热塑性塑料的填充改性

合集下载

塑料增强改性配方大全

塑料增强改性配方大全

塑料增强改性配方大全为了进一步改善塑料的力学性能,常在塑料中加入玻璃纤维(简称玻纤),滑石粉、云母、碳酸钙、高岭土、碳纤维等增强材料,以树脂为母体及粘结剂而组成新型复合材料。

通用热塑性塑料增强配方1.高性能玻璃纤维增强PP组成配方:均聚PP(F401)54%GF30%偶联剂K-5500.5%PP-g-MAH5%POE-g-MAH10%润滑剂0.5%加工条件:(1)挤出造粒温度180~230℃;螺杆转速320r/min(2)注塑成型温度190~210℃相关性能:拉伸强度/MPa70弯曲弹性模量/GPa 1.5热变形温度/℃160冲击强度/(J/m)402.玻璃纤维增强PP配方组成:PP51%LDPE5%玻璃纤维(5mm)40%顺丁烯二酸化PP4%相关性能拉伸强度/MPa97弯曲弹性模量/GPa7.44冲击强度/(J/m2)138.83.玻璃纤维增强PP配方组成:PP58%硅烷处理玻璃纤维30%纸浆6%不饱和羧酸改性聚烯烃6%4.GF/液晶复合增强PP配方组成:PP70%TLCP5%GF30%注:GF长度<4mm,用双马来酰亚胺处理,TLCP热致溶液聚合物,对羟基苯甲酸(PHB)于PET的共聚酯(60/40)。

相关性能:拉伸强度51.3MPa;拉伸模量1.59GPa。

5.云母增强PP配方组成(质量份):PP100硅烷偶联剂0.25云母30相关性能:拉伸强度/MPa50弯曲强度/MPa82洛氏硬度(R)106热变形温度℃128产品翘曲变形/% 1.26.短切玻纤增强PP配方组成(质量份):PP100CaSt0.5活化短切玻纤30抗氧剂10100.3A-174偶联剂0.1辅助抗氧剂DLTP0.5相关性能:拉伸强度/MPa37.32弹性模量/MPa252.19缺口冲击强度/kJ/m28.15无缺口冲击强度/kJ/m229.55热变形温度/℃124.57.硅灰石纤维填充增强PP配方组成:PP100CaSt0.5硅灰石纤维30抗氧剂10100.3KH-5500.5~1辅助抗氧剂DLTP0.3相关性能:拉伸强度/MPa28.54弹性模量/MPa201.92缺口冲击强度/kJ/m28.32无缺口冲击强度/kJ/m232.10热变形温度/℃124.58.复合增强PP配方组成(质量份):PP(燕山石化1300)100云母粉15玻璃纤维25硅烷偶联剂0.5~1相关性能:拉伸强度/MPa86.8弯曲模量/MPa4200缺口冲击强度/kJ/m27.1无缺口冲击强度/kJ/m220.1热变形温度/℃124.59.玻璃纤维增强PVC配方组成(质量份):PVC100硫醇基二丁烯3表面涂覆玻璃纤维30HSt0.5加工条件:此述配方中各组分充分混合后,挤出成为制品。

聚苯醚(PPO)的改性

聚苯醚(PPO)的改性
聚苯醚(PPO)的改性
聚苯醚(PPO)的基本性质概述 聚苯醚(PPO)的改性方法
聚苯醚(PPO)改性的应用
聚苯醚(PPO)的基本性质概述
聚苯醚(聚2 , 6 一二甲基一1 , 4 苯醚) , 简 称PPO, 是一种优良的热塑性工程塑料。 优良性能:良好的机械性能、热性能和 电性能。 缺陷:熔融温度高、熔体粘度大热塑成 形性差和耐有机溶剂(如卤代脂肪烃)差。 为了改善PPO的性能, 扩大应用领域, 对 PPO进行改性, 改性后的PPO 称为MPPO
硫交替连接,分子链的刚性及规整性大,
因此,其具有良好的机械性能、耐热性、
耐溶剂性。日本GE塑料公司采用新的相
容技术,开发的PPO/PPS合金热变形温
度大于270 ℃,其耐溶剂性和耐洗涤剂性
较好,韧性好,翘曲性小,已有两个牌
号进入市场 ,可满足电器、电子设备耐
热、阻燃和表面安装等技术要求。
3、互穿网络(IPN)结构聚合物
互穿网络结构(IPN)是20世纪60年代开发的
一种新型聚合物材料结构,它有利于提高组分
பைடு நூலகம்
间的相容性,改善聚合物的综合性能。
环氧树脂具有活泼的环氧基团,能形成复杂的
交联结构,因此,环氧树脂改性聚苯醚可能形
成互穿网络(IPN)结构。但聚苯醚分子不含强极
性基团,与环氧树脂的相容性差,共混效果不
好。因此,将与PPO具有良好相容性的多官能
外科手术器械 (7) 办公设备可制作复印机壳体、计算器、计算机外壳等。 (8) 膜工业由于其膜透气性好选择性高耐溶剂性好, 可制作气体分
离的膜材料。
填充改性
增塑,降低成本,提高杨氏模量,起增强作用。 填料的粒径、形状影响材料的性能,PPO改性 后,再加入无机填料(碳酸钙(无定形状)、滑石 粉(层状)、硅酸钙(针状)3种),可提高改性聚苯 醚(MPPO)的拉伸屈服强度。用无机填料对 MPPO进行填充改性,碳酸钙对填充体系拉伸 屈服强度没有影响,而用滑石粉和硅酸钙填充, 其填充体系的拉伸屈服强度增加。这是因为碳 酸钙是粒径填料,碳酸钙粒径为2—10 um时, 只起增量剂的作用;而粒径小于0.1 um时,起 增强剂的作用。

几种填料对PP的改性

几种填料对PP的改性

几种填料对PP的改性目前原料价格的上涨,促使塑料改性的迅速发展。

在提高或保障塑料性能的前提下,通常在塑料中添加一些无机材料或其它材料,降低塑料制品的生产成本。

下面介绍几种主要填料及对PP改性效果。

塑料加工界曾经认为,在保持材料性能的前提下,加入无机填料可以降低成本。

虽然无机填料比聚合物便宜很多,但也重很多,而塑料制品是以体积为单位来交易的。

下面分析在什么条件下,按体积衡量的填充聚合物材料成本才会降低。

要使单位体积填充聚合物材料的价格小于单位体积纯聚合物的价格,则需满足P*ρ≤P1*ρ1(1)其中P、P1分别为填充聚合物、聚合物基体的价格(万元/吨);而ρ、ρ1分别为填充聚合物、聚合物基体的密度(ton/ m3)填充聚合物材料的密度ρ为1/ρ=(1- w2)/ρ1+ w2/ρ2(2)其中ρ2为无机填料的密度(ton/ m3),w2为填料加量(%)将式(2)代入式(1)整理得P/ P1≤1-(ρ2-ρ1)/ρ2*w2(3)如填充聚合物材料的价格P表示为P= P1*(1- w2)+ P2*w2+Δ(4)其中P2为无机填料的价格(万元/吨),Δ为加工费用(万元/吨)将式(4)代入式(3)整理得P2 / P1≤ρ1 / ρ2 -Δ/ (P1*w2)(5)只有满足式(5)条件下,按体积衡量的填充聚合物材料成本才降低。

如对于聚烯烃来说P1取1(万元/吨),ρ1取1(ton/ m3);一般无机填料如二氧化硅、滑石粉、重质碳酸钙ρ2取2.5(ton/ m3);填充量w2取0.3;加工费用Δ取0.1(万元/吨),则由式(3)可得填充聚烯烃的价格P最高为P≤(1-(ρ2-ρ1)/ρ2*w2) *P1= (1-(2.5-1)/2.5*0.3) *1=0.82(万元/吨)根据式(5)无机填料的价格P2最高为P2 ≤(ρ1 / ρ2 -Δ/ (P1*w2))*P1=(1/2.5-0.1/(1*0.3))*1=1/15(万元/吨)若对于尼龙来说P1取2(万元/吨),ρ1取1.13(ton/ m3);高岭土ρ2取2.6(ton/ m3);填充量w2取0.3;加工费用Δ取0.1(万元/吨),则由式(3)可得高岭土填充尼龙的价格P最高为P≤(1-(ρ2-ρ1)/ρ2*w2) *P1=(1-(2.6-1.13)/2.6*0.3) *2=1.6(万元/吨)根据式(5)高岭土填料的价格P2最高为P2 ≤(ρ1 / ρ2 -Δ/ (P1*w2) )*P1=(1.13/2.6-0.1/(2*0.3))*2=0.5(万元/吨)非金属矿物填料的作用和性能(1)非金属矿物填料的作用无机非金属矿物填料的主要作用是增量、增强和赋予功能。

