编号16、牛顿定律临界极值

合集下载

牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题

牛顿运动定律中的临界和极值问题1.动力学中的典型临界问题(1)接触与脱离的临界条件两物体相接触或脱离的临界条件是接触但接触面间弹力F N=0.(2)相对静止或相对滑动的临界条件两物体相接触且处于相对静止时,常存在着静摩擦力,则相对静止或相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件绳子断与不断的临界条件是绳子张力等于它所能承受的最大张力.绳子松弛的临界条件是F=0.T(4)速度最大的临界条件在变加速运动中,当加速度减小为零时,速度达到最大值.2.解决临界极值问题常用方法(1)极限法:把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的.(2)假设法:临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题.(3)数学法:将物理过程转化为数学公式,根据数学表达式解出临界条件.题型一:接触与脱离类的临界问题例1: 如图所示,在劲度系数为k的弹簧下端挂一质量为m的物体,物体下有一托盘,用托盘托着物体使弹簧恰好处于原长,然后使托盘以加速度a竖直向下做匀速直线运动(a<g),试求托盘向下运动多长时间能与物体脱离?例2: 如图,竖直固定的轻弹簧,其劲度系数为k=800N/m,上端与质量为3.0 kg的物块B相连接。

另一个质量为1.0 kg的物块A放在B上。

先用竖直向下的力F=120N压A,使弹簧被压缩一定量后系统静止,突然撤去力F,A、B共同向上运动一段距离后将分离,分离后A上升最大高度为0.2 m,取g=10 m/s2,求刚撤去F时弹簧的弹性势能?例3:如图所示,质量均为m 的A 、B 两物体叠放在竖直轻质弹簧上并保持静止,用大小等于mg 21的恒力F 向上拉A ,当运动距离为h 时A 与B 分离。

则下列说法正确的是( )A .A 和B 刚分离时,弹簧为原长B .弹簧的劲度系数等于hmg 23 C .从开始运动到A 和B 刚分离的过程中,两物体的动能先增大后减小D .从开始运动到A 和B 刚分离的过程中,A 物体的机械能一直增大例4:如图甲所示,平行于光滑斜面的轻弹簧劲度系数为k ,一端固定在倾角为θ的斜面底端,另一端与物块A 连接;两物块A 、B 质量均为m ,初始时均静止。

牛顿运动定律专题03动力学的临界和极值问题

牛顿运动定律专题03动力学的临界和极值问题

§专题03:动力学的临界和极值问题教学目标:教学重点、难点:新课引入:教学过程:一、临界和极值在应用牛顿定律解决动力学问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象。

此时要采用极限分析法,看物体在不同加速度时,会有哪些现象发生,尽快找出临界点,求出临界条件。

在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。

这类问题称为临界问题。

在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。

1、相互接触的物体,它们分离的临界条件是:它们之间的弹力N,而且此时它们的速度相等,加速度相同。

【例】如图,在竖直立在水平面的轻弹簧上面固定一块质量不计的薄板,将薄板上放一重物,并用手将重物往下压,然后突然将手撤去,重物即被弹射出去,则在弹射过程中,(即重物与弹簧脱离之前),重物的运动情况是()A、一直加速B、先减速,后加速C、先加速、后减速D、匀加速答案:C【例】如图所示,劲度系数为k 的轻弹簧竖直固定在水平面上,上端固定一质量为0m 的托盘,托盘上有一个质量为m 的木块。

用竖直向下的力将原长为0l 的弹簧压缩后突然撤去外力,则m 即将脱离0m 时的弹簧长度为( )A 、0lB 、()k g m m l +-00C 、k mg l -0D 、kg m l 00- 答案:A【例】如图所示,物体A 静止在台秤的秤盘B 上,A 的质量为kg m A 5.10=,B 的质量kg m B 5.1=,弹簧质量不计,劲度系数m N k /800=,现给A 施加一个竖直向上的力F ,使它向上做匀加速直线运动,已知力F 在开始的s t 2.0=内是变力,此后是恒力,求F 的最大值和最小值。

答案:N 168、N 72解:由题意可知,它们将在s t 2.0=时分离。

牛顿运动定律的应用-临界问题与极值问题习题

牛顿运动定律的应用-临界问题与极值问题习题

牛顿运动定律的应用——临界和极值问题一、概念临界状态常指某种物理现象由量变到质变过渡到另一种物理现象的连接状态常伴有极值问题出现。

(1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态,这种涉及临界状态的问题叫临界问题。

(2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况。

二、关键词语在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”“恰好”、“刚刚”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。

有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类问题一般用假设法。

三、常见类型动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛问题;三是摩擦力发生突变的滑动与不滑动问题。

