材料的力学性能

合集下载

材料力学性能

材料力学性能
(3)缺口敏感度:缺口试样的抗拉强度σbn的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度
24ΔK:材料的疲劳裂纹扩展速率不仅与应力水平有关,而且与当时的裂纹尺寸有关。ΔK是由应力范围Δσ和a复合为应力强度因子范围,ΔK=Kmax-Kmin=Yσmax√a-Yσmin√a=YΔσ√a. p105/p120
答:当 增加到某一临界值时, 能克服裂纹失稳扩展的阻力,则裂纹失稳扩展断裂。将 的临界值记作 ,称断裂韧度,表示材料阻止裂纹失稳扩展时单位面积所消耗的能量,其单位与 相同。
J判据和 判据一样都是裂纹开始扩展的裂纹判据,而不是裂纹失稳扩展的裂纹判据。P91/P104
3、试述低应力脆断的原因及防止方法。
4弹性模量:工程上被称为材料的刚度,表征材料对弹性变形的抗力。实质是产生100%弹性变形所需的应力。
5滞弹性:快速加载或卸载后,材料随时间的延长而产生的附加弹性应变的性能。
6内耗:加载时材料吸收的变形功大于卸载是材料释放的变形功,即有部分变形功倍材料吸收,这部分被吸收的功称为材料的内耗。
7韧性:材料断裂前吸收塑性变形功和断裂功的能力。
从微观机制来看低温脆性与位错在晶体点阵中运动的阻力有关,当温度降低时,位错运动阻力增大,原子热激活能力下降,因此材料屈服强度增加。影响材料低温脆性的因素有:1.晶体结构:对称性低的体心立方以及密排六方金属、合金转变温度高,材料脆性断裂趋势明显,塑性差。
2.化学成分:能够使材料硬度,强度提高的杂质或者合金元素都会引起材料塑性和韧性变差,材料脆性提高。3.显微组织:①晶粒大小,细化晶粒可以同时提高材料的强度和塑韧性。因为晶界是裂纹扩展的阻力,晶粒细小,晶界总面积增加,晶界处塞积的位错数减 少,有利于降低应力集中;

材料的常用力学性能有哪些

材料的常用力学性能有哪些

材料的常用力学性能有哪些材料的力学性能是指材料在不同环境(温度、介质、湿度)下,承受各种外加载荷(拉伸、压缩、弯曲、扭转、冲击、交变应力等)时所表现出的力学特征。

1强度强度是指材料在外力作用下抵抗塑性变形或断裂的能力。

强度用应力表示,其符号是σ,单位为MPa,常用的强度指标有屈服强度和抗拉强度,通过拉伸试验测定。

2塑性塑性是指材料在断裂前产生永久变形而不被破坏的能力。

材料塑性好坏的力学性能指标主要有伸长率和收缩率,值越大,材料的塑性就越好,通过拉伸试验可测定。

3硬度硬度是指金属材料抵抗硬物压入其表面的能力。

材料的硬度越高,其耐磨性越好。

常用的硬度指标有布氏硬度(HBS)和洛氏硬度(HRC)。

1)布氏硬度表示方法:布氏硬度用HBS(W)表示,S表示钢球压头,W表示硬质合金球压头。

规定布氏硬度表示为:在符号HBS或HBW前写出硬度值,符号后面依次用相应数字注明压头直径(mm)、试验力(N)和保持时间(s)。

如120 HBS 10/1000/30。

适用范围:HBS适用于测量硬度值小于450的材料,主要用来测定灰铸铁、有色金属和经退火、正火及调质处理的钢材。

根据经验,布氏硬度与抗拉强度之间有一定的近似关系:对于低碳钢,有σ=0.36HBS;对于高碳钢:有σ=0.34HBS。

2)洛氏硬度表示方法:常用HRA、HRB、HRC三种,其中HRC最为常用。

洛氏硬度的表示方法为:在符号前面写出硬度值。

如62HRC。

适用范围:HRC在20-70范围内有效,常用来测定淬火钢和工具钢、模具钢等材料,1HRC相当于10HBS。

4冲击韧性冲击韧性是指材料抵抗冲击载荷而不被破坏的能力,材料的韧性越好,在受冲击时越不容易断裂。

5疲劳强度疲劳强度是指材料经过无数次应力循环仍不断裂的最大应力。

6弹性在物理学和机械学上,弹性理论是描述一个物体在外力的作用下如何运动或发生形变。

在物理学上,弹性是指物体在外力作用下发生形变,当外力撤消后能恢复原来大小和形状的性质。

03-材料的力学性能

03-材料的力学性能

其它塑性材料拉伸时的力学性能
σ /MPa
900 700 500 300 100 0 10 20 30 40 50 60
σ 锰钢
b a σ 0.2
镍钢
青铜 ε(%) 0.2 ε (%)
断裂破坏前产生很大塑性变形; 没有明显的屈服阶段。
名义屈服 极限σ 0.2
脆性材料拉伸时的力学性能
σ /MPa
500 400 300 200 100 0 0.2 0.6 1.0 1.4
ε(%)
铸铁压缩时的σ ~ ε 曲线
反映材料力学性能的主要指标
强度性能 反映材料抵抗破坏的能力,塑性材料: σs 和 σb ,脆性材料:σb ; 弹性性能 反映材料抵抗弹性变形的能力:E; 塑性性能 反映材料具有的塑性变形能力: δ和ψ 。
塑性材料在断裂时有明显的塑性变形;而脆性材料 在断裂时变形很小。 塑性材料在拉伸和压缩时的弹性极限、屈服极限和 弹性模量都相同,它的抗拉和抗压强度相同。而脆性 材料的抗压强度远高于抗拉强度。
b a
拉伸试验结果分析(低碳钢)
虎克定律: 虎克定律:当σ ≤ σp ( σe ) 时,应力与应变成直 线关系,即
σ = Eε σ E = = tgϑ ε
E称为材料的弹性模量, 单位:N/m2, Pa, MPa
拉伸试验结果分析(低碳钢)
E的物理意义 的物理意义 P ∆l σ= ε= 将 A0 l0 代入
现象:试件某个部位突然变细,出现局部收缩——颈缩。 现象
特点: 特点 a、df曲线开始下降,产生变形所需拉力P逐渐减小; b、实际应力继续增大,但σ 为名义应力,A变小没 有考虑,所以d点后σ ~ ε曲线向下弯曲; c、到达f点时,试件断裂。
拉伸试验结果分析(低碳钢)