共混改性5-填充与增强(7,8)

共混改性5-填充与增强(7,8)

浅蓝、浅灰等,有珍珠或脂肪光泽。 • 在380~500℃时可失去缔合水,800℃以上时则失去结晶水。滑石在水中略 呈碱性,pH值为9.0~9.5。 • 滑石具有层状结构,相邻的两层靠微弱的范德华力结合。在外力作用时, 相邻两层之间极易产生滑移或相互脱离。因此滑石颗粒结构基本形状是片 状或鳞片状。
17

晶须既有硼纤维的高弹性模量(400~700GPa)和强度,又具有玻璃纤维的伸 长率(3~4%)。缺点是价格昂贵,使应用受限。

晶须对塑料的增强效果十分显著,通常如果晶须能被塑料熔体充分润湿并 合理取向,塑料的抗拉强度可提高10~20倍。从价格和性能两方面考虑, 晶须目前主要还是应用于航空航天、航海、军工等高技术领域。
6
填料的分类
• 填料的分类方法很多,一般可分为无机填料和有机填料
两大类。常见的无机填料包括碳酸钙、滑石粉、云母、 高岭土、二氧化硅、炭黑等,有机填料包括木粉、棉短 绒、麦秆等。也可根据化学组成将填料分为氧化物、盐、
单质和有机物四大类,或根据填料的几何形状分为球形、 无定形、片状、纤维状等。
7
填料的性质
27
主要的阻燃性填料品种
(1)有机阻燃填料
• 氯系阻燃剂 • 溴系阻燃剂
• 氮系阻燃剂
28
溴系阻燃剂
• 溴系阻燃剂是目前世界上产量最大的有机阻燃剂之一。据统计, 1998年全球溴系阻燃剂的用量已超过200 kt,约占阻燃剂总用 量的约23%,有机阻燃剂总用量的约40%。
29
阻燃剂作用机理
• 含卤阻燃剂通过阻止发生在气相中的自由基链机理实现阻燃。 可燃性气体和氧气的反应:
32
主要品种

十溴二苯醚是用途最广泛的阻燃剂。

5大通用塑料的注塑成型工艺详解

5大通用塑料的注塑成型工艺详解

“塑料性能乃注塑技术之本”,掌握各种塑料的工艺性能及特性,是每一位注塑工作者必须懂得的基本专业知识,塑料的性能是设定“注塑工艺条件”的依据,也是在分析注塑过程中出现的质量问题和异常现象时必须考虑的因素之一。

1. 聚丙烯(PP)注塑加工工艺PP通称聚丙烯,因其抗折断性能好,也称“百折胶”。

PP是一种半透明、半晶体的热塑性塑料,具有高强度、绝缘性好、吸水率低、热变形温度高、密度小、结晶度高等特点。

改性填充物通常有玻璃纤维、矿物填料、热塑性橡胶等。

不同用途的PP其流动性差异较大,一般使用的PP流动速率介于ABS与PC之间。

纯PP是半透明的象牙白色,可以染成各种颜色。

PP的染色在一般注塑机上只能用色母料。

在一些机器上有加强混炼作用的独立塑化元件,也可以用色粉染色。

户外使用的制品,一般使用UV稳定剂和碳黑填充。

再生料的使用比例不要超过15%,否则会引起强度下降和分解变色。

PP注塑加工前一般不需特别的干燥处理。

对注塑机的选用没有特殊要求。

由于PP具有高结晶性。

需采用注射压力较高及可多段控制的电脑注塑机。

锁模力一般按3800t/m2来确定,注射量20%-85%即可。

模具温度50-90℃,对于尺寸要求较高的用高模温。

型芯温度比型腔温度低5℃以上,流道直径4-7mm,针形浇口长度1-1.5mm,直径可小至0.7mm。

边形浇口长度越短越好,约为0.7mm,深度为壁厚的一半,宽度为壁厚的两倍,并随模腔内的熔流长度逐肯增加。

模具必须有良好的排气性,排气孔深0.025mm-0.038mm,厚1.5mm,要避免收缩痕,就要用大而圆的注口及圆形流道,加强筋的厚度要小(例如是壁厚的50-60%)。

均聚PP制造的产品,厚度不能超过3mm,否则会有气泡(厚壁制品只能用共聚PP)。

PP的熔点为160-175℃,分解温度为350℃,但在注射加工时温度设定不能超过275℃,熔融段温度最好在240℃。

为减少内应力及变形,应选择高速注射,但有些等级的PP和模具不适用(出现气泡、气纹)。

常用热塑性塑料性能

常用热塑性塑料性能

几种常用的热塑性塑料简介1.PP (Polypropylene 聚丙烯)性能和用途PP是与我们日常生活密切相关的通用树脂,是丙烯最重要的下游产品,世界丙烯的50%,我国丙烯的65%都是用来制聚丙烯。

聚丙烯是世界上增长最快的通用热塑性树脂,总量仅仅次于聚乙烯和聚氯乙烯PP是结晶性塑料,一般为呈不规则圆形表面有蜡质光泽白色颗料。

密度,是塑料中最轻的一种。

有较明显的熔点,根据结晶度和分子量的不同,熔点在170℃左右,而其分解温度在290℃以上,因而有着很宽的成型温度范围,成型收缩率。

PP的使用温度可达100℃,具有良好的电性能和高频绝缘性,且不受湿度影响。

但低温下易脆,不耐磨,易老化。

适于制作一般机械零件,耐腐蚀零件和绝缘零件。

此外,用PP料制做的铰链产品具有突出的耐疲劳性能。

1.2成型注意事项PP的吸湿性很小,成型前可以不要干燥,如果存储不当,可在70℃左右干燥3小时。

成型流动性好,但收缩范围及收缩值大,易发生缩孔,凹痕,变形。

冷却速度快,浇注系统及冷却系统应缓慢散热。

PP在成型时要特别注意控制原料的熔化时间,PP 长期与热金属接触易分解。

易发生融体破裂,料温低方向方向性明显,低温高压时尤其明显。

模具温度方面,在低于50℃度时,塑件不光滑,易产生熔接不良,流痕,在90℃以上易发生翘曲变形。

塑料壁厚须均匀,避免缺胶,尖角,以防应力集中。

(Polyethylene 聚乙烯)性能和用途PE,有高密度聚乙烯(低压聚合),低密度聚乙烯(高压聚合),线形低密度聚乙烯,超高分子量聚乙烯等多种,密度在之间,成型收缩率为。

熔点在120-140℃左右,分解温度在270℃以上。

PE的耐腐蚀性,电绝缘性(尤其高频绝缘性)优良,并可以通过氯化,辐照,玻璃纤维等改性增强。

高密度聚乙烯的熔点,刚性,硬度和强度较高,吸水性小,有良好的电性能和耐辐射性;低密度聚乙烯的柔软性, 伸长率,冲击强度和渗透性较好;超高分子量聚乙烯冲击强度高,耐疲劳,耐磨。

热塑性弹性体(SBS)的合成、改性和应用

热塑性弹性体(SBS)的合成、改性和应用

(1)大分子化学改性法 ① SBS接枝反应 SBS接枝可采用低分子化合物如马 来酸酥等, 用有机单体如丙烯酸在过氧化物引 发剂存在下进行接枝反应, 在SBS链上接枝极性的高分子链段, 也可在一元接枝的基础上进行二元、 三元、乃至四元接枝反应。
张爱民等人用示差扫描仪 研究了SBS, SBS -g-MAH改性沥青的储 存稳定性研究表明, 由于SBS -g-MAH的极性比SBS高, 与沥青之间能形成一种更稳定的、均 匀的、 分相而不分离的织态结构, 从而能有效改善沥青的热储存稳定性。
• • • • •
在生产中使用THF等添加剂, 由于活性种在非极性溶剂中以缔合形态存在, 随着THF的增加,平衡向右移动, 缔合体逐渐减少,形成单量体, 一络合体,二络合体等,反应如下:
• THF为给电子试剂, • 它的含量的增加削弱了活性种正离子Li十与 C之间的键能, • 使单量体增加,单体更易发生插入反应, 加快反应速度,同时它还影响到丁二烯嵌 段中1.2一结构的含量。 • 因此,它的加入量不大,一般控制在 THF/n-BuLi为0.5-2.0之间。
• 若将上述得到的官能化聚合物与盐酸、梭 酸、磷酸等反应可将聚合物末端氨基进一 • 步按化。端基基团能有效提高丁苯嵌段聚 合物的粘合性及与金属表面的粘合性能。
• 2. 3 SBS的结构与性能及其影响因素 • (1) SBS的结构与性能 • SBS的高分子链是由塑性嵌段(聚苯乙烯 硬段)和弹性嵌段(聚丁二烯软段)组成, • 聚苯乙烯嵌段连在聚丁二烯中间段的两端. 由于聚苯乙烯嵌段间的作用力,使其能与 其它大分子的聚苯乙烯嵌段聚集在一起, 形成物理交联,构成网状结构。
• 实验表明上述星型 SBS 在端基官能化后与 极性聚合物、极性填料之间的相容性有很 大的提高。

