spintronics applications,in which the spin of carriers is exploited to provide new functionality for microelectronic devices.Growth of P containing materials by thin film techniques,such as molecular beam epitaxy or pulsed laser deposition,has been developed to fabricate the class of wide gap phosphide ferromagnetic semiconductors.[10]Epitaxial thin film structures offer ideal opportunities to stabilize the bcc phase of P at ambient conditions using suitable growth templates such as the V(100),Fe(100)or Cr(100)substrates.Consequently,we now turn to study the electronic and magnetic properties of thin films of P (3-5layers in thickness)embedded in ferromagnetic (FM)bcc-Fe.During the last decade considerable theo-retical and experimental progress has been made towards the understanding of metallic magnetism in superlattices and multilayers.However,to date,no such investigations have been made for Fe/P.The electronic structure of the Fe 5/P n /Fe 4(n =3,5)superlattices,with the lattice constant of bulk Fe,is cal-3−8−44E − EF (eV)0.20.4P interface P central ML012total MT DOS non−MT DOSFe 5/P 3/Fe 4−202D O S (s t a t e s /e V /a t o m )Fe central ML Fe interface spin ↑spin ↓FIG.3:Total and layer-resolved electronic DOS of the Fe 5/P 3/Fe 4superlattices with the lattice constant of bulk Fe.12S p i n m o m e n t (µB)12S p i n m o m e n t (µB )FIG.4:Calculated layer-resolved spin moments of Fe and P in the Fe 5/P n /Fe 4(n =3,5)superlattices with the lattice constant of bulk Fe.culated from the WIEN-code.Fig.3shows the total and layer-resolved electronic density of states (DOS)for n =3.Evidently the DOS of phosphorus is fairly insen-sitive to monolayer (ML)position and p-d hybridization has broadened d-related peaks in the Fe interface DOS.Following on from this Fig.4shows the layer-resolved spin magnetic moments and the spin magnetic moment per atom on the Fe interface layer is about 20%smallerthan that of bulk bcc Fe whereas the second Fe layer from the ideally sharp Fe/P interface has an enhanced local spin moment compared to that of bulk Fe.The P atoms away from the interface have no induced magnetic moments.The spin magnetic moment on the P interface atoms are tiny and antiparallel to the Fe magnetization direction.Thus,the total magnetic moments of the Fe/P/Fe superlattices,which are almost independent of the thickness of P,are slightly reduced from those of a relevant pure Fe system due to the AF Fe-P interface coupling.Obviously,this effect would be important for superlattices with thin Fe slabs.We note that a simi-lar but more pronounced AF coupling takes place at the Fe/V (001)interface.[24,25]The proximity effect in FM/SC heterostructures means that the Cooper pair amplitude in an exchange field does not decay exponentially to zero on the FM side but oscil-lates with decreasing amplitude as a function of the dis-tance from the interface.These oscillations occurring in what is known as the Fulde-Ferrell-Larkin-Ovchinnikov state [28]may lead striking changes in the SC transi-tion temperature (as observed in Fe/V and Fe/Nb het-erostructures [27])as a function of the FM slab thickness d F e .We suggest that Fe/P heterostructures may show similar effects.Another interesting application of the SC state in the stabilized bcc phase of P might be available with V/Fe/P junctions,in which thin FM films are sandwiched be-tween two superconductors