材料力学性能

材料力学性能

填空1-1、金属弹性变形是一种“可逆性变形”,它是金属晶格中原子自平衡位置产生“可逆位移”的反映。

1-2、弹性模量即等于弹性应力,即弹性模量是产生“100%”弹性变形所需的应力。

1-3、弹性比功表示金属材料吸收“弹性变形功”的能力。

1-4、金属材料常见的塑性变形方式主要为“滑移”和“孪生”。

1-5、滑移面和滑移方向的组合称为“滑移系”。

1-6、影响屈服强度的外在因素有“温度”、“应变速率”和“应力状态”。

1-7、应变硬化是“位错增殖”、“运动受阻”所致。

1-8、缩颈是“应变硬化”与“截面减小”共同作用的结果。

1-9、金属材料断裂前所产生的塑性变形由“均匀塑性变形”和“集中塑性变形”两部分构成。

1-10、金属材料常用的塑性指标为“断后伸长率”和“断面收缩率”。

1-11、韧度是度量材料韧性的力学指标,又分为“静力韧度”、“冲击韧度”、“断裂韧度”。

1-12、机件的三种主要失效形式分别为“磨损”、“腐蚀”和“断裂”。

1-13、断口特征三要素为“纤维区”、“放射区”、“剪切唇”。

1-14、微孔聚集断裂过程包括“微孔成核”、“长大”、“聚合”,直至断裂。

1-15、决定材料强度的最基本因素是“原子间结合力”2-1、金属材料在静载荷下失效的主要形式为“塑性变形”和“断裂”。

2-2、扭转试验测定的主要性能指标有“切变模量”、“扭转屈服点τs”、“抗扭强度τb”。

2-3、缺口试样拉伸试验分为“轴向拉伸”、“偏斜拉伸”。

2-5、压入法硬度试验分为“布氏硬度”、“洛氏硬度”和“维氏硬度”。

2-7、洛氏硬度的表示方法为“硬度值”、符号“HR”、和“标尺字母”。

3-1、冲击载荷与静载荷的主要区别是“加载速率不同”。

3-2、金属材料的韧性指标是“韧脆转变温度tk4-1、裂纹扩展的基本形式为“张开型”、“滑开型”和“撕开型”。

4-2、机件最危险的一种失效形式为“断裂”,尤其是“脆性断裂”极易造成安全事故和经济损失。

4-3、裂纹失稳扩展脆断的断裂K判据:KI≥KIC 4-4、断裂G判据:GI≥GIC 。

材料的力学性能

材料的力学性能

第三章 材料的力学性能第一节拉伸或压缩时材料的力学性能一、 概述分析构件的强度时,除计算应力外,还应了解材料的力学性质(Mecha nicaiproperty ),材料的力学性质也称为机械性质,是指材料在外力作用下表现出的变形、破坏等 方面的特性。

它要由实验来测定。

在室温下,以缓慢平稳的方式进行试验,称为常温静载试 验,是测定材料力学性质的基本试验。

为了便于比较不同材料的试验结果,对试件的形状、 加工精度、加载速度、试验环境等,国家标准规定了相应变形形式下的试验规范。

本章只研 究材料的宏观力学性质, 不涉及材料成分及组织结构对材料力学性质的影响, 并且由于工程中常用的材料品种很多, 主要以低碳钢和铸铁为代表,介绍材料拉伸、压缩以及纯剪切时的力学性质。

二、 低碳钢拉伸时的力学性质低碳钢是工程中使用最广泛的金属材料,同时它在常温静载条件下表现出来的力学性质也最具代表性。

低碳钢的拉伸试验按《金属拉伸试验方法》 (GB/T228 — 2002)国家标准在万能材料试验机上进行。

标准试件(Sta ndard specimen )有圆形和矩形两种类型,如图3-1所示。

试件上标记 A 、B 两点之间的距离称为标距,记作 1°。

圆形试件标距|0与直径d 0有两种比例,即l °=10d °和l 0=5d 。

矩形试件也有两种标准,即 l 0 11.3 A0和l 0 5.65 A0。

其中A 0为矩形试件的截面面积。

图3-1拉伸试件试件装在试验机上,对试件缓慢加拉力 F P ,对应着每一个拉力 F P ,试件标距l 0有一个 伸长量 A |O 表示F P和A l 的关系曲线,称为拉伸图或 F P —A l 曲线。

如图3-2a ,由于F —A l 曲线与试件的尺寸有关,为了消除试件尺寸的影响,把拉力F p 除以试件横截面的原始面积F P一 一 l-为纵坐标;把伸长量A 除以标距的原始长度10,得出应变 为A )l 。

