苏教版初二下学期几何压轴题
江苏八年级下期末真题精选(压轴60题19个考点专练)~【满分全攻略】2022~2023
江苏八年级下期末真题精选(压轴A.6B.3(2020•重庆)4.如图,在平面直角坐标系中,是x轴上一点,连接AE.若ADA.6B.12(2022春•泰州期末)5.如图,A(a,b)、B(-a,-b A、B作y轴的平行线,与反比例函数(2022春•高邮市期末)8.如图,在平面直角坐标系中,的图像经过OA 的中点C 和点9.如图,在平面直角坐标系中,边,在第一象限内作矩形点O 重合,折痕为MN ,点()0ky k =≠的图像恰好过A.27 4五.反比例函数与一次函数的交点问题(共(2021•武威二模)11.已知反比例函数y(1)求这两个函数的关系式;a___________(1)直接写出=(2)结合图象直接写出关于x的不等式C n在反比例函数y(3)点(),2(2022春•安居区期末)(1)求该反比例函数和一次函数的表达式;的面积;(2)连接AO,求AOB(3)直接写出关于x的不等式mx (2014•巴中)15.如图,在平面直角坐标系(1)求反比例函数和直线EF(2)求△OEF的面积;(3)请结合图象直接写出不等式(2018春•秦淮区期末)16.如图,在直角坐标系中,函数(1)点A 、B 的坐标分别是 、 ;(2)在同一平面直角坐标系中,画出函数34y x=-的图象;(3)垂直于y 轴的直线l 与函数1y 、2y 、3y 的图象分别交于点3(N x ,3)y ,若123x x x <<,结合函数的图象,直接写出六.反比例函数的应用(共5小题)(2022•青秀区校级一模)17.学校的自动饮水机,开机加热时每分钟上升10开始下降,此时水温y ℃与通电时间x (min )成反比例关系.当水温降至机再自动加热,若水温在20︒时接通电源,水温y 则下列说法中正确的是( )A .水温从20︒升高到100B .水温下降过程中,y 与C .早晨8点接通电源从20D .在单次加热—降温的过程中,水温不低于100℃,停止加热,水温开始下降,此时水温()℃与开机后用时()min 成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温()y ℃和时间()min 的关系如图,为了在上午第一节下课时()8:45能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )A .7:20B .7:30C .7:45D .8:00(2022春•海州区校级期末)19.某车队要把4000吨货物运到灾区,已知每天的运输量不变.(1)从运输开始,每天运输的货物吨数n (吨)与运输时间t (天)之间有怎样的函数表达式?(2)因灾区道路受阻,实际每天比原计划少运20%,推迟2天完成任务,求原计划完成任务的天数.(2021•蒸湘区校级一模)20.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第5分钟起每分钟每毫升血液中含药量增加0.2微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1)=a _____________;(2)当5100≤≤x 时,y 与x 之间的函数关系式为_____________;当100x >时,y 与x 之间的函数关系式为_____________;(3)如果每毫升血液中含药量不低于10微克时是有效的,求出一次服药后的有效时间多(1)求k的值;(2)恒温系统在一天内保持大棚内温度不低于七.三角形中位线定理(共(2019•铁西区二模)22.如图,△ABC中,∠A=60° ,AC(2015•呼伦贝尔)26.如图,在平行四边形ABCD (1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形一十.平行四边形的判定与性质(共2022春•南京期末).在ABCD 中,6cm AB =(2011•北京)30.在▱ABCD 中,∠一十一.菱形的性质(共(2021春•滨湖区期末)32.如图,已知菱形ABCD=,连接动点,且PC CQA.45B.(2022•新市区校级三模)33.已知如图,在菱形ABCD(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形一十二.菱形的判定与性质(共(2023•郧西县模拟)34.在Rt△ABC中,∠BAC=90°,A .逐渐增大C .不变(2022春•靖江市校级期末)36.如图,线段AB 的长为10,点(2018•邵阳模拟)38.如图,矩形ABCD 中,点边于点,E F AF AE =、.(1)求证:四边形AFCE 是菱形;(2)若8,6BC AB ==,求EF 的长.(2021春•淮安区期末)39.如图所示,在矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,垂足为O ,连接AE ,CF .(1)求证:四边形AFCE 为菱形;(2)求AF 的长.(2019•无锡模拟)40.已知:如图,在平行四边形ABCD 和矩形ABEF 中,AC 与DF 相交于点G .(1) 试说明DF =CE ;(2) 若AC =BF =DF ,求∠ACE 的度数.(2011•福州)41.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,ab ≠0),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.(2022春•工业园区期末)42.已知,如图,在长方形ABCD 中,46AB AD ==,.延长BC 到点E ,使3CE =,连接DE .(1)动点P 从点B 出发,以每秒1个单位的速度沿BC CD DA --向终点A 运动,设点P 运动的时间为t 秒,求当t 为何值时,ABP 和DCE △全等?(2)若动点P 从点B 出发,以每秒1个单位的速度仅沿着BE 向终点E 运动,连接DP .设点P 运动的时间为t 秒,是否存在t ,使PDE △为等腰三角形?若存在,请求出t 的值;否则,说明理由.(2012•云南)43.如图,在矩形ABCD 中,对角线BD 的垂直平分线MN 与AD 相交于点M ,与BD 相交于点O ,与BC 相交于点N ,连接BM 、DN .(1)求证:四边形BMDN 是菱形;(2)若4AB =,8AD =,求MD 的长.一十四.正方形的性质(共5小题)(2012•黔东南州)44.点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE,连接BE,则∠CBE 等于( )(2022春•仪征市期末)46.在正方形ABCD中,点(1)当α=20°时,求∠DAE的度数;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.一十五.正方形的判定(共(2022春•隆安县期末)(1)求证:BC=BE;(2)连接CF,若∠ADF=∠BCF(1)证明四边形EGFH是平行四边形;形EGFH是正方形.一十六.正方形的判定与性质(共(2022春•仪征市期末)51.我们知道菱形与正方形的形状有差异,“接近度”.A .424-(2022•南京模拟)53.在矩形ABCD 中,点A 顺时针旋转90°得到A .25B .(2022•常熟市模拟)54.如图,在Rt ABC △中,动点,A B C ABC ''△△≌,将(2022•平邑县一模)56.在正方形ABCD 中,点E 在射线BC 上(不与点B 、C 重合),连接DB ,DE ,将DE 绕点E 逆时针旋转90 得到EF ,连接BF .(1)如图1,点E 在BC 边上.①依题意补全图1;②若=6AB ,=2EC 求BF 的长;(2)如图2,点E 在BC 边的延长线上,用等式表示线段BD ,BE ,BF 之间的数量关系.(2016春•工业园区期末)57.如图,在△ABC 中,∠BAC =50°,将△ABC 绕点A 按逆时针方向旋转后得△AB 1C 1.当B 1B ∥AC 时,求∠BAC 1的度数.(2021•厦门二模)58.在正方形ABCD 中,将边AD 绕点A 逆时针旋转()090a a ︒<<︒得到线段AE ,AE 与CD 延长线相交于点F ,过B 作//BG AF 交CF 于点G ,连接BE .(1)如图1,求证:2BGC AEB ∠=∠;(2)当(4590a ︒<<︒)时,依题意补全图2,用等式表示线段AH EF DG ,,之间的数量关系,并证明.一十八.作图-旋转变换(共1小题)(2022春•盱眙县期末)59.如图,在平面直角坐标系中,已知ABC 的三个顶点的坐标分别为()()()5,1,2,2,1,4A B C ---,请按下列要求画图:(1)将ABC 先向右平移4个单位长度、再向下平移1个单位长度,得到111A B C △,画出111A B C △;(2)222A B C △与ABC 关于原点O 成中心对称,画出222A B C △.一十九.条形统计图(共1小题)(2022春•盱眙县期末)60.我市中小学全面开展“阳光体育”活动,某校在大课间中开设了A (体操)、B (乒乓球)、C (毽球)、D (跳绳)四项活动.为了解学生最喜欢哪一项活动,随机抽取了部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图.请根据统计图回答下列问题:(1)这次被调查的学生共有_____人;(2)请将统计图2补充完整;(3)统计图1中B项目对应的扇形的圆心角是_____度;(4)已知该校共有学生1000人,根据调查结果估计该校喜欢体操的学生有_____人.∵△AOB 和△ACD 均为正三角形,∴60AOB CAD ∠=∠=︒,∴AD ∥OB ,∴ABP AOP S S = ,∵四边形ABCD为矩形,O为对角线,∴AO=OD,∴∠ODA=∠OAD,又∵AD为∠DAE的平分线,∴∠OAD=∠EAD,∴∠EAD=∠ODA,∵AD AC =,∴,ABD ABC EAD EACS S S S == ∴23BED BEC S S ∆∆==∵AB AC AD AC ==,,∴AD AB =,∵AB y ∥轴,∴AD x ⊥轴.∵反比例函数()0k y x x=<∴设k B x x ⎛⎫ ⎪⎝⎭,,令0x =,则077y =-=-,()0,7H ∴- 直线AB 的解析式为y x =-∴设直线CG 的表达式为y =将点()3,2C -代入y x t =+;(3)解:由图象可知,若123x x x <<,垂直于y 轴的直线l 在x 轴与直线=2y -之间,∴饮水机的一个循环周期为1003分钟,每一个循环内,在水温不超过50℃.∵7:20至8:45之间有85分钟,100 85-段内,A选项不符合题意;100设AD 的解析式为:y mx n =+,把()0,10D 、()2,20A 代入y mx =∵在▱ABCD中,AE=4,∴22=-= EC AC AE∵在▱ABCD中,AE=4,AB=∴222016=-=-EC AC AE∴BC=BE-EC=3-2=1,的周长=2(AB+BC∴ABCD故答案为:20或12.考点:平行四边形的性质;坐标与图形性质.26.(1)证明见解析;(2)若。
苏教版八年级下册数学压轴题(非常好的题目)
压轴题精选1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒. ⑴求直线AB 的解析式; ¥⑵当t 为何值时,△APQ 与△AOB 相似.2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB在x 轴上、边OA 与函数xy 1=的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(b b R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .、.3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A . (1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求过点A 的反比例函数解析式;(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.]4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。
苏教版八年级下册数学压轴题非常好的题目精修订
苏教版八年级下册数学压轴题非常好的题目 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-压轴题精选1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.⑴求直线AB 的解析式;⑵当t 为何值时,△APQ 与△AOB 相似?2、“三等分角”是数学史上一个着名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .(1)判断△OGA 和△OMN 是否相似,并说明理由;yxOPQAB(2)求过点A 的反比例函数解析式; (3)设(2)中的反比例函数图象交EF于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。
苏教版初二下数学压轴题
