纯弯曲实验报告
纯弯曲电测实验报告
![纯弯曲电测实验报告](https://img.taocdn.com/s3/m/06d15565af45b307e87197f8.png)
竭诚为您提供优质文档/双击可除纯弯曲电测实验报告篇一:直梁纯弯曲电测实验试验报告邵阳学院实验报告实验项目:直梁纯弯曲电测实验实验日期实验地点成绩学院班级学生姓名同组成员指导老师学生学号一、实验内容和目的:、1、测定直梁纯弯曲时横截面上正应力大小和分布规律;2、验证纯弯曲梁的正应力计算工式;3、掌握电测法原理和电阻应变仪的使用方法。
二、实验设备(规格、型号)三、实验记录及数据处理表1.试件相关数据表2.实验数据记录四、实验结果计算与分析1、画出应变布示意图2、实验计算—根据测得的各点应变值ε1求出应变增量平均值Δε1,代入胡克定律计算各点的实验应力值,因1με=10-6ε,所以各点实验应变力为σi实=Ε×Δεi×10-63、理论值计算载荷增量为Δp,弯曲增量Δm=Δp·a/2,故各点应力的理论值为:σi理=(Δm·Yi)/Iz4、实验值与理论值的比较5、绘制实验应力值和理论力值的分布图分别认横坐标表示各测点的应力σi实和σi理,以坐标轴表示各点测距梁中性层位置Yi,选用合适的比例绘出应力分布图。
篇二:4实验报告-弯曲正应力电测实验材料力学弯曲正应力电测实验实验报告日期年月日指导教师:实验室温度℃学院:专业班级:姓名:学号:同组人:备注:请用A3纸双面打印篇三:弯曲正应力实验报告浙江大学材料力学实验报告(实验项目:弯曲正应力)一、实验目的:1、初步掌握电测方法和多点测量技术。
;2、测定梁在纯弯和横力弯曲下的弯曲正应力及其分布规律。
二、设备及试样:1.电子万能试验机或简易加载设备;2.电阻应变仪及预。
弯曲实验——精选推荐
![弯曲实验——精选推荐](https://img.taocdn.com/s3/m/14082e09c4da50e2524de518964bcf84b9d52d24.png)
弯曲实验实验四弯曲实验⼀、实验⽬的1、⽤电测法测定梁在纯弯曲的情况下,其横截⾯上正应⼒的分布规律,并与理论计算结果⽐较,以验证弯曲正应⼒公式。
2、了解电阻应变仪测量应变的⽅法。
⼆、实验设备1、万能试验机2、电阻应变仪3、游标卡尺和钢尺4、矩形截⾯梁(低碳钢)三、实验原理梁纯弯曲时,其横截⾯上的正应⼒为线性规律分布,理论计算公式为σ=M·y/Iz,式中,M为截⾯处的弯矩,y为所测点到中性轴的距离,Iz为截⾯对中性轴的惯性矩。
实验装置如图所⽰。
梁的中段受纯弯曲。
该截⾯的不同⾼度粘贴应变⽚,其位置分别为:顶部、底部、中性层、中性层上下的1/4h处。
梁受载荷后,由应变仪可测定各应变⽚所在位置的点的纵向应变ε。
根据虎克定律σ=Eε可计算出各点的应⼒值四、实验步骤1、测量试件的尺⼨、梁的跨度及加⼒器到⽀坐的距离a。
应变⽚由实验室教师预先贴好。
2、拟定加载⽅案。
选定初始载荷和最终载荷,选定加载级数和载荷增量。
3、选择合适的测⼒度盘和配置相应的摆锤。
将测⼒指针调零。
4、按应变⽚的编号将引出导线按顺序接在预调平衡箱上。
选点开关调到需要测点的位置上,并预调平衡。
5、缓慢、均匀地加载⾄初始载荷。
记下应变仪的读数。
然后逐级加载,在每⼀级载荷下测定应变⽚的读数,直到最终载荷。
6、请教师检查实验记录后,结束实验,整理好实验数据,完成实验报告。
五、注意事项1、贴好的应变⽚不能随便剥撤,接线要防⽌导线拉动应变⽚。
2、实验中要估算应变增量的理论值,以便测量过程中能随时检查所测应变值的合理性。
3、加载⼀定要缓慢,以免冲击载荷将梁击垮。
4、由于应变仪灵敏度⾼,在实验过程中不要振动仪器、导线和桌⼦,以免读数不准。
弯曲实验报告(⼀)(参看“实验”中的弯曲实验)弯曲实验报告(⼆)(参看“实验”中的弯曲实验)。
纯弯曲梁的正应力实验报告
![纯弯曲梁的正应力实验报告](https://img.taocdn.com/s3/m/1a27be5db6360b4c2e3f5727a5e9856a57122645.png)
纯弯曲梁的正应力实验报告纯弯曲梁的正应力实验报告引言:纯弯曲梁是一种常见的结构形式,它在工程中广泛应用于桥梁、建筑物以及机械设备等领域。
了解纯弯曲梁的正应力分布规律对于工程设计和结构安全至关重要。
本实验旨在通过实验方法测量纯弯曲梁的正应力分布,并对实验结果进行分析和讨论。
实验原理:纯弯曲梁在受力时,其截面上的纵向纤维会发生伸长或压缩,从而产生正应力和剪应力。
根据弯曲梁的理论,当弯矩作用于梁上时,梁截面上的正应力与截面距离中性轴的距离成正比。
实验步骤:1. 实验准备:选择一根长度适中的纯弯曲梁,清理梁的表面,并使用卡尺测量梁的几何参数,如宽度、高度和长度等。
2. 悬挂梁:在实验装置上悬挂梁,并调整悬挂点的位置,使梁能够自由弯曲。
3. 施加载荷:逐渐施加外力,使梁发生弯曲,同时记录外力大小和梁的挠度。