with differing SC transition temperatures.Such systems support spontaneous cur-rents parallel to the FM/SC interface while the spin po-larization of these currents depends on band filling [29]and,hence,can be readily adjusted.In summary ,our study of P under high pressure based upon DFT and Debye model calculations produces a pressure-temperature phase diagram in good agreement with experiment.Pressure-induced metallization,at-tributed to the strong P-P interactions,is enhanced in the bcc phase which is stable for pressures in excess of 265GPa.We have demonstrated that bcc-P might be a s -wave superconductor below 19K owing primarily to strong EPI for the phonon bands along [110].Finally,we predict that the SC properties of bcc-P can be realized in Fe/P heterostructures in which the bcc phase of P should be stable.The authors acknowledge support from the EPSRC (U.K.).S.Y.S acknowledges the support from the grants NSF DMR 0238188and NJSGC 02-42.[1]K.Shimizu,T.Kimura,S.Furomoto,K.Takeda,K.Kon-tani,Y.Onuki,K.Amaya,Nature 412,316(2000).[2]K.Shimizu,H.Ishikawa,D.Takao,T.Yagi,K.Amaya,Nature 419,597(2002).[3]N.W.Ashcroft,Nature 419,569(2002).[4]I.I.Mazin,D.A.Papaconstantopoulos,and M.J.Mehl,Phys.Rev.B 65,100511,(2002).[5]S.K.Bose,O.V.Dolgov,J.Kortus,O.Jepsen,andO.K.Andersen,cond-mat/0207318.[6]T.Kikegawa and H.Iwasaki,Acta Crystallogr.,Sect.B:Struct.Sci.39,158(1983).[7]Y.Akahama,H.Kawamura,S.Carlson,T.Le Bihan,4D.Hausermann,Phys.Rev.B61,3139(2000).[8]Y.Akahama,M.Kobayashi,and H.Kawamura,Phys.Rev.B59,8520(1999).[9]H.Kawamura,I.Shirotani,K.Tachikawa,Solid StateCommun.49,879(1984);54,775(1985).[10]S.J.Pearton, C.R.Abernathy,M.E.Overberg,G.T.Thaler, D.P.Norton,N.Theodoropoulou,A.F.Hebard,Y.D.Park,F.Ren,J.Kim,and L.A.Boat-ner,J.Appl.Phys.93,1(2003).[11]For a review,see, e.g.,Theory of the InhomogeneousElectron Gas,edited by S.Lundqvist and S.H.March (Plenum,New York,1983).[12]For a review,see,e.g.,S.Baroni,S.de Gironcoli,A.DalCorso,Rev.Mod.Phys.73,515-563(2001).[13]K.J.Chang and M.L.Cohen,Phys.Rev.B33,6177(1986).[14]T.Sasaki,K.Shindo,K.Niizeki,A.Morita,J.Phys.Soc.Jpn.57,978(1988).[15]M.Rajagopalan,M.Alouani,and N.E.Christensen,J.Low Temperature Physics75,1(1988).[16]K.K.Aoki,S.Fujiwara,and M.Kusakabe,Solid StateCommun.45,161(1983);J.Phys.Soc.Jpn.51,3826 (1982).[17]Y.K.Vohra,K.E.Brister,S.Desgreniers, A.L.Rooff,K.J.Chang,M.L.Cohen,Phys.Rev.Lett.56,1944 (1986).[18]S.A.Ostanin and V.Yu.Trubitsin,Phys.Rev.B57,13485(1998).[19]P.Blaha,K.Schwarz,and J.Luitz,WIEN97(ViennaUniversity of Technology,1997);P.Blaha,K.Schwarz, P.Sorantin,and S.B.Trickey,mun.59,399(1990).[20]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77,3865(1996).[21]S.Y.Savrasov,Phys.Rev.B54,16470(1996).[22]Y.Kong,O.V.Dolgov,O.Jepsen,and O.K.Andersen,Phys.Rev.B64,020501(2001).[23]S.Ostanin,V.Trubitsin,S.Savrasov,M.Alouani,andH.Dreyss´e,Comp.Mater.Sci.17,202(2000).[24]B.Hj¨o rvarsson,J.A.Dura,P.Isberg,T.Watanabe,T.J.Udovic,G.Andersson,and C.F.Majkrzak,Phys.Rev.Lett.79,901(1997).[25]S.Ostanin,V.M.Uzdin, C.Demangeat,J.M.Wills,M.Alouani,and H.Dreyss´e,Phys.Rev.B61,4870 (2000).[26]P.B.Allen and R.C.Dynes,Phys.Rev.B12,905(1975).[27]H.K.Wong, B.Y.Jin,H.Q.Yang,J.B.Ketterson,J.E.Hillard,J.Low Temp.Phys.63,307(1986).[28]P.Fulde and A.Ferrell,Phys.Rev.135,A550(1964);rkin and Y.Ovchinnikov,Sov.Phys.JETP20,762(1965).[29]M.Krawiec,B.L.Gyorffy,and J.F.Annett,Phys.Rev.B66,172505(2002).。

相关文档
最新文档