Wavefront Propagation and Fuzzy Based Autonomous Navigation

合集下载

MIMO radar waveform design based on mutual information and minimum mean-square error estima

MIMO radar waveform design based on mutual information and minimum mean-square error estima
Yang Yang, Student Member, IEEE, and Rick S. Blum, Fellow, IEEE
Abstract— This paper addresses the problem of radar waveform design for target identification and classification. Both the ordinary radar with a single transmitter and receiver and the recently proposed multiple-input multiple-output (MIMO) radar are considered. A random target impulse response is used to model the scattering characteristics of the extended (nonpoint) target, and two radar waveform design problems with constraints on waveform power have been investigated. The first one is to design waveforms that maximize the conditional mutual information (MI) between the random target impulse response and the reflected waveforms given the knowledge of transmitted waveforms. The second one is to find transmitted waveforms that minimize the mean-square error (MSE) in estimating the target impulse response. Our analysis indicates that under the same total power constraint, these two criteria lead to the same solution for a matrix which specifies the essential part of the optimum waveform design. The solution employs water-filling to allocate the limited power appropriately. We also present an asymptotic formulation which requires less knowledge of the statistical model of the target. Index Terms— Multiple-input multiple-output (MIMO) radar, radar waveform design, identification, classification, extended radar targets, mutual information (MI), minimum meansquare error (MMSE), waveform diversity.

一种基于小波邻域的半软阈值去噪算法

一种基于小波邻域的半软阈值去噪算法

一种基于小波邻域的半软阈值去噪算法
赵新中;陶永耀;贺佩;石敏
【期刊名称】《国外电子测量技术》
【年(卷),期】2016(0)4
【摘要】针对小波硬阈值去噪函数的不连续和软阈值去噪函数的恒定偏差导致图像边缘模糊的缺点,本文提出了一种新的半软阈值函数。

该方法通过区分图像的强弱边缘分别进行处理,并在弱边缘小波系数的估计中采取基于贝叶斯估计的方法且考虑了邻域小波系数的大小。

仿真结果表明,与原有的小波阈值去噪算法和普通的阈值去噪算法相比,该算法在峰值信噪比(PSNR)、边缘保持指数(EPI)和视觉效果上都有明显的提高。

该方法能够很好地保护图像边缘信息,达到很好的去噪效果。

【总页数】4页(P42-45)
【关键词】弱边缘;邻域小波系数;半软阈值函数;边缘保持指数
【作者】赵新中;陶永耀;贺佩;石敏
【作者单位】炬芯(珠海)科技有限公司;暨南大学信息科学技术学院
【正文语种】中文
【中图分类】TN911.73
【相关文献】
1.一种超限像素平滑和小波软阈值图像去噪算法 [J], 杨永波;陈君芸
2.基于小波邻域阈值分类的电能质量信号去噪算法 [J], 张明;李开成;胡益胜
3.基于邻域阈值分类的小波域图像去噪算法 [J], 侯建华;熊承义;田金文;柳健
4.一种新的小波半软阈值图像去噪方法 [J], 李秋妮;晁爱农;史德琴;孔星炜
5.基于混沌搜索的改进小波半软阈值去噪 [J], 张沫;席剑辉
因版权原因,仅展示原文概要,查看原文内容请购买。

优美斯(Optimax Systems)的相位平移干扰光学测量方法白皮书说明书

优美斯(Optimax Systems)的相位平移干扰光学测量方法白皮书说明书

The Effect Of Phase Distortion On InterferometricMeasurements Of Thin Film Coated Optical SurfacesJon Watson, Daniel SavageOptimax Systems, 6367 Dean Parkway, Ontario, NY USA*********************©Copyright Optimax Systems, Inc. 2010This paper discusses difficulty in accurately interpreting surface form data from a phase shifting interferometer measurement of a thin film interference coated surfaces.PHASE-SHIFTING INTERFEROMETRYPhase-shifting interferometry is a metrology tool widely used in optical manufacturing to determine form errors of an optical surface. The surface under test generates a reflected wavefront that interferes with the reference wavefront produced by the interferometer 1. A phase-shifting interferometer modulates phase by slightly moving the reference wavefront with respect to the reflected test wavefront 2 . The phase information collected is converted into the height data which comprises the surface under test3.Visibility of fringes in an interferometer is a function of intensity mismatch between the test and reference beams. Most commercially available interferometers are designed to optimize fringe contrast based on a 4% reflected beam intensity. If the surface under test is coated for minimum reflection near or at the test wavelength of the interferometer, the visibility of the fringe pattern can be too low to accurately measure.OPTICAL THIN-FILM INTERFERENCE COATINGSOptical thin-film interference coatings are structures composed of one or more thin layers (typically multiples of a quarter-wave optical thickness) of materials deposited on the surface of an optical substrate.The goal of interference coatings is to create a multilayer film structure where interference effects within the structure achieve a desired percent intensity transmission or reflection over a given wavelength range.The purpose of the coating defines the design of the multilayer structure. Basic design variables include:• Number of layers• Thickness of each layer• Material of each layerThe most common types of multilayer films are high reflector (HR) and anti-reflection (AR) coatings. HR coatings function by constructively interfering reflected light, while AR coatings function by destructively interfering reflected light. These coatings are designed to operate over a specific wavelength range distributed around a particular design wavelength.To produce the desired interference effects, thin-film structures are designed to modulate the phase of the reflected or transmitted wavefront. The nature of the interference effect depends precisely on the thickness of each layer in the coating as well as the refractive index of each layer. If the thickness and index of each layer is uniform across the coated surface, the reflected wavefront will have a constant phase offset across the surface. However, if layer thicknesses or index vary across the coated surface, then the phase of thereflected wavefront will also vary. Depending on the design of the coating and the severity of the thickness or index non-uniformity, the distortion of the phase of the reflected wavefront can be severe. 4Layer thickness non-uniformity is inherent in the coating process and is exaggerated by increasing radius of curvature of the coated surface.5 All industry-standard directed source deposition processes (thermal evaporation, sputtering, etc) result in some degree of layer thickness non-uniformity.5 Even processes developed to minimize layer non-uniformity, such as those used at Optimax, will still result in slight layer non-uniformity (within design tolerance).TESTING COATED OPTICS INTERFEROMETRICALLYPhase-shifting interferometers use phase information to determine the height map of the surface under test. However, surfaces coated with a thin-film interference coating can have severe phase distortion in the reflected wavefront due to slight layer thickness non-uniformities and refractive index inhomogeneity. Therefore, the measured irregularity of a coated surface measured on a phase shifting interferometer at a wavelength other than the design wavelength, may not represent the actual irregularity of the surface. Even using a phase shifting interferometer at the coating design wavelength does not guarantee accurate surface irregularity measurements. If a coating has very low reflectance over any given wavelength range (such as in the case of an AR coating), the phase shift on reflection with wavelength will vary significantly in that range.7 Figure 1 shows an example of how the phase can vary with coating thickness variations.Figure 1In this particular case, if a point at the lens edge has the nominal coating thickness and the coating at lens center is 2% thicker, expect ~38° phase difference in the measurement (~0.1 waves). This will erroneous be seen as height by the interferometer, despite the actual height change in this case being less than 7nm (~0.01 waves). Also, depending on coating design, low fringe visibility may inhibit measurements.There is an extreme method to determine the irregularity of a thin-film interference coated surface by flash coating it with a bare metal mirror coating. A metal mirror coating is not a thin-film interference coating, and the surface of the mirror represents the true surface, This relatively expensive process requires extra time, handling, and potential damage during the metal coating chemical strip process.CONCLUSIONS•There can be practical limitations to getting accurate surface form data on coated optical surfaces due to issues with phase distortion and fringe visibility.•The issues are a function of thin film coating design particulars and the actual deposition processes.1 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Pg 340, McGraw Hill, New York City, 20082 H.H. Karow, Fabrication Methods For Precision Optics, Pg 656, John Wiley & Sons, New York City, 19933 MetroPro Reference Guide OMP-0347J, Page 7-1, Zygo Corporation, Middlefield, Connecticut, 20044 H.A. Macleod, Thin Film Optical Filters, Chapter 11: Layer uniformity and thickness monitoring, The Institute of Physics Publishing, 2001.5 R.E. Fischer, B. Tadic-Galeb, P. Yoder, Optical System Design, Pg 581, McGraw Hill, New York City, 2008。

水凝胶延迟水下回转体边界层自然转捩机理研究

水凝胶延迟水下回转体边界层自然转捩机理研究

水凝胶延迟水下回转体边界层自然转捩机理研究刘建华;张彬;徐良浩;张占阳;潘翀;张永明;朱文博【期刊名称】《实验流体力学》【年(卷),期】2024(38)2【摘要】水下航行体首部声纳探测能力与边界层转捩密切相关。

本文开展了水凝胶超材料在延迟水下航行体边界层自然转捩方面的应用基础研究,并探究了其内在机理。

在高速水洞中分别开展了刚性和水凝胶表面的SUBOFF模型总阻力系数与二维瞬时速度场大视场PIV实验测试,采用多路径积分算法对SUBOFF模型周围脉动压力场进行估算;结合刚性SUBOFF模型边界层流动线性稳定性分析与PIV流场测试结果,获得刚性SUBOFF模型边界层自然转捩特性;采用“比光强”算法,对低速水洞中水凝胶表面SUBOFF模型局部形变与近壁区速度场进行频谱分析,揭示水凝胶表面流−固耦合作用机制;基于法向瞬时速度分量的连续子波变换,对边界层瞬时流场间歇性进行分析,揭示水凝胶在流−固耦合作用下延迟SUBOFF模型边界层自然转捩的机理。

【总页数】13页(P1-13)【作者】刘建华;张彬;徐良浩;张占阳;潘翀;张永明;朱文博【作者单位】中国船舶科学研究中心深海技术科学太湖实验室;天津大学机械工程学院;北京航空航天大学流体力学教育部重点实验室;北京航空航天大学宁波创新研究院先进飞行器与空天动力创新研究中心;天津大学高速空气动力学研究室;北京理工大学宇航学院【正文语种】中文【中图分类】O357.41【相关文献】1.回转体边界层转捩区声辐射的预报方法研究2.钝体头部边界层“逾越”型转捩机理研究3.竖直加热平板自然对流边界层中流动稳定性与转捩过程的实验研究4.超音速平板边界层转捩中层流突变为湍流的机理研究5.延迟高超声速边界层转捩技术研究进展因版权原因,仅展示原文概要,查看原文内容请购买。

基于功能基元序构的太赫兹超表面

基于功能基元序构的太赫兹超表面

尊敬的客户,我很高兴能为您撰写关于“基于功能基元序构的太赫兹超表面”的文章。

在本文中,我将会按照您的要求,以深度和广度兼具的方式来全面评估这一主题,并据此撰写一篇有价值的文章。

我也会在文章中多次提及“基于功能基元序构的太赫兹超表面”,并共享我的个人观点和理解。

1. 超表面的概念让我们来深入探讨一下超表面的概念。

超表面是一种能够对太赫兹波段进行有效调控的人工结构,它具有独特的电磁特性。

通过在微纳米尺度上排列功能基元,超表面能够实现对太赫兹波段的超材料调控,包括反射、透射和吸收。

基于功能基元序构的超表面在太赫兹波段的应用正在受到越来越多的关注,其在通信、成像、传感等领域具有巨大的潜在应用前景。

2. 功能基元序构在超表面中的作用我们需要深入了解功能基元序构在超表面中的作用。

功能基元的序构是指在超表面中精确排列功能性基本单元的过程。

通过精确的序构设计,超表面可以实现对太赫兹波段的高效控制,并具有多样化的电磁特性。

这种精确的序构设计不仅能够实现光的拟态调控,还可以实现对光场的局部调控,为太赫兹波段的传输和处理提供了全新的可能性。

3. 基于功能基元序构的太赫兹超表面的应用前景基于功能基元序构的太赫兹超表面在通信、成像、传感等领域都具有广阔的应用前景。

在通信领域,超表面可以用于提高太赫兹波段通信系统的传输效率和隐蔽性,同时还可以用于实现波束赋形和频谱调控。

在成像领域,超表面可以用于太赫兹波段的超分辨成像和深层非破坏检测。

在传感领域,超表面可以用于太赫兹波段的生物分子检测、化学成分分析等应用。

基于功能基元序构的太赫兹超表面将为太赫兹技术的发展带来巨大的推动力,并在多个领域实现突破性的应用。

4. 个人观点和总结从我的个人观点来看,基于功能基元序构的太赫兹超表面是一个非常具有前景和潜力的领域。

通过精确的序构设计,超表面可以实现对太赫兹波段的高效控制,从而在通信、成像、传感等领域实现广泛应用。

我对这一技术的未来充满信心,并期待看到它在实际应用中取得更多的突破和进展。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