超高分子量聚乙烯改性

超高分子量聚乙烯改性

超高分子量聚乙烯(HUMWPE)是一种线性结构的具有优异综合性能的热塑性工程塑料,具有其它工程塑料所无法比拟的抗冲击性、耐磨损性、耐化学腐蚀性、耐低温性、耐应力开裂、抗粘附能力、优良的电绝缘性、安全卫生及自身润滑性等性能,可以代替碳钢、不锈钢、青铜等材料,在纺织、采矿、化工、包装、机械、建筑、电气、医疗、体育等领域具有广泛的应用。

虽然UHMWPE具有许多优异的特性,但也有许多不足,如其熔融指数(接近于零)极低,熔点高(90-210°C)、粘度大、流动性差而极难加工成型,另外与其他工程塑料相比,具有表面,硬度低和热变形温度低、弯曲强度和蠕变性能较差,抗磨粒磨损能力差、强度低等缺点,影响了其使用效果和应用范围。

为了克服UHMWPE的这些缺点,弥补这些不足,使其在条件要求较高的某些场所得到应用,需要对其进行改性。

目前,常用的改性方法有物理改性、化学改性、聚合物填充改性、UHMWPE自增强改性等。

改性的目的是在不影响UHMWPE主要性能的基础上提高其熔体流动性、或针对UHMWPE自身性能的缺陷进行复合改性,如改进熔体流动性、耐热性、抗静电性、阻燃性及表面硬度等,使其能在专用设备上或通用设备上成型加工。

1 物理改性所谓物理改性是指把树脂与其它一种或多种物料通过机械方式进行共混,以达到某种特殊要求,如降低UHMWPE的熔体粘度、缩短加工时间等,它不改变分子构型,但可以赋予材料新的性能。

目前常用的物理改性方法主要有用低熔点、低粘度树脂共混改性、流动剂改性、液晶高分子原位复合材料改性以及填料共混复合改性等。

它是改善UHMWPE熔体流动性最有效、最简便以及最实用的途径。

1.1 用低熔点、低粘度树脂共混改性由于HDPE、LDPE、PP、PA、聚酯、橡胶等都是低熔点、低粘度聚合物,它与UHMWPE混合形成共混体系,当共混体系被加热到熔点以上时,UHMWPE树脂就会悬浮在这些共混剂的液相中,形成可挤出、可注射的悬浮体物料。

有机硅塑料润滑剂(硅酮母粒、硅酮粉)在塑料中的应用

有机硅塑料润滑剂(硅酮母粒、硅酮粉)在塑料中的应用

FY-K系列有机硅塑料添加剂 (硅酮母粒)FY-F系列有机硅塑料添加剂 (硅酮粉)一、新型有机硅润滑剂在热塑性塑料中的应用:热塑性塑料(树脂高聚物)在加工熔融之后具有较高的黏度,熔融的高聚物在通过浇口、狭缝等流道时必定与加工机械(螺杆与机筒、或其他混炼机械)表面产生摩擦,聚合物的高分子之间也有因相对运动产生摩擦。

严重的摩擦对塑料加工是很不利的,这些摩擦会使高聚物熔体的流动受阻,同时会使塑料制品表面变得粗糙,缺乏光泽或出现流纹。

严重的摩擦提高了挤出机的扭矩,导致加工设备部件严重磨损,设备使用寿命减短以及增加加工能耗。

因此,解决或克服此类摩擦导致的不利影响需要加入降低界面黏阻性能的助剂(润滑剂)。

普通塑料润滑剂种类繁多,较为常用的有:脂肪酸及其酯类、脂肪酸酰胺、金属皂、石蜡烃、以及低分子树脂如低密度聚乙烯。

上述润滑剂都有一定的使用局限性和缺点,如:润滑持久性、稳定性、安全性与其他助剂配伍性等。

烃类润滑剂初期和后期润滑性差,用量多时产生发黏和压折,通常需要与其他配合使用。

脂肪酸类少量使用0.2-0.3份具有防压折效果,0.5份时就会引起喷霜和影响制品的透明性……等问题。

为了更好地提高塑料制品的性能和降低塑料加工能耗。

氟缘硅科技公司以有机硅聚合物为主体组份的高性能分散润滑改性剂,FY-K/F系列硅酮塑料助剂可改善热塑性塑料制品的表面光滑性、提高制品的强度和独特的耐磨耐刮擦性能。

