高中数学模块综合检测卷(二)苏教必修5
苏教版必修五模块综合测评
模块综合测评一、填空(本大题共14小题,每小题5分,共70分 .把答案填在题中的横线上) 1. 二次函数2()y ax bx c x R =++∈的部分对应值如下表:则不等式20ax bx c ++>的解集是_________________. 1.解析:由表格可得,23x x <->或答案:{}23x x x <->或2.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,如果A ∶B ∶C =1∶2∶3,那么a ∶b ∶c 等于 。
2.因为A ∶B ∶C =1∶2∶3,所以A =30°,B =60°,C =90°, 由正弦定理Cc B b Aa sin sin sin ===k ,得a =k ·sin30°=21k ,b =k ·sin60°=23k ,c =k ·sin90°=k ,所以a ∶b ∶c =1∶3∶2. 答案:1∶3∶23.在等差数列{}n a 中,1910a a +=,则5a 的值为 。
3.解析:由等差数列的性质得1952a a a +=,所以5a =5 答案:54.在△ABC 中,三个内角A ,B ,C 的对边分别是a ,b ,c ,若a =3,b =4,B =60°,则c =________.4.解析:利用余弦定理b 2=a 2+c 2-2ac cos B . 答案:2373+5.在等比数列{}n a 中,若公比q =4,且前3项之和等于21,则该数列的通项公式n a = .5.解析:由题意知11141621a a a ++=,解得11a =,所以通项n a =n-14。
答案: n-146. 设,x y R +∈ 且191x y+=,则x y +的最小值为________.6.解析:199()()101016x y x y x y xyyx+=++=++≥+=答案:167.在△ABC 中,若tan A =2,B =45°,BC =5,则 AC =________. 7.解析:由tan A =2,得52sin =A ,根据正弦定理,得ABC BAC sin sin =,得AC =425答案: 4258.已知数列{}n a 是等差数列,若471017a a a ++=,45612131477a a a a a a ++++++= 且13k a =,则k =_________8.解析:77999172317,,1177,7,,(9)73k a a a a d a a k d=====-=-2137(9),183k k -=-⨯= 答案:189.9.解析:答案:11,2-10. (2010浙江高考,理3)设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =。
数学·必修5(苏教版)练习模块综合检测卷(二) Word版含解析
模块综合检测卷(二)(测试时间:分钟评价分值:分)一、选择题(每小题共个小题,每小题共分,共分,在每小题给出的四个选项中,只有一项符合题目要求).对于任意实数,,,命题:①若>,≠,则>;②若<,则>;③若>,则>.其中真命题的个数是( )....解析:当<时,①不正确;当=时,②不正确;只有③正确.答案:.历届现代奥运会召开时间表如下:)....解析:由题意得,历届现代奥运会召开时间构成以为首项,为公差的等差数列,所以=+(-)·,解得=.答案:.若点(,)位于曲线=与=所围成的封闭区域,则-的最小值为( ).-.-..解析:=与=的图象围成一个三角形区域,如图所示,个顶点的坐标分别是(,),(-,),(,).在封闭区域内平移直线=,在点(-,)时,-=-取最小值.答案:.如图所示,设,两点在河的两岸,一测量者在所在的同侧河岸边选定一点,测出的长为,∠=°,∠=°后,就可以计算出,两点的距离为( )...解析:由正弦定理得∠)=∠),又因为∠=°-°-°=°,所以=∠∠)==().答案:.等比数列{}前项的积为,若是一个确定的常数,那么数列,,,中也是常数的项是( )....解析:因为··=···=是一个确定常数,所以为确定的常数.=··…·=(),所以选.答案:.以原点为圆心的圆全部都在平面区域内,则圆面积的最大值为( ).π.π解析:作出不等式组表示的平面区域如图所示,。
【高中教育】高中数学模块综合检测卷苏教版必修5.doc
模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(每小题共10个小题,每小题共5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10=(D)A.7 B.5 C.-5 D.-7解析:∵{a n}为等比数列,∴a4a7=a5a6=-8.又a 4+a7=2,∴⎩⎨⎧a4=4,a7=-2或⎩⎨⎧a4=-2,a7=4.当a4=4,a7=-2时,a1=-8,a10=1,∴a1+a10=-7;当a4=-2,a7=4时,a10=-8,a1=1,∴a1+a10=-7.综上,a1+a10=-7.2.某人投资10 000万元,如果年收益利率是5%,按复利计算,5年后能收回本利和为(B)A.10 000×(1+5×5%) B.10 000×(1+5%)5C.10 000×1.05×(1-1.054)1-1.05D.10 000×1.05×(1-1.055)1-1.05解析:注意与每年投入10 000万元区别开来.3.在△ABC中,已知cos A=513,sin B=35,则cos C的值为(A)A.1665B.5665C.1665或5665D.-1665解析:∵cos A =513>0,∴sin A =1213>sin B =35. ∴B 为锐角,故cos B =45.从而cos C =-cos(A +B )=-cos A cos B +sinA sinB =1665.4.若a <b <0,d >c >0,则不等式①ad >bc ;②c a >cb ;③a 2>b 2;④a -d <b -c 中正确的个数是(C)A .1个B .2个C .3个D .4个解析:①错,②③④正确.将a <b <0转化为-a >-b >0,可得(-ad )>(-bc ),即ad <bc ,故知①错;由a <b <0⇒1a >1b,c >0,故②正确;因为函数y =x 2在(-∞,0)上单调递减,故③正确;由d >c >0,得-d <-c <0,故知a -d <b -c ,故④正确.5.设x ,y ∈R +,且xy -(x +y )=1,下列结论中正确的是(A) A .x +y ≥22+2 B .xy ≤2+1 C .x +y ≤(2+1)2 D .xy ≥22+2解析:∵1+x +y =xy ≤⎝⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0.即x +y ≥2(1+2)(当x =y =1+2时等号成立),x +y 的最小值为2(1+2).6.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 015等于(D)A .1 006B .1 008C .-1 006D .-1 008 解析:由a n =n cosn π2可得S 2 015=1×0-2×1+3×0+4×1+…-2 014×1+2 015×0=-2+4-6+…-2 010+2 012-2 014=2×503-2 014=-1 008.7.已知方程x 2+(m +2)x +m +5=0有两个正实根,则实数m 的取值范围是(D)A .(-∞,-2)B .(-∞,-4]C .(-5,+∞)D .(-5,-4] 解析:方程两根为正,则⎩⎨⎧Δ≥0,-(m +2)>0,⇒-5<m ≤-4m +5>0. 8.已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是(D) A.⎝ ⎛⎭⎪⎫-132,172 B.⎝ ⎛⎭⎪⎫-72,112C.⎝ ⎛⎭⎪⎫-72,132D.⎝ ⎛⎭⎪⎫-92,132 解析:用待定系数法可得 2a +3b =52(a +b )-12(a -b ),由⎩⎨⎧-1<a +b <3,2<a -b <4⇒⎩⎪⎨⎪⎧-52<52(a +b )<152,-2<-12(a -b )<-1.两式相加即得-92<2a +3b <132.9.已知锐角三角形的边长分别是2,3,x ,则x 的取值范围是(B) A .(1,3) B .(5,13) C .(0,5) D .(13,5)解析:由三角形的三个角为锐角,结合余弦定理的推论可知,⎩⎨⎧22+32-x 2>0,22+x 2-32>0,32+x 2-22>0,解得5<x 2<13,即5<x <13.10.已知函数f(x)=ax2+2ax+4(a>0),若x1<x2,x1+x2=0,则(A)A.f(x1)<f(x2) B.f(x1)=f(x2)C.f(x1)>f(x2) D.f(x1)与f(x2)的大小不能确定解析:函数f(x)=ax2+2ax+4(a>0),二次函数的图象开口向上,对称轴为x=-1,a>0,又∵x1+x2=0,x1与x2的中点为0,x1<x2,∴x2到对称轴的距离大于x1到对称轴的距离.∴f(x1)<f(x2),故选A.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)11.(2013·新课标全国卷Ⅰ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos 2A=0,a=7,c=6,则b=________.解析:先求出角A的余弦值,再利用余弦定理求解.由23cos2A+cos 2A=0得23cos2A+2cos2A-1=0,解得cos A=±1 5 .∵A是锐角,∴cos A=1 5 .又a2=b2+c2-2bc cos A,∴49=b2+36-2×b×6×1 5 .∴b=5或b=-13 5.又∵b>0,∴b=5.答案:512.(2013·陕西卷)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…,照此规律,第n个等式可为____________.解析:当n为偶数时,(12-22)+(32-42)+…+[(n-1)2-n2]=-n (n +1)2;当n 为奇数时,(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-(n -1)n 2+n 2=n (n +1)2. 答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)213.若变量x ,y满足约束条件⎩⎨⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为________.解析:作出可行域(如图),由z =x -2y 得y =12x -z2,则当目标函数过C (1,-1)时z 取得最大值,所以z max =1-2×(-1)=3.答案:314.若a >b >0,m >0,n >0,则b a ,a b ,b +m a +m ,a +nb +n 由大到小的顺序是__________________________.解析:用特殊值法或作差比较法都很容易得出答案. 答案:a b >a +nb +n >b +m a +m >ba三、解答题(本题共6小题,共80分.解答题应写出文字说明、证明过程或推演步骤)15.(本小题满分12分)等差数列{}a n 不是常数列,a 5=10,且a 5,a 7,a 10是某一等比数列{}b n 的第1,3,5项.(1)求数列{}a n 的第20项; (2)求数列{}b n 的通项公式.解析:(1)设数列{}a n 的公差为d ,则a 5=10,a 7=10+2d ,a 10=10+5d . 因为等比数列{}b n 的第1、3、5项成等比数列,所以a 27=a 5a 10,即(10+2d )2=10(10+5d ).解得d =2.5,d =0(舍去). 所以a 20=47.5.(2)由(1)知{}a n 为各项非负的数列,所以q 2=b 3b 1=a 7a 5=32.∴q =±32.又b 1=a 5=10,∴b n =b 1qn -1=±10·⎝ ⎛⎭⎪⎫32n -12,n ∈N *.16.(本小题满分12分)(2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A .(1)求cos A 的值; (2)求c 的值.解析:(1)由正弦定理得: 3sin A =26sin 2A ,解得cos A =63. (2)由cos A =63⇒sin A =33,又∠B =2∠A ,∴cos B =2cos 2A -1=13.∴sin B =223,sin C =sin(A +B )=sin A cos B +cos A sin B =33×13+63×223=539. ∴c =a sin Csin A=5. 17.(本小题满分14分)已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,求-cx 2+2x -a >0的解集. 解析:由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12知a <0,-13和12是方程ax 2+2x+c =0的两个根,由韦达定理-13+12=-2a ,-13×12=ca ,解得a =-12,c =2,∴-cx 2+2x -a >0,即-2x 2+2x +12>0亦即x 2-x -6<0.其解集为(-2,3).18.(本小题满分14分)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解析:方法一 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎨⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎨⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.z 在可行域的四个顶点A (9,0),B (4,3),C (2,5),D (0,8)处的值分别是z A =2.5×9+4×0=22.5, z B =2.5×4+4×3=22, z C =2.5×2+4×5=25, z D =2.5×0+4×8=32.比较之,z B 最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.方法二 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得z =2.5x +4y ,且x ,y 满足⎩⎨⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎨⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出平行域如下图所示.让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z =2.5x +4y 在B (4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.19.(本小题满分14分)如右图,某观测站C 在城A 南偏西20°的方向上,由A城出发有一条公路,走向是南偏东40°,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,问这人还需走多少千米到达A城?解析:根据题意,可得下图,其中BC=31千米,BD=20千米,CD=21千米,∠CAD=60°.设∠ACD=α,∠CDB=β.在△CDB中,由余弦定理得:cos β=CD2+BD2-BC22CD·BD=212+202-3122×21×20=-17,sin β=1-cos2β=43 7.sin α=sin(180°-∠CAD-∠CDA) =sin(180°-60°-180°+β) =sin(β-60°)=sin βcos 60°-cos βsin 60°=437×12+17×32=53 14.在△ACD中,由正弦定理得:AD=CDsin A·sin α=21sin 60°×5314=15.此人还得走15千米到达A城.20.(本小题满分14分)数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,n ∈N *.(1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ;(3)设b n =1n (12-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *,均有T n >m 32成立?若存在,求出m 的值;若不存在,请说明理由.解析:(1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n , 可知{a n }成等差数列,d =a 4-a 14-1=-2,∴a n =8+(n -1)·(-2)=10-2n (n ∈N).(2)由a n =10-2n ≥0得n ≤5,∴当n ≤5时,S n =-n 2+9n .当n >5时, S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2(a 1+a 2+…+a 5)-(a 1+a 2+…+a n ) =n 2-9n +40.故S n =⎩⎨⎧-n 2+9n ,1≤n ≤5,n 2-9n +40,n ≥5.(3)b n =1n (12-a n )=1n (2n +2)=12⎝ ⎛⎭⎪⎫1n -1n +1. ∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1=12⎝⎛⎭⎪⎫1-1n+1=n2(n+1)>n-12n=T n-1>T n-2> (1)∴要使T n>m32总成立,需m32<T1=14恒成立,即m<8(m∈Z).故适合条件的m的最大值为。
2020学年高中数学模块综合检测苏教版必修5(2021-2022学年)
模块综合检测(时间120分钟满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系为()A.f(x)>g(x)B.f(x)=g(x)C.f(x)<g(x)ﻩD.随x值变化而变化解析:选 A 因为f(x)-g(x)=(3x2-x+1)-(2x2+x-1)=x2-2x+2=(x-1)2+1>0,所以f(x)〉g(x).2.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=错误!未定义书签。
,b=错误!,B=60°,那么角A等于()A.135°B.90°C.45° ﻩ D.30°解析:选C由正弦定理知错误!=错误!,∴sinA=错误!未定义书签。
=错误!=错误!.又a<b,B=60°,∴A<60°,∴A=45°.3.若a1=1,a n+1=错误!未定义书签。
,则给出的数列{a n}的第4项是( )A。
错误!ﻩB。
错误!未定义书签。
C.错误!ﻩD.错误!解析:选C a2=错误!=错误!未定义书签。
=错误!,a3=错误!=错误!未定义书签。
=错误!,a4=错误!=错误!未定义书签。
=错误!未定义书签。
.4.若关于x的不等式x2-3ax+2>0的解集为(-∞,1)∪(m,+∞),则a+m=( )A.-1B.1C.2ﻩD.3解析:选D由题意,知1,m是方程x2-3ax+2=0的两个根,则由根与系数的关系,得错误!未定义书签。