4. 测量应变:在梁的表面粘贴应变片,并使用应变仪测量不同位置的应变值。
5. 计算正应力:根据应变与正应力之间的线性关系,使用应变-应力关系计算不同位置的正应力。
6. 绘制应力分布曲线:将测得的正应力数据绘制成应力分布曲线,并进行分析和讨论。
实验结果与分析:通过实验测量和计算,得到了纯弯曲梁不同位置的正应力值,并绘制了应力分布曲线。
实验结果显示,在纯弯曲梁的中性轴附近,正应力较小;而在梁的顶部和底部,正应力较大。
这符合弯曲梁的理论,即正应力与截面距离中性轴的距离成正比。
进一步分析发现,纯弯曲梁的正应力分布呈现出一种对称性,即梁的上下两侧的正应力大小相等。
这是由于梁在弯曲过程中,上下两侧受到的外力大小和方向相反,从而使得正应力分布对称。
此外,实验结果还显示,纯弯曲梁的正应力在梁的中心位置达到最小值,这是由于中性轴处的纤维受力最小,所以正应力最小。
结论:通过本实验,我们成功测量和分析了纯弯曲梁的正应力分布规律。
实验结果表明,纯弯曲梁的正应力与截面距离中性轴的距离成正比,且呈现对称分布。
这对于工程设计和结构安全具有重要意义,能够帮助工程师更好地预测和评估梁的受力情况。
纯弯曲实验报告
![纯弯曲实验报告](https://img.taocdn.com/s3/m/af23206b657d27284b73f242336c1eb91a3733ba.png)
纯弯曲实验报告纯弯曲实验报告引言:纯弯曲是一种力学现象,指的是物体在受到力的作用下,发生弯曲变形而不产生拉伸或压缩。
它在工程设计和材料研究中具有重要的应用价值。
本实验旨在通过纯弯曲实验,探究不同材料在受力下的弯曲特性,并分析其力学行为。
实验设备与方法:本实验使用了一台弯曲试验机,以及不同材料的试样。
首先,将试样放置在弯曲试验机的支承上,然后通过加载装置施加一定的力矩,使试样发生弯曲。
在施加力矩的同时,使用应变计测量试样上的应变变化。
通过调整力矩的大小和测量应变的数值,可以得到不同材料的弯曲应力-应变曲线。
实验结果与分析:在实验过程中,我们选取了几种常见的材料进行测试,包括金属材料、塑料材料和木材。
通过实验数据的收集与分析,我们得到了它们的弯曲应力-应变曲线。
金属材料的弯曲应力-应变曲线呈现出线性的趋势,即在一定的应变范围内,应力与应变成正比。
这是因为金属材料的晶格结构具有较好的可塑性,能够在受力下发生塑性变形而不断延展。
然而,当应变超过一定范围时,金属材料会发生断裂,曲线开始下降。
这是由于材料内部的晶界滑移和位错运动被过大的应变所限制,导致材料的强度下降。
与金属材料相比,塑料材料的弯曲应力-应变曲线呈现出非线性的趋势。
在初始阶段,塑料材料的曲线斜率较大,说明其具有较高的刚性。
然而,随着应变的增加,曲线逐渐趋于平缓,说明塑料材料在受力下表现出较大的变形能力。
这是由于塑料材料的分子结构较为松散,能够在受力下发生更大的形变。
木材的弯曲应力-应变曲线与金属材料和塑料材料有所不同。
木材的曲线呈现出初始阶段的线性增长,然后逐渐趋于平缓。
这是由于木材的纤维结构具有较高的韧性,能够在受力下发生较大的变形。
然而,随着应变的增加,木材的强度逐渐降低,曲线下降。
这是由于木材的纤维结构在受力下会发生断裂,导致木材的强度下降。
结论:通过纯弯曲实验,我们对不同材料在受力下的弯曲特性有了更深入的了解。
金属材料具有较好的可塑性,能够在受力下发生塑性变形;塑料材料具有较大的变形能力,能够在受力下发生更大的形变;木材具有较高的韧性,能够在受力下发生较大的变形。
材料力学纯弯梁弯曲的应力分析实验报告模板高等教育出版社
![材料力学纯弯梁弯曲的应力分析实验报告模板高等教育出版社](https://img.taocdn.com/s3/m/0428fe1a43323968001c920c.png)
深 圳 大 学 实 验 报 告
课程名称: 实验项目名称:纯弯梁弯曲的应力分析实验
学院:
专业: 指导教师: 报告人:姓名: 学号: 班级: 姓名: 学号: 班级:
姓名: 学号: 班级: 姓名: 学号: 班级: 姓名: 学号: 班级: 实验时间: 实验报告提交时间:
教务处制
一、实验目的 二、实验设备
静态电阻应变仪型号: 实验装置名称型号: 量具名称 精度 ㎜
三、实验数据及处理
梁试件的弹性模量11
101.2⨯=E Pa
梁试件的横截面尺寸h = ㎜,b = ㎜ 支座到集中力作用点的距离d = ㎜
各测点到中性层的位置:1y = ㎜ 2y = ㎜ 3y = ㎜
4y = ㎜ 5y = ㎜ 6y = ㎜
注:表中读数1ε、2ε、3ε、4ε、5ε、6ε为两次实验所得读数的平均值。
F ∆为荷载增量的平均值。
1ε∆、2ε∆、3ε∆、4ε∆、5ε∆、6ε∆为各点应变增量的平均值
四、应力分布图(理论和实验的应力分布图画在同一图上) 五、思考题
1.为什么要把温度补偿片贴在与构件相同的材料上?