11. 如图,在ABC △中,90BAC ∠=,AD 是BC 边上的高,E 是BC 边上的一个动点(不与B C ,重合),EF AB ⊥,EG AC ⊥,垂足分别为F G ,.(1)求证:EG CGAD CD=; (2)FD 与DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当AB AC =时,FDG △为等腰直角三角形吗?并说明理由.2.操作:如图①,点O 为线段MN 的中点,直线PQ 与MN 相交于点O ,请利用图①画出一对以点O 为对称中心的全等三角形.根据上述操作得到的经验完成下列探究活动.探究一:如图②,在四边形ABCD 中,AB DC ∥,E 为BC 边的中点,BAE EAF ∠=∠,AF 与DC 的延长线相交于点F .试探究线段AB 与AF CF ,之间的等量关系,并证明你的结论;探究二:如图③,DE BC ,相交于点E ,BA 交DE 于点A ,且:1:2BE EC =,BAE EDF ∠=∠,CF AB ∥.若51AB CF ==,,求DF 的长度.FAGCEBP O M N Q图① A B EFC D图②D AB EFC 图③23.如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为()40-,,点B 的坐标为()()00.b b >,P 是直线AB 上的一个动点,作PC x ⊥轴,垂足为.C 记点P 关于y 轴的对称点P ′(点P ′不在y 轴上),连结PP P A P C ''′,,.设点P 的横坐标为.a (1)当3b =时,①求直线AB 的解析式;②若点P ′的坐标是()1m -,,求m 的值; (2)若点P 在第一象限,记直线AB 与P C ′的交点为.D 当13P D DC =′∶∶时,求a 的值; (3)是否同时存在a b ,,使P CA △′为等腰直角三角形?若存在,请求出所有满足要求的a b ,的值;若不存在,请说明理由.4.如图,在等腰梯形ABCD 中,AD BC ∥,5AB DC ==,6AD =,12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动. (1)梯形ABCD 的面积等于 ;(2)当PQ AB ∥时,P 点离开D 点的时间等于 秒; (3)当P Q C ,,三点构成直角三角形时,P 点离开D 点多少时间?C B35、 如图1,在平面直角坐标系中,等腰Rt △AOB 的斜边OB 在x 轴上,直线y=3x- 4经过等腰Rt △AOB 的直角顶点A ,交y 轴于C 点,双曲线ky x=也经过A 点。
苏教版八年级下册数学压轴题非常好的题目
压轴题精选1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.⑴求直线AB 的解析式;⑵当t 为何值时,△APQ 与△AOB 相似?2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB在x 轴上、边OA 与函数xy 1的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A . (1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求过点A 的反比例函数解析式;(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.y xOP QA4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x 轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM V 与QMN V 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=o 。
苏教版八年级下册数学压轴题(非常好的题目)
压轴题精选之老阳三干创作时间:二O 二一年七月二十九日1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.⑴求直线AB 的解析式; ⑵当t 为何值时,△APQ 与△AOB 相似?2、“三等分角”是数学史上一个著名的问题,但仅用尺规不成能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的办法(如图):将给定的锐角∠A OB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数x y 1 的图象交于点P,以P 为圆心、以2OP 为半径作弧交图象于点R .辨别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB,则∠MOB=31∠AOB.要明白帕普斯的办法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式暗示).(2)辨别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB.3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP,OM 与GF交于点A .y xO P QA B(1)判断△OGA 和△OMN 是否相似,并说明理由;(2)求过点A 的正比例函数解析式;(3)设(2)中的正比例函数图象交EF 于点B,求直线AB 的解析式;(4)请探索:求出的正比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=.试求:(1)AN ∶AM 的值;(2)一次函数y kx b =+的图象表达式.5、(本题满分10分)当x=6时,正比例函数y=x k 和一次函数y=-x -7的值相等.(1)求正比例函数的解析式;(2)若等腰梯形ABCD 的顶点A 、B 在这个一次函数的图象上,顶点C 、D 在这个正比例函数的图象上,且BC∥AD∥y 轴,A 、B 两点的横坐标辨别是a 和a+2(a>0),求a 的值.6、 如图,一人工湖的对岸有一条笔挺的小路,湖上原有一座小桥与小路垂直相通,现小桥有一部分已断裂,另一部分完好. 站在完好的桥头A 测得路边的小树D 在它的北偏西30°,前进32米到断口B 处,又测得小树D 在它的北偏西45°,请计算小桥断裂部分的长(结果用根号暗示).(7分)7、(本题6分)如图,点C 、D 在线段AB 上,△PCD 是等边三角形,若DB AC CD ⋅=2. 求∠APB 的度数.8、如图,ABM ∠为直角,点C 为线段BA 的中点,点D 是射线BM 上的一个动点(不与点B 重合),连结AD ,作BE AD ⊥,垂足为E ,连结CE ,过点E 作EF CE ⊥,交BD 于F .(1)求证:BF FD =;(2)A ∠在什么规模内变更时,四边形ACFE 是梯形,并说明理由;(3)A ∠在什么规模内变更时,线段DE 上存在点G ,满足条件14DG DA =,并说明理由. 9、如图,四边形ABCD 中,AD =CD,∠DAB=∠ACB=90°,过点D 作DE⊥A C,垂足为F,DE 与AB 相交于点E .(1)求证:AB·AF=CB·CD;(2)已知AB =15 cm,BC =9 cm,P 是射线DE 上的动点.设DP=x cm (0x >),四边形BCDP 的面积为y cm2.①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.10、如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE . ⑴ 求证:CE =CF ;(第7题图) AB C D PACDF P · ABCD FE M⑵ 在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?⑶ 运用⑴⑵解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB,且∠DCE=45°,BE=4,求DE的长.1l的解析式为63+=xy,直线1l与x轴、y轴辨别2l经过B、C两点,点C的坐标为(8,0),又A向点C移动,点Q在直线2l从点C向点B 移动.点P、Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(101<<t).(1)求直线2l的解析式.(2)设△PCQ的面积为S,请求出S关于t的函数关系式.(3)试探究:当t为何值时,△PCQ为等腰三角形?12、已知:如图①,在Rt ACB△中,90C∠=,4cmAC=,3cmBC=,点P 由B出发沿BA标的目的向点A匀速运动,速度为1cm/s;点Q由A出发沿AC标的目的向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为(s)t(02t<<),解答下列问题:(1)当t为何值时,PQ BC∥?(2)设AQP△的面积为y(2cm),求y与t之间的函数关系式;(3)是否存在某一时刻t,使线段PQ恰好把Rt ACB△的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;(4)如图②,连接PC ,并把PQC △沿QC 翻折,得到四边形PQP C ',那么是否存在某一时刻t ,使四边形PQP C '为菱形?若存在,求出此时13(m 为常数)).(1(2)如图,过点A 作直线AC 与函数y 点B,与x 轴交于点C,且AB =2BC,求点C 的坐标. (3)求△AOB 的面积.(9分)14、等腰△ABC,AB=AC,∠BAC=120°,P 为BC 的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P 点旋转.(1)如图1,当三角板的两边辨别交AB 、AC 于点E 、F 时.说明:△BPE∽△CFP;(2)操纵:将三角板绕点P 旋转到图2情形时,三角板的两边辨别交BA 的延长线、边AC 于点E 、F .① 探究1:△BPE 与△CFP 还相似吗?(只需写出结论) ② 探究2:连结EF,△BPE 与△PFE 是否相似?请说明理由;(3) 将三角板绕点P 旋转的过程中,三角板的两边所在的直线辨别与直线AB 、AC 于点E 、F .① △PEF 是否能成为等腰三角形?若能,求出△PEF 为等腰三角形时∠BPE 的度数;若不克不及,请说明理由.② 设BC=8,EF=m,△EP F 的面积为S,试用m 的代数式暗示S .A 图①F EBB'C'15、在△ABC连结EC,取(1)若点D 证明:BM=DM 且BM⊥DM; (2)若将图1中的△ADE 绕点A 逆时针旋转45°的角,如图2,那么(1)中的结论是否成立?如果成立,请赐与证明;如果不成立,请举出反例;(3)若将图1中的△ADE 绕点A 逆时针旋转小于45°的角,如图3,那么(1)中的结论是否仍成立?如果成立,请赐与证明;如果不成立,请举出反例.16、如图,点O 是边为2的正方形ABCD 的中心,点E 从A 点开始沿AD 边运动,点F 从D 点开始沿AD 边运动,并且AE=DE.(1) 求正方形ABCD 的对角线AC 的长; (2) 若点E 、F 同时运动,连结OE 、OF,请你探究:四边形DEOF 的面积S 与正方形ABCD 的面积关系,并求出四边形DEOF 的面积S ;(3) 在(2)的基础上,设AE=x,△EOF 的面积为y,求y 与x 之间的函数关系式,写出自变量x 的取值规模,并利用图象说明当x在什么规模时,y 58. 图1 P B C 图2 P B CA CB D E M 图2 A BC D EM 图1 M A BC ED 图317、(本题满分10分)如图,Rt△ABC 在中,∠A=90°,AB=6,AC =8,D,E 辨别是边AB,AC 的中点,点P 从点D 出发沿DE 标的目的运动,过点P 作PQ⊥BC 于Q,过点Q 作QR∥BA 交AC 于R,当点Q 与点C 重合时,点P 停止运动.设BQ =x,QR =y .(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值规模);(3)是否存在点P,使△PQR 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.18、(本题满分10分)如图,Rt△AB C 是由Rt△ABC 绕点A 顺时针旋转得到的,连结CC 交斜边于点E,CC 的延长线交BB 于点F .(1)证明:△ACE∽△FBE;(2)设∠ABC=α,∠CAC =β,试探索α、β满足什么关系时,△ACE 与△FBE 是全等三角形,并说明理由.19、(本题满分10分)如图,直角梯形ABCDA B C D E R PH Q 第24题图中,AB∥DC,90DAB ∠=︒,24AD DC ==,6AB =.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C-D-A 向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l∥AD,与线段CD 的交点为E,与折线A-C-B 的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)当0<t <2时,如果以C 、P 、Q 为顶点的三角形为直角三角形,求t 的值;(3)当t >2时,连接PQ 交线段AC 于点R .请探究CQ RQ是否为定值,若是,试求这个定值;若不是,请说明理由.20、(本题满分10分)如图,在Rt ABC ∆中,AD 是斜边BC 上的高,ABE ACF ∆∆、是等边三角形. (1)试说明: ABD ∆∽CAD ∆;(2)连接DE 、DF 、EF,判断DEF ∆的形状,并说明理由.21、(本题满分10分)如图,一次函数y ax b =+的图象与x 轴、y 轴交于A 、B 两点,与正比例函数k y x=的图象相交于C 、D 两点,辨别过C,D 两点作y 轴、x 轴的垂线,垂足为E 、F,连接CF 、DE .(1)△CEF 与△DEF 的面积相等吗?为什么?(2)试说明:△AOB∽△FOE. 22、(本题满分14分)阅读:如图1三角板ABC 和DEF 叠放在一起,使三角板DEF 板ABC 的斜边中点O 重合,把三角板ABC A B C D (备用图1) AB C D (备用图2) Q A B C D l M PE y小朋友,原本你用10元钱买一盒饼干是多的,但要再买一袋牛奶就不敷 了!今天是儿童节,我给你买的饼干打9折,两样东西请拿好!还有找你的8角钱. 阿姨,我买一盒 饼干和一袋牛奶 (递上10元钱).点D 旋转,两边辨别与线段AB 、BC 相交于点P 、Q,易说明△APD∽△CDQ.