材料的力学性能

材料的力学性能

材料的力学性能mechanical properties of materials主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。

它们是设计各种工程结构时选用材料的主要依据。

各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。

表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。

材料的各种力学性能分述如下:弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。

材料的这种性能称为弹性。

外力卸除后即可消失的变形,称为弹性变形。

表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。

拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。

长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截面试样,按照面积换算规定或者。

试样两端的粗大部分用以和材料试验机的夹头相连接。

试验结果通常绘制成拉伸图或应力-应变图。

图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力ζ=P/A)。

图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。

反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。

比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以ζp表示。

在应力低于ζp的情况下,应力和应变保持正比例关系的规律叫胡克定律。

载荷超过点p对应的值后,拉伸曲线开始偏离直线。

弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以ζe表示。

若在应力超出ζe后卸载,试样中将出现残余变形。

材料力学性能

材料力学性能

材料⼒学性能第⼀章:绪论⼀、需要掌握的概念材料⼒学性能的定义、弹性变形、线弹性、滞弹性、弹性后效、弹性模量、泊松⽐、弹性⽐功、体弹性模量⼆、需要重点掌握的内容 1、弹性模量的物理本质以及影响弹性模量的因素; 2、掌握根据原⼦间势能函数推倒简单结构材料弹性模量的⽅法; 3、弹性⽐功的计算,已知材料的应⼒应变曲线能求出材料卸载前和卸载后的弹性⽐功。

材料⼒学性能的定义 是指材料(⾦属和⾮⾦属等)及由其所加⼯成的⼯件在外⼒(拉、压、弯曲、扭转、剪切、切削等)作⽤下⾬加⼯、成型、使役、实效等过程中表现出来的性能(弹塑性、强韧性、疲劳、断裂及寿命等)。