利用随钻正交偶极子声波测井评价地层各向异性的数值研究

利用随钻正交偶极子声波测井评价地层各向异性的数值研究

利用随钻正交偶极子声波测井评价地层各向异性的数值研究王瑞甲;乔文孝;鞠晓东【摘要】Because the drill collar takes most of the space in the borehole, the mode waves in LWD conditions propagating along the borehole axis are quite different from that of wireline logging. In this work, a cross dipole acoustic LWD model was established, and the acoustic field of borehole surrounded by anisotropy in LWD conditions excited by dipole source was simulated using a three-dimensional finite difference method, and the response characteristics of formation acoustic anisotropy in cross dipole acoustic LWD were studied. Numerical results show that when the borehole axis is perpendicular to the symmetry axis of TI formation in the LWD conditions,flexural waves splitting still exist, and the fast shear wave angle can be estimated by the cross-dipole measurements and appropriated inversion method, and the velocities of fast and slow shear wave and the acoustic anisotropy information can be obtained by an appropriate inversion algorithm combined with the theoretical model. For the situation that the angle between the borehole axis and the symmetry axis is not 90° or 0°, the problem becomes very complicated. The velocity of flexural waves is inconsistent with the velocity of corresponding shear body waves with the changes of the angle between the borehole axis and formation symmetry axis. However, the velocity of shear waves is still the main controlling factor of flexural waves in certain frequency range. For the model studied in this paper, when the angle between the borehole axisand the symmetry axis is greater than 60°, the anisotropy parameter measured by flexural waves can basically indicate the true velocity anisotropy of shear waves for the corresponding angle.%在随钻测井条件下,由于钻铤占据了井孔内的大部分空间,充液井孔中沿着井轴方向传播的模式波的特性与电缆测井非常不同.本文建立了随钻正交偶极子测井声学模型,采用三维有限差分方法模拟了偶极子声源在随钻条件下各向异性地层井孔内激发的声场,研究了地层的声学各向异性在随钻正交偶极子声波测井中的响应特征.数值模拟结果表明,在随钻测井条件下,对于井轴同TI地层对称轴垂直的情况,弯曲波分裂现象仍然存在,通过正交偶极子测量方式和合适的反演算法能够准确有效地确定地层的快横波方位角,可以考虑采用同正演理论相结合的反演算法来获得地层的快、慢横波速度及声学各向异性信息;对于井轴同介质对称轴呈一定夹角的TI地层井孔,情况变得非常复杂,不同井斜倾角下弯曲波的速度的变化趋势并非同对应的地层横波速度的变化趋势完全一致,不过在一定的频段内,地层横波速度仍然是弯曲波的最主要控制因素.对于本文研究的模型,当井轴同介质对称轴的夹角大于大于60°时,此时获得的弯曲波的各向异性值基本能够反映对应角度下地层横波速度的各向异性信息.【期刊名称】《地球物理学报》【年(卷),期】2012(055)011【总页数】13页(P3870-3882)【关键词】随钻声波测井;正交偶极子声源;横向各向同性;数值模拟【作者】王瑞甲;乔文孝;鞠晓东【作者单位】中国石油大学油气资源与探测国家重点实验室,北京102249;北京市地球探测与信息技术重点实验室,北京 102249;中国石油大学油气资源与探测国家重点实验室,北京102249;北京市地球探测与信息技术重点实验室,北京 102249;中国石油大学油气资源与探测国家重点实验室,北京102249;北京市地球探测与信息技术重点实验室,北京 102249【正文语种】中文【中图分类】P6311 引言随钻声波测井在节省井架占用时间、利用测得的声波速度模型与地震勘探数据相结合实时确定地层界面的位置、估算地层孔隙压力等方面有着电缆测井无法比拟的优势[1].关于随钻声波测井的研究,国内外已做了大量的工作.Minear和Legget成功实现了地层随钻纵波测量[2-3];Tang等认为采用四极子声源进行随钻横波测量有着偶极子声波测井无法比拟的优势[4];Sinha等也研究了随钻测井模型下各向同性地层井孔内导波的基本响应特征[5].目前,随钻声波测井仪已基本实现了地层纵、横波测量的功能,下一步所面临的挑战是对地层的声学各向异性进行测量. 各向异性测量主要包括快横波面方位的确定和横波各向异性值的测量两个方面.尽管四极子声源在随钻地层横波测量方面取得了成功,但是限于其方位特性,很难利用四极子声源实现随钻地层各向异性测量.虽然部分学者已经在此方面开展了一些工作[6],但是至今未见成功利用四极子声源实现地层各向异性测量的报道.采用正交偶极子声波测井方式评价地层各向异性的方法已经在电缆测井中得到了广泛的应用[7].因为随钻四极子声波测井仪换能器的安装位置同正交偶极子声波测井仪器相同,且其接收站兼具备正交偶极子接收功能,通过合理的电路设计,可以较为方便地实现随钻正交偶极子声波测井,所以采用正交偶极子声源进行地层各向异性评价的方法为随钻地层各向异性测量的首选方式.研究各向异性地层随钻正交偶极子声波测井的响应特征,对偶极子声源在含钻铤各向异性地层井孔内激发的声场进行分析,可以帮助理解在随钻条件下各向异性地层井孔内沿井轴方向传播的弯曲波的特征,为新一代随钻声波各向异性测量仪器的设计及测量方案的设计提供理论指导.有关各向异性地层井孔声场的研究,国内外已经做了大量的工作.Cheng采用三维直角坐标系有限差分方法模拟了正交各向异性地层包围的井孔内多极子声源激发的声场[8].Schmitt研究了介质对称轴同井轴平行情况下,多极子声源激发的模式波的频散曲线及衰减曲线,并分析了各地层参数对于井孔内导波的影响[9].Sinha 采用三维柱坐标系有限差分方法模拟研究了典型的硬地层和软地层条件下,TI地层斜井情况下多极子声源激发的声场以及仪器的存在对于井内模式波频散特征的影响,他认为,各向异性地层中,弯曲波在低频下的传播速度为对应地层横波的相速度[10].王秀明采用三维直角坐标系有限差分方法计算了TI地层斜井中的单极子声源和偶极子声源激发的声场,他的模拟结果表明声波测井所测得的弯曲波的速度同各向异性地层体波的群速度一致[11].张碧星分别采用实轴积分和摄动积分的方法研究了TI地层中模式波的频散特性和激发强度[11].陈雪莲和王瑞甲采用实轴积分法模拟了径向分层TI孔隙介质井孔内多极子声源激发的声场,并着重研究了渗透率对模式波衰减和幅度的影响以及井孔模式波的探测深度问题[12-13].He和Hu等从理论上推导了井孔弯曲波的低频极限速度公式,并采用三维柱坐标系有限差分算法模拟了TI介质斜井中的弯曲波,他们的研究结果表明,大多数情况下,快、慢弯曲波的慢度近似等于沿井轴方向传播的地层快、慢横波的慢度[14-15].闫守国和宋若龙等也模拟了横向各向同性斜井中偶极子声源激发的声场,并提出了采用守恒积分的方法解决柱坐标系波动方程在井轴上出现的奇异点的问题[16].上述的研究均为电缆测井情况下各向异性地层声波测井模拟,鲜见有关在随钻条件下各向异性地层偶极子声源激发声场研究的报道.即使在地层为各向同性的情况下,由于钻铤占据了井内的大部分空间,随钻条件下的弯曲波的频散特性、激发特征均与电缆测井不同[1,17].在地层为各向异性的情况下,偶极子声源激发的声场将更为复杂,无法采用解析的方法进行模拟.地层介质最为广泛存在的一种各向异性介质模型为横向各向同性(TI)介质.本文采用三维有限差分方法模拟研究了横向各向同性(TI)地层随钻正交偶极子声波测井,对地层的声学各向异性在随钻正交偶极子声波测井中的响应特征进行了分析,对采用随钻正交偶极子声波测井方式进行各向异性测量的可行性进行了评价.2 TI地层随钻声波测井声学模型与电缆测井不同,在随钻声波测井中,钻挺占据了井孔内的大部分空间.由于钻铤的存在,井孔内沿井轴方向传播的各种模式波的性质同电缆测井不同.图1a为TI 地层随钻测井声学模型示意图,S方向为TI介质的对称轴方向,它与井轴的夹角为α.如图1b所示,TI地层随钻测井声学模型可以简化为柱状径向分层声学模型,沿井径方向从内向外的介质依次为水、钢(钻铤)、水、地层,各介质的外径分别为r0、r1、r2和无穷大.井孔内充满流体.井孔外地层为无限大TI介质.钻铤位于井孔中央,钻铤中间的水眼中充满水.在实际测井中,尤其是在钻进过程中,钻铤并非完全居中,此时井中的声场将更为复杂.为了突出本文所关心的问题,本文的模型假设钻铤在井孔中完全居中.3 数值模拟方法3.1 波动方程的离散化由于地层为各向异性介质,该问题不存在解析解,必须采用数值方法来模拟地层中的声传播.三维有限差分方法是模拟复杂介质中声传播问题的常用方法[6,8,10-11,15-16,18].本文采用三维有限差分方法来模拟随钻情况下的各向异性地层井孔中的声传播.任意各向异性介质中的运动方程和本构方程分别为式(1—3)和式(4):图1 随钻测井声学模型示意图,包括(a)TI地层井孔随钻测井声学模型和(b)井孔横截面示意图Fig.1 Schematic of LWD acoustic model,including(a)acoustic model of borehole surrounded by TI formation in LWD conditions and(b)the cross section of the borehole其中vx、vy、vz 分别为x、y、z方向上质点振动速度分量;τxx、τyy、τzz分别为x、y、z方向上的正应力;τxy、τyz、τxz为剪切应力;ρ为介质的密度;cab (a=1~6,b=1~6)是各向异性介质的刚性系数.特别地,对于TI介质,当介质对称轴同z轴平行时,式(4)中仅c11、c12、c13、c22、c23、c33、c44、c55和c66不为零,且满足c12=c11-2c66、c23=c13、c22=c11和c44=c55,其它元素为零,这样采用c11、c13、c33、c44、c66五个参数即可描述TI介质中的波传播现象.通过Bond变换可以获得当介质对称轴同z轴呈一定夹角时介质的刚性系数矩阵[19].对于TI介质,当介质对称轴在x-z平面内且同z轴呈一定夹角时,除上述几个参数之外,c15、c25、c35和c46也不为零.右侧的gab(a、b=x~z)表示力变化速度的体积源,和体力源fi(i=x~z)组合使用可以模拟各种声源.图2 交错网格1/8元胞示意图Fig.2 Schematic for 1/8cell of staggered grid 我们采用了交错网格的方式来实现差分的显式迭代过程.图2为采用的交错网格1/8元胞示意图.式(5)为速度和应力各分量在空间和时间上的位置,其中l表示网格的空间位置.正应力各分量τxx,τyy,τzz均位于整数网格节点上,切应力各分量和速度分量分别位于各自对应的半整数网格节点上.对于本文研究的TI地层与井轴斜交的情况,由于刚性系数矩阵元素c15、c25、c35和c46不为0,根据网格上各个物理量之间的位置关系,仅采用交错网格无法进行差分近似处理.如图2所示,在采用式(4)计算时,由于c15、c25、c35和c46不为零,需要网格(lx,ly,lz+1/2)处的速度值以及网格(lx+1/2,ly+1/2,lz+1/2)的速度值,网格(lx+1/2,ly+1/2,lz+1/2)的速度值针对此问题,一种解决方法是采用对速度场进行插值的方法获取上述点的速度值,另外一种方法是采用辅助交错网格的方法.本文采用了对速度场进行插值的方法.如式(6—9)所示,在计算时,首先计算该网格点上的应力值,应力值τxx的计算方法如式(6)所示,其他应力值的计算与式(6)类似,此处不做赘述.普通交错网格处的速度值仍旧按照式(1—3)进行计算,网格上(lx,ly,lz+1/2)处的速度值网格(lx+1/2,ly+1/2,lz+1/2)的速度值以及网格(lx+1/2,ly,lz)的速度值可以通过对速度场进行插值的方法获得,如式(7—9)所示.据此,可以完成差分算法的显示迭代.其中,式(7—9)中,I表示平移算子,其两个下标分别表述平移算子的空间阶数和平移算子的方向.N为差分算子所采用的空间阶数的一半.采用本文的网格划分方法对式(1—4,6—9)进行离散化处理,得到显式的差分迭代格式.式(10)和式(11)分别为速度分量vx和应力分量τxx离散差分格式,其他分量及辅助交错网格各分量的迭代格式形式类似.式(10~11)中,δx、δy、δz 分别代表物理量在x、y、z方向的差分,Δt为计算采用的时间步长.3.2 稳定性条件在直角坐标系下,对于一般的各向异性介质,有限差分计算方法的稳定性条件为[11]式(12~13)中,vmax和vmin代表计算模型速度的最大值和最小值,am为采用的差分系数,Δx、Δy、Δz分别代表x、y、z方向的空间步长,fmax为声源覆盖的最高频率.3.3 声源的实现本文采用两个紧贴钻铤外侧振动相位相反的点声源来模拟偶极子声源.点声源的加载方法为式(14)所述形式[20]:式(14)中,I3为三维直角坐标系中网格的脉冲响应,sn为第n次迭代时加载的声源值,δ为单位脉冲函数,xs、ys 和zs分别为声源在x、y、z方向的坐标.声源函数采用了雷克子波函数,如式(15)所示.3.4 边界的处理在计算中,介质的刚性系数和密度均赋在整数节点上,对于非整数网格点的物理量,通过临近网格的物理量的平均得到.非整数网格点处的密度,通过式(16~18)所示的平均的方法获得.非整数网格点处的刚性系数通过如式(19~21)所示的计算方法获得.这样对于固液界面(钻铤-流体边界和流体-地层边界),通过式(16~21)所给出的平均的方法,边界条件自动满足.为了模拟无限大的地层,采用了完全匹配层(PML)技术来吸收向地层内传播的波[18].PML层厚度选为地层纵波波长的一半.3.5 并行实现由于模型计算量较大,采用传统的串行计算方法无法满足计算需求.我们采用了OpenMP和MPI混合编程技术,将有限差分算法在集群上实现.MPI是目前在集群上应用最为广泛的并行计算技术.OpenMP虽然仅适用于单机多核计算,但是其计算效率高,易于编程实现,且目前大部分编译器都已经支持OpenMP技术.本文通过采用OpenMP和MPI混合编程技术,简化了并行算法的复杂性,提高了程序的执行效率.如图3所示,x和z分别代表直角坐标系的x方向和z方向,m和n分别代表采用的进程数和线程数,双向箭头表示相邻进程之间的通信.通过合理的计算区域划分,将计算任务分配到每个参与计算的节点上.通过MPI技术,在每个计算节点上开辟一个进程,通过进程间的通信和协作,实现计算的并行.在一个节点上,运用OpenMP技术,开辟多个线程,利用多核协同工作,加快计算的速度.图3 并行计算方案Fig.3 Parallel implementation of the algorithm对于240×240×300个网格,20000个时间步长的数值模型,采用5个CPU核心数为12的节点进行计算,每个节点开辟的线程数目为11,采用双精度进行计算时完成计算所需的时间大约为20h.4 数值模拟结果及分析4.1 数值模型参数图4为数值计算模型示意图,包括(a)模型主计算区域和(b)井孔横截面示意图.模型主计算区域的尺寸为1m×1m×4.8m,x、y、z方向的空间采样间隔分别为0.0075m、0.0075m和0.0125m.井孔位于模型中央,井轴与z轴平行.介质对称轴S位于x-z平面内,介质对称轴与井轴夹角为α.特别地,当α=0°时,井轴与介质对称轴平行,相当于竖直井井孔沿对称轴穿过VTI地层,当α=90°时,井轴与介质对称轴垂直,相当于竖直井井孔沿垂直于介质对称轴的方向穿过HTI地层.数值模拟时采用的地层参数为实验室内测量的各向异性介质的参数,该介质在TI 对称轴与z轴平行情况下的刚性参数如表1所示.井孔内流体及钻铤参数见表2,钻铤内径、外径及井眼直径分别为0.054m、0.180m和0.240m.声源加载在距离底界面0.8m处,采用在钻铤外径处加载两个震动相位相反的点声源的方法来模拟偶极子声源.偶极子接收器同样放置于钻铤外径处,接收器源距为2.0~3.5m,间距为0.15m.由于本文重点研究的对象为地层弯曲波,不涉及隔声及钻铤波问题的研究,为压制钻铤波,在发射器到源距最小的接收器之间将钻铤截断.表1 地层参数Table1 Formation parameters刚性参数c11(Gpa)c13(Gpa)c33(Gpa)c44(Gpa)c66(Gpa)密度(kg/m3)值13.83 5.89 9.39 2.60 2.99 1327.9表2 钻铤及钻铤内外流体的参数Table 2 Parameters of the collar and the fluid in and out of the collar参数纵波速度(m/s)横波速度(m/s)密度(kg/m3)钻铤5860 3130 7850流体1500 - 1000图4b为x-y平面内井孔横截面示意图.为描述方便,定义地层横向同性面和井轴垂直面之交线与偶极子声源偏振方向的夹角为β,发射探头和接收探头所对应的夹角分别为βT和βR.特别地,对于本文α=90°的井孔模型,β为偶极子声源偏振方向同快横波面的夹角.当βT=βR时,接收器与发射器偏振方向相同,测得波形为同向分量波形;当βR=βT+90°时,接收器与发射器偏振方向相差90°,测得波形为正交分量波形.特别地,当βT=0°时,声源的偏振方向与地层中传播的SH波偏振方向一致;当βT=90°时,声源的偏振方向与地层中传播的准SV波偏振方向一致.图4 数值模拟采用的模型示意图(a)及x-y截面示意图(b)Fig.4 Schematic diagram of numerical simulation model(a)and diagram of x-ycross section(b)本文首先模拟了α=90°,βT=0°、21.25°、45°、68.75°和90°情况下正交偶极子声波测井,借以研究在井轴与TI介质对称轴垂直的情况下,随钻正交偶极子声波测井对地层各向异性的评价能力,然后计算了α=0°、15°、30°、45°、60°、75°、90°,βT=0°、90°情况下偶极子声源激发的声场,研究不同井斜情况下的随钻正交偶极子声波测井的响应特征.4.2 正交偶极子波形图5 α=90°时,βT=0°、90°偶极子在井孔中激励的偶极子波形,源距为2.0~3.5mFig.5 Dipole waveforms excited in the borehole by dipole source of source-receiver space 2.0~3.5m withα=90°,βT=0°、90°数值模拟了α=90°,βT=0°、90°情况下偶极子声源在井孔中激发的模式波.图5为数值模拟结果,其中实线为声源和接收器的方向βT,βR=0°时测得的偶极子波形,虚线为声源和接收器的方向βT,βR=90°时测得的偶极子波形.可以看到,βT=0°时偶极子声源激励的弯曲波的传播速度大于βT=90°时偶极子激励的弯曲波的传播速度,同对应的地层体波SH波和SV波(在α=90°时,纵波和SV波不耦合)的速度相一致.这表明,在钻铤存在的情况下,不同方向的偶极子声源激发的弯曲波速度的差异同地层横波速度的各向异性有关.数值模拟了α=90°,βT=0°、21.25°、45°和68.75°和90°情况下,偶极子声源在含钻铤井孔内激发的声场.图6为不同角度下偶极子声源在井孔中激发的同向分量波形(a)和正交分量波形(b).从图6中可见,当βT=0°或者90°时,几乎接收不到正交分量波形信号,当βT=21.25°、45°、68.75°时,正交分量能量较强,且当βT=45°时正交分量能量最强;而同向分量波形能量在βT=0°或者90°时幅度较强,在βT=45°时幅度相对较弱.同向分量和正交分量的能量变化表明,在βT=0°或者90°时,弯曲波未发生分裂现象;βT=21.25°、45°、68.75°时,弯曲波发生了分裂现象.图6的模拟结果证实了,对于井轴同介质对称轴垂直的TI地层井孔,同电缆测井一致,在随钻条件下,弯曲波分裂现象仍然存在.图6 α=90°,βT=0°、21.25°、45°、68.75°和90°时,模拟得到的(a)同向分量波形和(b)正交分量信号,源距为2mFig.6 Simulated inline componentwaveforms(a)and cross-line component waveforms(b)of source-receiver space 2mwithα=90°,βT=0°、21.25°、45°、68.75°and 90°图7 α=90°,βT=68.75°时,数值模拟得到的四分量偶极子波形,包括同向分量波形(a)XX 和(c)YY,以及正交分量波形(b)XY和(d)YX,源距为2~3.5mFig.7 Simulated four-component dipole waveforms including incline component waveforms(a)XXand(c)YY,and cross-line component waveforms(b)XYand(d)YXof source-receiver space 2~3.5mwit hα=90°,βT=68.75°假设正交偶极子声源的两个正交的方向分别标记为X和Y.模拟了X方向同快横波面的夹角分别为βT=0°、21.25°、45°、68.75°、90°几种情况下正交偶极子声源在含钻铤井孔内激发的四分量偶极子波形.图7为βT=68.75°情况下模拟的四分量偶极子波形,包括同向分量波形(a)(c)和正交分量波形(b)(d).对于各向同性地层,由于各方向地层声学参数均相同,不会接收到正交分量信号;对于各向异性地层,当声源偏振方向同介质对称轴呈一定夹角时,由于各向异性地层的耦合作用,会接收到正交分量.从图7中可以看到,正交分量信号XY和YX 均有较强的幅度,说明发生了弯曲波分裂现象.综上所述,在含钻铤TI地层井孔中,βT=0°、90°时偶极子声源激励的弯曲波未发生分裂现象,分别以较快、较慢的速度沿井轴传播;当声源偏振方向同介质对称轴呈一定夹角的情况下,弯曲波分裂成以快、慢速度传播的两种模式波,能够接收到较强幅度的正交分量信号.以上分析表明,同电缆测井条件下各向异性地层井孔中偶极子声源激发的声场类似,随钻条件下偶极子声源激发的弯曲波也存在分裂现象,且βT=0°时偶极子声源激励的弯曲波的速度大于βT=90°时偶极子声源激励的弯曲波的速度.4.3 快横波面的确定快横波面定义为快横波偏振方向与井轴确定的平面.采用各向异性分析方法,通过四分量偶极子波形的旋转,从模拟得到的阵列波形中提取了快横波面的方位,通过对比反演得到的方位角同正演模型采用的方位角,分析采用随钻正交偶极子测井进行快横波面方位测量的可行性.图8为α=90°井内,在快横波面同声源偏振方向的夹角βT=68.75°的情况下,通过Alford四分量波形旋转方法[12]得到的正交分量相对能量随仪器旋转角度的变化图,其极小值对应着目的快横波面方位.正交分量的相对能量定义为正交分量波形能量占四分量波形总能量的比例.从图8中反演得到的快横波面同声源的偏振方向的夹角β′T为69.71°.图9为采用图8所示方法从模拟得到的阵列波形中反演得到的快横波面的方位同模型实际采用的方位的对比图,其中实线为模拟时实际的快横波面同声源的偏振方向的夹角βT,空心圆圈为从数值模拟的波形中反演得到的声源的偏振方向同快横波面的夹角β′T.从图9中可见,反演得到的快横波面方位同模型实际的方位一致性非常好.数值模拟结果证明,在随钻条件下采用正交偶极子声波测量方式能够对地层的快横波方位进行评价.在这一点上,随钻条件下的正交偶极子声波测井同电缆测井情况一致.图8 α=90°井内,βT=68.75°情况下,正交分量相对能量随仪器旋转角度变化图Fig.8 The relative energy of cross-line component waveforms with the changes of rotation angle of tools,whenα=90°,βT=68.75°图9 从数值模拟得到的波形中提取的快横波面方位同模型实际的方位的对比Fig.9 Comparison of the fast shear wave direction obtained from simulated waveforms with the actual direction4.4 频散分析采用矩阵束方法[21]从α=90°,βT=0°、90°时偶极子声源激发的波形中提取了各模式波的频散曲线,提取的结果如图10所示,其中黑色实线和虚线分别为βT=0°、90°时偶极子声源激励的弯曲波的频散曲线,白色实线和虚线分别为该角度下地层体波SH波和SV波的慢度.图10a和图10b分别为βT=0°时偶极子声源激励的声场的频散图和βT=90°时偶极子声源激励的声场的频散图.人们在HTI地层井孔中的数值模拟结果表明,对于电缆测井,在大多数情况下,弯曲波的低频传播速度接近于对应的快、慢横波的传播速度[10,15].从图10可见,与电缆测井相比,随钻条件下的弯曲波的频散规律有两点不同:在随钻条件下,弯曲波的低频速度并非趋近于地层的横波速度;弯曲波随着频率的变化并非单调变化.对于低频段(0~1kHz)的弯曲波,其速度随着频率增加而增加,且βT=0°时偶极子声源和βT=90°时偶极子声源激发的弯曲波的速度差异不大;在频率1.5~8kHz下,βT=0°时偶极子声源激发的弯曲波的速度大于βT=90°时偶极子声源激励的弯曲波的传播速度,二者差异较大,同电缆测井情况一致.数值模拟的结果表明,对于我们所研究的地层,由于在随钻条件下弯曲波的低频速度不再趋近于地层的横波速度,无法通过弯曲波的测量直接获得地层横波速度;不过,在某些频段内βT=0°时偶极子声源激发的弯曲波的速度大于βT=90°时偶极子声源激发的弯曲波的速度,地层弯曲波的各向异性仍然能够反应地层横波速度的各向异性.在图10中,可以观察到随频率增加慢度变小的钻铤波和随频率降低慢度逐渐趋近于地层横波慢度的六极子波.之所以能够接收到六极子波,是因为在本文的模拟中,偶极子声源装在钻铤的外侧,极距较大,对于近场而言并非理想的偶极子源,激发的模式波中含有六极子和更高极性的成分[17].另外一点,在图10所示的频散图中,我们观察到了以地层横波的速度传播的模式(图中圆圈标注区域).该模式在整个计算的频率段内都能够观察到,在低频段和钻铤波混合在一起,难以区分.该模式的速度同地层横波速度一致,当βT=0°时,该模式的速度同地层的SH波一致;当βT=90°时,该模式的速度同地层的SV波速度一致.SV波的速度为1399.3m/s,小于本文模型中的井内流体速度1500m/s,这说明,该模式能够。