解得错误!所以a+m=3,故选D.5.已知x>0,y>0,且x+y=8,则(1+x)(1+y)的最大值为( )A.16 B.25C.9 D.36解析:选B(1+x)(1+y)≤错误!2=错误!2=错误!未定义书签。
2=25,因此当且仅当1+x=1+y即x=y=4时,(1+x)(1+y)取最大值25,故选B.6.已知数列{an}为等差数列,且a1=2,a2+a3=13,则a4+a5+a6等于( )A.40ﻩB.42C.43 D.45解析:选B设等差数列{a n}的公差为d,则2a1+3d=13,∴d=3,故a4+a5+a6=3a1+12d=3×2+12×3=42。
苏教版高中数学必修5试卷专题二综合检测.doc
专题二《等差数列、等比数列》综合检测一、选择题,本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中, 有一项是符合题目要求的.1. 数列 V2,V5,2V2,VH,-, WJ2V5 是该数列的()A.第6项 B.第7项 C.第10项 D.第11项 2. 方程x :-6x + 4 = 0的两根的等比中项是()A. 3B. ±2C. ±V6D. 23. 已知弓,为,…*,为各项都大于零的等比数列,公比0/1,则()A. 。
] +。
8〉。
4 + %B. % + % V 。
4 +C. %+%=。
4+。
5D.%+。
8和。
4+%的大小关系不能由已知条件确定4. ―个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则 此数列的项数为()A. 12B. 14C. 16D. 185. 若。
、b 、c 成等差数列,力、c 、d 成等比数列,成等差数列,则a> c> e 成()c d eA.等差数列B.等比数列C.既成等差数列又成等比数列D.以上答案都不是6. 在等差数列{□〃}中,Q] — % —。
8 —。
12 + 05 = 2,则。
3 + "13 =() A. 4B. -4C. 8D. -8 7.两等差数列国}、{久}的前&项和的比鱼 S n 一驾;;,则:的值是 () A 28 A. 17 n 4825C.里 27D.癸 15 8. {□〃}是等差数列, S lo >O,5n <O,则使%<0的最小的"值是 () A. 5 B. 6 C. 7D. 8 9. 0}是实数构成的等比数列,是其前〃 项和,则数列{,} 中( )A.任一项均不为0 C.至多有一项为B.必有一项为0D.或无一项为0,或无穷多项为010.某数列既成等差数列也成等比数列,那么该数列一定是()A.公差为0的等差数列B.公比为1的等比数列C.常数数列1,1,1,-D.以上都不对二、填空题,本大题共4小题,每小题3分,满分12分,把正确的答案写在题中横线上.H.已知等差数列{山}的公差刁知,且。
高中数学苏教版必修5模块综合测评
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.在△ABC 中,a ,b ,c 所对的角分别为A ,B ,C ,若a =2,A =π4,B =π6,则b 等于________.【解析】 由正弦定理得b =a sin Bsin A =2×1222= 2.【答案】22.已知等比数列{a n }的公比q 为正数,且a 5·a 7=4a 24,a 2=1,则a 1=________. 【解析】 ∵{a n }成等比数列,∴a 5·a 7=a 26, ∴a 26=4a 24,∴q 2=4,∴q =±2. 又q >0,∴q =2. ∴a 1=a 2q =12. 【答案】 123.设x >0,y >0,下列不等式中等号不成立的是________. ①x +y +2xy≥4;②(x +y )⎝ ⎛⎭⎪⎫1x +1y ≥4;③⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y ≥4;④x 2+3x 2+2≥2. 【解析】 ④中,x 2+3x 2+2=x 2+2+1x 2+2.因为x 2+2≥2,故应用不等式时,等号不成立. 【答案】 ④4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为________.【解析】 由a 24+a 27+2a 4a 7=9,可知a 4+a 7=±3. ∴S 10=10(a 1+a 10)2=10(a 4+a 7)2=±15.【答案】 ±155.已知点A (3,-1),B (-1,2)在直线ax +2y -1=0的同侧,则实数a 的取值范围为________.【解析】 由题意可知, (3a -3)(-a +3)>0, 即(a -1)(a -3)<0, ∴1<a <3. 【答案】 (1,3)6.已知2a +1<0,关于x 的不等式x 2-4ax -5a 2>0的解集是________. 【解析】 x 2-4ax -5a 2>0,即(x -5a )(x +a )>0, 而方程(x -5a )(x +a )=0的根为x 1=-a ,x 2=5a .∵2a +1<0,则a <-12,∴-a >5a ,∴原不等式的解集为{x |x <5a 或x >-a }. 【答案】 {x |x <5a 或x >-a }7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c ,成等比数列,且c =2a ,则cos B =________.【解析】 由已知可知b 2=ac . 又c =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-b 22ac =a 2+4a 2-2a 24a 2=34.【答案】 348.(2016·南通高二检测)已知数列1,a 1,a 2,4等差数列,且实数列1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值为________.【导学号:91730077】【解析】 ∵a 1+a 2=1+4=5,b 22=1×4=4,但b 2=1×q 2>0,∴b 2=2,故a 1+a 2b 2=52.【答案】 529.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内持续的时间为________小时.【解析】 设t 小时后,B 市处于危险区内,则由余弦定理得(20t )2+402-2×20t ×40cos 45°≤302.化简得4t 2-82t +7≤0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1. 【答案】 110.设x ,y 满足约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0,则目标函数z =3x -y 的最大值为________.【解析】 首先画出线性约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0的可行域(如图阴影部分),是一个三角形,然后在可行域内平行移动目标函数z =3x -y ,当经过x +2y =4与x -y =1的交点(2,1)时,目标函数取得最大值z =3×2-1=5.【答案】 511.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为________.【解析】 观察数列{a n }可知,a n =1n +1+2n +1+…+nn +1=1+2+3+…+n n +1=n 2,∴1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1, ∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为:4⎝ ⎛⎭⎪⎫1-12+4⎝ ⎛⎭⎪⎫12-13+…+4⎝ ⎛⎭⎪⎫1n -1n +1 =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =4⎝ ⎛⎭⎪⎫1-1n +1=4n n +1. 【答案】4nn +112.(2016·镇江高二检测)已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为________.【导学号:91730078】【解析】 ∵二次函数f (x )=ax 2-x +c (x ∈R )的值域[0,+∞),∴a >0, 且4ac -14a =0, ∴ac =14, ∴c >0,∴c +2a +a +2c =c a +a c +2a +2c ≥2c a ·ac +24ac =2+8=10,当且仅当a =c时取等号.【答案】 1013.(2016·南京高二检测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.【解析】 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c ,∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc ,∴b 2+c 2-a 22bc =bc 2bc =12=cos A , ∴A =60°.∵△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b =c 时取得“=”), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3. 【答案】314.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和.记T n =17S n -S 2n a n +1,n ∈N *.设Tn 0为数列{T n }的最大项,则n 0=________.【解析】 根据等比数列的通项公式 S n =a 1(1-q n )1-q,故T n =17×a 1(1-q n )1-q -a 1(1-q 2n )1-qa 1q n=q 2n -17q n +16(1-q )q n =11-q ⎝⎛⎭⎪⎫q n +16q n -17, 令q n =(2)n =t ,则函数g (t )=t +16t ,当t =4时函数g (t )取得最小值,此时n =4,而11-q =11-2<0,故此时T n 最大,所以n 0=4. 【答案】 4二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .【解】 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.16.(本小题满分14分)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n . (1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n,求T 2017.【解】 (1)当n =1时,a 1=13.当n ≥2时,a n =S n -S n -1,又S n =12-12a n ,∴a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝ ⎛⎭⎪⎫13n .(2)由已知得f (a n )=log 3⎝ ⎛⎭⎪⎫13n =-n ,∴b n =f (a 1)+f (a 2)+…+f (a n )=-1-2-3-…-n =-n (n +1)2,∴1b n =-2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =-2⎣⎢⎡⎦⎥⎤1-12+12-13+…+1n -1n +1 =-2⎝ ⎛⎭⎪⎫1-1n +1. ∴T 2 017=-2⎝ ⎛⎭⎪⎫1-12 018=-2 0171 009.17.(本小题满分14分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16. (1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围. 【解】 (1)g (x )=2x 2-4x -16<0, ∴(2x +4)(x -4)<0,∴-2<x <4, ∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8,当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1),∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立.而x 2-4x +7x -1=(x -1)+4x -1-2≥2(x -1)×4x -1-2=2(当x =3时等号成立). ∴实数m 的取值范围是(-∞,2].18.(本小题满分16分)(2016·苏州高二检测)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.【解】 (1)设等差数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0, 解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2.(2)当a n =2时,S n =2n .显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800, 即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.19.(本小题满分16分)设不等式组⎩⎨⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f (n )(n ∈N *).(1)求f (1),f (2)的值及f (n )的表达式; (2)设b n =2n f (n ),S n 为{b n }的前n 项和,求S n . 【解】 (1)f (1)=3,f (2)=6.当x =1时,y =2n ,可取格点2n 个; 当x =2时,y =n ,可取格点n 个, ∴f (n )=3n .(2)由题意得:b n =3n ·2n ,S n =3·21+6·22+9·23+…+3(n -1)·2n -1+3n ·2n , ∴2S n =3·22+6·23+…+3(n -1)·2n +3n ·2n +1, ∴-S n =3·21+3·22+3·23+…+3·2n -3n ·2n +1 =3(2+22+…+2n )-3n ·2n +1 =3·2-2n +11-2-3n ·2n +1=3(2n +1-2)-3n ·2n +1, ∴-S n =(3-3n )2n +1-6, ∴S n =6+(3n -3)2n +1.20.(本小题满分16分)小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25-x 万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元, 则y =25x -⎣⎢⎡⎦⎥⎤6x +x (x -1)2×2-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ), 由-x 2+20x -50>0, 解得10-52<x <10+52, 而2<10-52<3,故从第3年开始运输累计收入超过总支出. (2)因为利润=累计收入+销售收入-总支出, 所以销售二手货车后,小王的年平均利润为 y =1x [y +(25-x )] =1x (-x 2+19x -25) =19-⎝ ⎛⎭⎪⎫x +25x ,而19-⎝ ⎛⎭⎪⎫x +25x ≤19-2x ·25x =9,当且仅当x =5时取得等号,即小王应当在第5年底将大货车出售,才能使年平均利润最大.。
【苏教版】高中数学必修5同步辅导与检测:模块综合检测卷(二)(含答案)
模块综合检测卷(二)(测试时间:120分钟评价分值:150分)一、选择题(每小题共12个小题,每小题共5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.对于任意实数a,b,c,d命题:①若a>b,c≠0,则ac>bc;②若a<b,则ac2>bc2;③若ac2>bc2,则a>b.其中真命题的个数是()A.0B.1C.2D.3解析:当c<0时,①不正确;当c=0时,②不正确;只有③正确.答案:B2.历届现代奥运会召开时间表如下:A.29 B.30 C.31 D.32解析:由题意得,历届现代奥运会召开时间构成以1 896为首项,4为公差的等差数列,所以2 016=1 896+(n-1)·4,解得n=31.答案:C3.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x -y的最小值为()A .-6B .-2C .0D .2解析:y =|x |与y =2的图象围成一个三角形区域,如图所示,3个顶点的坐标分别是(0,0),(-2,2),(2,2).在封闭区域内平移直线y =2x ,在点(-2,2)时,2x -y =-6取最小值.答案:A4.如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC 的长为50 m ,∠ACB =45°,∠CAB =105°后,就可以计算出A ,B 两点的距离为()A .50 2 mB .50 3 mC .25 2 mD.2522m解析:由正弦定理得AB sin ∠ACB =ACsin ∠ABC ,又因为∠ABC =180°-45°-105°=30°, 所以AB =AC sin ∠ACB sin ∠ABC=50×2212=502(m).答案:A5.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25解析:因为a 3·a 6·a 18=a 9q 6·a 9q 3·a 9·q 9=a 39是一个确定常数,所以a 9为确定的常数.T 17=a 1·a 2·…·a 17=(a 9)17,所以选C. 答案:C6.以原点为圆心的圆全部都在平面区域⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2≥0内,则圆面积的最大值为( )A.18π5B.9π5C .2πD .π 解析:作出不等式组表示的平面区域如图所示,由图可知,最大圆的半径为点(0,0)到直线x -y +2=0的距离, 即|0-0+2|12+(-1)2=2,所以圆面积的最大值为π·(2)2=2π. 答案:C7.已知三角形的两边长分别为4,5,它们夹角的余弦值是方程2x 2+3x -2=0的根,则第三边长是( )A.20B.21C.22D.61解析:设长为4,5的两边的夹角为θ,由2x 2+3x -2=0得x =12或x =-2(舍),所以cos θ=12,所以第三边长为 42+52-2×4×5×12=21.答案:B8.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .6B .7C .8D .9解析:a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2=⎩⎨⎧-8,n =1,-10+2n ,n ≥2.因为n =1时适合a n =2n -10, 所以a n =2n -10(n ∈N *). 