2.影响实验结果的主要因素是什么?
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。
纯弯曲梁正应力实验报告数据
![纯弯曲梁正应力实验报告数据](https://img.taocdn.com/s3/m/2e150761cec789eb172ded630b1c59eef8c79a30.png)
纯弯曲梁正应力实验报告数据实验目的:
本实验旨在通过对纯弯曲梁的正应力进行实验研究,探索材料力学的基本原理。
实验原理:
纯弯曲梁是指在弯曲变形过程中,仅发生弯曲变形,不发生剪切变形。
在实验中,通过在材料中施加外力,使得梁发生弯曲变形,进而分析材料的正应力。
实验步骤:
1. 准备实验设备并进行校准。
2. 安装试件,并在试件固定支点处施加相应的外力。
3. 使用光学显微镜等设备观察试件在弯曲过程中的变形情况,并记录数据。
4. 结束实验并进行数据分析和总结。
实验结果:
经过对实验数据的统计和分析,得出试件的正应力如下:
点位正应力
1 10.5 MPa
2 12.8 MPa
3 11.2 MPa
4 9.6 MPa
5 11.9 MPa
分析与总结:
根据实验结果,可以得出正应力随着弯曲程度的增加而变大的结论。
通过分析实验数据,可以进一步了解材料的力学特性,为未来的工程设计和材料选择提供科学依据。
结论:
通过对纯弯曲梁正应力的实验研究,成功得出了试件在不同点位处的正应力,结论表明弯曲程度与正应力呈正相关关系。
在未来的工程实践中,将会更加注重材料力学研究,以提高工程设计和选择的准确性和可靠性。
实验五 纯弯曲梁正应力实验
![实验五 纯弯曲梁正应力实验](https://img.taocdn.com/s3/m/7488e14e77c66137ee06eff9aef8941ea76e4bed.png)
实验五 纯弯曲梁正应力实验一、试验目的1、熟悉电测法的基本原理。
2、进一步学会静态电阻应变仪的使用。
3、用电测法测定钢梁纯弯曲时危险截面沿高度分布各点的应力值。
二、试验装置1、材料力学多功能实验装置2、CM-1C 型静态数字应变仪三、试验原理本试验装置采用低碳钢矩形截面梁,为防止生锈将钢梁进行电镀。
矩形截面钢梁架在两支座上,加载荷时,钢梁中段产生纯弯曲变形最大,是此钢梁最危险的截面。
为了解中段危险截面纯弯曲梁应力沿高度方向分布情况,采用电测法测出加载时钢梁表面沿高度方向的应变情况,再由σ实=E ε实得到应力的大小。
试验前在钢梁上粘贴5片应变片见图5—1,各应变片的间距为4h,即把钢梁4等分。
在钢梁最外侧不受力处粘贴一片R 6作为温度补偿片。
图5—1 试验装置示意图对于纯弯曲梁,假设纵向纤维仅受单向拉伸或压缩,因此在起正应力不超过比例极限时,可根据虎克定律进行计算:σ实=E ε实E 为刚梁的弹性模量,ε实是通过电测法用电阻应变仪测得的应变值。
四、电测法基本原理1、电阻应变法工作原理电测法即电阻应变测试方法是根据应变应力关系,确定构件表面应力状态的一种实验应力分析法。
将应变片紧紧粘贴在被测构件上,连接导线接到电桥接线端子上 当构件受力 构件产生应变 应变片电阻值随之变化 应变仪内部的惠斯登电桥将电阻值的变化转变成正比的电压信号电阻应变仪内部的放大、相敏、检波电路转换显示器读出应变量。
2、电阻应变片1)电阻应变片的组成由敏感栅、引线、基底、盖层和粘结剂组成,其构造简图如图5—2所示。
敏感栅能把构件表面的应变转换为电阻相对变化。
由于它非常敏感,故称为敏感栅。
它用厚度为0.002~0.005mm的铜合金或铬合金的金属箔,采用刻图、制版、光刻及腐蚀等工艺过程制成,简称箔式应变。
它粘贴牢固、散热性能好、疲劳寿命长,并能较好的反映构件表面的变形,使测量精度较高。
在各测量领域得到广泛的应用。
图5—2 电阻应变片构造简图2)电阻应变片种类电阻应变片按敏感栅的结构形状可分为:单轴应变片:单轴应变片一般是指具有一个敏感栅的应变片。
纯弯梁弯曲的应力分析实验报告(1)
![纯弯梁弯曲的应力分析实验报告(1)](https://img.taocdn.com/s3/m/3258e251cbaedd3383c4bb4cf7ec4afe05a1b143.png)
纯弯梁弯曲的应力分析实验报告(1)纯弯梁弯曲的应力分析实验报告摘要:本实验通过对弹性应力理论与纯弯梁弯曲式的分析,利用数值模拟方法考察不同断面尺寸与载荷下,纯弯梁的应力分布规律。
结果表明,纯弯梁的弯曲模型已趋近线性,而不同截面在载荷作用下,分布的应力规律也有所不同。
一、实验目的1. 了解弹性应力理论;2. 了解纯弯梁弯曲式的理论基础;3. 学习数值模拟方法,考察不同断面尺寸且在不同载荷下,纯弯梁的应力分布规律。
二、实验原理在材料受力作用下,会出现应力和应变。
在纯弯梁的边缘处,由于受到较大的弯矩,内部产生的拉伸和压缩力,这种受弯矩作用下产生的应力即为弯曲应力。