四、解题关键解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件。

常见的三类临界问题的临界条件: 1、相互接触的两个物体将脱离的临界条件是:相互作用的弹力为零。

2、绳子松弛的临界条件是:绳子的拉力为零。

3、存在静摩擦的系统,相对滑动与相对静止的临界条件是:静摩擦力达到最大值。

例题例1:有一质量M=4kg的小车置于光滑水平桌面上,在小车上放一质量m=6kg的物块,动摩擦因素µ=0.2,现对物块施加F=25N的水平拉力,如图所示,求小车的加速度?(设车与物块之间的最大静摩擦力等于滑动摩擦力且g取10m/s2)例1例2.托盘A 托着质量为m 的重物B ,B 挂在劲度系数为k 的弹簧下端,弹簧的上端悬挂于O 点,开始时弹簧竖直且为原长,今让托盘A 竖直向下做初速为零的匀加速运动,其加速度为a ,求经过多长时间,A 与B 开始分离(a <g ).临界问题与极值问题针对训练一、选择题(第1到第4为单选题,第5到第8题为多选题)1.如图在前进的车厢的竖直后壁上放一个物体,物体与后壁间的滑动摩擦系数为μ,设最大静摩擦力等于滑动摩擦力.要使物体不下滑,车厢至少应以多大的加速度前进( )A .g/μB .gμC .μ/gD .g2.如图2所示,质量为M 的木板,上表面水平,放在水平桌面上,木板上面有一质量为m 的物块,物块与木板及木板与桌面间的动摩擦因数均为μ,若要以水平外力F 将木板抽出,则力F 的大小至少为( )A. μmgB. ()μM m g +C. ()μm M g +2D. ()2μM m g +3.一个物体沿摩擦因数一定的斜面加速下滑,下列图象,哪个比较准确地描述了加速度a 与斜面倾角θ的关系( )4.如图所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg 。

牛顿运动定律的应用之临界问题的处理方法(解析版)

牛顿运动定律的应用之临界问题的处理方法(解析版)

牛顿运动定律的应用之临界极值问题一、临界或极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,表明题述的过程存在临界点。

(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在“起止点”,而这些起止点往往就对应临界状态。

(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在极值,这个极值点往往是临界点。

学#科网(4)若题目要求“最终加速度”、“稳定速度”等,即是求收尾加速度或收尾速度。

二、几种临界状态和其对应的临界条件如下表所示临界状态 临界条件 速度达到最大 物体所受的合外力为零 两物体刚好分离 两物体间的弹力F N =0绳刚好被拉直 绳中张力为零绳刚好被拉断绳中张力等于绳能承受的最大拉力三、 解决临界问题的基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段); (2)寻找过程中变化的物理量; (3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系。

挖掘临界条件是解题的关键。

如例5中第(2)的求解关键是:假设球刚好不受箱子的作用力,求出此时加速度a 。

【典例1】如图所示,θ=37°,m =2 kg ,斜面光滑,g 取10 m /s 2,斜面体以a =20 m /s 2的加速度沿水平面向右做匀加速直线运动时,细绳对物体的拉力为多大?【答案】【解析】 设m 处在这种临界状态,则此时m 对斜面体的压力为零.由牛顿第二定律可知,临界加速度a 0=g c otθ=10×43 m /s 2=403 m /s 2.将临界状态的加速度a 0与题设给出的加速度进行比较,知a>a 0,所以m已离开斜面体,此时的受力情况如图所示,由平衡条件和牛顿第二定律可知: T c o s α=m a ,T s i n α=mg .注意:a≠0, 所以【典例2】如图所示,水平地面上的矩形箱子内有一倾角为θ的固定斜面,斜面上放一质量为m 的光滑球。

牛顿运动定律临界问题

牛顿运动定律临界问题
对小物体受力分析可知,其合力为静摩擦力, 而最大静摩擦力提供最大的加速度,即
联立两个式子可得:F (M m )g 0 .1 ( 3 1 ) 1 N 0 (二)
------临界与极值问题
2021/3/10
讲解:XX
1
一、临界问题
临界状态:物体由某种物理状态变化为 另一种物理状态时,中间发生质的飞跃 的转折状态,通常称之为临界状态。
临界问题:涉及临界状态的问题叫做临 界问题。
2021/3/10
讲解:XX
2
二、临界问题的分析与求解 在应用牛顿定律解决动力学问题中,
ya
FN F
FN=1.4mg
x
F的负号表示绳已松弛,故 F=0
θG
[此小时结a=]gta绳n θ子=3g松/4 弛的临界条件是:绳中
拉而a力=g刚,故好绳为已松零弛。,绳上拉力为零
2021/3/10
讲解:XX
11
例 如图所示,质量均为M的两个木块A、B在水平力F
题 的作用下,一起沿光滑的水平面运动,A与B的接
分 触面光滑,且与水平面的夹角为60°,求使A与B一
析 起运动时的水平力F的范围。
解:当水平力F为某一值时, 恰好使A沿AB面向上滑动,
FA
B
﹚60°
即分物析体:A当对水地平面推的力压F力很恰小好时为,零A与,B受一力起分作析匀如加图
对速整运体动:,F当F较2M 大①时a,B对A的弹力竖直向上的
隔分此的沿离后临力AF N AB, 界等 c:面物 条于N o 向N6 A体 件s上A的sA就i0 滑 6 将重③④n 0是M 动力会0 水② ,时相平M 即,对g 力0物地BF体滑为a 面动A某对对。一A地显的N值面而支时的易持,压见力恰G力,为好﹚恰6本零使0°好F题,A