这些性能通常受到的环境(湿度、温度、压⼒、⽓氛等)的影响。

强度和塑性和结构材料永恒的主题!弹性变形 是指材料的形状和尺⼨在外⼒去除后完全恢复原样的⾏为。

线弹性 是指材料的应⼒和应变成正⽐例关系。

就是上图中弹性变形⾥前⾯的⼀段直线部分。

杨⽒模量(拉伸模量、弹性模量) 我们刚刚谈到了线弹性,在单轴拉伸的条件下,其斜率就是杨⽒模量(E)。

它是⽤来衡量材料刚度的材料系数(显然杨⽒模量越⼤,那么刚度越⼤)。

杨⽒模量的物理本质 样式模量在给定环境(如温度)和测试条件下(如应变速率)下,晶体材料的杨⽒模量通常是常数。

杨⽒模量是原⼦价键强度的直接反应。

共价键结合的材料杨⽒模量最⾼,分⼦键最低,⾦属居中。

对同⼀晶体,其杨⽒模量可能随着晶体⽅向的不同⽽不同,俗称各向异性。

模量和熔点成正⽐例关系。

影响杨⽒模量的因素内部因素 --- 原⼦半径 过渡⾦属的弹性模量较⼤,并且当d层电⼦数为6时模量最⼤。

外部因素1. 温度:温度升⾼、原⼦间距增⼤,原⼦间的结合⼒减弱。

因此,通常来说,杨⽒模量随着温度的上升⽽下降。

2. 加载速率:⼯程技术中的加载速率⼀般不会影响⾦属的弹性模量。

3. 冷变形:冷变形通常会稍稍降低⾦属的弹性模量,如钢在冷变形之后,其表观样式模量会下降4% - 6%。

泊松⽐简单来说,泊松⽐就是单轴拉伸或压缩时材料横向应变和轴向应变⽐值的负数。

材料力学性能

材料力学性能

材料力学性能材料力学性能是指材料在受力作用下的表现,它是材料工程中最基本也是最重要的性能。

其特征可以通过材料的塑性、弹性、韧性、疲劳强度等描述。

一、塑性塑性是指材料在外力作用下,由于内部构造结构的变形而产生的变形能力。

材料受到足够大的外力时,会发生变形,并能保持变形状态。

当外力消失时,材料也可以恢复原来的形状。

塑性可以用弹性模量来衡量,单位为常用的GPa(千兆帕)或Mpa(兆帕)。

二、弹性弹性是指材料在外力作用下,由于内部构造结构的恢复能力而产生的恢复能力。

材料受到外力时,会发生变形,但当外力消失时,材料可以完全恢复原始形状。

弹性可以用弹性模量来衡量,单位为常用的GPa(千兆帕)或Mpa(兆帕)。

三、韧性韧性是指材料在受力作用下,由于内部构造结构的自我修复能力而产生的恢复能力。

当材料受到外力时,会发生变形,但当外力消失时,材料可以恢复部分原始形状。

韧性可以用韧性模量来衡量,单位为常用的GPa (千兆帕)或Mpa(兆帕)。

四、疲劳强度疲劳强度是指材料在受力作用下,由于内部构造结构的疲劳破坏而产生的抗疲劳能力。

当材料受到外力时,会逐渐发生疲劳破坏,最终导致破坏。

疲劳强度可以用抗疲劳模量来衡量,单位为常用的GPa(千兆帕)或Mpa(兆帕)。

五、吸能量吸能量是指材料在受力作用下,由于内部构造结构的吸收能力而产生的吸收能力。

当材料受到外力时,会吸收一定的能量,这就是材料的吸能量。

吸能量可以用吸能量模量来衡量,单位为J/m3。

材料力学性能是材料性能的基础,它可以直接反映出材料的物理性质,并且可以用来衡量材料的强度、硬度等性能。

正确理解材料力学性能,可以为材料工程应用提供重要参考。

材料的力学性能

材料的力学性能

材料的力学性能在一定的温度条件和外力作用下,材料的抗变形和抗断裂能力称为材料的力学性能。

锅炉和压力容器材料的常规力学性能主要包括强度、硬度、塑性和韧性。

(1)强度强度是指金属材料在外力作用下抵抗变形或断裂的能力。

强度指标是设计中确定许用应力的重要依据。

常用的强度指标为:屈服强度为s,或强度为0.2,抗拉强度为b。

高温工作时,应考虑蠕变极限为N,断裂强度为D。

(2)塑性是指金属材料在断裂前产生塑性变形的能力。

塑性指标包括:断裂伸长率,断裂后试样的相对伸长率;面积圆的减少,断裂点上横截面积的相对减少;和冷弯(角)α,即角测量标本时第一个裂纹在拉伸弯曲表面。

(3)韧性是指金属材料抵抗冲击载荷的能力。

韧性通常表达的冲击能量AK和冲击韧性值αk . k值或αk值不仅反映了材料的耐冲击,但也有些敏感材料的缺陷,可以敏感地反映材质的细微变化,宏观缺陷和微观结构。

而且AK对材料的脆性转变非常敏感,可以通过低温冲击试验来测试钢的冷脆性。

断裂韧度是衡量材料韧性的一个新的指标,它反映了材料的抗裂纹扩展能力。

(4)硬度,硬度是衡量材料硬度和柔软度的性能指标。

硬度测试的方法很多,原理不一样,硬度值和意义也不完全相同。

最常用的是静载荷压痕硬度试验,即布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)、维氏硬度(HV),其值代表材料表面抵抗坚硬物体冲击的能力。

