Curved wavelet transform for image coding

合集下载

基于Curvelet变换的指纹图像去噪

基于Curvelet变换的指纹图像去噪

基于Curvelet变换的指纹图像去噪张建明;邱晓晖【摘要】指纹图像因其具有的终身不变性、唯一性和方便性三大特征在生物特征识别领域发挥着极其重要的作用.然而,指纹在采集和传输的过程中会不可避免地受到外界噪声的污染,从而影响指纹识别系统的准确性.对此,文中采用基于Curvelet 变换的多尺度几何去噪方法,提出对多尺度变换后的各个Curvelet子带自适应选取阈值,并结合一种新型阈值函数,克服了传统软硬阈值函数的缺陷.实验结果表明,该方法使得图像中的边缘、直线和曲线特征得到了更好的恢复,而且去噪后的PSNR更高,相较于传统阈值处理方法去噪效果更好.%Fingerprint image plays an important role in biometrics because of its lifetime invariance,uniqueness and convenience.Howev-er,in the collection and transmission the fingerprint will inevitably be polluted by the noise from outside,thus affecting the accuracy of fingerprint identification system.In this paper,we use the multi-scale geometric denoising method based on Curvelet transform and pro-pose the adaptive threshold selection for each Curvelet sub-band after multi-scale transformation.Then we adopt an improved threshold function to overcome the shortcomings of the traditional soft and hard threshold function.The experiment shows that the proposed method can improve the edge,straight line and curve features in the image,and the PSNR after denoising is higher,with better effect than tradi-tional threshold processing method.【期刊名称】《计算机技术与发展》【年(卷),期】2018(028)005【总页数】5页(P164-167,173)【关键词】Curvelet变换;阈值函数;Wrapping算法;自适应阈值;阈值去噪【作者】张建明;邱晓晖【作者单位】南京邮电大学通信与信息工程学院,江苏南京210000;南京邮电大学通信与信息工程学院,江苏南京210000【正文语种】中文【中图分类】TN911.730 引言近年来,小波变换理论凭借其对信号的特殊时、频分析能力,在信号、图像等领域得到了快速发展,在图像去噪领域也得到了广泛应用。

基于 Curvelet 变换和均值滤波的图像去噪方法

基于 Curvelet 变换和均值滤波的图像去噪方法

基于 Curvelet 变换和均值滤波的图像去噪方法陈木生【摘要】The purpose of this paper is to study a method of de-noising of images corrupted with additive white Gaussian noise.Firstly,the noisy image is decomposed into many levels to obtain different frequency sub-bands by Curvelet transform.Secondly,the threshold estimation and the weighted average method are used to remove the noisy coefficients according to generalized Gaussian distribution modeling of sub-band coefficients.Ultimately,invert the multi-scale decomposition to re-construct the de-noised image.Here,to prove the performance of the proposed method,the results are compared with other existent algorithms such as hard and soft threshold based on wavelet.The simulation results on several testing images indicate that the proposed method outperforms the other methods in peak signal to noise ratio and keeps better visual in edges information reservation as well. The results also suggest that Curvelet transform can achieve a better performance than the wavelet transform in image de-noising.%针对图像中的高斯噪声干扰,提出一种改进的图像去噪方法。

数字图像处理在指纹识别中的应用本科毕业设计

数字图像处理在指纹识别中的应用本科毕业设计

数字图像处理在指纹识别中的应用摘要指纹具有唯一性和稳定性,因此被人们用来当作鉴别个人身份的主要依据。

随着光学技术、化工技术、纳米技术等多种学科的快速发展.指纹显现和提取技术取得了较快的控展。

但有不少显现或提取得到的指纹效果较差,不易分辨指纹纹线与客体背景主间的差异或指纹纹线成像模糊等,主要表现为指纹纹统与客体背景的反差较弱。

指纹纹线受客体背景的干扰、两枚或多枚指纹相互重叠干扰、弯曲表面客体上的指数威像问题等。

但由于存在指纹图像的噪声和皮肤弹性等因素影响,指纹识别一直存在识别率不高、运算速度较慢的问题。

这时可利用数字图像处理技术对不易辨识的指纹进行增强处理.便于后续的指纹识别鉴定。

本文总结了基于小波变换的数字图像处理在指纹图像增强、指纹图像二值化、指纹图像压缩编码、指纹图像细化、指纹图像特征提取等方向的各种算法及技术。

另外本文还给出了基于matlab软件的指纹自动识别系统实现。

在指纹图像的预处理中,首先进行分块归一化,为后续处理提供统一的规格图像;在求方向图中,用沿着某个方向的灰度方差代替Metre方法中的灰度变化,相当于在求点方向图之前先进行了一次均滤波操作,这样得到的方向图更有鲁棒性;在二值化中,阀值的选取引入最大熵的概念,使图像具有抗噪性。

但对于部分噪声严重的指纹图像仍然无法识别,另外,算法的运行效率还有待提高。

在指纹图像的降噪中:应用中值滤波与小波包变换相结合去除图像随机噪。

关键词:数字图像,指纹处理,小波变换,matlab,指纹识别系统研究注:本设计(论文)题目来源于教师的国家级(或部级、省级、厅级、市级、校级、企业)科研项目,项目编号为:。

AbstractFingerprint is unique and stability, and therefore are used as main basis of personal identity. With the rapid development of optical technology, chemical technology, nanotechnology and other disciplines. Fingerprint and extraction technology has made rapid development. But many poor fingerprint effect appeared or extract, is not easy to distinguish the difference between background and object of the main ridge or fingerprint image blur, mainly for the contrast fingerprint system and object background of the weak. Interference, fingerprint by object background two or more fingerprints overlap interference, index Wei curved surface objects like problem etc.. But because of the existence of the fingerprint image noise and the elasticity of the skin and other factors, the fingerprint recognition has been the recognition rate is not high, the low speed problem. Then the difficult identification of fingerprint enhancement processing by using digital image processing technique for fingerprint identification later. This paper summarizes the wavelet transform of digital image processing in the fingerprint images enhancement, two values, fingerprint image compression coding, the fingerprint image thinning, fingerprint image feature extraction algorithm based on direction and technology. In addition the system of automatic fingerprint identification system based on MATLAB software. In the fingerprint image preprocessing, the first block normalization, image unified specifications for the subsequent processing; in the pattern of change, gray gray variance in one direction instead of the Metre method, the equivalent of before asking the direction of point to a mean filtering operation, robustness pattern more so obtained; in the two value, threshold selection by introducing the concept of maximum entropy, the image with noise immunity. But for the fingerprint image noise serious still not recognized, in addition, the efficiency of the algorithm is yet to be improved. In the noise of fingerprint image: application of median filtering and wavelet packet transform combined with random noise removal of images.KEY WORDS:digital image, fingerprint processing, wavelet transform, MATLAB, fingerprint recognition system目录本科毕业设计(论文) ......................................................................... 错误!未定义书签。

基于贝叶斯估计自适应软硬折衷阈值 Curvelet 图像去噪技术

基于贝叶斯估计自适应软硬折衷阈值 Curvelet 图像去噪技术

基于贝叶斯估计自适应软硬折衷阈值 Curvelet 图像去噪技术杨国梁;雷松泽【摘要】针对传统阈值图像去噪方法存在的不足,提出了基于贝叶斯估计和Curvelet变换的软硬折衷阈值图像去噪方法,自适应地对不同的Curvelet子带进行阈值化处理.实验结果表明,该方法对图像中的边缘曲线特征有更好的复原.去噪后图像的峰值信噪比值(PSNR)更高,视觉效果更好.%According to the defects of soft thresholding and hard thresholding image denoising methods,the image denoising method of soft and hard adaptive thresholding is proposed based on Curvelet transform and Bayesian estimation image denoising. Experiment results show that the new method has the advantages in denoised images with higher quality recovery of edges. It is capable for achieving the higher peak signal-to-noise ratio (PSNR) and giving better visual quality.【期刊名称】《西安工程大学学报》【年(卷),期】2011(025)006【总页数】6页(P857-861,866)【关键词】脊波变换;Curvelet变换;贝叶斯估计;图像去噪【作者】杨国梁;雷松泽【作者单位】西安工业大学计算机学院,陕西西安710032;西安工业大学计算机学院,陕西西安710032【正文语种】中文【中图分类】TN9110 引言多分辨分析小波变换[1-4]在时频域具有良好的多分辨率的特性,能够同时进行时频域的局部分析,并且能够对信号的局部奇异特征进行提取和滤波.然而小波变换由一维小波张成的,仅具有有限的方向,因此主要适用于具有各向同性奇异性的对象,对于各向异性的奇异性,如图像的边界以及线状特征等,小波并不是一个很好的表示工具.在小波理论基础上,文献[5-7]提出了一种特别适合于表示各向异性的脊波变换,是为解决二维或更高维奇异性而产生的一种新的分析工具,脊波变换能稀疏表示具有直线特征的图像,可以应用到二维图像处理的许多领域.脊波本质上是通过小波基函数添加一个表征方向的参数得到的,它具有小波的优点,同时还具有很强的方向选择和辨识能力,能够有效地表示信号中具有方向性的奇异性.为了进一步表示多维信号中更为普遍的曲线型奇异性,Donoho等人提出了曲波(Curvelet)变换理论[8-10],用多个尺度的局部直线来近似表示曲线.曲波变换可以很好地逼近图像中的奇异曲线.本文在曲波变换的基础上,利用贝叶斯估计自适应阈值结合软硬折衷阈值的去噪方法,对含噪图像进行去噪处理.实验表明,提出的方法能很好地恢复图像,特别是在噪声严重的情况下与小波去噪相比优越性显著.1 Curvelet变换1.1 Ridgelet变换若函数ψ满足容许条件,则称ψ为容许激励函数,并称为以ψ 为容许条件的Ridgelet函数[11].令u=(cosθ,sinθ),x=(x1,x2),则 Ridgelet函数为由此可知,Ridgelet函数在直线x1 cosθ+x2 sinθ=c方向上是常数,而与该直线垂直方向上是小波函数.图1显示了一个Ridgelet函数.1.2 Ridgelet离散化Ridgelet变换的快速实现可以在Fourier域中实现,在空(时)域中f的Radon变换可以通过f的二维FFT在径向上做逆的一维FFT得到,对于这个结果再进行一次非正交的一维小波变换即可得到Ridgelet的快速离散化实现.图2描述了离散Ridgelet变换的过程.图1 一个Ridgelet函数ψa,b,θ(x1,x2)的示例图2 离散Ridgelet变换过程通过Radon变换,一幅n×n的图像的像素点变为n×2n的阵列,再对n×2n阵列进行一维小波变换就得到了2n×2n阵列Ridgelet变换的结果.1.3 Curvelet变换Curvelet变换是一个多尺度、多方向的图像表示框架,是对含有曲线边缘的目标的一种有效的非自适应的表示方法,它能够同时获得对图像平滑区域和边缘区域的稀疏描述.它从Ridgelet发展而来,本质上可以看成多尺度分析下的Ridgelet实现.因此Curvelet变换时各向异性的,从而相对于小波分析提供了更为丰富的方向信息.Curvelets变换的主要步骤[9]如下:(1)子带分解:f→(p0(f),Δ1(f),Δ2(f),…);(2)平滑分割:Δs(f)→(wQΔs(f),Q∈Qs,其中wQ表示在二进制子块Q=[k1/2s,(k1+1)/2s]×[k2/2s,(k2+1)/2s]上的平滑窗函数集,wQ可以对各自带分块进行平滑;(3)正规化:gQ=2-s(TQ)-1(wQΔs(f)),Q ∈ Qs,其中,(TQ f)(x1,x2)=f(2s x1-k1,2s x2-k2)对每个子块进行归一化处理,还原为单位尺度;(4)Ridgelet分析:αμ =〈gQ,ρλ〉,μ =(Q,λ),其中,pλ是构成L2(R2)空间上正交基的函数.Curvelet具有以下性质:(4)对于含有边界光滑的二维信号有稀疏表示,逼近误差能够到达ο(M-2).(5)各向异性.Curvelet变换的实现过程如图3所示.进行Curvelet变换的基本步骤:(1)对图像进行子带分解.(2)对不同尺度的子带图像采用不同大小的分块.图3 子带的空间平滑分块过程(3)对每个子块进行Ridgelet分析.每个子块的频率带宽W、长度L近似满足关系W=L2.这种频率划分方式使得Curvelet变换具有强烈的各向异性,而且这种各向异性随尺度的不断缩小呈指数增长.(4)在进行子带分解的时候,通过带通滤波器组将目标函数f分解成从低频到高频的系列子带,以减少不同尺度下的计算冗余.如图4所示,Curvelet变换的核心部分是子带分解和Ridgelet变换.图4中p0(f)为多尺度分析后图像的低频部分,Δi(f)为高频部分.2 图像去噪实现2.1 阈值计算在贝叶斯估计理论框架下,假设图像的Curvelet系数服从高斯分布(均值为0,方差为),即图4 图像Curvelet变化前后的各子带变化过程框架对于给定的参数σX,需要找到一个使贝叶斯风险r(T)=E(^X-X)2=Ex Ey|x(^X-X)2最小(^X为X的贝叶斯估计)的阈值T.用T*=argmin rT(T)表示优化阈值.其中σ2为加入的高斯噪声方差,σx为不带噪声信号的标准方差.T是对T*=argmin rT(T)的近似,最大偏差不超过1%.2.2 参数估计对式(4)中的参数进行估计.噪声方差的估计公式为由于=+σ2,又因为可由式(6)估计噪声方差σ2用一个具有鲁棒性的中值估计器[13]估计.2.3 软硬阈值折衷法定义当a分别取0和1时,式(8)即成为硬阈值和软阈值估计方法.对于一般的0<a<1来讲,该方法估计数据Wδ的大小介于软硬阈值方法之间,叫做软硬折衷法.在阈值估计器中加入a因子:a取值为0,则等价于硬阈值方法;a取值为1,则等价于软阈值方法在0与1之间适当调整a的大小,可以获得更好的去噪效果.在此实验中,暂取a=0.5.2.4 Curvelet图像去噪的主要算法步骤和实验结果(1)对含噪声图像进行多尺度分解,得到各级子带细节(高频部分);(2)对各高频子带进行二维Curvelet分解;(3)根据式(5)估计噪声方差;(4)根据式(6)计算图像每个子带的方差;(5)根据式(7)为图像的每个子带计算相应的阈值;(6)用得到的阈值对各层的高频系数进行软硬折衷阈值化去噪;(7)对各高频子带做二维Curvelet逆变换并重构原始图像.针对该方法进行实验并且比较相关实验结果:本文主要采用峰值信噪比(PSNR)来衡量灰度图像的去噪性能.实验使用的峰值信噪比公式为其中 f'为处理后的图像的灰度,f为原始图像的灰度,N为图像像素的个数.算法实验选取了256×256,施加不同级别高斯噪声(σ =10,20,30)的图像.对离散小波变换和Curvelet变换的分解和重构是四层.实验结果如图5(σ =20)所示.(1)从人眼识别角度看,本文提出的方法效果比较明显,Curvelet变换在均匀区域的去噪结果比离散小波变换的结果要平滑,在各种噪声水平下其去噪效果都比其他相关方法要好;(2)从量化数据上看,本文方法计算得到的峰值信噪比参数值比其他去噪算法要高,见表1.表1 不同方法的去噪结果比较(PSNR)σ 噪声图像 DWT全局阈值去噪Curvlet全局阈值去噪Curvlet全局软硬折衷去噪本文方法去噪10 28.129 3 28.990 930.492 31.065 8 32.805 6 2 22.155 7 26.395 7 28.101 28.332 6 29.439 6 3 18.638 4 23.304 8 24.550 3 25.377 5 26.691 5(3)对Curvelet变换具有平移不变性和良好的方向选择性等优点以及自适应软硬折衷阈值处理的特点所决定.3 结束语本文基于Curvelet变换提出了一种根据贝叶斯估计计算阈值并以软硬折衷的方式对图像噪声去除的方法,该方法去除噪声较彻底,边界、纹理等特征保留较好.通过本文的方法进行的实验结果表明,提出的方法在去除噪声的同时,能更好地保留图像的细节.去噪后的图像峰值信噪比值高,视觉效果较好.参考文献:图5 Barbara图像及其去噪结果[5] STARCK JL,CANDESE J,DONOHOD.The curvelet transform for image denosing[J].IEEE Transaction on Image Processing,2002,11(6):131-141.[6] CANDESEmmanuel J,DONOHODavid L.Continuous curvelet transform:Resolution of thewavefront set[EB/OL].(2003-05-06)[2004-08-15].http://www-stat.stanford.edu/~donoho/Reports/2003/ContCurveletTransform-I.pdf.[7] DONOHOD L.Ridgelet functions and orthonormal ridgelets [J].Journal of Approximation Theory,2001;111(2):143-179.[8] CANDESEmmanuel J,DONOHODavid L.Curvelets a surprisingly effective nonadaptive representation for objectswith edges[EB/OL].(1999-12-16)[2004-09-20].http://www.acm.caltech.edu/~emmanuel/papers/Curvelet-SMStyle.pdf.[9] CANDESE J,DONOHO D L.Continuous Curvelet transform:reso-lution of the wavefront set[EB/OL].(2003-05-06)[2004-08-15].http://www.acm.caltech.edu/~emmanuel/publication.html.[10] CANDESE J,DONOHO D L.Fast discrete curvelet transform [R].California:California Institute of Technology,2005.[11] CANDESE J.Ridgelet:theory and application[D].Stanford:Department of Statistic,Stanford University,1998.[12] CHEN Y,HAN C.Adaptivewavelet thresholding for Image denoising[J].Electronics Letters,2005,41(10):586-587.[13] DONOHOD L,JONHNSTONE IM.Ideal spatial adaptation via wavelet shrinkage[J].Biometrika,1994,81(3):425-455.【相关文献】[1] MALLAT S.A wavelet tour of signal processing[M].2nd ed.Beijing:China Academic Press,1999:67-216.[2] MALLAT S.A theory formultiresolution signal decomposition:the wavelet representation[J].IEEE Trans PAMI,1989,11(7):674-693.[3]SARKAR TK,SUC.A tutorialonwavelets from an electricalengineering perspective,Part2:the continuous case[J].IEEEAntennas &Propa-gation Magazine,1988,40(6):36-48.[4]焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(12A):1 975-1 981.。