高中物理牛顿运动定律的应用_牛顿运动定律的应用之临界极值问题

高中物理牛顿运动定律的应用_牛顿运动定律的应用之临界极值问题

牛顿运动定律的应用-牛顿运动定律的应用之临界极值问题接触的物体是否会发生分离等等,这类问题就是临界问题。

在应用牛顿运动定律解决临界问题中,当物体运动的加速度不同时,物体有可能处于不同的状态,特别是题目中出现“最大”、“最小”、“刚好”等词语时,往往会有临界现象,此时要采用假设法或极限分析法,看物体以不同的加速度运动时,会有哪些现象发生,尽快找出临界点,求出临界条件。

2. 若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态;3. 若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点;4. 若题目要求“最终加速度”、“稳定加速度”等,即是求收尾加速度或收尾速度。

F N=0。

2. 相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值。

3. 绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T=0。

4. 加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度。

当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的加速度为零或最大。

题设中若出现“最大”“最小”“刚好”等这类词语时,一般就隐含着临界问题,解决这类问题时,常常是把物理问题(或物理过程)引向极端,进而使临界条件或临界点暴露出来,达到快速解决有关问题的目的。

2. 假设法:有些物理问题在变化过程中可能会出现临界问题,也可能不出现临界问题,解答这类题,一般要用假设法。

假设法是解物理问题的一种重要方法。

用假设法解题,一般依题意从某一假设入手,然后运用物理规律得出结果,再进行适当讨论,从而找出正确答案。

(word完整版)高一物理牛顿运动定律运用中的临界问题

(word完整版)高一物理牛顿运动定律运用中的临界问题

牛顿运动定律运用中的临界问题在应用牛顿定律解题时常遇到临界问题,它包括:平衡物体(a=0)的平衡状态即将被打破而还没有被打破的瞬间;动态物体(a≠0)的状态即将发生突变而还没有变化的瞬间。

临界状态也可归纳为加速度即将发生突变的状态。

加速度发生突变的本质原因是物体的外力发生了突变,物体处于临界状态,必然隐含着某些力(如弹力、摩擦力等)的突变。

抓住这些力突变的条件,是我们解题的关键。

一、和绳子拉力相联系的临界情况例1. 小车在水平路面上加速向右运动,一质量为m的小球用一条水平线和一条斜线(与竖直方向成30°角)把小球系于车上,求下列情况下,两绳的拉力:(1)加速度;(2)加速度。

解析:小车处于平衡态(a=0)对小球受力分析如下图所示。

当加速度a由0逐渐增大的过程中,开始阶段,因m在竖直方向的加速度为0,角不变,不变,那么,加速度增大(即合外力增大),OA绳承受的拉力必减小。

当时,m存在一个加速度,物体所受的合外力是的水平分力。

当时,a增大,(OA绳处于松弛状态),在竖直方向的分量不变,而其水平方向的分量必增加(因合外力增大),角一定增大,设为a。

当时,。

当,有:(1)(2)解得当,有:。

点评:1. 通过受力分析和对运动过程的分析找到本题中弹力发生突变的临界状态是绳子OA拉力恰好为零;2. 弹力是被动力,其大小和方向应由物体的状态和物体所受的其他力来确定。

二、和静摩擦力相联系的临界情况例2. 质量为m=1kg的物体,放在=37°的斜面上如下图所示,物体与斜面的动摩擦因数,要是物体与斜面体一起沿水平方向向左加速运动,则其加速度多大?解析:当物体恰不向下滑时,受力分析如下图所示,解得当物体恰不向上滑时,受力分析如下图所示,解得因此加速度的取值范围为:。

点评:本题讨论涉及静摩擦力的临界问题的一般方法是:1. 抓住静摩擦力方向的可能性。

2. 最大静摩擦力是物体即将由相对静止变为相对滑动的临界条件。

牛顿定律应用:临界、极值、连接体问题

牛顿定律应用:临界、极值、连接体问题

牛顿定律的应用-----牛顿定律中的临界与极值问题一. 概念:1. 临界状态和临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的状态叫临界状态;临界状态是一些物理现象在动态变化过程中发生量变和质变的转折点.;涉及临界状态的问题叫临界问题。