高超声速飞行器多物理场耦合问题建模与分析

高超声速飞行器多物理场耦合问题建模与分析

2023-11-06CATALOGUE目录•引言•高超声速飞行器多物理场耦合模型•高超声速飞行器多物理场耦合数值模拟•高超声速飞行器多物理场耦合问题分析•高超声速飞行器多物理场耦合问题优化设计•结论与展望01引言研究背景与意义高超声速飞行器在国防、科技和商业领域具有重要应用价值,如高超声速巡航导弹、高超声速飞机等。

多物理场耦合问题是高超声速飞行器设计面临的重大挑战之一,涉及气动、热、结构等多个物理场的相互影响。

研究多物理场耦合问题对提高高超声速飞行器的性能、安全性和可靠性具有重要意义。

010203研究现状与发展国内外学者针对高超声速飞行器多物理场耦合问题开展了广泛研究,提出了许多建模与求解方法。

然而,由于高超声速飞行器多物理场耦合问题的复杂性,仍存在许多挑战需要进一步解决。

随着计算技术和数值方法的不断发展,多物理场耦合问题的研究将更加深入,为高超声速飞行器的设计提供更加有效的手段。

02高超声速飞行器多物理场耦合模型建模方法与原理耦合模型分类根据耦合程度和物理场类型,可将高超声速飞行器多物理场耦合模型分为强耦合模型、弱耦合模型和混合耦合模型。

建模原理利用物理和数学方法,建立能够描述各物理场之间相互作用和影响的数学模型,并进行数值模拟和实验验证。

常用软件ANSYS、FLUENT、MATLAB、COMSOL等。

气动-热-结构耦合模型热效应对气动性能的影响结构变形会改变飞行器的气动外形,进而影响飞行器的气动性能。

建模方法采用有限元法和有限差分法等数值方法,进行耦合求解。

气动外形对温度场的影响高超声速飞行时,气动加热会导致飞行器表面温度升高,进而影响结构强度和刚度。

03建模方法采用多学科耦合方法和控制理论进行建模和仿真分析。

气动-推进-控制耦合模型01推进系统对气动性能的影响火箭发动机的推力、燃料消耗等会影响飞行器的气动外形和气动性能。

02控制系统的气动效应控制面、控制机构等的气动效应会影响飞行器的气动性能和控制精度。

计算全息补偿检测自由曲面的高精度位姿测量

计算全息补偿检测自由曲面的高精度位姿测量

第 31 卷第 11 期2023 年 6 月Vol.31 No.11Jun. 2023光学精密工程Optics and Precision Engineering计算全息补偿检测自由曲面的高精度位姿测量李雯研1,2,程强1,2,曾雪锋1,2*,李福坤1,2,薛栋林1,2*,张学军1,2(1.中国科学院长春光学精密机械与物理研究所,吉林长春 130033;2.中国科学院大学,北京100049)摘要:为实现自由曲面的定位与位姿高精度测量,提出了“光学-机械”基准定位法,建立了位姿测量模型,并对该方法的定位误差和基准选择展开研究。

根据三坐标测量机与计算全息提出了“光学-机械”基准定位法。

然后,采用球形安装的回射器(Sphere Mounted Retroreflector ,SMR)、猫眼、基准球作为基准,基于波像差理论与视差效应分别建立了3种基准的位姿测量模型,得到了位置误差与基准区域波前像差的函数关系,并对3种位姿测量模型进行对比。

最后,对3种基准位姿测量方法进行仿真及实验验证,实测结果与模型的残差结果均小于0.05λ,相对误差均小于2.43%,验证了模型的准确性。

实验结果表明,当检测距离为1 000 mm时,猫眼法的轴向定位误差为24 μm;基准球法的轴向定位误差为50 μm;SMR靶球法的轴向定位误差为16 μm,X,Y方向的定位误差为1 μm,滚转角定位误差为3.26″。

SMR靶球法的定位误差最小、检测动态范围最大且检测光学元件的自由度最多,更适用于自由曲面的高精度位姿检测。

关键词:光学检测;光学面形位姿测量;“光学-机械”基准定位法;计算全息;定位误差中图分类号:O439 文献标识码:A doi:10.37188/OPE.20233111.1581High-precise posture measurement for measuring freeform surface with computer generated hologram compensationLI Wenyan1,2,CHENG Qiang1,2,ZENG Xuefeng1,2*,LI Fukun1,2,XUE Donglin1,2*,ZHANG Xuejun1,2(1.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences,Changchun 130033, China;2.University of Chinese Academy of Sciences, Beijing 100049, China)* Corresponding author, E-mail:zengxf@ciomp. ac. cn;xuedl@ciomp. ac. cn Abstract: To realize the high-precision position measurement of freeform surfaces, this paper proposes an optic-mechanical reference positioning method that employs a position measurement model. First, an opti⁃cal-mechanical reference positioning method based on a coordinate measuring machine and computer-gener⁃ated holography is proposed. Then, using a spherical mounted retroreflector (SMR) target ball, cat eye,and reference ball as the benchmarks,three benchmark position measurement models are established on the basis of wave aberration theory and parallax effect. The functional relationship between the position er⁃ror and the wavefront aberration in the reference area is obtained, and the three position measurement mod⁃文章编号1004-924X(2023)11-1581-12收稿日期:2023-01-11;修订日期:2023-02-14.基金项目:吉林省卓越创新团队(No.20210509067RQ);国家自然科学基金资助项目(No.61975201,No.62075218,No.12003034);国家重大科研仪器研制项目(No.62127901);中科院青促会项目(No.2020224,(No.2022213)第 31 卷光学精密工程els are compared and analyzed. Finally, the three benchmark position measurement methods are simulated and validated via experiments. The residual difference between the measurement results and the model is below 0.05λ, and the relative error is below 2.43%, confirming the accuracy of the model. The experi⁃mental results indicate that the axial positioning error of the cat-eye method is 24 μm when the measure⁃ment distance is 1 000 mm. The axial positioning error of the reference-ball method is 50 μm. The SMR target ball positioning error is 16 μm in the axial direction, 1 μm in the X and Y directions, and 3.26″ in clocking.The SMR target ball method has the minimum positioning error,maximum measurement dy⁃namic range, and maximum degree of freedom in detecting optical elements; therefore, it is more suitable for high-precision pose measurement of freeform surfaces.Key words: optical testing;optical surface posture measurement;computer generated holography;optic-mechanical reference positioning method; positioning error1 引言计算全息(Computer Generated Hologram,CGH)补偿检测具有高精度、非接触测量等优点,可实现非球面、自由曲面等光学面形补偿检测[1-2]。

微波驱动超导量子比特产生Greenberger-Horne-Zeilenger态

微波驱动超导量子比特产生Greenberger-Horne-Zeilenger态

微波驱动超导量子比特产生Greenberger-Horne-Zeilenger态伍方舟;夏立新【期刊名称】《湖南科技学院学报》【年(卷),期】2013(34)8【摘要】In this paper, we present a scheme that based on superconducting qubit system to generate GHZ state through microwave-driven cross resonant technology. Our scheme is more facilitative to manipulate than the conventional schemes, the qubut is always in the optimum spot, no additional flux lines to adjust superconducting qubits’ transition frequency, and therefore it avoids the obstacle of spectral crowding and extended the coherence time.% 提出一个基于超导量子比特系统,利用微波驱动交叉共振技术制备GHZ态的方案。

本方案操控比传统方案更简单,量子比特始终处于最佳工作点,不需要额外的磁通来调节跃迁频率,避免了频谱拥挤,延长了相干时间。

【总页数】3页(P21-23)【作者】伍方舟;夏立新【作者单位】河南科技大学物理与工程学院,河南洛阳 471023;河南科技大学物理与工程学院,河南洛阳 471023【正文语种】中文【中图分类】O413.1【相关文献】1.两超导电荷量子比特与压缩相干态相互作用的纠缠特性 [J], 廖庆洪;刘晔;Muhammad Ashfaq Ahmad2.通过双Raman作用在超导量子干涉器件中实现多比特GHZ态 [J], 詹志明;刘晓东;张立辉;石文星;李星3.用微波-超导量子比特系统实现一位通用量子逻辑门 [J], 蔡十华;胡菊菊4.非马尔科夫环境下耦合超导量子比特纠缠态的纠缠消相干 [J], 嵇英华;徐林5.基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger 态 [J], 于宛让;计新因版权原因,仅展示原文概要,查看原文内容请购买。

医疗超声成像自适应波束形成算法

医疗超声成像自适应波束形成算法

最 经 典 的 自 适 应 波 束 形 成 算 法 是 由 C apon[l] 提出的最小方差(minimum variance,M V )波束形 成 ,该算法通过抑制离轴信号同时保持感兴趣的 轴 上 信 号 来 提 高 图 像 分 辨 率 和 对 比 度 .然 而 M V 对方向向量误差过度敏感,稳健性不如传统的延 时叠加(delay-and-sum ,D A S )算 法 [2];其 次 , M V 在增强图像对比度及抑制杂波方面仍有待提高; 而且,高运算复杂度限制了 M V 的 硬 件 实 现 ,其 计 算 量 体 现 在 协 方 差 矩 阵 求 逆 ,复 杂 度 高
Q R 分 解 的 最 小 方 差 与 符 号 相 干 系 数 融 合 的 自 适 应 波 束 形 成 算 法 . 仿 真 结 果 表 明 : 该 算 法 分 辨 率 、对 比 度 都 优
于传统的延时叠加、最 小 方 差 及 基 于 Q R 分 解 的 最 小 方 差 算 法 ,表 现 出 和 最 小 方 差 与 符 号 相 干 系 数 融 合 ( SFM V)算 法 非 常 接 近 的 性 能 ,但 运 算 复 杂 度 却 远 低 于 它 .
Abstract :The traditional minimum variance (M V ) adaptive beamforming algorithm fo r medical
ultrasound has the disadvantages o f poor robustness, lim ited image contrast enhancement and high algorithm com plexity. So, according to the m inim um variance beamforming based on QR decomposition(Q R M V ) , the sign coherence factor was introduced, and an adaptive beamforming algorithm o f QRM V combined w ith sign coherence factor was proposed. The sim ulation results