基于Curvelet变换的图像压缩感知重构

基于Curvelet变换的图像压缩感知重构

基于Curvelet变换的图像压缩感知重构叶慧;孔繁锵【摘要】Discrete Cosine Transform(DCT) and wavelet transform are used for sparse representation, but DCT can’t analyse well in domain of time and frequency. The directional selectivity of wavelet transform is poor and can’t reconstruct edge information well enough. Against the optimization of sparse representation, Curvelet transform has characters of multi-scale, singularity and more sparsity. This paper proposes a compressed sensing reconstruction algorithm based on Curvelet transform, which uses Curvelet transform for sparse representation and thresholding method in wavelet domain to solve the noise problem of signal reconstruction. Results demonstrate that the algorithm gets 1.86 dB higher Peak Signal to Noise Ratio(PSNR) and 1.15 dB higher PSNR compared with traditional wavelet transform and Contourlet transform. As Curvelet transform is applied to compressed sensing, optimal result of edge and smooth part of image are got, also the reconstructed quality of details is increased.%压缩感知主要采用离散余弦变换(DCT)和正交小波进行图像的稀疏表示,但是 DCT 时频分析性能不佳,小波方向选择性差,不能很好地表示图像边缘的信息。

Curvelet变换在图像处理中的应用综述

Curvelet变换在图像处理中的应用综述

计算机研究与发展ISSN 1000-1239/CN 11-1777/T PJournal of Computer Research and Development 42(8):1331~1337,2005收稿日期:2004-08-06;修回日期:2005-00-00 基金项目:国家自然科学基金项目(60372059)Curvelet 变换在图像处理中的应用综述隆 刚 肖 磊 陈学(中国科学技术大学电子工程与信息科学系 合肥 230027)(longgang@ustc 1edu)Overview of the Applications of Curvelet Transform in Image ProcessingLong Gang,Xiao Lei,and Chen Xuequan(Dep ar tment of Electronics Engineer ing and I nf or mation Science,Univ er sity of Science and T echnology of China,H ef ei 230027)Abstract The Curvelet transform has received more and more attention in recent years due to its unique characteristics 1This transform w as developed from the w avelet transform and it has overcome some inherent limitations of w avelet in representing directions of edges in imag e 1The applications of Curvelet transform reveal its g reat potential in image processing 1In this paper,the theory and implementation of Curvelet transform is sum marized,its representative applications are introduced in view of their corresponding effects and characteristics compared w ith other prevailing techniques 1Finally,the prospect of its applications in image processing is discussed 1Key words Curvelet;wavelet;denoising;enhancement;image fusion摘 要近年来,Curvelet 变换由于其独特性而受到研究人员的日益关注1Curvelet 变换由小波变换发展而来,克服了小波变换在表达图像边缘的方向特性等方面的内在缺陷1目前的应用已经显示出它在图像处理中巨大的发展潜力1总结了Curvelet 变换的原理及实现方法,介绍了它在图像处理中的典型应用,并通过与一些相关算法的比较分析了它在不同应用中的效果和特点,最后对它的应用发展趋势进行了展望1关键词Curvelet;小波;去噪;增强;图像融合中图法分类号 T P3911411 引 言近年来,Donoho 等人提出的Curvelet 变换[1]引起了有关研究人员的密切关注1尤其在图像处理领域,它被认为即将成为一项非常有用的新技术1Curvelet 变换是在研究小波变换的基础上发展起来的,它克服了小波变换在应用中的不足,显示出了许多独到之处1众所周知,在小波变换出现的近20年间,它在信号处理中的应用得到了很大的发展,其地位也日益重要1根本上讲,这得益于小波变换能够高效地对一维分段连续信号进行分析1对于二维图像处理,常用的二维小波是一维小波的张量积,采用分离的变换核先对图像做水平方向的小波变换,然后再进行垂直方向的小波变换,这样的二维小波变换的基是各向同性的(isotropic),变换系数的局部模极大值只能反映出这个小波系数出现的位置是/过0边缘(across edge)的,而无法表达/沿0边缘(along edge)的信息,这就使得传统小波变换在处理二维图像时表现出一定的局限性1针对小波变换的上述缺点,Donoho 等人提出Curvelet 变换理论,其各向异性特征非常有利于图像边缘的高效表示1这一特点使得Curvelet变换自1999年问世以来得到了相关研究者的高度重视,在图像处理和分析中已经取得了很多研究成果1本文将扼要介绍Curvelet变换在图像去噪、图像增强、图像融合、图像恢复等几个方面的应用,结合研究中实现的部分算法进行实验说明,并探讨它的发展趋势及一些有待进一步研究的问题12C urvelet变换及其实现211C urvelet变换的基本理论如前所述,小波变换在某些应用中长期受到沿边缘信息表达能力不足的困扰,虽然研究人员提出了不少改进方法,但都没有从本质上进行革新1为克服这一局限,1998年Cand s提出了Ridgelet变换[2]:对图像进行Radon变换,即把图像中的一维奇异性,比如图像中的直线,映射成Radon域的一个点,然后用一维小波进行点奇异性的检测,从而有效地解决了小波变换在处理二维图像时的问题1然而,自然图像中的边缘线条以曲线居多,对整幅图像进行单尺度Ridg elet分析并不十分有效,因此需要对图像进行分块,使每个分块中的线条都近似直线,再对每个分块进行Ridgelet变换,这就是多尺度Ridgelet1由于多尺度Ridgelet分析冗余度很大[3], Donoho等人提出了Curvelet变换:首先对图像进行子带分解;然后对不同尺度的子带图像采用不同大小的分块;最后对每个块进行Ridgelet分析1每个子块的频率带宽w idth、长度length近似满足关系w idth=length21这种频率划分方式使得Curvelet 变换具有强烈的各向异性,而且这种各向异性随着尺度的不断缩小呈指数增长1研究表明,用有限的系数来逼近一段C2连续的曲线时,Curvelet变换的速度远远快于傅里叶变换和小波变换[4]1换言之,对此类曲线而言,Curvelet变换是其最稀疏的表示方法1总之,Curvelet结合了Ridgelet变换的各向异性特点和小波变换的多尺度特点,因此它的出现对于二维信号分析具有里程碑式的意义1下面简要介绍Curvelets变换的主要步骤[5]:(1)子带分解(subband decomposition):f y(P0f,$1f,$2f,,)1(2)平滑分割(smooth partitioning):$s f y(w Q$s f)Q I Qs,其中,w Q表示在二进制方块Q=[k1P2s,(k1+1)P 2s)@[k2P2s,(k2+1)P2s)]上的平滑窗函数集1这一步使每个子带都被窗函数分块平滑1(3)正规化(renormalization):g Q=2-s(T Q)-1(w Q$s f),Q I Q s,其中,(T Q f)(x1,x2)=f(2s x1-k1,2s x2-k2)1这一步使每个小块都还原为单位尺度1(4)Ridgelet分析(Ridg elet analysis):A L=3g Q,Q K4,L=(Q,K),其中,Q K是构成L2(R2)空间上正交基的函数1下面简要分析作为Curvelet变换核心的Ridgelet变换1双变量的Ridgelet函数定义为W a,b,H=a-1P2W((x1cos H+x2sin H-b)P a),其中,W是小波函数,a是Ridg elet变换的尺度因子,b是Ridgelet变换位置参数即截矩偏移,H是Ridgelet变换的方向1可见Ridgelet函数沿着脊线x1cos H+x2sin H=C(C为常数)是不变的,而在脊线的垂直方向上,则是小波函数的变化曲线1对于一个可积分的单变量函数f(x),Ridg elet 变换的形式:R f(a,b,H)=Q W a,b,H(x)f(x)d x1重构公式如下:f(x)=Q2P0Q+]-]Q]0Rf(a,b,H)W a,b,H d a a3d b d H4P1通过Radon变换的原理可以把Ridgelet变换和小波变换联系起来1对于一个双变量函数f,其Radon变换:R f(H,t)=Q f(x1,x2)D(x1cos H+x2sin H-t)d x1d x2重写Ridgelet变换公式如下:R f(a,b,H)=Q R f(H,t)a-1P2W((t-b)P a)d t1上式表明Ridgelet变换是对Radon变换的切片的一维小波分析,其中方向角H是固定的,而变量t 是小波分析的对象1212Curvelet变换的数字实现根据上述理论,Starck等人提出了一种Curvelet 变换的数字实现算法[6],其主要步骤为¹子带分解1采用 trous小波算法把图像分解到不同的子带1º分块1每一个子带加窗处理,而且每隔一个子带,窗口的宽度增加一倍1»数字Ridg elet分析1对每一个正方块进行1332计算机研究与发展2005,42(8)Ridgelet 变换1其中包括二维傅氏变换、直角坐标转换成极坐标、在各角度对应直线上分别作一维傅氏逆变换和一维小波变换等几个中间步骤1数字Curvelet 逆变换的实现只需将上述步骤逆序进行即可13 C urvelet 变换的应用由前述的Curvelet 变换基本思想及其特性可知,它相对于小波变换的最大特点是具有高度的各向异性,因此具有更强的表达图像中/沿0边缘信息的能力1在图像处理中,边缘往往是最重要的特征,它对于进一步的处理和分析有着至关重要的意义1而在实际情况中,图像边缘又常被其他因素削弱,比如为噪声所掩盖,等等1在这种环境下,Curvelet 变换所表达的沿边缘信息对于恢复图像主要结构的视觉特征的优势是不言而喻的1下面主要介绍Curvelet 变换在图像去噪、增强、融合、恢复等几个方面的应用方法及其效果1311 利用Curvelet 变换抑制图像噪声31111 去除加性噪声传统的图像随机噪声消除或抑制的方法可分为频域滤波方法和空域平滑方法,其缺点是都要损失大量的图像信息1目前较新而且有效的去噪方法是小波域滤波1但是小波算法用于图像去噪有内在的局限性,因为对图像进行二维小波变换以后,重要边缘上的系数即使在很精细的尺度下也很大,这意味着要重建图像边缘,就必须保留大量的小波系数1根据统计原理,数据的精简与其精确性之间有矛盾,即便取二者之间最好的折衷,仍将导致较高的均方误差1由于Curvelet 变换能用极少的非零系数精确表达图像边缘,因此可以在保证较低的均方误差基础上,达到较理想的图像数据的精简性与精确性的平衡,从而体现出它在噪声环境下优于小波的表达图像的能力1基于Curvelet 变换的去噪算法[6]概要:对图像进行Curvelet 变换,然后对每个子带的变换系数做硬阈值处理,最后进行Curvelet 逆变换得到去噪图像1在阈值的选取上,是保留较大的系数,舍弃较小的系数,因为根据Curvelet 变换理论,较大的Curvelet 系数对应于较强的边缘,反之为噪声1图1是我们在实验中截取的Lena 图像去噪的部分结果,其中图1(a)为高斯噪声污染的原图,图1(b)为非抽样小波去噪结果,图1(c)为Curvelet 去噪结果1Fig 11 T he compar ison o f denoising r esults based on w avelet versus curvelet 1(a)Or iginal image;(b)Wavelet -denoised image;and (c)Curvelet -denoised image 1图1 基于小波和Curvelet 的图像去噪比较1(a)原图;(b)小波去噪;(c)Curvelet 去噪通过对几幅内嵌高斯白噪声的标准图像进行实验,结果显示Curvelet 算法的峰值信噪比(PSNR)高于多数基于小波的方案,而且Curvelet 重建的图像不会产生像小波重建图像的沿边缘的走样(artifact)1如抽样小波算法会产生边界扭曲现象并损失大量细节;非抽样小波的边界效果虽然略好,但有时仍忽略了某些脊(ridge),还会显示出一些小尺度的嵌入污点1可见即使只是简单的取硬阈值,Curvelet 去噪算法的PSNR 与较复杂的小波去噪算法相当甚至更高1在中等程度或高噪声背景下,Curvelet 算法的结果图在视觉上更清晰,特别对于恢复边缘和微弱的线性及曲线结构非常有效1上述去噪方案仍有不足,由于采用的Ridg elet 变换有环绕(w arp around)现象,影响了Ridgelet 变换以直线为单位分析图像的性质1肖小奎等人[7]的解决方案是对一n @n 图像补零至2n @2n 个点后再进行离散傅里叶变换,从而避免了进行一维傅里叶反变换时所出现的混迭现象1此外,由于Starck1333隆 刚等:Curvelet 变换在图像处理中的应用综述等人在去噪时采用了硬阈值,对小波系数的衰减又在频域中进行,所以去噪后的图像中呈现出一定的振铃效应1对此,肖小奎等人将频域中小波系数变换到时域中再进行硬阈值去噪,同时改进了Xu 等人[8]提出的子带相关去噪法,将其与硬阈值法进行了结合1实验证明去除了环绕现象,去噪后的图像PSNR 值和视觉效果都有所改进131112 去除SAR 图像斑点噪声由于SAR 图像上相干斑点噪声的存在严重地影响了图像的解读和应用,所以从20世纪80年代起就出现了许多针对SAR 图像斑点噪声的去噪方法,但是处理效果都不太好1由于小波分析具有很好的时频局部化特性,它被成功运用于去除斑点噪声1实验结果表明其处理效果好于传统方法,但阈值的设置往往存在着对小波系数的/过扼杀0,在边缘和纹理细节的保持方面,效果仍不理想1Ulfarsson 等人针对SAR 图像的斑点噪声问题,利用Curvelet 变换良好的表达边缘的特性提出了新的解决方案[9]1算法首先对原图像进行对数变换,这时斑点噪声变为近似的高斯加性噪声1对预处理后的图像进行Curvelet 变换,然后进行硬阈值处理,最后进行Curvelet 反变换及指数变换得到去噪图像1图2是我们在实验中截取的一幅SAR 图像的去噪结果,其中图2(a)为原图,图2(b)为小波去噪结果,图2(c)为Curvelet 去噪结果1Fig 12 T he co mparison of denoising results o f SAR image based o n w avelet versus curvelet 1(a)Or iginal image;(b)Wavelet -denoised image;and (c)Curvelet -denoised image 1图2 基于小波和Cur velet 的SA R 图像去噪比较1(a)原图;(b)小波去噪;(c)Curv elet 去噪实验表明这种去噪方案明显地减少了斑点噪声,同小波去噪相比,图像的清晰度更高,保持了更多原有图像中的结构,可以为进一步的图像分类和识别提供有效帮助1Curvelet 域的硬阈值方案虽然能很好地处理边缘问题,但是在处理平滑区域和奇异点区域时并非最佳选择1由于小波域隐Markov 树算法(HMT)能较好地处理平滑区域和奇异点区域,于是Saevarsson 等人结合二者的优势,对平滑区域和奇异点用HM T 处理,边缘区域则用Curvelet 处理,得到了一种自适应的联合算法[10]1实验证明其效果优于单独采用上述2种方案的效果1312 利用Curvelet 变换实现图像增强鉴于边缘在图像分析和理解中的重要地位,增强边缘是一种很好的增强对比度的方法1传统的边缘增强方法大致可划分为频域的高通滤波方法和空间域基于模板的方法,其处理效果都不够理想1小波变换由于其多分辨率和去相关性等特点成功运用于边缘增强,但是基于小波的增强方法有其局限性,因为它并不太适合于检测各向异性的图像元素,而且小波增强会平滑掉图像的部分细节1相反,对新的多尺度体系Ridg elet 和Curvelet 而言,由于它们的基函数本身就对方向敏感,属于高度各向异性的变换,因此在边缘很重要的图像的增强中具有很大的优势1基于Curvelet 变换的图像增强算法[11]概要:先对原图像进行Curvelet 变换,然后根据各子带的噪声水平分别进行分段非线性增强,最后进行反变换得到增强图像1其中的关键是处理Curvelet 系数的增益函数,必须确保对应于噪声的系数不被增强1图3是我们对某天文图像进行增强的实验结果,其中图3(a)为原图,图3(b)为小波增强结果,图3(c)为Curvelet 增强结果1可见经Curvelet 变换增强的图像边缘更加平滑,纹理也更为清晰1更好的增强方法应该使图像分割或边缘检测之类的处理产生更好的结果1分别用小波和Curvelet 对1334计算机研究与发展 2005,42(8)含噪的原图像进行增强,然后都用Canny 边缘检测算子进行处理,结果表明用Curvelet 增强过的图像检测出的边缘最多1而且输入图像的信噪比越低,效果越明显1对直方图均衡、小波变换和Curvelet 变换处理过的图像分别用同样方法进行图像分割,结论同样是Curvelet 的效果最佳1可见在噪声环境中的轮廓提取上,Curvelet 变换的作用最突出1对于无噪声图像,基于Curvelet 变换的增强相对小波增强无明显优势1Fig 13 T he co mparison of enhancement results based o n w avelet