因为5<a k <8,所以5<2k -10<8. 所以152<k <9.又因为k ∈N *,所以k =8.答案:C9.函数f (x )=1x ln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4)∪[2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1)解析:函数f (x )有定义等价于⎩⎪⎨⎪⎧x ≠0,x 2-3x +2≥0,-x 2-3x +4>0或⎩⎪⎨⎪⎧x ≠0,x 2-3x +2>0,-x 2-3x +4≥0,解得-4≤x <0或0<x <1.答案:D10.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:因为b cos C +c cos B =b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac=b 2+a 2-c 2+c 2+a 2-b 22a=2a 22a =a =a sin A , 所以sin A =1.因为A ∈(0,π),所以A =π2,即△ABC 是直角三角形.答案:B11.在数列{x n }中,2x n =1x n -1+1x n +1(n ≥2),且x 2=23,x 4=25,则x 10等于( )A.211B.16C.112D.15解析:由已知可得⎩⎨⎧⎭⎬⎫1x n 成等差数列,而1x 2=32,1x 4=52,所以2d =52-32=1,即d =12.故1x 10=1x 1+(10-1)d =⎝ ⎛⎭⎪⎫32-12+9×12=112.所以x 10=211. 答案:A12.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析:因为x >0,y >0且2x +1y =1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +xy ≥4+24y x ·x y =8,当且仅当4y x =x y,即x =4,y =2时取等号, 所以(x +2y )min =8.要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,-x ,x ≤0.则不等式f (x )<4的解集是________.解析:不等式f (x )<4等价于⎩⎨⎧x >0,x 2+1<4或⎩⎨⎧x ≤0,-x <4,即0<x <3或-4<x ≤0.因此,不等式f (x )<4的解集是(-4,3). 答案:(-4,3)14.已知数列{a n }的通项公式为a n =2n -2004,则这个数列的前________项和最小.解析:设a n =2n -2 004的对应函数为y =2x -2 004.易知函数y =2x -2 004在R 上是增函数,且当y =0时,x =1 002. 因此,数列{a n }是单调递增数列,且当1≤n ≤1 002时,a n ≤0;当n >1 002时,a n >0. 所以数列{a n }的前1 001项或前1 002项的和最小. 答案:1 001或1 002.15.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于________.解析:由正弦定理,且sin C =23sin B ⇒c =23b .又a 2-b 2=3bc ,故由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(b 2+3bc )2bc =c 2-3bc 2bc =(23b )2-3b ·23b 2b ·23b=32,所以A =30°. 答案:30°16.(2015·山东卷)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析:因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy +4y 2-x 22xy =x 2+2y 22xy ≥22xy2xy =2,当且仅当x =2y 时,等号成立. 答案: 2三、解答题(本大题共6小题,共70分.解答题应写出文字说明、证明过程或推演步骤)17.(本小题满分10分)(2015·江苏卷)在△ABC 中,已知AB =2,AC =3,A =60°.(1)求BC 的长; (2)求sin 2C 的值.解:(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知,AB sin C =BCsin A ,所以sin C =ABBC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2·217·277=437.18.(本小题满分12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2,所以{a n }的通项为a n =2·2n -1=2n (n ∈N +).(2)S n =2(1-2n )1-2+n ·1+n (n -1)2·2=2n +1+n 2-2.19.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边c 的长;(2)若△ABC 的面积为16sin C ,求C 的大小.解:(1)由sin A +sin B =2sin C 及正弦定理可知: a +b =2c .又因为a +b +c =2+1,所以2c +c =2+1,从而c =1. (2)三角形面积S =12ab sin C =16sin C ,所以ab =13,a +b = 2.因为cos C =a 2+b 2-c 22ab =(a +b )2-2ab -12ab =12,又因为0<C <π,所以C =π3.20.(本小题满分12分)如图所示,公园有一块边长为2的等边三角形ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,点D 在AB 上,点E 在AC 上.(1)设AD =x (x ≥0),ED =y ,求用x 表示y 的函数关系式; (2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE 是参观线路,则希望它最长,DE 的位置又在哪里?解:S △ABC =34×4=3,所以S △ADE =12·x ·AE · sin 60°=32,所以x ·AE =2,所以AE =2x≤2,所以x ≥1.(1)在△ADE 中,y 2=x 2+⎝ ⎛⎭⎪⎫2x 2-2·x ·2x ·cos 60°=x 2+4x 2-2,所以y =x 2+4x2-2(1≤x ≤2).(2)令t =x 2,则1≤t ≤4,所以y =t +4t-2(1≤t ≤4). 当t =2,即x =2时,即当AD =2,AE =2时,DE 最短为2;当t =1或4,即AD =2,AE =1或AD =1,AE =2时,DE 最长为 3.21.(本小题满分12分)已知函数f (x )=x 2-ax (a ∈R), (1)若不等式f (x )>a -3的解集为R ,求实数a 的取值范围; (2)设x >y >0,且xy =2,若不等式f (x )+f (y )+2ay ≥0恒成立,求实数a 的取值范围.解:(1)不等式f (x )>a -3的解集为R ,即不等式x 2-ax -a +3>0的解集为R ,所以Δ=a 2+4(a -3)<0恒成立,即a 2+4a -12<0恒成立,所以-6<a <2.(2)不等式f (x )+f (y )+2ay ≥0恒成立,即不等式x 2-ax +y 2-ay +2ay ≥0恒成立,所以x 2+y 2≥a (x -y )恒成立.所以实数a 的取值范围为(-∞,4].22.(本小题满分12分)已知公差大于0的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c ; (3)若(2)中的{b n }的前n 项和为T n ,求证:2T n -3b n -1>64b n (n +9)b n +1. (1)解:{a n }为等差数列,因为a 3+a 4=a 2+a 5=22, 又因为a 3·a 4=117,所以a 3,a 4是方程n 2-22x +117=0的两个根. 又因为公差d >0,所以a 3<a 4,所以a 3=9,a 4=13.所以⎩⎨⎧a 1+2d =9,a 1+3d =13即⎩⎨⎧a 1=1,d =4,所以a n =4n -3.(2)解:由(1)知,S n =n ·1+n (n -1)2·4=2n 2-n , 所以b n =S n n +c =2n 2-n n +c ,所以b 1=11+c ,b 2=62+c, b 3=153+c. 因为{b n }是等差数列,所以2b 2=b 1+b 3,所以2c 2+c =0,所以c =-12或c =0(舍去). (3)证明:由(2)得b n =2n 2-n n -12=2n ,T n =2n +n (n -1)·22=n 2+n ,2T n -3b n -1=2(n 2+n )-3(2n -2)=2(n -1)2+4≥4,当n =1时取“=”,又n >1,所以取不到“=”,即2T n -3b n -1>4.64b n (n +9)b n +1=64×2n (n +9)·2(n +1)=64n n 2+10n +9=64n +9n+10≤4,当n =3时取“=”.上述两式中“=”不可能同时取到,所以2T n -3b n -1>64b n (n +9)b n +1.。
2019-2020年苏教版高中数学必修5 期末模块综合检测卷(含答案)
模块综合检测卷(测试时间:120分钟 评价分值:150分)一、选择题(每小题共10个小题,每小题共5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求)1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=(D ) A .7 B .5 C .-5 D .-7解析:∵{a n }为等比数列,∴a 4a 7=a 5a 6=-8.又a 4+a 7=2,∴⎩⎪⎨⎪⎧a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4.当a 4=4,a 7=-2时,a 1=-8,a 10=1,∴a 1+a 10=-7; 当a 4=-2,a 7=4时,a 10=-8,a 1=1,∴a 1+a 10=-7. 综上,a 1+a 10=-7.2.某人投资10 000万元,如果年收益利率是5%,按复利计算,5年后能收回本利和为(B )A .10 000×(1+5×5%)B .10 000×(1+5%)5C .10 000×1.05×(1-1.054)1-1.05 D .10 000×1.05×(1-1.055)1-1.05解析:注意与每年投入10 000万元区别开来.3.在△ABC 中,已知cos A =513,sin B =35,则cos C 的值为(A )A.1665B.5665 C.1665或5665 D .-1665解析:∵cos A =513>0,∴sin A =1213>sin B =35.∴B 为锐角,故cos B =45.从而cos C =-cos(A +B )=-cos A cos B +sin A sin B =1665.4.若a <b <0,d >c >0,则不等式①ad >bc ;②c a >cb;③a 2>b 2;④a -d <b -c 中正确的个数是(C )A .1个B .2个C .3个D .4个解析:①错,②③④正确.将a <b <0转化为-a >-b >0,可得(-ad )>(-bc ),即ad <bc ,故知①错;由a <b <0⇒1a >1b,c >0,故②正确;因为函数y =x 2在(-∞,0)上单调递减,故③正确;由d >c >0,得-d <-c <0,故知a -d <b -c ,故④正确.5.设x ,y ∈R +,且xy -(x +y )=1,下列结论中正确的是(A ) A .x +y ≥22+2 B .xy ≤2+1 C .x +y ≤(2+1)2D .xy ≥22+2解析:∵1+x +y =xy ≤⎝ ⎛⎭⎪⎫x +y 22,∴(x +y )2-4(x +y )-4≥0.即x +y ≥2(1+2)(当x=y =1+2时等号成立),x +y 的最小值为2(1+2).6.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 015等于(D )A .1 006B .1 008C .-1 006D .-1 008 解析:由a n =n cosn π2可得S 2 015=1×0-2×1+3×0+4×1+…-2 014×1+2 015×0=-2+4-6+…-2 010+2 012-2 014=2×503-2 014=-1 008.7.已知方程x 2+(m +2)x +m +5=0有两个正实根,则实数m 的取值范围是(D ) A .(-∞,-2) B .(-∞,-4] C .(-5,+∞) D .(-5,-4] 解析:方程两根为正,则 ⎩⎪⎨⎪⎧Δ≥0,-(m +2)>0,⇒-5<m ≤-4m +5>0. 8.已知-1<a +b <3且2<a -b <4,则2a +3b 的取值范围是(D)A.⎝ ⎛⎭⎪⎫-132,172B.⎝ ⎛⎭⎪⎫-72,112C.⎝ ⎛⎭⎪⎫-72,132D.⎝ ⎛⎭⎪⎫-92,132 解析:用待定系数法可得 2a +3b =52(a +b )-12(a -b ),由⎩⎪⎨⎪⎧-1<a +b <3,2<a -b <4⇒⎩⎪⎨⎪⎧-52<52(a +b )<152,-2<-12(a -b )<-1. 两式相加即得-92<2a +3b <132.9.已知锐角三角形的边长分别是2,3,x ,则x 的取值范围是(B ) A .(1,3) B .(5,13) C .(0,5) D .(13,5)解析:由三角形的三个角为锐角,结合余弦定理的推论可知,⎩⎪⎨⎪⎧22+32-x 2>0,22+x 2-32>0,32+x 2-22>0,解得5<x 2<13,即5<x < 13.10.已知函数f (x )=ax 2+2ax +4(a >0),若x 1<x 2,x 1+x 2=0,则(A ) A .f (x 1)<f (x 2) B .f (x 1)=f (x 2)C .f (x 1)>f (x 2)D .f (x 1)与f (x 2)的大小不能确定解析:函数f (x )=ax 2+2ax +4(a >0),二次函数的图象开口向上,对称轴为x =-1,a >0,又∵x 1+x 2=0,x 1与x 2的中点为0,x 1<x 2,∴x 2到对称轴的距离大于x 1到对称轴的距离.∴f (x 1)<f (x 2),故选A.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 11.(2013·新课标全国卷Ⅰ)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A +cos 2A =0,a =7,c =6,则b =________.解析:先求出角A 的余弦值,再利用余弦定理求解. 由23cos 2A +cos 2A =0得23cos 2A +2cos 2A -1=0, 解得cos A =±15.∵A 是锐角,∴cos A =15.又a 2=b 2+c 2-2bc cos A , ∴49=b 2+36-2×b ×6×15.∴b =5或b =-135.又∵b >0,∴b =5. 答案:512.(2013·陕西卷)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…,照此规律,第n 个等式可为____________.解析:当n 为偶数时,(12-22)+(32-42)+…+[(n -1)2-n 2]=-n (n +1)2;当n 为奇数时,(12-22)+(32-42)+…+[(n -2)2-(n -1)2]+n 2=-(n -1)n 2+n 2=n (n +1)2.答案:12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)213.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为________.解析:作出可行域(如图),由z =x -2y 得y =12x -z2,则当目标函数过C (1,-1)时z取得最大值,所以z max =1-2×(-1)=3.答案:314.若a >b >0,m >0,n >0,则b a ,a b ,b +m a +m ,a +nb +n由大到小的顺序是__________________________.解析:用特殊值法或作差比较法都很容易得出答案. 答案:a b >a +nb +n >b +m a +m >ba三、解答题(本题共6小题,共80分.解答题应写出文字说明、证明过程或推演步骤) 15.(本小题满分12分)等差数列{}a n 不是常数列,a 5=10,且a 5,a 7,a 10是某一等比数列{}b n 的第1,3,5项.(1)求数列{}a n 的第20项; (2)求数列{}b n 的通项公式.解析:(1)设数列{}a n 的公差为d ,则a 5=10,a 7=10+2d ,a 10=10+5d . 因为等比数列{}b n 的第1、3、5项成等比数列, 所以a 27=a 5a 10,即(10+2d )2=10(10+5d ). 解得d =2.5,d =0(舍去). 所以a 20=47.5.(2)由(1)知{}a n 为各项非负的数列,所以q 2=b 3b 1=a 7a 5=32.∴q =±32.又b 1=a 5=10, ∴b n =b 1q n -1=±10·⎝ ⎛⎭⎪⎫32n -12,n ∈N *.16.(本小题满分12分)(2013·北京卷)在△ABC 中,a =3,b =26,∠B =2∠A . (1)求cos A 的值; (2)求c 的值.解析:(1)由正弦定理得: 3sin A =26sin 2A ,解得cos A =63. (2)由cos A =63⇒sin A =33,又∠B =2∠A , ∴cos B =2cos 2A -1=13.∴sinB =223,sin C =sin(A +B )=sin A cos B +cos A sin B =33×13+63×223=539. ∴c =a sin Csin A=5. 17.(本小题满分14分)已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,求-cx 2+2x -a >0的解集.解析:由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12知a <0,-13和12是方程ax 2+2x +c =0的两个根,由韦达定理-13+12=-2a ,-13×12=c a ,解得a =-12,c =2,∴-cx 2+2x -a >0,即-2x 2+2x +12>0亦即x 2-x -6<0.其解集为(-2,3).18.(本小题满分14分)某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解析:方法一 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得:z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54, 即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.z 在可行域的四个顶点A (9,0),B (4,3),C (2,5),D (0,8)处的值分别是 z A =2.5×9+4×0=22.5, z B =2.5×4+4×3=22, z C =2.5×2+4×5=25, z D =2.5×0+4×8=32.