基于自适应小波变换的煤矿降质图像模糊增强算法

基于自适应小波变换的煤矿降质图像模糊增强算法

㊀第45卷第12期煤㊀㊀炭㊀㊀学㊀㊀报Vol.45㊀No.12㊀㊀2020年12月JOURNAL OF CHINA COAL SOCIETYDec.㊀2020㊀移动阅读范伟强,刘毅.基于自适应小波变换的煤矿降质图像模糊增强算法[J].煤炭学报,2020,45(12):4248-4260.FAN Weiqiang,LIU Yi.Fuzzy enhancement algorithm of coal mine degradation image based on adaptive wavelet trans-form[J].Journal of China Coal Society,2020,45(12):4248-4260.基于自适应小波变换的煤矿降质图像模糊增强算法范伟强,刘㊀毅(中国矿业大学(北京)机电与信息工程学院,北京㊀100083)摘㊀要:为解决矿井下复杂光照条件导致视频监控系统中的图像降质问题,提出基于自适应小波变换的煤矿降质图像模糊增强算法㊂首先,通过多尺度小波分解将矿井降质图像分解为低频子图和不同尺度的高频子图,采用贝叶斯估计的小波收缩阈值方法,自适应调整不同尺度下高频子图的小波阈值;其次,设计了引入自适应权值因子和自适应增强系数的自适应小波阈值函数,在保持了阈值函数连续性的同时也能够避免产生固定偏差,从而实现了对不同尺度下高频子图的收缩阈值滤波和非线性增强;接着,采用双边滤波算法估计并去除低频子图中的照度分量,并对处理后的低频子图和各尺度高频子图进行小波重构,获取增强后的小波重构图像;最后,采用改进的隶属度函数和模糊增强算子对小波重构图像的亮度分量进行调整,得到最终增强图像㊂采用主观视觉和客观评价指标对降质图像增强实验进行分析验证,实验结果表明:所述算法具有最优的图像增强效果,能够有效抑制图像噪声㊁增强图像细节特征㊁降低图像失真㊁改善降质图像视觉效果,且克服了传统图像增强算法在矿井复杂光照条件下的局限性,具有较强的鲁棒性㊂其综合性能指标较CLAHE ,SSR ,MSR ,BF -DCP ,DGR ,MSWT 及PGCHE 七种算法,分别提高4.42%,4.95%,15.35%,196.60%,88.93%,10.52%和12.10%㊂关键词:小波变换;降质图像;模糊增强;贝叶斯估计;阈值函数;双边滤波中图分类号:TD76;TP391.41㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:0253-9993(2020)12-4248-13收稿日期:2020-05-08㊀㊀修回日期:2020-08-11㊀㊀责任编辑:郭晓炜㊀㊀DOI :10.13225/ki.jccs.2020.0785㊀㊀基金项目:国家重点研发计划资助项目(2016YFC0801800)㊀㊀作者简介:范伟强(1992 ),男,河南渑池人,博士研究生㊂E -mail:fan_weiqiang@163.comFuzzy enhancement algorithm of coal mine degradation imagebased on adaptive wavelet transformFAN Weiqiang,LIU Yi(School of Mechanical Electronic &Information Engineering ,China University of Mining and Technology (Beijing ),Beijing ㊀100083,China )Abstract :In order to solve the problem of image degradation in video monitoring systems caused by complex lighting conditions in mines,a fuzzy enhancement algorithm for coal mine degradation images based on adaptive wavelet trans-form is proposed.Firstly,the degraded image is decomposed into low-frequency sub-graph and high-frequency sub-graphs of different scales by multi-scale wavelet decomposition,and the wavelet shrinkage threshold method of Bayes-ian estimation is used to adaptively adjust the wavelet threshold at different scales.Secondly,an adaptive wavelet threshold function that introduces adaptive weight factor and adaptive enhancement coefficient is designed,which not only maintains the continuity of the threshold function and avoids fixed deviations,but also implements contraction threshold filtering and non-linear en-hancement for high-frequency sub-graphs of different scales.Thirdly,a bilateralfiltering algorithm is used to estimate and remove the illuminance component in the low-frequency sub-graph,and the第12期范伟强等:基于自适应小波变换的煤矿降质图像模糊增强算法wavelet reconstruction is performed on the processed low-frequency sub-graph and high-frequency sub-graphs of each scale to obtain enhanced wavelet reconstruction images.Finally,the improved membership function and fuzzy enhance-ment operator are used to adjust the brightness component of wavelet reconstructed image to obtain the final enhanced image.The subjective vision and objective evaluation indicators are used to analyze the results of degraded image en-hancement experiments.The proposed algorithm has the best image enhancement effect,which can effectively suppress image noise,enhance detailed information,reduce image distortion,improve the visual effect of degraded images,over-come the limitations of traditional image enhancement algorithms under complex lighting conditions in mines,and has strong pared with CLAHE,SSR,MSR,BF-DCP,DGR,MSWT and PGCHE,its comprehensive per-formance indicators have been improved by4.42%,4.95%,15.35%,196.60%,88.93%,10.52%and12.10%re-spectively.Key words:wavelet transform;degraded image;fuzzy enhancement;Bayesian estimation;threshold function;bilateral filtering㊀㊀煤矿视频监控系统对提高煤矿安全生产管理水平,促进矿山智能化发展至关重要[1],如:规范矿工操作流程㊁落实领导带班考勤㊁人员实时位置测定等[2-4]㊂但煤矿井下视频监控图像易受人工光源照度不均,生产过程中粉尘量大[5],喷雾降尘设施导致的空气湿度高等环境因素影响㊂这些因素导致摄像机的成像质量严重下降[6],主要表现为图像呈现大量暗区域,以及部分高亮区域,其中暗区域使图像轮廓模糊不清,细节特征丢失,视觉效果差;高亮区域使图像的光晕现象明显,并导致图像对比度和信噪比下降等,从而制约了视频监控系统的智能化发展㊂为了更好地呈现煤矿井下场景信息,突出图像纹理和边缘特征,提高图像的视觉效果,促进视频监控系统在煤矿安全生产和矿山智能化方面的应用,对其低照度㊁光照不均㊁低信噪比的煤矿监控图像进行增强具有重要意义㊂目前,针对矿井降质图像的增强算法主要包括: (1)基于光学成像原理的图像复原算法[7-8]㊂矿井降质图像受到光的散射影响,可以采用基于暗原色先验(Dark Channel Prior,DCP)和大气散射模型的图像处理算法对矿井降质图像增强㊂但该类算法对降质图像的亮度改善效果较差,且增强过程中忽略了噪声对降质图像的影响㊂(2)基于空域变换的图像增强算法[9-11]㊂通过直方图均衡化(Histogram Equalization,HE),线性㊁非线性等灰度变换函数,以及改进的空域变换函数对像素进行调整,实现对降质图像的增强㊂但该类算法存在一些缺点:①空域变换函数易增强图像噪声,出现灰度级合并,导致图像部分欠增强或过增强等;②改进的HE算法易出现色彩偏移,层次感下降,图像特征模糊等㊂(3)基于照射-反射模型的图像增强算法[13-16]㊂根据物体在不同光照下色彩的恒常性,将降质图像分为照度分量(Illumination Component,LC)和反射分量(Reflection Component,RC)㊂借助滤波器估计原图像中的LC,进而得到RC,并对RC进行空域变换,实现图像增强㊂但该类算法存在一些缺点:①传统滤波器估计LC,易导致增强图像边缘特征模糊;②保边滤波器估计LC,增强过程耗时较长;③该类算法均假设环境光照均匀,对矿井降质图像增强效果较差㊂(4)基于小波变换(Wavelet Transform,WT)的图像增强算法[17-19]㊂在频率域内对小波分解的高频和低频子图进行系数调整,并实现图像增强㊂但该类算法对代表图像背景信息和整体特征的低频信息未进行增强处理,导致WT后的增强图像亮度改善不明显㊂(5)基于模糊集域-DCP图像增强算法[20]㊂该算法虽解决了矿井下浓雾㊁光照不均问题,但易放大图像噪声,导致降质图像部分区域过增强㊂(6)基于NSCT的矿井图像增强算法[21]㊂该算法计算过程复杂,且增强后的图像仍存在光晕现象㊂针对现有基于光学成像原理㊁空域变换㊁照射-反射模型以及基于WT和改进型WT等主流图像增强算法所存在的缺陷,无法满足未来煤矿视频监控系统智能化发展需求㊂同时,根据小波变换和模糊增强算法在矿井降质图像增强中所表现出的显著优势[17-20,22],笔者提出了基于自适应小波变换的煤矿降质图像模糊增强算法㊂1㊀降质图像增强算法建模在矿井图像的增强过程中,WT是实现图像增强的一种重要方法,它能够将图像从空间域变换至频率域,既不丢失图像原有信息,也不会增加冗余信息,具有较完善的重构能力[22]㊂通过多尺度小波分解9424煤㊀㊀炭㊀㊀学㊀㊀报2020年第45卷(Wavelet Decomposition,WD)能够得到包含图像边缘㊁纹理等细节信息的高频子图(High Frequency Sub -graph,HFS),以及包含图像灰度㊁亮度等整体特征的低频子图(Low Frequency Sub -graph,LFS)㊂但已有的二维小波阈值函数模型具有一定的局限性,易导致图像的细节信息丢失及噪声放大等问题,进而造成重构后的增强图像出现不同程度的模糊[23]㊂此外,WT 无法对LFS 系数进行调整,这使得增强后的图像亮度改善不明显㊂因此,本文设计了能够适用于矿井复杂光照条件的图像增强模型㊂1.1㊀小波阈值函数设计小波阈值函数构造是本文图像增强算法中的关键内容㊂目前,基于WT 的图像增强算法主要采用传统小波hard,soft 阈值函数[24]以及改进后的Semisoft,Garrote 阈值函数㊂Semisoft,Garrote 阈值函数模型分别如式(1),(2)所示:Semisoft 阈值函数模型:μT (ωi ,j )=0,ωi ,j <T 1sgn(ωi ,j )T 2(ωi ,j -T 1)T 2-T 1,㊀㊀T 1<ωi ,j <T 2ωi ,j ,ωi ,j ȡT 2ìîí(1)式中,μT 为小波增强后的HFS 系数;ωi ,j 为第i 尺度下的第j 个HFS 系数,j =1,2,3分别对应HL,LH,HH 子图;T 1,T 2为小波阈值函数的2个阈值;sgn(㊃)为符号函数㊂Garrote 阈值函数模型:μT (ωi ,j )=0,ωi ,j <Tωi ,j -T 2ωi ,j ,ωi ,j ȡT ìîí(2)式中,T 为小波阈值㊂在基于上述模型的小波图像处理中,小波软阈值函数中的小波系数在去噪前后存在着恒定的偏差,会导致WR 图像过度平滑㊁严重失真;小波硬阈值函数在阈值处不连续,导致WR 后的图像出现 伪吉布斯 现象[25];Semisoft 去噪模型的优点是能够较好的兼顾软㊁硬阈值函数的优点,但同时存在阈值函数不连续㊁计算量大㊁需要计算2个阈值㊁算法实现困难等缺点[26];Garrote 阈值函数模型的优点是能够较好地保持图像平滑,且一定程度上保留图像的边缘特征信息[27],缺点是随着小波分解尺度的增加,小波阈值函数无法实现自适应调整,导致图像细节信息和噪声共同增强㊂笔者根据上述4种典型小波阈值函数存在的缺陷,以及随着WD 尺度的增加,HFS 中的噪声信号逐渐减少的特点[28],设计了一种引入自适应权值因子的小波阈值函数(图1)㊂该小波阈值函数在整个定义域内连续,不会产生固定偏差,并且能够根据WD 尺度的变化,自动调整小波阈值函数的噪声抑制水平,适合矿井复杂环境中的图像降噪,其表达式为μT (ωi ,j )=sgn(ωi ,j )(1-s )Tωi ,j ,ωi ,j<Tωi ,j -s T 2ωi ,j e T -ωi ,j,ωi ,j ȡTìîí(3)式中,s 为自适应权值因子,s =n /N ,N 为第i 尺度下的第j 个HFS 系数的长度;n 为其系数中小于阈值的系数数目㊂图1㊀不同阈值下的自适应小波阈值函数Fig.1㊀Adaptive wavelet threshold function under differentthresholds小波分解后的HFS 中既包含大量的图像细节信息又包含一部分噪声信息,并且随着尺度的增加,HFS 中的图像细节信息逐渐减少[29]㊂因此,笔者通过设置一个随尺度变化的自适应增强系数,实现不同尺度下HFS 的自适应降噪与增强,其表达式为μT (ωi ,j )=sgn(ωi ,j )(1-s )TW i ,j (ωi ,j ),ωi ,j<TW i ,j ωi ,j -s W i ,j T 2ωi ,j e W i ,j (T -ωi ,j ),ωi ,j ȡTìîí(4)524第12期范伟强等:基于自适应小波变换的煤矿降质图像模糊增强算法其中,W i,j为自适应增强系数,W i,j由式(5)求得W i,j=k e(ωi,j-μ)22σ2(5)式中,μ为第i尺度下的第j个HFS的均值;σ为小波去噪前第i尺度下的第j个HFS的标准差,在噪声估计时,通常j=3;k为自适应调节参数㊂由于同一尺度下的HH子图中有较多原始图像的细节信息,而HL,LH子图中的细节成分较少,近似成分更大[28]㊂故当j=1,2时,k=2i-1;当j=3时,k=2i㊂通常情况下,小波阈值函数在增强图像细节信息时,噪声也会相同程度地放大,影响图像的视觉效果㊂根据式(4),(5)可知,本文所设计的自适应小波阈值函数将小波去噪与增强的特点有机结合起来,对每一尺度下的HFS进行自适应阈值变换,突出不同尺度的细节特征,抑制图像的噪声,增强图像的层次感,大幅度提高小波阈值函数的灵活性和实用性㊂1.2㊀小波阈值选取在基于WT的图像增强处理中,小波阈值的选取是决定图像增强效果的一个决定性因素㊂随着分解尺度的增大,噪声系数会越来越小,若不同尺度下均采用相同的阈值,在阈值过大时,使得低于阈值的有效小波系数置零,造成图像的细节和边缘特征模糊;阈值选取太小时,导致在小波降噪中残留较多的噪声信号,降低图像增强算法的去噪效果㊂因此,本文采用贝叶斯估计的小波收缩阈值方法,自适应调整小波阈值,算法过程如下:(1)根据贝叶斯估计理论,小波去噪后的各HFS系数服从均值为0,方差为σ2x的广义高斯分布㊂Φ(x)=12πσx exp-x22σ2xæèöø(6)式中,Φ(x)为广义高斯分布函数;x为第i尺度下的第j个HFS系数;σx为小波去噪后第i尺度下的第j 个HFS标准差㊂(2)根据σx和贝叶斯风险估计函数r(T)可求得最优化的阈值[30],其阈值T[31]为T i=σ2σx(7)式中,T i为第i尺度小波系数的阈值㊂(3)噪声方差采用鲁棒性中值估计公式:σ=median(ωi,j)/0.6745(8)㊀㊀(4)每个含噪观测子带的方差估计σ2y采用最大似然估计法得到σ2y=1Nðω2i,j(x)(9)㊀㊀(5)由σ2y=σ2x+σ2得到σx=max(σ2y-σ2,0)(10)㊀㊀根据式(7)~(10)计算得到不同尺度下的小波阈值T,且基于贝叶斯估计的收缩阈值方法能够克服固定小波阈值的缺点,自适应得到不同尺度下的小波阈值㊂1.3㊀照射分量的估计与去除由于WD后的LFS主要代表图像整体轮廓特征的环境光LC,其LC会导致重构图像纹理和边缘特征模糊㊂为了增强煤矿监控图像的整体特征信息,本文采用双边滤波(Bilateral Filtering,BF)对LFS进行滤波处理,估计环境光LC㊂其BF后输出的LFS系数值依赖于邻域系数值的加权组合,定义为f BF(i,j)=ðk,l f L(k,l)w(p,q,k,l)ðk,l w(p,q,k,l)(11)式中,f BF(i,j)为滤波后的LFS;f L(k,l)为输入的LFS在滑动窗内中心像素点位置坐标(k,l)的系数值;w(p,q,k,l)为权重系数;(p,q)为邻域像素点位置坐标;(k,l)为中心像素点坐标㊂权重系数w(p,q,k,l)为空域核和值域核的乘积,其表达式为w(p,q,k,l)=exp-(p-k)2+(q-l)22σ2déëùûˑexp- f L(p,q)-f L(k,l) 22σ2réëùû(12)式中,σ2d为空间域方差;f L(p,q)为输入的LFS在滑动窗内邻域像素点位置坐标(p,q)的系数值;σ2r为值域方差㊂通过式(11)获取LC,代入式(13)求得去除LC 后的LFS系数FᶄL(i,j):FᶄL(i,j)=f L(i,j)-ξf