2. 极值问题:有关在满足一定的条件下,某物理量出现极大值或极小值的问题叫极值问题。

二、临界与极值问题的主要类型:类型一:与弹力有关的临界问题【例题1】在水平向右运动的小车上,有一倾角θ=370的光滑斜面,质量为m 的小球被平行于斜面的细绳系住而静止于斜面上,如图所示。

(1)使小车从静止开始向右做加速度逐渐增大的加速运动,试分析绳子拉力和斜面对小球支持力随加速度增大如何变化? 要使小球对斜面无压力,求小车运动的加速度范围。

【解析】(2)使小车从静止开始向左做加速度逐渐增大的加速运动,试分析绳子拉力和斜面对小球支持力随加速度增大如何变化? 要使小球对绳子无拉力,求小车运动的加速度范围.【解析】【小结】(3)若小车以①a 1=g, ②a 2=2g 的加速度水平向右做加速运动,求绳对小球的拉力及斜面对小球的弹力各为多大?【解析】a【小结】解决临界值问题的基本方法:关键:类型二:与摩擦力有关的临界问题【例题2】如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m,A 、B 间的最大静摩擦力为fm 。

若(1)对B加一向右的水平力F ,要使A 、B 刚好不发生相对滑动,一起沿水平面运动,求F的大小。

(2)若改为水平力F ′拉A ,使A 、B 也保持相对静止,一起沿水平面运动,则F ′不得超过多大?【解析】【练习】有一质量M=4kg 的长木板置于光滑水平桌面上,在木板上放一质量m=6kg 的物块,物块与木板间的动摩擦因数µ=0.2, 现对物块分别施加F 1=50N 、F 2=25N 的水平拉力,如图所示,求木板的加速度?M 、m 间的摩擦力?(设木板与物块之间的最大静摩擦力等于滑动摩擦力且g 取10m/s 2)【解析】F F ′课后练习:1.如图所示,木块A 、B 静止叠放在光滑水平面上,A 的质量为m ,B 的质量为2m 。

牛顿运动定律应用临界与极值问题

牛顿运动定律应用临界与极值问题

牛顿运动定律应用(三)临界与极值问题临界问题:当物体由一种物理状态变为另一种物理状态时,可能存在一个过渡的转折点,这时物体所处的状态通常称为临界状态,与之相关的物理条件则称为临界条件。

解答临界问题的关键是找临界条件。

许多临界问题,题干中常用“恰好”、“最大”、“至少”、“不相撞”、“不脱离”……等词语对临界状态给出了明确的暗示,审题时,一定要抓住这些特定的词语发掘其内含规律,找出临界条件。

极值问题:是指研究动力学问题中某物理量变化时出现的最大值或最小值一、平衡中的临界与极值问题在平衡问题中当物体平衡状态即将被打破时常常会出现临界现象,分析这类问题要善于通过研究变化的过程与物理量来寻找临界条件。

解题的关键是依据平衡条件及相关知识进行分析,常见的解题方法有假设法、解析法、极限分析法等。

1.跨过定滑轮的轻绳两端,分别系着物体A和物体B,物体A放在倾角为θ的斜面上,如图甲所示.已知物体A的质量为m,物体A与斜面的动摩擦因数为μ(μ<tanθ),滑轮的摩擦不计,要使物体A静止在斜面上,求物体B的质量的取值范围(按最大静摩擦力等于滑动摩擦力处理).2:如图所示,水平面上两物体m1、m2经一细绳相连,在水平力F 的作用下处于静止状态,则连结两物体绳中的张力可能为( )A、零B、F/2C、FD、大于F3.三段不可伸长的细绳OA 、OB 、OC 能承受的最大拉力相同,它们共同悬挂一重物,如图所示,其中OB 是水平的,A 端、B 端固定。

若逐渐增加C端所挂物体的质量,则最先断的绳A 、必定是OAB 、必定是OBC 、必定是OCD 、可能是OB ,也可能是OC二.非平衡态中的临界与极值问题(一.在动力学的问题中,物体运动的加速度不同,物体的运动状态不同,此时可能会出现临界现象。

分析这类问题时挖掘隐含条件,确定临界条件,对处于临界准确状态的研究对象进行受力分析,并灵活应用牛顿第二定律是解题的关键,常见的解题方法有极限法、假设法等。

专题五-牛顿第二定律中的临界和极值问题

专题五-牛顿第二定律中的临界和极值问题

专题五牛顿运动定律的应用——临界和极值问题一、概念(1)临界问题:某种物理现象(或物理状态)刚好要发生或刚好不发生的转折状态。

(2)极值问题:在满足一定的条件下,某物理量出现极大值或极小值的情况。

二、关键词语在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。

有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答这类问题一般用假设法。

三、常见类型动力学中的常见临界问题主要有三类:一是弹力发生突变时接触物体间的脱离与不脱离的问题;二是绳子的绷紧与松弛问题;三是摩擦力发生突变的滑动与不滑动问题。

四、解题关键解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析,找出处于临界状态时存在的独特的物理关系,即临界条件。