肖氏硬度(HS)属于回弹硬度试验,其值代表金属的弹性变形功。

因此,硬度不是一个简单的物理量,而是反映材料的弹性、塑性、强度和韧性的综合性能指标。

力学性能是钢材最重要的使用性能,包括抗拉性能、塑性、韧性及硬度等。

(1)抗拉性能。

表示钢材抗拉性能的指标有屈服强度、抗拉强度、屈强比、伸长率、断面收缩率。

屈服是指钢材试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象。

发生屈服现象时的最小应力,称为屈服点或屈服极限,在结构设计时,一般以屈服强度作为设计依据。

抗拉强度是指试样拉伸时,在拉断前所承受的最大荷载与试样原横截面面积之比。

材料的力学性能

材料的力学性能

材料的力学性能材料的力学性能是指材料在外力作用下的力学行为和性能表现。

力学性能是材料工程中非常重要的一个指标,它直接关系到材料的使用寿命、安全性和可靠性。

材料的力学性能主要包括强度、韧性、硬度、塑性、蠕变等指标。

首先,强度是材料抵抗外力破坏的能力。

常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。

抗拉强度是材料在拉伸状态下抵抗断裂的能力,抗压强度是材料在受压状态下抵抗破坏的能力,抗弯强度是材料在受弯曲状态下抵抗破坏的能力。

强度指标直接反映了材料的抗破坏能力,是衡量材料力学性能的重要参数。

其次,韧性是材料抵抗断裂的能力。

韧性是指材料在受外力作用下能够吸收大量的变形能量而不断裂的能力。

韧性好的材料具有良好的抗冲击性能和抗疲劳性能,能够在外力作用下保持良好的形状和结构完整性。

再次,硬度是材料抵抗划痕和穿刺的能力。

硬度是材料抵抗外界硬物划破或穿透的能力,是材料抵抗局部破坏的重要指标。

硬度高的材料通常具有较好的耐磨性和耐磨损性能,能够在恶劣环境下保持较长时间的使用寿命。

此外,塑性是材料在受力作用下发生形变的能力。

塑性好的材料能够在外力作用下产生较大的变形,具有良好的加工性能和成形性能。

材料的塑性直接影响到材料的加工工艺和成型工艺,是材料加工和成形的重要指标。

最后,蠕变是材料在长期受力作用下发生变形和破坏的现象。

蠕变是材料在高温、高压、长期受力作用下产生的一种渐进性变形和破坏,是材料在高温高应力环境下的重要性能指标。

综上所述,材料的力学性能是衡量材料质量和可靠性的重要指标,强度、韧性、硬度、塑性和蠕变是材料力学性能的重要方面。

在材料设计、选材和工程应用中,需要充分考虑材料的力学性能,选择合适的材料以满足工程需求。

同时,通过合理的材料处理和改性,可以改善材料的力学性能,提高材料的使用寿命和安全可靠性。

力学性能

力学性能

1、力学性能:材料在力的作用下所表现出来的特性。

力学性能包括强度、硬度、塑性、韧性、疲劳特性、耐磨性。

强度包括屈服强度和抗拉强度。

硬度是指材料抵抗局部塑性变形的能力。

测试方法有布氏硬度法、洛氏硬度法、维氏硬度法。

布氏硬度优点是测量误差小,数据稳定;缺点压痕大,不能用于太薄件或成品件。

洛氏优点操作方便、压痕小、适用范围广;缺点测量结果分散度大。

维氏优点可根据工件硬化层的厚薄任意先选择载荷大小,可以测定由软到硬的各种材料。

塑性:只材料在外力作用下破坏前可承受最大塑性变形的能力。

衡量指标为断后伸长率和断面收缩率。

物理性能:密度、熔点、导热性、热膨胀性、磁性。

化学性能:耐腐蚀性、抗氧化性。

工艺性能指机械零件在冷、热加工的制造过程中应具备的性能,包括:铸造性能、锻压性能、切削加工性能、热处理性能。

2、晶格:描述原子排列方式的空间格架;晶胞:晶格中能代表晶格特征的最小几何单元;晶格常数:晶胞的棱边长度a b c。

单晶体:多晶体;晶界:晶粒之间的交界;亚晶界:亚晶粒之间的交界;位错:在晶体中某处有一列或几列一原子发生有规律的错排的现象;位错密度:单位体积中包含的位错线总长度;各向异性:同素异构体转变:在固体下随温度的改变,由一种晶格转变为另一种晶格的现象;试说明缺陷的类型,内容及对性能的影响:1点缺陷:当晶体中某些原子获得足够高的能量,就可以克服周围原子的束缚,而离开原来的位置,形成空位的现象;点缺陷的存在,使晶体内部运动着的电子发生散射,使电阻增大,点缺陷数目的增加,使晶体的密度减小,过饱和的点缺陷可提高材料的强度和硬度,但降低了材料的塑性和韧性。

2线缺陷:降低了金属的强度;3面缺陷:晶体中存在的一个方向上尺寸很小,另两个方向上尺寸很大的缺陷;提高了金属的强度和塑性。

3、因为金属的实际结晶温度总是低于理论结晶温度,所以总会产生过冷现象;冷却速度越大,过冷度就越大;说明纯金属的结晶过程:总是在恒温下进行,结晶时总有结晶潜热放出,结晶过程总是遵循形核和晶核长大的规律,在有过冷度的条件下才能进行结晶。

材料的力学性能重点总结

材料的力学性能重点总结

名词解释:1加工硬化:试样发生均匀塑性变形,欲继续变形则必须不断增加载荷,这种随着随性变形的增大形变抗力不断增大的现象叫加工硬化。

2弹性比功:表示金属材料吸收塑性变形功的能力。

3滞弹性:在弹性范围内快速加载或卸载后,随着时间延长产生附加弹性应变的现象。

4包申格效应:金属材料通过预先加载产生少来塑性变形,卸载后再同向加载,规定参与伸长应力增加;反向加载,规定残余伸长应力降低的现象。

5塑性:金属材料断裂前发生塑性变形的能力。

常见塑性变形方式:滑移和孪生6应力状态软性系数:最大切应力最大正应力应力状态软性系数α越大,最大切应力分量越大,表示应力状态越软,材料越易产生塑性变形α越小,表示应力状态越硬,则材料越容易产生脆性断裂7缺口效应:由于缺口的存在,在静载荷作用下,缺口截面上的应力状态发生拜年话,产生所谓―缺口效应―①缺口引起应力集中,并改变了缺口应力状态,使得缺口试样或机件中所受的应力由原来的单向应力状态改变为两向或者三向应力状态。

②缺口使得材料的强度提高,塑性降低,增大材料产生脆断的倾向。

8缺口敏感度:有缺口强度的抗拉强度ζbm与等截面尺寸光滑试样的抗拉强度ζb的比值. NSR=ζbn / ζs NSR越大缺口敏感度越小9冲击韧性:Ak除以冲击式样缺口底部截面积所得之商10冲击吸收功:式样变形和断裂所消耗的功,称为冲击吸收功以Ak表示,单位J11低温脆性:一些具有体心立方晶格或某些秘排立方晶格的金属,当温度降低到、某一温度时,会由韧性状态变为脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集变为穿晶解理,断口特征由纤维状变为结晶状,这种现象称为低温脆性12 脆性转变温度:当温度降低时,材料屈服强度急剧增加,而塑形和冲击吸收功急剧减小。

材料屈服强度急剧升高的温度,或断后延伸率,断后收缩率,冲击吸收功急剧减小的温度就是韧脆转变温度tk,tk是一个温度区间13疲劳贝纹线:以疲劳源为中心的近于平行的一簇同心圆.是疲劳源裂纹扩展时前沿的痕迹14疲劳条带:具有略显弯曲并相互平行的沟槽花样,是疲劳断口最典型的微观特征15驻留滑移带:金属在循环应力长期作用下,形成永久留或再现的循环滑移带称为驻留滑移带,具有持久驻留性.16应力场强度因子KI :表示应力场的强弱程度,对于某一确定的点的大小直接影响应力场的大小,KI 越大,则应力场各应力分量也越大17应力腐蚀:金属在拉应力和特定的化学介质共同作用下,经过一段时间后产生的低应力脆断现象18氢致延滞断裂:高强度钢或α+β钛合金中,含有适量的处于固溶状态的氢,在低于屈服强度的应力持续作用下经过一段时间的孕育期后在金属内部,特别是在三向拉应力区形成裂纹,裂纹的逐步扩展,最后突然发生脆性断裂,这种由于氢的作用而产生的延滞断裂现象称为氢致延滞断裂第一章2.力学性能指标的意义(1)δ0.2 对于拉伸曲线上没有屈服平台的材料,塑性变形硬化过程是连续的,产生0.2%残余伸长应力时刻的屈服强度。