BF(i,j)(13)其中,ξ为估计系数,ξɪ(0,1)㊂由于矿井光照较差,本算法中ξ=0.2㊂1.4㊀基于模糊变换的图像增强由于煤矿井下采用人工光源照明,且一些监控摄像机采用补光灯对监视区域进行补光,导致部分图像存在明显的低照度区域和高亮度区域㊂经过WT后的降质图像亮度和对比度已经得到一定程度的改善,但无法显著提高低照度区域和抑制高亮区域㊂为实现图像亮度和对比度的进一步提高,本文采用隶属度函数,将小波重构(Wavelet Reconstruction,WR)图像从空间域变换到模糊集域[32],通过设计的改进型模糊变换函数,对WR图像的亮度和对比度进行调整,并通过反模糊函数得到最终的增强图像㊂改进的模1524煤㊀㊀炭㊀㊀学㊀㊀报2020年第45卷糊增强算法实现过程如下:(1)设计隶属度函数Y m ,n ,并将WR 图像从空间域转换到模糊集域:Y m ,n =sin π21-X m ,n -X min d (X max -X min )éëùû{}(14)式中,X m ,n 为WR 图像在坐标(m ,n )处像素的灰度值;X min 为图像的最小灰度值;d 为可变参数,d ɪ[1,2],煤矿井下图像偏暗,故本算法中该参数取1.2;X max 为图像的最大灰度值㊂(2)构造模糊变换函数Yᶄm ,n ,通过式(14)计算WR 图像在模糊集域内的隶属度,并根据模糊变换函数和隶属度,对其进行模糊处理,实现WR 图像的亮度和对比度调整:Yᶄm ,n=(2Y m ,n )1/2,0ɤY m ,n <0.52Y 2m ,n-Y m ,n +1,Y m ,n ȡ0.5{(15)㊀㊀(3)通过反模糊变换函数,将式(15)模糊处理后的隶属度值从模糊集域变换到空间域,得到增强图像f E :f E =d (X max-X min )1-2πarcsin Yᶄm ,n 2æèöøéëùû+X min(16)㊀㊀改进的模糊增强算法实现过程简单,实时性强,能够对WR 图像部分区域的灰度值增强或减弱,从而抑制图像中的高亮区域,增强低照度区域㊂通过对可变参数d 的控制,极大地提高了本文算法的鲁棒性,实现了对矿井不同照明区域视频监控图像的增强㊂2㊀算法流程本文提出的基于自适应小波变换的煤矿降质图像模糊增强算法,其具体实现流程如下:(1)获取矿井降质图像f 的R,G,B 三通道子图f R ,f G ,f B ;(2)在综合考虑去噪效果和计算量的代价下,采用 db5 [33]小波基对三通道子图进行3层小波分解,得到LFS 和各尺度HFS;(3)计算各尺度HFS 所对应的小波阈值T 和自适应权值因子s ;(4)通过式(5)和自适应调节参数k 计算各尺度下的自适应增强系数;(5)由式(4)定义的小波阈值函数,对各尺度下的小波高频子图进行去噪和增强;(6)利用BF 算法对LFS 进行LC 估计和系数调整;(7)对步骤(5),(6)处理后的各尺度HFS 和LFS 进行WR,获取自适应增强后的重构图像;(8)根据式(14)~(16)对WR 图像进行模糊增强,并获取最终增强图像f E ㊂算法实现原理方框图如图2所示㊂图2㊀本文算法实现原理方框Fig.2㊀Block diagram of algorithm implementation in this paper3㊀实验结果与分析为了验证本文算法的有效性,选取矿井监控视频中部分光照不均匀的图像,实验计算机配置:CPU Inter Core i5-5200,3.70GHz,RAM 4GB,编程工具:Matlab R2014a㊂分别从主观视觉和客观指标两个方面对本文算法和其他7种对比算法的增强性能进行评价,对比算法分别为:对比度受限自适应直方图均衡化(Contrast Limited Adap-tive Histogram Equalization,CLAHE )㊁单尺度Ret-inex (SingleScaleRetinex,SSR )㊁多尺度Retinex(Multiscale Retinex,MSR),BF -DCP [7],双伽马Retinex(Double Gamma Retinex,DGR)[11]㊁基于模平方的小波变换(Modulus Squared WaveletTransform,MSWT)[28]㊁PGCHE [34]㊂对比算法中相关参数设置:CLAHE 算法的子块尺寸为8ˑ8,对比2524第12期范伟强等:基于自适应小波变换的煤矿降质图像模糊增强算法度增强的限制参数取0.02;SSR 采用高斯滤波函数㊁MSR 算法采用Mccann 的默认参数;BF -DCP,DGR 算法采用原文献中推荐的参数;MSWT 算法采用软阈值函数;PGCHE 算法中PSO 迭代次数为100,粒子个数为20㊂3.1㊀主观评价(1)实验1:对分辨率为575ˑ910的掘进工作面图像进行增强测试,实验结果如图3所示㊂(2)实验2:对分辨率为575ˑ910的回采工作面运输巷图像进行增强测试,实验结果如图4所示㊂图3㊀不同算法对比实验1Fig.3㊀Comparison 1experiment of different algorithms3524煤㊀㊀炭㊀㊀学㊀㊀报2020年第45卷图4㊀不同算法对比实验2Fig.4㊀Comparison experiment 2of different algorithms㊀㊀根据图3,4对不同增强算法的处理结果和灰度直方图进行对比分析可知,原图像存在较多明暗区域㊁亮度和对比度差㊁细节信息不明显等缺点,导致视觉上图像轮廓边际模糊㊁特征点较少,也不利于图像特征提取和目标检测识别㊂采用CLAHE,SSR,MSR,BF -DCP,DGR,MSWT,PGCHE 算法均能够增强图像对比度,提升整体亮度,改善图像视觉效果,但增强后的图像仍存在一些问题㊂图3(b),4(b)中图像明暗对比强烈处出现光晕现象,部分区域过增强,且图像细节信息丢失较多;图3(c),4(c)中图像亮区域出现过增强现象,暗区域细节信息不明显,图像出现块效应;图3(d),4(d)中图像亮度提升不明显,高亮区域存在光晕现象,图像清晰化效果欠佳;图3(e),4(e)中突出了图像轮廓和细节信息,但图像整体偏暗,色彩恒常性差,失真现象严重,视觉效果较差;图3(f),4(f)中图像明暗对比强4524第12期范伟强等:基于自适应小波变换的煤矿降质图像模糊增强算法烈处光晕现象明显,灰度级压缩后导致图像细节信息丢失,并且在亮度增强的同时也放大了噪声;图3(g),4(g)中图像出现了整体欠增强,但亮区域过增强的现象;图3(h),4(h)中图像整体亮度较高,但出现了灰度级合并,且存在过度增强,导致图像失真度较高㊂综合分析,本文算法(图3(i),4(i))在一定程度上克服了上述增强算法存在的缺点,较明显地提高了图像的整体亮度㊁对比度㊁清晰度,并消除了图像明暗对比强烈处的光晕现象,实现了低亮度区域的增强和高亮度区域的抑制,在保持了图像原有细节信息的同时,使得图像更加饱和自然,符合人眼的视觉特征㊂3.2㊀客观评价为了更加客观地分析不同算法的增强效果,本文分别选用均值(Mean,M 1)㊁平均局部均方误差(Mean Local Mean Square Error,E ML -MS )㊁平均局部信息熵(Mean Local Information Entropy,E ML -I )和峰值信噪比(Peak Signal to Noise Ratio,R PSN )㊁结构相似度(Structural Similarity Index,M SSI )5种评价指标对本文算法及对比算法进行评价㊂3.2.1㊀M 1图像的M 1值越大,则图像的亮度越高,其表达式为M 1=1MN ðMx =1ðNy =1f (m ,n )[](17)式中,MN 为灰度图像f 的大小;f (m ,n )为灰度图像f 在坐标(m ,n )处的像素值㊂3.2.2㊀E ML -MS图像的E ML -MS 值越大,则图像的对比度越大,即图像的细节信息越丰富㊂假设局部窗口尺寸为(2r +1)ˑ(2r +1),其表达式为E ML -MS=1nn ðnx =0ðny =0[f (x ,y )-f (x 0,y 0)]2,n =(2r +1)ˑ(2r +1)(18)式中,f (x ,y )为局部窗口内某一图像灰度值;f (x 0,y 0)为局部窗口内图像灰度均值㊂3.2.3㊀E ML -I图像的E ML -I 值越大,代表图像包含的信息量越多㊂假设局部窗口尺寸为(2r +1)ˑ(2r +1),则局部信息熵的定义为E ML -I =-ðνmaxν=νminp (ν)log 2(p (ν))(19)式中,p (ν)为局部窗内图像灰度ν的分布密度;νmax ,νmin 为局部窗内像素最大值和最小值㊂3.2.4㊀R PSNR PSN 反映增强图像和原始图像之间的数学统计差别,能够客观反映图像的噪声抑制水平㊂R PSN 值越大,图像的噪声抑制能力越强,其表达式为R PSN =10lg25521MN ðMx =1ðNy =1(f (m ,n )-M 1)2[](20)3.2.5㊀M SSIM SSI 是一种基于结构信息衡量信号之间相似程度的评价准则,能够更加客观评价图像的人眼主观效果和图像的失真程度㊂M SSI 值越大,两幅图像越相似㊂当其最大值为1时,两幅图像相同㊂两幅图像X ,Y 对应像元x ,y 的M SSI 用式(21)表示为R SSIM (X ,Y )=(2μx μy )(2σ2xy+C 2)(μ2x +μ2y +C 1)(σ2x +σ2y+C 2)(21)式中,μx ,μy 分别为图像X ,Y 的均值;σ2xy 为图像X 与Y 的协方差;C 1,C 2为经验选取的正常数;通常取C 1=(K 1L )2,C 2=(K 2L )2,一般地K 1=0.01,K 2=0.03,L =255㊂实验1,2中不同算法的客观评价指标见表1,2㊂同时,在与实验1,2相同的视频采集环境下,随机选取2组图像样本进行实验,不同算法的客观评价指标见表3㊂表1㊀实验1中不同算法的客观评价值Table 1㊀Objective evaluation values of different algorithms in Experiment 1评价指标f CLAHE SSR MSR BF -DCP DGR MSWT PGCHE 本文算法M 169.9188.5689.7385.6533.04108.2870.61100.7588.82E ML -MS 66.06192.43188.2988.11119.5645.35122.11153.9787.16E ML -I 2.412.502.492.482.412.402.452.452.52R PSN 17.6818.3221.9114.8315.8832.7215.7220.97M SSI0.870.890.960.660.880.990.850.945524煤㊀㊀炭㊀㊀学㊀㊀报2020年第45卷表2㊀实验2中不同算法的客观评价值Table2㊀Objective evaluation values of different algorithms in Experiment2评价指标f CLAHE SSR MSR BF-DCP DGR MSWT PGCHE本文算法M173.7295.0194.4285.9831.95117.7773.62105.3591.31 E ML-MS138.20385.61363.85209.38229.2080.93267.87347.18163.08 E ML-I2.382.552.532.422.402.322.422.472.45 R PSN 16.9417.4319.6214.0514.8329.9115.5920.81 M SSI 0.860.880.960.590.870.990.860.97表3㊀不同算法的客观评价值Table3㊀Objective evaluation values of different algorithms评价指标样本f CLAHE SSR MSR BF-DCP DGR MSWT PGCHE本文算法M117.9615.9214.9146.324.0143.668.0718.3537.08 269.1092.3191.1288.8627.51114.3269.16104.41108.30E ML-MS 110.8712.6811.6928.3220.5110.3020.1913.6115.56 235.10116.57106.8657.2473.7524.6462.41103.2486.20E ML-I 10.470.510.480.650.450.480.370.620.58 22.192.492.452.262.242.122.232.502.34R PSN 1 28.7328.9415.4232.7016.4736.6126.2024.322 17.0918.1121.1214.4714.4828.2815.1220.95M SSI 1 0.790.810.180.800.350.980.610.642 0.820.870.950.580.820.990.780.92㊀㊀根据表1~3可知,CLAHE,SSR算法的E ML-MS 值很大,R PSN,M SSI值较小,即这两类算法对降质图像的对比度提高明显,但易导致图像噪声放大和图像失真;在低照度环境下,MSR算法的M1, R PSN,M SSI等客观指标急剧下降,即该类算法对光照恶劣环境中的降质图像改善效果差;BF-DCP 算法的M1,R PSN,M SSI值最小,E ML-MS值较大,即该类算法对降质图像的改善效果不明显;DGR算法的M1值最大,E ML-MS值较小,即该类算法对降质图像的亮度提高较大,但出现了图像灰度级压缩,导致了降质图像的对比度降低;MSWT算法的R PSN,M SSI值最大,即该类算法对降质图像的去噪和保真能力强,但容易出现过度去噪,导致图像特征信息大量丢失;PGCHE算法的R PSN,M SSI值较小,即该类算法能够改善降质图像的亮度和对比度,但易导致图像噪声放大和图像失真㊂综合分析,本文算法的M1,E ML-MS,E ML-I,R PSN,M SSI值均表现较好,即对提高降质图像的亮度㊁对比度㊁信息熵,噪声抑制,图像保真方面均有较大的提升和改善㊂3.3㊀综合性能分析为验证本文算法对矿井视频监控图像增强的鲁棒性,在相同实验条件下随机挑选出3组图像样本(采区变电所㊁掘进通风措施巷㊁掘进工作面),分析本文算法与7种对比算法对不同场景下视频监控图像的增强处理效果,实验结果如图5所示㊂客观评价指标见表4㊂由图5和表4的主客观评价结果可知, CLAHE,SSR,DGR,MSWT,PGCHE算法对3种场景下的图像增强效果趋于一致,客观评价指标基本稳定;MSR,BF-DCP算法的增强结果波动较大,即该类算法仅限于对特定场景图像进行增强,对矿井不同降质图像的改善效果不同㊂综合分析,本文算法对上述3种场景下的图像均有突出的增强效果,各项客观评价指标稳定㊂实验结果表明,本文算法的鲁棒性最好,能够适用于矿井下不同降质图像的增强㊂对表1~4的各项客观评价指标进行归一化处理后,计算各算法的5种客观评价指标的绝对累计变化量,并根据绝对累计变化量绘制客观评价指标折线图,如图6所示㊂6524第12期范伟强等:基于自适应小波变换的煤矿降质图像模糊增强算法图5㊀不同算法增强效果对比Fig.5㊀Comparison between the original image and different enhancement algorithms7524煤㊀㊀炭㊀㊀学㊀㊀报2020年第45卷表4㊀不同算法的客观评价值Table4㊀Objective evaluation values of different algorithms评价指标样本f CLAHE SSR MSR BF-DCP DGR MSWT PGCHE本文算法a84.1897.6399.17103.8232.53122.7884.26102.4399.30M1b28.8950.2851.5967.7519.0166.8028.6257.1654.20 c21.7141.2042.7661.597.4864.1321.9153.0846.78a25.2596.5190.8838.1753.5321.4645.2686.2949.21 E ML-MS b30.50132.07136.76128.6394.6635.2255.79100.9057.99c6.3740.1337.7839.3613.269.6410.3440.0218.91a2.052.432.422.132.201.952.052.392.50 E ML-I b1.511.701.691.721.511.551.541.721.77c1.491.641.631.661.461.551.411.651.68a 17.1218.6921.3112.1021.4636.1915.8329.21 R PSNb 17.4617.7414.3922.1715.9736.3116.7425.92c 17.6219.0514.3421.8815.3341.7916.4423.56a 0.800.880.970.450.870.990.820.93 M SSIb 0.770.740.610.840.690.990.700.84c 0.650.680.450.470.570.990.580.75㊀㊀注:黑体数字为行最大值;斜体数字为行最小值;a为采区变电所;b为掘进通风措施巷;c为掘进工作面㊂图6㊀不同算法客观评价指标的累计绝对变化量Fig.6㊀Cumulative absolute changes in objectiveevaluation indicators of different algorithms㊀㊀由图6的客观评价指标折线变化可知:本文算法的绝对累计变化量与CLAHE,SSR,MSR,BF-DCP, DGR,MSWT,PGCHE算法相比较,分别提高4.42%, 4.95%,15.35%,196.60%,88.93%,10.52%和12.10%㊂整体上,本文算法综合性能更好,对矿井降质图像的改善作用更优㊂4㊀结㊀㊀论(1)采用贝叶斯估计的小波收缩阈值方法,能够对不同尺度下小波阈值进行自适应调整;构造引入权值因子和增强系数的自适应小波阈值函数,既保持了小波阈值函数的收缩连续性,也克服了其他阈值函数的缺点,并且更好地促使了信噪分离,避免了因噪声过增强而造成图像质量下降;在不同尺度下的增强过程中,增强程度能够根据增强系数实现自适应调整,得到了更丰富的图像边缘信息㊂(2)采用BF算法估计LFS中的LC并对其进行调整,较好的保持了图像边缘特征并改善了图像亮度和对比度;采用改进的隶属度函数和模糊增强算子实现了对WR图像的LC调整,克服了视频监控图像中存在的光照不均问题,在抑制图像高亮区域的同时也提升了低亮区域的亮度和对比度㊂(3)通过定性和定量2个方面对不同图像增强算法的增强效果进行对比分析,本文提出的基于自适应小波变换的模糊增强算法能够有效提高图像亮度和对比度,抑制图像噪声,提升图像信息丰富度,改善图像的整体视觉效果;本文算法与其他增强算法相比,具有显著优势㊂(4)对煤矿井下不同场景的降质图像进行增强处理,结合主客观分析得出,本文算法的鲁棒性较强,综合性能指标较CLAHE,SSR,MSR,BF-DCP, DGR,MSWT,PGCHE算法分别提高4.42%,4.95%, 15.35%,196.60%,88.93%,10.52%和12.10%;实验结果表明,本文算法能够克服煤矿井下因光线差㊁照度不均匀㊁粉尘多等导致的视频监控系统中图像质量差问题㊂参考文献(References):[1]㊀孙继平.煤矿安全生产监控与通信技术[J].煤炭学报,2010,35(11):1925-1929.SUN Jiping.Technologies of monitoring and communication in8524。