versus curvelet 1(a)O riginal image;(b)Wavelet -enhanced image;and (c)Curvelet -enhanced image 1图3 基于小波和Curvelet 的图像增强比较1(a)原图;(b)小波增强;(c)Curvelet 增强313 利用Curvelet 变换实现图像融合在卫星遥感成像系统中,要同时获得光谱、空间和时间的高分辨率是很难的,因此往往通过多传感器、多分辨率遥感数据融合方法来获得更全面的信息1传统的基于Brovey,H IS 和PCA 的融合方法可以达到较高的空间分辨率,融合图像在视觉上比较清晰,但是其光谱分辨率往往达不到要求1相反,基于小波变换的融合方法可以达到较高的光谱分辨率,然而其融合图像的空间分辨率不高,容易丢失一些结构的细节信息1与小波变换一脉相承的Curvelet 变换由于其优秀的边缘表达能力,有助于改善小波变换融合图像的视觉清晰度,并有效地提高其空间分辨率1Cho i 等人对高光谱、低空间分辨率的多光谱图像以及低光谱、高空间分辨率的全色卫星图像的融合问题进行了研究,提出了基于Curvelet 变换的图像融合算法[12]1融合后的图像跟原始的全色图像比有近似的细节,因为Curvelet 能比小波更好的表达边缘;同时由于算法中将小波融合结果用做了中间结果,因此相对于原始多光谱图像的光谱信息保持度也相当好1实验证明,同基于小波和IH S 的融合结果相比,该算法的融合结果有更佳的视觉效果1此外基于联合熵、平均梯度、相关系数等几个指标同小波融合和H IS 融合的结果进行了量化比较,结果同样显示了Curvelet 融合算法的优越性1314 利用Curvelet 变换实现图像恢复当成像系统是线性且平移不变的时候,图像降质模型可表示为I (x ,y )=(P *O)(x ,y )+N (x ,y ),其中,N 为加性噪声1恢复目标是根据降质图像I 和点扩展函数P 求原图像O 1由于点扩展函数的截止频率问题和加性噪声问题的存在,这样的求逆问题有很多困难1现有的基于小波的非迭代求解法如wavelet -vaguelette 分解[13]等,虽然速度快,同一般的线性恢复方法相比有优势,但是仍然存在着根据点扩展函数划分频域常常不当,未考虑到非高斯噪声等缺陷1基于小波的迭代恢复算法可以较好地解决上述问题1鉴于Curvelet 变换在噪声环境下强有力的边缘恢复能力,Starck 等人参考基于小波的迭代算法,提出了一种基于Curvelet 和小波的联合迭代算法[14]1这种解卷积算法是Curvelet 去噪解决方案的延伸,算法中使用了两种不同的变换,将能同时最优地检测由小波表达的各向同性图像特征和由Curvelet 表达的边缘特征,此外增加了总变化(total variation)惩罚函数约束以避免多尺度变换造成的边缘附近的振荡现象1实验证明其效果优于单纯基于小波的恢复算法,主要特色是使恢复图像的边缘及纹理等细节更为清晰14 Curvelet 变换研究展望综上所述,虽然Curvelet 变换诞生的时间不长,对它的研究还远不如小波成熟,但是由于其崭新的1335隆 刚等:Curvelet 变换在图像处理中的应用综述理论面貌和独到的应用特点,已经得到了相关研究人员的高度重视,也取得了相当多的研究成果1可以预见,Curvelet在理论和应用上的研究还有很大的潜力1在Curvelet理论及其实现方面,目前普遍采用的数字Curvelet变换算法[6]仍然有较高的冗余度,可以改进的地方包括更好的插值方案,改进的空域分割中的重叠策略(folding strategy)等1比如, Averbuch等人[15]的笛卡儿坐标系下基于斜栈(slant stack)的Radon变换实现方法,可以实现更精确的插值1Do等人[16]利用金字塔形有向滤波器组近似实现Curvelet变换,大大减小了冗余度1此外, Cand s等人[17]提出的更为先进的Curvelet体系,既遵守了原Curvelet的基本思想,又大大简化了其结构,因此为实现上的简化提供了有力的帮助1目前基于它的应用研究还处于试验阶段1图像去噪方面,虽然在效果上,基于Curvelet变换的简单阈值法就能与近年来研究的基于小波的复杂阈值法相当,但是仍存在改进余地1比如,现有的数字Curvelet变换仍然是非正交的,因此有较多冗余,噪声系数之间有相关性,有必要设计出考虑到这种相互依赖性的阈值方案1父子Curvelet系数之间明显存在树结构,应加以有效利用1此外,目前在非高斯分布情况下的去噪研究也不足1作为图像处理中一个重要部分,图像压缩领域迄今尚未出现基于Curvelet的算法的实质性报道1其主要障碍仍然是数字Curvelet变换的冗余度较高1由于图像边缘在人的视觉中的重要地位,而Curvelet变换在理论上又是边缘的稀疏表示,因此这方面的研究还是有潜力的1另外,边缘检测也是图像分析中的重要问题1鉴于Curvelet变换高效的边缘表达能力,研究如何利用它快速检测边缘和提取目标轮廓也是富有价值的1最后,如何将Curvelet跟现有的较为成熟的图像处理技术,尤其是小波变换联合运用也是目前非常活跃的研究方向1除了上文提及的个别例子如文献[10,12,14]外,下面几篇文献也对包含Curvelet变换的联合算法进行了研究1Starck等人[18]认为目前几个典型的信号变换都各具优势:傅里叶变换最适合分析静态过程, trous小波变换适合分析各向同性特征,双正交小波变换适合于小程度的各向异性特征, Ridgelet变换适合有固定长度(如固定块尺寸)的各向异性特征,Curvelet变换适合长度为宽度平方的各向异性特征1为此,基于非统计性的形态成分分析(M CA)提出了一种自适应图像表达的联合算法,可以自动分割图像中不同类型的形态特征,然后分别由对应的最优变换来处理它们1Starck等人[19]还利用DCT适于表达纹理及Curvelet适合表达边缘的特性,成功地联合二者实现了图像中纹理与分段平滑内容的分离1Zhang等人[20]针对用分块DCT变换进行图像压缩时的块效应问题,在小波变换和边缘流导引的滤波(edge flow-directed filtering)处理基础上,利用Curvelet变换实现了降低边缘和纹理损失的块效应抑制算法,取得了较好的效果1以上几个典型的例子说明Curvelet与其他算法的联合应用是非常值得研究的1类似的例子可参考文献[21,22]15结束语本文介绍了从小波变换发展而来的Curvelet变换1它的显著特征是多尺度和高度各向异性,非常适合于图像中边缘的表达及合成1研究表明, Curvelet变换在图像去噪、增强、融合、恢复等方面显示出了它优于其他相应的算法的特点1虽然经过几年的发展,Curvelet变换已经取得了很多研究成果,但是在理论、实现和应用上它还有许多可以进一步完善的地方1作为新生的小波时代的后继者之一,Curvelet变换还有更多的应用领域去开拓1鉴于其目前良好的发展态势,我们相信该领域的研究有着光明的前景1参考文献1D1L1Donoho,M1R1Duncan1Digital curvelet transform: Strategy,implementation and experiments1In:Proc.S PIE.San Jose,CA:S PIE Press,2000.12~302E1J1Can d s1Ri dgelets:Theory an d applications:[Ph1D1 dissertation]1Departm ent of Stati stics,Stanford University,1998 3E1J1Cand s,F1Guo1New multiscale transforms,minimum total variati on synthesis:Appli cati ons to edge-preserving image reconstruction1Signal Processing,2002,82(11):1519~15434E1J1Cand s,D1L1Donoho1Curvelet)A surprisingly effective non-adaptive representation for objects w ith edges1In:Curves and Surfaces1Nashville,T N:Vanderbilt Univ.Press,20001105~ 1205E1J1Cand s,D1L1Donoho1Curvelets,multiresol ution representation,and scaling law s1In:Proc1SPIE1San Jose,CA: SPIE Press,200011~126J1L1Starck,E1J1Cand s,et al1The Curvelet transform for image denoi sing1IEEE T rans1Image Proc.,2002,11(6):670 ~6847Xiao Xiaoqui,et al1Edge-preserving image denoising method using Curvelet transform1Journal of China Ins titute of1336计算机研究与发展2005,42(8)Communications,2004,25(2):9~15(in Chinese)(肖小奎,等1加强边缘保护的Curvelet 图像去噪方法1通信学报,2004,25(2):9~15)8Y.Xu,et al.Wavelet transform domain filters:A spatially selective noise fi ltration technique.IEEE Trans.Image Proc.,1994,3(11):747~7589M 1O 1Ulfarsson,et al 1Speckle reduction of SAR images in the curvelet domain 1In:Proc 1IGARS S .021Oakland:IEEEComputer Press,20021315~31710B 1B 1Saevarsson,et al 1Speckle reduction of SAR images using adaptive curvelet domain 1In:Proc 1IGARSS .031Oakland:IEEE Computer Press,2003.4083~408511J 1L 1S tarck,F 1M urtagh,et al 1Gray and color image contrast enhancement by the Curvelet transform 1IE EE T rans 1Image Proc.,2003,12(6):706~71712M 1Choi,R 1Y 1Ki m ,et al 1T he Curvelet transform for image fusion 1http:M amath.kai st.ac.kr P research P paper P 04-12.pdf,2004-1213D 1L 1Donoho 1Nonlinear solution of linear inverse problems by w avele-t vaguelette decomposition 1Applied and Computational Harmonic Analysis,1995,2(1):101~12614J 1L 1Starck,M 1K 1Nguyen ,et al 1Deconvolution based on the curvelet transform 1In:Proc 1ICIP .03.Oakland:IEEEComputer Press,20031993~99615A 1Averbuch ,D 1L 1Donoho,et al 1Fast slant stack:A notion of radon transform for data on a cartesian gri d w hich is rapi dly computable ,algebraically exact,geometrically faithful,andinvertible 1http:M w w w -stat.stan P ~donoho P Reports P index.html,200416M 1N 1Do,M 1Vetterli 1Pyramidal directi onal filter ban ks and curvelets 1In:Proc 1ICIP .01.Oakland:IEEE Computer Press,2001.158~16117E 1J 1Cand s,D 1L 1Donoho 1New ti ght frames of Curvelets and optimal representations of objects w ith C 2singularities 1http:M w w P ~emmanuel P publications.html,200218J 1L 1Starck,E 1J 1Cand s,et al 1Astronomical imagerepresentation by the Curvelet transform 1http:M w w P ~emmanuel P publi cati ons.html,200219J 1L 1Starck,M 1Elad,D 1L 1Donoho 1Image decomposition via the combination of sparse representations and a variational approach 1http:M ww w.cs.technion.ac.il P ~el ad P Journals P 22S eparation IEEE TIP.pdf,200420Z 1M 1Zhang,et al 1A novel deblock i ng algori thm using edge flow -directed filter and curvelet transform 1In:Proc 1ICM E .041Oakland:IE EE Computer Press,20041683~68621B 1Saevarsson,et al 1Combined w avelet and curvelet denoising of SAR images 1In:Proc 1IGARS S .041Oakland:IEEE Computer Press,200414235~423822J 1L 1Starck,E 1J 1Cand s,et al 1Very high quality image restoration by combi ning w avelets an d Curvelets 1In:Proc 1SPIE 1San Jose,CA:S PIE Press,2001.9~19Long Gang ,born in 19811Receiv ed the B 1E 1degree from the U niversity of Science and T echnolog y of China (U ST C)in 20031He has been a M 1S 1deg ree candidate in U ST C since 20031His resear ch interestsinclude image analysis,intelligentinformat ion processing and pattern recog nit ion 1隆刚,1981年生,硕士研究生,主要研究方向为数字图像分析、智能信息处理、模式识别1Xiao Lei ,bor n in 19811R eceived is B 1E 1degree fr om the U niversity o f Science andT echno logy of China (UST C)in 20031He has been a M 1S 1degree candidate in U ST C since 20031His resear ch interests include image denoising and wavelet analysi s 1肖磊,1981年生,硕士研究生,主要研究方向为图像去噪、小波分析1Chen Xuequan ,born in 19431She isprofessorandmastersupervisorofinfo rmat ion science at the U niversity ofScience and T echnolog y of China 1Her main resear ch interests are image processing,imageanalysisandr emotesensinginformat ion systems 1陈学,1943年生,教授,硕士生导师,主要研究方向为图像信息处理与分析、遥感及空间信息系统1Research BackgroundT he Curvelet transfor m is one of the significant multiscale transforms developed after t he w el-l known w av elet tr ansform 1Since Cur velet is ex hibit ing mor e and mor e advantag es in various kinds of ar eas,it has r apidly become the focus of many scient i sts fr om differ ent countries and lots of prog ress in its theor y and application has been made by no w 1However,it is yet a relat ively fresh t heory,thus not v er y mature in some sense 1Especially in China,the research on Curvelet is st ill in the elementary phase 1Hence evidently,great potential of research in t his domain could be ex pected 1I n t his paper,w e ex plicated the kernel of Curvelet theory,introduced its implementation algorithm and made a brief o ver view on its cur rently r epresentative applications in imag e processing ,in w hich we made feature compar ison w ith some other prevailing techniques,e 1g 1,w avelet in particular 1In or der to aid inter ested r esearchers as reference of research in future,w ith our r ecent research ex periences,we also attempted to discuss the prospect of Cur velet both in theo ry and application 1Our wo rk is supported by the N ational Science Foundation of China (60372059)11337隆 刚等:Curvelet 变换在图像处理中的应用综述。