常见的三类临界问题的临界条:1、相互接触的两个物体将脱离的临界条件是:相互作用的弹力为零。

2、绳子松弛的临界条件是:绳子的拉力为零。

3、存在静摩擦的系统,相对滑动与相对静止的临界条件是:静摩擦力达到最大值。

五、例题解析【例题1】质量为0.2kg的小球用细线吊在倾角为θ=60°的斜面体的顶端,斜面体静止时,小球紧靠在斜面上,线与斜面平行,如图所示,不计摩擦,求在下列三种情况下,细线对小球的拉力(取g=10 m/s2)(1) 斜面体以23m/s2的加速度向右加速运动;(2) 斜面体以43m/s2,的加速度向右加速运动;【例题2】如图所示,轻绳AB与竖直方向的夹角θ=37°,绳BC水平,小球质量m=0.4 kg,取g=10m/s2。

试求:(1)小车以a1=2.5m/s2的加速度向右做匀加速运动时,绳AB的张力是多少?(2)小车以a2=8m/s2的加速度向右做匀加速运动时,绳AB的张力是多少?【例题3】如图所示,质量为2kg 的m1和质量为1kg 的m2两个物体叠放在一起,放在水平面,m1与m2、m1与水平面间的动摩擦因数都是0.3,现用水平拉力F拉m1,使m 1 和m 2一起沿水平面运动,要使m 1 和m 2之间没有相对滑动,水平拉力F 最大为多大?六、巩固练习【练习1】一个质量为m=0.1kg 的小球,用细线吊在倾角a =37°的斜面顶端,如图所示。

牛顿运动定律的临界问题

牛顿运动定律的临界问题

水平面光滑,用水平力F拉B,当拉力大小分别为F1=10N和
F2=20N时,A 、B旳加速度各为多大?
解:假设拉力为F0时,A、B之间旳静摩擦力
mA
到达5N,它们刚好保持相对静止.对于整体
F
和物体A,分别应用牛顿第二定律
B
F0 (mA mB )a ① fm mAa ②
联立①②两式解出 F0 15N
x2
x1
mg cos2 k sin
a
θ θ
mg
牛顿定律利用中旳临界和极值问题
例题分析:1、小车在水平路面上加速向右运动,一 质量为m旳小球用一条水平线和一条斜线(与竖 直方向成30度角)把小球系于车上,求下列情况 下,两绳旳拉力:
(1)加速度a1=g/3 (2)加速度a2=2g/3
B θ
A
O
分析(1)平衡态(a=0)受力分析 。
300 图1
分析:讨论涉及静摩擦力旳临界问题旳一般措施
是:1、抓住静摩擦力方向旳可能性。2、物体即 将由相对 静止旳状态即将变为相对 滑动状态旳 条件是f=μN(最大静摩擦力)。本题有两个临界 状态,
当物体具有斜向上旳 运动趋势时,物体受到旳摩 擦力为最大静摩擦力;
当物体具有斜向下旳运动趋势时,物体受到旳摩 擦力为最大静摩擦力。
mg 关键是找出装置现状(绳旳位置)和临界条件, 而不能以为不论α多大,绳子旳倾斜程度不变.
例6.质量为m旳小物块,用轻弹簧固定
在光滑旳斜面体上,斜面旳倾角为θ,如
图所示。使斜面体由静止开始向右做加速
度逐渐缓慢增大旳变加速运动,已知轻弹
簧旳劲度系数为k。求:小物块在斜面体
θ
上相对于斜面体移动旳最大距离。
T1 F0

牛顿运动定律中的临界问题

牛顿运动定律中的临界问题

牛顿运动定律临界问题(一)临界问题1.临界状态:在物体的运动状态变化的过程中,相关的一些物理量也随之发生变化。

当物体的运动变化到某个特定状态时,有关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态。

临界状态是发生量变和质变的转折点。

2.关键词语:在动力学问题中出现的“最大”、“最小”、“刚好”、“恰能”等词语,一般都暗示了临界状态的出现,隐含了相应的临界条件。

3.解题关键:解决此类问题的关键是对物体运动情况的正确描述,对临界状态的判断与分析。

4.常见类型:动力学中的常见临界问题主要有两类:一是弹力发生突变时接触物体间的脱离与不脱离、绳子的绷紧与松弛问题;一是摩擦力发生突变的滑动与不滑动问题。

(二)、解决临界值问题的两种基本方法1.以物理定理、规律为依据,首先找出所研究问题的一般规律和一般解,然后分析和讨论其特殊规律和特殊解。

2.直接分析、讨论临界状态和相应的临界值,找出相应的物理规律和物理值弹簧类【例1】一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m的物体,有一水平板将物体托住,并使弹簧处于自然长度。

如图7所示。

现让木板由静止开始以加速度a(a<g)匀加速向下移动。

求经过多长时间木板开始与物体分离。

【例2】如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P处于静止,P的质量m=12kg,弹簧的劲度系数k=300N/m。