声表面波辅助亚铁磁CoTb薄膜中磁畴壁移动

声表面波辅助亚铁磁CoTb薄膜中磁畴壁移动

㊀第40卷㊀第10期2021年10月中国材料进展MATERIALS CHINAVol.40㊀No.10Oct.2021收稿日期:2021-07-12㊀㊀修回日期:2021-10-08基金项目:国家自然科学基金资助项目(12074025);兰州大学磁学与磁性材料教育部重点实验室开放课题资助项目(LZUMMM2020001)第一作者:郑文慧,女,1997年生,硕士研究生通讯作者:雷㊀娜,女,1981年生,副教授,博士生导师,Email:na.lei@ DOI :10.7502/j.issn.1674-3962.202107016声表面波辅助亚铁磁CoTb 薄膜中磁畴壁移动郑文慧1,2,边肖南1,蔺㊀涛1,曹㊀洋3,苏㊀丹1,孙一铭1,杨德政3,阎照文2,雷㊀娜1(1.北京航空航天大学集成电路科学与工程学院,北京100191)(2.北京航空航天大学电子信息工程学院,北京100191)(3.兰州大学磁学与磁性材料教育部重点实验室,兰州730000)摘㊀要:利用电压产生的动态应力 声表面波调控材料磁性,具有高效率㊁低功耗和长传输距离等优点,近年来成为自旋电子学领域研究的热点㊂亚铁磁材料因其较快的磁畴壁移动速率而深受关注,因此,探究声表面波辅助作用下亚铁磁体系中磁畴壁的移动,对磁存储㊁磁逻辑等自旋电子器件的研究具有重要意义㊂以具有垂直磁各向异性的亚铁磁CoTb 薄膜作为研究材料体系,制备出声表面波与亚铁磁材料的耦合器件,研究了声表面波对CoTb 薄膜矫顽场以及磁畴壁移动的调控效应㊂实验表明,在声表面波的辅助作用下CoTb 薄膜的矫顽场减小了10%㊂经分析确认,磁畴成核场及磁畴壁传播场的减弱是矫顽场减小的主要原因㊂此外,利用磁光克尔显微镜观测磁畴壁移动,发现在声表面波的辅助下磁畴壁移动速率提高了约76%,达到3683μm /s㊂在亚铁磁材料体系中成功实现声表面波辅助磁畴壁的快速移动,为未来低功耗自旋电子器件发展开辟了新的路径㊂关键词:声表面波;亚铁磁;CoTb 薄膜;矫顽场;磁畴壁移动中图分类号:O482.52+4㊀㊀文献标识码:A㊀㊀文章编号:1674-3962(2021)10-0737-06Surface Acoustic Wave Assisted Magnetic DomainWall Motion in Ferrimagnetic CoTb AlloyZHENG Wenhui 1,2,BIAN Xiaonan 1,LIN Tao 1,CAO Yang 3,SU Dan 1,SUN Yiming 1,YANG Dezheng 3,YAN Zhaowen 2,LEI Na 1(1.School of Integrated Circuit Science &Engineering,Beihang University,Beijing 100191,China)(2.School of Electronic and Information Engineering,Beihang University,Beijing 100191,China)(3.Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University,Lanzhou 730000,China)Abstract :Voltage induced surface acoustic wave (SAW)is a hot research topic for manipulating magnetic properties inspintronics,due to its characteristics of high efficiency,low power consumption and long propagation distance.The ferrimag-net has attracted much attentions due to its fast magnetic domain wall (DW)motion.The study of its DW motion assisted by SAW is of great significance for the magnetic memory and DW logic devices.Here,we chose ferrimagnetic CoTb film with perpendicular magnetic anisotropy,and fabricated the coupled device of the SAW and Hall bar structure.The coercive fields and DW motion in CoTb film under SAW are explored by magneto-optical Kerr microscopy.We found the coercive fields re-duced by 10%in CoTb film system,which is mainly originated from the reduction of the nucleation and propagation fields under the SAW.Furthermore,we ob-served the DW motion speed increased up to 76%with theassistance of the SAW,which reached 3683μm /s.Ourwork has successfully realized the rapid DW motion drivenby SAW in the ferrimagnetic system,which provides an al-ternative to the future low-consumption spintronic devices.Key words :surface acoustic wave (SAW);ferrimag-netism;CoTb film;coercive field;domain wall motion博看网 . All Rights Reserved.中国材料进展第40卷1㊀前㊀言随着互联网㊁大数据和人工智能的爆炸式发展及应用,人们对信息存储容量和性能的要求日益提高,传统的存储器愈发难以满足需求㊂基于电子自旋属性的新型自旋存储器具有非易失性㊁高速度㊁低功耗等诸多优良特性,成为科研界和产业界关注的焦点㊂其中,2008年Parkin等[1]提出的赛道结构自旋存储器(racetrackmemory,RM)可以实现三维高集成度,具备高存储密度的优点,迅速成为自旋电子学研究的热点㊂赛道存储器中数据信息的传输是通过施加电流驱动磁畴壁移动而实现的,可以通过电流的自旋转移矩(spin-transfer torque, STT)[2,3]和自旋轨道矩(spin-orbit torque,SOT)[4]两种不同的物理效应而实现㊂但电流驱动均伴随着焦耳热,由此带来的散热和能量耗散问题不可避免,极大地限制了电流驱动方式的应用㊂因此,探索并实现低功耗的磁畴壁驱动方式是赛道存储器发展的关键㊂电压驱动磁畴壁移动被认为是一种高效且低功耗的数据传输方法[5]㊂在铁电/铁磁复合多铁体系中,铁电层逆压电效应产生的应变传递给铁磁层,进而可以有效调控其磁畴壁移动㊂如将磁性纳米线与压电微米线相耦合,利用局域电压产生的局部应变,可以有效地钉扎磁畴壁[6]㊂但静态应力仅可以控制磁畴壁的位置,难以高效驱动磁畴壁连续移动,而且在不同的器件位置需要分布大量的电触点,增加了器件制作的复杂性[7]㊂为克服这些不足,近年来研究者们开始尝试使用动态应力 声表面波(surface acoustic wave,SAW)来操控磁性样品的磁化动力学行为㊂2010年,Davis等[8]发现SAW传输过程中产生的动态应力可以转动Co磁性纳米颗粒的磁化易轴方向,揭示了SAW在快速磁化翻转上应用的可能㊂2016年,Thevenard等[9,10]在具有垂直磁各向异性的稀磁半导体(Ga,Mn)(As,P)中实现了SAW诱导的磁矩进动以及矫顽场的显著降低;之后又在具有面内磁各向异性的稀磁半导体中实现了由SAW辅助的零场磁化翻转[11]㊂对于SAW驱动磁畴壁移动的研究,Dean等[12]通过仿真模拟验证了通过SAW调控磁纳米线中磁畴壁移动的可能性㊂近期实验在铁磁多层膜体系中已实现SAW辅助磁畴壁的移动,且远远大于纯磁场驱动下的磁畴壁速率[13,14]㊂SAW通过磁弹效应改变材料的磁矩取向[15],因此材料的磁弹系数越大,SAW驱动磁畴运动的效率将越高㊂有文章指出,稀土(rare-earth,RE)元素具有较大的轨道磁矩以及磁弹系数[16],在其与过渡金属(transition metal,TM)构成的RE-TM亚铁磁薄膜材料中,由于RE元素的贡献,该体系也具有高磁弹特性[16,17],预期具有高的SAW驱动效率㊂另一方面,在RE-TM亚铁磁薄膜中,过渡元素与RE元素的磁矩相互抵消[18],在磁矩和角动量补偿点附近,该薄膜具有低磁化强度和快速的自旋动力学特性[19,20]㊂已有实验表明,在亚铁磁体系中电流驱动磁畴壁移动具有较高的效率[21-24],且在其角动量补偿点附近获得最快5.7km/s的磁畴壁移动速率[23]㊂因此,基于RE-TM亚铁磁薄膜材料来开展SAW驱动磁畴壁移动的研究,因其高磁弹系数㊁快速自旋动力学特性的显著优点,有望实现更高效率以及更快速率的磁畴壁移动㊂本工作以一种具有垂直磁各向异性的RE-TM薄膜材料 CoTb薄膜为研究对象,利用SAW驱动该亚铁磁性薄膜中的磁畴壁移动㊂通过系统地改变频率和幅值,研究SAW对CoTb薄膜矫顽场以及磁畴壁移动速率的调控效应㊂探究了SAW驱动亚铁磁畴壁移动的可能性,期望在亚铁磁体系下,实现低功耗且快速的磁畴壁驱动㊂2㊀方法与原理本工作利用磁控溅射在128ʎY-X LiNbO3三方晶体衬底上生长具有垂直磁各向异性的CoTb亚铁磁性薄膜,结构为LiNbO3/Ta(3nm)/Pt(3nm)/CoTb(2nm)/Pt(3nm)㊂磁控溅射本底气压为6.7ˑ10-6Pa,工作气压为0.15Pa, Co,Tb生长功率分别为60和18W,经计算得到其组分为Co86.6Tb13.4㊂Hall bar及叉指电极(interdigital transducer, IDT)器件由光刻㊁氩离子束刻蚀等工艺制成,如图1a所示㊂IDT的指宽a与指间距b均为7μm,得到SAW的波长为λ=2(a+b)=28μm㊂每个IDT均有40对叉指,孔径长度w=1820μm,两个IDT之间的距离为3660μm㊂利用磁光克尔效应(magneto-optical Kerr effect,MOKE)测得CoTb Hall bar的磁滞回线,如图1b所示,其中横坐标H z表示外加z方向的磁场㊂当给一端IDT通入射频信号时,交叉排列的电极分别通入正负交替的电压,高速震荡的电场通过衬底的逆压电效应产生SAW,SAW沿x方向传播经过Hall bar,并到达另一端电极,将声波信号转为电压信号输出㊂使用矢量网络分析仪(vector network analyzer,VNA)测得SAW的频谱如图1c所示,S11为反射频谱,S21为传输频谱㊂从图中可见S11和S21在中心频率f0=141MHz处有一个明显的谱峰,已知SAW波长λ=28μm,可得其传播速率v=λ㊃f0=3948m/s,这与128ʎY-X LiNbO3晶体中SAW的传播速率相符合[25],由此说明设计的IDT器件有效激发了SAW的产生[13]㊂837博看网 . All Rights Reserved.㊀第10期郑文慧等:声表面波辅助亚铁磁CoTb薄膜中磁畴壁移动图1㊀声表面波器件与Hall bar 器件结构示意图,薄膜材料结构为Pt(3nm)/CoTb(2nm)/Pt(3nm)/Ta(3nm)(a);通过磁光克尔效应测得的CoTb Hall bar 磁滞回线(b);声表面波的反射(S 11)和传输(S 21)频谱(c)Fig.1㊀Schematic diagram of surface acoustic wave and Hall bar device structure,the film material structure is Pt(3nm)/CoTb (2nm)/Pt(3nm)/Ta (3nm)(a);the hysteresis loop of the CoTb Hall bar measured by the magneto-optical Kerr effect (b);surface acousticwave reflection (S 11)and transmission (S 21)spectrum (c)3㊀结果与分析利用MOKE 测量了亚铁磁CoTb 在施加SAW 后磁滞回线的变化,如图2a 所示㊂在施加SAW 的功率为25dBm(3.976V)的情况下,CoTb 的矫顽场H c 降低,其减小幅度依赖于SAW 的频率,如图2b 所示㊂在SAW 的中心频率141MHz 处的矫顽场变化量ΔH c 最大,为10.2Oe㊂这种SAW 调控矫顽场的效应在FeGa [26]㊁(Ga,Mn)(As,P)[10]以及Co /Pt 多层膜[13]中均有发现,而且在后两者中也呈现了类似的频率共振特性㊂其原因为,在共振频率处,SAW 产生的动态应力降低了CoTb 薄膜磁化翻转的能量势垒,从而导致了矫顽场的减弱[10]㊂矫顽场变化的极大值与SAW 共振峰都出现在141MHz,这种频谱变化趋势的一致性可以证明矫顽场的降低来源于SAW,而不是微波的寄生效应[27,28]㊂此外,利用红外成像测温仪测量了Hall bar 的温度变化,其测量误差在ʃ2ħ以内,测得在SAW 共振频率处Hallbar 温度由室温(26.5ħ)升至32ħ,这对样品磁性的影响可以忽略不计㊂综上所述,通过排除微波和热效应的影响,可得知SAW 是矫顽场降低的主要原因㊂磁化翻转的微观过程包含磁畴的成核与磁畴壁传播㊂为了研究SAW 调控CoTb 薄膜矫顽场的物理机理,进一步分析了磁畴成核场H n 以及传播场H p 与施加射频信号电压值的关系㊂在图2a 中标记了H p ㊁H n 在磁滞回线中选取点的位置,H p 取自磁化强度为零时的磁场即H c ,为磁畴壁传播的平均场;H n 取自磁化翻转的临界拐点,即为磁畴的成核场㊂由图2c 可知,当施加于IDT 的射频信号的幅值约为0.6V 时,H n 出现显著减小,后随幅值进一步增大而趋于平缓㊂因此,仅当电压达到阈值后,磁畴才可成核,这一现象与文献报道结果相一致[10]㊂而H p 在SAW 达到应变阈值之后,呈线性减小,后趋于缓和㊂由此可以看到在SAW 作用下,H p 与H n 随电压的变化关系存在差异,但都在达到阈值电压后随着电压的升高而持续减小㊂通过磁畴观测进一步分析了SAW 对磁化翻转微观过程的影响㊂在同一块磁性薄膜上,加工了一系列不同尺寸的IDT,并用于磁畴的测量㊂如图3所示的器件,使用VNA 测得其中心频率为130MHz㊂磁畴的观察使用空间分辨率为0.195ˑ0.195μm 2/pixel 的极向克尔显微镜㊂首先对样品进行正向饱和磁化,后施加略大于样品成核场的反向脉冲磁场,使磁畴壁保持蠕动行为㊂分别测量了在未加(图中左列)和外加SAW(右列)条件下,磁场驱动937博看网 . All Rights Reserved.中国材料进展第40卷图2㊀利用磁光克尔效应测得的在不同频率射频信号下Hall bar的磁滞回线,叉指电极输入功率均为25dBm(3.976V)(a);矫顽场变化量绝对值ΔH c随施加射频信号频率变化曲线(b);在实验得到的中心频率(141MHz)下,传播场H p㊁成核场H n随施加射频信号电压的变化(c)Fig.2㊀The hysteresis loop of Hall bar measured by magneto-optical Kerr effect under different frequency radio-frequency signals,the poweris25dBm(3.976V)(a);the absolute value of the coercivefield changeΔH c varies with the applied radio-frequency sig-nal frequency(b);under the experimental center frequency(141MHz),the propagation field H p and the nucleation field H nvary with the applied radio-frequency signal voltage(c)的磁畴壁移动,如图3所示㊂图中用黄色虚线标记了磁畴壁所在位置,其移动同SAW传播方向一致,均沿+x 方向㊂通过左右两列对比可见,施加单一磁场脉冲, SAW辅助下比单纯磁场驱动的磁畴壁移动距离更远㊂通过将磁畴壁移动的距离和时间进行线性拟合,可得出在没有SAW辅助的情况下磁畴壁移动速率约为2092μm/s, SAW辅助下的磁畴壁移动速率约为3683μm/s,提高了约76%㊂由此,SAW可以显著提高CoTb薄膜的磁畴壁移动速率㊂图4a为在IDT施加25dBm射频功率,施加不同频率SAW和未施加SAW的条件下,磁畴壁移动距离(L)和图3㊀克尔显微镜下观测的未施加声表面波(左)与施加声表面波(右)下磁畴壁移动对比图㊂施加射频信号的功率为25dBm,频率为130MHz,垂直方向的脉冲磁场为90Oe,脉宽为26ms㊂单个磁场脉冲下,施加声表面波的磁畴壁移动距离约为89μm,未施加声表面波的磁畴壁移动距离约为57μm Fig.3㊀Comparison of domain wall movement observed under a Kerr mi-croscope without surface acoustic wave(left)and with surfaceacoustic wave(right).The power of the applied radio-frequencysignal is25dBm,the frequency is130MHz,the pulse magneticfield in the vertical is90Oe,and the pulse width is26ms.Undera single magnetic field pulse,the domain wall movement distancewith surface acoustic wave is about89μm,and the domain wallmovement distance without surface acoustic wave is about57μm 时间(t)的关系,如图4c所示,进一步拟合可得到其移动速率㊂在有SAW辅助的情况下,磁畴壁移动速率明显提高㊂将磁畴壁移动速率与SAW频率的关系绘制成曲线,如图4b所示,可知在SAW的中心频率处,磁畴壁移动速率达到最大,这与前文SAW降低CoTb薄膜矫顽场的行为相吻合㊂在SAW的中心频率下,施加不同电压的射频信号,得到如图4d所示电压和磁畴壁速率的关系,经线性拟合后得到磁畴壁移动速率与电压成正比㊂结合SAW的应变幅值与射频信号的电压值成正比[10],可知CoTb薄膜磁畴壁移动速率同SAW的应变幅值成正比㊂此前,在驻波中测得Co/Pt多层膜体系中矫顽场及磁畴壁移动速率同电压成正比[13]㊂而在行波中,对以成核为主的磁化翻转过程进行理论分析,得出在SAW行波达到阈值功率后,(Ga,Mn)(As,P)矫顽场的降低同SAW功率呈线性关系[10]㊂本工作激发的是SAW行波,得到的磁畴壁移动速率变化趋势同驻波下的实验结果相近,对于此结果,作者猜测是由于器件的反射在IDT之间产生了行驻波,此猜想仍需进行进一步的实验验证㊂SAW工作在中心频率且磁畴壁保持在蠕动行为时,施加25dBm射频信号,由频谱估算得实际作用电压为3.5V,由此得到最快磁畴壁移动速率为3683μm/s;同样情况下,[Co/Pd]2/Py体系施加15dBm射频信号,电压约为0.94V,最快磁畴壁移动速率为172μm/s[14];而Co/Pt047博看网 . All Rights Reserved.㊀第10期郑文慧等:声表面波辅助亚铁磁CoTb薄膜中磁畴壁移动图4㊀未施加声表面波以及施加各种不同频率声表面波(25dBm)条件下,磁畴壁移动距离与时间的关系(a);磁畴壁移动速率与声表面波频率的关系(b);未加声表面波以及施加130MHz 不同电压的声表面波条件下,磁畴壁移动距离和时间的关系(c);磁畴壁移动速率与施加射频电压的关系,插图:磁畴壁移动速率与施加射频功率的关系(d)Fig.4㊀The relationship between the domain wall movement distance and time without surface acoustic wave and with various frequencysurface acoustic wave (25dBm)(a);the relationship between the domain wall speed and surface acoustic wave frequency(b);The relationship between the domain wall movement distance and time without surface acoustic wave and with differentvoltage surface acoustic wave in 130MHz (c);the relationship between the speed of the domain wall and the applied radio-fre-quency voltage,insert:the relationship between the speed of the domain wall and the applied radio-frequency voltage (d)多层膜体系施加30dBm 射频信号,电压约为5.12V,得到磁畴壁移动速率最快为50μm /s [13]㊂与之相较,本文CoTb 薄膜体系中SAW 辅助驱动磁畴壁的移动速率具有明显的优势㊂利用SAW 辅助CoTb 薄膜的磁畴壁移动,其物理原理为SAW 产生动态应变调控材料体系的垂直磁各向异性㊂由于逆磁致伸缩效应,SAW 行驻波改变了CoTb 薄膜的磁弹性能,有效的磁弹性能(U ME )[8]为:U ME =B 1εxx a 2x+B 2(εxy a x a y +εxz a x a z )(1)其中,B 1=B 2=24ˑ106N /m 2,为CoTb 薄膜的磁弹系数(magneto-elastic coefficient)[16],a i 为磁化强度的方向余弦,εxy ㊁εxz 为切向应力,εxx 为纵向应力,由于CoTb 薄膜厚度为4nm,远小于SAW 的波长λ,SAW 产生的切向应变作用贡献很小,因此主要考虑纵向应变,上式可以简化为[13]:U ME =B 1εxx a x2(2)由此得到作用在磁畴壁上有效瞬时压力(F ME )为[29]:F ME =B 1∂εxx ∂xΔ(3)其中Δ为磁畴壁宽度㊂考虑在瞬时准静态下,磁畴壁移动速率v sta ɖΔ,Δ=㊀A ex K u ,A ex 为交换常数,K u 为面外单轴各向异性系数㊂本工作本征激发的为SAW 行波,因此,还要考虑SAW 行波作用的情况㊂在行波作用的情况下磁畴壁的能量(σ)是时变的,即σ(t )=㊀A ex K u (t ),K u (t )=B 1(ε0+εxx (t )),ε0和εxx 分别为静态应变和SAW 产生的动态应变[10,29]㊂由此SAW 产生的纵向应变会导致K u 发生改变[10,30],从而调控磁畴壁的移动㊂4㊀结㊀论本工作将声表面波(SAW)作用于亚铁磁性CoTb 薄膜,观测并确认了SAW 降低CoTb 薄膜矫顽场以及辅助驱动磁畴壁移动的作用,且在SAW 的中心频率处,得到最快的磁畴壁移动速率为3683μm /s㊂此外,在亚铁磁147博看网 . All Rights Reserved.中国材料进展第40卷体系下,利用SAW辅助驱动的快速磁畴壁移动,为实现低功耗目标的自旋存储器件提供了一种新的方案㊂在此基础上,未来通过提高磁弹耦合系数改进SAW器件效能,以及使用SAW驻波驱动等方式[12],有望进一步摒弃磁场的辅助,实现SAW高效驱动磁畴壁移动㊂参考文献㊀References[1]㊀STUART S,PARKIN P,THMOAS L,et al.Science[J],2008,320(5873):190-194.[2]㊀HAYASHI M,THOMAS L,RETTNER C,et al.Physical ReviewLetters[J],2007,98(3):037204.[3]㊀MEIER G,BOLTE M,EISELT R,et al.Physical Review Letters[J],2007,98(18):187202.[4]㊀MIRON I M,MOORE T,SZAMBOLICS H,et al.Nature Materials[J],2011,10:419-423.[5]㊀SCHELLEKENS A J,BRINK A,FRANKEN J H,et al.NatureCommunications[J],2012,3:847.[6]㊀LEI N,DEVOLDER T,AGNUS G,et al.Nature Communications[J],2013,4:1378.[7]㊀DEAN J,BRYAN M T,SCHREFL T,et al.Journal of AppliedPhysics[J],2011,109(10):023915.[8]㊀DAVIS S,BARUTH A,ADENWALLA S.Applied Physics Letters[J],2010,97(23):232507.[9]㊀THEVENARD L,CAMARA I S,MAJRAB M,et al.Physical ReviewB[J],2016,93(13):134430.[10]THEVENARD L,CAMARA I S,PRIEUR J Y,et al.Physical Re-view B[J],2016,93(14):140405.[11]CAMARA I S,DUQUESNE J Y,LEMAÎTRE A,et al.Physical Re-view Applied[J],2019,11(1):014045.[12]DEAN J,BRYAN M T,COOPER J D,et al.Applied Physics Let-ters[J],2015,107:142405.[13]EDRINGTON W,SINGH U,DOMINGUEZ M A,et al.AppliedPhysics Letters[J],2018,112(5):052402.[14]WEI Y,LI X,GAO R,et al.Journal of Magnetism and MagneticMaterials[J],2020,502:166546.[15]FENG I,TACHIKI M,KRISCHER C,et al.Journal of AppliedPhysics[J],1982,53(1):177-193.[16]BETZ J,MACKAY K,GIVORD D.Journal of Magnetism and Mag-netic Materials[J],1999,207(1-3):180-187.[17]TAKAHASHI T,SHIMAMORI T,MIYAZAKI T,et al.IEEE Trans-lation Journal on Magnetics in Japan[J],1989,4(11):666-672.[18]BINDER M,WEBER A,MOSENDZ O,et al.Physical Review B[J],2006,74(13):134404.[19]CAMPBELL I A.Journal of Physics F:Metal Physics[J],1972,2:45-50.[20]STANCIU C D,KIMEL A V,HANSTEEN F,et al.Physical ReviewB[J],2006,73(22):220402(R).[21]BlÄSING R,MA T P,YANG S H,et al.Nature Communications[J],2018,9:4984.[22]SIDDIQUI S A,HAN J H,FINLEY J T,et al.Physical Review Let-ters[J],2018,121(5):057701.[23]CAI K,ZHU Z,LEE J M,et al.Nature Electronics[J],2020,3:37-42.[24]KIM K J,KIM S K,HIRATA Y,et al.Nature Materials[J],2017,16:1187-1192.[25]潘峰.声表面波材料与器件[M].北京:科学出版社,2012:47.PAN F.Surface Acoustic Wave Materials and Devices[M].Beijing: Science Press,2012:47.[26]LI W,BUFORD B,JANDER A,et al.IEEE Transactions on Mag-netics[J],2014,50(3):3100704.[27]WOLTERSDORF G,BACK C H.Physical Review Letters[J],2007,99(22):227207.[28]WANG Z,SUN K,TONG W,et al.Physical Review B[J],2010,81(6):064402.[29]GOWTHAM P G,MORIYAMA T,RALPH D C,et al.Journal ofApplied Physics[J],2015,118:233910.[30]SHEPLEY P M,RUSHFORTH A W,WANG M,et al.ScientificReports[J],2015,5:7921.(编辑㊀费蒙飞)247博看网 . All Rights Reserved.㊀第10期中国材料进展特约编辑王聪特约编辑雷娜特约编辑刘恩克特约撰稿人方梅特约撰稿人魏大海王㊀聪:北京航空航天大学集成电路科学与工程学院教授,博士生导师㊂1995年在中国科学院物理研究所获得博士学位,曾先后在德国㊁法国㊁美国短期工作㊂长期从事反钙钛矿磁性功能材料㊁反铁磁自旋电子学材料,太阳能光热转换涂层㊁辐射致冷薄膜以及太阳能集热器等的研究㊂在Adv Mater,Phys Rev系列等刊物上发表论文近240篇,SCI他引超过3500次,2020年被评为爱思唯尔(Elsevier)中国被高引学者;授权国家发明专利13项,2012年获得教育部高等学校科学研究优秀成果自然科学二等奖;2020年获得中国材料研究学会科学技术二等奖㊂现兼任中国物理学会理事㊁中国晶体学会理事㊁中国物理学会粉末衍射专业委员会副主任㊁中国材料学会环境材料委员会副主任㊁国家能源太阳能热发电技术研发中心技术委员会委员㊁国际衍射数据中心(ICDD)委员㊁中国物理学会相图委员会委员㊁IEEE PES储能技术委员会(中国)储能材料与器件分委会委员㊂Journal of Solar EnergyResearch Updates主编㊂‘北京航空航天大学学报“‘硅酸盐学报“‘中国材料进展“等杂志编委㊂承担国家 863 项目,国家基金委重点项目等20余项,培养博士㊁硕士研究生近50名㊂雷㊀娜:女,1981年生,北京航空航天大学集成电路科学与工程学院副教授,博士生导师㊂主要研究方向为低维磁性材料的自旋调控,围绕电控磁的低功耗自旋存储与自旋逻辑器件方面取得一定成果,发表相关SCI论文30余篇,包括Nat Commun3篇,Phys Rev Lett,Phys RevAppl,Nanoscale各1篇等㊂其中1篇Nat Com-mun文章为ESI高被引论文;Phys Rev Appl上文章被编辑选为推荐文章㊂刘恩克:男,1980年生,中国科学院物理研究所研究员,博士生导师㊂2012年于中国科学院物理研究所获得博士学位,获中科院院长奖学金特别奖㊁中科院百篇优秀博士论文奖㊂2016~2018年作为 洪堡学者 赴德国马普所进行研究访问,合作导师为Claudia Felser和StuartParkin教授㊂主要从事磁性相变材料㊁磁性拓扑材料㊁磁性拓扑电/热输运等研究㊂在国际上首次实现了磁性外尔费米子拓扑物态,提出了全过渡族Heusler合金新家族,发现了 居里温度窗口 效应,提出了等结构合金化 方法等㊂已在Science,NatPhys,Nat Commun,SciAdv,PRL等期刊上发表学术论文200篇㊂曾获国家基金委 优青 基金㊁中科院青促会优秀会员基金㊁国家自然科学二等奖(4/5)等㊂方㊀梅:女,1984年生,中南大学物理与电子学院副教授,硕士生导师㊂长期从事功能薄膜㊁自旋电子器件的设计㊁制备与表征的研究工作,探索自旋电子学相关机理㊂以第一作者/通讯作者在Nature Com-munications(2篇)㊁Physical Review Applied,APL Materials,AppliedPhysics Letters等国际期刊上发表学术论文20余篇,获得国家授权发明专利1项㊂主持国家自然科学基金青年项目㊁湖南省自然基金面上项目㊁中国博士后科学基金一等资助和特别资助㊁中南大学 猎英计划 等项目多项㊂兼任PhysicalReview Letters,PhysicalReview Applied等10余个国际期刊审稿人㊂魏大海:男,1982年生,2009年博士毕业于复旦大学物理系,现任中国科学院半导体研究所研究员,博士生导师㊂2010~2015年先后在日本东京大学物性研究所㊁德国雷根斯堡大学开展博士后研究㊂主要致力于半导体自旋电子学的物理与器件研究,基于新型自旋电子材料开展注入㊁探测以及调控,通过自旋霍尔效应㊁自旋轨道矩等自旋相关输运现象,探索自旋流的各种新奇特性及其可能的应用㊂在Nature Com-munications㊁Phys RevLett,等期刊上发表40余篇论文㊂曾获 国家海外高层次青年人才 ㊁德国洪堡 学者奖金㊁亚洲磁学联盟青年学者奖,作为负责人入选首批中特约撰稿人邱志勇科院稳定支持基础研究领域青年团队 ,承担十三五 国家重点研发计划 量子调控与量子信息 专项青年项目㊂邱志勇:男,1978年生,大连理工大学材料科学与工程学院教授,博士生导师㊂长期从事功能材料与自旋电子学融合领域的研究工作,近年来在Nature Materi-als,Nature Comm,PRL,ACTA Mater等知名杂志上发表论文60余篇,H因子25,引用2200余次㊂依托材料开发背景,在自旋电子材料及自旋物理方向进行了长期研究,近两年以推进新一代磁存储器技术为目标,致力于反铁磁自旋电子学领域的开拓,取得了基于反铁磁材料的自旋物理及应用相关的一系列先驱性成果㊂167博看网 . All Rights Reserved.。