复数Curvelet变换域复数高斯尺度混合图像降噪

复数Curvelet变换域复数高斯尺度混合图像降噪

复数Curvelet变换域复数高斯尺度混合图像降噪闫河;李刚;张小川【期刊名称】《信息与控制》【年(卷),期】2009(38)6【摘要】提出了一种基于复数Curvelet变换域复数高斯尺度混合(CGSM)模型的图像去噪方法.指出Curvelet变换重构图像存在"划痕"和"嵌入污点"的主要原因是Curvelet变换域存在频谱混叠,为此,采用复数小波变换和改进的Radon变换分别代替原Curvelet变换中的实小波变换和Radon变换.构造了具有抗混叠性能的复数Curvelet变换.本文同时把高斯尺度混合(GSM)模型扩展到复小波域,形成对复小波系数的幅值和相位信息具有有效捕捉能力的复数GSM模型,并在复数Curvelet 变换域,采用贝叶斯最小平方(BLS)估计器对CGSM模型下含噪复系数进行有效估计,从而实现降噪.实验结果表明,无论是用PSNR指标评估,还是在视觉效果上,本文方法的去噪性能均好于传统Curvelet去噪、Curvelet域HMT去噪和小波域BLS-GSM去噪.本文方法在有效去噪的同时,具有很好的图像边缘和细节保护能力.【总页数】9页(P735-742)【关键词】图像去噪;复数Curvelet变换;复数高斯尺度混合;贝叶斯最小平方估计【作者】闫河;李刚;张小川【作者单位】重庆理工大学计算机科学与工程学院【正文语种】中文【中图分类】TP391.4【相关文献】1.基于PCA的第二代Curvelet变换域图像降噪研究 [J], 刘鸿涛;王皓;汪金礼;尹涛;苏亚辉2.复数小波域的高斯尺度混合模型图像降噪 [J], 严奉霞;成礼智;彭思龙3.基于复数小波域广义高斯分布模型的纹理图像检索 [J], 蔡蕾;王珂;张立保4.抗混叠Curvelet变换非高斯双变量模型图像降噪 [J], 闫河;潘英俊;刘加伶;赵明富5.基于Curvelet域高斯尺度混合模型的地震信号降噪方法 [J], 李青;汪金菊因版权原因,仅展示原文概要,查看原文内容请购买。

curvelet曲波变换原理

curvelet曲波变换原理

Curvelet曲波变换的基本原理Curvelet曲波变换是一种多尺度、多方向的数据分析和处理方法,可以用于图像压缩、去噪、边缘检测等应用。

它利用了曲线的局部性和多尺度性质,能够更好地捕捉图像中的局部特征和细节信息。

1. 多尺度分解Curvelet曲波变换首先对输入信号进行多尺度分解,将信号分解为不同尺度上的子带。

这里使用的是一个金字塔结构,其中每一层都包含了不同尺度上的频率信息。

具体来说,Curvelet算法首先对输入信号进行小波变换(Wavelet Transform),将信号分解为低频部分和高频部分。

然后,对高频部分再次进行小波变换,得到更高频率范围内的子带。

这个过程可以重复多次,直到达到所需的尺度。

2. 曲线拟合在每个尺度上,Curvelet算法将信号划分为不同方向上的小块,并使用曲线拟合方法来逼近每个小块中的数据。

具体来说,它在每个小块中找到最佳拟合曲线,并计算出残差。

为了找到最佳拟合曲线,Curvelet算法使用了一种称为“最小二乘”的优化方法。

该方法通过最小化残差的平方和来确定最佳拟合曲线的参数。

这样,曲线拟合能够更好地捕捉信号的局部特征。

3. 阈值处理在曲线拟合后,Curvelet算法对每个尺度上的子带进行阈值处理。

阈值处理是一种非线性操作,用于抑制噪声并增强图像的特征。

具体来说,Curvelet算法将每个子带中的系数与一个阈值进行比较。

如果系数的绝对值小于阈值,则将其置为零;否则保留原始系数。

这样可以去除一些不重要的细节信息和噪声,从而提高图像质量。

4. 重构最后,Curvelet算法通过逆变换将经过分解和处理后的信号重构回原始空间。

逆变换过程与正向变换过程相反,在每个尺度上使用逆曲线拟合方法来恢复原始信号。

具体来说,Curvelet算法首先对每个尺度上的子带进行逆阈值处理,将之前置零的系数恢复为非零值。

然后,对每个尺度上的子带进行逆曲线拟合,将拟合曲线恢复为原始信号。

最后,通过逆小波变换将恢复的子带合并为重构信号。

图像奇异性表征机理分析比较

图像奇异性表征机理分析比较

第32卷第2期206年6月金陵科技学院学报J O U R N A L O F J IN U N G IN S T IT U T E O F T E C H N O L O G YV o l.32,N o.2J unc,2016图像奇异性表征机理分析比较郑玮(金陵科技学院计算机工程学院,江苏南京211169)摘要:图像奇异性包含的许多重要信息对于图像的进一步分析具有重要作用。

对于图像中的不同奇异性通常需要采用不同的方法表示。

小波变换和曲波变换作为稀疏表示中的重要方法,具有广泛的应用。

分析了小波变换和曲波变换对于图像奇异性表证的不同效果。

实验结果和理论分析均表明小波变换对于图像中的点奇异性具有很好效果,但对于线奇异性表示则不够稀疏,曲波则可以高效地表示图像边缘的曲线奇异性。

关键词:稀疏表示;图像分类;稀疏编码;寺征编码;小波;曲波中图分类号:T P391 文献标志码:A文章编号:1672 755X(2016)02 0034 05Image Singularity Analysis and ComparisonZH EN G Wei(Jinling Institute of Technology,Nanjing 211169, China)Abstra c t: Singularity in images carry massive essential inform ation,which is crucial to furtheranalysis. Wc need to adopt different methods according to the elements in image singularity.Wavelet transform and curvelet transform are two important methods for sparse representationand are widely used in numerous fields. In this paper,wavelet transform and curvelettransform are used to analyze the effects of different singularity in images. The experimentalresults and theoretical analysis both dem onstrate that wavelet is good at noises in images butcannot represent the edges effectively. On the contrary,curvelet is very suitable for the edge.Key word s :sparse representation ;image classification ;sparse coding ;feature coding ;w avelet; curvelet图像奇异性表征机理分析主要是指对图像噪声点、图像边缘信息的分析。

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

纹理物体缺陷的视觉检测算法研究--优秀毕业论文

摘 要
在竞争激烈的工业自动化生产过程中,机器视觉对产品质量的把关起着举足 轻重的作用,机器视觉在缺陷检测技术方面的应用也逐渐普遍起来。与常规的检 测技术相比,自动化的视觉检测系统更加经济、快捷、高效与 安全。纹理物体在 工业生产中广泛存在,像用于半导体装配和封装底板和发光二极管,现代 化电子 系统中的印制电路板,以及纺织行业中的布匹和织物等都可认为是含有纹理特征 的物体。本论文主要致力于纹理物体的缺陷检测技术研究,为纹理物体的自动化 检测提供高效而可靠的检测算法。 纹理是描述图像内容的重要特征,纹理分析也已经被成功的应用与纹理分割 和纹理分类当中。本研究提出了一种基于纹理分析技术和参考比较方式的缺陷检 测算法。这种算法能容忍物体变形引起的图像配准误差,对纹理的影响也具有鲁 棒性。本算法旨在为检测出的缺陷区域提供丰富而重要的物理意义,如缺陷区域 的大小、形状、亮度对比度及空间分布等。同时,在参考图像可行的情况下,本 算法可用于同质纹理物体和非同质纹理物体的检测,对非纹理物体 的检测也可取 得不错的效果。 在整个检测过程中,我们采用了可调控金字塔的纹理分析和重构技术。与传 统的小波纹理分析技术不同,我们在小波域中加入处理物体变形和纹理影响的容 忍度控制算法,来实现容忍物体变形和对纹理影响鲁棒的目的。最后可调控金字 塔的重构保证了缺陷区域物理意义恢复的准确性。实验阶段,我们检测了一系列 具有实际应用价值的图像。实验结果表明 本文提出的纹理物体缺陷检测算法具有 高效性和易于实现性。 关键字: 缺陷检测;纹理;物体变形;可调控金字塔;重构
Keywords: defect detection, texture, object distortion, steerable pyramid, reconstruction
II

基于区域特性的Curvelet变换图像融合算法

基于区域特性的Curvelet变换图像融合算法

基于区域特性的Curvelet变换图像融合算法王坤臣;孙权森【摘要】In order to overcome the weakness of wavelet transform in 2D or higher dimensional spatial analysis and improve quality of image fusion,a modified image fusion algorithm based on Curvelet transform is proposed. Curvelet transform which can effectively analyze singularity of a curve and rationally process edge information in an image is introduced to decompose images. An adaptive threshold regional variance and Gaussian⁃weighted fusion algorithm is used in low⁃frequency region toen⁃hance the correlation between pixels in an image and preserve its details and edges effectively. The regional energy fusion method is applied in high⁃frequency region to reduce noise and enhance the details of the image. Many fusion experiments of different images were carried out with the algorithm. The fusion results were evaluated by information entropy,cross entropy,correlation coefficient and space frequency. The experiment results indicate that the proposed algorithm is more outstanding than the conven⁃tional fusion rules and methods,and can obtain better resolution and more rich image content.%为克服小波变换在二维或更高维度空间分析中的缺陷,提高图像融合质量,提出基于二代Curvelet变换的图像融合改进算法。

curvelet曲波变换原理(二)

curvelet曲波变换原理(二)

curvelet曲波变换原理(二)Curvelet曲波变换原理1. 引言Curvelet曲波变换是一种用于多尺度分析的数学工具,广泛应用于图像处理、地震勘探、无损测试等领域。

它具有较高的局部可压缩性,能够更好地表达图像中的曲线和边缘特征。

2. 小波变换小波变换是一种将信号或图像在时域和频域中进行分析的方法。

它通过将信号与一组基函数进行内积运算,得到信号在不同尺度和频率上的分解。

然而,小波基函数在捕捉曲线和边缘信息时存在局限性。

3. 曲波变换基础为了克服小波变换的局限性,Curvelet曲波变换引入了曲线函数作为基函数。

曲波变换通过对信号进行多尺度和多方向的分解,能够更好地捕捉信号中的曲线和边缘特征。

同时,曲波变换还具有压缩性,能够有效地减少数据量。

4. Curvelet变换算法Curvelet变换算法主要包括以下几个步骤:•多尺度分解:将信号或图像分解为不同尺度的子带。

•方向分解:在每个尺度上,将子带分解为不同方向的子带。

•曲线分解:在每个方向上,对子带进行曲线函数分解。

•阈值处理:根据信号的统计特性,对曲波系数进行阈值处理。

•逆变换:将处理后的曲波系数进行逆变换,得到重构信号或图像。

5. Curvelet变换与图像处理Curvelet变换在图像处理中具有广泛的应用。

它可以用于图像去噪、图像压缩、边缘检测等任务。

由于Curvelet变换能够更好地表达图像中的曲线和边缘特征,因此在处理具有复杂纹理和边缘的图像时,具有更好的效果。

6. Curvelet变换与地震勘探在地震勘探中,Curvelet变换也被广泛应用于地震图像的处理和解释。

由于地震数据中存在大量的曲线和边缘特征,Curvelet变换能够更好地提取和表示这些特征。

通过对地震数据进行Curvelet变换,可以提高地震图像的分辨率和信噪比。

7. Curvelet变换的发展与应用前景Curvelet曲波变换是近年来发展起来的一种有效的多尺度分析工具。

Fast communication

Fast communication

Signal Processing83(2003)2279–2283/locate/sigproFast communicationWavelets andcurvelets for image d econvolution:a combinedapproachJean-Luc Starck a,Mai K.Nguyen b,Fionn Murtagh c;∗a DAPN IA/SEDI-SAP,Service d’Astrophysique,CEA-Saclay,91191Gifsur Yvette,Franceb Equipe de Traitement des Images et du Signal,CNRS UMR8051-ENSEA-UniversitÃe de Cergy-Pontoise,6,avenue du Ponceau,95014Cergy,Francec School of Computer Science,Queen’s University Belfast,Belfast BT71NN,Northern IrelandReceived4October2002;receivedin revisedform7June2003AbstractWe propose in this paper a new deconvolution approach,which uses both the wavelet transform and the curvelet transform in order to beneÿt from the advantages of each.We illustrate the results with simulations.?2003Elsevier B.V.All rights reserved.Keywords:Wavelet;Curvelet;Filtering;Deconvolution1.IntroductionIt has been shown[11]that,for denoising problems, the curvelet transform approach outputs a PSNR com-parable to that obtainedvia the und ecimatedwavelet transform,but the curvelet reconstruction does not contain as many disturbing artifacts along edges that one sees in wavelet reconstructions.Although the results obtainedby simply threshold ing the curvelet expansion are encouraging,there is of course ample room for further improvement.A quick inspection of the residual images resulting from the Lena imageÿl-tering(a3 hardthreshold ing has been appliedwith both transforms)for both the wavelet andcurvelet∗Corresponding author.Tel.:+44-2890-274620;fax:+44-2890-683890.E-mail addresses:jstarck@cea.fr(J.-L.Starck),f.murtagh@(F.Murtagh).transforms shown in Fig.1reveals the presence of very di erent features.For instance,wavelets do not restore long edges with highÿdelity while curvelets are challengedby small features such as Lena’s eyes. Loosely speaking,each transform has its own area of expertise andthis complementarity may be of great potential.In[12],a denoising algorithm was proposed which investigates this complementarity,by combining sev-eral multiscale transforms in order to achieve very high quality image restoration.For numerical reasons, the choice is restrictedto the transforms which have a fast forwardandinverse implementation.Consid-ering K linear transforms T1;:::;T K(respectively R1;:::;R K the inverse transforms,andwe have R k=T−1k for an orthogonal transform),the com-binedÿltering method(CFM)consists of minimizing a functional such as the Total Variation(TV)or the l1norm of the multiscale coe cients,but under a set of constraints in the transform domains.Such0165-1684/03/$-see front matter?2003Elsevier B.V.All rights reserved. doi:10.1016/S0165-1684(03)00150-62280J.-L.Starck et al./Signal Processing 83(2003)2279–2283Fig.1.Residual following thresholding of the undecimated wavelet transform (left)and thresholding of the curvelet transform (right).constraints express the idea that if a signiÿcant coe -cient is detected by a given transform T k at a scale j andat a pixel ind ex l ,then the transformation of the solution must reproduce the same coe cient value at the same scale andthe same position.In short,the constraints guarantee that the reconstruction will take into account any pattern which is detected as signif-icant by any of the K transforms.Given data y of the form y =s + z ,where s is the image to recover and z is stand ardwhite noise,the combinedÿltering methodconsists of solving the following optimization problem:min S (˜s );subject tos ∈C;(1)where S (˜s )can be either an ‘1penalty on the coe -cient (i.e.S (˜s )= k T k ˜s‘1)or the Total Variation norm,and C is the set of vectors ˜s which obey the linear constraints ˜s ¿0;|T k ˜s −T k y |6efor all k(2)The secondinequality constraint only concerns the set of signiÿcant coe cients,i.e.those indices such that =(T k y ) exceeds (in absolute value)a threshold t .More details can be found in [12].Several papers have been recently published,based on the concept of minimizing the Total Variation un-der constraints in the wavelet domain [6,3,8]or in the curvelet domain [2].CFM [12]can be seen as a gen-eralization of these methods.Section 2introduces the deconvolution problem,and discusses di erent wavelet based methods andSection 3shows how a deconvolution can be derivedfrom a combinedapproach.2.Wavelets and deconvolutionConsider an image characterized by its intensity distribution I ,corresponding to the observation of a “real image”O through an optical system.If the imag-ing system is linear andshift-invariant,the relation between the data and the image in the same coordinate frame is a convolution:I (x;y )=(P ∗O )(x;y )+N (x;y ),where P is the point spreadfunction (PSF)of the imaging system,and N is additive noise.We want to determine O (x;y )knowing I and P .This inverse problem has ledto a large amount of work,the main di culties being the existence of:(i)a cut-o fre-quency of the PSF,and (ii)the additive noise (see for example [1]).The wavelet basednon-iterative algorithm,the wavelet-vaguelette decomposition [5],consists of ÿrst applying an inverse ÿltering (F =P −1∗I =O +P −1∗N =O +Z where ˆP−1( )=1=ˆP ( )).The noise Z =P −1∗N is not white but remains Gaussian.It is ampliÿedwhen the d econvolution problem is unstable.Then,a wavelet transform is appliedon F ,the wavelet coe cients are soft or hardthreshold ed [4],andthe inverse wavelet transform furnishes the solution.The methodhas been reÿnedby ad apting the wavelet basis to the frequency response of the inverse of P [7].This leads to a special basis,the Mirror Wavelet Basis .This basis has a time-frequency tilingJ.-L.Starck et al./Signal Processing83(2003)2279–22832281structure di erent from the conventional wavelets one.It isolates the frequency s whereˆP is close to zero,because a singularity inˆP−1( s)in uences the noise variance in the wavelet scale corresponding to the frequency bandwhich includ es s.Because it may not be possible to isolate all singularities, Neelamani[9]has ad vocateda hybridapproach,and proposes to still use the Fourier domain to restrict excessive noise ampliÿcation.These approaches are fast andcompetitive comparedto linear method s, andthe wavelet threshold ing removes the Gibbs oscillations.This presents however several draw-backs:(i)theÿrst step(division in the Fourier space by the PSF)cannot always be done prop-erly(for example when the frequency cut-o c is smaller than the Nyquist frequency,thenˆP( ) equals zero for all ¿ c),(ii)the positivity prior is not used,and(iii)it is not trivial to consider non-Gaussian noise.A s an alternative,several wavelet-basediterative algorithms have been proposed[13],especially in the astronomical domain where the positivity prior is known to improve signiÿcantly the result.The simplest methodconsists ofÿrst estimating the mul-tiresolution support M(i.e.M(j;l)=1if the wavelet transform of the data presents a signiÿcant coe cient at band j andat pixel ind ex l,and0otherwise)[10], andto apply the following iterative scheme:O n+1=O n+P∗∗R[M:W(I−P∗O n)](3) where P∗is the transpose of the PSF(P∗(x;y)= P(−x;−y)),W is the wavelet transform operator and R is the wavelet reconstruction operator.At each iter-ation,information is extractedfrom the resid ual only at scales andpositions d eÿnedby the multiresolution support.M is estimatedfrom the input d ata andthe correct noise modeling can easily be considered[10]. The positivity is introduced in the following way:O n+1=P c[O n+P∗∗R[M:W(I−P∗O n)]];(4) where P c is the projection operator which enforces the positivity(i.e.set to0all negative values).3.The combined deconvolution methodSimilar to theÿltering,we expect that the combi-nation of di erent transforms can improve the quality of the result.The combinedapproach for the d econ-volution leads to two di erent methods.If the noise is Gaussian andif the d ivision by the PSF in the Fourier space can be carriedout prop-erly,then the deconvolution problem becomes aÿlter-ing problem where the noise is still Gaussian,but not white.The combinedÿltering A lgorithm can then be appliedusing the curvelet transform andthe wavelet transform,but by estimatingÿrst the correct thresh-olds in the di erent bands of both transforms.Since in many cases the mirror wavelet basis may produce bet-ter results than the wavelet basis,it is recommended to use it insteadof the stand ardund ecimatedwavelet transform.An iterative deconvolution method is more general andcan always be applied.Furthermore,the correct noise modeling can much more easily be taken into ac-count.This approach consists of detecting,ÿrst,all the signiÿcant coe cients with all multiscale transforms used.If we use K transforms T1;:::;T K,we derive K multiresolution supports M1;:::;M K from the input image I using noise modeling.For instance,in the case of Poisson noise,we ap-ply the Anscombe transform to the data(i.e.A(I)= 2I+38).Then we detect the signiÿcant coe cients with the k th transform T k,assuming Gaussian noise with standard deviation equal to1,in T k A(I)in-steadof T k I.M k(j;l)=1if a coe cient in band j at pixel index l is detected,and M k(j;l)=0otherwise. For the band J which corresponds to the smooth array (i.e.coarsest resolution)in transforms such as the wavelet or the curvelet transform,we force M k(J;l)=1 for all l.Following determination of a set of multiresolution supports,we propose to solve the following optimiza-tion problem:min˜OTV(˜O);subject to M k T k[P∗˜O]=M k T k I for all k;(5) where TV is the total-variation,i.e.an edge preserva-tion penalization term deÿned by:TV(˜O)=|∇˜O|p;with p=1:1.We chose p=1:1in order to approach the case of p=1with a strictly convex functional.2282J.-L.Starck et al./Signal Processing 83(2003)2279–2283Fig.2.Top,original image (phantom)andsimulatedd ata (i.e.convolvedimage plus Poisson noise).Bottom,d econvolvedimage by the wavelet basedmethodandthe combinedapproach.Minimizing with TV,we force the solution to be closer to a piecewise smooth image.The constraint imposes ÿdelity on the data,or more exactly,on the signiÿcant coe cients of the data,ob-tainedby the d i erent transforms.Non-signiÿcant (i.e.noisy)coe cients are not taken into account,prevent-ing any noise ampliÿcation in the ÿnal algorithm.A solution for this problem couldbe obtainedby relaxing the constraint to become an approximate one:min ˜OkM k T k I −M k T k [P ∗˜O] 2+ TV(˜O ):(6)The solution is computedby using the projectedLandweber method [1]:˜O n +1=P c ˜O n + (P ∗∗ R n − @TV @O (˜O n ));(7)where Rn is the signiÿcant residual which is obtained using the following algorithm:•Set I n 0=I n =P ∗˜On .•For k =1;:::;K do I n k =I nk −1+R k [M k (T k I −T k I nk −1)]•The signiÿcant residual Rn is obtainedby: R n =I n K −I n .This can be interpretedas a generalization of themultiresolution support constraint to the case where several transforms are used.The order in which the transforms are appliedhas no e ect on the so-lution.We extract in the residual the information at scales andpixel ind ices where signiÿcant coe cients have been detected.is a convergence parameter,chosen either by a line-search minimizing the overall penalty function or as a ÿxedstep-size of mod erate value that guar-antees convergence,and is the regularization hy-perparameter.Since the noise is controlledby the multiscale transforms,the regularization parameter does not have the same importance as in standard de-convolution methods.A much lower value is enoughJ.-L.Starck et al./Signal Processing83(2003)2279–22832283to remove the artifacts relative to the use of the wavelets andthe curvelets.The positivity constraint can be appliedat each iteration.Fig.2,top,shows the Logan–Shepp Phantom and the simulatedd ata,i.e.original image convolvedby a Gaussian PSF(full width at half maximum,FWHM= 3:2)andPoisson noise.Fig.2,bottom,shows the de-convolution with(left)a pure wavelet deconvolution method(no penalization term)and(right)the com-binedd econvolution method(parameter =0:4).AcknowledgementsThe authors wouldlike to thank the referees for some very helpful comments on the original version of the manuscript.References[1]M.Bertero,P.Boccacci,Introduction to Inverse Problems inImaging,Institute of Physics,1998.[2]E.J.CandÂe s,F.Guo,New multiscale transforms,minimumtotal variation synthesis:applications to edge-preserving image reconstruction,Signal Processing82(11)(2002) 1519–1543.[3]P.DhÃe rÃe tÃe,S.Durand,J.Froment, B.RougÃe,A bestwavelet packet basis for joint image deblurring-denoising and compression,in:SPIE47th Annual Meeting,Proceedings of SPIE Vol.4793,2002.[4]D.L.Donoho,Nonlinear wavelet methods for recovery ofsignals,densities,and spectra from indirect and noisy data, in:Proceedings of Symposia in Applied Mathematics,Vol.47,American Mathematical Society,Providence,RI,1993, pp.173–205.[5]D.L.Donoho,Nonlinear solution of inverse problems bywavelet-vaguelette decomposition,put.Harmon.Anal.2(1995)101–126.[6]S.Durand,J.Froment,Reconstruction of wavelet coe cientsusing total variation minimization,Technical Report2001-18, CMLA,November2001.[7]J.Kalifa,Restauration minimax et dÃe convolution dans unebase d’ondelettes miroir,Ph.D.Thesis,Ecole Polytechnique, 5May1999.[8]F.Malgouyres,Mathematical analysis of a model whichcombines total variation andwavelet for image restoration, rm.Process.2(1)(2002)1–10.[9]R.Neelamani,Wavelet-basedd econvolution for ill-conditioned systems,MS Thesis,Department of ECE,Rice University,1999.[10]J.-L.Starck,A.Bijaoui,F.Murtagh,Multiresolution supportappliedto imageÿltering andd econvolution,CVGIP:Graph.Model.Image Process.57(1995)420–431.[11]J.-L.Starck,E.CandÂe s,D.L.Donoho,The curvelet transformfor image denoising,IEEE Trans.Image Process.11(6) (2002)131–141.[12]J.-L.Starck,D.L.Donoho,E.CandÂe s,Very high qualityimage restoration,in:ine,M.A.Unser,A.Aldroubi (Eds.),SPIE Conference on Signal and Image Processing: Wavelet A pplications in Signal andImage Processing IX, Proceedings of SPIE,Vol.4478,2001.[13]J.-L.Starck, F.Murtagh, A.Bijaoui,Image ProcessingandData A nalysis:The Multiscale A pproach,Cambrid ge University Press,Cambridge,1998.。