猜测(1):如图2,将含30°的三角板DEF (其中∠EDF=30°)的锐角顶点D 与等腰三角形ABC (其中∠ABC=120°)的底边中点O 重合,两边辨别与线段AB 、BC 相交于点P 、Q .写出图中的相似三角形(直接填在横线上);验证(2):其它条件不变,将三角板DEF 旋转至两边辨别与线段AB 的延长线、边BC 相交于点P 、Q .上述结论还成立吗?请你在图3上补全图形,并说明理由.连结PQ,△APD 与△DPQ 是否相似?为什么?探究(3):按照(1)(2)的解答过程,你能将两三角板改成一个更加一般的条件,使得(1)(2)中所有结论仍然成立吗?请写出这两个三角形需满足的条件.探究(4):在(2)的条件下,若AC = 4,CQ = x,AP = y,请你求出y 与x 的函数关系式,并写出自变量x 的取值规模.23、 (本题满分8分)仔细不雅察下图,认真阅读对话:按照对话的内容,试求出饼干和牛奶的标价各是多少元? 24、(本题12分)、如图,已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG .(1)求证:EG=CG ;(2)将图①中△BEF 绕B 点逆时针旋转45°,如图②所示,取DF 中点G,连接EG,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)B E P A C Q F D(O) 图1 图2 D(O)B C F E P Q A图3 AC B什么结论?(均不要求证明)25、(本题满分10分) 如图1,在同一平面内,摆放在一起,A 若∆ABC 固定不动,∆AFG 绕点A 旋转,AF 、AG 与边BC E(点D 不与点B 重合,点E 不与点C 重合),设BE=m,CD=n. (1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明.(2)求m 与n 的函数关系式,直接写出自变量n 的取值规模.(3)以∆ABC 的斜边BC 所在的直线为x 轴,BC 边上的高所在的直线为y 轴,建立平面直角坐标系(如图2).在边BC 上找一点D,使BD=CE,求出D 点的坐标,并通过计算验证BD 2+CE 2=DE 2.(4)在旋转过程中,(3)中的等量关系BD 2+CE 2=DE 2是否始终成立,若成立,请证明,若不成立,请说明理由.ABCD 中,AD∥BC,AB⊥BC ,AD=2,AB的速度、沿B→A→D→C 标的目出发,以2cm/s 的速度、沿C→D→AQ 两点同时出发,当其中一点到达目t 秒.,是否存在这样的t,使得直线PQ 将,请求出t 的值,并判断此时PQ 是否,请说明理由;t,使得以P 、D 、Q 为顶点的三A E第24题图③角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有合适条件的t 的值;若不存在,请说明理由.27、(本题满分8分)如图,在正方形ABCD 中,点E 、F 辨别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O,延长OC 至点M,使OM = OA,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.28、(本题满分12分)如图,一条直线与正比例函数ky x =的图象交于A (1,4),B (4,n )两点,与x 轴交于D 点,AC⊥x轴,垂足为C . (1)如图甲,①求正比例函数的关系式;②求n 的值及D 点坐标;(2)如图乙,若点E 在线段AD 上运动,连接CE,作∠CEF=45°,EF 交AC 于F 点.①试说明△CDE∽△EAF;②当△ECF 为等腰三角形时,求F 点坐标.29已知△)1(>k k ,a 、的三边长; 1a c =111a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;ADB EFOCM⑶若1a b =,1b c =,是否存在△ABC 和△111C B A 使得2=k ?请说明理由.30、(本题满分10分)如图,已知△ABC 中,AB=AC=10厘米,BC=8厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点p 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?⑵若点Q 以②中运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?31、(本题12分)如图, 四边形ABDC中,∠ABD=∠BCD=Rt∠,AB=AC,AE⊥BC 于点F,交BD 于点 E.且BD=15,CD=9.点P 从点A 出发沿射线AE 标的目的运动,过点P 作PQ⊥AB 于Q,连接FQ,设AP=x,(x>0). (1) 求证:BC·BE=AC·CD(2) 设四边形ACDP 的面积为y, 求y 关于x 的函数解析式.(3) 是否存在一点P,使△PQF 是以PF 为腰的等腰三角形?若存在,请求出所有满QP FCA足要求的x 的值;若不存在,请说明理由. 32、(本题满分11分)如图,在直角梯形OABC 中,已知B 、C 两点的坐标辨别为B(8,6)、C(10,0),动点M 由原点O 出发沿OB 标的目的匀速运动,速度为1单位/秒;同时,线段DE 由CB 出发沿BA 标的目的匀速运动,速度为1单位/秒,交OB 于点N,连接DM,过点M 作MH⊥AB 于H,设运动时间为t(s)(0<t <8).(1)试说明: △BDN∽△OCB ; (2)试用t 的代数式暗示MH 的长;(3) 当t 为何值时,以B 、D 、M 为顶点的三角形与△OAB相似? (4) 设△DMN 的面积为y,求y 与t 之间的函数关系式.33、(本题满分12分) 如图,在锐角ABC △中,9BC =,AH BC ⊥于点H ,且6AH =,点D 为AB 边上的任意一点,过点D 作DE//BC,交AC 于点E .设ADE △的高AF 为(06)x x <<,以DE 为折线将ADE △翻折,所得的A DE '△与梯形DBCE 重叠部分的面积记为y (点A 关于DE 的对称点A '落在AH 所在的直线上).(1)当x=1时,y=____________(2)求出当03x <≤时,y 与x 的函数关系式;(3)求出36x <<时,y 与x 的函数关系式.34、(2009年济南)已知:如图,正比例函数y ax =的图象与正比例AEFDA第32题图H函数ky x=的图象交于点()32A ,.(1)试确定上述正比例函数和正比例函数的表达式;(2)按照图象回答,在第一象限内,当x 取何值时,正比例函数的值大于正比例函数的值?(3)()M m n ,是正比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM的大小关系,并说明理由.35、已知正方形ABCD 中,∠EAF=45°,(1)如图①,求证:EF=BE+DF .(2)如图②,连接BD,交AE、AF于M、N两点,求证△AMN与△AFE相似.36、(2010•河北)在图1至图3中,直线MN 与线段AB 相交于点O,∠1=∠2=45°.(1)如图1,若AO=OB,请写出AO 与BD 的数量关系和位置关系;(2)将图1中的MN 绕点O 顺时针旋转得到图2,其中AO=OB .求证:AC=BD,AC⊥BD;(3)将图2中的OB 拉长为AO 的k 倍得到图3,求的值. 37、(2010•温州)如图,在Rt△ABC 中,∠ACB=90°,AC=3,BC=4,过点B 作射线BB1∥AC.动点D 从点A 出发沿射线AC 标的目的以每yxOo ADMCBABC D F E图②图①A B D FM N秒5个单位的速度运动,同时动点E从点C出发沿射线AC标的目的以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF 上AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值;(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.①当t>时,连接C′C,设四边形ACC′A′的面积为S,求S关于t 的函数关系式;②当线段A′C′与射线BB,有公共点时,求t的取值规模(写出答案即可).时间:二O二一年七月二十九日。
初二下期末几何压轴题及解析
初二下期末几何压轴题及解析初二下期末几何及解析1、已知四边形ABCD,以边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接EB、FD,交点为G。
1) 当四边形ABCD为正方形时,EB和FD的数量关系是什么?2) 当四边形ABCD为矩形时,EB和FD具有什么数量关系?请证明。
3) 四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数。
解答:1) EB=FD。
2) EB=FD。
证明:因为△AFB为等边三角形,所以AF=AB,∠FAB=60°;因为△ADE为等边三角形,所以AD=AE,∠EAD=60°,所以∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE。
因此,△FAD≌△BAE,从而EB=FD。
3) ∠EGD不发生变化,因为在任何情况下,∠EGD都等于60°。
2、已知:在□ABCD中,点E是BC的中点,连接AE并延长交DC的延长线于点F,连接BF。
1) 求证:△ABE≌△FCE;2) 若AF=AD,求证:四边形ABFC是矩形。
解答:1) 如图1.在△ABE和△XXX中,∠1=∠2,∠3=∠4,BE=CE,因此△ABE≌△XXX。
2) 因为△ABE≌△FCE,所以AB=FC。
又因为AB∥FC,所以四边形ABFC是平行四边形。
由于四边形ABCD是平行四边形,所以AD=BC。
又因为AF=AD,所以AF=BC,从而四边形ABFC是矩形。
3、已知△ABC是一张等腰直角三角形纸板,∠B=90°,AB=BC=1.1) 要在这张纸板上剪出一个正方形,使这个正方形的四个顶点都在△XXX的边上。
XXX设计出了一种剪法,如图1所示。
请你再设计出一种不同于图1的剪法,并在图2中画出来。
2) 请在图3和图4中画出两个不同于图1和图2的剪法。
解答:1) 另一种剪法如图2所示,将△XXX沿着AC折叠,使点C与点B重合,然后将纸张沿着BD剪去一部分,即可得到正方形。
苏教版八年级下册数学压轴题非常好的题目
压轴题精选1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.⑴求直线AB 的解析式;⑵当t 为何值时,△APQ 与△AOB 相似? 2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1=的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB . 3、(14分)如图,在平面直角坐标系xOy中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .(1)判断△OGA 和△OMN 是否相似,并说明理由;(2)求过点A 的反比例函数解析式;(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。
苏教版初二八下期中复习平行四边形压轴题含答案(非常好)
教学主题平行四边形压轴题教学目标重要知识点1.2.3.易错点教学过程一.选择题(共15小题)1.(2012•玉环县校级模拟)如图,菱形ABCD中,AB=3,DF=1,∠DAB=60°,∠EFG=15°,FG⊥BC,则AE=()A.B.C.D.考点:菱形的性质;解直角三角形.专题:压轴题.分析:首先过FH⊥AB,垂足为H.由四边形ABCD是菱形,可得AD=AB=3,即可求得AF的长,又由∠DAB=60°,即可求得AH与FH的长,然后由∠EFG=15°,证得△FHE是等腰直角三角形,继而求得答案.解答:解:过FH⊥AB,垂足为H.∵四边形ABCD是菱形,∴AD=AB=3,∵DF=1,∴AF=AD﹣FD=2,∵∠DAB=60°,∴∠AFH=30°,∴AH=1,FH=,又∵∠EFG=15°,∴∠EFH=∠AFG﹣∠AFH﹣∠EFG=90°﹣30°﹣15°=45°,∴△FHE是等腰直角三角形,∴HE=FH=,∴AE=AH+HE=1+.故选D.点评:此题考查了菱形的性质、直角三角形的性质、勾股定理以及等腰直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.2.(2015•泰安模拟)如图,已知直角梯形ABCD中,AD∥BC,∠BCD=90°,BC=CD=2AD,E、F分别是BC、CD边的中点,连接BF、DE交于点P,连接CP并延长交AB于点Q,连接AF,则下列结论:①CP平分∠BCD;②四边形ABED为平行四边形;③CQ将直角梯形ABCD分为面积相等的两部分;④△ABF为等腰三角形,其中不正确的有()A.1个B.2个C.3个D.0个考点:直角梯形;全等三角形的判定与性质;等腰三角形的判定;平行四边形的判定.专题:证明题;压轴题.分析:解答:解:∵BC=CD=2AD,E、F分别是BC、CD边的中点,∴CF=CE,BE=DF,在△BCF和△DCE中,∵,∴△BCF≌△DCE(SAS),∴∠FBC=∠EDC,BF=ED,在△BPE和△DPF中,∵,∴△BPE≌△DPF(AAS),∴BP=DP,在△BPC和△DPC中,∵,∴△BPC≌△DPC(SSS),∴∠BCP=∠DCP,即CP平分∠BCD,故选项①正确;又∵AD=BE且AD∥BE,∴四边形ABED为平行四边形,故选项②正确;显然S△BPC=S△DPC,但是S△BPQ≠S四边形ADPQ,∴S△BPC+S△BPQ≠S△DPC+S四边形ADPQ,即CQ不能将直角梯形ABCD分为面积相等的两部分,故选项③不正确;∵BF=ED,AB=ED,∴AB=BF,即△ABF为等腰三角形,故④正确;综上,不正确的选项为③,其个数有1个.故选A.