半桥说明

合集下载

爱信IR2302 IR2302S IR2302PBF半桥驱动器说明书

爱信IR2302 IR2302S IR2302PBF半桥驱动器说明书

Features•Fully operational to +600VTolerant to negative transient voltage dV/dt immune•Gate drive supply range from 5 to 20V •••Cross-conduction prevention logic•••Logic and power ground +/- 5V offset.•Internal 540ns dead-time•Lower di/dt gate driver for better noise immunity••IR2302(S ) & (PbF)Data Sheet No. PD60207 Rev.A 1Descriptionchannels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction.The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to600 volts.IR2302(S ) & (PbF)Recommended Operating ConditionsThe input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V S offset rating is tested with all supplies biased at 15V differential.Note 1: Logic operational for V S of -5 to +600V. Logic state held for V S of -5V to -V BS . (Please refer to the Design Tip DT97-3 for more details).Absolute Maximum RatingsAbsolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.IR2302(S ) & (PbF) 3Dynamic Electrical CharacteristicsStatic Electrical CharacteristicsIR2302(S ) & (PbF)Functional Block DiagramsIR2302(S ) & (PbF) 5Lead Assignments8 Lead PDIP8 Lead SOIC(Also available LEAD-FREE (PbF)12348765V CC IN SD COMV B HO V S LO12348765V CC IN SD COMV B HO V S LOIR2302IR2302SLead DefinitionsSymbol DescriptionIN Logic input for high and low side gate driver outputs (HO and LO), in phase with HOSD Logic input for shutdown V B High side floating supply HO High side gate drive output V S High side floating supply return V CC Low side and logic fixed supply LO Low side gate drive output COMLow side returnIR2302(S ) & (PbF)Figure 4. Deadtime Waveform DefinitionsDT LO-HOMDT=- DT HO-LOFigure 3. Shutdown Waveform Definitions Figure 1. Input/Output Timing DiagramSDINHO LOFigure 2. Switching Time Waveform DefinitionsIR2302(S ) & (PbF) 7Figure 5. Delay Matching Waveform DefinitionsIR2302(S ) & (PbF)IR2302(S ) & (PbF) 9IR2302(S ) & (PbF)10IR2302(S ) & (PbF) 11e (sIR2302(S ) & (PbF)IR2302(S ) & (PbF) 13IR2302(S ) & (PbF)(AIR2302(S ) & (PbF) 15(A(AIR2302(S ) & (PbF)t (At (AIR2302(S ) & (PbF)17IR2302(S ) & (PbF)18IR2302(S ) & (PbF) 19IR2302(S ) & (PbF)Case OutlinesIR2302(S ) & (PbF)Basic Part (Non-Lead Free)8-Lead PDIP IR2302 order IR23028-Lead SOIC IR2302S order IR2302SLeadfree Part8-Lead PDIP R2302 not available8-Lead SOIC IR2302S order IR2302SPbFORDER INFORMATIONLEADFREE PART MARKING INFORMATIONPer SCOP 200-002Thisproduct has been designed and qualified for the Industrial market.Qualification Standards can be found on IR’s Web Site Data and specifications subject to change without notice.IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-71058/16/2004。