在加工过程中能更好地提高熔融树脂的流动性和脱模性,降低注射挤出加工能耗延长加工机械的使用寿命。

可提高塑料阻燃性,降低烟密度。

具有良好的稳定性和非迁移性。

作为新型有机硅分散润滑剂FY-K/F系列产品是采用特殊工艺将超高分子量改性有机硅聚合物预分散在目标树脂或精细粉体填料上制得颗粒或粉状物。

全面完美解决了传统用有机硅油作为塑料润滑剂的缺点:低表面能的硅油迁移塑料表面,严重影响制品的粘接和表面修饰等后续加工。

新型有机硅润滑剂FY-K/F硅酮塑料助剂的技术创新,将成为风靡于塑料加工行业不可替代的塑料润滑剂。

常用塑胶材料简介

常用塑胶材料简介

常用塑胶材料简介常用热塑性塑料主要有以下几种:1. 聚苯乙烯PS及改性聚苯乙烯HIPS等2. 丙烯睛-丁二烯-苯乙烯聚合物类ABS3. 聚甲醛POM4. 聚乙烯PE5. 聚丙烯PP6. 聚氯乙烯PVC7. 聚碳酸酯PC8. 聚先胺PAA9. 聚甲基丙烯酸甲酯PMMA各塑料的性能及啤塑工艺要求如下:一. 聚苯乙烯PS及改性聚苯乙烯HIPS等聚苯乙烯PS或GPPS即俗称“硬胶”,属非结晶性塑料其主要性质如下:1. 透明,良好光泽,容易着色.2. 溶于有机溶剂丙酮,三氯乙烯等,便于喷油上色.3. 成型收缩率小%左右,尺寸稳定性好.4. 质脆不耐冲击,表面易擦花,胶件包装要求高.5. 耐酸性差,遇酸、醇、油酯易应力开裂.改性聚苯乙烯即高抗冲击聚苯乙烯HIPS即俗称之“不碎胶”,其主要性质如下:1. 在GPSS中加入适量5-20%丁二烯橡胶改性,从而改善了硬胶的抗冲击性能.2. 颜色: 不透明之乳油或略显黄色.3. HIPS与GPPS根据需要可混合啤塑,GPPS成份越多制品表面亮泽越好,流动性能越好.例如: 组份比 HIPS:GPPS=7:3或8:2,可保持足够强度及良好表观质量.4. 其它主要性质同GPPS.其它聚苯乙烯共性物主要有:1. MBS 聚甲基丙烯酸酯—丁二烯—苯乙烯共聚物;即透明ABS.主要性质:透明,韧性好,耐酸碱,流动性好,易于成型及着色,尺寸稳定.2. SBS 苯乙烯与丁二烯聚合物即K料常见有KR01,KR03.主要性质:透明,较好弹性,方便成型.3. AS 丙烯睛与苯乙烯聚合物即SAN料.主要性质:提高抗冲击力,耐腐蚀性较好,苯乙烯系中流动性最差.与其它同系塑料兼容性不好.透明.聚苯乙烯的成型工艺了解GPPS成型温度范围大成型温度距降解温度较远;加热流动及固化速度快,故成型周期短.在能够流动充满型腔前提下,料管温度宜稍低.速度参数:前料管温度200℃,喷嘴后料管160℃左右.GPPS流动性好,成型中不需要很高的啤塑压力70-130Mpa,压力太高反而使半制件残留内应力增加—尤其在喷油后胶件易开裂.注:改性聚苯乙烯类的流动性均稍差GPPS注射速度宜高些,以减弱熔痕夹水纹,但因注射速度受注射压力影响大,过高的速度可能会产生飞边披锋或出模时碎裂等.适当背压:当啤机背压太低,螺杆转动易卷入空气,料管内料粒密度小,塑化效果不好.模温: 30-50℃.聚苯乙烯因吸湿性小,一般成型前不需干燥,而改性聚苯乙烯需干燥处理.温度: 60-80 ℃, 干燥时间: 2小时.二. 丙烯睛—丁二烯—苯乙烯共聚物类ABS1. 三种组份的作用:丙烯睛A—使制品表面较高硬度,提高耐磨性,耐热性.丁二烯B—加强柔顺性,保持材料韧性弹性及耐冲击强度.苯乙烯S—保持良好成型性流动性,着色性及保持材料刚性.注 : 根据组份不同派生出多种规格牌号2. ABS具有良好电镀性能,也是所有塑料中电镀性能最好的.3. 因组份中丁二烯的作用,ABS较GPPS抗冲击强度变显着提高.4. ABS原料浅黄色不透明,制品表面光泽℃好.5. ABS收缩率较小,尺寸稳定性良好.6. 不耐有机溶剂,如溶于酮,醛,酯及氯化烃而形成乳浊液ABS胶浆7. 材料共混性能ABS+PVC ~ 提高韧性,耐燃性,抗老化能力.APS+PC ~ 提高抗冲击强度,耐热性.ABS的成型工艺了解1. 成型加工之前需充分干燥,使含水率<%. 干燥条件: 温度85℃以上,时间3小时.2. ABS流动性较好,易产生啤塑披锋,注射压力在70-100Mpa左右,不可太大.3. 料管温度不宜超过250℃.4. 模具温度40-80℃,外观要求较高的产品,模温取较高.5. 注射速度取中,低速为主;注射压力根据制件形状,壁厚,胶料品级选取, 一般为80-130Mpa.6. ABS内应力检验以产品没入煤油中2分钟不出现裂纹为准.三. 聚甲醛 POM聚甲醛俗称“赛钢”,属结晶性塑料,主要性质如下:1. 聚甲醛为乳白色塑料有光泽.2. 具有良好综合力学性能,硬度,刚性较高,耐冲击性好且具有优良的耐磨性及自润滑性.3. 耐有机溶剂性能好,性能稳定.4. 成型后尺寸比较稳定,受湿度环境影响较小.聚甲醛的成型工艺了解1. 聚甲醛吸湿性小吸小率<%,成型前一般不干燥或短时干燥.2. 成型温度范围窄,热稳定性差,250℃以上分解出甲醛单体熔料颜色变暗故单凭提高温度改善流动性有害且无效果.正常啤塑宜采用较低的料管温度及较短的滞留时间而提高注射压力能改善熔料的流动性及产品表面质量熔体流动性对剪切速率较敏感温度参数: 前料管190—210℃, 中料管180—205℃,后料管150—175℃.压力参数: 注射压力100Mpa左右,背压.3. 模具温度控制在80—100℃为宜一般运热油4. POM冷却收缩率很大2~%易出现啤塑“缩水”,故必须用延长保压时间来补缩.四. 聚乙烯PE聚乙烯PE俗称“花料”,属结晶性塑料,共主要性质如下:1. 聚乙烯分高密度HDPE和低密度LDPE两种,随着密度的增高,透明减弱.2. 聚乙烯为半透明粒子,胶件外观呈乳白色.3. 聚乙烯其柔软性,抗冲击性,延伸性和耐磨性,低温韧性好.4. 常温下不溶于任何溶剂,化学性能稳定;另一方面PE难以粘结.5. 机械强度不高,热变形温度低,表面易划伤.6. 聚乙烯亦常用于吹塑制品.聚乙烯的成型工艺了解1. 流动性好,成型温度范围宽,易于成型.2. 注射压力及保压压力不宜太高,避免啤件内残留有的应力而致变形及开裂. 注射压力60~70MPa.3. 吸水性低,加工前可不必干燥处理.4. 提高料管温度,外观质量好,但成型收缩率大~%,料管温度太低产品易变形,用点浇口成型更严重,采用多点浇口可改善翘曲.温度参数: 前料管温度200-220℃,中料管180-190℃,后料管160-170℃.5. 前后模温度应保持一致模温一般为20-40℃为宜,冷却水通道不宜距型腔表面太远,以免局部温差太大,使产品残留内应力.6. 因质软,必要时可不用行位滑块而采用强行脱模方式.五. 聚丙烯PP聚丙烯俗称“百折胶”,属结晶性塑料.其主要性质如下:1. 呈半透明,质轻密度,可浮于水上.2. 良好流动性及成型性,表面光泽,着色,外伤留痕优于PE.3. 高的分子量使得抗拉强度高及屈服强度耐疲劳度高.4. 化学稳定性高,不溶于有机溶剂,喷油,烫印及粘结困难.5. 耐磨性优异,以及常温下耐冲击性好.6. 成型收缩率大%,尺寸较不稳定,胶件易变形及缩水.聚丙烯的成型工艺了解1. 聚丙烯的流动性好,较低的注射压力就能充满型腔,压力太高,易发生飞边,但太低,缩水会严重.注射压力一般为80-90MPa,保压压力取注射压力力的80%左右,宜取较长保压时间补缩.2. 适于快速注射,为改善排气不良,排气曹宜稍深取0.3mm.3. 聚丙烯高结晶度,料管温度高:料管温度参数: 前料管200-240℃,中料管170-220℃,后料管160-190℃.因其成型温度范围大,易成型,实际上为减少披锋及缩水而采用较低温度.4. 因材料收缩率大, 为准确控制胶件尺寸,应适当延长冷却时间.5. 模温宜取低温20-40℃,模温太高使结晶度大,分子间作用强,制品性好,光泽度好,但柔软性,透明性差,缩水也明显.6. 背压以为宜,干粉着色工艺应适当提高背压,以提高混炼效果.六. 聚氯乙烯PVC聚氯乙烯属非结晶性塑料,原料透明.主要性能如下:1. 通过添加增塑剂使材料软硬度范围大.2. 难燃自熄,热稳定性差.3. PVC溶于环己酮,本氩夫喃,二氯乙烷,喷油用软胶开油水含环己酮4. PVC溶胶塑料玩具上主要用于搪胶.聚氯乙烯的成型工艺了解1. 软PVC收缩率较大性分子易吸水份,成型前需经干燥. 干燥温度:85-90℃,时间2小时.2. 成型时料管内长期多次受热,分解出氯乙烯单体及HCI即降解对模腔有腐蚀作用.所以应经常清洗模腔及机头内部死角.另外,模腔表面常镀硬铬或氰化处理以抗腐性.3. 软PVC中加入ABS,可提高韧性,硬度及机械强度.4. 因PVC成型加工温度接近分解温度,故应严格控制料管温度,尽可能用偏低的成型温度,同时还应尽可能缩短成型周期,以减小熔料在料管内的停留时间. 料管温度参数:前160-170℃,中160-165℃,后140-150℃.5. 针对易分解,流动性差,模具流道和浇口尽可能粗,短,厚,以减小压力损失及尽快充满型腔.注射压力90MPa,宜采用高压低温注射,背压产品壁厚不宜太薄,应在1.5mm以上,否则料流充腔困难.6. 注射速度不宜太快,以免熔料经过浇口时剧烈磨擦使温度上升,容易产生缩水痕.7. 模具温度尽可能低30-45℃左右以缩短成型周期及防止胶件出模变形必要时胶件需经定型相定型.8. 为阻止冷料堵塞浇口或流入模腔,应设计较大冷料穴积存冷料.七. 聚碳酸酯PC聚碳酸酯俗称“防弹玻璃胶”,属结晶性塑料.其主要性质如下:1. 外观透明,刚硬带韧性.燃烧慢,离火后慢熄.2. PC料耐冲击性是塑料中最好的.3. 成型收缩率小成品精度高,尺寸稳定性高.4. 化学稳定性较好,但不耐碱,酮,芳香烃等有机溶剂.5. 耐疲劳强度差,对缺口敏感,耐应力开裂性显着.聚碳酸酯PC的成型工艺了解:1. PC在高温下即使对微量水份亦很敏感,故成型前应充分干燥,使含水率降到以下. 干燥条件:温度110-120℃,时间8-12小时.2. 流动性差,须用高压注塑,但注塑压力过高会使产品残留内应力而易开裂.3. PC料粘度对温度很敏感,提高温度时,粘度有明显下降. 啤塑温度参数:前料管240-260℃,中260-280℃,后220-230℃. 料管温度勿超过310℃,PC料成型提高后料管温度对塑化有利,而一般塑料加工,料管温度控制都是前高后低的原则.4. 模具的设计要求较高:模具的设计尽可能使流道粗而短,弯曲部位少,用圆形截面分流道;仔细研磨抛光流道等,总之是减小流动阻力以适合其高粘度塑料的填充.另外,熔料硬易损伤模具,型腔和型芯应经热处理淬火或经镀硬铬.5. 注射速度太快,易出现熔体破裂现象,在浇口周围会有糊斑,产品表面毛糙等缺陷或因排气不良困气而使产品烧焦.6. 模温以控制在80-100℃为宜,控制模温目的是减小模温及料温的差异,降低内应力.7. 成型后为减小内应力,可采用退火处理,退火温度: 125-135℃,退火时间2小时,自然冷却到室温.八. 聚先胺PA聚先胺俗称尼龙NYLON,属结晶性塑料,有多品种,如尼龙6,尼龙66,尼龙1010等.其主要性质如下:1. 尼龙具有优良的韧性,耐磨性,耐疲劳性,自润滑性和自熄性.2. 低温性能好,冲击强度高;并且很高抗拉强度,弹性好.3. 尼龙吸水性大,吸水后一定程度提高抗冲击强度,但其它强度下降如,拉伸,刚度.收缩率4. 耐弱酸弱碱和一般溶剂,常温下可溶于苯酚酚可作为粘合剂,亦可溶于浓甲酸及氯化钙的饱和甲醇溶液.尼龙成型工艺了解1. 在注塑前需充分干燥. 干燥温度80-90℃;干燥时间24小时.2. 尼龙料粘度低,流动性好,容易出现披锋,压力不宜过高,一般为60-90MPa.3. 随料管温度变化,收缩率波动大,.过高的料温易出现熔料变色,质脆,银丝等;低于熔化温度的尼龙料很硬,会损坏模具和螺杆.料管温度一般为220-250℃,不宜超过300℃.4. 模温控制尼龙是结晶性塑料,产品受模温影响大,故对模温控制要求高.模温高: 结晶度大,刚性,硬度耐磨性提高,变形小;模温低: 柔韧性好,伸长率高,收缩性小.模温控制范围: 20-90℃5. 高速注射尼龙料熔点高,即凝固点高快速定型,生产效率高,为顺利充模不使熔料降到熔点下凝固.必须采用高速注射,对薄壁产品或长流距长产品尤其如此,而产品壁较厚或发生溢边的情况下用慢速注射.高速充模所致排气问题,应加以留意.6. 退火处理与调湿处理退火处理: 经退火可使结晶度增大,刚性提高,不易为形和开裂.退火条件: 高于使用温度10-20℃,时间按产品厚℃不同,约 10-60分钟.调湿处理: 保持尺寸稳定,对提高韧性,改善内应力分布有好处.调湿条件: 浸沸水或醋酸钾溶液.醋酸钾:水=:100 沸点121℃ 时间2-16小时.九. 聚甲基丙烯酸酯PMMA聚甲基丙烯酸酯,即有机玻璃,俗称“亚加力”Acrylis,属非结晶性塑料.其主要性质如下:1. 透明度高,质轻不易变形,良好导旋光性.2. PMMA难着火,能缓慢燃烧.3. 不耐醇,酮,强碱,能溶于芳香烃,氧化烃三氧乙烷可做粘合剂.4. 容易成型,尺寸稳定.5. 耐冲击性及表面硬度均稍差,容易擦花,故对包装要求较高.PMMA成型工艺了解1. 亚加力透明度高,啤塑缺陷如气泡,流纹,杂质,黑点,银丝等明显暴露,故成型难度高,产品合格率低.2. 原料充分干燥干燥不充分会发生银丝,气泡现象.干燥条件: 温度95-100℃,时间6小时,料层厚不超过30mm,且料斗应持续保温,避免重新吸潮.3.流动性件差,宜高压成型,注射压力: 80-100MPa,保压压力为注射压力的80%的左右,背压亦不宜太高.防止浇口流道的早期冷却,适当加长注射时间,需用足够压力补缩.4.注射速度注射速度对粘度影响很大,不能太快.注射速度太高会引进塑件气泡,烧焦,透明度差等.5.料温流动性随料管温度提高而增大,但在能够充满型腔的前提下,温度不宜太高,以减小变色,银丝等缺陷.温度参数: 前料管200-230℃,中215-235℃,后料管140-160℃.6. 模温高,产品透明度高,并减少熔合不良,尤其可减少产品内应力,且易充满型腔,模温一般为70-90℃.7. 模具的设计流道要简单,流畅,阔浇口有利成型.8. 减小内应力. 热处理温度70-80℃热我或热水缓冷,处理时间视产品壁厚而定,一般为4小时.9. 减少啤塑黑点:1.保证原料洁净环境清洁2.清洁模具定期3.机台清洁清洁料管前端,螺杆,喷嘴等10.模面保持光洁,镀铬抗腐蚀.为不影响产品透明度,颜色,尽少用脱模剂,而宜增大模具出模斜度,方便脱模.。