比较之,z B 最小,因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.方法二 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z 元,则依题意得z =2.5x +4y ,且x ,y 满足⎩⎪⎨⎪⎧x ≥0,y ≥0,12x +8y ≥64,6x +6y ≥42,6x +10y ≥54,即⎩⎪⎨⎪⎧x ≥0,y ≥0,3x +2y ≥16,x +y ≥7,3x +5y ≥27.作出平行域如下图所示.让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.19.(本小题满分14分)如右图,某观测站C在城A南偏西20°的方向上,由A城出发有一条公路,走向是南偏东40°,在C处测得距C为31千米的公路上B处有一人正沿公路向A城走去,走了20千米后,到达D处,此时C、D间距离为21千米,问这人还需走多少千米到达A城?解析:根据题意,可得下图,其中BC =31千米,BD =20千米,CD =21千米,∠CAD =60°.设∠ACD =α,∠CDB =β. 在△CDB 中,由余弦定理得:cos β=CD 2+BD 2-BC 22CD ·BD =212+202-3122×21×20=-17,sin β=1-cos 2β=437. sin α=sin(180°-∠CAD -∠CDA ) =sin(180°-60°-180°+β) =sin(β-60°)=sin βcos 60°-cos βsin 60° =437×12+17×32=5314.在△ACD 中,由正弦定理得:AD =CDsin A ·sin α=21sin 60°×5314=15. 此人还得走15千米到达A 城.20.(本小题满分14分)数列{a n }中,a 1=8,a 4=2且满足a n +2=2a n +1-a n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设S n =|a 1|+|a 2|+…+|a n |,求S n ; (3)设b n =1n (12-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),是否存在最大的整数m ,使得对任意n ∈N *,均有T n >m32成立?若存在,求出m 的值;若不存在,请说明理由.解析:(1)由a n +2=2a n +1-a n ⇒a n +2-a n +1=a n +1-a n , 可知{a n }成等差数列,d =a 4-a 14-1=-2,∴a n =8+(n -1)·(-2)=10-2n (n ∈N). (2)由a n =10-2n ≥0得n ≤5,∴当n ≤5时,S n =-n 2+9n .当n >5时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2(a 1+a 2+…+a 5)-(a 1+a 2+…+a n ) =n 2-9n +40.故S n =⎩⎪⎨⎪⎧-n 2+9n ,1≤n ≤5,n 2-9n +40,n ≥5.(3)b n =1n (12-a n )=1n (2n +2)=12⎝ ⎛⎭⎪⎫1n -1n +1.∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1 =12⎝ ⎛⎭⎪⎫1-1n +1=n 2(n +1)>n -12n =T n -1>T n -2>…T 1.∴要使T n >m 32总成立,需m 32<T 1=14恒成立,即m <8(m ∈Z).故适合条件的m 的最大值为。
苏教版高一数学必修5模块测试二答案详解
必修五模块测试二一.填空题1. 2x 2-3x -2≥0的解集是 。
2.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.若a 、b 、c 成等比数列,且c=2a,则cosB= 。
3.如果点(5,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为 。
4.设α、β是方程x 2-2x+k 2=0的两根,且α,α+β,β成等比数列,则k= 。
5.已知m =a +1a -2(a >2),n =2x 212-()(x <0),则m 与n 的大小关系为 .6.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m 的范围是7.若以2,3,x 为三边组成一个锐角三角形,则x 的范围为 .8.数列{a n }中,a n >0且{a n a n+1}是公比为q(q >0)的等比数列,满足a n a n+1+a n+1a n+2>a n +2a n+3(n ∈N *),则公比q 的取值范围是 。
9.三角形两条边长分别为3 cm,5 cm ,其夹角的余弦值是方程5x 2-7x-6=0的根,则此三角形的面积是____________________.10.数列{a n }的通项公式为a n =2n-49,S n 达到最小时,n 等于_______________.11.一段长为L m 的篱笆围成一个一边靠墙的矩形菜园,则菜园的最大面积是 。
12. 在△ABC 中,若sinB 、cos2A、sinC 成等比数列,则此三角形的形状为 。
13.将给定的25个数排成如图所示的数表, 若每行5个数按从左至右的顺序构成等差数列,每列的5个数按从上到下的顺序也构成等差数列,且表正中间一个数a 33=1,则表中所有数之和为__________.14.半圆O 的直径为2,A 为直径延长线上的一点,OA =2,B 为半圆上任意一点,以AB 为一边作等边三角形ABC.则四边形OACB 的面积最大值是 。
高中数学 模块综合检测 苏教版必修5
模块综合检测(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.将答案填在题中的横线上) 1.函数f (x )=lg(x 2-2x -3)的定义域为________. 解析:由x 2-2x -3>0得x <-1或x >3. 答案:(-∞,-1)∪(3,+∞)2.在△ABC 中,a ,b ,c 所对的角分别为A ,B ,C ,若a =2,A =π4,B =5π12,则b =________.解析:由正弦定理a sin A =bsin B得,b =a sin B sin A=2×6+2422=3+1.答案:3+13.已知等比数列{a n },a 4=7,a 6=21,则a 10=________. 解析:∵a 4=a 1q 3,a 6=a 1q 5, ∴q 2=a 6a 4=3. ∴a 10=a 6q 4=189. 答案:1894.已知不等式x 2-2x +k 2-1>0对一切实数x 恒成立,则实数k 的取值范围是________. 解析:由题意知Δ=(-2)2-4(k 2-1)<0,即k 2-2>0,所以k ∈(-∞,-2)∪(2,+∞).答案:(-∞,-2)∪(2,+∞) 5.函数y =log 2⎝⎛⎭⎪⎫x +1x -1+5(x >1)的最小值为________. 解析:∵x >1,∴x +1x -1+5=x -1+1x -1+6≥2x -1x -1+6=8. 当且仅当x -1=1x -1即x =2时取等号. ∴y =log 2⎝ ⎛⎭⎪⎫x +1x -1+5≥log 28=3. ∴y =log 2⎝⎛⎭⎪⎫x +1x -1+5(x >1)的最小值为3.答案:36.等差数列{a n }的前n 项和为S n ,若S 10=0,S 15=25,则S n =________.解析:由题意知⎩⎪⎨⎪⎧10a 1+10×9d 2=0,15a 1+15×14d2=25,解得d =23,a 1=-3,所以S n =-3n +n n -2×23=n 2-10n 3. 答案:n 2-10n37.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为________.解析:已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13.答案:-138.已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11=________.解析:设等差数列的公差为d ,由a 4-2a 27+3a 8=0,得a 7-3d -2a 27+3(a 7+d )=0,从而有a 7=2或a 7=0(a 7=b 7,而{b n }是等比数列,故舍去).设{b n }的公比为q ,则b 7=a 7=2,所以b 2b 8b 11=b 7q5·b 7q ·b 7q 4=(b 7)3=23=8.答案:89.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 016的值是________.解析:a 1a 2=2×7=14,所以a 3=4,7×4=28,所以a 4=8,4×8=32,所以a 5=2,8×2=16,所以a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,所以从第三项起,{a n }成周期数列,周期数为6,2 016=336×6,所以a 2 016=a 6=6.答案:610.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =________. 解析:依题意,结合正弦定理得6a =4b =3c ,设3c =12k (k >0),则有a =2k ,b =3k ,c =4k ;由余弦定理得cos B =a 2+c 2-b 22ac=k2+k 2-k22×2k ×4k=1116. 答案:111611.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是________ km.解析:如图,由条件知AB =24×1560=6.在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin 30°=ABsin 45°,所以BS =ABsin 45°sin 30°=3 2.即电动车在点B 时与电视塔S 的距离是3 2 km. 答案:3 212.若正数x ,y 满足x 2+3xy -1=0,则x +y 的最小值是________. 解析:对于x 2+3xy -1=0可得y =13⎝ ⎛⎭⎪⎫1x -x ,即x +y =2x 3+13x ≥22x 3·13x =223,当且仅当x =22时取等号. 答案:22313.已知二次函数f (x )=ax 2-x +c (x ∈R)的值域为[0,+∞),则c +2a +a +2c的最小值为________.解析:∵二次函数f (x )=ax 2-x +c (x ∈R)的值域[0,+∞), ∴a >0,且4ac -14a =0.∴ac =14,∴c >0.∴c +2a +a +2c =c a +a c +2a +2c≥2c a ·ac+24ac=2+8=10,当且仅当a =c 时取等号. 答案:1014.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________.解析:设等比数列{a n }的公比为q ,∴9S 3=S 6. ∴8(a 1+a 2+a 3)=a 4+a 5+a 6. ∴a 4+a 5+a 6a 1+a 2+a 3=q 3=8.∴q =2,∴a n =2n -1.∴1a n =⎝ ⎛⎭⎪⎫12n -1. ∴数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,故数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=3116.答案:3116二、解答题(本大题共6小题,共90分,解答应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)求不等式12x 2-ax >a 2(a ∈R)的解集. 解:原不等式可化为(3x -a )(4x +a )>0.当a >0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x <-a 4或x >a3; 当a =0时,不等式的解集为{x |x ∈R 且x ≠0};当a <0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <a 3或x >-a4. 16.(本小题满分14分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B .(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B . ① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C . ② 由①②和C ∈(0,π)得sin B =cos B . 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2,当且仅当a =c 时,等号成立.因此△ABC 面积的最大值为2+1.17.(本小题满分14分)某企业准备投入适当的广告费对产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的函数关系为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万元此产品仍需再投入32万元,若每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试将年利润W (万元)表示为年广告费x (万元)的函数;(2)当年广告费投入多少万元时,企业年利润最大?最大利润为多少?解:(1)由题意可得,产品的生产成本为(32Q +3)万元,每万件销售价为32Q +3Q×150%+x Q×50%万元,所以年销售收入为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%·Q =32(32Q +3)+12x 万元,所以年利润W =32(32Q +3)+12x -(32Q +3)-x =12(32Q +3-x )=-x 2+98x +35x +(x ≥0).(2)令x +1=t (t ≥1), 则W =-t -2+t -+352t=50-⎝ ⎛⎭⎪⎫t 2+32t .因为t ≥1,所以t 2+32t ≥2t 2·32t=8,即W ≤42, 当且仅当t 2=32t,即t =8时,W 有最大值42,此时x =7.答:当年广告费为7万元时,企业年利润最大,最大值为42万元.18.(本小题满分16分)已知公差不为0的等差数列{a n }的首项a 1为a (a ∈R),且1a 1,1a 2,1a 4成等比数列.(1)求数列{a n }的通项公式;(2)对n ∈N *,试比较1a 2+1a 22+1a 23+…+1a 2n 与1a 1的大小.解:(1)设等差数列{a n }的公差为d ,由题意可知⎝ ⎛⎭⎪⎫1a22=1a 1·1a 4,即(a 1+d )2=a 1(a 1+3d ),从而a 1d =d 2. 因为d ≠0.所以d =a 1=a . 故通项公式a n =na .(2)记T n =1a 2+1a 22+…+1a 2n ,因为a 2n =2na ,所以T n =1a ⎝ ⎛⎭⎪⎫12+122+ (12)=1a ·12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=1a ⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n . 从而,当a >0时,T n <1a 1;当a <0时,T n >1a 1.19.(本小题满分16分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足a =2sin A ,cos B cos C +2a c +bc=0.(1)求c 的值;(2)求△ABC 面积的最大值. 解:(1)∵cos B cos C +2a c +bc =0,∴c cos B +2a cos C +b cos C =0,∴sin C cos B +sin B cos C +2sin A cos C =0, ∴sin A +2sin A cos C =0.又∵sin A ≠0, ∴cos C =-12,∴C =2π3,∴c =a sin A·sin C = 3.(2)∵cos C =-12=a 2+b 2-32ab ,∴a 2+b 2+ab =3,∴3ab ≤3,即ab ≤1,当且仅当a =b =1时取等号, ∴S △ABC =12ab sin C ≤34,即△ABC 面积的最大值为34. 20.(本小题满分16分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,a 2-c 2=b 2-8bc5,a =3,△ABC 的面积为6,D 为△ABC 内(不包括三角形的边)任一点,点D 到三边距离之和为d .(1)求角A 的正弦值; (2)求边b ,c; (3)求d 的取值范围.解:(1)a 2-c 2=b 2-8bc 5⇒b 2+c 2-a 22bc =45⇒cos A =45⇒sin A =35.(2)∵S △ABC =12bc sin A =6.∴bc =20.由b 2+c 2-a 22bc =45及bc =20与a =3解得b =4,c =5或b =5,c =4.(3)设点D 到三边的距离分别为x ,y ,z , 则S △ABC =12(3x +4y +5z )=6,d =x +y +z=125+15(2x +y ), 又x ,y 满足⎩⎪⎨⎪⎧3x +4y <12,x >0,y >0,画出不等式表示的平面区域得125<d <4.。
高中数学 模块综合检测 苏教版必修5