一种基于噪声数据的正则化局部切空间对齐算法[发明专利]

一种基于噪声数据的正则化局部切空间对齐算法[发明专利]

专利名称:一种基于噪声数据的正则化局部切空间对齐算法专利类型:发明专利
发明人:袁玉波,宋湘
申请号:CN202110857661.6
申请日:20210728
公开号:CN114186599A
公开日:
20220315
专利内容由知识产权出版社提供
摘要:本文提出了一种基于噪声数据集改进的局部切空间对齐算法。

对于噪声样本集,首先确定每个样本的邻域空间,基于欧式距离确定样本最近的几个样本。

然后基于已知的样本邻域优化添加截断核范数后的目标式,得到近似低秩矩阵,分解近似低秩矩阵得到邻域样本的切空间坐标表示。

最后对齐邻域样本切空间坐标,构造ψ矩阵,并对ψ进行特征值分解,全局低维坐标表示即为前d个最小的非0特征值对应的特征向量。

实验证明,改进的局部切空间对齐算法相比较于局部切空间对齐算法在噪声的干扰下,有更有效的流形结构学习能力。

在人造数据集上表现出良好的可视化效果,在真实图像数据集上分类准确性提升50%。

申请人:华东理工大学
地址:200237 上海市徐汇区梅陇路130号
国籍:CN
更多信息请下载全文后查看。

电磁波在任意磁偏角等离子体中的传播

电磁波在任意磁偏角等离子体中的传播

电磁波在任意磁偏角等离子体中的传播张景;付海洋【期刊名称】《电波科学学报》【年(卷),期】2017(32)6【摘要】In this paper,a current density convolution finite difference time domain method (JEC-FDTD) is extended to solve the electromagnetic wave propagation and resonance absorption in magnetized plasmas with arbitrary inclination angle.Firstly,we verified the correctness of the numerical algorithm,and analyzed the Faraday rotation as well as the wave propagation in magnetized plasmas of arbitrary inclination angle.Then,we obtained the characteristics of three types of plasma resonance absorption including plasma resonance,electron cyclotron resonance,and upper-hybrid resonance.The model is also applied to simulate the resonance during ionospheric heating experiments by high-power high frequency (HF) radio waves.Numerical results indicate the upper-hybrid resonance condition can contribute to the maximum absorption for ionospheric heating,which are important to explain the physical mechanism for nonlinear wave and particle interaction during ionospheric heating experiment.%本文将电流密度卷积时域有限差分(Current Density Convolution Finite Difference Time Domain,JEC-FDTD)方法扩展到求解任意磁偏角电磁波在磁化等离子体中的传播和共振吸收问题.首先,验证数值算法正确性,分析了法拉第旋转角效应,以及任意磁偏角电磁波在等离子体中的传播特性.然后,求解电磁波在磁化等离子体中的等离子体朗缪尔共振、电子回旋共振、高频混杂共振吸收特性.结合在电离层加热中的应用,重点分析了等离子体高频混杂共振吸收特性,得到了高频混杂共振激发的频率匹配条件.数值结果表明,高频混杂共振吸收是电离层加热的有效方式,对于解释电离层加热机制具有重要意义.【总页数】9页(P629-637)【作者】张景;付海洋【作者单位】复旦大学电磁波信息科学教育部重点实验室,上海 200433;复旦大学电磁波信息科学教育部重点实验室,上海 200433【正文语种】中文【中图分类】P352.3【相关文献】1.有耗媒质中任意入射角电磁波传播衰减特性研究 [J], 刘鑫明;刘树才;姜志海;李秀晗2.电磁波在非磁化和磁化等离子体中传播特性的研究 [J], 俞宇锋;3.任意入射电磁波在不均匀等离子体的传播 [J], 齐致远;张大跃;潘锦4.任意方向运动多层介质中电磁波的传播特征 [J], 王明军;李应乐;许家栋;张宣妮5.电磁波在任意分层介质中传播的分析 [J], 郭杰荣因版权原因,仅展示原文概要,查看原文内容请购买。

改进的脊波变换图像半软阈值降噪方法

改进的脊波变换图像半软阈值降噪方法

改进的脊波变换图像半软阈值降噪方法
罗忠亮;林土胜
【期刊名称】《计算机科学》
【年(卷),期】2009(36)3
【摘要】脊波变换是一种源于小波又高于小波的多尺度几何分析方法,应用于图像中.借鉴小波去噪的思想提出一种新的图像去噪方法,采用基于Bayesian估计的自适应阈值和半软阈值技术进行去噪,针对脊渡变换所产生的轻微的"划痕",引入平移不变的方法消除这种条纹干扰.实验结果表明,该方法较好地处理了图像细节和边沿保留与噪声抑制的矛盾,是一种有效的去噪方法.
【总页数】3页(P241-243)
【作者】罗忠亮;林土胜
【作者单位】韶关学院电子与通信工程系,韶关,512005;华南理工大学电子与信息学院,广州,510641;华南理工大学电子与信息学院,广州,510641
【正文语种】中文
【中图分类】TP3
【相关文献】
1.基于提升改进方向波变换的浮选泡沫图像降噪方法 [J], 李建奇;阳春华;朱红求;曹斌芳
2.基于提升小波的改进半软阈值降噪方法 [J], 栗鸣;郭东敏;权建峰;郑小燕
3.基于脊波变换域BDND的农作物图像改进中值滤波算法 [J], 罗印;徐文平
4.基于小波变换矩阵的改进脊波变换图像去噪 [J], 王宏志;刘媛媛;孙琦
5.基于平稳脊波变换的图像降噪 [J], 徐巍;孔建益;陈东方
因版权原因,仅展示原文概要,查看原文内容请购买。

一种用高斯波束进行方向图模拟的新方法

一种用高斯波束进行方向图模拟的新方法

一种用高斯波束进行方向图模拟的新方法
周海京;阮颖铮;刘万明
【期刊名称】《电子科技大学学报》
【年(卷),期】1996(000)0S2
【摘要】提出并系统研究了一种利用高斯波束进行天线方向图模拟的新方法。

大量数值结果表明了波瓣匹配法(LMT)的有效性。

该法不但能与复射线法(CRM)结合用于解决复杂媒质环境下的高频电磁场问题,而且也是一种优良的方向图综合算法。

文中还首次将基于盖博表达式的高斯波束展开用于方向图综合。

【总页数】5页(P205+201-204)
【作者】周海京;阮颖铮;刘万明
【作者单位】电子科技大学微波工程系
【正文语种】中文
【中图分类】TN82
【相关文献】
1.一种用动态密钥对视频信息进行加密的新方法 [J], 张炜;郭韶升
2.一种用PCNN进行图像边缘检测的新方法 [J], 顾晓东;郭仕德;余道衡
3.等离子体源离子注入:一种用离子束进行材料改性的新方法 [J], Conr.,JR;陈英方
4.一种用CaC2进行夹杂物改质的新方法 [J],
J.Wiener;M.Brombauer;E.Pissenberger;杨叶青
5.一种用EXCEL进行冶金热力学平衡计算的新方法 [J], 赵中伟;胡宇杰;李洪桂
因版权原因,仅展示原文概要,查看原文内容请购买。

一种基于双正交小波变换的静止图像编码算法

一种基于双正交小波变换的静止图像编码算法

一种基于双正交小波变换的静止图像编码算法
薛向阳;樊昌信
【期刊名称】《电子学报》
【年(卷),期】1997(025)004
【摘要】本文研究了基于双正交小波变换的静止图像编码算法,提出了一种新的数据结构即扩展子树,从而实现了一种性能较好复杂度较低的静止图像编码方案。