几种常见的塑料改性技术

几种常见的塑料改性技术

几种常见的塑料改性技术几种常见的塑料改性技术几种常见的塑料改性技术――(1)纤维增强。

长纤维增强热塑性塑料(UCRT)是新型轻质高强度工程结构材料,因其重量轻、价廉、易于回收重复利用,在汽车上的应用发展很快。

用天然纤维如亚麻、剑麻增强塑料制造车身零件,在汽车行业已经得到认可。

一方面是由于天然纤维是环保材料,另一方面植物纤维比玻纤轻40%,减轻车重可降低油耗。

用亚麻增强PP制作车身底板,材料的拉伸强度比钢要高,刚度不低于玻纤增强材料,制件更易于回收。

英国GKN技术公司用纤维增强塑料制造的传动轴,重量减轻50%-60%,抗扭性比钢大1.0倍,弯曲刚度大1.5倍。

塑料弹簧可明显减轻重量。

用碳纤维增强塑料(CFRP)制造的板簧为14kg,减轻重量76%。

在美国、日本、欧洲都已使用板簧、圆柱形螺旋弹簧实现了纤维增强塑料化,除具有明显的防振和降噪效果外,还达到轻量化的目的。

(2)增韧技术。

高分子结构材料的刚度(包括强度)和韧性是相互制约的两项最重要的性能指标。

因此,增强刚度的同时增强增韧的研究一直是高分子材料科学的难题。

中科院化学研究所高分子共混填充增强增韧新途径,该成果在解决高分子材料同时增强增韧的科学难题方面获得重要突破,在国内首次成功地制备出超高韧性聚烯烃工程塑料,为大品种通用塑料升级,为工程塑料以及工程塑料进一步高性能化提供了新途径。

教育部超重力工程技术研究中心研制成功国家“863”计划项目—“纳米CaCO3塑料增韧母料及其制备技术”。

这种母料可使PVC 增韧改性,主要应用于PVC门窗异型材生产,也可应用于PVC管材、板材等其他硬制品的生产。

从发展趋势看,PVC塑料门窗大有全面取代钢窗和木质门窗之势。

目前国内PVC门窗异型材年生产能力为100万t,且呈不断上升之势。

采用纳米CaCO3塑料增韧母料生产PVC门窗异型材,不仅可以全面提高产品性能,而且每吨异型材成本可降低100多元。

同时,其应用领域还将向PP、ABS 等塑料材料中扩展。

无机粉体填充改性热塑性塑料机理探讨

无机粉体填充改性热塑性塑料机理探讨
联剂法 、 大分子界面活性法 、 包覆 法等。实践证 明 , 经过表 面 处理 的无 机粉体粒 子与高分子链 段的相容性增强 , 各表 面处 理法按效果递 增排 序为 J小分子界面活性法 <成膜法 <偶 : 联剂处理 法 <大分子界面活性处理法 <包覆法 。
24 .