DYNEX半桥600VIGBT模块说明书

DYNEX半桥600VIGBT模块说明书

Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.1/8KEY PARAMETERS V CES 600V V CE(sat)*(typ)2.1VI C (max)250A I C(PK)(max)500A*(measured at the power busbars and not the auxiliary terminals)FEATURESI n - ChannelI High Switching Speed I Low Forward Voltage Drop IIsolated BaseAPPLICATIONSI PWM Motor Contro l IUPSThe Powerline range of modules includes half bridge,chopper, bi-directional, dual and single switch configurations covering voltages from 600V to 3300V and currents up to 3600A.The DIM250WHS06-S000 is a half bridge 600V n channel enhancement mode insulated gate bipolar transistor (IGBT)module. The module is suitable for a variety of medium voltage applications in motor drives and power conversion.The IGBT has a wide reverse bias safe operating area (RBSOA) for ultimate reliability in demanding applications.These modules incorporate electrically isolated base plates and low inductance construction enabling circuit designers to optimise circuit layouts and utilise earthed heat sinks for safety.Typical applications include dc motor drives, ac pwm drivesand ups systems.ORDERING INFORMATIONOrder as:DIM250WHS06-S000Note: When ordering, use complete part number.Fig. 1 Half bridge circuit diagramFig. 2 Electrical connections - (not to scale)Outline type code: W(See package details for further information)PDS5676-1.3 February 2004DIM250WHS06-S000Half Bridge IGBT ModuleDIM250WHS06-S0002/8Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.Test ConditionsV GE = 0V-T case = 65˚C 1ms, T case = 95˚C T case = 25˚C, T j = 150˚C V R = 0, t p = 10ms, T vj = 125˚CCommoned terminals to base plate. AC RMS, 1 min, 50Hz Symbol V CES V GES I C I C(PK)P max I 2t V isolABSOLUTE MAXIMUM RATINGS - PER ARMStresses above those listed under 'Absolute Maximum Ratings' may cause permanent damage to the device. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture of the package. Appropriate safety precautions should always be followed. Exposure to Absolute Maximum Ratings may affect device reliability.T case = 25˚C unless stated otherwise Units V V A A W kA 2s kVMax.600±202505001157TBD 2.5ParameterCollector-emitter voltage Gate-emitter voltage Continuous collector current Peak collector currentMax. transistor power dissipation Diode I 2t valueIsolation voltage - per moduleSymbol R th(j-c)R th(j-c)R th(c-h)T jT stg -Test ConditionsContinuous dissipation -junction to caseContinuous dissipation -junction to caseMounting torque 5Nm (with mounting grease)Transistor Diode-Mounting - M6Electrical connections - M6ParameterThermal resistance - transistorThermal resistance - diode Thermal resistance - case to heatsink (per module)Junction temperature Storage temperature range Screw torqueUnits ˚C/kW˚C/kW˚C/kW˚C ˚C ˚C Nm NmMax.1082031515012512555Typ.--------Min.-----–4032.5THERMAL AND MECHANICAL RATINGSInternal insulation: Al 2O 3Clearance: 13mmBaseplate material: Cu CTI (Critical Tracking Index): 175Creepage distance: 24mmDIM250WHS06-S000Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.3/8Note:†Measured at the power busbars and not the auxiliary terminals.L* is the circuit inductance + L MTest ConditionsV GE = 0V, V CE = V CESV GE = 0V, V CE = V CES , T case = 125˚CV GE = ±20V, V CE = 0V I C = 10mA, V GE = V CE V GE = 15V, I C = 250AV GE = 15V, I C = 250A, , T case = 125˚CDC t p = 1ms I F = 250AI F = 250A, T case = 125˚CV CE = 25V, V GE = 0V, f = 1MHz--ParameterCollector cut-off currentGate leakage current Gate threshold voltageCollector-emitter saturation voltageDiode forward currentDiode maximum forward current Diode forward voltageInput capacitance Module inductanceInternal transistor resistance - per armELECTRICAL CHARACTERISTICST case = 25˚C unless stated otherwise.Symbol I CESI GES V GE(TH)V CE(sat)†I F I FM V F †C ies L M R INTUnits mA mA µA V V V A A V V nF nH m ΩMax.11017.52.62.82505001.81.8--Typ.