【总页数】5页(P63-67)
【作者】薛向阳;樊昌信
【作者单位】复旦大学计算机科学系;复旦大学计算机科学系
【正文语种】中文
【中图分类】TN911.1
【相关文献】
1.一种基于整数双正交小波变换的鲁棒可逆水印算法 [J], 吴万琴;阮文惠;曹晓丽;潘颖
2.一种基于整数双正交小波变换的鲁棒可逆水印算法 [J], 吴万琴;阮文惠;曹晓丽;潘颖;
3.一种基于小波变换的静止图像编码方法 [J], 虞湘滨;曹宁;牛剑江
4.一种基于双正交小波变换的图像数字水印算法 [J], 杜华狄;赵玉华;何甲兴
5.一种基于小波变换的静止图像编码方法 [J], 虞湘宾;曹宁;徐伟业
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Wavefront Propagation and Fuzzy Based Autonomous NavigationAdel Al-Jumaily & Cindy LeungARC Centre of Excellence in Autonomous Systems, Mechatronics and Intelligent Systems Group,Faculty of Engineering,University of Technology, SydneyPO Box 123 Broadway NSW 2007 Australiaadel@.au, cleung@.auAbstract:Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.Keywords: possibility theory, wavefront propagation,autonomousrobot, indoor environment.1. IntroductionNavigation is a major issue that needs to be addressed in order to facilitate the tasks required for autonomous systems. In particular, path planning and obstacle avoidance that enable an autonomous mobile agent to move effectively to its destination.A principal challenge in the development of advanced autonomous systems is the realization of a real-time path planning and obstacle avoidance strategy which can effectively navigate and guide the vehicle in dynamic environments [Antonelli, 2001]. A path planned for an entity with partial knowledge of the environment can be invalidated with time. This can occur when unknown objects are detected or when objects move from their initial location, hence replanning of the path must be executed [Raulo, 2000].The main purpose of the navigation system developed is to enable a mobile robot to navigate autonomously from its current location to any point on a map. In our work, the user need to provide the map. Specifications such as the size and resolution of the map are contained in the map provided. This map can be either empty (unexplored terrain with all cells unoccupied) or complete (contains walls). The update of the map with the objects, that are not included in the initial map, can be done by detecte such objects by the sensor. These objects are mapped and aged so they can be incorporated in the path and avoided effectively. Path planning is necessary to determine the gross motion required within the map and obstacle avoidance to modify the path to avoid collisions. Navigation techniques of mobile robots are generally classified into reactive and deliberative techniques. The reactive technique is easily implemented by directly referring to sensor information. However robots may sometimes fall into a deadlock in complicated environments [Fujimori, 2002]. Deliberative techniques conversely use models such as environmental map for navigation. Robotic systems of this sort have the advantage of being able to produce an optimal plan from building complete maps, but they are limited in the usefulness due to lack of real-time reactivity to an uncertain or dynamic environment [Taliansky, 2000]. Deliberative planning and reactive control are equally important for robot navigation; when used appropriately, each compliments the other and compensates for the other’s deficiencies [Rosenblatt, 1995]. It has proven useful for controlling mobile robots in man-made environments [Stoytchev, 2001].The wavefront propagation algorithm isa deliberative technique since it finds the optimal path based on previously mapped information. Possibility theory on the other hand corresponds to a reactive technique due to its decision making conducted in real-time from sensor. By combining these two techniques, an optimal path can be planned using information from theAl-Jumail, A. & Leung, C. / Wavefront Propagation and Fuzzy Based Autonomous Navigation, pp.093-102, International Journal of Advanced Robotic Systems, Volume 2, Number 2 (2005), ISSN 1729-8806093094entire map and obstacles can be avoided by using laser readings within a range of 2R (i.e. twice the robot’s width) minimising computation and hence increasing response to obstacles, allowing optimality and efficiency. Initial implementation and testing of this navigation system was conducted on a robot simulator and later ported to the physical robot. The following sections provide details of how the implementation of the system was approached. Section 2 provides details of the physical attributes and constraints of the robot. Section 3 explains the criteria used in selecting suitable path planning and obstacle avoidance algorithms. Section 4 provides an overview of the additional features implemented to enhance the performance of the system. Furthermore, an examination of the limitations and results obtained from experimentation are included in Section 5. Finally, Sections 6 and 7 contain the conclusion and recommendations for the future respectively.2. Physical AttributesThis navigation system is developed for the Pioneer 2DX indoor mobile robot. It has a built in computer systemand is equipped with a number of sensors such as sonarand lasers. The information from the laser is used for this project. This laser scans 180 degrees across the front ofthe robot.In addition, the robot is equipped with position encodersallowing the displacement from the initial startinglocation to be calculated. This is used to localise the robot during simulation and testing.Other attributes of the robot include differential motorsenabling the robot to turn on the spot, and wirelesscommunication allowing control from a remote computer. The robot and its devices are interfaced through a Player client. Simulation or the world isachieved using Stage. (Available from )The dimensions of the robot are 33cm in width and 44cmin length. For this system, an assumption is made that therobot is round with a diameter 55cm which is the longestdistance through the centre of the robot. By shrinking therobot conceptually to a single point, while the obstacleperimeter is enlarged by half of the robot’s largestdimension allows the robot to be guided around obstacles. This method, known as “configuration spaceapproach”, is the easiest method to cater for the robot’sdimensions. It works well with relatively small, circular-footprint mobile robots [Hong, 2000].3. Algorithms ImplementedSeveral algorithms and techniques used to aid in autonomous navigation were analysed and assessed for their suitability for the implementation on an indoor mobile robot. The criteria used in the assessment were developed based on the scope and objective of the navigation system. The main objective is to enable the robot to move effectively to its destination. One of the assumptions made in the development of the system was that a two dimensional occupancy grid based map is provided by the user. Hence the algorithm selected is to be compatible with a grid based map. Information from the map is to be updated frequently according to new sensor information as a result the path needs to be replanned regularly. Taking in account that the algorithms requiring low amounts of computation are desirable to enable fast response to dynamic objects since the robot is continually processing sensor information. Two have been selected to be implemented for the navigation system.Fig. 1. Physical Attributes of Robot 3.1 Wavefront Propagation Path Planning The wavefront propagation algorithm was chosen due to its suitability with grid based maps. This algorithm hasemerged as the dominant method for path planning in discrete grid maps [Jennings, 1996]. The strategy isbased on the propagation of wavefronts that encode the distance from the robot’s current location to any point in its environment. As seen in Fig. 2, the wavefront propagation algorithm is applied to a simple grid based map. The wavefronts propagate from the source located on the centre right of the map. Each wavefront generated is designated a higher value than the previous. The shortest path can be determined by selecting any point onthe map and then tracing the highest descent of wavefronts back to the source. There are two main methods for computing the values of the wavefronts. The Manhattan style as demonstrated on the left in Fig. 3, only analyses adjacent cells in the grid to the cell in question, whereas the Chamfer method as seen on the right of the same Fig. 3, also computes cells on the diagonal. The Chamfer method is chosen to be implemented in this project as it yields a more direct path than the Manhattan style [Jennings, 1996] Advantages of this algorithm are that it is simple, requires low computation, is able to find the shortest path, can deal with any shape object in the map and the resolution of the map does not significantly impede on the processing time required.LaserScannerWireless ReceiverDifferential motors and position encodersFig. 2. Wavefront Propagation Applied to Map11 0 11Manhattan ChamferFig. 3. Wavefront Propagation MethodsHowever there are some disadvantages with this algorithm that were to be overcome. These include: - assumption that the width of the robot is within a single grid cell and that the path planned cuts extremely close to walls or objects. Section 4 will describe the additional features implemented to overcome these limitations. In the event that the path becomes invalidated due to new sensor data, an obstacle avoidance algorithm is required to supplement this path planning algorithm.3.2 Possibility theory for Obstacle AvoidanceWhen the robot detects that there is an obstacle in its path that it is following then it needs to be able react quickly to avoid it. Possibility theory algorithms, as a basis for fuzzy logic, were chosen to be implemented due to its ability to make decisions in real time and its ability to be tailored for the robot and the environment.It promises an efficient way for obstacle avoidance [Cang, 2003].Possibility theory deals with the uncertainty [Dubois, 1996]; in this case the uncertainty of the location of obstacles. These uncertainties originate from the errors in the laser readings, errors due to lag as the robot is turning or moving at high speeds and noise from dust particles. The rules of possibility theory are similar to probability theory, but use either MAX/MIN or MAX/TIMES calculus, rather than PLUS/TIMES of probability theory. PLUS/TIMES calculus however does not validly generalise nondeterministic processes, while MAX/MIN and MAX/TIMES do, giving it an advantage as a representation of non-determinism in systems [Drainkov, 2001].As mentioned previously, only the objects on the map within an area with a radius of 2R of the robot are subjected to the possibility theory. This is to minimise computation and enhance response time to obstacles.A possibility distribution is a normal fuzzy set where at least one membership grade equals one. Fig.s 4 and 5 show the membership functions of the normalised angleand distance fuzzy sets used to fuzzify the laser readingsof each scan. These membership functions are then subjected to the fuzzy rules which were developed and adjusted based on experimental results.The fuzzy rules in Table 1 and 2 are the reasoning usedto determine the speed and turn-rate required of the robot based on the angle and distance of the obstacles. Negative turn-rates denote a clockwise turn and obstacleswith a negative angle are on the right of the robot. Generally these rules, as shown in Table 1 state that if there is an obstacle on the right then turn left and vice versa. Table 2 states that if there is an obstacle close tothe front of the robot then slow down.Maximum of minimum fuzzy inference method was chosen to determine the speed and turn-rate fuzzy setsdue to its simplicity. It is calculated for each reading in a laser scan within a range of 2R. Centre of Area was usedin the implementation for defuzzification because it was deemed to be the ideal technique [Leyden, 1999]. This is calculated for the final fuzzy sets of the speed and turn-rate membership function as shown in Fig.s 6 and 7 respectively. To avoid hard-coding the rule when deciding which direction the robot should turn when there are obstaclesFig. 4. Obstacle Angle MembershipFig. 5. Obstacle Distance MembershipTable 1. Fuzzy Rules for SpeedTable 2. Fuzzy rules for Turn-rateAngleSpeedPM PS ZE NS NMZE PS ZE ZE ZE PSPS PS ZE ZE ZE PS DistancePM PM PS ZE PS PMAngleTurn-ratePM PS ZE NS NMZE NS NM NM orPM PM PSPS ZE NS NM orPM PS ZE DistancePM ZE NS NS or PS PS ZEZE PSPM 10 0.5 0.6 0.8 1 1.2 1.4 2 (R)NM NSZEPSPM 1-180 -90 -40 -30 -5 0 5 30 40 90 180Source ofwavefronts095096directly in front of the robot, these rules are modified dynamically depending on the location of the next waypoint in the path. This is achieved by applying an additional condition to the rules in Table 2 for obstacles in the angle range of ZE. This condition checks the location of the next waypoint and determines if it is on the left or the right of the robot. The resultant rule would be to turn the robot towards the waypoint by choosing one of the alternatives shown in Table 2. Hence the path is incorporated in the obstacle avoidance decision making.The turn-rate is determined using this possibility theory algorithm. Once the turn-rate is computed to be close to zero then it is assumed that the obstacles have been avoided and a new path is planned. However this assumption is not always correct as there are occasions where the turn-rate may be computed to be zero while there are still obstacles around. This may occur when there are many obstacles surrounding both sides of the robot and the centre of area calculation may result in zero. This disadvantage of the possibility theory algorithm can be compensated by the wavefront propagation algorithm by re-planning and avoiding the obstacles. This is one example where these two algorithms complement each other in reducing their limitations and enhancing their advantages.4. Additional Features of the SystemSeveral features were implemented to compensate for the limitations of the algorithms chosen and to increase the safety of the robot. Other features were implemented to enhance the performance of the system in a dynamic environment and to provide a smooth motion.Fig. 6. Speed MembershipFig. 7. Turn-rate Membership4.1. Thickening of Walls and ObjectsAs mentioned previously in Section 2, the “configurationspace approach” is used so obstacles need to be enlarged.The walls are thickened by half the robot’s width and adesignated safety distance. The thickening of walls solves two main issues encountered with the wavefrontpropagation algorithm. Since the wavefront propagationalgorithm assumes that the robot is less than a single gridcell wide, paths can be planned though any gap in a wallthat is a single grid cell. The other problem is that thepath generated from this algorithm cuts extremely close corners to maintain the shortest path. In this case the path planned can be so close to the wall that it does not allow for the width of the robot or enough safety distance for the robot to pass. By thickening the walls, paths that are too narrow for the robot to pass are blocked and paths are planned further away from the actual wall. As a result, safer paths can be planned. Through experimental results a safety distance of 7cm and half the robot’s radius (the robot is assumed to be round, so that there is always enough room for the robot to turn on the spot to escape from local minima) was determined to be the most beneficial by allowing sufficient space to manoeuvre and maintaining efficiency.4.2 Smooth Motion Planning and WaypointsOnce the path has been planned then the robot is instructed to follow the path. However the path from the wavefront propagation algorithm is in the form of steps consisting of specific grid cells. It is difficult to follow a path cell by cell due to the accuracy and the constant stopping and checking for the next cell, hence the path is converted to a format that the robot can follow such as steps consisting of angle and distance to travel. This is achieved by determining the relationship between cells and grouping cells heading in the same direction.Subsequent to this, there is still the problem that the path followed the lines of the wall. This means that if the wall is jagged then the resulting path would also be jagged. This problem is overcome by ignoring steps that were less than a designated minimum distance. The distance of the step ignored would be maintained in the path without the robot changing the direction. After this alteration to this path there is no longer a guarantee that the objects would be avoided. However with the assumption that the obstacle avoidance algorithm works in that it avoided any objects in the path that the robot takes then thisminor detour from the initial path is allowable as itwould increase the smoothness of the robot’s motionquite significantly. The waypoints used for the obstacleavoidance algorithm is designated to be the last cell of each step of this smoothed path.Once the jagged steps are removed, the robot continues to move in a stop-start motion as it must stop and turn before moving forward. This is not desirable as the motion does not seem natural or smooth. The solutionimplemented to solve this problem is to let the robot turnin an arc, much like how a car turns a corner as seen in Fig. 8. The larger the angle the robot is required to turn the smaller the radius of the arc. This increased the efficiency of the turn however it further increased the diversion from the initial path. This is due to the robot cutting corners as it turns an arc. Hence there is increased reliance on the obstacle avoidance algorithm and the path planning is only usedas a guideline on which path to take. Much like travelling in a car from one place to another, a path can be chosen by selecting certain roads to take. While the car is in motion, any obstacle avoidance or driving skill does not rely on the path chosen. NM NS ZE PS PM 1-60 -40 -30 -10 0 10 30 40 60 (deg/sec)ZE PS PM10 (mm/sec)097Fig. 8. Turns arc instead of turning on the spot4.3. Mapping and Ageing of ObjectsWhen moving around, it is desirable to ensure the data on the location of obstacles are correct. The map is updated with objects by mapping the laser readings. When the number of occurrences an object is detected to be in a particular cell exceeds a designated threshold the object is deemed to exist. In a dynamic environment objects can move or be moved. Hence new data is preferred [Singh 2000]. If all objects that were detected by the laser were mapped each time they were seen, and remapped as they changed their location, then the map could soon accumulate so many objects such that it would be completely occupied and there would be no more free space for the robot to move. The robot would be trying to avoid obstacles that are no longer in the same position as when it was detected.Ageing of the objects allow for the objects that have not been recently detected by the laser to fade away as new and more recent information come to hand. This not only prevents the map from over cluttering with incorrect information but also removes the necessity for the system to repetitively perform ray-tracing to clear the grid cells between the robot and the obstacle detected. An effective ageing factor is determined from results of experimentation, variable depending on the speed of the robot and the threshold used for mapping. See 5.5 for resultant aging factor.4.4 Controlling Robot MovementThe robot is controlled through the Player client and through the state machine that shown in Fig.9.In Initialise State everything is initialised. Access is to the robot is requested and established. Access to all sensors established. The map file is obtained from the user, the current location of the robot on the map, and the destination is also obtained from the user. This state is entered upon start-up. It is left once all attributes have been initialised. While the prepare map state incorporates adding obstacles to the map and growing the obstacles of the map. This state is entered upon completion of initialisation procedures and is left once the map is prepared. It can also be entered from the obstacle avoidance state once the fuzzy logic controller has determined that the steering angle does not need to change. For the Plan Path the current attributes such as current location of the robot and the destination arechecked to determine if a path can be planned. This state is left when the either the destination or the current location are occupied on the map. The path is planned in this state and once this is completed, it exits this state. If the path is not able to reach the destination this state is left.While in the follow path, the robot is in motion and following the path. When the fuzzy logic controller determines that the current steering angle is required to change, the system leaves this state. This state is also exited when the destination is reached. At avoid obstacles state the robot follows the steering determined by the fuzzy logic controller. Once the steering angle no longer requires to be changed this state is left. This state is also left once the destination has been reached. Final state is stop state which in it the robot is stopped and the system is terminate.Fig. 9. State Diagram of robot movment5. Results of ExperimentationVarious functional and performance tests were conducted on the system. The system was tested under different scenarios to analyse how the system copes in different environments. Attributes of the system were also altered to determine how they affect the performance and functioning of the system.5.1 Limitation with GridsFunction testing revealed several limitations of this system. This first limitation results from the limitation ofTurns arc instead of Distance of straight line decreased to compensatedealing with occupancy grid based maps. Due to the layout of cells, each node processed in the path planning can only travel in eight directions limiting the angle of steps in a path to a minimum of 45°.It is evident from Fig. 10 that with an empty map, the path still contains a turn. The shortest path between any two points is a straight line. Hence the path developed when the two points are not at a 45° angle is not the optimal path. This is deemed as an acceptable limitation because in reality most destinations cannot be reached by travelling in a straight line as the real environment contains many obstacles.5.2 Safety vs. EfficiencyAnother limitation discovered is that there are compromises between safety and efficiency. When there are walls for the path to be planned around, a safety distance is allocated and hence the path is no longer the shortest. It is evident from the first window in Fig. 11. that the resulting path from allowing the safety distance is not the shortest.Issues that arose with a small safety distance include frequent alterations to the path triggered by the obstacle avoidance component. This component would detect the wall as an obstacle due to the small distance allowed for the robot to travel and hence an attempt would be made to move the robot away from this obstacle. By increasing the safety distance used in the path planning or decreasing the sensitivity of the obstacle avoidance then this interruption would be less frequent. However decreasing the sensitivity of the obstacle avoidance would increase the likelihood of a collision. Hence increasing the safety distance is the preferred option. There are other concerns from increasing the safety distance in the path planning. When a path is to be planned through a narrow gap between walls, as seen in Fig. 11, the narrow path is completely blocked and hence the path is planned on a longer route. The path is further away from the wall hence the distance travelled also longer in this respect. Furthermore increasing the safety distance decreases the chance of a successful path planned. This is due to a grater chance that the robot lies in a grid cell that is occupied by the safety distance. Hence efficiency of the system is compromised when safety is taken into account.Our soluation to solve these two problems is the thicke the walls to prevent the path being planned too close to the walls and it also fills in small gaps in the walls that are smaller than the width of the robot. Expanding obstacle boundaries to include the effective radius of a mobile robot allows the robot’s center to be treated as a reference point.Fig. 11 shows a path planned with a safety distance of 5cm. The walls contained in the initial map are in blue and the thickened walls are indicated by cyan. The path generated, in black, extends from the top right to the bottom right of the map, passing through the narrow gap. Due to the path’s proximity to the wall there are many interruptions from the obstacle avoidance component as the robot follows this path. Fig. 12 shows a path planned with a safety distance of 15cm. This minimises the interruptions from the obstacle avoidance but the efficiency of the path is significantly diminished due to the blocked path. Determining a suitable safety distance is accomplished by analysing experimental results. A decision is made on how narrow a path can be before it is considered too narrow for the robot to traverse.Fig. 10. Limitation to 45 degree turn in pathFig. 11. Path planned with small safety distanceThe amount of safety distance is required for moving at the set speed and how many interruptions from the obstacle avoidance are deemed acceptable for travelling a certain distance. As mentioned previously a safety distance of 7cm was deemed the most appropriate to cater for movement and maintaining efficiency. This safety distance allowed the physical robot to plan paths through doorways in the laboratory and also allowed the robot to manoeuvre through narrow gaps in the simulation world without too much interference from the obstacle avoidance component.5.3 Continuous BacktrackingFurther testing revealed other concerns when the robot would revert to a previously attempted path. This occurred under several scenarios. The first scenario is when the robot plans the shortest path to the destination and finds that this path is blocked. It then continues to plan another path which is longer than the first. As it starts following the second path the object is sufficiently aged so that when a path is re-planned, a path can be planned though the object having the shorter distance. The robot has yet to travel far enough to commit to the second path and hence returns to the blocked entrance. This scenario can continue forever. Decreasing the ageing factor of objects would reduce this problem by allowing more time for the robot to commit to the alternate route. However there are issues that become098099apparent by decreasing the ageing factor. The main problem discovered is the maintaining of undesired information. For instance, errors are generated when the robot is turning due to lag. These errors result in the walls becoming thicker than they are in reality. Problems arise when narrow paths appear to be blocked due to this effect. Decreasing the ageing factor would maintain this error and thicken the existing walls preventing the traversal through what would otherwise be a possible shorter path. Hence when a path is replanned the longer route is selected.Fig. 12. Path planned with large safety distanceAlternatively if the ageing factor is high then this spray effect due to lag would not exist for long. Hence if the robot replans a path before taking the next step, the initial optimal path is regenerated and the robot would return to this narrow path. This may be a problem if the spiral effect continues to be regenerated as the robot would oscillate back and forth between the two paths. Another scenario resulting in continuous backtracking is when the destination is completely surrounded by objects. The robot would travel towards the destination. Upon discovering that the path is blocked, it moves around to the other opening which is also found to be blocked. By this time the objects along the initial path would have aged sufficiently that a path can be planned though it, so the robot returns to the previous path.Fig. 13. Destination UnreachableThis can continue on forever until one of the objects is removed. As demonstrated in Fig. 13, the robot is provided with an empty map and the destination is completely surrounded. The recent objects are shown in magenta and the aged objects are in yellow. This scenario results from the ageing of static objects, primarily due to the assumption that objects can move or be moved. A solution to this problem is to enforce a timeout. If the robot takes a much longer time than expected to reach the destination then a timeout can be triggered. This requires estimation of travel time in regards to map size or path length. Alternately, determining which objects to age is another possible solution. If the value of an occupied cell is greater than a selected threshold then it may be regarded as static and hence not aged. This technique is considered to be viable. However due to time constraints, this navigation system was not retested with this feature. Although this system does distinguish between walls (initial data on the map provided) and objects whereby walls are not aged.5.4 Speed vs. Accuracy and SafetyIncreasing the speed of the robot does not always guarantee that the robot would reach its destination in a shorter time as other issues arise. The faster the robot moves, the less scans it takes of the same area. Therefore occupied cells have less opportunity to build up past the threshold and maintain the occupied state. This results in the same effect as a high ageing factor. Objects disappear quickly and the robot tends to return to a previously attempted path.With greater speeds, the robot also requires stronger control action to avoid obstacles. Larger angles must be turned or reaction time must be decreased. This application is tailored for slower speeds of approximately 200mm/sec. If the robot is run at speeds higher than this limit then safety of the robot is compromised as the reaction time of the robot may not be quick enough or the angle turned may not be large enough.Another issue discovered in testing is that walls appear jagged and to overlap when the robot is travelling at high speeds. This may be due to a greater difference between the forward speed and the turn-rate.Furthermore, from running the robot at slower speeds, benefits result such as objects becoming well defined and having a lower impact if it crashes. However, it may take longer for the robot to reach its destination; hence safety and accuracy are compromised by speed.The system performs well at the initial speed of 100mm/sec however this pace is too slow. Doubling the speed to 200mm/sec improved the efficiency of the robot and the obstacle avoidance was required to be adjusted to cater for this speed. When retested at 200mm/sec the system performed well. The speed was increased once more to 300mm/sec. This caused slight problems in the mapping due to increased lag as a result of the higher speed. Further increase of the speed made the system unpredictable. Hence testing on the physical robot was limited to a speed of 200mm/sec due to increased errors in the physical world while testing on simulation wasDestination。

相关文档
最新文档