第一章 材料的力学性能

第一章  材料的力学性能

第一章材料的力学性能一、名词解释1、力学性能:材料抵抗各种外加载荷的能力,称为材料的力学性能。

2、弹性极限:试样产生弹性变形所承受的最大外力,与试样原始横截面积的比值,称为弹性极限,用符号σe表示。

3、弹性变形:材料受到外加载荷作用产生变形,当载荷去除,变形消失,试样恢复原状,这种变形称为弹性变形。

4、刚度:材料在弹性变形范围内,应力与应变的比值,称为刚度,用符号E表示。

5、塑性:材料在外加载荷作用下,产生永久变形而不破坏的性能,称为塑性。

6、塑性变形:材料受到外力作用产生变形,当外力去除,一部分变形消失,一部分变形没有消失,这部分没有消失的变形称为塑性变形。

7、强度:材料在外力作用下抵抗变形和断裂的能力,称为强度。

8、抗拉强度:材料在断裂前所承受的最大外加拉力与试样原始横截面积的比值,称为抗拉强度,用符号σb表示。

9、屈服:材料受到外加载荷作用产生变形,当外力不增加而试样继续发生变形的现象,称为屈服。

10、屈服强度:表示材料在外力作用下开始产生塑性变形的最低应力,即材料抵抗微量塑性变形的能力,用符号σs表示。

11、σ0.2:表示条件屈服强度,规定试样残留变形量为0.2%时所承受的应力值。

用于测定没有明显屈服现象的材料的屈服强度。

12、硬度:金属表面抵抗其它更硬物体压入的能力,即材料抵抗局部塑性变形的能力,称为硬度。

13、冲击韧度:材料抵抗冲击载荷而不破坏的能力,称为冲击韧度,用符号αk表示。

14、疲劳:在交变载荷作用下,材料所受的应力值虽然远远低于其屈服强度,但在较长时间的作用下,材料会产生裂纹或突然的断裂,这种现象称为疲劳。

15、疲劳强度:材料经无数次应力循环而不发生断裂,这一应力值称为疲劳强度或疲劳极限,用符号σ-1表示。

16、蠕变:材料在高温长时间应力作用下,即使所加应力值小于该温度下的屈服极限,也会逐渐产生明显的塑性变形直至断裂,这种现象称为蠕变。

17、磨损:由两种材料因摩擦而引起的表面材料的损伤现象称为磨损。

材料力学性能重点总结

材料力学性能重点总结

材料力学性能重点总结1.强度:强度是材料抵抗外部载荷引起的破坏的程度,通常使用屈服强度、抗拉强度和抗压强度来评价。

强度越高,材料越能承受外部载荷。

2.韧性:韧性是材料在受力时发生塑性变形以及能够吸收能量的能力。

材料具有较高的韧性时,能够在受到巨大应力时仍然保持不破裂。

3.硬度:硬度是材料抵抗表面破坏的能力,也可以理解为材料的抗刮伤能力。

硬度可以衡量材料的耐磨性和耐磨损能力。

4.弹性模量:弹性模量是材料在受力后恢复原状的能力,可以评估材料在受力后的变形程度。

弹性模量越大,材料的刚性越高。

5.延展性:延展性是材料在受力时能够发生塑性变形而不破坏的能力。

延展性高的材料可以更好地适应复杂应力和形状变化。

6.断裂韧性:断裂韧性是材料在受到外部载荷时能够抵抗破坏的能力。

它是强度和韧性的综合指标,可评估材料在极限条件下的断裂性能。

7.蠕变性:蠕变性是材料在长期受力情况下发生的塑性变形。

材料的蠕变性能评估了其在高温和持续应力下的稳定性。

8.疲劳性:疲劳性是材料在受到反复应力循环后发生破坏的能力。

疲劳性能评估了材料在长期使用过程中的可靠性和耐久度。

9.冲击韧性:冲击韧性是材料在受到突然冲击加载时抵抗破坏的能力。

它可以评估材料在极端工作条件下的抗冲击性能。

10.耐腐蚀性:耐腐蚀性是材料抵抗环境介质侵蚀和化学反应的能力。

材料的耐腐蚀性能评估了其在特定环境中的稳定性和使用寿命。

以上是材料力学性能的重点总结,它们通常都与材料的微观结构、成分、加工工艺和使用条件有关。

通过评估和选择材料的力学性能,可以确保材料在各种应用中具有足够的强度、韧性和稳定性。

材料的力学性能

材料的力学性能

材料的失效(failure):
如果材料抵抗变形与断裂的能力与服役条件不适应,则机件失 去预定效能(过量弹性变形、过量塑性变形、断裂、磨损等), 材料的力学性能又可以称为失效抗力。
0 绪论
影响力学性能的因素
内在因素 外在因素
化 学 成 分
显 微 组 织
冶 金 质 量
残 余 应 力
载 荷 性 质
应 力 状 态
拉伸曲线:载荷-伸长曲线(P-l) 弹性变形 塑性变形 屈 服 颈 缩
1 材料在静载荷下的力学性能
应力-应变(stress-strain)曲线
比例极限 弹性极限 屈服极限
强度极限
断裂强度
1 材料在静载荷下的力学性能
强度指标及其测定方法
(1)比例极限
p Pp/A0 (MPa) 当应力比较小时,试样的伸长随应力成正比 地增加,保持直线关系。当应力超过σp时, 曲线开始偏离直线,因此称σp为比例极限, 是应力与应变成直线关系的最大应力值。
弗里德曼统一考虑了不同应力状态下的强度极限与失效形式,用图解的方 法把它们的关系作了概括--力学状态图 。
RAL 1 材料在静载荷下的力学性能
应力状态软性系数:
某一应力状态下的最大切 应力和最大正应力之比: 弹塑性变形区 正断区 切断区
max

max
弹性变形区 对于不同的材料,其力学性能指标τs,τK和σK也 各不相同,只有选择与应力状态相适应的试验 方法进行试验时,才能显示出不同材料性能上 的特点。
温 度
环 境
0 绪论
不同服役条件对材料的性能要求不同
1、材料在静载荷下的力学性能
1 材料在静载荷下的力学性能
材料力学性能指标是结构设计、材料选择、工艺评价以及材料检验的主要依 据。测定材料力学性能最常用的方法是静载荷方法,即在温度、应力状态和 加载速率都固定不变的状态下测定力学性能指标的一种方法。