---5.52.12.3--1.51.527200.23Min.---4.5---------DIM250WHS06-S0004/8Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.Units ns ns mJ ns ns mJ µC µC A mJMax.----------Typ.60025020330130122151854Min.----------Test ConditionsI C = 250A V GE = ±15V V CE = 300V R G(ON) = R G(OFF) = 4.7ΩL ~ 100nHI F = 250A, V R = 300V,dI F /dt = 3600A/µs ParameterTurn-off delay time Fall timeTurn-off energy loss Turn-on delay time Rise timeTurn-on energy loss Gate chargeDiode reverse recovery charge Diode reverse currentDiode reverse recovery energyELECTRICAL CHARACTERISTICST case = 25˚C unless stated otherwise Symbol t d(off)t f E OFF t d(on)t r E ON Q g Q rr I rr E RECT case = 125˚C unless stated otherwise Units ns ns mJ ns ns mJ µC A mJMax.---------Typ.6505003040016018232005Min.---------Test ConditionsI C = 250A V GE = ±15V V CE = 300V R G(ON) = R G(OFF) = 4.7ΩL ~ 100nHI F = 250A, V R = 300V,dI F /dt = 3600A/µs ParameterTurn-off delay time Fall timeTurn-off energy loss Turn-on delay time Rise timeTurn-on energy lossDiode reverse recovery charge Diode reverse currentDiode reverse recovery energySymbol t d(off)t f E OFF t d(on)t r E ON Q rr I rr E RECDIM250WHS06-S000Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.5/8TYPICAL CHARACTERISTICSFig.3 Typical output characteristicsFig.4 Typical output characteristicsFig.4 Typical switching energy vs collector currentFig.5 Typical switching energy vs gate resistanceDIM250WHS06-S0006/8Caution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.Fig.6 Diode typical forward characteristicsDIM250WHS06-S000PACKAGE DETAILSFor further package information, please visit our website or contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.Fig. 15 Package detailsCaution: This device is sensitive to electrostatic discharge. Users should follow ESD handling procedures.7/8POWER ASSEMBLY CAPABILITYThe Power Assembly group was set up to provide a support service for those customers requiring more than the basicsemiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today.The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).HEATSINKSThe Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.CUSTOMER SERVICETel: +44 (0)1522 502753 / 502901. Fax: +44 (0)1522 500020SALES OFFICESBenelux, Italy & Switzerland: Tel: +33 (0)1 64 66 42 17. Fax: +33 (0)1 64 66 42 19.France: Tel: +33 (0)2 47 55 75 53. Fax: +33 (0)2 47 55 75 59.Germany, Northern Europe, Spain & Rest Of World: Tel: +44 (0)1522 502753 / 502901.Fax: +44 (0)1522 500020North America: Tel: (440) 259-2060. Fax: (440) 259-2059. Tel: (949) 733-3005. Fax: (949) 733-2986.These offices are supported by Representatives and Distributors in many countries world-wide.© Dynex Semiconductor 2003 TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRODUCED IN UNITED KINGDOMHEADQUARTERS OPERATIONS DYNEX SEMICONDUCTOR LTD Doddington Road, Lincoln.Lincolnshire. LN6 3LF. United Kingdom.Tel: +44-(0)1522-500500Fax: +44-(0)1522-500550This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injuryor death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.e-mail:*****************************。