表面官能 团理论 主要从研究 界面化学 作用起步 , 考察复 合材料 的表面特性 。一般地讲 , 如果无机粉体 与高分 子界面
子树 脂间的相容性 、 无机粉体 粒径 等。 同时综 述 了复合材料 的微观 相界 面设计 与调控技 术。通过 对无机粉 体的表
面性 能进 行优 化 与 改进 , 可设 计 并 制造 出性 能 更 加 优 异 的 复合 材 料 。 关键 词 无机 粉 体 填充改性 界 面特 性 热 塑 性 塑 料 2 界 面 特 性 的 影 响 因素
2 2 高分 子 树 脂 的 极 性 .
多组分材料 的复合是 改善 和提高材 料强度 和韧性 的最 有效
方法 。
1 无机粉体 填充改性机理
目前 , 机粉体 已经从传统意义上 的填充剂扩展 成为性 无
能改性剂和功能性 助剂 。研 究认 为 决定 复合 材料性 能 的主要 因素是界 面特 性 ( 粘结 强度 , 理 、 学效 应 , 物 化 厚度 )
2 3 无 机 粉 体 与 高分 子 树 脂 间的 相 容 性 .
1 1 表 面形 态理 论 .
表面形态理论 主要 从无机 粉体表 面 的物 理状 态去 考察 界面特性 , 理论认为无机粉体表面 的几何不均匀性 对复合 该 材料 的粘结强度起 主要作 用。不 同种 类 的无 机粉 体具 有不 同的几何形状 , 如片状 、 球状 、 近似球状等 ; 无机 粉体 的形 态 、

塑料改性方法有几类

塑料改性方法有几类

塑料改性方法有几类?
塑料改性的方法大致有以下类型:
1、增强:通过加入玻璃纤维、碳纤维、云母粉等纤维状或片状填料来达到增加材料刚性及强度的目的,如电动工具中使用的玻璃纤维增强尼龙等。

2、增韧:通过在塑料中加入橡胶、热塑性弹性体等其它物质来达到提高其韧性/冲击强度的目的,如汽车、家电及工业用途中常见的增韧聚丙烯等。

3、共混:将两种或多种不完全相容的聚合物材料均匀地混合成宏观相容、微观分相的混合物,以满足对物理机械性能、光学性能、加工性能等方面的某些要求的方法。

4、合金:与共混相似,但组分间相容性好,容易形成均相体系,并且可获得单一组分所无法达到的某些性能,如PC/abs合金,或PS改性PPO等。

5、填充:通过在塑料中加入填料来达到改善物理机械性能或降低成本的目的。

6、其它改性:如利用导电性填料来降低塑料的电阻率;添加抗氧化剂/光稳定剂来改善材料的耐候性;加入颜料/染料来改变材料的颜色、加入内/外润滑剂使材料的加工性能得到改善、使用成核剂改变半结晶性塑料的结晶特性来改善其机械性能及光学性能等等。

除了上述物理改性方法外,还有利用化学反应对塑料进行改性,使之获得特定性能的方法,如马来酸酐接枝聚烯烃、聚乙烯的交联、纺织行业中利用过氧化物来使树脂降解以改善流动性/成纤性能等。

工业上经常会将多种改性方法共同使用,比如在塑料增强改性过程中为了不过多损失冲击强度而同时加入橡胶等增韧剂;或热塑性硫化胶(TPV)的生产中同时存在物理混合和化学交联等等。

实际上,任何一种塑料原料在出厂时都最起码含有一定比例的稳定剂,以防止其在储存、运输及加工中降解,因此,严格意义上的“非改性塑料”是不存在的。

但是,在工业上,通常将化工厂生产的基础树脂成为“非改性塑料”,或“纯树脂”。

塑料改性的六种方式

塑料改性的六种方式

再生资源网/本文摘自再生资源回收-变宝网()塑料改性的六种方式塑料改性的六种方法大致有以下类型:1、增强:通过加入玻璃纤维、碳纤维、云母粉等纤维状或片状填料来达到增加材料刚性及强度的目的,如电动工具中使用的玻璃纤维增强尼龙等。

2、增韧:通过在塑料中加入橡胶、热塑性弹性体等其它物质来达到提高其韧性/冲击强度的目的,如汽车、家电及工业用途中常见的增韧聚丙烯等。

3、共混:将两种或多种不完全相容的聚合物材料均匀地混合成宏观相容、微观分相的混合物,以满足对物理机械性能、光学性能、加工性能等方面的某些要求的方法。

4、合金:与共混相似,但组分间相容性好,容易形成均相体系,并且可获得单一组分所无法达到的某些性能,如PC/abs合金,或PS改性PPO等。

5、填充:通过在塑料中加入填料来达到改善物理机械性能或降低成本的目的。

6、其它改性:如利用导电性填料来降低塑料的电阻率;添加抗氧化剂/光稳定剂来改善材料的耐候性;加入颜料/染料来改变材料的颜色、加入内/外润滑剂使材料的加工性能得到改善、使用成核剂改变半结晶性塑料的结晶特性来改善其机械性能及光学性能等等。

除了上述物理改性方法外,还有利用化学反应对塑料进行改性,使之获得特定性能的方法,如马来酸酐接枝聚烯烃、聚乙烯的交联、纺织行业中利用过氧化物来使树脂降解以改善流动性/成纤性能等。

工业上经常会将多种改性方法共同使用,比如在塑料增强改性过程中为了不过多损失冲击强度而同时加入橡胶等增韧剂;或热塑性硫化胶(TPV)的生产中同时存在物理混合和化学交联等等。

实际上,任何一种塑料塬料在出厂时都最起码含有一定比例的稳定剂,以防止其在储存、运输及加工中降解,因此,严格意义上的“非改性塑料”是不存在的。

但是,在工业上,通常将化工厂生产的基础树脂成为“非改性塑料”,或“纯树脂”。

本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站;变宝网官网:/?qx做废塑料就上变宝网,什么废料都有!。

TPU的改性探讨

TPU的改性探讨

TPU的改性探讨本文简单介绍了热塑性聚氨酯弹性体(TPU)的合成、加工及应用。

通过对其结构和性能的分析,针对其存在的弱点,提出改进的方法并加以阐述。

关键词:热塑性聚氨酯弹性体,合成,应用,熔融流动性,加工性,耐候性。

热塑性聚氨酯弹性体(简称TPU)像浇注型聚氨酯(液体)和混炼型聚氨酯(固体)一样,具有高模量、高强度、高伸长率和高弹性以及优良的耐磨、耐油、耐低温、耐老化性能等。

其与混炼型和浇注型聚氨酯弹性体相比,化学结构上没有或很少有化学交联,其分子基本上是线性的,分子中含有较多的强极性基团(如酯基、醚基、氨基甲酸酯基、脲基、缩二脲基及脲基甲酸酯基等),这些基团分子间存在着强的作用力和氢键形成物理交联。

所谓物理交联是指在线性聚氨酯分子链之间,存在着遇热或溶剂呈可逆性的“连接点”,即对热和溶剂具有可塑性和可溶解性,它不是化学交联,但起着化学交联的作用。

因此,称其为热塑性聚氨酯。

物理交联理论是1958年由Schollenberger C.S.首先提出的。

也正是由于这种物理交联的作用,聚氨酯形成了多相形态结构,聚氨酯的氢键对其形态起了强化作用,并使其耐受更高的温度。

众所周知,TPU同其它的高分子材料一样,市场和应用领域不断扩大,发展迅速。

但由于其存在着如加工温度范围窄,成型加工困难(特别是挤出成型制品),价格较高,耐热性和耐候性较差等缺陷,在一些方面又限制了它的发展。

本文对其改性方法进行一些探讨。

一TPU的分类[1]TPU可按不同方法进行分类。

按软段结构可分为聚酯型TPU、聚醚型TPU和聚丁二烯型TPU,它们分别含有酯基、醚基或丁烯基;按所用的异氰酸酯结构可分为黄变型(MDI、TODI、NDI、PPDI等)和不黄变型(HDI、H12MDI等),按硬段结构分为氨酯型和氨酯脲型,它们分别由二醇扩链或二胺扩链获得。

按有无交联可分为全热塑性和半热塑性。

前者是纯线性结构,无交联键;后者含有少量脲基甲酸酯等交联键。

热塑性塑料的填充改性

热塑性塑料的填充改性

滑动性填充剂
• 滑动材料需要有润滑性,同时还要有耐磨耗性 和一定的机械强度。按情况不同有时也需要耐 热性。因此,在设计滑动材料时,除添加固体 润滑剂外还要添加补强填充剂。固体润滑剂与 补强剂的组合和配比是决定滑动性材料性能的 重要因素。 • 滑动性填充剂中层状的无机物用量较大。对于 非黑色类橡胶如氟橡胶等,添加一氮化硼和氟 化云母等白色无机物较适宜。
导电复合材料的组成与用途
材料分类(体积电阻) 电绝缘材料 (1010Ω .cm 以上) 半导电材料 (107-1010Ω .cm) 抗静电材料 (104-107Ω .cm) 丁腈橡胶类 涂料 金属氧化物 组成材料 基体 填充剂 各种绝缘材料 低电阻板带(传真电极板) 除静电器、非带电输送带、 医用橡胶制品、导电轮胎、 电子干扰仪、油印胶辊、纺 织胶辊 弹性电极、电镀模型、加热 元件(空调机室外装置) 导电涂料(银涂料、 碳涂料)、 导电油墨 (电气印刷配线 )、 导电橡胶 ( 台式计算机的键 盘和开关连接器元件 ) 、导 电弹性粘合剂 应用实例
减振性填充剂
• 对于减振材料,高分子粘弹性特别是粘性起重要 作用。减振材料中添加某些无机物如云母和石 墨,可进一步提高其减振效果。该类无机物通 称为减振性填充剂。 • 减振性填充剂的分类
层状化合物:云母、石墨、二硫化钼、一氮化硼等 针状化合物:硬硅钙石、钛酸钾、石棉、碳纤维等 粒状、片状化合物:铁素体、滑石粉、蛭石、陶土等。
干法处理可用于物理作用的表面处理,也可用于 化学作用的表面处理,尤其是粉碎或研磨等加工工艺 同时进行的干法处理,无论是物理作用还是化学作用, 都能够获得很好的表面处理效果。显然这种表面处理 效果与加工过程中不断新生的高活性填料表面以及填 料粒径变小有很大关系,已经成为了一个十分注目的 新的发展趋势。