材料力学性能

材料力学性能

一.名词解释粘着磨损(咬合磨损):因缺乏润滑油,摩擦副表面无氧化膜,且单位法向载荷很大,以致接触应力超过实际接触点处屈服强度而产生的一种磨损。

解理断裂:金属材料在一定条件下,当外加正应力达到一定数值时,以极快速率沿一定的晶体学平面产生的穿晶断裂。

应力腐蚀:金属材料在拉应力和特定化学介质共同作用下,经过一段时间后所产生的低应力脆断现象。

低温脆性:体心立方晶体金属及合金或某些密排六方晶体金属及合金,在试验温度低于某一温度时,会由韧性状态变成脆性状态,冲击吸收功明显下降,断裂机理由微孔聚集型变成穿晶解理型,断口特征由纤维状变成结晶状。

疲劳:金属机构或构件在变动应力和应变长期作用下,由于累积损伤而引起的断裂现象。

应力状态软系数:最大切应力τ与最大正应力б的比值表示它们的相对大小,记为α。

氢脆:由于氢和应力的共同作用导致金属材料产生脆性断裂的现象。

高周疲劳:金属在循环载荷作用下,疲劳寿命为大于10 次的疲劳断裂。

缺口效应:由于缺口的存在,在静载荷的作用下,缺口截面上的应力状态将发生变化,从而影响金属材料的力学性能。

磨粒磨损:当摩擦副一方表面存在坚硬的细微突起,或者在接触面之间存在着硬质粒子时所产生的一种磨损。

包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加:反向加载,规定残余伸长应力降低的现象。

疲劳裂纹门槛值:是疲劳裂纹不扩展的的临界值,表示材料阻止疲劳裂纹开始扩展的性能,越大,阻止裂纹扩展的能力越强,材料越好。

穿晶断裂:裂纹穿过晶粒内部扩展,既是宏观塑性断裂,也是宏观脆性断裂,包括纯剪切和微孔聚合型断裂。

冲击吸收功:指规定形状和尺寸的试样在冲击试验力一次作用下折断时所吸收的功。

弹性变形:材料在外力作用下产生变形,当外力取消后,材料变形即可消失并完全恢复原来形状的性质称为弹性。

这种可恢复的变形称为弹性变形。

二.解释下列指标的名称和物理意义。

Ψ:(断面收缩率)是试样拉断后,缩颈处横截面积的最大缩减量与原始横截面积的百分比。

第四章 材料力学性能(材料科学基础)