半桥llc谐振变换器工作原理_概述及解释说明

半桥llc谐振变换器工作原理_概述及解释说明

半桥llc谐振变换器工作原理概述及解释说明1. 引言1.1 概述本篇文章主要介绍了半桥LLC谐振变换器的工作原理,从基础概念出发,逐步深入解释其原理和设计考虑。

半桥LLC谐振变换器作为一种高效率、高稳定性的电源转换器,在工业、计算机以及新能源领域应用广泛。

通过该文章的阅读,读者可以全面了解半桥LLC谐振变换器的内部结构、工作原理以及应用案例分析,并对实现该变换器的关键要点有所掌握。

1.2 文章结构本文共分为五个主要部分:引言、半桥LLC谐振变换器工作原理、实现半桥LLC 谐振变换器的要点、实际应用案例分析以及结论与展望。

在引言中,将简要概括文章内容并说明目的,帮助读者对全文有一个初步的认识和预期。

接下来,我们将详细介绍半桥LLC谐振变换器的工作原理,包括概述、原理详解以及关键参数和设计考虑。

然后,我们将讨论实现该变换器所需注意的要点,包括控制策略选择与设计、调节回路设计与优化以及功率传输与效率提升技术。

随后,通过实际应用案例分析,我们将覆盖工业、计算机和新能源领域中半桥LLC谐振变换器的具体应用情况。

最后,在结论与展望部分,对文章进行总结,并展望未来该领域的研究方向。

1.3 目的本文的目的是介绍半桥LLC谐振变换器的工作原理及其相关要点和应用案例,为读者提供一个全面深入的了解。

通过本文,读者将能够掌握该变换器的基本概念、内部结构以及关键设计参数和考虑因素。

此外,通过实际应用案例分析,读者可以更好地了解半桥LLC谐振变换器在不同领域中的具体应用场景和效果。

最后,在结论与展望部分,我们会对该领域未来发展方向进行初步讨论。

希望通过这篇文章,读者可以加深对半桥LLC谐振变换器的理解,并在相关领域中有所应用和创新。

2. 半桥LLC谐振变换器工作原理2.1 谐振变换器概述谐振变换器是一种常用的电力电子转换器,其主要目的是将电能从一个形式转换为另一个形式。

在半桥LLC谐振变换器中,输入直流电压会被转换成高频交流电压,并通过输出侧得到所需的功率输出。

准谐振半桥开关电源电路-概述说明以及解释

准谐振半桥开关电源电路-概述说明以及解释

准谐振半桥开关电源电路-概述说明以及解释1.引言1.1 概述在电力电子领域,开关电源是一种常见的源波变换器。

准谐振半桥开关电源电路是一种应用广泛且效率高的开关电源拓扑结构。

该电路通过谐振电容和谐振电感实现电流和电压的平滑转换,减小了开关器件的开关损耗,提高了整体能量转换效率。

本文将详细介绍准谐振半桥开关电源电路的工作原理、电路设计方法和性能分析,以及对其应用前景和发展趋势进行讨论。

通过本文的阐述,读者将能够全面了解准谐振半桥开关电源电路在现代电子领域中的重要性和广泛应用价值。

1.2 文章结构文章结构部分将会包括以下内容:1. 简要介绍文章的章节划分,包括引言、正文和结论部分。

2. 解释每个部分的作用和重要性,比如引言部分用于引入主题和背景,正文部分用于详细介绍工作原理和电路设计,结论部分用于总结研究内容。

3. 提及每个部分的具体内容和主题,引导读者对整篇文章的框架有一个清晰的认识。

通过这样的文章结构安排,读者可以更容易地理解文章的逻辑思路和主要内容,有助于他们更有效地阅读和理解文章。

1.3 目的本文旨在介绍准谐振半桥开关电源电路的工作原理、电路设计及性能分析,以便读者了解该电路的使用方法和优势。

通过深入探讨该电路的特点和性能指标,读者能够更好地应用和改进该电路,同时也有利于推动开关电源领域的发展和进步。

希望本文内容能够对电子工程师和相关领域从业者有所帮助,为他们在实际工作中的电路设计和应用提供一些参考和指导。

2.正文2.1 工作原理准谐振半桥开关电源电路是一种有效的功率转换电路,其工作原理基于谐振现象和半桥拓扑结构。

在正常工作状态下,电路由一个电源模块,一个控制模块和一个输出端模块组成。

首先,电源模块将交流电源转换为直流电压,并通过控制模块对功率开关元件进行PWM控制,使其按照一定的频率和占空比进行开关操作。

在半桥拓扑结构中,两个互补的功率开关元件分别连接到电源的正负极,通过不断地开关操作,实现电压的变换和控制。

UBA2213驱动CFL的半桥功率集成电路系列产品数据手册说明书

UBA2213驱动CFL的半桥功率集成电路系列产品数据手册说明书

UBA2213驱动CFL的半桥功率集成电路系列版本.2—2011年11月21日产品数据手册1.概述UBA2213系列是一种高压单片集成电路,采用半桥结构,用于驱动的紧凑型荧光灯(CFL)。

该系列产品提供了简单的一体化照明控制方案,适用于各种电源电压和一系列功率范围的灯管。

2.特点和优点2.1系统集成·集成半桥功率晶体管UBA2213A:220V,13.5Ω,最大点火电流0.9AUBA2213B:220V,9Ω,最大点火电流1.35AUBA2213C:220V,6.6Ω,最大点火电流1.85A·集成自举二极管·集成高压电源2.2常规t)·电流型预热控制模式,可调节的预热时间(ph·非点火应用时控制辉光时间最小化电极点火的损害·RMS电流控制2.3快速平滑亮灯·采用外部时间控制模式来升压·在升压状态是,采用时间控制温度模式·从升压状态到引燃状态,平滑过渡2.4灯管寿命·预热时间可调的电流型预热控制·最小辉光时间支持冷起动·灯的功率不受电源电压变化影响·点火期间灯的电感饱和保护驱动CFL的半桥功率集成电路2.5安全性·过热保护·电容模式保护·电流饱和保护·超功率控制·灯管寿命终止时,系统自动关闭2.6应用简单·工作频率可调,易于和各种灯管匹配·该系列中每个器件包含相同的控制器功能,以保证适用于各种功率范围的CFL。