纯弯梁的弯曲式为:M = σ I / y其中,M为弯矩;σ为弯曲应力;I为截面惯性矩;y为受力点到截面重心的距离。
对于常用的矩形或圆形梁,则计算其惯性矩为:矩形截面惯性矩:I = bh^3/12圆形截面惯性矩:I = πr^4/4将不同断面的惯性矩、受力点距离和载荷作用下的弯矩值,代入纯弯梁的弯曲式中,可得各点的弯曲应力大小。
三、实验步骤1. 制备不同断面尺寸的梁试样;2. 采用数值模拟方法计算不同截面的惯性矩;3. 在弯曲测试机上,在不同载荷下,测量不同断面的弯曲量;4. 根据测量结果计算不同断面受力点的弯矩值;5. 将计算得到的弯矩、惯性矩和受力点距离代入弯曲式中,计算各点的弯曲应力。
四、实验结果与分析1. 实验结果在实验过程中,我们选择矩形和圆形两种常用断面,计算在不同载荷下的弯曲应力分布规律。
a. 矩形截面弯曲应力分布当载荷作用下,矩形梁受力点的弯曲应力分布呈现不同程度的集中,越靠近中心线的应力越小,越靠近边缘的应力越大。
且随着载荷的增大,应力的分布数量级逐渐上升。
这是因为随着矩形本身惯性矩的不同,其受力变形性能有所不同,导致其内应力分布规律亦有所不同。
可以结合图1,得到不同载荷下的弯曲应力分布规律。
b. 圆形截面弯曲应力分布与矩形梁相比,圆形断面的弯曲分布规律相对更为均匀,无论在不同载荷下,其应力值分布密度维持在较为平均的水平。
纯弯曲梁的正应力实验报告
![纯弯曲梁的正应力实验报告](https://img.taocdn.com/s3/m/03c983273868011ca300a6c30c2259010302f35f.png)
姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。
纯弯曲实验报告
![纯弯曲实验报告](https://img.taocdn.com/s3/m/0fa4ed75842458fb770bf78a6529647d272834fa.png)
纯弯曲实验报告
实验目的:
研究材料在受力情况下的弯曲行为,并探究弯曲过程中的应变分布规律。
实验原理:
在材料的弯曲过程中,外层受拉,内层受压。
首先,将材料放置在两个支撑点之间,施加外力使其弯曲。
在这个过程中,通过张应变计测量材料不同位置的应变值,从而得到材料的应变分布规律。
实验步骤:
1. 准备实验所需材料和仪器,包括张应变计、弯曲机、试样等。
2. 将试样放置在弯曲机上,固定好。
3. 在试样上设定合适的测量点,并在每个测量点上粘贴上张应变计。
4. 施加逐渐增加的外力,使试样发生弯曲。
5. 同时记录下每个测量点的应变值,随着外力的变化进行观测。
6. 当试样发生塑性变形或断裂时停止施加外力,并记录下此时的应变值。
实验数据处理:
1. 将实验中测量到的应变值按照位置绘制出应变-位置曲线。
2. 根据应变-位置曲线,分析应变分布规律,获得不同位置处
的应变值。
3. 计算出试验材料的弯曲强度、刚度等参数。
实验注意事项:
1. 实验过程中操作要细心,避免对仪器和试样造成损坏。
2. 实验结束后要将仪器和试样清理干净,保持实验区域整洁。
实验结果:
根据实验数据处理得到的应变-位置曲线,得出不同位置处的应变值。
根据这些数据可以分析材料的弯曲行为和性能参数。
材料弯曲实验报告总结(3篇)
![材料弯曲实验报告总结(3篇)](https://img.taocdn.com/s3/m/a2241f98710abb68a98271fe910ef12d2af9a9da.png)
第1篇一、实验目的本次材料弯曲实验的主要目的是了解和掌握材料在弯曲过程中的力学性能,验证材料力学基本理论,提高对材料力学实验方法的认识。
通过实验,观察和分析不同材料在不同条件下的弯曲行为,为工程设计和材料选择提供理论依据。
二、实验原理材料在弯曲过程中,受到弯矩和剪力的影响,产生正应力和剪应力。
根据材料力学的基本理论,我们可以通过计算得到材料在弯曲过程中的应力分布和变形情况。
实验中,我们主要关注材料的弯曲正应力,即材料在弯曲过程中产生的垂直于中性轴的应力。
三、实验设备与材料1. 实验设备:弯曲试验机、万能材料试验机、测量仪器(如位移计、应变片等)、计算机等。
2. 实验材料:碳素钢、不锈钢、铝合金、塑料等。
四、实验步骤1. 根据实验要求,选择合适的材料,并进行加工处理,确保试样的尺寸和形状符合实验要求。
2. 将试样安装在弯曲试验机上,调整试验机的参数,如加载速度、加载方式等。
3. 对试样进行弯曲试验,记录实验过程中的数据,如位移、应变等。
4. 利用测量仪器对试样进行应变测量,通过应变片采集数据。
5. 对实验数据进行处理和分析,计算材料在弯曲过程中的应力分布和变形情况。
五、实验结果与分析1. 实验结果表明,不同材料在弯曲过程中的力学性能存在差异。