(时间120分钟,满分160分)一、填空题(本大题共14个小题,每小题5分,共70分,将答案填在题中的横线上) 1.在△ABC 中,a ,b ,c 所对的角分别为A 、B 、C ,若a =2,A =π4,B =π6,则b 等于________.解析:由正弦定理a sin A =b sin B 得b =a sin Bsin A =2×1222= 2答案: 22.(2012·曲阜师大附中月考)已知等比数列{a n }的公比q 为正数,且a 5·a 7=4a 24,a 2=1,则a 1=________. 解析:∵a 5·a 7=4a 24, ∴a 26=4a 24. ∴a 24·q 4=4a 24. ∵a 4≠0,∴q 4=4. 又∵q >0,∴q = 2. ∴a 1=a 2q =22. 答案:223.等差数列{a n }中,已知a 1+a 2+a 3+a 4+a 5=20,那么a 3等于________. 解析:∵{a n }是等差数列且a 1+a 2+a 3+a 4+a 5=20, ∴5a 3=20,∴a 3=4. 答案:44.函数y =log 2(x +1x -1+5)(x >1)的最小值为________. 解析:∵x >1, ∴x +1x -1+5=x -1+1x -1+6≥2x -1·1x -1+6=8.当且仅当x -1=1x -1即x =2时取等号. ∴y =log 2(x +1x -1+5)≥log 28=3. ∴y =log 2(x +1x -1+5)(x >1)的最小值为3. 答案:35.(2011·扬州高三期中)已知△ABC 的面积为30,内角A 、B 、C 所对边分别为a ,b ,c ,cos A =1213.若c -b =1,则a 的值是________.解析:∵cos A =1213,∴sin A =1-cos 2A =513,∴12bc ·sin A =12bc ×513=30. ∴bc =156. ∵c -b =1. ∴c 2-2bc +b 2=1. ∴c 2+b 2=1+2bc =313.由余弦定理得a 2=b 2+c 2-2bc cos A , ∴a 2=313-2×156×1213=25.∴a =5. 答案:56.(2011·合肥一中高二期中)设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程 4x 2-8x +3=0的两个根,则a 6+a 7=________. 解析:由4x 2-8x +3=0得x 1=32,x 2=12.∵q >1, ∴a 4=12,a 5=32.∴q =a 5a 4=3.∴a 4、a 5是方程4x 2-8x +3=0的两根,∴a 4+a 5=2. ∴a 6+a 7=(a 4+a 5)q 2 =2·32=18. 答案:187.(2011·东城区模拟)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0x ≤3x +y ≥0,则目标函数z =x +2y的最小值为________.解析:作出⎩⎪⎨⎪⎧x -y +5≥0x ≤3x +y ≥0.所表示的平面区域如图,A (3,8),B (-52,52),C (3,-3)利用平移法可知直线经过点(3,-3)时z min =3-6=-3 答案:-38.设S n 是等差数列{a n }的前n 项和,若a 7a 4=2,则S 13S 7的值为________. 解析:S 13S 7=13a 1+a 13272a 1+a 7=13a 1+a 137a 1+a 7=13×a 77×a 4=267答案:2679.(2011·葫芦岛模拟)在△ABC 中内角A 、B 、C 的对边分别为a ,b ,c ,若a ,b ,c ,成等比数列,且c =2a ,则cos B =________. 解析:由已知得b 2=ac . 由余弦定理得,cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac =a 2+4a 2-2a 24a 2=34. 答案:3410.(2011·上海高二检测)已知ax 2+2x +c >0的解集为{x |-1<x <3},则a ·c =________解析:由已知得-1,3是方程ax 2+2x +c =0的两个根,则 ⎩⎪⎨⎪⎧-1+3=-2a ,-1×3=c a ,解得⎩⎪⎨⎪⎧a =-1,c =3.∴a ·c =-3. 答案:-311.在△ABC 中,已知a =11,b =20,A =130°,则此三角形解的个数为________. 解析:∵a <b ,∴A <B ,又A =130°, ∴B 为钝角矛盾,故无解. 答案:012.某种产品平均每三年降低价格14,目前售价640元,则9年后此产品价格为________元.解析:由题意知9年后的价格为640×(1-14)3=270(元)答案:27013.(2011·苏北四市模拟)已知二次函数f (x )=ax 2-x +c (x ∈R)的值域为[0,+∞),则c +2a +a +2c的最小值为________. 解析:∵二次函数f (x )=ax 2-x +c (x ∈R)的值域[0,+∞), ∴a >0,且4ac -14a =0.∴ac =14,∴c >0.∴c +2a +a +2c =c a +a c +2a +2c≥2c a ·ac+24ac=2+8=10.[当且仅当a =c 时取等号. 答案:1014.(2012·潍坊联考)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为________.解析:设等比数列{a n }的公比为q ,∴9S 3=S 6. ∴8(a 1+a 2+a 3)=a 4+a 5+a 6. ∴a 4+a 5+a 6a 1+a 2+a 3=q 3=8.∴q =2,∴a n =2n -1.∴1a n =(12)n -1. ∴数列{1a n }是首项为1,公比为12的等比数列,故数列{1a n }的前5项和为1×[1-125]1-12=3116.答案:3116二、解答题(本大题共有6个小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)(2012·浙江省杭州高中月考)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n,求T 2 012.解:(1)当n =1时,a 1=13.当n ≥2时,a n =S n -S n -1, 又S n =12-12a n ,∴a n =13a n -1.即数列{a n }是首项为13,公比为13的等比数列,故a n =(13)n.(2)由已知得f (a n )=log 3(13)n =-n∴b n =f (a 1)+f (a 2)+…+f (a n ) =-1-2-3-…-n =-n n +12∴1b n =-2(1n -1n +1) ∴T n =-2[1-12+12-13+…+1n -1n +1]=-2(1-1n +1). 所以T 2 012=-4 0242 013.16.(本小题满分14分)(2011·盐城模拟)在△ABC 中,角A 、B 、C 的所对应边分别为a ,b ,c ,且a =5,b =3,sin C =2sin A .(1)求c 的值;(2)求sin(2A -π3)的值.解:(1)根据正弦定理,c sin C =asin A ,所以c =sin Csin A·a =2a =2 5.(2)根据余弦定理,得cos A =c 2+b 2-a 22bc =255.于是sin A =1-cos 2A =55, 从而sin2A =2sin A cos A =45,cos2A =cos 2A -sin 2A =35.所以sin(2A -π3)=sin2A cos π3-cos2A sin π3=4-3310.17.(本小题满分14分)已知数列{a n }为等差数列,a 3=5,a 7=13,数列{b n }的前n 项和为S n ,且有S n =2b n -1. (1)求{a n }、{b n }的通项公式;(2)若c n =a n b n ,{c n }的前n 项和为T n ,求T n .解:(1)∵{a n }为等差数列,且a 3=5,a 7=13,设公差为d .∴⎩⎪⎨⎪⎧a 1+2d =5a 1+6d =13,解得⎩⎪⎨⎪⎧a 1=1d =2∴a n =1+2(n -1)=2n -1(n ∈N *). 在{b n }中,∵S n =2b n -1, 当n =1时,b 1=2b 1-1,∴b 1=1.当n ≥2时,由S n =2b n -1及S n -1=2b n -1-1可得b n =2b n -2b n -1,∴b n =2b n -1.∴{b n }是首项为1公比为2的等比数列. ∴b n =2n -1(n ∈N *).(2)c n =a n b n =(2n -1)·2n -1T n =1+3·2+5·22+…+(2n -1)·2n -1 ①2T n =1·2+3·22+5·23+…+(2n -3)·2n -1+(2n -1)·2n②①-②得-T n =1+2·2+2·22+…+2·2n -1-(2n -1)·2n=1+2·21-2n -11-2-(2n -1)·2n=1+4(2n -1-1)-(2n -1)·2n=-3-(2n -3)·2n∴T n =(2n -3)n+3(n ∈N *)18.(本小题满分16分)为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600 吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为:y =12x 2-200x +80 000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?解:(1)由题意可知,二氧化碳的每吨平均处理成本为:y x =12x +80 000x -200≥212x ·80 000x-200=200, 当且仅当12x =80 000x ,即x =400时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S ,则S =100x -y =100x -(12x 2-200x +80 000)=-12x 2+300x -80 000=-12(x -300)2-35 000.因为400≤x ≤600,所以当x =400时,S 有最大值-40 000. 故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.19.(本小题满分16分)在△ABC 中,a ,b ,c 分别为角A 、B 、C 的对边,a 2-c 2=b 2-8bc 5,a =3,△ABC 的面积为6,D 为△ABC 内(不包括三角形的边)任一点,点D 到三边距离之和为d .(1)求角A 的正弦值; (2)求边b 、c; (3)求d 的取值范围.解:(1)a 2-c 2=b 2-8bc 5⇒b 2+c 2-a 22bc =45⇒cos A =45⇒sin A =35.(2)∵S △ABC =12bc sin A =12bc ·35=6.∴bc =20.由b 2+c 2-a 22bc =45及bc =20与a =3解得b =4,c =5或b =5,c =4.(3)设点D 到三边的距离分别为x 、y 、z , 则S △ABC=12(3x +4y +5z )=6,d =x +y +z =125+15(2x +y ), 又x 、y 满足⎩⎪⎨⎪⎧3x +4y <12,x >0,y >0,画出不等式表示的平面区域得125<d <4.20.(本小题满分16分)已知函数f (x )=ax 2+a 2x +2b -a 3,当x ∈(-2,6)时,其值为正,而当x ∈(-∞,-2)∪(6,+∞)时,其值为负. (1)求实数a ,b 的值及函数f (x )的解析式;(2)设F (x )=-k4f (x )+4(k +1)x +2(6k -1),问k 取何值时,函数F (x )的值恒为负值?解:(1)由题意可知-2和6是方程f (x )=0的两根, ∴⎩⎪⎨⎪⎧-a =-2+6=4,2b -a 3a =-2×6=-12.∴⎩⎪⎨⎪⎧a =-4,b =-8.∴f (x )=-4x 2+16x +48.(2)F (x )=-k4(-4x 2+16x +48)+4(k +1)x +2(6k -1)=kx 2+4x -2. 当k =0时,F (x )=4x -2不恒为负值; 当k ≠0时,若F (x )的值恒为负值,则有⎩⎪⎨⎪⎧k <016+8k <0,解得k <-2.。
苏教版高中数学必修五 章末综合测评(二).docx
章末综合测评(二)(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 .【导学号:92862068】【解析】 法一:设等差数列{a n }的公差为d ,由S 5=10,知S 5=5a 1+5×42d =10,得a 1+2d =2,即a 1=2-2d .所以a 2=a 1+d =2-d ,代入a 1+a 22=-3,化简得d 2-6d +9=0,所以d =3,a 1=-4.故a 9=a 1+8d =-4+24=20.法二:设等差数列{a n }的公差为d ,由S 5=10,知5(a 1+a 5)2=5a 3=10,所以a 3=2.所以由a 1+a 3=2a 2,得a 1=2a 2-2,代入a 1+a 22=-3,化简得a 22+2a 2+1=0,所以a 2=-1.公差d =a 3-a 2=2+1=3,故a 9=a 3+6d =2+18=20. 【答案】 202.已知等差数列{a n }前9项的和为27,a 10=8,则a 100= . 【解析】 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎨⎧ a 1+4d =3,a 1+9d =8,∴⎩⎨⎧a 1=-1,d =1. ∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98. 【答案】 983.已知数列{a n }的前n 项和为S n =kn 2,若对所有的n ∈N *,都有a n +1>a n ,则实数k 的取值范围是 .【解析】 由S n =kn 2,得a n =k (2n -1). ∵a n +1>a n ,∴{a n }是递增数列, ∴k >0.【答案】 (0,+∞)4.已知数列{a n },a n ≠0,若a 1=3,2a n +1-a n =0,则a 6等于 . 【解析】 因为2a n +1-a n =0,a n ≠0,所以a n +1a n =12,所以数列{a n }是首项为a 1=3,公比为q =12的等比数列,所以a n =a 1q n -1=3×⎝ ⎛⎭⎪⎫12n -1,所以a 6=3×⎝ ⎛⎭⎪⎫126-1=332.【答案】 3325.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q = .【解析】 设等差数列的公差为d ,则a 3=a 1+2d ,a 5=a 1+4d , ∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5), 解得d =-1, ∴q =a 3+3a 1+1=a 1-2+3a 1+1=1.【答案】 16.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n = . 【解析】 当n =1时,S 1=2a 1-1, ∴a 1=2a 1-1,∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1), ∴a n =2a n -1,∴{a n }是等比数列, ∴a n =2n -1,n ∈N *. 【答案】 2n -1,n ∈N *7.一个直角三角形的三边成等比数列,则较小锐角的正弦值是 . 【解析】 设三边为a ,aq ,aq 2(q >1), 则(aq 2)2=(aq )2+a 2,∴q 2=5+12,较小锐角记为θ,则sin θ=1q 2=5-12. 【答案】5-128.若两个等差数列{a n }和{b n }的前n 项和分别是S n 和T n ,已知S n T n =7nn +3,则a 5b 5= . 【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=9(a 1+a 9)29(b 1+b 9)2=S 9T 9=214.【答案】 2149.下列关于星星的图案构成一个数列,则该数列的一个通项公式是.图1【解析】 从题图中可观察图案的构成规律:n =1时,有1个;n =2时,有3个; n =3时,有6个;n =4时,有10个;…… 第n 个图案比第n -1(n ≥2)个图案增加了n 个星星. ∴a n =1+2+3+4+…+n =n (n +1)2.【答案】 a n =n (n +1)210.等比数列{a n }的公比q <0,已知a 2=1,a n +2=a n +1+2a n ,则{a n }的前2 016项和等于 .【解析】 由a n +2=a n +1+2a n ,得q n +1=q n +2q n -1, 即q 2-q -2=0,又q <0,解得q =-1, 又a 2=1,∴a 1=-1, S 2 016=-1×[1-(-1)2 016]1-(-1)=0.【答案】 011.设数列{a n }的通项公式为a n =2n -7(n ∈N *),则|a 1|+|a 2|+…+|a 15|= .【解析】 ∵a n =2n -7,∴a 1=-5,a 2=-3,a 3=-1,a 4=1, a 5=3,…,a 15=23,∴|a 1|+|a 2|+…+|a 15|=(5+3+1)+(1+3+5+…+23)=9+12×(1+23)2=153.【答案】 15312.把正偶数按下列方法分组:(2),(4,6),(8,10,12),…,其中每一组都比它的前一组多一个数,那么第11组的第2个数是 .【解析】 按照题中的分组方法,前10组共有1+2+ (10)10×(1+10)2=55个偶数,故第10组的最后一个偶数为110,所以第11组的第2个数是114.【答案】 11413.某房地产开发商在销售一幢23层的商品楼之前按下列方法确定房价:由于首层与顶层均为复式结构,因此首层价格为a 1 元/m 2,顶层由于景观好价格为a 2 元/m 2,第二层价格为a 元/m 2,从第三层开始每层在前一层价格上加价a100元/m 2,则该商品房各层的平均价格为 元/m 2.【解析】 设第二层到第22层的价格构成数列{b n },则{b n }是等差数列,b 1=a ,公差d =a100,共21项,所以其和为S 21=21a +21×202·a 100=23.1a ,故平均价格为123(a 1+a 2+23.1a )元/m 2.【答案】 123(a 1+a 2+23.1a ) 14.给出数阵: 0 1 … 9 1 2 … 10 ⋮ ⋮ ⋮ ⋮ 9 … … …其中每行、每列均为等差数列,则此数阵所有数的和为 .【导学号:92862069】【解析】 设b 1=0+1+2+…+9,b 2=1+2+3+…+10,…,b 10=9+10+…+18,则{b n }是首项b 1=45,公差d =10的等差数列,∴S 10=45×10+10×92×10=900.【答案】 900二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.【导学号:92862070】(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7,问:b 6与数列{a n }的第几项相等? 【解】 (1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…).(2)设等比数列{b n}的公比为q.因为b2=a3=8,b3=a7=16,所以q=2,b1=4.所以b6=4×26-1=128.由128=2n+2得n=63,所以b6与数列{a n}的第63项相等.16.(本小题满分14分)在数列{a n}中,a1=1,a n+1=2a n+2n.(1)设b n=a n2n-1.证明:数列{b n}是等差数列.(2)求数列{a n}的前n项和S n.【解】(1)证明:由已知a n+1=2a n+2n,得b n+1=a n+12n=2a n+2n2n=a n2n-1+1=b n+1.∴b n+1-b n=1,又b1=a1=1.∴{b n}是首项为1,公差为1的等差数列.(2)由(1)知,b n=n,a n2n-1=b n=n.∴a n=n·2n-1.