现在给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在t=0.2s内F是变力,在0.2s以后F是恒力,g=10m/s2,则F的最小值是,F的最大值是。

图7图8【例3】一弹簧秤的秤盘质量m 1=1.5kg ,盘内放一质量为m 2=10.5kg 的物体P ,弹簧质量不计,其劲度系数为k=800N/m ,系统处于静止状态,如图9所示。

现给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在最初0.2s 内F 是变化的,在0.2s 后是恒定的,求F 的最大值和最小值各是多少?(g=10m/s 2)接触类【例4】如图10,在光滑水平面上放着紧靠在一起的AB两物体,B的质量是A的2倍,B受到向右的恒力FB =2N ,A受到的水平力FA =(9-2t)N ,(t 的单位是s)。

牛顿运动定律 应用四临界和极值

牛顿运动定律 应用四临界和极值

1
例4全解
A
F1 解:(1)研究物块1上升的过程。以物块1为研究对象,其 受力分析和运动过程分析如图1所示。物块1在最高点A O 处,加速度最大,且方向竖直向下,F1+m1g=mam F1最 F2 ’ 大。以物块2为研究对象,其受力分析如图2所示。F1 最 大时,N=0,即F1’=m2g 因F1’=F1 所以,m1g+m2g=m1am B
m g 2 (F ( / M m) )2
牛顿定律运用中的临界和极值问题
例题分析:1、小车在水平路面上加速向右运动,一质量为m的 小球用一条水平线和一条斜线(与竖直方向成30度角)把 小球系于车上,求下列情况下,两绳的拉力:(1)加速度 a1=g/3 (2)加速度a2=2g/3
B A θ O
300 图1
分析:讨论涉及静摩擦力的临界问题的一般方法是:1、抓住静摩擦力方向的
可能性。2、物体即将由相对 静止的状态即将变为相对 滑动状态的条件是 f=μN(最大静摩擦力)。本题有两个临界状态,当物体具有斜向上的 运动趋 势时,物体受到的摩擦力为最大静摩擦力;当物体具有斜向下的运动趋势时, 物体受到的摩擦力为最大静摩擦力。 N y f1 当物体具有斜向下的运动趋势时,受力分析如图2所示, sin300 N1 - f1 cos300=ma0 (1) f1 sin300+N1 cos300=mg (2) f 1 =μN1 (3) a 01=? 当物体具有斜向上的运动趋势时,受力分析如图3所示, N2sin300+ f2 cos300=ma0 (1) N2 cos300=mg + f2 sin300(2) f 2 =μN2 (3) a 02=? (求出加速度的取值范围)
B
θ
A O

牛顿定律:临界和极值问题

牛顿定律:临界和极值问题
m
力μmg,对于整体和物体B,分别应用牛顿 第二定律
A
FA (m M )a ①
A m
B
m
FmAΒιβλιοθήκη mg Ma ②联立①②两式解出 FA
M
m(m M ) g
M
量变积累到一定程度,发生质变,出现临界状态.
⑵设保持A、B相对静止施于B的最大拉力为FB ,此时A、B之间达 到最大静摩擦力μmg,对于整体和物体A,分别应用牛顿第二定 律
解:设物体与木板一起匀加速运动 的距离为x时,木板与物体分离, 它们之间的弹力为零 N
kx
a
m g kx m a ① 1 2 x at ② 2
2m( g a) t ka
mg
必须清楚面接触物体分离条件 (1)接触面间的弹力为零; (2)两个物体的加速度相等。
联立①②两式解出
第三章 牛顿运动定律
专题十 临界和极值问题
临界状态:当物体从某种物理状态变化到另一种 物理状态时,发生质的飞跃的转折状态通常叫做临界 状态,出现“临界状态”时,既可理解成“恰好出现” 也可以理解为“恰好不出现”的物理现象.
两物体分离的临界条件是:两物体之间刚好无相 互作用的弹力,且此时两物体仍具有相同的速度和加 速度。
5. 如图所示,把长方体切成质量分别为m和M的两部分, 切面与底面的夹角为θ,长方体置于光滑的水平地面,设 切面亦光滑,问至少用多大的水平推力推m,m才相对 M滑动? F
解: 设水平推力为F时,m刚好相对M滑 动.对整体和m分别根据牛顿第二定律
m
θ
M
F ( M m)a ①
F N1 sin ma ② N1 cos mg 0 ③
mg tan a g tan m