碳素钢具有较高的抗弯强度和刚度,适用于承受较大载荷的工程结构;不锈钢具有良好的耐腐蚀性能,适用于腐蚀性环境;铝合金具有较低的密度,适用于轻量化设计;塑料具有较好的韧性,适用于需要一定变形能力的场合。
2. 实验结果表明,材料在弯曲过程中的应力分布呈现非线性规律。
中性轴附近应力较大,远离中性轴的应力逐渐减小。
在材料弯曲过程中,最大应力出现在中性轴处。
3. 实验结果表明,材料在弯曲过程中的变形情况与材料的弹性模量和泊松比有关。
弹性模量较大的材料,其变形较小;泊松比较大的材料,其横向变形较大。
六、实验结论1. 通过本次材料弯曲实验,我们掌握了材料在弯曲过程中的力学性能,验证了材料力学基本理论。
纯弯曲实验报告
![纯弯曲实验报告](https://img.taocdn.com/s3/m/6254ab14302b3169a45177232f60ddccda38e69f.png)
纯弯曲实验报告纯弯曲是一种力学试验方法,通常用于评估材料的弯曲刚度和弯曲强度。
本次实验旨在探究两种不同材料的弯曲性能,并分析其结果。
实验设计本次实验使用了两个不同材质的杆材进行测试。
第一个杆材采用了铝合金材料,长度为100cm,直径为1cm。
第二个杆材采用了无定形塑料材料,长度为100cm,直径为0.5cm。
在实验开始前,我们打开实验设备的电源并准备好测试仪器。
我们调整测试仪器的参数以适应我们所使用的材料,包括弯曲测试的速度和初始弯曲角度。
一切准备就绪后,我们将第一个杆材放入实验装置并进行第一轮弯曲测试。
我们记录了此次测试的弯曲载荷和弯曲程度。
接着,我们继续进行第二轮弯曲测试,直到达到极限载荷。
在此过程中,我们还记录了杆材的弯曲程度和载荷大小。
同样,我们对第二个杆材也进行了此次实验的全部步骤,并记录相应数据。
实验结果我们用实验数据绘制了载荷-弯曲变形曲线,并进行了一些计算。
首先,我们计算了弯曲刚度,即载荷与弯曲程度之比。
然后,我们计算了每个杆材的最大弯曲载荷和最大弯曲程度。
从实验数据和图表中可以看出,铝合金杆材的弯曲刚度远高于无定形塑料杆材。
这表明铝合金杆材在受到载荷时可以更好地保持强度和稳定性。
此外,铝合金杆材的最大弯曲载荷也比无定形塑料杆材高得多,即使受到相同的弯曲程度,铝合金杆材仍能够继续承受更大的载荷。
结论本次纯弯曲实验表明,铝合金杆材在弯曲测试中表现出更高的刚度和更高的弯曲载荷。
这意味着铝合金杆材对承受弯曲载荷时能够保持更好的形状和稳定性。
无定形塑料杆材的弯曲刚度较低,更容易形变,并且其弯曲载荷较小。
实验中采用的测试方法和参数可以用于评估各种材料的弯曲性能,并为材料选择和设计提供有用的指导。
最后,我们需要指出,本次实验并非杆材在实际应用中所处的环境,故实验结果所表现的杆材弯曲性能与实际环境可能会有所不同。
因此,在实际设计中,需要考虑到实际环境、应用载荷、材料因素等多方面因素。
弯曲实验报告
![弯曲实验报告](https://img.taocdn.com/s3/m/cf22fba918e8b8f67c1cfad6195f312b3169ebb6.png)
弯曲实验报告弯曲实验报告引言:弯曲实验是力学实验中常见的一种实验方法,通过对材料在外力作用下的弯曲变形进行观察和分析,可以得到材料的弯曲性能和力学特性。
本文将围绕弯曲实验展开讨论,包括实验原理、实验步骤、实验结果和实验结论等内容。
实验原理:弯曲实验是利用外力作用在材料上,使其产生弯曲变形,从而研究材料的力学性能。
在实验中,我们通常会使用弯曲试件,如梁或杆,施加一定的力或力矩,观察材料的弯曲变形,并测量相关的物理量,如位移、应变和应力等。
实验步骤:1. 准备工作:选择合适的材料和试件,根据实验要求进行加工和制备。
确保试件的尺寸和几何形状符合实验设计要求。
2. 搭建实验装置:根据实验要求,搭建适当的实验装置,包括支撑和加载系统。
确保试件在实验过程中能够受到均匀的力或力矩作用。
3. 加载试件:施加一定的力或力矩在试件上,使其发生弯曲变形。
可以通过加载装置上的指示器或测力计等设备,实时监测加载力的大小。
4. 记录位移和应变:使用位移计或应变计等设备,记录试件在加载过程中的位移和应变情况。
可以通过数据采集系统,将数据保存在计算机中,以便后续的数据处理和分析。
5. 测量应力:根据试件的几何形状和加载方式,计算或测量试件上的应力分布。
可以使用应力计或应变计等设备,测量试件上不同位置的应力值。
6. 停止加载:当试件达到预定的加载条件或发生破坏时,停止加载试件。
记录停止加载时的位移和应变等数据。
实验结果:通过对实验数据的处理和分析,我们可以得到试件在弯曲加载下的位移、应变和应力等数据。
根据这些数据,可以绘制位移-载荷曲线、应变-载荷曲线和应力-应变曲线等图形。
通过分析曲线的特征和趋势,可以得到试件的弯曲刚度、屈服强度、弹性模量和断裂强度等力学参数。
实验结论:根据实验结果和数据分析,我们可以得出以下结论:1. 弯曲试件在加载过程中会发生弯曲变形,位移和应变随着加载力的增加而增加。