英文原文-小波变换

英文原文-小波变换

The Wavelet TransformThe Wavelet Transform is the new realm of a quick development in current mathematics, the theories is deep and apply very extensively.The concept of small wave transformation is BE been engaged in engineer J.Morlet of petroleum signal processing to put forward first in 1974 beginning of years by France, passed the keeping of physics effective demand of view and signal processing to empirically build up anti- play formula, could not get the approbation of mathematician at that time.Just such as 1807 France of hot learn engineer J.B.J.Fourier to put forward any functions can launch into the creative concept of the endless series of triangle function can not get famous mathematician grange, the approbation of place and A.M.Legendre is similar.Lucky of BE, as early as 70's, A.Calderon means the detection of axioms and Hardy space of atom the resolving did to theoretically prepare for the birth of small wave transformation with the thorough research of unconditional radicle, and J.O.Stromberg still constructed history the top is similar to the small wave in now very much radicle;Famous mathematician Y.Meyer by chance constructs a real small wave of in 1986 radicle, and cooperates with S.Mallat to build up the approval method of constructing the small wave radicle Zao after many dimensionses are analytical, small the wave analysis just start developing rapidly, among them, female mathematician I.Daubechies in Belgium composes of 《small wave ten speak(Ten Lectures on Wavelets) 》have an important push function to the universality of the small wave.It and Fourier transformation and window way Fourier the transformation(Gabor transformation) compares, these are a time and area transformation in the bureau of frequency, as a result can effectively withdraw an information from the signal, pass stretch and shrink to peaceably move to wait operation function to carry on many many difficult problems that the transformations that the dimensionses are thin to turn analysis(Multiscale Analysis), solve Fourier can not work out to the function or the signal, thus small wave the variety is praised as "mathematics microscope", it is the progresses of concordance analysis the development history top milestone type.The application of small wave analysis is to study with the theories of small wave analysis closely and combine together.Now, it has already obtained achievement that make person's focus attention in science and technology information industry realm.The electronics information technique is a realm of importance in six great high new techniques, its important aspect is portrait and signal processing.At present, the signal processing has already become the importance part that contemporary science technique works, the signal handles of purpose be:Accurate analysis, diagnosis, code compression and quantity to turn, quickly deliver or saving, by the square weigh to reach.(or instauration)Seeing from mathematics ground angle, signal and portrait processing can unify to see make is a signal processing(the portrait can see make is a two-dimensional signal),in small many applications of wave analytically many analysises, can return knot to handle a problem for signal.Now, is a stable constant signal to its property with the fulfillment, the ideal tool of processing still keeps being a Fu to sign leaf's analysis.But at physically applied in of the great majority signal right and wrong stabilize of, but be specially applicable to tool of stabilizing the signal not be small wave analysis.In fact the applied realm of small wave analysis is pretty much extensive, it includes:Many academicses of mathematics realm;Signal analytical, portrait processing;Quantum mechanics, theories physics;The military electronics resists to turn with the intelligence of weapon;Calculator classification with identify;The artificial of music and language synthesizes;The medical science becomes to be like and diagnoses;The earthquake investigates to explore a data processing;The breakdown diagnosis of the large machine etc.;For example, in mathematics, it has already used for number analysis,Construct the rapid number method, curve curved face structure, differential equation to solve, control theory etc..Analyze the filtering of aspect wave, Zao voice and compress, deliver etc. in the signal.The portrait compression, classification that handles aspect in the portrait, identify and diagnose, go to dirty wait.The decrease B that becomes to be like aspect in the medical science is super, CT, nuclear magnetic resonance become be like of time, raise a resolution etc..The Wavelet Transform is used for signal and portrait compression are small waves are an important aspect that analyzes an application.Its characteristics is to compress a ratio Gao, compress speed quick, compression behind can keep signal is as constant as the characteristic of portrait, and in the middle of delivering can with the anti- interference.Have a lot of methods according to the compression of small wave analysis, a little bit successfully have small wave radicle method with best pack, small wave area veins model method, small wave transformation zero trees compress, the small wave transformation vector compresses etc..The Wavelet Transform in the signal in of the application is also very extensive.It can used for a handling of boundary and filter wave, repeatedly analytical, letter the Zao separate and withdraw weak signal, beg identifying of form index number, signal and diagnosis and many dimensions edges in cent to examine...etc..The application in engineering technique etc..Include calculator sense of vision, calculator sketch to learn, the research and biomedical science in the curve design, swift flow and long range cosmos.Correspondby letter in the video frequency in, video frequency's coding a technique not only has to have the coding efficiency of Gao and it is born code of to flow to have various flexible.In this research realm, flow out to appear many new coding thoughts and technique, code calculate way according to the video frequency of the small wave transformation among them be have much of one of the technique of development foreground.This text carries on a classification research to the smallwave the area video frequency coding calculate way of typical model in the cultural heritage and get a dissimilarity of according to the function analysis of the video frequency coding calculate way of small wave transformation.The merit and shortcoming that contrast analysis calculate way respectively, point out small wave the area video frequency codes calculate way of research direction.The small wave transformation is a kind of tool, it data, function or calculate son to cut up into the composition of different frequency, then study with the method of decomposition to in response to under the dimensions of composition.This technical earlier period work is a difference to independently make in each research realm with different:Such as be engaged in an in harmony with analysis research in pure mathematics of just d Jia the atom of the ∞(1964) resolve;The physical educational circles hands the A Y ou of matter quantum mechanics research Ksen and a flock that Klander(1968) constructs concern with Tai and also have research hydrogen Paul of the atom man airtight Er function;(1985)The engineering field is like the design(1977) of nd to qMF filter of Estebarl and G Y ou, later on Sn, -th and Bam Ⅵtell(1986) vetterli(1986) the fork studied to have to strictly weigh to reach OMF of the characteristic a filter in the electrical engineering. the J M(1983) formally put forward the concept of small wave in the analysis in the earthquake data.About five in the last yearses, people carried on each above-mentioned work made by realm to synthesize and made it become a kind of method of without loss of generality that can be applicable to each realm.Let us temporary analyze a small wave method inside the scope to carry on a discussion in the signal.Signal at the small wave transformation(for example.the voice exert the flapping of pressure on the ear drum) in the area is decided by two three quantities:The dimensions(or frequency) in time:When the small Du transformation is 1 kind repeatedly the part repeatedly positioned while turning or being called of tool, this book the l chapter will relate repeatedly fixed position of meaning and it causes a person door biggest the reason of interest, afterward will carry on a description to the small wave of different model.。