∴S n=1+2·21+3·22+…+n·2n-1,两边乘以2得,2S n=1·21+2·22+…+(n -1)·2n-1+n·2n,两式相减得,-S n=1+21+22+…+2n-1-n·2n=2n-1-n·2n=(1-n)2n-1,∴S n=(n-1)·2n+1.17.(本小题满分14分)数列{a n}的前n项和记为S n,a1=t,点(S n,a n+1)在直线y=3x+1上,n∈N*.(1)当实数t为何值时,数列{a n}是等比数列.(2)在(1)的结论下,设b n=log4a n+1,c n=a n+b n,T n是数列{c n}的前n项和,求T n.【解】(1)∵点(S n,a n+1)在直线y=3x+1上,∴a n+1=3S n+1,a n=3S n-1+1(n≥2,且n∈N*).∴a n+1-a n=3(S n-S n-1)=3a n,即a n+1=4a n,n≥2.又a 2=3S 1+1=3a 1+1=3t +1,∴当t =1时,a 2=4a 1,数列{a n }是等比数列.(2)在(1)的结论下,a n +1=4a n ,a n +1=4n ,a n =4n -1,所以b n =log 4a n +1=n . c n =a n +b n =4n -1+n,那么T n =c 1+c 2+…+c n =(40+1)+(41+2)+…+(4n -1+n )=(1+4+42+…+4n -1)+(1+2+3+…+n )=4n -13+(1+n )n2.18.(本小题满分16分)已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和.(1)当S 1,S 3,S 4成等差数列时,求q 的值;(2)当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.【解】 (1)由已知,a n =aq n -1,因此S 1=a ,S 3=a (1+q +q 2),S 4=a (1+q +q 2+q 3).当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1,可得aq 3=aq +aq 2, 化简得q 2-q -1=0, 解得q =1±52.(2)证明:若q =1,则{a n }的每项a n =a ,此时a m +k ,a n +k ,a l +k 显然构成等差数列.若q ≠1,由S m ,S n ,S l 构成等差数列可得S m +S l =2S n ,即a (q m -1)q -1+a (q l -1)q -1=2a (q n -1)q -1,整理得q m +q l =2q n ,因此,a m +k +a l +k =aq k -1(q m +q l )=2aq n +k -1=2a n +k , 所以a m +k ,a n +k ,a l +k 也成等差数列.19.(本小题满分16分)设{a n }是正数组成的数列,其前n 项和S n ,并且对于所有的n ∈N *,都有8S n =(a n +2)2.(1)写出数列{a n }的前3项;(2)求数列{a n }的通项公式(写出推证过程);(3)设b n =4a n ·a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n ∈N *都成立的最小正整数m 的值.【解】 (1)当n =1时,8a 1=(a 1+2)2, ∴a 1=2;当n =2时,8(a 1+a 2)=(a 2+2)2, ∴a 2=6;当n =3时,8(a 1+a 2+a 3)=(a 3+2)2, ∴a 3=10.(2)∵8S n =(a n +2)2, ∴8S n -1=(a n -1+2)2(n >1),两式相减得:8a n =(a n +2)2-(a n -1+2)2,即a 2n -a 2n -1-4a n -4a n -1=0,也即(a n +a n -1)(a n -a n -1-4)=0. ∵a n >0,∴a n -a n -1=4,即{a n }是首项为2,公差为4的等差数列, ∴a n =2+(n -1)·4=4n -2.(3)b n =4a n ·a n +1=4(4n -2)(4n +2)=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫1(2n -1)-1(2n +1). ∴T n =b 1+b 2+…+b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫1(2n -1)-1(2n +1) =12⎝ ⎛⎭⎪⎫1-12n +1=12-14n +2<12. ∵T n <m20 对所有n ∈N *都成立,∴m 20≥12,即m ≥10, 故m 的最小值是10.20.(本小题满分16分)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2 000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与an 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4 000万元,试确定企业每年上缴资金d 的值(用m 表示).【解】 (1)由题意得a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =32a 1-d =4 500-52d , a n +1=a n (1+50%)-d =32a n -d . (2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d=⎝ ⎛⎭⎪⎫322a n -2-32d -d =… =⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎢⎡⎦⎥⎥⎤1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2. 整理得a n =⎝ ⎛⎭⎪⎫32n -1(3 000-d )-2d ⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫32n -1-1 =⎝ ⎛⎭⎪⎫32n -1(3 000-3d )+2d .由题意,a m =4 000,即⎝ ⎛⎭⎪⎫32m -1(3 000-3d )+2d =4 000,解得d =⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎫32m -2×1 000⎝ ⎛⎭⎪⎫32m -1=1 000(3m-2m+1)3m-2m.故该企业每年上缴资金d的值为1 000(3m-2m+1)3m-2m时,经过m(m≥3)年使企业的剩余资金为4 000万元.。
苏教版高中数学必修五-综合练习二.docx
数学必修五-综合练习二说明:时间120分钟,满分150分;可以使用计算器.一、选择题(每小题只有一个正确选项;每小题5分,共60分) 1.数列1,3,6,10,…的一个通项公式是(A )a n =n 2-(n-1) (B )a n =n 2-1 (C )a n =2)1(+n n (D )a n =2)1(-n n 2.已知数列3,3,15,…,)12(3-n ,那么9是数列的(A )第12项 (B )第13项 (C )第14项 (D )第15项3.在数列{a n }中,a 1=1,当n ≥2时,n 2=a 1a 2…a n 恒成立,则a 3+a 5等于 (A )7613111(B)(C)(D)3161544.一个三角形的两内角分别为45°和60°,如果45°角所对的边长是6,那么60°角所对的边长为(A )36 (B )32 (C )33 (D ) 26 5.在△ABC 中,若∠A ∶∠B ∶∠C =1∶2∶3,则a ∶b ∶c 等于(A )1∶2∶3(B )3∶2∶1 (C )2∶3∶1(D )1∶3∶26.在△ABC 中,∠A =60°,a =6,b =4,满足条件的△ABC(A )无解 (B )有解 (C )有两解 (D )不能确定7、等差数列{n a }的前n 项和记为n S ,若1062a a a ++为一个确定的常数,则下列各数中可以用这个常数表示的是(A ) 6S (B ) 11S (C )12S (D ) 13S8.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则2 a 10-a 12的值为 (A)20(B)22(C)24(D)289. 当a <0时,不等式42x 2+ax -a 2<0的解集为 (A){x |-6a <x <7a } (B ){x |7a <x <-6a } (C){x |6a <x <-7a} (D ){x |-7a <x <6a} 10.在∆ABC 中,A B C ,,为三个内角,若cot cot 1A B ⋅>,则∆ABC 是 ( )(A )直角三角形 (B )钝角三角形(C )锐角三角形 (D )是钝角三角形或锐角三角形11.已知等差数列{a n }满足56a a +=28,则其前10项之和为 ( ) (A )140 (B )280 (C )168 (D )5612.不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( )(A ) 矩形( B ) 三角形(C ) 直角梯形(D ) 等腰梯形二、填空题(把答案写在题中的横线上;每小题4分,共16分)13. 数列{a n }中,已知a n =(-1)n ·n +a (a 为常数)且a 1+a 4=3a 2,则a =_________,a 100=_________.14.在△ABC 中,若 0503,30,b c a ===则边长___________.15.若不等式ax 2+bx +2>0的解集为{x |-3121<<x },则a +b =_________. 16.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖 块.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 非等边三角形ABC 的外接圆半径为2,最长的边23BC =,求sin sin B C +的取值范围.18. (本小题满分12分)在湖的两岸A 、B 间建一座观赏桥,由于条件限制,无法直接度量A 、B 两点间的距离.请你用学过的数学知识按以下要求设计一测量方案. (1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB 的距离(写出求解或推理过程,结果用字母表示).19.(本小题满分12分)设{}n a 为等差数列,{}n b 为等比数列,,,,134234211a b b b a a b a ==+==分别求出{}n a 及{}n b 的前10项的和1010T S 及.20.(本小题满分12分)已知10<<m ,解关于x 的不等式13>-x mx. 21、(本小题满分12分)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本,并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本)(n g 与科技成本的投入次数n 的关系是)(n g =180+n .若水晶产品的销售价格不变,第n 次投入后的年利润为)(n f 万元.①求出)(n f 的表达式;②问从今年算起第几年利润最高?最高利润为多少万元?22.(本小题满分14分)已知等比数列{}n a 的通项公式为13-=n n a ,设数列{}n b 满足对任意自然数n 都有11a b +22a b +33a b +┅+nn a b=n 2+1恒成立. ①求数列{}n b 的通项公式;②求+++321b b b ┅+2005b 的值. 参考答案:一、选择题CCBAD ABCBB AD二、填空题13.-3,97;14.1003,503;15.-14;16.42n +. 三、解答题 17. 解:由正弦定理2BC R SinA= ,得23sin =A . ∵BC 是最长边,且三角形为非等边三角形, ∴π32=A . )3sin(sin sin sin B B c B -+=+π13sin cos 22B B =+sin()3B π=+. 又30π<<B ,∴2333B πππ<+< ,∴3sin()123B π<+≤.故 c B sin sin +的取值范围为3(,1]218.略.19.解:设等差数列{}n a 的公差为,d 等比数列{}n b 的公比为q . d q q b d a d a 42,,31,122342+=∴=+=+= ①又,,21,,2333342b a d a q b q b =+=== d q 214+=∴ ② 则由①,②得242q q =-.22,21,02±==∴≠q q q 将212=q 代入①,得855,8310-=∴-=S d当22=q 时,)22(323110+=T , 当22-=q 时,)22(323110-=T , 20. 解:原不等式可化为:[x (m -1)+3](x -3)>00<m <1, ∴-1<m -1<0, ∴ 31313>-=--m m ; ∴ 不等式的解集是⎭⎬⎫⎩⎨⎧-<<m x x 133|.21.解:第n 次投入后,产量为10+n 万件,价格为100元,固定成本为180+n 元,科技成本投入为100n ,所以,年利润为n n n n f 100)180100)(10()(-+-+=(+∈N n ) =)191(801000+++-n n520≤ (万元) 当且仅当191+=+n n 时,即 8=n 时,利润最高,最高利润为520万元.22. 解:(1) 对任意正整数n ,有11a b +22a b +33a b +┅+nn a b=n 2+1 ① ∴当n =1时,311=a b ,又11=a ,∴31=b ; 当2≥n 时,11a b +22a b +33a b +┅+11--n n a b =n 2-1 ② ∴②-①得2=nna b ; 1322-⨯==n n n a b ; ∴n-13 , (1),23 , (2)n n b n =⎧=⎨⨯≥⎩(2)+++321b b b ┅+2005b=)323232(320042⨯++⨯+⨯+=)13(332004-+=20053。
高中数学 模块综合检测卷 苏教版必修2
模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x-3=0的倾斜角是(C)A.45° B.60° C.90° D.不存在2.已知点A(x,1,2)和点B(2,3,4),且|AB|=26,则实数x的值是(D)A.-3或4 B.-6或2 C.3或-4 D.6或-23.圆x2+y2-2x=0与圆x2+y2-2x-6y-6=0的位置关系是(D)A.相交 B.相离 C.外切 D.内切4.在同一个平面直角坐标系中,表示直线y=ax与y=x+a正确的是(C)5.(2014·重庆卷)某几何体的三视图如图所示,则该几何体的体积为(C)A.12 B.18 C.24 D.30解析:因为三个视图中直角较多,所以可以在长方体中对几何体进行分析还原,在长方体中计算其体积.由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,V 棱柱ABCA 1B 1C 1=S △ABC ·AA 1=12×4×3×5=30,V 棱锥PA 1B 1C 1=13S △A 1B 1C 1·PB 1=13×12×4×3×3=6.故几何体ABCPA 1C 1的体积为30-6=24.故选C.6.(2013·重庆卷)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为(A )A .52-4 B.17-1 C .6-2 2 D.17解析:先求出圆心坐标和半径,再结合对称性求解最小值,设P (x ,0),C 1(2,3)关于x 轴的对称点为C 1′(2,-3),那么|PC 1|+|PC 2|=|PC 1′|+|PC 2|≥|C ′1C 2|=(2-3)2+(-3-4)2=5 2. 而|PM |=|PC 1|-1,|PN |=|PC 2|-3, ∴|PM |+|PN |=|PC 1|+|PC 2|-4≥52-4.7.如图,已知AB ⊥平面BCD ,BC ⊥CD ,则图中互相垂直的平面有(B )A .4对B .3对C .2对D .1对8.(2013·辽宁卷)已知点O (0,0)、A (0,b )、B (a ,a 3),若△AOB 为直角三角形,则必有(C )A .b =a 3B .b =a 3+1aC .(b -a 3)⎝ ⎛⎭⎪⎫b -a 3-1a =0D .|b -a 3|+⎪⎪⎪⎪⎪⎪b -a 3-1a =0解析:根据直角三角形的直角的位置求解.若以O 为直角顶点,则B 在x 轴上,则a 必为0,此时O ,B 重合,不符合题意;若∠A =π2,则b =a 3≠0.若∠B =π2,根据斜率关系可知a 2·a 3-b a =-1,所以a (a 3-b )=-1,即b -a 3-1a =0.以上两种情况皆有可能,故只有C 满足条件.9.一个圆柱的轴截面为正方形,其体积与一个球的体积之比是3∶2,则这个圆柱的侧面积与这个球的表面积之比为(A )A .1∶1B .1∶ 2 C.2∶ 3 D .3∶210.(2014·广东卷)若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是(D )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 解析:在长方体模型中进行推理论证,利用排除法求解.如图,在长方体ABCDA 1B 1C 1D 1中,记l 1=DD 1,l 2=DC ,l 3=DA ,若l 4=AA 1,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,此时l 1∥l 4,可以排除选项A 和C.若l 4=DC 1,也满足条件,可以排除选项B.故选D.二、填空题(本大题共4小题,每小题5分,共20分.将正确答案填在题中的横线上) 11.若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β(不包括△ABC 所在平面)的位置关系是________.答案:平行12.(2014·重庆卷)已知直线ax +y -2=0与圆心为C 的圆(x -1)2-(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.解析:根据“半径、弦长AB 的一半、圆心到直线的距离”满足勾股定理可建立关于a 的方程,解方程求a .圆心C (1,a )到直线ax +y -2=0的距离为|a +a -2|a 2+1.因为△ABC 为等边三角形,所以|AB |=|BC |=2.所以⎝ ⎛⎭⎪⎫|a +a -2|a 2+12+12=22.解得a =4±15.答案:4±1513.两条平行线2x +3y -5=0和x +32y =1间的距离是________.答案:3131314.(2013·大纲全国卷)已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,OK =32,且圆O 与圆K 所在的平面所成的一个二面角为60°,则球O 的表面积等于________.