牛顿运动定律的应用之临界极值问题

牛顿运动定律的应用之临界极值问题

牛顿运动定律的应用之临界极值问题一、临界或极值条件的标志(1)有些题目中有“刚好”、“恰好”、“正好”等字眼,表明题述的过程存在临界点。

(2)若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在“起止点”,而这些起止点往往就对应临界状态。

(3)若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在极值,这个极值点往往是临界点。

(4)若题目要求“最终加速度”、“稳定速度”等,即是求收尾加速度或收尾速度。

二、几种临界状态和其对应的临界条件如下表所示临界状态临界条件速度达到最大物体所受的合外力为零两物体刚好分离两物体间的弹力F N=0绳刚好被拉直绳中张力为零绳刚好被拉断绳中张力等于绳能承受的最大拉力三、(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系。

注意:挖掘临界条件是解题的关键。

【题型1】如图所示,细线的一端固定在倾角为45°的光滑楔形滑块A的顶端P处,细线的另一端拴一质量为m的小球(重力加速度为g).(1)当滑块至少以多大的加速度向右运动时,线对小球的拉力刚好等于零?(2)当滑块至少以多大的加速度向左运动时,小球对滑块的压力等于零?(3)当滑块以a′=2g的加速度向左运动时,线上的拉力为多大?【题型2】日本大地震以及随后的海啸给日本造成了巨大的损失。

灾后某中学的部分学生组成了一个课题小组,对海啸的威力进行了模拟研究,他们设计了如下的模型:如图甲所示,在水平地面上放置一个质量为m=4 kg的物体,让其在随位移均匀减小的水平推力作用下运动,推力F随位移x变化的图象如图乙所示。

已知物体与地面之间的动摩擦因数为μ=0.5,g=10 m/s2。

求:(1)运动过程中物体的最大加速度为多少?(2)距出发点多远时物体的速度达到最大?【题型3】跳伞运动员在下落过程中(如图所示),假定伞所受空气阻力的大小跟下落速度的平方成正比,即F =kv 2,比例系数k =20 N·s 2/m 2,跳伞运动员与伞的总质量为72 kg ,跳下高度足够高,(g 取10 m/s 2)则:(1)跳伞运动员在空中做什么运动?收尾速度是多大?(2)当速度达到4 m/s 时,下落加速度是多大?【题型4】(多选)如图甲所示,平行于光滑斜面的轻弹簧劲度系数为k ,一端固定在倾角为θ的斜面底端,另一端与物块A 连接,两物块A 、B 质量均为m ,初始时均静止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿定律应用临界、极值问题
1.接触与脱离的临界条件:两物体相接触或脱离,临界条件是:弹力FN=0.
2.相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.
3.绳子断裂与松弛的临界条件:绳子所能承受的张力是有限的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:FT=0.
4.加速度最大与速度最大的临界条件:当物体在受到变化的外力作用下运动时,其加速度和速度都会不断变化,当所受合外力最大时,具有最大加速度;合外力最小时,具有最小加速度.当出现速度有最大值或最小值的临界条件时,物体处于临界状态,所对应的速度便会出现最大值或最小值.
例1.个质量为0.2 kg的小球用细绳吊在底角θ=53°的斜面顶端,如图所示.斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s2的加速度向左做加速运动时,
求绳子的拉力及斜面对小球的弹力.(g取10 m/s2)
变式练习1:如图所示,质量为m=1 kg的物块放在倾角为θ=37°的斜面体上,斜面质量为M=2 kg,斜面光滑,地面光滑,现对斜面体施一水平推力F,要使物块m相对斜面静止,试确定推力F的取值.(g=10 m/s2 )
拓展:若斜面与物块间的动摩擦因数为μ=0.4,其他不变,试确定推力F的取值范围.
(g=10 m/s2 )
例2.如图所示,一轻绳上端系在车的左上角的A 点,另一轻绳一端系在车左端B 点,B 点在A 点正下方,A 、B 距离为b ,两绳另一端在C 点相结并系一质量为m 的小球,绳AC 长度为2b ,绳BC 长度为b.两绳能够承受的最大拉力均为2mg.求:
(1)绳BC 刚好被拉直时,车的加速度是多大?
(2)为不拉断轻绳,车向左运动的最大加速度是多大?
2-1.小车在水平路面上加速向右运动,一质量为m 的小球用一条水平线和一条斜线(与竖直方向成30度角)把小球系于车上,求下列情况下,两绳的拉力:(1)加速度a1=g/3 (2)加速度a2=2g/3
例3.如图6所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m ,用竖直向下的力压物体稳定后撤掉,物体与秤盘分开时弹簧的形变量 。

3-1:现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,
物体与秤盘分开时弹簧的形变量 。

3-2:如图25-7所示,在光滑水平面上挨放着甲、乙两物块。

已知m2=2m1,乙受到水平拉力F2=6N ,甲受到一个随时间变化的水平推力F1=(9-2t )N 作用。

当t= S
时,甲、乙两物块间开始无相互挤压作用。

图6
3-3. A 、B 两木块叠放在竖直轻弹簧上,如图所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g=10 m/s 2
)求:使木块A 竖
直做匀加速运动的过程中,力F 的最大值;
例4. 如图所示,质量为M 的木块与水平地面的动摩擦因数为μ,用大小为F 的恒力使木块沿地面向右作直线运动,木块M 可视为质点,则怎样施力才能使木块产生最大的加速度?最大加速度为多少?
4-1水平地面上有一木箱,木箱与地面之间的动摩擦因数为(01)μμ<<。