SEBS性能应用配方改性大全

SEBS性能应用配方改性大全

SEBS性能、应用、配方、改性大全SEBS具有优异的耐老化性能,既具有可塑性,又具有高弹性,无需硫化即可加工使用,边角料可重使用,广泛用于生产高档弹性体、塑料改性、胶粘剂、润滑油增粘剂、电线电缆的填充料和护套料等。

1) 产品特性SEBS是热塑性弹性体SBS的加氢产物,常称为氢化SBS。

这种被氢化的SBS 由于具有较高含量的1,2结构,在氢化后组成为聚苯乙烯(S)—聚乙烯(E)—聚丁烯—1(B)—聚苯乙烯(S),故简称为SEBS SEBS是1974年由Shell公司首次在世界上实现工业化生产,商品名为KratonG。

随着SEBS应用增长,参与SEBS开发、生产的厂商日益增多,到目前全球SEBS生产、销售能力达到20万吨,其中Shell公司11万吨/年,其余厂家生产能力共计9万吨左右。

由于SEBS中丁二烯段的碳—碳双键被氢化饱和,因而其具有良好的耐候性、耐热性、耐压缩变形性和优异的力学性:⑴较好的耐温性能,其脆化温度≤-60℃,最高使用温度达到149℃,在氧气气氛下其分解温度大于270℃。

⑵优异的耐老化性能,在人工加速老化箱中老化一星期其性能的下降率小于10%,臭氧老化(38℃)100小时其性能下降小于10%。

⑶优良的电性能,其介电常数在一千赫为1.3*10-4,一兆赫为2.3*10-4;体积电阻是一分钟9*1016Ω/cm;二分钟为2*1017Ω/cm。

⑷良好的溶解性能、共混性能和优异的充油性,能溶于许多常用溶剂中,其溶解度参数在7.2~9.6之间,能与多种聚合物共混,能用橡胶工业常用的油类进行充油,如白油或环烷油。

⑸无需硫化即可使用的弹性体,加工性能与SBS类似,边角料可重复使用,符合环保要求,无毒,符合美国FDA要求。

⑹比重较轻,约为0.91,同样的重量可生产出更多体积的产品。

2) 产品用途1.SEBS通过与聚丙烯、环烷油或氢化环烷油、白油等混合可生产邵氏硬度在A0-95的弹性体,此类弹性体有优秀的表面质感和耐候抗老化性能,可广泛用于软接触材料如手柄、文具、玩具、运动器材的握手、密封条、电线电缆、牙刷柄及其它包覆材料等。

填料对塑料的加工性能以及材料性能的影响

填料对塑料的加工性能以及材料性能的影响

填料对塑料的加工性能以及材料性能的影响填料对聚氯乙烯塑料加工性能以及材料性能的影响基本上符合填料对大多数塑料影响的一般规律。

1填充塑料的加工性能填料对塑料加工性能的影响主要体现在对熔体粘度的影响和熔体弹性(或刚性)的影响。

众所周之,包括大多数塑料在内的热塑性塑料。

聚合物只有达到粘流态才能进行成型加工,聚合物处于粘流态流动并发生形变的行为称之为高聚物的流变行为。

在通常的成型加工过程中,处于粘流态的高聚物的流变行为属于非牛顿液体,即在τ=ηγ式中,表观粒度η不再是一个常数,它仅仅是在测定该流体流动时所施加的剪切应力τ和当时所发生的剪切速率的比值。

我们所关心的是在加入填料以后,填充塑料体系的流变性能发生什么变化以及采取何种相应措施确保成型加工顺利进行。

填料对填充体系影响最显著的是熔体的粘度。

EinStein研究填料浓度对填充体系粘度的影响时给出如下方程式[3]:η=η1(1+Kgυ2)式中η1填料时的体系粘度;υ2为填料粘度;Kg依球状、纤维状、单轴取向填料不同而取不同值,该式均适用于不同形状分散相粒子浓度较低时的情况,当浓度高时还需对方程式加以修证。

分散相的几何形状对填充体等粘度的影响是明显的,对于同样长径比的填料,片状填料对填充体系的影响甚至高于纤维状填料。

填料的粒径越小,在同样浓度(质量分数)时,填充体系的粘度越高,而且粒径越小,相互之间越易聚集在一起,呈聚集态的填料对填充体系的流动性是不利的,见图。

图中曲线1、2、3分别代表多个填料颗粒聚集在一起三个填料颗粒聚集在一起和填料以单个颗粒形式分散在基体中的情况。

填充体系中填料的体积分数由图可知,在同样体积分数时,呈聚集态的填料对应的填充体系粘度高于聚集程度轻微的或以单个粒子形式存在的填料对应的填充体系粘度。

由此可以看成对填料进行表面处理,降低其表面能,对于填料在基体塑体中的分散和减小因加入填料使填充体系粘度的上升都是非常必要的。

总之,为了使填充体系有较好的加工流动性,我们应采用较高的剪切应力,较高的加工温度,同时应尽可能对填料表面进行适当的处理,并加人相应的助剂,以利于填料在基体塑料中的分散,使填充体系加工过程中处于较低的剪切粘度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填料表面处理的作用机理
表面的物理作用:包括表面涂覆和表面吸附,填料表面与处 理剂的结合是分子间作用力。 二是表面化学作用:包括表面取代、水解、聚合和接枝等。 填料表面是通过化学反应与处理剂相结合。 填料表面处理究竟以何种机理进行,主要取决于填料的成分 和结构,特别是填料表面官能团的类型、数量及活性,也与 表面处理剂的类型、表面处理方法和工艺条件有关。 对某一指定的填料而言,若采用表面活性剂、长链有机酸盐、 高沸点链烃等为表面处理剂,则主要通过表面涂覆或表面吸 附的物理作用进行处理; 若采用偶联剂、长链有机酰氯或氧磷酰氯、金属有机烷氧化 合物、多异酸有机化合物以及环氧化合物等为表面处理剂, 则主要通过表面化学作用来进行处理。 实际上,绝大多数填料表面处理两种机理同时存在。
复合型导电高分子
高分子材料一般为有机材料,而导电填料则通常为无机材 料或金属。两者性质相差较大,复合时不容易紧密结合和均匀 分散,影响材料的导电性,故通常还需对填料颗粒进行表面处 理。如采用表面活性剂、偶联剂、氧化还原剂对填料颗粒进行 处理后,分散性可大大增加。 复合型导电高分子的制备工艺简单,成型加工方便,且具 有较好的导电性能。例如在聚乙烯中加入粒径为10~300μm的 导电炭黑,可使聚合物变为半导体 (σ = 10-6 ~ 10-12Ω-1· cm-1) , 而将银粉、铜粉等加入环氧树脂中,其电导率可达10-1~10Ω1· cm-1,接近金属的导电水平。因此,在目前结构型导电高分 中研究尚未达到实际应用水平时,复合型导电高分子不失为一 类较为经济实用的材料。
滑动性填充剂的分类和名称
其他功能性填充剂
• X 射线防护剂:一般使用原子量较大的物质例 如铅。除使用铅粉外还可使用硫酸钡等。 • 光学功能性填充剂主要使用可使光漫反射的玻 璃珠,最近还使用新开发的高折射率玻璃珠。 添加光学功能性填充剂的橡胶或塑料主要用于 陆路和水路交通标志等与夜间交通有关的方面。
压电性填充剂
• 压电材料是具有电能和机械能相互转换功能的材料。 即对该种材料施以力时产生电,相反在给予电压时产 生力和变形。因此,压电材料的用途极为广泛。最近 主要倾向于高性能的钛酸铅(PT)和钛酸锆酸铅(PZT)。 • 具有压电性能的高分子如聚偏氟乙烯(PVDF) 与烧结陶 瓷类压电材料相比,这些高分子类复合材料具有不易 损坏、可成型各种形状而且可挠屈等优点。压电材料 使用的基体除 PVDF 外还可使用偏氟乙烯 - 三氟乙烯 (VDF-TrFE)共聚物、聚甲醛和橡胶等。 • 仅将 PZT 等压电填充剂分散于高分子基体不能开发出 所要求的功能,需要对其施以直流高电压促进自然极 化。控制压电填充剂粒子的大小和分散状态是重要的 因素。
复合型导电高分子
复合型导电高分子目前已得到广泛的应用。如 酚醛树脂 — 炭黑导电塑料,在电子工业中用作有机 实芯电位器的导电轨和碳刷;环氧树脂 — 银粉导电 粘合剂,可用于集成电路、电子元件, PTC 陶瓷发 热元件等电子元件的粘结;用涤纶树脂与炭黑混合 后纺丝得到的导电纤维,可用作工业防静电滤布和 防电磁波服装。此外,导电涂料、导电橡胶等各类 复合型导电高分子材料,都在各行各业发挥其重要 作用。