3.应用·应用于室内和室外23W以下的紧凑型荧光灯4.订购信息表1:订购信息驱动CFL的半桥功率集成电路5.方框图UBA2213XT (SO14封装) 管脚号在括号表明n.p表示在UBA2213XP(DIP8封装)中未集成。

图1:方框图在S014封装中,集成了DVDT电源所需的两个二极管,接在DVDT和PGND之间。

士兰微电子 SDH2136 三相半桥驱动电路 说明书

士兰微电子 SDH2136 三相半桥驱动电路 说明书

SDH2136说明书三相半桥驱动电路描述SDH2136是用作N 型功率MOSFET 和IGBT 等高压、高速功率器件的三相栅极驱动电路,主要包含三个独立的半桥驱动电路。

内置死区时间,可确保功率管上下桥臂不会同时导通。

内置输入信号滤波,防止噪声干扰。

提供外部使能控制可同时关断六通道输出。

此外,它还具有欠压保护和过流保护功能,出现异常时立即关断六通道输出。

主要特点♦ 高侧浮动偏移电压600V ♦ 输出电流+0.22A/-0.35A ♦ 输入逻辑兼容3.3V/5V ♦ 死区时间控制 ♦ 欠压保护(UVLO ) ♦ 过流保护关断六通道输出 ♦ 使能控制 ♦ 输入输出反相♦ 集成三个独立的半桥驱动器 ♦dV/dt 误动作防止功能。

应用♦ 三相电机驱动 ♦ 开关电源♦空调、冰箱、洗衣机等家电产品规格分类产品名称 封 装 形 式 打印名称 材料 包装 SDH2136 SOP-28-375-1.27 SDH2136 无卤 料管 SDH2136TRSOP-28-375-1.27SDH2136无卤编带内部框图管脚排列图功能描述SDH2136是用作N型功率MOSFET和IGBT等高压、高速功率器件的三相栅极驱动电路,主要包含三个独立的半桥驱动电路,正常工作输出时,LO和HO分别与输入LIN和HIN的信号保持逻辑反相。

SDH2136同时具备欠压(UV)保护功能,当V CC的电压低于欠压保护检测电压时,三个通道的LO和HO均输出低电平,当V BS的电压低于欠压保护检测电压时,HO输出低电平,LO正常响应LIN的信号。

该功能防止被驱动的MOSFET 或IGBT工作在高电压高电流状态下,有效保护功率器件并避免后续设备在低效率下工作。

SDH2136还具备输入噪声滤波功能,防止噪声干扰。

SDH2136内置死区时间,防止被驱动的两个功率MOS管或IGBT因直通而产生大电流烧毁功率器件,有效保护功注2:直通保护防止LO1,2,3与HO1,2,3同时导通。