matlab大学外文资料翻译学位论文

matlab大学外文资料翻译学位论文

Complex Ridgelets for Image Denoising1 IntroductionWavelet transforms have been successfully used in many scientific fields such as image compression, image denoising, signal processing, computer graphics,and pattern recognition, to name only a few.Donoho and his coworkers pioneered a wavelet denoising scheme by using soft thresholding and hard thresholding. This approach appears to be a good choice for a number of applications. This is because a wavelet transform can compact the energy of the image to only a small number of large coefficients and the majority of the wavelet coeficients are very small so that they can be set to zero. The thresholding of the wavelet coeficients can be done at only the detail wavelet decomposition subbands. We keep a few low frequency wavelet subbands untouched so that they are not thresholded. It is well known that Donoho's method offers the advantages of smoothness and adaptation. However, as Coifmanand Donoho pointed out, this algorithm exhibits visual artifacts: Gibbs phenomena in the neighbourhood of discontinuities. Therefore, they propose in a translation invariant (TI) denoising scheme to suppress such artifacts by averaging over the denoised signals of all circular shifts. The experimental results in confirm that single TI wavelet denoising performs better than the non-TI case. Bui and Chen extended this TI scheme to the multiwavelet case and they found that TI multiwavelet denoising gave better results than TI single wavelet denoising. Cai and Silverman proposed a thresholding scheme by taking the neighbour coeficients into account Their experimental results showed apparent advantages over the traditional term-by-term wavelet denoising.Chen and Bui extended this neighbouring wavelet thresholding idea to the multiwavelet case. They claimed that neighbour multiwavelet denoising outperforms neighbour single wavelet denoising for some standard test signals and real-life images.Chen et al. proposed an image denoising scheme by considering a square neighbourhood in the wavelet domain. Chen et al. also tried to customize the wavelet _lter and the threshold for image denoising. Experimental results show that these two methods produce better denoising results. The ridgelet transform was developed over several years to break the limitations of the wavelet transform. The 2D wavelet transform of images produces large wavelet coeficients at every scale of the decomposition.With so many large coe_cients, the denoising of noisy images faces a lot of diffculties. We know that the ridgelet transform has been successfully used to analyze digital images. Unlike wavelet transforms, the ridgelet transform processes data by first computing integrals over differentorientations and locations. A ridgelet is constantalong the lines x1cos_ + x2sin_ = constant. In the direction orthogonal to these ridges it is a wavelet.Ridgelets have been successfully applied in image denoising recently. In this paper, we combine the dual-tree complex wavelet in the ridgelet transform and apply it to image denoising. The approximate shift invariance property of the dual-tree complex wavelet and the good property of the ridgelet make our method a very good method for image denoising.Experimental results show that by using dual-tree complex ridgelets, our algorithms obtain higher Peak Signal to Noise Ratio (PSNR) for all the denoised images with di_erent noise levels.The organization of this paper is as follows. In Section 2, we explain how to incorporate the dual-treecomplex wavelets into the ridgelet transform for image denoising. Experimental results are conducted in Section 3. Finally we give the conclusion and future work to be done in section 4.2 Image Denoising by using ComplexRidgelets Discrete ridgelet transform provides near-ideal sparsity of representation of both smooth objects and of objects with edges. It is a near-optimal method of denoising for Gaussian noise. The ridgelet transform can compress the energy of the image into a smaller number of ridgelet coe_cients. On the other hand, the wavelet transform produces many large wavelet coe_cients on the edges on every scale of the 2D wavelet decomposition. This means that many wavelet coe_cients are needed in order to reconstruct the edges in the image. We know that approximate Radon transforms for digital data can be based on discrete fast Fouriertransform. The ordinary ridgelet transform can be achieved as follows:1. Compute the 2D FFT of the image.2. Substitute the sampled values of the Fourier transform obtained on the square lattice with sampled values on a polar lattice.3. Compute the 1D inverse FFT on each angular line.4. Perform the 1D scalar wavelet transform on the resulting angular lines in order to obtain the ridgelet coe_cients.It is well known that the ordinary discrete wavelet transform is not shift invariant because of the decimation operation during the transform. A small shift in the input signal can cause very di_erent output wavelet coe_cients. In order to overcome this problem, Kingsbury introduced a new kind of wavelet transform, called the dual-tree complex wavelet transform, that exhibits approximate shift invariant property and improved angular resolution. Since the scalar wavelet is notshift invariant, it is better to apply the dual-tree complex wavelet in the ridgelet transform so that we can have what we call complex ridgelets. This can be done by replacing the 1D scalar wavelet with the 1D dualtree complex wavelet transform in the last step of the ridgelet transform. In this way, we can combine the good property of the ridgelet transform with the approximate shift invariant property of the dual-tree complex wavelets.The complex ridgelet transform can be applied to the entire image or we can partition the image into a number of overlapping squares and we apply the ridgelet transform to each square. We decomposethe original n _ n image into smoothly overlapping blocks of sidelength R pixels so that the overlap between two vertically adjacent blocks is a rectangular array of size R=2 _ R and the overlap between two horizontally adjacent blocks is a rectangular array of size R _ R=2 . For an n _ n image, we count 2n=R such blocks in each direction. This partitioning introduces a redundancy of 4 times. In order to get the denoised complex ridgelet coe_cient, we use the average of the four denoised complex ridgelet coe_cients in the current pixel location.The thresholding for the complex ridgelet transform is similar to the curvelet thresholding [10]. One difference is that we take the magnitude of the complex ridgelet coe_cients when we do the thresholding. Let y_ be the noisy ridgeletcoe_cients. We use the following hard thresholding rule for estimating the unknown ridgelet coe_cie nts. When jy_j > k_~_, we let A y_ = y_. Otherwise, A y_ = 0. Here, ~It is approximated by using Monte-Carlo simulations. The constant k used is dependent on the noise . When the noise is less than 30, we use k = 5 for the first decomposition scale and k = 4 for other decomposition scales. When the noise _ is greater than 30, we use k = 6 for the _rst decomposition scale and k = 5 for other decomposition scales.The complex ridgelet image denoising algorithm can be described as follows:1. Partition the image into R*R blocks with two vertically adjacent blocks overlapping R=2*R pixels and two horizontally adjacent blocks overlapping R _ R=2 pixels2. For each block, Apply the proposed complex ridgelets, threshold the complex ridgelet coefficients, and perform inverse complex ridgelet transform.3. Take the average of the denoising image pixel values at the same location.We call this algorithm ComRidgeletShrink,while the algorithm using the ordinary ridgelets RidgeletShrink. The computational complexity of ComRidgeletShrink is similar to that of RidgeletShrink by using the scalar wavelets.The only di_erence is that we replaced the 1D wavelet transform with the 1D dual-tree complex wavelet transform. The amount of computation for the 1D dual-tree complex wavelet is twice that of the 1D scalar wavelet transform. However, other steps of the algorithm keep the same amount of computation. Our experimental results show that ComRidgeletShrink outperforms V isuShrink, RidgeletShink, and wiener2 _lter for all testing cases. Under some case, we obtain 0.8dB improvement in Peak Signal to Noise Ratio (PSNR) over RidgeletShrink. The improvement over V isuShink is even bigger for denoising all images. This indicates that ComRidgeletShrink is an excellent choice for denoising natural noisy images.3 Experimental ResultsWe perform our experiments on the well-known image Lena. We get this image from the free software package WaveLab developed by Donoho et al. at Stanford University. Noisy images with di_erent noise levels are generated by adding Gaussian white noise to the original noise-free images. For comparison, we implement VisuShrink, RidgeletShrink, ComRidgeletShrink and wiener2. VisuShrink is the universal soft-thresholding denoising technique. The wiener2 function is available in the MATLAB Image Processing Toolbox, and we use a 5*5 neighborhood of each pixel in the image for it. The wiener2 function applies a Wiener _lter (a type of linear filter) to an image adaptively, tailoring itself to the local image variance. The experimental results in Peak Signal to Noise Ratio (PSNR) are shown in Table 1. We find that the partition block size of 32 * 32 or 64 *64 is our best choice. Table 1 is for denoising image Lena, for di_erent noise levels and afixed partition block size of 32 *32 pixels.The first column in these tables is the PSNR of the original noisy images, while other columns are the PSNR of the denoised images by using di_erent denoising methods. The PSNR is de_ned as PSNR = 10 log10 Pi;j (B(i; j) A(i; j))2 n22552 : where B is the denoised image and A is the noise-free image. From Table 1 we can see that ComRidgeletShrink outperforms VisuShrink, the ordinary RidgeletShrink, and wiener2 for all cases.VisuShrink does not have any denoising power when the noise level is low. Under such a condition, VisuShrink produces even worse results than the original noisy images. However, ComRidgeletShrink performs very well in this case. For some case, ComRidgeletShrink gives us about 0.8 dB improvement over the ordinary RidgeletShink. This indicates that by combiningthe dual-tree complex wavelet into the ridgelet transform we obtain signi_cant improvement in image denoising. The improvement of ComRidgeletShrink over V isuShrink is even more signi_cant for all noisy levels and testing images. Figure 1 shows the noise free image, the image with noise added, the denoised image with VisuShrink, the denoised image with RidgeletShrink, the denoised image withComRidgeletShrink, and the denoised image with wiener2 for images Lena, at a partition block size of 32*32 pixels. It can be seen that ComRidgeletShrink produces visually sharper denoised images than V isuShrink, the ordinary RidgeletShrink, and wiener2 filter, in terms of higher quality recovery of edges and linear and curvilinear features.4 Conclusions and Future WorkIn this paper, we study image denoising by using complex ridgelets. Our complex ridgelet transform is obtained by performing 1D dual-tree complex wavelet onto the Radon transform coe_cients. The Radon transform is done by means of the projection-slice theorem. The approximate shift invariant property of the dual-tree complex wavelet transform makes the complex ridgelet transform an excellent choice for image denoising. The complex ridgelet transform provides near-ideal sparsity of representation for both smooth objects and objects with edges. This makes the thresholding of noisy ridgelet coe_cients a near-optimal method of denoising for Gaussian white noise. We test our new denoising method with several standard images with Gaussian white noise added to the images. A very simple hard thresholding of the complex ridgelet coe_cients is used. Experimental results show that complex ridgelets give better denoising results than VisuShrink, wiener2, and the ordinary ridgelets under all experiments. We suggest that ComRidgeletShrink be used for practical image denoising applications. Future work will be done by considering complex ridgelets in curvelet image denoising. Also, complex ridgelets could be applied to extract invariant features for pattern recognition.复杂脊波图像去噪1. 介绍小波变换已成功地应用于许多科学领域,如图像压缩,图像去噪,信号处理,计算机图形,IC和模式识别,仅举几例。

基于二代curvelet与wavelet变换的自适应图像融合

基于二代curvelet与wavelet变换的自适应图像融合
规则 , 然后进 行小 波逆 变换 得 到融合 的 cree 系数 ; 后 , uvl t 最 进行 快 速 离散 ere t 变 换得 到 uvl 逆 e
融合 图像 。实验结 果表 明 , 方法能 够更加 有效 、 该 准பைடு நூலகம் 地 提取 图像 中的特 征 , 一种 有 效可 行 是
的 图像 融合 算法 。
基 于二代 cre t w vlt uvl 与 ae 变换 的 自适 应 图像 融 合 e e
周 爱平 , 梁久 祯
( 江南大学信息工程学院 , 江苏 无锡 2 4 2 ) 1 12
摘 要 : 针对 同一场 景 红 外 图像 与可 见 光 图像 的 融合 问题 , 出 了一种 基 于 二代 c re t 提 uvl 与 e
第4 0卷 第 9期
21 0 0年 9月
激 光 与 红 外
LASER & I NFRARED
Vo . 140, . No 9
S pe e , 0 0 e tmb r 2 1
文章编号: 0- 7 (00 0— 1- 1 1 082 1)91 00 0 5 0 7
・图像 与信 号处理 ・
w vl 变换 的 自适 应 图像 融合算 法。 首先 对 源 图像进 行 快 速 离 散 ere t ae t e uvl 变换 , 到 不 同尺 e 得
度 与方 向下 的粗尺度 系数和 细尺 度 系数 ; 据红 外 图像 与 可见光 图像 的不 同物理 特 性 以及 人 根
类视 觉系统特 性 , 对不 同尺 度 与方 向下 的粗 尺度 系数 和 细尺 度 系数 采 用基 于 离散 小 波 变换 的 图像 融合方 法 , 小波域 中, 在 对低 频 系数采 用基于 红外 图像 与可见 光 图像 的不 同物理特 性 的 自 适应 融合规 则 , 高频 系数采用 基于 邻域 方 向对 比度 与 局部 区域 匹配度 相 结 合 的 自适 应 融合 对

基于Curvelet变换的多聚焦图像融合算法

基于Curvelet变换的多聚焦图像融合算法

基于Curvelet变换的多聚焦图像融合算法李勇【摘要】曲波变换是近几年发展的多尺度分析方法,它比小波更适于分析图像中的曲线边缘特性,利用这一特性,本文提出了一种基于Curvelet变换的多聚焦图像融合算法.实验结果表明,该算法融合效果优于小波变换等其他传统图像融合算法.【期刊名称】《吉林工程技术师范学院学报》【年(卷),期】2012(028)008【总页数】4页(P77-80)【关键词】多聚焦图像融合;脊波变换;曲波变换【作者】李勇【作者单位】吉林工程技术师范学院信息工程学院,吉林长春130052【正文语种】中文【中图分类】TP391.41多聚焦图像是指由同一传感器得到的成像条件相同而聚焦目标不同的多组图像。

在实际应用中,为了能在不改变成像系统的前提下得到整个场景清楚的成像,需要对多幅多聚焦图像进行融合,即针对不同的目标得到多幅成像,然后经过融合处理,最后提取各自的清晰信息综合成一幅新的图像,以便于人眼观察或计算机进一步处理。

多聚焦图像融合技术能够有效地提高图像信息的利用率以及系统对目标探测识别的可靠性,这些优点使得多聚焦图像融合技术可以广泛地应用于机器视觉和目标识别等领域。

小波变换具有良好的时频特性,在图像处理中已得到广泛的应用。

但小波分析在一维时所具有的优势特征并不能简单地推广到二维或更高维。

由一维小波张成的可分离小波(Separable Wavelet)只具有有限的方向,不能最优地表示含“线”或者“面”奇异的高维函数。

Curvelet变换是一种具有方向性和各向异性的图像多尺度几何分析,能更好地反映图像边缘信息。

本文提出了一种基于Curvelet变换的多聚焦图像融合算法。

该融合算法在小波变换的基础上采用边缘检测能力更强的Curvelet变换对图像进行多尺度分解,然后对每层高低频分解系数利用不同的融合规则进行融合系数选取,最终通过一致性校验的方法得到最终的融合图像。

2.1 脊波变换(Ridgelet)在小波理论基础上,E.J.Candes和D.L.Donoho在1998-1999年建立了一种特别适合于表示各向异性奇异性的多尺度方法——脊波变换(Ridgelet)。

基于DEMD与多尺度几何分析的图像压缩方法

基于DEMD与多尺度几何分析的图像压缩方法

基于DEMD与多尺度几何分析的图像压缩方法舒世昌【摘要】研究了基于方向预测偏差度以及模式经验分解(DEMD)的图像分解方法.对于分解所得到的图像高频信息提出采用基于JPEG 2000的9-7小波进行压缩,而对其他的图像分量则实施Bandelet变换处理.从而得到一种高保真图像压缩新方法.仿真实验表明,本文方法在恢复图像质量方面优于广为采用的JPEG 2000以及原有的几何多尺度分析方法.【期刊名称】《湖南师范大学自然科学学报》【年(卷),期】2009(032)004【总页数】5页(P18-22)【关键词】方向经验模式分解;小波;几何多尺度分析;图像压缩【作者】舒世昌【作者单位】湖南交通职业技术学院,中国长沙 410004;国防科技大学计算机学院,中国长沙 410073【正文语种】中文【中图分类】TP391在图像处理应用中,随着需要传输的数据量越来越大,图像压缩成为该领域研究的重点和热点课题之一.上世纪末期基于小波变换方法的静态图像压缩国际标准JPEG 2000成为主流压缩方法.另一方面,大量研究表明小波基函数对于图像边缘以及小目标等奇异特征缺乏最优逼近性质,因此基于小波的图像压缩方法会导致图像畸变与小目标丢失的情况出现,从而造成恢复图像失真.为了克服经典小波方法的缺陷,近年来在小波基础上发展起来的以Bandelet[1-2], Rigdelet[3]以及Curvelet为代表的几何多尺分析方法[4]逐渐用来代替传统小波方法,并在图像处理领域得到一定应用,其中,Bandelet对特殊图像的压缩取得较大成功.但是,Bandelet仍然存在无法识别灰度值渐变的区域是否为边缘的问题.因此,本文提出首先利用含方向预测矩阵偏差度与方向经验模式分解对图像实现分解,得到高频细节和平坦区域(对应低频分量),并用JPEG 2000方法和Bandelet编码技术分别对细节和平坦区实施图像压缩,从而建立了一种新的图像压缩方法.仿真结果表明,本文方法优于JPEG2000和Bandelet方法.1 基于方向预测偏差度与DEMD的图像分解一般认为图像由高(含中)频和低频两种分量信息组成,其中,高频区域对应的图像灰度值为二维函数的第一类间断点区域,如边缘和几何轮廓等,而低频部分u(x,y)对应的区域其灰度值均匀变化.为了对信号的细节进行更精确的刻画,经验模式分解(EMD)成为一种非常有效的手段[5-6],因此,为了克服小波变换压缩方法对边缘与小目标等奇异特征不能够有效保持的缺陷,本节采用文[7]提出的含方向EMD(DEMD)以及方向预测灰度图像偏差度对图像实施高、低频分解.首先我们讨论方向预测矩阵偏差度的含义与性质.为了刻画图像的局部高频特征,首先考虑将N×N图像实现分块,对于每一个子块图像Dk,则相对于子块图像Dk中点xi,j=(i,j)所有可能的方向角度包括:例如,下面的图1给出了一种方向示意图.图1 子块图像中点的角度描述下面引入图像含方向偏差度的概念.定义1 设Ω为各种不同角度的集合,θ(i,j;min)表示图像Ⅰ中位于(i,j)的沿角度θ最近邻值点坐标,定义Ⅰ的像素矩阵A=(ai,j)的偏差度为(1)其中,h(i,j)与w(i,j)分别表示坐标(i,j)处图像Ⅰ所对应的高度和宽度.从(1)式不难看到,像素矩阵偏差度事实上可以用来度量子块图像的边缘信息,并且图像分割越小,边缘信息刻画越精确.现在讨论基于方向预测与DEMD的图像分解算法.第1步:对图像分块,对每一个子块,按照(1)计算像素矩阵的偏差度,从而得到边缘等高频信息;第2步:对每一个子块图像作二维方向经验模式分解(DEMD),然后按照文[5]中方法进行纹理检索,得到各种不同的方向数θk,从而得到序列第3步:对得到的图像纹理部分求出包络线,并将图像分割成纹理和非纹理部分以及边缘等高频部分.2 基于小波和 Bandelet 的压缩方法2.1 基于小波的高频分量数据压缩我们知道,一般图像中低频信息的能量远远高于高频部分的能量,例如,对图像实施3次Daubechies 9-7小波分解,所得到的高频系数包含的能量一般只有总能量的左右,其余能量主要集中在低频子带部分.为了保持高频细节,对于高频分量,本文采用基于9-7小波的压缩方法进行,为了减少运算量,采用提升格式进行滤波器运算,具体过程描述如下:假设x是原始信号,di,n是第i级对偶提升的di的高通分量,Si,n是第i级原始提升的Si低通分量,pi,k、ui,k分别为第i级对偶提升和原始提升的Pi(z)及Ui(z)的提升系数,则基于提升的小波变换实现步骤见图2.图2 提升步骤结构图对于9-7小波滤波器,按照图2可以分解为以下提升步骤:(v) d1,l=d1,l;(vi) s1,l=s1,l×K.(2)(2)式中:α≈-1.586, β≈-0.053, γ≈0.883, δ≈-0.443 5, K≈1.149 6.尺度因子K的作用是调整系数的增益,使其与卷积核的计算结果一致.为了减少存储空间,本文采用基于行的小波编码技术,其实现过程如图3所示.图3 基于行小波编码方法过程其中FIFOi 为同步缓冲器,LLi,LHi,HLi,HHi 为相应频带信息.2.2 基于Bandelets的纹理分量压缩方法Bandelet变换是2000年由法国科学家S. Mallat等人提出的一种能自适应地跟踪图像边缘来表示图像数据的方法.其中心思想是自适应地定义图像中的几何特征为矢量场,以优化最终的应用结果来自适应的选择具体的基的组成.Bandelet在理论上可以实现对二维函数光滑边界的最优逼近,在图像压缩中有较大优势和潜力.由于Bandelet变换算法复杂度较高,为此Peyre和Mallat于2005年提出了第二代Bandelet变换,第二代Bandelet变换是对Pennec的Bandelet变换的有效简化.第二代Bandelet变换子提出以来得到了较广泛的应用,但是,其计算复杂度仍然偏高,不便于实时实现,为克服此缺陷,本节提出了简化的Bandelet方法,在此基础上实现了纹理分量的压缩.首先,回顾第二代Bandelet 变换的算法步骤:① 输入:原始图像,量化阈值T;② 对图像做二维小波变换,可以用正交小波或者双正交小波;③ 对各子带分别用自底向上的全局优化算法建立最佳四叉树分割,同时得到各分割区域内的几何流方向;④ 对各Bandelet块,根据几何流方向实施Bandelet化,得到Bandelet系数;⑤ 输出:四叉树,最佳几何流方向,Bandelet系数.在上述算法过程中,主要运算体现在图像的四叉树分割与几何流,本文采取下列算法优化措施以简化运算:图4 同一尺度下高频子带四叉树与几何流的相似性(1) 第二代Bandelet变换在实施Bandelet时涉及到繁琐的排序操作,但是对相同尺寸、相同几何流的分块,小波系数的排序方式也是一样的.因此,可以预先根据Bandelet块可能的尺寸和几何流建立排序索引,省去大量重复的排序操作.(2) 同一尺度下,3个高频子带有较大的相似性,因而可以将其中任一子带的分割四叉树直接应用于另两个子带,这样可以节省约2/3的四叉树和几何流搜索计算量.由于同一尺度的3个高频子带的分割方式和几何流大致相同,因此可充分利用这种相似性,在压缩编码中,四叉树和几何流的编码可以节省约2/3.(3) 实施Bandelet化之后,得到的Bandelet系数为一维形式;而最低频子带和不存在明显几何流的Bandelet块因为不实施Bandelet化,系数仍为二维矩阵形式.从存储效率考虑,有必要将Bandelet系数统一转换成矩阵形式,并且尺寸与原Bandelet块保持一致.3 实验结果分析在实验中分别采用JPEG 2000,第二代Bandelet以及本文方法进行压缩,比较了3种方法在相同压缩比情况下的恢复图像质量,其中,JPEG 2000采用提升格式的9-7小波滤波器以及基于行的量化编码方法,Bandelet采用JPEG 2000中的EBCOT编码以获取最大的峰值信噪比(PSNR).为了尽量做到恢复图像的主客观效果一致,本文采用M.Miyahara, K.Kotani & V. Algazi等人提出的基于视觉特性和误差的结构与分布特征的编码图像的质量尺度PQS(Picture Quality Scale)对图像质量进行评价.下面的图5为其中一幅细节较丰富的典型测试图像,其中图5(a)为原始图像,为了观察压缩方法一直畸变以及保持小目标的能力,图5(b)为截取其中局部图像后得到的子块图像,图5(c),(d),(e)分别是基于JPEG 2000,Bandelet变换以及本文方法压缩该局部区域后的恢复图像,容易看出,本文方法得到的恢复图像质量明显优于其他两种方法.我们利用PQS质量评价指标得到的结果与主观质量结果一致,限于篇幅,不再详细叙述.(a)原图 (b)原图(部分放大) (c) JPEG2000压缩16倍(部分放大)(d) Bandelet压缩16倍(部分放大) (e)本文方法压缩16倍(部分放大)图5 可见光压缩图像主观质量比较4 结论本文首先利用含方向的经验模式分解(DEMD)并引入方向预测矩阵偏差度的概念,实现了图像的精确分解,在此基础上,提出了一种基于Bandelet与小波相结合的图像压缩新方法.实验结果表明,新方法在抑制恢复图像的畸变,保持原始图像特征等方面明显优于现有的JPEG 2000以及最近提出的几何多尺度方法.参考文献:[1] PENNEC E, MALLAT S. Image compression with geometrical wavelets[C]. Proceedings of the IEEE International Conference on Image Processing, Vancouver, Canada, 2000, 661-664.[2] PENNEC E,MALLAT S.Sparse geometric image representation with Bandelets[J]. IEEE Transactions on Image Processing, April 2005, 14(4):423-438.[3] CANDÉS E, DONOHO D. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Comn Pure Appl Math, 2004, 57(4):219-266.[4] 成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.[5] 汪沅,朱瑞荪.基于小波除噪和经验模式分解的信号分析方法[J].机械研究与应用,2008,21(5):99-101.[6] DUAN D, WANG Q. An improved empirical mode decomposition based on combining extrapolating extrema with mirror extension[C]. SPIE Volume 6357,Sixth International Symposium on Instrumentation and Control Technology,Signal Analysis,Measurement Theory, Photo-Electronic Technology, and Artificial Intelligence,2006,Beijing.[7] 刘中轩,王宏剑,彭思龙.方向EMD分解及其在纹理分割中的应用[J].中国科学(E),2004,35(2):113-123.[8] MIYAHARA M, KOTANI K, ALGAZI V R. Objective picture quality scale for image coding[J]. IEEE Trans,Comm,1998,vol,46(9):1 215-1 225.[9] WANG D, ZHANG L, VINCENT A, et al. Curved wavelet transform for image coding[J]. IEEE Transactions on Image Processing, 2006,15(8):2 413-2 421.[10] 张军.基于小波与偏微分方程方法的图像压缩技术[D].长沙:国防科技大学,2008.。