2. 弯曲试件的弯曲刚度与几何形状、材料性质和加载方式等因素有关。
纯弯曲梁正应力电测实验报告
![纯弯曲梁正应力电测实验报告](https://img.taocdn.com/s3/m/63740fe581eb6294dd88d0d233d4b14e85243ecd.png)
纯弯曲梁正应力电测实验报告一、实验目的本次实验旨在通过纯弯曲梁正应力电测实验,掌握梁的正应力计算方法以及电阻应变计的使用方法,并了解梁的受力特性和变形规律。
二、实验原理1.梁的受力特性当梁受到外力作用时,会产生内部应力和变形。
根据材料力学原理,内部应力可以分为正应力和剪应力。
在纯弯曲情况下,梁内部只存在正应力,且沿截面法线方向呈线性分布。
2.电阻应变计电阻应变计是一种常用的测量金属材料应变的仪器。
当金属材料发生形变时,其电阻值也会发生微小变化。
通过测量这种微小变化来计算金属材料的应变值。
3.纯弯曲梁正应力计算公式在纯弯曲情况下,梁内部只存在正应力。
根据受拉或受压状态下截面上某点处的正应力公式:σ = M*y/I其中,σ为该点处的正应力;M为作用于该点处剪跨截面上侧边缘的弯矩;y为该点到中性轴的距离;I为该截面的惯性矩。
三、实验器材和试件1.器材:纯弯曲梁实验台、电阻应变计、数字万用表等。
2.试件:长度为1.2m,宽度为20mm,厚度为2mm的钢板梁。
四、实验步骤1.将钢板梁放置在纯弯曲梁实验台上,并调整好实验台的支承距离。
2.将电阻应变计粘贴在梁上,保证其与梁表面紧密贴合,并接好电路。
3.通过旋钮调节实验台施加的力矩大小,使得钢板梁发生一定程度的弯曲变形,并记录下此时电阻应变计显示的电压值。
4.重复以上步骤,每次增加一定大小的力矩,直至达到最大载荷或者出现塑性变形等异常情况。
5.根据所得到的数据,计算出不同载荷下钢板梁各点处的正应力值,并绘制出正应力-距离曲线图和载荷-挠度曲线图。
五、实验结果分析1.正应力-距离曲线图通过计算所得到的正应力-距离曲线图,可以看出钢板梁内部正应力随着距离的增加而减小,且呈线性分布。
在最大载荷下,梁中心处的正应力最大,约为200MPa。
2.载荷-挠度曲线图通过实验数据计算得到的载荷-挠度曲线图,可以看出钢板梁的弯曲刚度随着载荷的增加而降低。
当达到最大载荷时,梁发生塑性变形并无法恢复原状。
纯弯曲实验报告
![纯弯曲实验报告](https://img.taocdn.com/s3/m/cd501a22ad02de80d4d84088.png)
纯弯曲实验报告(3)弯曲变形效果图(纵向剖面)(4)理论正应力根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD段横截面上任一高度处正应力的理论计算公式为z ii I yM=理论σ其中,M为CD段的截面弯矩(常值),z I为惯性矩,i y为所求点至中性轴的距离。
(5)实测正应力Page 2 of 10《材料力学》课程实验报告纸根据应变电测法的基本原理,电阻应变片粘贴到被测构件表面,构件在受到外载荷作用,发生变形,应变片因感受测点的应变,而同步发生变形,从而自身的电阻发生变化。
电阻应变仪通过设定的桥接电路的测量原理,将应变片的电阻变化转换成电信号(物理信号转换成电信号),最后通过应变仪内部自带的存储器和计算器(具有设定的程序计算公式),进行反馈计算输出应变值。
Page 3 of 10《材料力学》课程实验报告纸(6)误差分析两者误差%100⨯=理论理论-实测ii i i e σσσ四、试样的制备由教师完成。
五、实验步骤1、开始在未加载荷的时候校准仪器。
2、逆时针旋转实验架前端的加载手轮施加载荷。
加载方案采用等量加载法,大约500N 为一个量级,从0N 开始,每增加一级载荷,逐点测量各点的应变值。
加到最大载荷2000N ;每次读数完毕后记录数据。
3、按照上述步骤完成了第一遍测试后卸掉荷载节点应变(-6 10)-500N/-503N-996N/-1003N-1498N/-1497N-1994/-2000N1 -62 -114 -166 -212-56 -110 -158 -210 平均值-59 -112 -162 -2112 -26 -50 -76 -98-24 -48 -72 -100 平均值-25 -49 -74 -99Page 4 of 10《材料力学》课程实验报告纸载荷节点-500N/-503N-996N/-1003N-1498N/-1497N-1994/-2000N6 -112 -206 -298 -382-100 -196 -284 -378 平均值-106 -201 -291 -3807 -50 -96 -140 -182-50 -96 -140 -186 平均值-50 -96 -140 -184 8 2 12 16 22平均值 6112217823410 114 218 332 422 108 216 318 426 平均值 111 217325424其中矩形截面,弹性模量E=210GPa,高度h=40.0mm ,宽度b=15.2mm ,我们可以算得331248415.240108.1067101212zbh m I m --⨯⨯===⨯其中CD 段为纯弯曲,22P aM∙=,其中P 为载荷,a 为AC 段的距离。