点评:本题考查了等腰三角形的判定,平行四边形的判定与性质,以及全等三角形的判定与性质,熟记以上图形的性质,并能灵活运用其性质,是解答本题的关键,本题综合性较好.5.(2014•江阴市二模)在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、FA⊥AE 交DP于点F,连接BF,FC.下列结论:①△ABE≌△ADF;②FB=AB;③CF⊥DP;④FC=EF其中正确的是()A.①②④B.①③④C.①②③D.①②③④考点:正方形的性质;三角形内角和定理;全等三角形的判定与性质;直角三角形斜边上的中线;等腰直角三角形.专题:压轴题.分析:解答:解:∵正方形ABCD,BE⊥ED,EA⊥FA,∴AB=AD=CD=BC,∠BAD=∠EAF=90°=∠BEF,∵∠APD=∠EPB,∴∠EAB=∠DAF,∠EBA=∠ADP,∵AB=AD,∴△ABE≌△ADF,∴①正确;∴AE=AF,BE=DF,∴∠AEF=∠AFE=45°,取EF的中点M,连接AM,∴AM⊥EF,AM=EM=FM,∴BE∥AM,∵AP=BP,∴AM=BE=DF,∴∠EMB=∠EBM=45°,∴∠AMB=90°+45°=135°=∠FMB,∵BM=BM,AM=MF,∴△ABM≌△FBM,∴AB=BF,∴②正确;∴∠BAM=∠BFM,∵∠BEF=90°,AM⊥EF,∴∠BAM+∠APM=90°,∠EBF+∠EFB=90°,∴∠APF=∠EBF,∵AB∥CD,∴∠APD=∠FDC,∴∠EBF=∠FDC,∵BE=DF,BF=CD,∴△BEF≌△DFC,∴CF=EF,∠DFC=∠FEB=90°,∴③正确;④正确;故选D.点评:本题主要考查对正方形的性质,等腰直角三角形,直角三角形斜边上的中线性质,全等三角形的性质和判定,三角形的内角和定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.6.(2014•武汉模拟)如图,正方形ABCD的三边中点E、F、G.连ED交AF于M,GC交DE于N,下列结论:①GM⊥CM;②CD=CM;③四边形MFCG为等腰梯形;④∠CMD=∠AGM.其中正确的有()A.①②③B.①②④C.①③④D.①②③④考点:正方形的性质;全等三角形的判定与性质;等腰梯形的判定.专题:压轴题.分析:要证以上问题,需证CN是DN是垂直平分线,即证N点是DM中点,利用中位线定理即可解答:解:∵由已知,AG∥FC且AG=FC,故四边形AGCF为平行四边形,∴∠GAF=∠FCG又AE=BF,AD=AB,且∠DAE=∠ABF,可知∠ADE=∠BAF∴DE⊥AF,DE⊥CG.又∵G点为中点,∴GN为△ADM的中位线,即CG为DM的垂直平分线,可证CD=CM,∴∠CDG=∠CMG,即GM⊥CM.又∠MGN=∠DGC=∠DAF(外角等于内对角),∴∠FCG=∠MGC.故选A.点评:在正方形中对中点问题的把握和运用,灵活运用几何图形知识.7.(2013•绍兴模拟)如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有()①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.A.1个B.2个C.3个D.4个考点:三角形中位线定理;翻折变换(折叠问题).专题:压轴题;操作型.分析:根据题意可知△DFE是△DAE对折的图形,所以全等,故AD=DF,而AD=BD,所以BD=DF,但是∠B不一定等于45°,所以△BDF不一定是等腰直角三角形,①不成立;结合①中的结论,BD=DF,而∠ADE=∠FDE,∠ADF=∠DBF+∠DFB,可证∠BFD=∠EDF,故DE∥BC,即DE是△ABC的中位线,③成立;若③成立,利用△ADE≌△FDE,DE∥BC,∠AEF=∠EFC+∠ECF,可证∠DFE=∠CFE,②成立;根据折叠以及中位线定理得右边=AB,要和左边相等,则需CE=CF,则△CEF应是等边三角形,显然不一定,故④不成立.解答:解:①根据折叠知AD=DF,所以BD=DF,即一定是等腰三角形.因为∠B不一定等于45°,所以①错误;②连接AF,交DE于G,根据折叠知DE垂直平分AF,又点D是AB边的中点,在△ABF中,根据三角形的中位线定理,得DG∥BF.进一步得E是AC的中点.由折叠知AE=EF,则EF=EC,得∠C=∠CFE.又∠DFE=∠A=∠C,所以∠DFE=∠CFE,正确;③在②中已证明正确;④根据折叠以及中位线定理得右边=AB,要和左边相等,则需CE=CF,则△CEF应是等边三角形,显然不一定,错误.故选B.点评:本题结合翻折变换,考查了三角形中位线定理,正确利用折叠所得对应线段之间的关系以及三角形的中位线定理是解题的关键.8.(2013•惠山区校级一模)如图,已知在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB﹔②点B到直线AE的距离为﹔③EB⊥ED﹔④S△APD+S△APB=0.5+.其中正确结论的序号是()A.①③④B.①②③C.②③④D.①②④考点:正方形的性质;全等三角形的判定与性质.专题:压轴题.分析:根据正方形的性质可得AB=AD,再根据同角的余角相等求出∠BAE=∠DAP,然后利用“边角边”证明△APD和△AEB全等,从而判定①正确,根据全等三角形对应角相等可得∠AEB=∠APD=135°,然后求出∠BEP=90°,判定③正确,根据等腰直角三角形的性质求出PE,再利用勾股定理列式求出BE的长,然后根据S△APD+S△APB=S△APE+S△BPE列式计算即可判断出④正确;过点B作BF⊥AE交AE的延长线于F,先求出∠BEF=45°,从而判断出△BEF是等腰直角三角形,再根据等腰直角三角形的性质求出BF的长为,判断出②错误.解答:解:在正方形ABCD中,AB=AD,∵AP⊥AE,∴∠BAE+∠BAP=90°,又∵∠DAP+∠BAP=∠BAD=90°,∴∠BAE=∠DAP,在△APD和△AEB中,,∴△APD≌△AEB(SAS),故①正确;∵AE=AP,AP⊥AE,∴△AEP是等腰直角三角形,∴∠AEP=∠APE=45°,∴∠AEB=∠APD=180°﹣45°=135°,∴∠BEP=135°﹣45°=90°,∴EB⊥ED,故③正确;∵AE=AP=1,∴PE=AE=,在Rt△PBE中,BE===2,∴S△APD+S△APB=S△APE+S△BPE,=×1×1+××2,=0.5+,故④正确;过点B作BF⊥AE交AE的延长线于F,∵∠BEF=180°﹣135°=45°,∴△BEF是等腰直角三角形,∴BF=×2=,即点B到直线AE的距离为,故②错误,综上所述,正确的结论有①③④.故选A.点评:本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,综合性较强,难度较大,熟记性质并仔细分析图形,理清图中三角形与角的关系是解题的关键.9.(2013•江苏模拟)在正方形ABCD外取一点E,连接AE、BE、DE,过A作AE的垂线交ED于点P,若AE=AP=1,PB=,下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③S正方形ABCD=4+;其中正确的是()A.①②③B.只有①③C.只有①D.只有③考点:正方形的性质;全等三角形的判定与性质;等腰直角三角形.专题:计算题;压轴题.分析:首先利用已知条件根据边角边可以证明△APD≌△AEB,故选项①正确;由①可得∠BEP=90°,故BE不垂直于AE过点B作BM⊥AE延长线于M,由①得∠AEB=135°所以∠EMB=45°,所以△EMB是等腰Rt△,求出B到直线AE距离为BF,即可对于②作出判断;根据三角形的面积公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可对③判定.解答:解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠BAP+∠PAD=90°,∵EA⊥AP,∴∠EAB+∠BAP=90°,∴∠PAD=∠EAB,∵在△APD和△AEB中,,∴△APD≌△AEB(SAS),故①正确;∵△AEP为等腰直角三角形,∴∠AEP=∠APE=45°,∴∠APD=∠AEB=135°,∴∠BEP=90°,过B作BF⊥AE,交AE的延长线于F,则BF的长是点B到直线AE的距离,在△AEP中,AE=AP=1,根据勾股定理得:PE=,在△BEP中,PB=,PE=,由勾股定理得:BE=,∵∠PAE=∠PEB=∠EFB=90°,AE=AP,∴∠AEP=45°,∴∠BEF=180°﹣45°﹣90°=45°,∴∠EBF=45°,∴EF=BF,在△EFB中,由勾股定理得:EF=BF=,故②是错误的;由△APD≌△AEB,∴PD=BE=,∵S△BPD=PD×BE=,∴S△ABD=S△APD+S△APB+S△BPD=2+,∴S正方形ABCD=2S△ABD=4+.故选项③正确,则正确的序号有:①③.故选B.点评:此题分别考查了正方形的性质、全等三角形的性质与判定、三角形的面积及勾股定理,综合性比较强,解题时要求熟练掌握相关的基础知识才能很好解决问题.10.(2013•武汉模拟)如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO于E点,CF⊥BE于F点,交BO于G点,连结EG、OF.则∠OFG的度数是()A.60°B.45°C.30°D.75°考点:正方形的性质;等腰三角形的判定与性质;直角三角形斜边上的中线.专题:压轴题.分析:根据正方形的对角线平分一组对角可得∠ABO=∠CBO=∠BCO=45°,再根据角平分线的定义求出∠OBE=22.5°,然后求出∠CBE=67.5°,再求出∠CEB=67.5°,从而得到∠CBE=∠CEB,根据等腰三角形三线合一的性质可得BF=EF,再根据直角三角形斜边上的中线等于斜边的一半可得OF=BF,然后利用等边对等角求出∠BOF=∠OBE,最后在△BOF中,利用三角形的内角和定理列式计算即可得解.解答:解:在正方形ABCD中,∠ABO=∠CBO=∠BCO=45°,∵BE平分∠ABO,∴∠OBE=22.5°,∴∠CBE=180°﹣45°﹣67.5°=67.5°,∴∠CBE=∠CEB,∵CF⊥BE,∴BF=EF,又∵∠AOB=90°,∴OF=BF,∴∠BOF=∠OBE=22.5°,在△BOF中,∠OFG+22.5°+22.5°+90°=180°,∴∠OFG=45°.故选B.点评:本题考查了正方形的对角线平分一组对角的性质,等腰三角形的判定与等腰三角形三线合一的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质并准确识图求出∠BOF的度数是解题的关键.11.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+考点:平行四边形的性质;勾股定理.专题:计算题;压轴题;分类讨论.分析:根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE和CF的值,相加即可得出答案.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:过点A作AE⊥BC垂足为E,过点A作AF⊥DC垂足为F,由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图:过点A作AF⊥DC垂足为F,过点A作AE⊥BC垂足为E,∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+.故选D.点评:本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:要分类讨论啊.12.(2012•河南模拟)如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,则S△CEF:S△DGF等于()A.2:1 B.3:1 C.4:1 D.5:1考点:三角形中位线定理;全等三角形的判定与性质.专题:压轴题.分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.解答:解:如图,取CG的中点H,连接EH,∵E是AC的中点,∴EH是△ACG的中位线,∴EH∥AD,∴∠GDF=∠HEF,∵F是DE的中点,∴DF=EF,在△DFG和△EFH中,,∴△DFG≌△EFH(ASA),∴FG=FH,S△EFH=S△DGF,又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,∴S△EFC=3S△EFH,∴S△EFC=3S△DGF,因此,S△CEF:S△DGF=3:1.故选B.点评:本题考查了三角形的中位线定理,全等三角形的判定与性质,作辅助线,利用三角形的中位线进行解题是解题的关键.13.(2012•杭州模拟)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为28cm2,四边形ABCD面积是18cm2,则①②③④四个平行四边形周长的总和为()A.72cm B.64cm C.56cm D.48cm考点:平行四边形的性质;菱形的性质.专题:压轴题.分析:求出⑤平行四边形的面积,求出菱形EFGH的面积,过E作EM⊥GH于M,设EH=HG=FG=EF=xcm,求出x的值,结合图形即可求出答案.解答:解:∵①②③④四个平行四边形面积的和为28cm2,四边形ABCD面积是18cm2,∴平行四边形⑤的面积是18﹣×28=4(cm2),∴菱形EFGH的面积是4+28=32cm2,过E作EM⊥GH于M,设EH=HG=FG=EF=xcm,∵∠H=30°,∴EM=x,即x•x=32,x=8,∴EH=HG=FG=EF=8cm,∴①②③④四个平行四边形的周长的和正好是8×8=64,故选B.点评:本题考查了含30度角的直角三角形性质,平行四边形性质,菱形性质等知识点,能根据图形得出①②③④四个平行四边形的周长的和正好是8个EF是解此题的关键,注意:菱形的对边相等,平行四边形的对边相等.14.