第四章 材料力学性能(材料科学基础)
σ y= K1/Y(2x)1/2 Y:与裂纹形状、加载方式及试样尺寸有关的量, 可查表得到; K1:为应力场强度因子,可以表示应力场的强弱 程度
对于某一确定的点,其应力由K1决定,K1越 大,则应力场各点的应力也越大。
按线弹性断裂力学的分析,裂纹尖端应力场强度因子K1的一般表达式为: K1 = Yσa1/2(MN/m3/2)
• δ=ΔL/L0=[(L-L0)/L0]×100% (是塑性“伸长”的度量) • 式中L0为试样原始标距长度;L为试样断裂后标距的长度。 •
ψ=ΔAf/A0=[(A0-Af)/A0] ×100% (是塑性“收缩”的度量) • 式中A0为试样原始截面积;Af为试样断裂处的截面积。
• 材料的延伸率和断面收缩率数值越大,表示材料的塑性越好。 塑性好的材料可以发生大量塑性变形而不被破坏,这样当受力 过大时,由于首先产生塑性变形而不致发生突然断裂,比较安 全。
材料的刚度和零件的刚度不是一回事,零件刚度的大小取决于零件的 几何形状和材料的弹性模量。
(2)弹性行为 • 弹性变形的特点是当载荷卸除后,试样的尺寸形状完全回复到原始状态。 • 根据材料的不同,其变形行为可分为三类:线弹性、非线弹性以及滞弹性。
理想的线弹性行为,应力 非线性弹性行为,如橡胶
和应变之间满足虎克定律。 之类的变形能力极好的弹
反映,用焦耳(J)来表示 • 在强度相等的情况下,延性材料断裂时所需要的能量比脆
性材料多,因此它的韧性也比脆性材料高。 • 评定材料韧性高低的方法,最常用的有两种: ➢ 一是用冲击试验所得的冲击韧性; ➢ 二是用断裂力学方法与试验测得的断裂韧性。
冲击韧性
一只重摆锤从高度h开始,沿着弧形轨迹向下摆动,冲击到试样上并把试 样打断,最后达到一个比较低的高度h` 。知道摆锤的初始高度h和最终高 度h`,就能算出势能差别。这一差别就是试样在断裂过程中所吸收的冲击 能Ak(冲击总功),如果除以缺口处试样的截面积,即得材料的冲击韧 性,用αk表示,单位为J/cm2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图5-6 穿晶断裂与沿 晶断裂示意图
21
21
Figure Localized deformation of a ductile material during a tensile test produces a necked region. The micrograph shows necked region in a fractured sample
17
17
18
18
Figure Range of elastic moduli for different engineered materials. (Source: Reprinted from Engineering Materials I, Second Edition, M.F. Ashby and D.R.H. Jones, 1996, Fig. 3-5, p. 35, Copyright © 1996 Butterworth-Heinemann.
Figure
The materials used in sports equipment must be lightweight, stiff, tough, and impact resistant.
4
4
Terminology for Mechanical Properties
Stress - Force or load per unit area of cross-section over which the force or load is acting. Strain - Elongation change in dimension per unit length. Young’s modulus - The slope of the linear part of the stress-strain curve in the elastic region, same as modulus of elasticity. Shear modulus (G) - The slope of the linear part of the shear stress-shear strain curve. Viscosity ( ) - Measure of resistance to flow, defined as the ratio of shear stress to shear strain rate (units Poise or Pa-s). Thixotropic behavior - Materials that show shear thinning and also an apparent viscosity that at a constant rate of shear decreases with time. 5
2
2
Chapter Outline
5.1 5.2 5.3 5.4 5.5 5.6 材料承受静载荷时的力学性能 材料承受冲击载荷时的力学性能 材料的疲劳 材料的断裂韧性 材料的磨损性能 材料的蠕变性能
3
3
Technological Significance
Figure Aircraft, such as the one shown here, makes use of aluminum alloys and carbonfiber-reinforced composites.
19
19
5.1.3 材料的断裂及其性能指标
(一)断裂的类型及断口特征 根据断裂前后材料宏观塑性变形的程度,分为脆性断裂与韧性断裂; 根据晶体材料断裂时裂纹扩展的途径,分为穿晶断裂和沿晶(晶界)断 裂;根据微观断裂机理,分为解理断裂和剪切断裂等。 材料的断裂表面称为断口。用肉眼、放大镜或电子显微镜等手段对材 料断口进行宏观及微观的观察分析,称为断口分析。 1.韧性断裂与脆性断裂 韧性断裂是材料断裂前产生明显塑性变形的断裂过程。韧性断裂的断 口往往呈暗灰色、纤维状。塑性较好的金属材料和高分子材料,室温 下的静拉伸断裂具有典型的韧性断裂特征。 脆性断裂是材料断裂前不产生明显的塑性变形。脆性断裂的断口,一 般与正应力垂直,宏观上比较齐平光亮,常呈放射状或结晶状。淬火 钢、灰铸铁、陶瓷、玻璃等脆性材料的断口常具有上述特征。 实际上,金属的脆性断裂与韧性断裂并无明显的界限,脆性断裂前也 会产生微量塑性变形。因此,规定光滑拉伸试样的断面收缩率小于5% 为脆性断裂;大于5%为韧性断裂。 20
6
6
Section 5.1 材料承受静载荷时的力学性能 5.1.1 材料的拉伸曲线
Load - The force applied to a material during testing. Strain gage or Extensometer - A device used for measuring change in length and hence strain. Glass temperature (Tg ) - A temperature below which an otherwise ductile material behaves as if it is brittle. Engineering stress - The applied load, or force, divided by the original cross-sectional area of the material. Engineering strain - The amount that a material deforms per unit length in a tensile test.
9
9
Figure Tensile stress-strain curves for different materials. Note that these are qualitative
10
10
Figure
The stress-strain curve for an aluminum alloy
16
16
Figure Typical yield strength values for different engineered materials. (Source: Reprinted from Engineering Materials I, Second Edition, M.F. Ashby and D.R.H. Jones, 1996, Fig. 8-12, p. 85. Copyright © Butterworth-Heinemann曲线
单向静拉伸试验是广泛应用的材料性能检测方法。
负荷一伸长曲线-材料的拉伸曲线。 整个拉伸过程中的变形可分为弹性变形、屈服变形、均匀塑性变 形及不均匀塑性变形四个阶段。 应力—应变曲线(工程应力—应变曲线) 真实应力—应变曲线
8
8
Figure A unidirectional force is applied to a specimen in the tensile test by means of the moveable crosshead. The cross-head movement can be performed using screws or a hydraulic mechanism
5


Figure (a) Tensile, compressive, shear and bending stresses. (b) Illustration showing how Young’s modulus is defined for elastic material. (c) For nonlinear materials, we use the slope of a tangent as a variable quantity that replaces the Young’s modulus constant
11
11
12
12
True Stress and True Strain
True stress The load divided by the actual cross-sectional area of the specimen at that load.
True strain The strain calculated using actual and not original dimensions, given by εt ln(l/l0).
20
5.1.3 材料的断裂及其性能指标
2.穿晶断裂与沿晶断裂 根据材料(包括金属、陶瓷及结晶高分子)发生断裂时裂纹扩展的路径 ,分为穿晶断裂和沿晶(晶界)断裂两种。 穿晶断裂可以是韧性断裂,也可以是脆性断裂;而沿晶断裂则多为脆 性断裂,断口呈结晶状;沿晶断裂是晶界结合力较弱的一种表现。例 如共价键陶瓷晶界较弱,断裂方式主要是晶界断裂。离子键晶体的断 裂往往以穿晶解理为主。
Figure The relation between the true stress-true strain diagram and engineering stressengineering strain diagram. The curves are identical to the yield point
22
22
5.1.3 材料的断裂及其性能指标 Microstructural Features of Fracture in Metallic Materials
Transgranular - Meaning across the grains (e.g., a transgranular fracture would be fracture in which cracks would go through the grains). Microvoids - Development of small holes in a material. Intergranular - In between grains or along the grain boundaries. Chevron pattern - A common fracture feature produced by separate crack fronts propagating at different levels in the material.
相关文档
最新文档