实验报告-纯弯曲梁
![实验报告-纯弯曲梁](https://img.taocdn.com/s3/m/62c7f20d581b6bd97f19ea34.png)
纯弯曲梁横截面上正应力的测定
实验日期实验地点报告成绩
实验者班组编号环境条件℃、%RH 一、实验目的:
二、使用仪器:
三、实验原理:
四、实验数据记录:
1、梁的受力简图、弯矩图及测点布置示意图:
2、相关尺寸及常数:试样编号:
3、应变增量的测量:单位:×10-6
实验指导教师(签名):
五、实验数据处理:
六、实验结果:
七、思考题:
1、两个材料不同、几何尺寸及受载情况完全相同的梁,在同一位置处测得的应变是否相同?应力呢?为什么?
2、由理论计算出来的L σ∆与实际测量出来的c σ∆之间的误差主要是何原因产生的?
批阅报告教师(签名): 八、问题讨论:。
纯弯曲电测实验报告
![纯弯曲电测实验报告](https://img.taocdn.com/s3/m/58390646a300a6c30c229fae.png)
纯弯曲电测实验报告篇一:纯弯曲实验报告Page 1 of 10Page 2 of 10Page 3 of 10Page 4 of 10Page 5 of 10篇二:直梁纯弯曲电测实验试验报告邵阳学院实验报告实验项目:直梁纯弯曲电测实验实验日期实验地点成绩学院班级学生姓名同组成员指导老师学生学号一、实验内容和目的:、1、测定直梁纯弯曲时横截面上正应力大小和分布规律;2、验证纯弯曲梁的正应力计算工式;3、掌握电测法原理和电阻应变仪的使用方法。
二、实验设备(规格、型号)三、实验记录及数据处理表1.试件相关数据表2.实验数据记录四、实验结果计算与分析1、画出应变布示意图2、实验计算—根据测得的各点应变值ε1求出应变增量平均值Δε1,代入胡克定律计算各点的实验应力值,因1με=10-6ε,所以各点实验应变力为σi实=Ε×Δεi×10-63、理论值计算载荷增量为ΔP,弯曲增量ΔM=ΔP·a/2,故各点应力的理论值为:σi理=(ΔM·Yi)/Iz 4、实验值与理论值的比较5、绘制实验应力值和理论力值的分布图分别认横坐标表示各测点的应力σi实和σi理,以坐标轴表示各点测距梁中性层位置Yi,选用合适的比例绘出应力分布图。
篇三:纯弯曲实验报告page 1 of 10 page 2 of 10 page 3 of 10 page 4 of 10 page 5 of 10篇二:弯曲实验报告弯曲实验报告材成1105班 29 张香陈一、实验目的测试和了解材料的弯曲角度、机械性能、相对弯曲半径及校正弯曲时的单位压力等因素对弯曲角的影响及规律。
二、实验原理坯料在模具内进行弯曲时,靠近凸模的内层金属和远离凸模的外层金属产生了弹—塑性变。
但板料中性层附近的一定范围内,却处于纯弹性变形阶段。
因此,弯曲变形一结束,弯曲件由模中取出的同时伴随着一定的内外层纤维的弹性恢复。
这一弹性恢复使它的弯曲角与弯曲半径发生了改变。
实验四 纯弯曲电测实验(2H)
![实验四 纯弯曲电测实验(2H)](https://img.taocdn.com/s3/m/6845e9ca05087632311212f3.png)
成绩
指导教师
机械工程基础实验
实验报告书 实验报告书 报告
实验项目名称: 实验项目名称 学年: 学年: 纯 弯 曲 电 测 实 验 学期: 学期:
入学班级: 入学班级: 专业班级: 专业班级: 学 姓 号: 名:
联系电话: 联系电话: 指导老师: 指导老师:
纯弯曲电测实验( ) 实验四 纯弯曲电测实验(2H)
一、实验目的
二、实验使用的设备及工具(名称、规格) 实验使用的设备及工具(名称、规格)
三、实验记录及结果处理
(1)试样及其受力简图,贴电阻片的位置图:
1
(2) 试样的材料、尺寸及贴电阻片的位置
材料牌号 截面几何性质
试样安 装情况
贴电阻应变片位置 1# 2# y1 = y2 = 到中性 层距离 y(mm) y3 = y4 = y5 =
截面尺寸 弹性模量 E(GPa) 惯性距 IZ(cm4) 跨距 (尺寸 a(mm)
b (mm)
h (mm)
3# 4# 5#
(3)实验数据记录及实验结果 电阻应变仪上读数 ε (uε ) 载荷 P(N) 1# 2# 3# 4# 5#
ε1
0 100 200 300 400
ε2
ε3
ε4
ε5
电阻应变仪上读数 ∆ε (uε ) 载荷 ∆P (N) 1# 2# 3# 4# 5#
四、问题谈论
(1) 电阻应变片的工作原理是什么?