(2012•淄博模拟)则在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG、BG,∠BDG的大小是()A.30°B.45°C.60°D.75°考点:平行四边形的性质;全等三角形的判定与性质.专题:压轴题.分析:分别连接GB、GC,求证四边形CEGF是平行四边形,再求证△ECG是等边三角形.由AD∥BC及AF平分∠BAD可得∠BAE=∠AEB,则可证得△BEG≌△DCG,然后即可求得答案.解答:解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形,∵∠ABC=120°,AF平分∠BAD,∴∠DAF=30°,∠ADC=120°,∠DFA=30°,∴△DAF为等腰三角形,∴AD=DF,∴平行四边形AHFD为菱形,∴△ADH,△DHF为全等的等边三角形,∴DH=DF,∠BHD=∠GFD=60°,∵FG=CE,CE=CF,CF=BH,∴BH=GF,在△BHD和△GFD中,,∴△BHD≌△GFD(SAS),∴∠BDH=∠GDF,∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.故选C.点评:此题主要考查平行四边形的性质,全等三角形的判定与性质,等边三角形的判定与性质,菱形的判定与性质等知识点.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.15.(2012•碑林区校级模拟)如图,在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,EP⊥CD 于点P,则∠FPC=()A.35°B.45°C.50°D.55°考点:菱形的性质.专题:压轴题.分析:延长EF交DC的延长线于H点.证明△BEF≌△CHF,得EF=FH.在Rt△PEH中,利用直角三角形斜边上的中线等于斜边的一半,得∠FPC=∠FHP=∠BEF.在等腰△BEF中易求∠BEF的度数.解答:解:延长EF交DC的延长线于H点.∵在菱形ABCD中,∠A=100°,E,F分别是边AB和BC的中点,∴∠B=80°,BE=BF.∴∠BEF=(180°﹣80°)÷2=50°.∵AB∥DC,∴∠FHC=∠BEF=50°.又∵BF=FC,∠B=∠FCH,∴△BEF≌△CHF.∴EF=FH.∵EP⊥DC,∴∠EPH=90°.∴FP=FH,则∠FPC=∠FHP=∠BEF=50°.故选C.点评:此题考查了菱形的性质、全等三角形的判定方法、直角三角形斜边上的中线等于斜边的一半等知识点,综合性较强.如何作出辅助线是难点.。
2020-2021学年 苏科版八年级数学下册第九章 中心对称图形—平行四边形 压轴题提优复习(三)
八年级数学苏科版下册《中心对称图形—平行四边形》压轴题提优复习(三)1.已知:如图,点E、F分别为▱ABCD的边BC、AD上的点,且∠1=∠2,求证:AE =CF.2.如图,在矩形ABCD中,O为AC的中点,直线EF经过点O,并且与AB交于点E,与DC交于点F,∠DFE=∠BFE.(1)求证:四边形DEBF是菱形;(2)若AD=4,AB=8,则线段EF的长是.(直接写出答案即可)3.如图,平行四边形ABCD中,点G是CD的中点,点E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF为平行四边形.(2)若AB=5cm,BC=10cm,∠B=60°.①当AE=cm时,四边形CEDF是矩形.②当AE=cm时,四边形CEDF是菱形.4.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.5.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F在BD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)不添加辅助线,请你补充一个条件,使得四边形AECF是菱形;并给予证明.6.如图,正方形ABCD,G是BC边上任意一点(不与B、C重合),DE⊥AG于点E,BF∥DE,且交AG于点F.(1)求证:AF﹣BF=EF;(2)四边形BFDE是否可能是平行四边形,如果可能,请指出此时点G的位置,如不可能,请说明理由.7.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.8.如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是∠ABC的外角∠MAC的平分线,延长DF交AN于点E,连接CE.(1)求证:四边形ADCE是矩形;(2)若AB=BC=4,则四边形ADCE的面积为多少?(3)直接回答:当△ABC满足时,四边形ADCE是正方形.9.如图,已知矩形ABCD,AD=8,CD=20,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.10.如图,两张等宽的纸条交叉重叠在一起,重叠的部分ABCD是菱形吗?为什么?【思路分析】①读题标注;②梳理思路;要证四边形ABCD是菱形,根据题目中已有的条件选择判定定理:.【过程书写】11.如图,点E是平行四边形ABCD对角线AC上一点,点F在BE延长线上,且EF=BE,EF与CD交于点G.(1)求证:DF∥AC;(2)连接DE、CF,若AB⊥BF,若G恰好是CD的中点,求证:四边形CFDE是菱形;(3)在(2)的条件下,若四边形CFDE是正方形,且AB=2,则BC=.12.如图1,在矩形ABCD中AB=4,BC=8,点E、F是BC、AD上的点,且BE=DF.(1)求证:四边形AECF是平行四边形.(2)如果四边形AECF是菱形,求这个菱形的边长.(3)如图2,在(2)的条件下,取AB、CD的中点G、H,连接DG、BH,DG分别交AE、CF于点M、Q,BH分别交AE、CF于点N、P,求点P到BC的距离并直接写出四边形MNPQ的面积.13.如图1,在Rt△ABC中,∠ACB=90°,D是AB边上任意一点,E是BC边上的中点,过点C作CF∥AB交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)如图2,若D为AB中点,求证:四边形CDBF是菱形;(3)若∠FDB=30°,∠ABC=45°,BE=4,求的△BDE面积.14.如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC 于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=100°,∠C=30°,求∠BDE的度数.15.如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD (1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若BE=2,AE=2,求EF的长.参考答案1.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AE=CF.2.(1)证明:∵四边形ABCD是矩形,∴DC∥AB,DC=AB,∴∠OAE=∠OCF,∵OA=OC,∠AOE=∠COF,∴△AOE≌△COF(ASA),∴AE=CF,∴BE=DF,∴四边形DEBF是平行四边形,又∵∠DFE=∠BFE,∠DFE=∠FEB,∴∠BFE=∠BEF,∴BE=BF,∴四边形DEBF是菱形.(2)如图,作FH⊥AB于H.设DF=BF=x,在Rt△BCF中,∠BCF=90°,BC=AD=4,CF=4﹣x,∴x2=42+(8﹣x)2,∴x=5,∴DF=5,CF=3,∵∠FHB=∠HBC=∠BCF=90°,∴四边形BCFH是矩形,∴CF=BH=3,FH=BC=4,∵BF=DF=5,∴EH=2,∴EF===2,故答案为.3.(1)证明:∵四边形ABCD是平行四边形∴AD∥BF,∴∠DEG=∠CFG,∵G是CD的中点,∴GD=GC,在△GED和△GFC中,,∴△GED≌△GFC(AAS),∴DE=CF,又∵DE∥CF,∴四边形CEDF是平行四边形,(2)解:①当AE=7.5cm时,四边形CEDF是矩形;理由如下:作AP⊥BC于P,如图所示:∵AB=6cm,∠B=60°,∴∠BAP=30°,∴BP=AB=2.5cm,∵四边形ABCD是平行四边形,∴∠CDE=∠B=60°,DC=AB=5cm,AD=BC=10cm,∵AE=7.5cm,∴DE=AD﹣AE=2.5cm=BP,在△ABP和△CDE中,,∴△ABP≌△CDE(SAS),∴∠CED=∠APB=90°,∴平行四边形CEDF是矩形,故答案为:7.5;②当AE=5cm时,四边形CEDF是菱形,理由如下:∵AE=5cm,AD=10cm,∴DE=AD﹣AE=5(cm),∵DC=5cm,∠CDE=∠B=60°,∴△CDE是等边三角形,∴DE=CE,∴平行四边形CEDF是菱形,故答案为:5.4.(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DFA=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.5.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:补充的条件是:AC⊥BD.证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,又∵AC⊥BD,∴四边形AECF是菱形.6.解:(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=90°,∵DE⊥AG,∴∠DAE+∠ADE=90°,∴∠ADE=∠BAF,又∵BF∥DE,∴∠BFA=90°=∠AED,∴△ABF≌△DAE(AAS),∴AE=BF,∴AF﹣BF=AF﹣AE=EF;(2)不可能,理由是:如图,若要四边形BFDE是平行四边形,已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,∵DE=AF,∴BF=AF,即此时∠BAF=45°,而点G不与B和C重合,∴∠BAF≠45°,矛盾,∴四边形BFDE不可能是平行四边形.7.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC平分∠BAD,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=AC=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA===3,∴OE=OA=3.8.(1)证明:∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠MAC,∵∠MAC=∠B+∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠MAE=∠B,∴AN∥BC,∵F为AC的中点,D为BC的中点,∴FD∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵BD=CD,∴AE=CD,∴四边形ADCE为平行四边形,∵AB=AC,点D为BC中点,∴AD⊥BC,∴AD⊥AE,∴∠DAE=90°,∴四边形ADCE为矩形;(2)解:由(1)知四边形ADCE是矩形,∵BC=AB=4,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC=4,∵D为BC的中点,∴∠ADC=90°,BD=CD=2,∴AD=2,∴四边形ADCE的面积为CD×AD=2×2=4;(3)解:答案不唯一,如当∠BAC=90°时,四边形ADCE是正方形.∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∵D为BC的中点,∴AD=DC,∵四边形ADCE为矩形,∴四边形ADCE为正方形.故答案为:∠BAC=90°.9.(1)证明:∵M、N、E分别是PD、PC、CD的中点,∴ME是△PCD的中位线,NE是△PCD的中位线,∴ME∥PC,EN∥PD,∴四边形PMEN是平行四边形;(2)解:当AP=10时,四边形PMEN是菱形;理由如下:∵四边形ABCD是矩形,∴AB=CD=20,AD=BC,∵AP=10,AB=20,∴BP=10=AP,∴△PAD≌△PBC(SAS),∴PD=PC,∵M、N、E分别是PD、PC、CD的中点,∴,,∴PM=ME=EN=PN,∴四边形PMEN是菱形;(3)四边形PMEN有可能是矩形;理由如下:若四边形PMEN是矩形,则∠DPC=90°设PA=x,PB=20﹣x,由勾股定理得:DP2+CP2=DC2,即64+x2+64+(20﹣x)2=202,解得:x=4或x=16.∴当AP=4或AP=16时,四边形PMEN是矩形.10.解:是菱形,∵AB∥CD,AD∥BC,分别作CD,BC边上的高为AE,AF,∵两纸条宽度相同,所以纸条宽度AE=AF.又∵平行四边形的面积为AE×CD=BC×AF,∴CD=BC.∴平行四边形ABCD为菱形.故答案为:四条边相等的四边形即为菱形.11.(1)证明:连接BD,交AC于点O,如图所示:∵四边形ABCD是平行四边形,∴BO=DO,∵BE=EF,∴OE是△BDF的中位线,∴OE∥DF,即DF∥AC;(2)证明:如图所示:由(1)得:DF∥AC,∴∠F=∠CEG,∠GDF=∠GCE,∵G是CD的中点,∴DG=CG,∴△DFG≌△CEG(AAS),∴FG=EG,∴四边形CFDE是平行四边形,∴AB∥CD,又∵AB⊥BF,∴CD⊥BF,∴平行四边形CFDE是菱形;(3)解:∵四边形ABCD是平行四边形,∴BC=AD,CD=AB=2,∵四边形CFDE是正方形,∴DE=CE=CD=,BE=EF=CD=2,∠DEC=90°,∴∠AED=90°,∵AB⊥BF,∴∠ABE=90°,∴AE===2,∴AD===,∴BC=,故答案为:.12.(1)证明:∵四边形ABCD为矩形,BE=DF,∴AD∥BC,AD=BC,∴AF∥EC,AF=EC,∴四边形AECF为平行四边形;(2)解:设菱形AECF的边长为x,∵四边形AECF为菱形,AB=4,BC=8,∴AE=EC=x,BE=8﹣x,在Rt△ABE中,AE2=AB2+BE2即x2=42+(8﹣x)2解得:x=5,∴菱形AECF的边长为5;(3)四边形MNPQ面积为20﹣2×=.13.(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED(ASA),∴CF=BD,且CF∥AB,∴四边形CDBF是平行四边形.(2)∵D为AB中点,∠ACB=90°,∴AD=CD=BD,且四边形CDBF是平行四边形,∴四边形CDBF是菱形,(3)如图,作EM⊥DB于点M,在Rt△EMB中,EM=BE•sin∠ABC=2,∴BM=2在Rt△EMD中,∵∠EDM=30°,∴DM=ME=2,∴BD=2+2∴△BDE面积=×BD×ME=×2×(2+2)=4+4 14.(1)证明:∵DE∥BC,DF∥AB∴四边形DEBF是平行四边形∵DE∥BC∴∠EDB=∠DBF∵BD平分∠ABC∴∠ABD=∠DBF=∠ABC∴∠ABD=∠EDB∴DE=BE且四边形BEDF为平行四边形∴四边形BEDF为菱形;(2)解:∵∠A=100°,∠C=30°,∴∠ABC=180°﹣100°﹣30°=50°,∵四边形BEDF为菱形,∴∠EDF=∠ABC=50°,∠BDE=∠EDF=25°.15.(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形.(2)EF=.。