填料表面处理应遵循的原则(一)
当填料表面极性与聚合物极性相差很大是,应选择 填料表面处理后极性接近于聚合物极性的处理剂。 若填料表面含有反应性较大的官能团,则应选择与 这些官能团在处理或填充工艺过程能发生化学反应 的处理剂,即使填料表面的单分子层吸附水或其它 小分子物质也应考虑加以利用。因此,填料处理时 所含水量等微量吸附物质应适当控制,以达到最好 的处理效果。 如果填料表面反应性官能团及可利用的单分子吸附 物质不多,则处理剂应选用一端有较强极性的物质, 以增加其在填料表面的取向和结合力。
表面涂覆处理 表面反应处理 表面聚合处理
表面涂覆处理
处理剂可以是液体、溶剂、乳液和低熔点固体形式。 其一般处理步骤如下:将定量的填料投入高速混合机中, 于高速搅拌下逐渐加入计量的处理剂,混合均匀后逐渐 升温至一定温度,在该温度下高速搅拌3~5min即可。
举例: 例如以三甲基丙烯酸甘油酯(0.3份)、三甲氧基丙 烷三缩水甘油醚(0.5份)和乙撑二硬脂酰胺(0.5份)为 处理剂,对碳酸钙进行干法涂覆处理(140-150℃/5min)。 所得活性碳酸钙填充PVC硬制品,当用量为20份时,填 充塑料的冲击强度比纯PVC提高20%以上,而未经表面处 理的碳酸钙填充PVC塑料,其冲击强度较纯PVC塑料下降 10%以上,且用表面处理碳酸钙填充PVC塑料的耐热性均 优于纯PVC或填充未表面处理碳酸钙的PVC塑料。
干法处理可用于物理作用的表面处理,也可用于 化学作用的表面处理,尤其是粉碎或研磨等加工工艺 同时进行的干法处理,无论是物理作用还是化学作用, 都能够获得很好的表面处理效果。显然这种表面处理 效果与加工过程中不断新生的高活性填料表面以及填 料粒径变小有很大关系,已经成为了一个十分注目的 新的发展趋势。

填料表面处理应遵循的原则(二)
如填料表面呈酸性或碱性,则处理剂应选用碱性或 酸性;如填料表面呈氧化性或还原性,则处理剂应 选用还原性或氧化性;如填料表面具有阳离子或阴 离子交换性,则处理剂应选用可与其阳离子或阴离 子进行置换的类型。 对于处理剂而言,能与填料表面发生化学结合的比 未发生化学结合的效果好;长链基的比同类型的短 链基的效果好;处理剂链基上含有与聚合物发生反 应基团的比不含反应基团的效果好;处理剂末端为 支链的比同类型而末端为直链的效果好。 应选用在聚合物加工工艺条件下不分解、不变色以 及不从填料表面脱落的处理剂。
减振性填充剂
• 对于减振材料,高分子粘弹性特别是粘性起重要 作用。减振材料中添加某些无机物如云母和石 墨,可进一步提高其减振效果。该类无机物通 称为减振性填充剂。 • 减振性填充剂的分类
层状化合物:云母、石墨、二硫化钼、一氮化硼等 针状化合物:硬硅钙石、钛酸钾、石棉、碳纤维等 粒状、片状化合物:铁素体、滑石粉、蛭石、陶土等。
导电复合材料的组成与用途
材料分类(体积电阻) 电绝缘材料 (1010Ω .cm 以上) 半导电材料 (107-1010Ω .cm) 抗静电材料 (104-107Ω .cm) 丁腈橡胶类 涂料 金属氧化物 组成材料 基体 填充剂 各种绝缘材料 低电阻板带(传真电极板) 除静电器、非带电输送带、 医用橡胶制品、导电轮胎、 电子干扰仪、油印胶辊、纺 织胶辊 弹性电极、电镀模型、加热 元件(空调机室外装置) 导电涂料(银涂料、 碳涂料)、 导电油墨 (电气印刷配线 )、 导电橡胶 ( 台式计算机的键 盘和开关连接器元件 ) 、导 电弹性粘合剂 应用实例
高聚物的功能填充改性
郭宝春 psbcguo@
功能性填料的种类和特点
• 导电性:金属粉、金属箔、金属纤维、炭黑、碳纤维、 导电氧化物(氧化锡、氧化锌、氧化钼)、非电解镀层物 (氧化钛、云母、玻璃纤维) • 磁性:铝钛镍钴磁合金、稀土类铁素体、钡铁氧体、 锶铁氧体 • 压电性:钛酸锆石酸铅、钛酸铅、钛酸钡 • 减振性:云母、石墨、铁氧体、钛酸钾、硬硅钙石、 石墨纤维 • 滑动性:石墨、二硫化钼、氮化硼(六角晶体状)、氟化 石墨、聚四氟乙烯粉、滑石粉 • X线防护性:铅、硫酸钡
复合型导电高分子
材料导电率范围
材料 绝缘体 半导体 导 体 超导体
电导率 /Ω1· cm-1 <10-10 10-10~102 102~108 >108
典 型 代 表 石英、聚乙烯、聚苯乙烯、 聚四氟乙烯 硅、锗、聚乙炔 汞、银、铜、石墨
铌(9.2 K)、铌铝锗合金 (23.3K)、聚氮硫(0.26 K)
填料的表面处理
在填充塑料中使用的大部分无机填料都 属于极性和水不溶性物质,当它们分散于 极性较小的有机高分子中时,由于两者极 性的差异会造成相容性不好,从而对填充 塑料的加工性能和制品的使用性能带来不 良的影响。因此,对无机填料表面进行适 当的处理,通过化学或物理方法使其表面 极性接近高聚物,改善它们的相容性是十 分必要的。
复合型导电高分子
从原则上讲,任何高分子材料都可用作复合型导 电高分子的基质。在实际应用中,需根据使用要求、 制备工艺、材料性质和来源、价格等因素综合考虑, 选择合适的高分子材料。 目前用作复合型导电高分子基料的主要有聚乙烯、 聚丙烯、聚氯乙烯、聚苯乙烯、 ABS 、环氧树脂、 丙烯酸酯树脂、酚醛树脂、不饱和聚酯、聚氨酯、 聚酰亚胺、有机硅树脂等。此外,丁基橡胶、丁苯 橡胶、丁腈橡胶和天然橡胶也常用作导电橡胶的基 质。


填料表面处理方法(一)
根据所使用处理设备和处理过程的不同,填料表面处 理方法可分为干法、湿法、气相法和家高过程处理法等 四种。 1. 干法 干法处理的原理是填料在干态下借助高速混合作用和 一定温度使处理剂均匀地作用于填料粉体颗粒表面,形 成一个极薄的表面处理层。其过程如下:
干法表面处理方法的种类
复合型导电高分子
常用的导电填料有金粉、银粉、铜粉、镍 粉、钯粉、钼粉、铝粉、钴粉、镀银二氧化 硅粉、镀银玻璃微珠、炭黑、石墨、碳化钨、 碳化镍等。银粉具有最好的导电性,故应用 最广泛。炭黑虽导电率不高,但其价格便宜, 来源丰富,因此也广为采用。根据使用要求 和目的不同,导电填料还可制成箔片状、纤 维状和多孔状等多种形式。
滑动性填充剂
• 滑动材料需要有润滑性,同时还要有耐磨耗性 和一定的机械强度。按情况不同有时也需要耐 热性。因此,在设计滑动材料时,除添加固体 润滑剂外还要添加补强填充剂。固体润滑剂与 补强剂的组合和配比是决定滑动性材料性能的 重要因素。 • 滑动性填充剂中层状的无机物用量较大。对于 非黑色类橡胶如氟橡胶等,添加一氮化硼和氟 化云母等白色无机物较适宜。
橡胶、塑料、 炭黑、金属粉、碳纤 合成纤维 维、金属纤维
导电材料 (100-104Ω .cm) 高导电材料 (10-3-100Ω .cm)
橡胶、塑料
炭黑、金属粉、碳纤 维
橡胶、塑料、 炭黑、金属粉 二甲酚树脂、 环氧树脂
相关文档
最新文档