基于Curvelet的边缘纹理特征提取及表情识别

基于Curvelet的边缘纹理特征提取及表情识别

基于Curvelet的边缘纹理特征提取及表情识别林克正;王浩【期刊名称】《计算机工程与应用》【年(卷),期】2013(000)016【摘要】针对小波变换在提取图像边缘特征上的局限性,提出一种使用Curvelet变换进行边缘纹理特征提取的表情识别方法。

Curvelet变换在表达图像的边缘曲线上的奇异性时比小波变换更能得到稀疏的图像表示。

在表情识别中,对表情图像使用Curvelet变换得到Curvelet系数作为边缘纹理特征能更好地反映表情的变化,使用K最邻近结点算法进行了识别。

结果表明在表情识别中该方法比小波变换更有效。

%For the wavelet transform has limitations to extract features of the edge of the images, a method of the facial expres-sion recognition is proposed that using curvelet transform to extract features of the edge of the images. The curvelet transform can get more representation of sparse images than the wavelet transform on the representation of the singular of the edges of the image curve. The curvelet coefficient that can be got by using the curvelet transform on the facial images as the edge of the tex-ture features can better reflect the changes in the facial expression, andthe k-nearest neighbor algorithm is used to recognition different expression in this paper. The result shows that the method proposed inthis paper is more effective than the wavelet transform in the expression recognition.【总页数】4页(P151-154)【作者】林克正;王浩【作者单位】哈尔滨理工大学计算机科学与技术学院,哈尔滨 150080;哈尔滨理工大学计算机科学与技术学院,哈尔滨 150080【正文语种】中文【中图分类】TP391.4【相关文献】1.卫星图像边缘与纹理特征提取 [J], 邹旭兴;谢明元2.基于边缘系数增强和对比度提升的Curvelet变换图像增强方法 [J], 徐效文;王阿记3.基于Curvelet变换和SVM的人脸表情识别方法研究 [J], 薄璐;周菊香4.基于Curvelet变换的边缘锐化方法 [J], 张恒娟;胡燕翔5.基于边缘云框架的高效安全人脸表情识别 [J], 张娴静;褚含冰;刘鑫因版权原因,仅展示原文概要,查看原文内容请购买。