苏版八年级(下册)数学压轴题[非常好的题目]
压轴题精选1、如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A时间为t 秒.⑴求直线AB 的解析式;⑵当t 为何值时,△APQ 与△AOB 相似?2、“三等分角”是数学史上一个著名的问题,但仅用尺规不可能“三等分角”.下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法(如图):将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上、边OA 与函数xy 1的图象交于点P ,以P 为圆心、以2OP 为半径作弧交图象于点R .分别过点P 和R 作x 轴xOPA B和y 轴的平行线,两直线相交于点M ,连接OM 得到∠MOB ,则∠MOB=31∠AOB .要明白帕普斯的方法,请研究以下问题:(1)设)1,(a a P 、)1,(bb R ,求直线OM 对应的函数表达式(用含b a ,的代数式表示).(2)分别过点P 和R 作y 轴和x 轴的平行线,两直线相交于点Q .请说明Q 点在直线OM 上,并据此证明∠MOB=31∠AOB .3、(14分)如图,在平面直角坐标系xOy 中,矩形OEFG 的顶点E 坐标为(4,0),顶点G 坐标为(0,2).将矩形OEFG 绕点O 逆时针旋转,使点F 落在轴的点N 处,得到矩形OMNP ,OM 与GF 交于点A .(1)判断△OGA 和△OMN 是否相似,并说明理由; (2)求过点A 的反比例函数解析式;(3)设(2)中的反比例函数图象交EF 于点B ,求直线AB 的解析式;(4)请探索:求出的反比例函数的图象,是否经过矩形OEFG 的对称中心,并说明理由.4、如图,在平面直角坐标系xOy 中,一次函数y kx b =+的图象经过点()0,2B ,且与x轴的正半轴相交于点A ,点P 、点Q 在线段AB 上,点M 、N 在线段AO 上,且OPM 与QMN 是相似比为3∶1的两个等腰直角三角形,90OPM MQN ∠=∠=。
2021苏科版八年级下册数学压轴小题能力提升训练卷(2)
2021苏科版八年级下册数学压轴小题能力提升训练卷(2)1.如图,正方形ABCD 中,在AD 的延长线上取点E ,F ,使DE =AD ,DF =BD ,连接BF 分别交CD ,CE 于H ,G 下列结论:①EC≠2HG ;①①GDH =①GHD ;①图中有8个等腰三角形;①CDG DHF S S △△=.其中正确的结论有( )个A .1B .2C .3D .42.如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )A .2.8B .C .2.4D .3.53.如图,在矩形ABCD 中,AB =5,BC =6,点E 在BC 边上,且BE =2,F 为AB 边上的一个动点,连接EF ,以EF 为边作等边①EFG ,且点G 在矩形ABCD 内,连接CG ,则CG 的最小值为( )A .3B .2.5C .4D .4.已知如图,//AD BC ,AB BC ⊥,CD DE ⊥且CD DE =,6AD =,8BC =,则ADE 的面积为( )A .4B .6C .8D .105.如图,边长为a 的正方形ABCD 绕点A 逆时针旋转30°得到正方形A B C D '''',图中阴影部分的面积为( )A .12a 2B .3a 2C .(1﹣4)a 2D .(1﹣3)a 26.如图,点D 是OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,135,2ABD BD ADB S =∠=︒=.若反比例函数()0k y x x =>的图像经过A 、D 两点,则k 的值是( )A .B .4C .D .67.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A 1B 12C .1D .128.如图,平行四边形OABC 的顶点A 在x 轴的正半轴上,点()3,2D 在对角线OB 上,反比例函数()0,0k y k x x =>>的图像经过C 、D 两点.已知平行四边形OABC 的面积是152,则点B 的坐标为( )A .84,3⎛⎫ ⎪⎝⎭B .9,32⎛⎫ ⎪⎝⎭C .105,3⎛⎫ ⎪⎝⎭D .2416,55⎛⎫ ⎪⎝⎭ 9.两个反比例函数3y x =,6y x =在第一象限内的图像如图所示,点1P 、2P 、3P ……2020P 反比例函数6y x =图像上,它们的横坐标分别是1x 、2x 、3x ……2020x ,纵坐标分别是1,3,5,…,共2020个连续奇数,过点1P 、2P 、3P ……2020P 分别作y 轴的平行线,与反比例函数3y x=的图像交点依次是()11,Q x y 、()22,Q x y 、()33,Q x y ……()20202020,Q x y ,则2020y 等于( )A .2019.5B .2020.5C .2019D .403910.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF 于点N .若//DF AB ,则CM 的长为( )A B C D 11.如图,点A 、B 为直线y =x 上的两点,过A 、B 两点分别作y 轴的平行线交双曲线1y x=(x >0)于点C 、D 两点.若BD =2AC ,则4OC 2﹣OD 2的值为( )A .5B .6C .7D .812.如图,菱形ABCD 的的边长为6,60ABC ∠=︒,对角线BD 上有两个动点E 、F (点E 在点F 的左侧),若EF =2,则AE +CF 的最小值为( )A .B .C .6D .813.如图,点(,1)A a ,(1,)B b -都在双曲线3y x=-(0x <)上,,P Q 分别是x 轴,y 轴上的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的表达式为( )A .3944y x =+B .1y x =+C .2y x =+D .3y x14.如图,在正方形ABCD 中,E 是BC 边上的一点,BE=4,EC=8,将正方形边AB 延AE 折叠刀AF ,延长EF 交DC 于G ,连接AG ,现在有如下结论:①①EAG=45°;①GC=CF ;①FC①AG ;①S ①GFC =14.4;其中结论正确的个数是( )A .1B .2C .3D .415.如图所示,四边形ABCD 是边长为1的正方形,E 为BC 边的中点,沿AP 折叠使D 点落在AE 上的点H 处,连接PH 并延长交BC 于点F ,则EF 的长为( )A B C .3 D .1416.如图,在等边①ABC 内有一点D ,AD=4,BD=3,CD=5,将①ABD 绕A 点逆时针旋转,使AB 与AC 重合,点D 旋转至点E ,则四边形ADCE 的面积为( )A .12B .12+C .6+D .6+17.如图,点A 的坐标是(-1,0),点B 的坐标是(0,6),C 为OB 的中点,将ABC ∆绕点B 逆时针旋转90°.后得到''A BC ∆.若反比例函数k y x=的图像恰好经过'A B 的中点D ,则k 的值是( )A.19B.16.5C.14D.11.518.如图,矩形ABCD的面积为20cm2,对角线相交于点O.以AB、AO为邻边画平行四边形AOC1B,对角线相交于点O ;以AB、AO 为邻边画平行四边形AO1C2B,对角线相交于点O2 :……以此类推,则平行四边形AO4C5B的面积为()A.58cm2B.54cm2C.516cm2D.532cm219.如图,菱形ABCD的边长为4,①DAB=60°,E为BC的中点,在对角线AC上存在一点P,使①PBE的周长最小,则①PBE的周长的最小值为()A.B.4C.2D.4+20.如图,在▭ABCD中,AB=4,BC=6,①ABC=60°,点P为▭ABCD内一点,点Q在BC边上,则P A+PD+PQ 的最小值为( )A B.C.D.10参考答案1.B2.B3.C4.B5.D6.D7.B8.B9.A0.C11.B12.A13.C14.C15.A16.C17.B18.A19.C20.C。
2020-2021学年 苏科版八年级数学下册第九章 中心对称图形—平行四边形 压轴题提优复习(二)
八年级数学苏科版下册《中心对称图形—平行四边形》压轴题提优复习(二)1.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.设点N 的坐标为(m,n).(1)若建立平面直角坐标系,满足原点在线段BD上,点B(﹣1,0),A(0,1).且BM=t(0<t≤2),则点D的坐标为,点C的坐标为;请直接写出点N纵坐标n的取值范围是;(2)若正方形的边长为2,求EC的长,以及AM+BM+CM的最小值.(提示:连接MN:=+1,=﹣1)2.如图,∠MON=90°,正方形ABCD的顶点A、B分别在OM、ON上,AB=13,OB=5,E为AC上一点,且∠EBC=∠CBN,直线DE与ON交于点F.(1)求证:BE=DE;(2)判断DF与ON的位置关系,并说明理由;(3)△BEF的周长为.3.四边形OABC为正方形,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y 轴,建立平面直角坐标系,如图1,已知四边形OABC周长为32.(1)求A、B、C三点坐标;(2)一条与y轴重合的直线m,从y轴出发,以每秒1个单位长度的速度向右平移,平移至与直线BC重合时停止平移,设移动时间为t秒,在平移过程中,设直线m与线段OC交于点D,与线段AB交于点E,当长方形DOAE的面积等于长方形BCDE面积的3倍时,(如图2),求t值;(3)在(2)的条件下,设M是直线m上一点,连接AM、BM.若AM⊥BM,求∠OAM+∠CBM的度数.4.如图,矩形ABCD中,点O是对角线BD的中点,过点O的直线分别交AB,CD边于点E,F,DE=DF.(1)求证:四边形DEBF是菱形;(2)若BE=5,BD=8,求菱形DEBF的面积.5.已知,如图,在▱ABCD中,延长AB到点E,延长CD到点F,使得BE=DF,连接EF,分别交BC,AD于点M,N,连接AM,CN.(1)求证:△BEM≌△DFN;(2)求证:四边形AMCN是平行四边形.6.如图,在Rt△ABM和Rt△ADN中,∠AMB=∠AND=90°,斜边AB和AD为正方形ABCD的边,其中AM=AN.(1)求证:△ABM≌△ADN;(2)线段MN与线段AD相交于T,若AT=AD,求tan∠ABM的值.7.如图,一块长方形场地ABCD的长AB与宽AD之比为:1,DE⊥AC于点E,BF ⊥AC于点F,连接BE,DF.现计划在四边形DEBF区域内种植花草,求四边形DEBF 与长方形ABCD的面积之比.8.如图,正方形ABCD和正方形AEFG有公共点A,点B在线段DG上.(1)判断DG与BE的位置关系,并说明理由:(2)若正方形ABCD的边长为2,正方形AEFG的边长为2,求BE的长.9.如图,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC 的平分线DG交边AB于G,且DG与CF交于点E.(Ⅰ)求证:AF=GB;(Ⅱ)求证:△EFG是直角三角形;(Ⅲ)在▱ABCD中,添上一个什么条件,使△EFG是等腰直角三角形.10.如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形;(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.11.如图,在△ABC中,D是BC边的中点,分别过B、C做射线AD的垂线,垂足分别为E、F,连接BF、CE.(1)求证:四边形BECF是平行四边形;(2)我们知道S△ABD=S△ACD,若AF=FD,在不添加辅助线的条件下,直接写出与△ABD、△ACD面积相等的所有三角形.12.如图,在▱ABCD中,点E,F分别在BC,AD上,AC与EF相交于点O,且AO=CO.求证:四边形AECF是平行四边形.13.如图,在矩形ABCD中,O为对角线AC的中点,过点O作直线分别与矩形的边AD,BC交于M,N两点,连接CM,AN.(1)求证:四边形ANCM为平行四边形;(2)若AD=4,AB=2,且MN⊥AC,求DM的长.14.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=5,AB=6,求菱形ADCF的面积.15.如图,在Rt△ABC中,∠ACB=90°.CD⊥AB,AF平分∠CAB,交CD于点E,交BC于点F.