山西省高中数学人教版必修1教学案:1.2函数的表示法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的表示法
【教学目标】
掌握函数的三种表示方法,通过函数的各种表示及其相互转化来加强对函数概念的理解.
【重点难点】
重点:函数的三种表示方法.
难点:根据不同的需要选择恰当的方法表示函数.
【教学过程】
一、情景设置
我们前面已经学习了函数的定义,函数的定义域的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?
、、。
二、探索研究
1.结合1.2.1的三个实例,讨论三种表示方法的定义:
解析法:
图像法:
列表法:
2.某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(x).
思考:比较三种表示法,它们各自的特点是什么?
解析法的特点:
图像法的特点:
列表法的特点:
三、教学精讲
三种表示法应该注意什么?
①函数图象既可以连续的曲线,也可以是直线、折线、离散的点等等;
②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;不是所有的函数都能用解析法表示。
③图像法:根据实际情景来决定是否连线;
④列表法:选取的自变量要有代表性,应能反映定义域的特征。
例1.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:
请你对这三位同学在高一学年度的数学学习情况做一个分析.
注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点。
例2.已知f(x)为二次函数,且f(x+1)+f(x-1)=2x2-4x,求f(x)的解析式
答案:① f(x)=x2-2x-1
例3.①已知f(x+1)=x+2
x,求f(x)的解析式. ②已知f(x+1x )=x 2+1x 2+1
x
,求f(x)的解析
式
答案:①f(x)=x 2-1(x ≥1) ②f(x)=x 2-x+1(x ≠1) 四、课堂练习
1.已知f(x)是一次函数,且ff(x)]=4x-1,求f(x) 答案:f(x)=x-1
3
或f(x)=-2x+1
2.周长为l,的铁丝弯成下部为矩形,上部为半圆的框架(如
图),若矩形底边长为2x ,求此框架围城图形的面积y 关于的函数表达式,并写出它的定义域.
五、本节小结
函数的三种表示方法. 【教学后记】