(2) 影响实验误差的主要因素是什么?
3
∆ε 1
∆ε 2
∆ε 3
∆ε 4
∆ε 5
载荷的 等增量
电阻应变仪上读数增量平均值 ∆ε 平均 (uε )
∆ε 1平均
6 纯弯曲梁的正应力实验
![6 纯弯曲梁的正应力实验](https://img.taocdn.com/s3/m/ba6fea9ff121dd36a32d826e.png)
实验六纯弯曲梁的正应力实验一、实验目的1. 梁在纯弯曲时横截面上正应力大小和分布规律;2. 验证纯弯曲梁的正应力计算公式;3. 测定泊松比μ;4. 掌握电测法的基本原理;二、实验设备1. 材料力学多功能实验台;2. 静态数字电阻应变仪一台;3. 矩形截面梁;4. 游标卡尺;三、实验原理1. 测定弯曲正应力本实验采用的是低碳钢制成的矩形截面试件,当力F 作用在辅助梁中央A 点时,通过辅助梁将压力F 分解为两个集中力2/F 并分别作用于主梁(试件)的B 、C 两点。
实验装置受力简图如下图所示。
根据内力分析,BC 段上剪力0=S F ,弯矩Fa M 21=,因此梁的BC 段发生纯弯曲。
在BC 段中任选一条横向线(通常选择BC 段的中间位置),在离中性层不同高度处取5个点,编号分别为①、②、③、④、⑤,在5个点的位置处沿着梁的轴线方向粘贴5个电阻应变片,如下图所示。
D C B a F/2F/2E a ⑥ ⑤ ①② ④ ③ hb根据单向受力假设,梁横截面上各点均处于单向应力状态,应用轴向拉伸时的胡克定律,即可通过测定的各点应变,计算出相应的实验应力。
采用增量法,各点的实测应力增量表达式为:i i E 实实εσ∆=∆式中:i 为测量点的编号,i =1、2、3、4、5;i 实ε∆ 为各点的实测应变平均增量;为各点的实测应力平均增量; 纯弯梁横截面上正应力的理论表达式为:z i i I y M ⋅=σ ; 增量表达式为: zi i I y M ⋅∆=∆σ 通过同一点实测应力的增量与理论应力增量计算结果比较,算出相对误差,即验证纯弯曲梁的正应力计算公式。
以截面高度为纵坐标,应力大小为横坐标,建立平面坐标系。
将5个不同测点通过计算得到的实测应力平均增量以及各测点的测量高度分别作为横坐标和纵坐标标画在坐标平面内,并连成曲线,即可与横截面上应力理论分布情况进行比较。
2. 测定泊松比在梁的下边缘纵向应变片⑤附近,沿着梁的宽度方向粘贴一片电阻应变片⑥(电阻应变片⑥也可贴在梁的上边缘),测出沿宽度方向的应变,利用公式εεν'=,确定泊松比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宽度b=15.2mm。
旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。
对主梁进行受力分析,得到其受力简图,如图1所示。
(2)内力图
分析主梁的受力特点,进行求解并画出其内力图,我们得到CD 段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。
主梁的内力简图,如图2所示。
Page 1 of 10
《材料力学》课程实验报告纸
(3)弯曲变形效果图(纵向剖面)
(4)理论正应力
根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为
z
i
i I y M =
理论σ
其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩,i y 为所求点至中性轴的距离。
(5)实测正应力
测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,
Page 2 of 10
Page 3 of 10
Page 4 of 10
Page 5 of 10
Page 6 of 10
Page 7 of 10
《材料力学》课程实验报告纸
b.σ–P曲线图
在σ–P坐标系中,以σi实的值为横坐标,P的值为纵坐标,将各点的实测应力值分别绘出,然后进行曲线拟合,这样就得到了纯弯梁横截面上各点在不同载荷下的5条正应力分布曲线。
检查σ∝P是否成立;
编写如下代码:
q5=[-2.2260,-4.2210,-6.1110,-7.9800;-1.0500,-2.0160,-2.9400 ,-3.8640;0.0210,0.2520,0.3360,0.4620;1.2810,2.5620,3.7380,4 .9140;2.3310,4.5570,6.8250,8.9040];
y=[501.5,999.5,1497.5,1997];
p1=polyfit(q5(1,:),y,1)
Page 8 of 10
Page 9 of 10
《材料力学》课程实验报告纸
Page 10 of 10
(学习的目的是增长知识,提高能力,相信一分耕耘一分收获,努力
就一定可以获得应有的回报)。