过点F作FG⊥AB交AB于点G,连接EG.(1)求证:四边形CEGF是菱形;(2)若∠B=30°,AC=6,求CE的长.参考答案1.解:(1)如图1,以直线BD为x轴,直线AC为y轴,建立平面直角坐标系,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∵点B(﹣1,0),A(0,1),∴D(1,0),C(0,﹣1);过N作NH⊥BD于h,∴∠NHB=90°,∵将BM绕点B逆时针旋转60°得到BN,∴∠NBH=60°,BM=BN,∴NH=BN=t,∵0<t≤2,∴点N纵坐标n的取值范围是0<n≤;故答案为:(1,0),(0,﹣1);0<n≤;(2)如图所示,连接MN,过E作EH⊥BC,交CB的延长线于H,由旋转可得,BM=BN,∠NBM=60°,∴△BMN是等边三角形,∴MN=BM,∵△ABE是等边三角形,∴BE=BA,∠ABE=60°,∴∠ABM=∠EBN,∴△ABM≌△EBN(SAS),∴AM=EN,∴AM+BM+CM=EN+MN+CM,∴当E,N,M,C在同一直线上时,AM+BM+CN的最小值是CE的长,又∵∠ABE=60°,∠ABH=90°,∴∠EBH=30°,∴Rt△EBH中,EH=EB=×2=1,∴BH===,∴CH=2+,∴Rt△CEH中,CE====;∴AM+BM+CM的最小值为+.2.解:(1)∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS),∴BE=DE.(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)如图所示,过C作CG⊥ON于G,过D作DH⊥CG于H,则∠CGB=∠AOB =90°,四边形DFGH是矩形,又∵∠ABC=90°,∴∠ABO+∠BAO=90°=∠ABO+∠CBG,∴∠BAO=∠CBG,又∵AB=BC,∴△ABO≌△BCG(AAS),∴BG=AO==12,CG=BO=5,同理可得△CDH≌△BCG,∴DH=CG=5,CH=BG=12,∴HG=5+12=17,∴DF=HG=17,GF=DH=5,∴BF=BG﹣GF=12﹣5=7,∴△BEF的周长=BF+EF+BE=BF+EF+DE=BF+DF=7+17=24,故答案为:24.3.解:(1)∵正方形OABC的周长为32,∴OA=AB=BC=CO=8,∴A(0,8),B(8,8),C(8,0);(2)∵S四边形DOAE=OD•AO=8t,S四边形BCDE=8(8﹣t),S四边形DOAE=3S四边形BCDE,∴8t=3×8(8﹣t),解得t=6;(3)①当点M在线段DE上时,如图1∵OA∥DE,∴∠OAM=∠AME,∵BC∥DE,∴∠CBM=∠BME,∵AM⊥BM,∴∠AMB=90°,∴∠AME+∠BME=90°,∴∠OAM+∠CBM=90°;②当点M在DE的延长线上时,如图2,∵OA∥DE,∴∠OAM+∠AME=180°,∵BC∥DM,∴∠CBM+∠BMD=180°,∴∠OAM+∠AMD+∠CBM+∠BMD=360°,∴∠OAM+∠AMB+∠CBM=360°,∵AM⊥BM,∴∠AMB=90°,∴∠OAM+∠CBM=270°.4.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠DFO=∠BEO,∵点O是对角线BD的中点,∴OD=OB,在△DOF和△BOE中,,∴△DOF≌△BOE(AAS),∴DF=BE,∵DF∥BE,∴四边形BEDF是平行四边形,又∵DE=DF,∴四边形DEBF是菱形;(2)解:由(1)得:四边形DEBF是菱形,∴OE=OF,EF⊥BD,∵OB=OD=BD=4,∴OE===3,∴EF=2OE=6,∴菱形DEBF的面积=BD×EF=×8×6=24.5.证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB∥CD,∴∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,∴∠ADF=∠EBC,在△DFN和△BEM中∴△DFN≌△BEM(ASA);(2)四边形ANCM是平行四边形,理由是:∵由(1)知△DFN≌△BEM,∴DN=BM,∵四边形ABCD是平行四边形,∴AD=BC,且AD∥BC,∴AD﹣DN=BC﹣BM,∴AN=CM,AN∥CM,∴四边形ANCM是平行四边形.6.证明:(1)在Rt△ABM和Rt△ADN中,,∴Rt△ABM≌Rt△ADN(HL);(2)1/37.解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠ABC=90°,∴∠DAE=∠BCF.∵BF⊥AC,DE⊥AC,∴∠AED=∠CFB=90°,BF∥DE.在△ADE和△CBF中,,∴△ADE≌△CBF(AAS),∴DE=BF,AE=CF,又∵BF∥DE,∴四边形DEBF是平行四边形,设AD=BC=x,则CD=AB=x,∴AC===x,∵DE⊥AC于点E,∴S△ADC=AD•CD=AC•DE,∴DE===x,在△ADE中,AE==x,CF=x,∴EF=AC﹣AE﹣CF=x,∴S四边形DEBF=EF•DE=x•x=x2,∵S矩形ABCD=x•x=x2,∴四边形DEBF与矩形ABCD的面积之比为1:3.8.解:(1)DG⊥BE,理由如下:∵四边形ABCD,四边形AEFG是正方形,∴AB=AD,∠DAB=∠GAE,AE=AG,∠ADB=∠ABD=45°,∴∠DAG=∠BAE,在△DAG和△BAE中∴△DAG≌△BAE(SAS).∴DG=BE,∠ADG=∠ABE=45°,∴∠ABD+∠ABE=90°,即∠GBE=90°.∴DG⊥BE;(2)连接GE,∵正方形ABCD的边长为2,正方形AEFG的边长为2,∴BD=2,GE=4,设BE=x,则BG=x﹣2,在Rt△BGE中,利用勾股定理可得x2+(x﹣2)2=42,∴x=+∴BE的长为+.9.(Ⅰ)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,AD=BC.∴∠AGD=∠CDG,∠DCF=∠BFC.∵DG、CF分别平分∠ADC和∠BCD,∴∠CDG=∠ADG,∠DCF=∠BCF.∴∠ADG=∠AGD,∠BFC=∠BCF∴AD=AG,BF=BC.∴AF=BG;(Ⅱ)解:∵AD∥BC,∴∠ADC+∠BCD=180°,∵DG、CF分别平分∠ADC和∠BCD,∴∠EDC+∠ECD=90°,∴∠DEC=90°,∴∠FEG=90°,∴△EFG是直角三角形;(Ⅲ)由(Ⅱ)知:我们只要保证添加的条件使得EF=EG就可以了.我们可以添加∠GFE=∠FGD,四边形ABCD为矩形,DG=CF等等.10.(1)证明:∵四边形ABCD是平行四边形∴AD∥BC,AO=CO,∴∠AEF=∠CFE,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OF=OE,∵AO=CO,∴四边形AFCE是平行四边形;∵EF平分∠AEC,∴∠AEF=∠CEF,∴∠CFE=∠CEF,∴CE=CF,∴四边形AFCE是菱形;(2)解:由(1)得:四边形AFCE是菱形,∴AC⊥EF,AO=CO=AC=1,∴∠AOE=90°,∵∠DAC=60°,∴∠AEO=30°,∴OE=AO=,∴EF=2OE=2,∴四边形AFCE的面积=AC×EF=×2×2=2.11.(1)证明:∵D是BC中点,∴BD=CD∵BE⊥AE,CF⊥AE∴∠BED=∠CFD=90°,在△BED与△CFD中,,∴△BED≌△CFD(AAS),∴ED=FD,∵BD=CD,∴四边形BFEC是平行四边形;(2)与△ABD和△ACD面积相等的三角形有△CEF、△BEF、△BEC、△BFC.理由:∵四边形BECF是平行四边形,∴S△BDF=S△BDE=S△CDE=S△CDF,∵AF=DF,∴S△ABF=S△BDF,S△ACF=S△CDF∴S△BDF=S△BDE=S△CDE=S△CDF=S△ABF=S△ACF,∴S△ABD=S△ACD=S△CEF=S△BEF=S△BEC=S△BFC.12.证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形.13.(1)证明:∵在矩形ABCD中,O为对角线AC的中点,∴AD∥BC,AO=CO,∴∠OAM=∠OCN,∠OMA=∠ONC,在△AOM和△CON中,,∴△AOM≌△CON(AAS),∴AM=CN,∵AM∥CN,∴四边形ANCM为平行四边形;(2)解:∵在矩形ABCD中,AD=BC,由(1)知:AM=CN,∴DM=BN,∵四边形ANCM为平行四边形,MN⊥AC,∴平行四边形ANCM为菱形,∴AM=AN=NC=AD﹣DM,∴在Rt△ABN中,根据勾股定理,得AN2=AB2+BN2,∴(4﹣DM)2=22+DM2,解得DM=.14.(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=.15.(1)证明:∵FG⊥AB,FC⊥AC,AF平分∠CAB,∴∠ACF=∠AGF=90°,CF=FG,在Rt△ACF与Rt△AGF中,,∴Rt△ACF≌Rt△AGF(HL),∴∠AFC=∠AFG,∵CD⊥AB,FG⊥AB,∴CD∥FG,∴∠CEF=∠EFG,∴∠CEF=∠CFE,∴CE=CF,∴CE=FG,∵CE∥FG,∴四边形CEGF是平行四边形,∵CE=CF,∴平行四边形CEGF菱形;(2)CE=2.。
2020-2021学年 苏科版八年级数学下册第九章 中心对称图形—平行四边形 压轴题提优复习(一)
八年级数学苏科版下册《中心对称图形—平行四边形》压轴题提优复习(一)1.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC 于点E、F,连接AF、CE.(1)若OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.2.如图,在矩形ABCD中,BD的垂直平分线交AD于E,交BC于F,连接BE、DF.(1)判断四边形BEDF的形状,并说明理由;(2)若AB=8,AD=16,求BE的长.3.已知:如图,在正方形ABCD中,E是对角线AC上一点,EF⊥AC,交AD,AB于点F,H.求证:CF=CH.4.如图,正方形ABCD的对角线AC、BD相交于点O,E、F分别在OB、OC上,OE =OF.求证:AE=BF.5.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别在BD和DB的延长线上,且DE=BF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)连接AF,CE.当BD平分∠ABC时,四边形AFCE是什么特殊四边形?请说明理由.6.如图,已知四边形ABCD是平行四边形,E是AB延长线上一点且BE=AB,连接CE,BD.(1)求证:四边形BECD是平行四边形;(2)连接DE,若AB=BD=4,DE=2,求平行四边形BECD的面积.7.已知:如图,AC是▱ABCD的一条对角线,延长AC至F,反向延长AC至E,使AE =CF.求证:四边形EBFD是平行四边形.8.如图,矩形ABCD中,对角线AC与BD相交于点,过点A作AN∥BD,过点B作BN∥AC,两线相交于点N.(1)求证:AN=BN;(2)连接DN,交AC于点F,若DN⊥NB于点N,求∠DOC的度数.9.如图,已知▱ABCD中,对角线AC、BD相交于点O.点E、F在对角线BD上,且EB=FD.求证:四边形AECF是平行四边形.10.如图,在平行四边形ABCD中,线段AC的垂直平分线交AC于O,分别交BC,AD 于E,F,连接AE,CF.(1)证明:四边形AECF是菱形;(2)在(1)的条件下,如果AC⊥AB,∠B=30°,AE=2,求四边形AECF的面积.11.如图,边长为6的正方形ABCD中,E,F分别是AD,AB上的点,AP⊥BE,P为垂足.(1)如图1,AF=BF,AE=2,点T是射线PF上的一个动点,当△ABT为直角三角形时,求AT的长;(2)如图2,若AE=AF,连接CP,求证:CP⊥FP.12.如图,以Rt△ABC的斜边BC为边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,求AC.13.如图,已知点C为线段AB上一点,四边形ACMF、BCNE是两个正方形.求证:AN=BM.14.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.15.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E.(1)求证:四边形ABCD是菱形;(2)若AB=5,BD=6,求CE的长.参考答案1.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,∴AE=CF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.2.解:(1)四边形BEDF是菱形;理由如下:∵EF是BD的垂直平分线,∴BE=DE,BF=DF,∴∠EBD=∠EDB,∵四边形ABCD是矩形,∴AD∥BC,∴∠DBF=∠EDB,∴∠EBD=∠DBF,∵BD⊥EF,∴BE=BF,∴BE=DE=DF=BF,∴四边形BEDF是菱形;(2)∵四边形ABCD是矩形,∴∠A=90°,由(1)知:BE=DE设BE=DE=x,则AE=AD﹣x=16﹣x,在Rt△ABE中,AB2+AE2=BE2,即82+(16﹣x)2=x2,解得:x=10,∴BE的长为10.3.证明:∵正方形ABCD中,E是对角线AC上一点,∴∠FAE=∠HAE=45°,∵EF⊥AC,∴∠FEA=∠HEA=90°,∴∠AFE=∠FAE=45°,∴AE=FE,同理可证:AE=HE,∴EF=EH,∴AC是FH的垂直平分线,∴CF=CH.4.证明:∵四边形ABCD为正方形,∴OA=OB,AC⊥BD,在△AOE和△BOF中,,∴△AOE≌△BOF(SAS)∴AE=BF.5.