现对木箱施加一拉力F ,使木箱做匀速直线运动。

设F 的方向与水平面夹角为θ,如图,在θ从0逐渐增大到90°的过程中,木箱的速度保持不变,则
A.F 先减小后增大
B.F 一直增大
C.F 的功率减小
D.F 的功率不变
4-2如图所示,在水平面上放一质量为m 的物体,与水平面间的动摩擦因数为μ,现用力F 拉物体,(1)如果要是物体做匀速运动,求拉力F 的最小值(2)如果要是物体以加速度a 做匀加速运动,求拉力F 的最小值
例5.如图,竖直放置的圆环O 为圆心,A 为最高点,将物体从A 点释放经t 1落到B 点,沿光滑斜面物体从C 点由静止释放经t 2落到B 点,沿光滑斜面将物体从D 点由静止释放经t 3落到B 点,关于t 1、t 2、t 3的大小,以下说法中正确的是:( )
A 、t 1>t 2>t 3
B 、t 1=t 2=t 3
C 、t 1>t 2=t 3
D 、以上答案均不正确
F
F
图1
拓展 一质点从倾角为的斜面上方P 点沿光滑斜槽PA 由静止开始下滑,如图12,若要使质点滑至斜面所需的时间最短,则P A 与竖直线PB 之间的夹角应
取何值?若PB 长为,求此最短时间。

图12
5-1一个物块由静止开始沿不同长度的光滑斜面滑到水平地面上的定点B ,这些斜面的起点都靠在竖直墙上,如图1所示,已知B 点距墙角距离为b ,要使小物块从斜面的起点滑到B 点所用的时间最短,求斜面的起点(如图中P 点)距地面的高度是多少?所用的时间又是多少?
5-2图所示,几个倾角不同的光滑斜面具有相同的高度,物体以大小相同的初速度沿不同的斜面向上运动,都不能到达E 点,则关于物体的运动时间,以下说法正确的是( )
A. 沿倾角为
的斜面上升到最高点所需的时间最短 B. 沿倾角为
的斜面上升到最高点所需的时间最短 C. 沿倾角为的斜面上升到最高点所需的时间最短
D. 以上说法均不对
练习
1. 一间新房即将建成要封顶,考虑到下雨时落至房顶的雨滴能尽快淌离房顶,需要设计房顶的高度,设雨滴沿房顶下淌时做无初速度无摩擦的运动,那么图4中所示的四种情况中符合要求的是: ( )
图4
2.如图6,aD .bD .cd 是竖直面内三根固定的光滑细杆,A .B .C .d 位于同一圆周上,a 点为圆周的最高点,d 点为最低点。

每根杆上都套着一个小滑环(图中未画出),三个滑环分别从A .B .c 处释放(初速为0),用、、依次表示滑环到达d 所用的时间,则 ( )
A .
B .
C .
D .
3.在距离坡底为的山坡上竖直固定长也为的直杆AO ,A 端与坡底B 间连有一钢丝,钢丝处于伸直状态,一穿心于钢丝上的小球从A 点由静止
开始沿钢丝无摩擦地滑下,如图9,则小球在钢绳上滑行的时间为( )
A
. B . C
. D .条件不足,无法计算 图9
4.一个物体在斜面上以一定的速度沿斜面向上运动,斜面底边水平,斜面倾角θ可在0~90°间变化,设物体达到的最大位移x 和倾角θ间关系如图25-4所示,试计算θ为多少时x 有最小值,最小值为多少?
5. 一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。

如图5所示。

现让木板由静止开始以加速度a(a <g )匀加速向下移动。

求经过多长时间木板开始与物体分离.

5
6.用细绳拴着质量为m的重物,从深为H的井底提起重物并竖直向上作直线运动,重物到井口时速度恰为零,已知细绳的最大承受力为T,则用此细绳子提升重物到井口的最短运动时间为多少?
7.如图2—1所示,质量均为M的两个木块A、B在水平力F的作用下,一起沿光滑的水平面运动,A与B的接触面光滑,且与水平面的夹角为60°,求使A与B一起运动时的水平力F 的范围。

图2—
11
8.如图1所示,光滑小球恰好放在木块的圆弧槽中,它左边的接触点为A,槽的半径为R,且OA与水平线成α角,通过实验知道,当木块的加速度过大时,小球可以从槽中滚出来,圆球的质量为m,木块的质量为M,各种摩擦及绳和滑轮的质量不计,则木块向右的加速度最小为多大时,小球恰好能滚出圆弧槽。

相关文档
最新文档