解析:根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到直角三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则AB =R .取AB 中点M ,连接OM 、KM ,由圆的性质知OM ⊥AB ,KM ⊥AB ,所以∠KMO 为圆O 与圆K 所在平面所成的一个二面角的平面角,则∠KMO =60°.在Rt △KMO 中,OK =32,所以OM =OKsin 60°= 3.在Rt △OAM 中,因为OA 2=OM 2+AM 2,所以R 2=3+14R 2,解得R 2=4.所以球O 的表面积为4πR 2=16π.答案:16π三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程及演算步骤)15.(本小题满分12分)已知两点A (-1,2),B (m ,3). (1)求直线AB 的斜率; (2)已知实数m ∈⎣⎢⎡⎦⎥⎤-33-1,3-1,求直线AB 的倾斜角α的范围. 解析:(1)当m =-1时,直线AB 的斜率不存在; 当m ≠-1时,k =1m +1. (2)当m =-1时,α=π2;当m ≠-1时,k =1m +1∈(]-∞,-3∪⎣⎢⎡⎭⎪⎫33,+∞, 则α∈⎣⎢⎡⎭⎪⎫π6,π2∪⎝ ⎛⎦⎥⎤π2,2π3.综上,α∈⎣⎢⎡⎦⎥⎤π6,2π3.16.(本小题满分12分)(2013·上海卷)如图,在正三棱柱ABCA 1B 1C 1中,AA 1=6,异面直线BC 1与AA 1所成角的大小为π6,求该三棱柱的体积.解析:因为CC 1∥AA 1,所以∠BC 1C 为异面直线BC 1与AA 1所成的角,即∠BC 1C =π6.在Rt △BC 1C 中,BC =CC 1·tan ∠BC 1C =6×33=23,从而S △ABC =34BC 2=33,因此该三棱柱的体积为V =S △ABC ·AA 1=33·6=18 3.17.(本小题满分14分)(2014·湖北卷)如图,在正方体ABCDA 1B 1C 1D 1中,E 、F 、P 、Q 、M 、N 分别是棱AB 、AD 、DD 1、BB 1、A 1B 1、A 1D 1的中点.求证:(1)直线BC 1∥平面EFPQ ;(2)直线AC1⊥平面PQMN.分析:借助三角形中位线的性质、线面平行的判定及线面垂直的判定和性质证明.证明:(1)连接AD1,由ABCDA1B1C1D1是正方体,知AD1∥BC1.因为F,P分别是AD,DD1的中点,所以FP∥AD1.从而BC1∥FP.而FP⊂平面EFPQ,且BC1⊄平面EFPQ,故直线BC1∥平面EFPQ.(2)如图,连接AC,BD,则AC⊥BD.由CC1⊥平面ABCD,BD⊂平面ABCD,可得CC1⊥BD.又AC∩CC1=C,所以BD⊥平面ACC1.而AC1⊂平面ACC1,所以BD⊥AC1.因为M,N分别是A1B1,A1D1的中点,所以MN∥BD,从而MN⊥AC1.同理可证PN⊥AC1.又PN∩MN=N,所以直线AC1⊥平面PQMN.18.(本小题满分14分)下图是某几何体的三视图,请你指出这个几何体的结构特征,并求出它的表面积与体积.解析:此几何体是一个组合体,下半部是长方体,上半部是半圆柱,其轴截面的大小与长方体的上底面大小一致.表面积为S,则S=32+96+48+4π+16π=176+20π.体积为V,则V=8×4×6+12×22×8π=192+16π.所以几何体的表面积为(176+20π)cm2,体积为(192+16π)cm3.19.(本小题满分14分)如图,△ABC中,AC=BC=22AB,四边形ABED是边长为a的正方形,平面ABED⊥平面ABC,若G、F分别是EC、BD的中点.(1)求证:GF∥平面ABC;(2)求BD与平面EBC所成角的大小;(3)求几何体EFBC的体积.(1)证明:如图,连EA交BD于点F,∵F 是正方形ABED 对角线BD 的中点,∴F 是EA 的中点.∴FG ∥AC . 又FG ⊄平面ABC ,AC ⊂平面ABC , ∴FG ∥平面ABC .(2)解析:∵平面ABED ⊥平面ABC ,BE ⊥AB , ∴BE ⊥平面ABC . ∴BE ⊥AC . 又∵AC =BC =22AB , ∴BC ⊥AC . 又∵BE ∩BC =B , ∴AC ⊥平面EBC . 由(1)知,FG ∥AC , ∴FG ⊥平面EBC .∴∠FBG 就是线BD 与平面EBC 所成的角. 又BF =12BD =2a 2,FG =12AC =2a4,sin ∠FBG =FG BF =12,∴∠FBG =30°.(3)VEFBC =VFEBC =13S △EBC ·FG =13·12·a ·2a 2·12·2a 2=a 324.20.(本小题满分14分)(2013·江苏卷)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y =2x -4,设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.解析:(1)由题设,圆心C 是直线y =2x -4和y =x -1的交点,解得点C (3,2),于是切线的斜率必存在,设过A (0,3)的圆C 的切线方程为y =kx +3.由题意,得|3k +1|k 2+1=1,解得k =0或k =-34,故所求切线方程为y =3或3x +4y -12=0. (2)因为圆心在直线y =2x -4上, 设圆心C (a ,2(a -2)),所以圆C 的方程为(x -a )2+[y -2(a -2)]2=1. 设点M (x ,y ),因为MA =2MO ,所以x 2+(y -3)2=2x 2+y 2,化简得x 2+y 2+2y -3=0,即x 2+(y +1)2=4.所以点M 在以D (0,-1)为圆心,2为半径的圆上.由题意,点M (x ,y )在圆C 上,所以圆C 与圆D 有公共点, 则|2-1|≤CD ≤2+1, 即1≤a 2+(2a -3)2≤3. 整理,得-8≤5a 2-12a ≤0. 由5a 2-12a +8≥0,得a ∈R; 由5a 2-12a ≤0,得0≤a ≤125. 所以点C 的横坐标a 的取值范围为⎣⎢⎡⎦⎥⎤0,125。
苏教版高中数学必修五 模块综合测评.docx
模块综合测评(时间120分钟,满分160分)一、填空题(本大题共14小题,每小题5分,共70分.请把答案填在题中的横线上)1.在△ABC 中,a ,b ,c 所对的角分别为A ,B ,C ,若a =2,A =π4,B =π6,则b 等于 .【解析】 由正弦定理得b =a sin Bsin A =2×1222= 2.【答案】22.已知等比数列{a n }的公比q 为正数,且a 5·a 7=4a 24,a 2=1,则a 1= . 【解析】 ∵{a n }成等比数列,∴a 5·a 7=a 26, ∴a 26=4a 24,∴q 2=4,∴q =±2. 又q >0,∴q =2. ∴a 1=a 2q =12. 【答案】 123.设x >0,y >0,下列不等式中等号不成立的是 . ①x +y +2xy≥4; ②(x +y )⎝ ⎛⎭⎪⎫1x +1y ≥4;③⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y ≥4; ④x 2+3x 2+2≥2.【解析】 ④中,x 2+3x 2+2=x 2+2+1x 2+2.因为x 2+2≥2,故应用不等式时,等号不成立. 【答案】 ④4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为 . 【解析】 由a 24+a 27+2a 4a 7=9,可知a 4+a 7=±3. ∴S 10=10(a 1+a 10)2=10(a 4+a 7)2=±15.【答案】 ±155.已知点A (3,-1),B (-1,2)在直线ax +2y -1=0的同侧,则实数a 的取值范围为 .【解析】 由题意可知, (3a -3)(-a +3)>0, 即(a -1)(a -3)<0, ∴1<a <3. 【答案】 (1,3)6.已知2a +1<0,关于x 的不等式x 2-4ax -5a 2>0的解集是 . 【解析】 x 2-4ax -5a 2>0,即(x -5a )(x +a )>0, 而方程(x -5a )(x +a )=0的根为x 1=-a ,x 2=5a .∵2a +1<0,则a <-12,∴-a >5a ,∴原不等式的解集为{x |x <5a 或x >-a }. 【答案】 {x |x <5a 或x >-a }7.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c ,成等比数列,且c =2a ,则cos B = .【解析】 由已知可知b 2=ac . 又c =2a ,∴cos B =a 2+c 2-b 22ac =a 2+4a 2-b 22ac =a 2+4a 2-2a 24a 2=34.【答案】348.已知数列1,a 1,a 2,4等差数列,且实数列1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值为 .【导学号:92862109】【解析】 ∵a 1+a 2=1+4=5,b 22=1×4=4,但b 2=1×q 2>0,∴b 2=2,故a 1+a 2b 2=52.【答案】 529.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 的正东40 km 处,B 城市处于危险区内持续的时间为 小时.【解析】 设t 小时后,B 市处于危险区内,则由余弦定理得(20t )2+402-2×20t ×40cos 45°≤302.化简得4t 2-82t +7≤0,∴t 1+t 2=22,t 1·t 2=74.从而|t 1-t 2|=(t 1+t 2)2-4t 1t 2=1. 【答案】 110.设x ,y满足约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0,则目标函数z =3x -y 的最大值为 .【解析】 首先画出线性约束条件⎩⎨⎧x +2y ≤4,x -y ≤1,x +2≥0的可行域(如图阴影部分),是一个三角形,然后在可行域内平行移动目标函数z =3x -y ,当经过x +2y =4与x -y =1的交点(2,1)时,目标函数取得最大值z =3×2-1=5.11.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为 .【解析】 观察数列{a n }可知,a n =1n +1+2n +1+…+nn +1=1+2+3+…+n n +1=n 2,∴1a n a n +1=4n (n +1)=4⎝ ⎛⎭⎪⎫1n -1n +1,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为:4⎝ ⎛⎭⎪⎫1-12+4⎝ ⎛⎭⎪⎫12-13+…+4⎝ ⎛⎭⎪⎫1n -1n +1 =4⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =4⎝ ⎛⎭⎪⎫1-1n +1 =4n n +1. 【答案】4nn +112.已知二次函数f (x )=ax 2-x +c (x ∈R )的值域为[0,+∞),则c +2a +a +2c 的最小值为 .【导学号:92862110】【解析】 ∵二次函数f (x )=ax 2-x +c (x ∈R )的值域[0,+∞),∴a >0, 且4ac -14a =0, ∴ac =14, ∴c >0,∴c +2a +a +2c =c a +a c +2a +2c ≥2c a ·a c +24ac =2+8=10,当且仅当a =c时取等号.13.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为 .【解析】 ∵a sin A =b sin B =csin C =2R ,a =2,又(2+b )(sin A -sin B )=(c -b )sin C 可化为(a +b )(a -b )=(c -b )·c ,∴a 2-b 2=c 2-bc , ∴b 2+c 2-a 2=bc ,∴b 2+c 2-a 22bc =bc 2bc =12=cos A , ∴A =60°.∵△ABC 中,4=a 2=b 2+c 2-2bc ·cos 60°=b 2+c 2-bc ≥2bc -bc =bc (当且仅当b =c 时取得“=”), ∴S △ABC =12·bc ·sin A ≤12×4×32= 3. 【答案】314.设{a n }是等比数列,公比q =2,S n 为{a n }的前n 项和.记T n =17S n -S 2n a n +1,n ∈N *.设Tn 0为数列{T n }的最大项,则n 0= .【解析】 根据等比数列的通项公式 S n =a 1(1-q n )1-q,故T n =17×a 1(1-q n )1-q -a 1(1-q 2n )1-qa 1q n=q 2n -17q n +16(1-q )q n=11-q ⎝⎛⎭⎪⎫q n +16q n -17, 令q n =(2)n =t ,则函数g (t )=t +16t ,当t =4时函数g (t )取得最小值,此时n =4,而11-q =11-2<0,故此时T n 最大,所以n 0=4. 【答案】 4二、解答题(本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤)15.(本小题满分14分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .【解】 (1)由a cos C +3a sin C -b -c =0及正弦定理得 sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.16.(本小题满分14分)已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n . (1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n,求T 2 017.【解】 (1)当n =1时,a 1=13.当n ≥2时,a n =S n -S n -1,又S n =12-12a n ,∴a n =13a n -1,即数列{a n }是首项为13,公比为13的等比数列,故a n =⎝ ⎛⎭⎪⎫13n.(2)由已知得f (a n )=log 3⎝ ⎛⎭⎪⎫13n=-n ,∴b n =f (a 1)+f (a 2)+…+f (a n )=-1-2-3-…-n =-n (n +1)2,∴1b n=-2⎝ ⎛⎭⎪⎫1n -1n +1,∴T n =-2⎣⎢⎡⎦⎥⎤1-12+12-13+…+1n -1n +1 =-2⎝ ⎛⎭⎪⎫1-1n +1. ∴T 2 017=-2⎝ ⎛⎭⎪⎫1-12 018=-2 0171 009.17.(本小题满分14分)已知函数f (x )=x 2-2x -8,g (x )=2x 2-4x -16. (1)求不等式g (x )<0的解集;(2)若对一切x >2,均有f (x )≥(m +2)x -m -15成立,求实数m 的取值范围. 【解】 (1)g (x )=2x 2-4x -16<0, ∴(2x +4)(x -4)<0,∴-2<x <4, ∴不等式g (x )<0的解集为{x |-2<x <4}. (2)∵f (x )=x 2-2x -8,当x >2时,f (x )≥(m +2)x -m -15恒成立, ∴x 2-2x -8≥(m +2)x -m -15, 即x 2-4x +7≥m (x -1),∴对一切x >2,均有不等式x 2-4x +7x -1≥m 成立.而x 2-4x +7x -1=(x -1)+4x -1-2≥2(x -1)×4x -1-2=2(当x =3时等号成立).∴实数m 的取值范围是(-∞,2].18.(本小题满分16分)已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.【解】 (1)设等差数列{a n }的公差为d ,依题意,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0, 解得d =0或d =4.当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2,从而得数列{a n }的通项公式为a n =2或a n =4n -2.(2)当a n =2时,S n =2n .显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+(4n -2)]2=2n 2.令2n 2>60n +800, 即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的n ;当a n =4n -2时,存在满足题意的n ,其最小值为41.19.(本小题满分16分)设不等式组⎩⎨⎧x >0,y >0,y ≤-nx +3n所表示的平面区域为D n ,记D n 内的格点(格点即横坐标和纵坐标均为整数的点)的个数为f (n )(n ∈N *).(1)求f (1),f (2)的值及f (n )的表达式; (2)设b n =2n f (n ),S n 为{b n }的前n 项和,求S n . 【解】 (1)f (1)=3,f (2)=6.当x =1时,y =2n ,可取格点2n 个; 当x =2时,y =n ,可取格点n 个, ∴f (n )=3n .(2)由题意得:b n =3n ·2n ,S n =3·21+6·22+9·23+…+3(n -1)·2n -1+3n ·2n , ∴2S n =3·22+6·23+…+3(n -1)·2n +3n ·2n +1, ∴-S n =3·21+3·22+3·23+…+3·2n -3n ·2n +1 =3(2+22+…+2n )-3n ·2n +1 =3·2-2n +11-2-3n ·2n +1=3(2n +1-2)-3n ·2n +1, ∴-S n =(3-3n )2n +1-6, ∴S n =6+(3n -3)2n +1.20.(本小题满分16分)小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x 年年底出售,其销售价格为25-x 万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大?(利润=累计收入+销售收入-总支出)【解】 (1)设大货车到第x 年年底的运输累计收入与总支出的差为y 万元, 则y =25x -⎣⎢⎡⎦⎥⎤6x +x (x -1)2×2-50(0<x ≤10,x ∈N ), 即y =-x 2+20x -50(0<x ≤10,x ∈N ), 由-x 2+20x -50>0, 解得10-52<x <10+52, 而2<10-52<3,故从第3年开始运输累计收入超过总支出. (2)因为利润=累计收入+销售收入-总支出, 所以销售二手货车后,小王的年平均利润为 y =1x [y +(25-x )] =1x (-x 2+19x -25) =19-⎝ ⎛⎭⎪⎫x +25x ,而19-⎝ ⎛⎭⎪⎫x +25x ≤19-2x ·25x =9,当且仅当x =5时取得等号,即小王应当在第5年底将大货车出售,才能使年平均利润最大.。
苏教版高中数学必修五模块考试.docx