基于Curvelet变换特征的人脸识别算法

基于Curvelet变换特征的人脸识别算法

基于Curvelet变换特征的人脸识别算法杨晋吉;李亚文【期刊名称】《计算机应用与软件》【年(卷),期】2018(035)001【摘要】针对小波变换无法准确表达二维奇异曲线的弱点,提出基于曲波(Curvelet)变换特征的人脸识别算法.Curvelet变换可以很好地去逼近奇异曲线,对于人脸图像能实现最优的稀疏表示.该算法采用基于Wrapping的离散Curvelet变换加权算法对训练集的人脸图像进行特征提取生成特征矩阵,再通过PCA方法降低维数后结合稀疏表示分类算法(SRC)进行人脸识别.通过在ORL、Yale和AR三个人脸数据库上的仿真实验以及和基于小波变换类识别算法、LDA算法和SRC算法等比较,实验结果表明该算法在人脸遮挡、姿态变换、表情变换和光照变换等干扰因素的作用下具有较高的人脸识别率和较好的鲁棒性.%In view of the weakness that the wavelet transform cannot express the two-dimensional singular curve accurately,a face recognition algorithm based on Curvelet transformation was proposed in this paper.Curvelet transform can be very good to approximate the singular curve,for the face image can achieve the optimal sparse representation.In this paper,we used the Wrapping-based discrete Curvelet transform weighting algorithm to extract feature matrices from the face images of the training set,and then used the PCA method to reduce the dimension and combined the sparse representation classification algorithm (SRC) for face recognition.Through the simulation experiments on ORL,Yale and AR face database and the comparison withwavelet transform class recognition algorithm,LDA algorithm and SRC algorithm,the experimental results showed that the proposed algorithm had high face recognition rate and good robustness under the influence of interference factors such as face occlusion,gesturetransformation,expression transformation and illumination transformation.【总页数】6页(P169-174)【作者】杨晋吉;李亚文【作者单位】华南师范大学计算机学院广东广州510631;华南师范大学计算机学院广东广州510631【正文语种】中文【中图分类】TP391【相关文献】1.基于特征点统计特征的人脸识别优化算法 [J], 孙中悦;周天荟2.基于二代curvelet变换耦合方差特征约束的遥感图像融合算法 [J], 韩卫冰3.基于权值融合虚拟样本的LBP特征人脸识别算法 [J], 杨明中4.基于特征重整及优化训练的遮挡人脸识别算法 [J], 邹鹏;杨治昆;李锴淞5.基于Gabor特征与加权协同表示的人脸识别算法 [J], 赵雪章;丁犇;席运江因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Curved wavelet transform for image codingDemin Wang, Liang Zhang, André Vincent, and Filippo SperanzaCommunications Research Centre Canada,3701 Carling Avenue, Ottawa, Ontario, Canada K2H 8S2Tel : 1-613-991-5621, Fax : 1-613-990-6488, E-mail: demin.wang@crc.caAbstract—The conventional two-dimensional (2-D) wavelet transform used in existing image coders is usually performed through one-dimensional (1-D) filtering in the vertical and horizontal directions, which cannot efficiently represent edges and lines in images. The curved wavelet transform presented in this paper is carried out by applying 1-D filters along curves, rather than being restricted to vertical and horizontal straight lines. The curves are determined based on image content and are usually parallel to edges and lines in the image to be coded. The pixels along these curves can be well represented by a small number of wavelet coefficients. The curved wavelet transform is used to construct a new image coder. The code-stream syntax of the new coder is the same as that of JPEG2000, except that a new marker segment is added to the tile headers. The new coder therefore retains all the features and functionalities of JPEG2000. Results of image coding and subjective quality assessment show that the new coder performs better than or as well as JPEG2000. The new coder is particularly efficient for images that contain sharp edges and can provide a PSNR gain of up to 1.6 dB for natural images compared with JPEG2000.Index Terms—Image coding, wavelet transform, curved wavelet, image compression, sub-band coding.I. I NTRODUCTIONOver the past decade, wavelet transform (WT) has become a powerful tool for image and video coding [1][2]. A number of wavelet-based image and video coders have been developed, such as those described in [3]-[11]. These coders provide desirable features and functionalities with compression efficiency comparable to that of the most efficient DCT-based image coders. Typically, the two-dimensional (2-D) WT used in these coders is performed through one-dimensional (1-D) filtering along each row and each column of the image to be coded.The main shortcoming of this conventional WT is that it does not provide a compact representation for edges and lines in images. When an image is filtered along rows and columns, the filter often crosses edges and lines of the image. The sequence of pixels across an edge usually has a broad frequency spectrum, from low to high frequencies. The wavelet transform decomposes the energy of the pixel sequence into a large number of frequency bands (called scales). Many wavelet coefficients are therefore required to properly reconstruct the edge, resulting in a representation that is not compact. As a result, the wavelet-based image coders produce “ringing” artifacts around edges, especially at low bit rates.In this paper, we present a curved wavelet transform, referred to as curved WT, for image coding. The curved WT is carried out by applying 1-D filters along curves, rather than being restricted to horizontal and vertical straight lines. The curves are determined based on image content. The basic idea behind the curved WT is that if a curve is parallel to an edge or a line in the image to be coded, the sequence of pixels along the curve consists mainly of low frequency components with no or little high frequency components and can be well represented by a small number of wavelet coefficients. The curved WT can therefore provide a more compact representation for edges and lines than the conventional WT and improve the compression efficiency of wavelet-based image coders.The orientations of edges and lines are taken into account in several image coding methods. In [12], an image is partitioned into rectangular regions and each region is resampled along a pair of axes. A conventional subband decomposition is then applied in the resampled domain. After resampling, the supports of the regions are no long rectangular and may not connect one to another. Therefore, each region has to be decomposed and encoded independently. The independent decomposition of each region reduces the coding efficiency and results in visible artifacts around the region boundaries. In [13], the geometric flows are curved. That study, however, was focused on the development and optimization of a new class of representation bases, called bandelet. Recently, several new transforms that take edge orientation into account have been proposed in order to compactly represent edges. These transformsinclude curvelets [14][15], ridgelets [15][16], contourlets [17], and directional wavelet transforms [18][19]. The underlying theories of these transforms and their application to image coding are still under development. Finally, 1-D wavelet filters along motion trajectories have been recently used in video coding [20][21].We initially proposed the curved WT in [22], where the curved WT was implemented using convolution wavelet filters and overlapped extension, and was used to improve the well-known SPIHT image coder [4]. In this paper, the curved WT is implemented with a lifting structure and is used to construct a new image coder with EBCOT (embedded block coding with optimal truncation). EBCOT has been adopted in JPEG2000 [8].This paper is organized as follows. Following the introduction, Section II is devoted to the description of the curved WT, where we present constraints on the curves, the algorithms used to determine the curves, and the implementation of the curved WT via the lifting structure. In Section III, we describe the new image coder based on the curved WT. Section IV reports experimental results of image coding using the new coders and the performance comparison with JPEG2000. The comparison includes objective, i.e., PSNR, and subjective measures of picture quality obtained through a subjective quality assessment experiment. Finally, conclusions of the paper and perspectives for future study are presented in Section V.II. C URVED W AVELET T RANSFORMThe concept of the curved WT is illustrated in Fig. 1. The first step of the curved WT is to determine , for 0 ≤i < I, as shown in Fig. 1 (a). Low-pass and high-pass wavelet filters are a set of vertical curves xiapplied separately along the curves, and the outputs of these filters are sub-sampled by discarding every other row, resulting in low-pass coefficients L(m, n) and high-pass coefficients H(m, n). The filters can beis then determined for the resulting any pair of 1-D wavelet filters. A set of horizontal curves yicoefficients L(m, n), as shown in Fig. 1 (b). The low-pass and high-pass filters are applied along these curves, and the outputs are sub-sampled by discarding every other column, producing two bands ofcoefficients LL and HL. In a similar way, a third set of curves z i is determined for coefficients H(m , n )and is used to decompose the H coefficients into the LH and the HH coefficients. The process described above achieves the first level transform of the curved WT, producing four bands of coefficients LL, HL, LH, and HH, as shown in Fig. 1 (c). This process is repeatedly applied to the resulting LL bands to obtain the second and higher level transforms.Alternatively, the first set of curves at each transform level can be horizontal curves, while the second and third sets are vertical curves. Different orders of the curve sets (i. e., vertical curves first or horizontal curves first) usually produce different transform results because the curves usually change with the order. Therefore, the order, as well as each set of curves, should be determined based on image content.In order to obtain a dyadic decomposition like that produced by the conventional WT, there must be some constraints on the curves. In the following subsections, we describe these constraints, the algorithms used to determine the curves, and the implementation of curved WT via the lifting structure.(a) (b)(c)Fig.1. Curves and the first level of curved WT. (a) Vertical curves x i , (b) horizontal curves y iand z i for low pass coefficients L and high pass coefficients H, (c) the four bands ofcoefficients resulting from the first level transform.A. Constraints on the CurvesIn order that the curved WT provides a dyadic decomposition, a vertical curve is defined by a continuous single-valued function of the vertical coordinate m. This means that a vertical curve does not contain any horizontal straight-line segment. The pixels along a vertical curve come from a set of successive rows of the image to be transformed, with one and only one pixel per row. A curve may connect with other curves and may pass between two adjacent pixels. Each pixel in the image to be filtered has to be associated with at least one curve. Similarly, a horizontal curve is defined by a continuous single-valued function of the horizontal coordinate n. With these constraints, the output of the filters along a set of vertical (horizontal) curves can be sub-sampled by discarding every other row (column), and a multi-level curved WT produces a dyadic decomposition.To reduce the computational cost for determining the curves and the coding cost for compressing the curves, the following additional constraints are imposed on the curves in our implementation:(i) All curves consist of line segments with a few discrete orientations. For vertical curves, theDOORZHG RULHQWDWLRQV DUH DQG- DQGLV LGHQWLF al with the one of orientation -DQGFig. 2, the line segments of orientations-SDVV EHWZHHQ WZR DGMDFHQW SL[HOV Half-pixel values are required for filtering along these segments.(a) (b)Fig. 2. Allowed orientations of the line segments constituting the curves, (a) for vertical curves,and (b) for horizontal curves. The solid circles denote full-pixels and the empty onesdenote half-pixels.B. Determination of the CurvesIdeally, for a given image and target bit rate, the best curves could be determined through rate-distortion optimization. This would require a large number of calculations because any change affecting a curve also impacts other curves at the same and higher levels of the transform.To reduce the computational complexity, we propose a simple algorithm to determine the curves. This algorithm searches for the curves that minimize the energy of high-pass wavelet coefficients within each block. After the curved WT is applied to an image with the curves determined in this manner, the energy of the image is concentrated in the low-pass coefficients at the highest level, and the high-pass coefficients at all levels contain a small amount of energy. A low energy of high-pass coefficients means that the high-pass coefficients require a small number of bits to code. Since the number of the high-pass coefficients is much larger than that of the low-pass coefficients, reducing the number of bits required by-the high-pass coefficients can effectively reduce the total number of bits required for the image. The proposed algorithm for determining each set of curves consists of the following steps:1) The high-pass wavelet filter is applied to the image along the straight lines of each allowedorientation.2) The filtered image is divided into blocks of K×L pixels.3) In each block, the energy of the resulting high-pass coefficients is calculated for each of theallowed orientations.4) The orientation that results in the lowest energy is chosen, and the line segments of thisorientation within the block are kept.5) The kept line segments are extended to adjacent blocks and connected with the kept line segmentsof the adjacent blocks to form a set of curves.6) The total energy Ecof the high-pass coefficients produced by a set of vertical (or horizontal)curves is compared with the energy EL produced by the conventional WT. If Ec> αELwith0 < α < 1, this set of vertical (or horizontal) curves is replaced by a set of vertical (or horizontal)lines, where α is a predetermined parameter. In this study, α was experimentally set to 0.9.The last step takes into account the compromise between the energy reduction and the coding cost resulting from the curved WT. On the one hand, the curved WT can reduce the energy of high-pass wavelet coefficients and thus the number of bits required for encoding the coefficients. On the other hand, the curves have to be coded and transmitted to the decoder, requiring a coding cost. Therefore, a set of curves is not used in the curved WT if it cannot reduce the energy sufficiently to overcome the associated coding costs.As mentioned above, each level of the curved WT requires two sets of curves (the third set is identical to the second one). If the first set consists of vertical curves, then the second one will consist of horizontal curves, or vice versa. The orientation order should be determined based on image content. In our implementation, the order that produces the smaller energy of high-pass coefficients at the first transform level is chosen for all the levels.The size K×L of the blocks should vary with the level of the transform because the number of LL coefficients becomes smaller at a higher level. In our experiments, the block size for the first set of curves xiis predefined as 32×32 for the first level of transform and 16×16 for the second and higher levels. Theblock sizes for yi are half of those for xi. Specifically, if yiare horizontal (vertical) curves, the blockheights (width) are half of those for xi.Fig. 3 illustrates some of the vertical curves that are determined using the proposed algorithm for the image Barbara 7KH FXUYHV DUH JHQHUDOO\ SDUDOOHO WR WKH HGJHV DQG OLQHV RI RULHQWDWLRQ EHWZHHQLQ WKH LPDJH 1RWH WKDW IRU LOOXVWUDWLRQ SXUSRVHV RQO\ VRPH RI WKH FXUYHV DUH VKRZQ LQ WKLV ILJXUHFig.3. Some of the vertical curves determined for image Barbara with block size of 32×32 pixels.C. Implementation with Lifting StructureIt is well known that wavelet filters can be implemented with a lifting structure. For the 5/3 and 9/7 wavelet filters, each lifting step involves three pixels. When one of the wavelet filters is applied along a column (or row) in an image, a pixel is predicted or updated using the two adjacent pixels on the same column (or row) at each lifting step [8].The lifting structure is suitable for the implementation of the curved WT because at each step it involves only two adjacent pixels, instead of more pixels along a curve. For simplicity, we describe below only the implementation with vertical curves. Suppose that a pixel is on a vertical curve. At each lifting step, this pixel is predicted or updated with its two adjacent pixels that are on the same curve. One of the adjacent pixels is on the row above the pixel and the other on the row below the pixel. For the example shown in Fig. 4 (a), pixels a , b , and c are on the same vertical curve x (m ). Pixel a is predicted or updated by a + λ(b + c ), where λ is the lifting coefficient.(a) (b) (c) Fig. 4. Three situations in the lifting implementation of the curved WT. (a) the normalsituation, (b) requiring half-pixel interpolation, (c) intersection of two or more curves.There are two special situations to handle in the implementation. The first one involves half-pixelinterpolation. As shown in Fig. 2, the line segments of orientations -SDVV EHWZHHQ two adjacent pixels. Half-pixel interpolation is required for these line segments. For the example shown inFig. 4 (b), pixel a is on a line segment (part of a curve) RI RULHQWDWLRQThe code-stream syntax of the new coder is the same as that of JPEG2000 [8], except that a new marker segment is added to the tile headers (the image to be coded may be divided into tiles). This marker segment consists of two bytes indicating the start of the marker segment, two bytes specifying the length of the marker segment, one bit indicating the curve set order, and then the codes of all the curves for the tile. The new coder, therefore, retains all desired features and functionalities of JPEG2000.Clearly, the new encoder requires more calculations than the JPEG2000 encoder because the forward curved WT involves the determination of curves and curve set order, whereas the conventional WT does not. However, the computational cost of the new decoder is about the same as that of the JPEG2000 decoder. Indeed, the inverse curved WT in the new decoder does not need the determination of curves and curve set order. Additionally, the decoding of curves is fast because the amount of data representing curves is very small.Fig. 5. Block diagram of the new image encoder CWT-EBCOT.IV. E XPERIMENTAL R ESULTS AND P ERFORMANCE E VALUATION In this section, we first show the energy compactness of the curved WT, then present image coding results of the new coder and the comparison with JPEG2000 in terms of PSNR. Finally, we present the results of a subjective quality assessment experiment in which a group of viewers assessed the picture quality of the decoded images.A. Energy CompactnessTo demonstrate that the curved WT can provide a more compact representation for edges and lines than the conventional WT, we synthesized a test image of size 480×720, hereafter called Zoneplate. This image, shown in Fig.6 (a), was transformed using both the curved WT and the conventional WT. The results of the first level of transform are shown in Fig. 6 (b) and (c), respectively. For increased visibility, the LH and HH coefficients have been multiplied by a factor of 2. The curved WT preserves 95.6% of the image energy in the LL coefficients and distributes only 4.4% of the energy in the high-pass (LH, HL, and HH) coefficients. By contrast, the conventional WT distributes as much as 28.5% of the energy in the high-pass coefficients, six times more than the curved WT.(a)Fig. 6. Comparison between the curved WT and the conventional WT. (a) a synthetic image called Zoneplate, (b) the curved WT distributes 4.4% of the image energy in the LH, HL, and HH coefficients, (c) the conventional WT distributes 28.5% of the energy in the thesecoefficients.(b)(c)Fig. 6 (continued). Comparison between the curved WT and the conventional WT. (a) a synthetic image called Zoneplate, (b) the curved WT distributes 4.4% of the image energy in the LH, HL, and HH coefficients, (c) the conventional WT distributes 28.5% of theenergy in the these coefficients.B. Comparison in Terms of PSNRSix synthetic and natural grayscale images were used in the experiment for comparing the new image coder and JPEG2000. These images include three well-known images, Lena, Barbara, and Goldhill, of size 512×512; two JPEG2000 test images, Bike and Woman of size 2560×2048; the synthetic image Zoneplate shown in Fig. 6 (a). The images were compressed at bit rates of 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9 bits per pixel (bpp) using the new coder and a JPEG2000 coder [23]. The wavelet filters used in these coders were the 9/7 and 5/3 filters [8].Fig. 7 shows the PSNR of the decoded images at various bit rates. The synthetic image Zoneplate, which consists of circles of various widths, contains a large amount of high frequency components. This image is very difficult to compress with existing image coders. In contrast, the new coder was able to follow the contour of the circles and achieved a PSNR of up to 9.69 dB higher than that obtained by JPEG2000. For the images Barbara and Bike, the new coder also significantly outperformed JPEG2000 because these images contain a large amount of edges and lines of various orientations. For example, the PSNR gain of the new coder with the 5/3 filter was 1.67 dB for Barbara at the bit rate of 0.4 bpp and 0.74 dB for Bike at 0.1 bpp. The new coder produced a PSNR slightly higher than JPEG2000 for the image Lena and performed as well as JPEG2000 for Goldhill and Woman. The image Goldhill is quite blurred and does not contain sharp edges and Woman mainly consists of large flat regions (e.g., the image background) and fine textures (e.g., the sweater). Table 1 lists the average PSNR over the tested bit rates for each image as well as the average PSNR gains of the new coder compared with JPEG2000.As expected, a comparison of the two wavelet filters indicated that the 9/7 filter resulted in a higher PSNR than the 5/3 filter. As well, with the new coder, differences in PSNR resulting from the two filters were smaller than those with JPEG2000, as shown in Table 2. This means that the impact of the filters on the new coder is smaller than that on JPEG2000.Fig. 7. PSNR obtained using the new coder and JPEG2000.Fig. 7 (continued). PSNR obtained using the new coder and JPEG2000.Table 1. Average PSNR (dB) and gains of the new coder compared with JPEG2000.Image Filters New coder JPEG2000 Gain5/3 25.32 17.75 7.567Zoneplate 9/7 27.70 20.62 7.0855/3 35.07 34.82 0.241Lena 9/7 35.61 35.57 0.0415/3 30.96 29.52 1.444Barbara 9/7 31.74 30.65 1.0925/3 31.66 31.67 -0.007Goldhill 9/7 32.07 32.08 -0.0065/3 31.85 31.30 0.558Bike 9/7 32.21 31.81 0.3995/3 31.65 31.55 0.103Woman 9/7 32.18 32.21 -0.031Table 2. Differences in the average PSNR (dB) resulting from 9/7 and 5/3filters in each coder.Image New coder JPEG2000Zones plate 2.38 2.87Lena 0.54 0.74Barbara 0.77 1.13Goldhill 0.41 0.41Bike 0.36 0.52Woman 0.53 0.66C. Subjective Picture Quality AssessmentTo further evaluate the new image coder and compare it with JPEG2000, we performed a subjective quality assessment experiment on decoded images of Lena, Barbara, and Goldhill. The decoded images were obtained using the new coder and the JPEG2000 coder with 9/7 filter at bit rates of 0.1, 0.2, 0.3, 0.4, and 0.5 bpp. Eleven viewers, with a mean age of 39.2 years, participated in the experiment. All viewers had normal visual acuity. Three viewers had experience with subjective assessment of image quality. No viewers had experience with the coding technologies and their associated artifact characteristics.Subjective quality was measured using a stimulus comparison method. In each trial, viewers were shown two decoded images of the same source presented side by side on a Sony GDM-F520 CRT monitor. The images were viewed from a distance equal to four times the height of the images on the screen. One of the images was obtained using the new coder at a given bit rate and the other was obtained using JPEG2000 from the same source image at the same bit rate. Thus there were 15 basic, “side by side”, comparisons (i.e., three images at five bite rates). To eliminate any effect due to monitor characteristics, each basic comparison was presented in two different versions. In one version, the image obtained using the new coder was on the left side and the image obtained using JPEG2000 on the right side, while in the other version the position order was reversed. Furthermore, each version was shown twice to reduce the variance of the measured quality. Accordingly, each viewer saw each of the 15 basic comparisons four times for a total of 60 trials. The order of presentation of the basic comparisons and versions was randomized. Different random orders were used for different viewers.Viewers were asked to assess the perceived quality of both the left and right images and rate the difference, if any, using the 10 cm graphic scale illustrated in Fig. 8. For analysis, the responses were recorded as varying from -50, corresponding to extreme left end of the scale, to +50, corresponding to the extreme right end of the scale. In each trial, the images were displayed on the screen until the viewers had provided a rating.Fig. 8. Rating scale used to assess subjective image quality. The numerical values were not printedon the scale and were used only for analysis.As noted previously, the viewers rated each of the basic, “side by side”, comparison 4 times. The ratings of these 4 replications were averaged to obtain the viewer’s rating for that comparison. The viewers’ ratings were then averaged to obtain the mean rating for that comparison. Fig. 9 shows the mean ratings as a function of bit rates for the three source images. In this figure, a positive value indicates that the image obtained using the new image coder was rated as having a higher quality than that obtained using JPEG2000. A negative value indicates the opposite. A zero value means no difference in perceived quality between the images obtained using the two coders.It can be seen from Fig. 9 that the mean ratings for the Barbara and Lena images are different from zero and positive, although the magnitude of the difference decreases with increasing bit rate. These results suggest that the new image coder performs better than JPEG2000 for these images. To corroborate these observations, we evaluated the statistical significance of the observed mean ratings using the t-test. The statistical analysis confirmed that the observed mean ratings were significantly different from zero for the bit rates of 0.1, 0.2, 0.3, and 0.4 bpp (p <0.05 in all cases), but not for the 0.5 bpp case. For the images of Goldhill, it is easy to see that there was no difference between the performances of the two coders at any of the bit rates.Overall, these results are in agreement with those obtained with the PSNR. A couple of minor discrepancies are worth noting, though. First, note that while the perceived difference decreases at higher bit rates, the PSNR does not (see Fig. 7). This indicates that, as it might be expected, the difference in picture quality produced by the two coders at high bit rates becomes perceptually too small to be easily assessed. Secondly, for the image Lena the PSNR resulting from the new coder are only slightly higher than those from JPEG2000. On the contrary, the differences in subjective quality are far more pronounced. These minor discrepancies simply confirm that PSNR does not always provide an accurate estimate of perceived picture quality.Fig. 9. Subjective quality (average of the individual ratings) as a function of bit rates. The error bars represent the 95% confidence intervals.Generally, the new image coder preserves edges and lines better than JPEG2000. This can be observed from Figs. 10 and 11. Fig. 10 shows portions of two decoded Barbara images obtained with the 9/7 filters at 0.2 bpp. In the image produced by the new coder, the lines on the clothes are well reconstructed and the edges of the arm are smooth. However, many lines in the image produced by JPEG2000 are lost or distorted, and there are serious “ringing” artifacts around the edges. Fig. 11 shows portions of two decoded Lena images at 0.2 bpp. The PSNR difference between the two images is only 0.16 dB. However, the edges of the hat brim and the mirror frame in the image produced by the new coder are smooth, whereas those in the image produced by JPEG2000 have significant “ringing” artifacts.(a)(b) (c)Fig. 10. Portions of decoded Barbara images at 0.2 bpp, (a) the original image, (b) the new coder, PSNR=28.67 dB, (c) JPEG2000, PSNR=27.25 dB.(a)(b) (c)Fig. 11. Portions of decoded Lena images at 0.2 bpp, (a) original image, (b) the new coder, PSNR=33.10dB, (c) JPEG2000, PSNR=32.94 dB.V. C ONCLUSIONSIn this paper, we present the curved wavelet transform in which 1-D wavelet filters are applied along curves. A simple algorithm is proposed for determining the curves. The resulting curves are usually parallel to edges and lines in the image to be compressed. Therefore, the curved wavelet transform can exploit the geometrical information on the orientation of edges and lines to provide a compact representation for images. Then, we present a new image coder that is based on the curved wavelet transform and embedded block coding with optimal truncation (EBCOT). The code-stream syntax of the new coder is the same as that of JPEG2000, except that a new marker segment is added. The new coder, therefore, retains all the desired features and functionalities of JPEG2000. Image coding results show that, compared with JPEG2000, the new coder results in higher PSNR for some images and about the same PSNR for the other images. The new coder is particularly efficient for images that contain sharp edges and lines and can provide a PSNR gain of up to 1.6 dB for natural images. The results of a subjective quality assessment experiment confirm that the new coder provides overall higher subjective image quality than JPEG2000, possibly because it preserves edges well.The algorithm proposed in this paper for determining curves is not optimal. We believe that an optimal algorithm can significantly improve the performance of the new image coder. In addition, some constraints imposed on the curves could be relaxed, leading to more general curves. The curved wavelet transform can be combined with any methods that process, reorganize, and compress wavelet coefficients. In [22], the curved wavelet transform was combined with the well-known set partitioning in hierarchical trees (SPIHT) [4]. Combination with other methods remains open for future study.A CKNOWLEDGMENTThe authors would like to thank Dr. Wa James Tam and Ms. Taali Martin for their help in the writing of this paper, and to thank Mr. Phil Blanchfield and Mr. Ronald Renaud for preparing the subjective quality assessment experiment.。

相关文档
最新文档