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥BC,∴∠ADB=∠CBD,∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)当BD平分∠ABC时,四边形AFCE是菱形,理由:∵BD平分∠ABC,∴∠ABD=∠CBD,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠ADB=∠CBD,∴∠ABD=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,∴AC⊥BD,∴AC⊥EF,∵DE=BF,∴OE=OF,又∵OA=OC,∴四边形AFCE是平行四边形,∵AC⊥EF,∴四边形AFCE是菱形.6.(1)证明:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AE,∵AB=BE,∴CD=BE,CD∥BE,∴四边形BECD是平行四边形;(2)解:过D作DH⊥AE于H,∵AB=BD=4,∴BE=AB=4,∴BD2﹣BH2=DE2﹣EH2=DH2,∴42﹣BH2=(2)2﹣(4﹣BH)2,∴BH=3,∴DH===,∴平行四边形BECD的面积=BE•DH=4×=4.7.证明:∵四边形ABCD是平行四边形,∴AD=BC,且AD∥BC,∴∠DAC=∠BCA,∴∠DAE=∠BCF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS),∴DE=BF,∠AED=∠CFB,∴DE∥BF,∴四边形EBFD是平行四边形.8.解:(1)证明:∵矩形ABCD中,对角线AC与BD相交于点O,∴OA=OB,∵AN∥BD,BN∥AC,∴四边形OANB是平行四边形,∵OA=OB,∴▱OANB是菱形,∴AN=BN,(2)由(1)可知:BN=OB=OD,∴BD=2BN,∵DN⊥NB,∴∠DNB=90°,∴∠BDN=30°,∵BN∥AC,∴∠DFO=∠DNB=90°,∴∠DOF=90°﹣30°=60°,∴∠DOC=180°﹣60°=120°.答:∠DOC的度数为120°.9.证明:∵平行四边形ABCD,∴AO=CO,BO=DO,∵BE=DF,∴BO﹣BE=DO﹣DF,∴EO=FO,∴四边形AECF是平行四边形.10.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,∵EF是线段AC的垂直平分线,∴OA=OC,EF⊥AC,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形;(2)解:由(1)得:四边形AECF是菱形,EF⊥AC,∴CE=AE=2,OA=OC,OB=OD,∵AC⊥AB,∴EF∥AB,∴∠OEC=∠B=30°,∴OC=CE=1,OE=OC=,∴AC=2OC=2,EF=2OE=2,∴四边形AECF的面积=AC×EF=×2×2=2.11.(1)解:在正方形ABCD中,可得∠DAB=90°.∵在Rt△BAE中,tan∠ABE===,∴∠ABE=30°.点T是射线PF上的一个动点,当△ABT为直角三角形时,分三种情况:①当点T在AB的上方,∠ATB=90°,显然此时点T和点P重合,即AT=AP=AB=3;②当点T在AB的下方,∠ATB =90°,如图①所示.在Rt△APB中,由AF=BF,可得:AF=BF=PF=3,∴∠BPF=∠FBP=30°,∴∠BFT=60°.在Rt△ATB中,TF=BF=AF=3,∴△FTB是等边三角形,∴TB=3,AT==3;③当点T在AB的下方,∠ABT=90°时,如图②所示.在Rt△FBT中,∠BFT=60°,BF=3,BT=BF•tan60°=3.在Rt△ATB中:AT==3.综上所述:当△ABT为直角三角形时,AT的长为3或3或3;(2)证明:如图③所示,∵四边形ABCD是正方形,∴AB=AD=BC,AD∥BC,∠DAB=90°,∴∠3=∠4.∵在Rt△EAB中,AP⊥BE,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3,∴∠1=∠3=∠4,∵tan∠1=,tan∠3=,∴=,∵AE=AF,AB=BC,∴=,∴△PBC∽△PAF,∴∠5=∠6.∵∠6+∠7=90°,∴∠5+∠7=90°,即∠CPF=90°,∴CP⊥FP.12.解:在AC上截取CG=AB=4,连接OG,∵四边形BCEF是正方形,∠BAC=90°,∴OB=OC,∠BAC=∠BOC=90°,∵∠AHB=∠OHC,∴∠ABO=∠ACO,在△BAO和△CGO中,∴△BAO≌△CGO(SAS),∴OA=OG=6,∠AOB=∠COG,∵∠BOC=∠COG+∠BOG=90°,∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形,由勾股定理得:AG==12,即AC=12+4=16.13.证明:∵四边形ACMF和四边形CBEN都是正方形,∴AC=CM,NC=BC,∠ACN=∠BCM=90°,∴△ACN≌△MCB(SAS),∴AN=BM.14.证明:(1)∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)由(1)可知BF=2AB,EF=EC,∵∠BCD=100°,∴∠FBC=180°﹣100°=80°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×80°=40°15.(1)证明:∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,OB=OD=BD=3,∴OA===4,∴AC=2OA=8,∴菱形ABCD的面积=AC×BD=×8×6=24,∵CE⊥AB,∴菱形ABCD的面积=AB×CE=5CE=24,∴CE=.。
2021年苏科版八年级下册(压轴题培优练)专题02平行四边形B卷(原卷版)
2021年苏科版八年级下册(压轴题培优练)专题02平行四边形B 卷(原卷版)一、选择题(每小题只有一个选项是正确的,请将正确选项前的字母代号填写在括号内)1. 如图,在坐标系中放置一菱形OABC ,已知∠ABC=60°,点B 在y 轴上,OA=1.将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2020次,点B 的落点依次为B 1,B 2,B 3,…,则B 2020的坐标为( )A. (1345,0)B. (1345.5,2)C. (1346,0)D. (1346.5,2)2.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A. 5cmB. 6cmC. 485cmD. 245cm3. 如图,在等边△ABC 内有一点D ,AD=4,BD=3,CD=5,将△ABD 绕A 点逆时针旋转,使AB 与AC 重合,点D 旋转至点E ,则四边形ADCE 的面积为( )A. 12B. 12+C. 6+D. 6+4.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO 沿点A 到点C 的方向平移,得到A B C ''',当点A '与点C 重合时,点A 与点B '之间的距离为( )A. 6B. 8C. 10D. 125.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=8,则四边形ABCD的面积为()A. 32B. 24C. 40D. 366.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个7. 如图,在矩形ABCD中,AB=4,BC=6,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,连接CE,△DEC的周长为()A.10 B.11 C.12 D.138.如图,已知点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC的中点,要使四边形EGFH是菱形,则四边形ABCD需满足的条件是()A. AB=CDB. AC=BDC. AC⊥BDD. AD=BC二、填空题(不需写出解答过程,只需把答案直接填写在对应横线上)9.如图,在四边形ABCD中,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点.当四边形ABCD 满足_____ 时,四边形EGFH是菱形.10.已知:如图,AD、CE分别是△ABC的角平分线和中线,AD⊥CE,AD=CE=4,则BC的长等于.11.如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=12AB,G、H是BC边上的点,且GH=13BC,若3EOFS∆=,则OGHS∆=.12.如图,矩形ABCD的对角线交于点O,点E在线段AO上,且DE=DC,若△EDO=15°,则△DEC=______°.13. E、F是线段AB上的两点,且AB=16,AE=1,BF=3,点G是线段EF上的一动点,分别以AG、BG 为斜边在AB同侧作两个等腰直角三角形,直角顶点分别为D、C,如图所示,连接CD并取中点P,连结PG,点G从E点出发运动到F点,则线段PG扫过的图形面积为______.14.如图,在矩形ABCD中,AB=2,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则当OC为最大值时,点C的坐标是.15.如图,在正方形ABCD中,AB=12,点E、F、G、H分别在AB、BC、CD、DA上,EG=13,FH=15,则四边形EFGH的面积是____.三、解答题(解答时应写出文字说明、证明过程或演算步骤)16. 已知:l∥m∥n∥k,平行线与m、m与n、n之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接
EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长.
2、如图,将一X矩形纸片ABCD沿直线MN折叠,使点C落在点A处,
点D落在点E处,直线MN交BC于点M,交AD于点N.(1)求证:CM=;(2)若△CMN的面积与△CDN的面积比为3:1,求MN
的值.
DN
3、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交
于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.
4、如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥
AB于E,设∠ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,是否存在正整数k,使得∠EFD=k∠AEF?
若存在,求出k的值;若不存在,请说明理由.
5、如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶
点,连AD,BE,F为线段AD的中点,连
CF.
(1)如图1,当D点在BC上时,试探索出BE与CF的数量关系,并说明理由;
(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.
6、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE
沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.
(1)求证:①△ABG≌△AFG;②BG=CG;
(2)求△FGC的面积
7、在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形
ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.
(1)当∠BAO=45°时,求点P的坐标;
(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB的平分线上;
(3)设点P到x轴的距离为h,试确定h的取值X围,并说明理由.
8、【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条
件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.
9、如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是
(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、F分别在AD、AB上,且F点的坐标是(2,4).(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF 上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?
若存在,请直接写出M点的坐标;若不存在,请说明理由.
10、如图,平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30度,
(1)求B、C两点的坐标;
(2)把矩形沿直线DE对折使点C落在点A处,DE与AC相交于点F,求直线
DE的解析式;(3)若点M在直线DE上,平面内是否存在点N,使以O、F、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
11、如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=83
,边AB的垂
3
直平分线CD分别与AB、x轴、y轴交于点C、G、D.(1)求点G的坐标;(2)求直线CD的解析式;(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由.。