高中2005~2006级模块考试(必修5)一、选择题:(每小题5分,共60分)1、ΔABC 中,a =1,b =3, A =30°,则B 等于 A .60° B .60°或120° C .30°或150° D .120°2、两灯塔A,B 与海洋观察站C 的距离都等于a (km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间相距A .a (km)B .3a (km)C .2a (km)D .2a (km)3、等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 为A .50B .49C .48D .474、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 A .15. B .17. C .19. D .215、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于 A .-1221 B .-21.5 C .-20.5 D .-206、设集合y x y x y x A --=1,,|),{(是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是Aoy x0.50.5oy x0.50.5oyx0.50.5oyx0.50.5. A B . C . D .7、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)= ()A.8B.-8C.±8D.8、目标函数y x z +=2,变量y x ,满足43035251x y x y x -+<⎧⎪+≤⎨⎪≥⎩,则有A .3,12min max ==z zB .,12max =z z 无最小值C .z z ,3min =无最大值D .z 既无最大值,也无最小值9、在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于A .030B .060C .0120D .0150 10、已知数列{}n a 的前n 项和()21n S n n =+则5a 的值为A .80B .40C .20D .1011、f x ax ax ()=+-21在R 上满足f x ()<0,则a 的取值范围是 A .a ≤0 B .a <-4 C .-<<40a D .-<≤40a 12.若实数a 、b 满足a +b =2,则3a +3b 的最小值是A .18B .6C .23D .243 二、填空题:(每小题4分,共16分,答案写在第二卷上) 13、在△ABC 中,sin A =2cos B sin C ,则三角形为 三角形14、不等式21131x x ->+的解集是 .15、已知数列{ a n }满足条件a 1 = –2 , a n + 1 =2 +nna 1a 2-, 则a 5 = . 16、若关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围是 .日照实验高中2004级模块考试(必修5)一、填空题答案:1 3、 14、15、 16、 三、解答题: 17、(12分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则89成等差数列,求这三个数.18、(12分)解关于x 的不等式ax 2-(a +1)x +1<0.19、(12分)如图,在四边形ABCD 中,已知AD ⊥CD, AD=10, AB=14, ∠BDA=60︒,∠BCD=135︒ 求BC 的长.20、(12分)在某海滨城市附近海面有一台风,据测,当前台风中心位于城市O (如图)的东偏南)102(cos =θθ方向300km 的O θ东北东海面P处,并以20km/h的速度向西偏北45°方向移动,台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大,问几小时后该城市开始受到台风的侵袭?受到台风的侵袭的时间有多少小时?21、(12分)某工厂用两种原料A、B配成甲、乙两种药品,每生产一箱甲药品使用4kg的A原料,耗时1小时,每生产一箱乙药品使用4kg的B原料,耗时2小时,该厂每天最多可从原料厂获取16kg的A原料和12kg的B原料,每天只能有8小时的合成生产时间,该厂生产一箱甲药品获得3万元,生产一箱乙药品获得1万元,怎样安排生产才能获利最大?最大利润是多少?22、(14分)设,4,221==a a 数列}{n b 满足:,1n n n a a b -=+ 122n n b b +=+,(1)求证:数列}2{+n b 是等比数列(要指出首项与公比), (2)求数列}{n a 的通项公式.参考答案:一、选择题1-5BCABC 6-10ABDBC 11-12DB 二、填空题13、等腰14、 1|23x x ⎧⎫-<<-⎨⎬⎩⎭ 15、107 16、(,3]-∞-三、解答题17、解:设三数为.,,aq a q a ⎪⎩⎪⎨⎧⎩⎨⎧==⇒=-+⎪⎪⎭⎫ ⎝⎛-=∴282)2(25123q a a aq q a a 或⎪⎩⎪⎨⎧==.218q a 则三数为,4,816或,168,.418、解: 16.解:当a =0时,不等式的解为x >1;当a ≠0时,分解因式a (x-a1)(x -1)<0当a <0时,原不等式等价于(x -a1)(x -1)>0,不等式的解为x >1或x <a1;当0<a <1时,1<a1,不等式的解为1<x <a1;当a >1时,a1<1,不等式的解为a1<x <1;当a =1时,不等式的解为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块综合检测卷(二)(测试时间:120分钟评价分值:150分)一、选择题(每小题共12个小题,每小题共5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求)1.对于任意实数a,b,c,d命题:①若a>b,c≠0,则ac>bc;②若a<b,则ac2>bc2;③若ac2>bc2,则a>b.其中真命题的个数是( )A.0 B.1 C.2 D.3解析:当c<0时,①不正确;当c=0时,②不正确;只有③正确.答案:B2.历届现代奥运会召开时间表如下:年份1896年1900年1904年…2016年届数123…n 则A.29 B.30 C.31 D.32解析:由题意得,历届现代奥运会召开时间构成以1 896为首项,4为公差的等差数列,所以2 016=1 896+(n-1)·4,解得n=31.答案:C3.若点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,则2x-y的最小值为( ) A.-6 B.-2 C.0 D.2解析:y=|x|与y=2的图象围成一个三角形区域,如图所示,3个顶点的坐标分别是(0,0),(-2,2),(2,2).在封闭区域内平移直线y=2x,在点(-2,2)时,2x-y=-6取最小值.答案:A4.如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的长为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m 解析:由正弦定理得AB sin ∠ACB =ACsin ∠ABC,又因为∠ABC =180°-45°-105°=30°, 所以AB =AC sin ∠ACBsin ∠ABC =50×2212=502(m).答案:A5.等比数列{a n }前n 项的积为T n ,若a 3a 6a 18是一个确定的常数,那么数列T 10,T 13,T 17,T 25中也是常数的项是( )A .T 10B .T 13C .T 17D .T 25解析:因为a 3·a 6·a 18=a 9q 6·a 9q3·a 9·q 9=a 39是一个确定常数,所以a 9为确定的常数.T 17=a 1·a 2·…·a 17=(a 9)17,所以选C.答案:C6.以原点为圆心的圆全部都在平面区域⎩⎪⎨⎪⎧x -3y +6≥0,x -y +2≥0内,则圆面积的最大值为( )A.18π5 B.9π5C .2πD .π 解析:作出不等式组表示的平面区域如图所示,由图可知,最大圆的半径为点(0,0)到直线x -y +2=0的距离, 即|0-0+2|12+(-1)2=2,所以圆面积的最大值为π·(2)2=2π. 答案:C7.已知三角形的两边长分别为4,5,它们夹角的余弦值是方程2x 2+3x -2=0的根,则第三边长是( )A.20B.21C.22D.61解析:设长为4,5的两边的夹角为θ,由2x 2+3x -2=0得x =12或x =-2(舍),所以cos θ=12,所以第三边长为42+52-2×4×5×12=21.答案:B8.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( ) A .6 B .7 C .8 D .9解析:a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2=⎩⎪⎨⎪⎧-8,n =1,-10+2n ,n ≥2. 因为n =1时适合a n =2n -10, 所以a n =2n -10(n ∈N *). 因为5<a k <8,所以5<2k -10<8. 所以152<k <9.又因为k ∈N *,所以k =8.答案:C9.函数f (x )=1xln(x 2-3x +2+-x 2-3x +4)的定义域为( )A .(-∞,-4)∪[2,+∞)B .(-4,0)∪(0,1)C .[-4,0)∪(0,1]D .[-4,0)∪(0,1)解析:函数f (x )有定义等价于⎩⎪⎨⎪⎧x ≠0,x 2-3x +2≥0,-x 2-3x +4>0或⎩⎪⎨⎪⎧x ≠0,x 2-3x +2>0,-x 2-3x +4≥0,解得-4≤x <0或0<x <1. 答案:D10.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:因为b cos C +c cos B=b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac=b 2+a 2-c 2+c 2+a 2-b 22a=2a 22a =a =a sin A , 所以sin A =1.因为A ∈(0,π),所以A =π2,即△ABC 是直角三角形. 答案:B11.在数列{x n }中,2x n =1x n -1+1x n +1(n ≥2),且x 2=23,x 4=25,则x 10等于( )A.211B.16C.112D.15解析:由已知可得⎩⎨⎧⎭⎬⎫1x n 成等差数列,而1x 2=32,1x 4=52,所以2d =52-32=1,即d =12.故1x 10=1x 1+(10-1)d =⎝ ⎛⎭⎪⎫32-12+9×12=112.所以x 10=211.答案:A12.已知x >0,y >0,且2x +1y=1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( )A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析:因为x >0,y >0且2x +1y=1,所以x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y≥4+24y x ·xy=8,当且仅当4y x =xy,即x =4,y =2时取等号,所以(x +2y )min =8.要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2. 答案:D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,-x ,x ≤0.则不等式f (x )<4的解集是________.解析:不等式f (x )<4等价于⎩⎪⎨⎪⎧x >0,x 2+1<4或⎩⎪⎨⎪⎧x ≤0,-x <4, 即0<x <3或-4<x ≤0.因此,不等式f (x )<4的解集是(-4,3). 答案:(-4,3)14.已知数列{a n }的通项公式为a n =2n -2004,则这个数列的前________项和最小. 解析:设a n =2n -2 004的对应函数为y =2x -2 004.易知函数y =2x -2 004在R 上是增函数,且当y =0时,x =1 002. 因此,数列{a n }是单调递增数列,且当1≤n ≤1 002时,a n ≤0;当n >1 002时,a n >0. 所以数列{a n }的前1 001项或前1 002项的和最小. 答案:1 001或1 002.15.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2-b 2=3bc ,sin C =23sin B ,则A 等于________.解析:由正弦定理,且sin C =23sin B ⇒c =23b .又a 2-b 2=3bc ,故由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-(b 2+3bc )2bc =c 2-3bc 2bc =(23b )2-3b ·23b 2b ·23b=32,所以A =30°.答案:30°16.(2015·山东卷)定义运算“⊗”:x ⊗y =x 2-y 2xy (x ,y ∈R ,xy ≠0).当x >0,y >0时,x ⊗y +(2y )⊗x 的最小值为________.解析:因为x ⊗y =x 2-y 2xy ,所以(2y )⊗x =4y 2-x 22xy .又x >0,y >0,故x ⊗y +(2y )⊗x =x 2-y 2xy+4y 2-x 22xy =x 2+2y 22xy ≥22xy2xy=2,当且仅当x =2y 时,等号成立. 答案: 2三、解答题(本大题共6小题,共70分.解答题应写出文字说明、证明过程或推演步骤) 17.(本小题满分10分)(2015·江苏卷)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解:(1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知,AB sin C =BCsin A,所以sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2·217·277=437. 18.(本小题满分12分)设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4. (1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n . 解:(1)设q 为等比数列{a n }的公比,则由a 1=2,a 3=a 2+4得2q 2=2q +4,即q 2-q -2=0,解得q =2或q =-1(舍去),因此q =2,所以{a n }的通项为a n =2·2n -1=2n(n ∈N +).(2)S n =2(1-2n)1-2+n ·1+n (n -1)2·2=2n +1+n 2-2.19.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的周长为2+1,且sin A +sin B =2sin C .(1)求边c 的长;(2)若△ABC 的面积为16sin C ,求C 的大小.解:(1)由sin A +sin B =2sin C 及正弦定理可知:a +b =2c .又因为a +b +c =2+1,所以2c +c =2+1,从而c =1. (2)三角形面积S =12ab sin C =16sin C ,所以ab =13,a +b = 2.因为cos C =a 2+b 2-c 22ab =(a +b )2-2ab -12ab =12,又因为0<C <π,所以C =π3.20.(本小题满分12分)如图所示,公园有一块边长为2的等边三角形ABC 的边角地,现修成草坪,图中DE 把草坪分成面积相等的两部分,点D 在AB 上,点E 在AC 上.(1)设AD =x (x ≥0),ED =y ,求用x 表示y 的函数关系式;(2)如果DE 是灌溉水管,为节约成本,希望它最短,DE 的位置应在哪里?如果DE 是参观线路,则希望它最长,DE 的位置又在哪里?解:S △ABC =34×4=3,所以S △ADE =12·x ·AE · sin 60°=32, 所以x ·AE =2,所以AE =2x≤2,所以x ≥1.(1)在△ADE 中,y 2=x 2+⎝ ⎛⎭⎪⎫2x 2-2·x ·2x ·cos 60°=x 2+4x2-2,所以y =x 2+4x2-2(1≤x ≤2).(2)令t =x 2,则1≤t ≤4,所以y =t +4t-2(1≤t ≤4). 当t =2,即x =2时,即当AD =2,AE =2时,DE 最短为2;当t =1或4,即AD =2,AE =1或AD =1,AE =2时,DE 最长为 3.21.(本小题满分12分)已知函数f (x )=x 2-ax (a ∈R), (1)若不等式f (x )>a -3的解集为R ,求实数a 的取值范围;(2)设x >y >0,且xy =2,若不等式f (x )+f (y )+2ay ≥0恒成立,求实数a 的取值范围. 解:(1)不等式f (x )>a -3的解集为R ,即不等式x 2-ax -a +3>0的解集为R , 所以Δ=a 2+4(a -3)<0恒成立,即a 2+4a -12<0恒成立,所以-6<a <2.(2)不等式f (x )+f (y )+2ay ≥0恒成立,即不等式x 2-ax +y 2-ay +2ay ≥0恒成立,所以x 2+y 2≥a (x -y )恒成立.所以实数a 的取值范围为(-∞,4].22.(本小题满分12分)已知公差大于0的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ; (2)若数列{b n }是等差数列,且b n =S nn +c,求非零常数c ;(3)若(2)中的{b n }的前n 项和为T n ,求证:2T n -3b n -1>64b n(n +9)b n +1.(1)解:{a n }为等差数列,因为a 3+a 4=a 2+a 5=22, 又因为a 3·a 4=117,所以a 3,a 4是方程n 2-22x +117=0的两个根. 又因为公差d >0,所以a 3<a 4,所以a 3=9,a 4=13.所以⎩⎪⎨⎪⎧a 1+2d =9,a 1+3d =13即⎩⎪⎨⎪⎧a 1=1,d =4,所以a n =4n -3. (2)解:由(1)知,S n =n ·1+n (n -1)2·4=2n 2-n ,所以b n =S nn +c =2n 2-n n +c ,所以b 1=11+c ,b 2=62+c,b 3=153+c. 因为{b n }是等差数列,所以2b 2=b 1+b 3,所以2c 2+c =0, 所以c =-12或c =0(舍去).(3)证明:由(2)得b n =2n 2-n n -12=2n ,T n =2n +n (n -1)·22=n 2+n ,2T n -3b n -1=2(n 2+n )-3(2n -2)=2(n -1)2+4≥4,当n =1时取“=”,又n >1,所以取不到“=”,即2T n -3b n -1>4. 64b n (n +9)b n +1=64×2n (n +9)·2(n +1)=64nn 2+10n +9=64n +9n+10≤4, 当n =3时取“=”.上述两式中“=”不可能同时取到, 所以2T n -3b n -1>64b n(n +9)b n +1.。