瑞萨电子ISL2110、ISL2111 100V、3A 4A Peak高频半桥驱动器说明书

瑞萨电子ISL2110、ISL2111 100V、3A 4A Peak高频半桥驱动器说明书

FN6295Rev.8.00April 18, 2022ISL2110, ISL2111100V, 3A/4A Peak, High Frequency Half-Bridge DriversDATASHEETThe ISL2110, ISL2111 are 100V, high frequency, half-bridge N-Channel power MOSFET driver ICs. They are based on the popular HIP2100, HIP2101 half-bridge drivers, but offer several performance improvements. Peak outputpull-up/pull-down current has been increased to 3A/4A, which significantly reduces switching power losses and eliminates the need for external totem-pole buffers in many applications. Also, the low end of the V DD operational supply range has been extended to 8VDC. The ISL2110 has additional input hysteresis for superior operation in noisy environments and the inputs of the ISL2111, like those of the ISL2110, can now safely swing to the V DD supply rail.Applications•Telecom half-bridge DC/DC converters •Telecom full-bridge DC/DC converters •Two-switch forward converters •Active-clamp forward converters •Class-D audio amplifiersFeatures•Drives N-Channel MOSFET half-bridge •SOIC, DFN, and TDFN package options•SOIC, DFN, and TDFN packages compliant with 100V conductor spacing guidelines per IPC-2221•Pb-free (RoHS compliant)•Bootstrap supply max voltage to 114VDC •On-chip 1W bootstrap diode•Fast propagation times for multi-MHz circuits•Drives 1nF load with typical rise/fall times of 9ns/7.5ns •CMOS compatible input thresholds (ISL2110)•3.3V/TTL compatible input thresholds (ISL2111)•Independent inputs provide flexibility •No start-up problems•Outputs unaffected by supply glitches, HS ringing below ground or HS slewing at high dv/dt •Low power consumption•Wide supply voltage range (8V to 14V)•Supply undervoltage protection•1.6W/1W typical output pull-up/pull-down resistanceFIGURE 1.APPLICATION BLOCK DIAGRAMSECONDARY CIRCUIT+100VC O N T R O LCONTROLLERPWMLIHIHO LOV DDHSHB+12V V SSREFERENCEAND ISOLATIONDRIVE LODRIVE HIISL2110ISL2111Functional Block DiagramFIGURE 2.FUNCTIONAL BLOCK DIAGRAMUNDER VOLTAGEV DDHILI V SSDRIVERDRIVERHBHOHSLOLEVEL SHIFTUNDER VOLTAGEEPAD (DFN Package Only)ISL2111ISL2111*EPAD = Exposed Pad. The EPAD is electrically isolated from all other pins. For best thermal performance, connect the EPAD to the PCB power ground plane.Application DiagramsSECONDARY ISOLATIONPWM+48V+12VCIRCUITFIGURE 3.TWO-SWITCH FORWARD CONVERTERISL2110ISL2111SECONDARY CIRCUITISOLATIONPWM+48V+12VFIGURE 4.FORWARD CONVERTER WITH AN ACTIVE-CLAMPISL2110ISL2111Ordering InformationPART NUMBER (Notes2, 3)PARTMARKINGPACKAGE DESCRIPTION(RoHS COMPLIANT)PKG.DWG. #CARRIER TYPE(Notes1)TEMP RANGEISL2110ABZ 2110ABZ 8 Ld SOIC M8.15Tube-40 to +125°CISL2110ABZ -T Reel, 2.5kISL2110AR4Z2110AR4Z 12 Ld 4x4 DFN L12.4x4A TubeISL2110AR4Z-T Reel, 6kISL2111ABZ2111ABZ 8 Ld SOIC M8.15TubeISL2111ABZ-T Reel, 2.5kISL2111AR4Z2111AR4Z 12 Ld 4x4 DFN L12.4x4A TubeISL2111AR4Z-T Reel, 6kISL2111ARTZ2111ARTZ 10 Ld 4x4 TDFN L10.4x4TubeISL2111ARTZ-T Reel, 6kISL2111BR4Z2111BR4Z 8 Ld 4x4 DFN L8.4x4TubeISL2111BR4Z-T Reel, 6kNOTES:1.See TB347 for details about reel specifications.2.These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plateplus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.3.For Moisture Sensitivity Level (MSL), please see device information page for ISL2110, ISL2111. For more information on MSL, see TB363.Pin ConfigurationsISL2111ARTZ (10 LD 4x4 TDFN)TOP VIEW ISL2110AR4Z, ISL2111AR4Z(12 LD 4x4 DFN)TOP VIEW2 3 4 1 59 8 7 10 6VDD HB HO HS NC LOVSSLIHINCVDDNCNCHBHOLOVSSNCNCLIHS HI234151110912867EPAD**EPAD = EXPOSED PADISL2110ABZ, ISL2111ABZ(8 LD SOIC)TOP VIEWISL2111BR4Z (8 LD 4x4 DFN)TOP VIEWPin Configurations56874321VDD HB HO HSLO LI HIVSS 23417658VDD HB HO HSLO VSS LI HIEPAD**EPAD = EXPOSED PADPin DescriptionsSYMBOL DESCRIPTIONVDD Positive supply to lower gate driver. Bypass this pin to VSS.HB High-side bootstrap supply. External bootstrap capacitor is required. Connect positive side of bootstrap capacitor to this pin. Bootstrap diode is on-chip.HO High-side output. Connect to gate of high-side power MOSFET.HS High-side source connection. Connect to source of high-side power MOSFET. Connect negative side of bootstrap capacitor to this pin. HI High-side input LI Low-side inputVSS Chip negative supply, which will generally be ground.LO Low-side output. Connect to gate of low-side power MOSFET.NC No connectEPADExposed pad. Connect to ground or float. The EPAD is electrically isolated from all other pins.Absolute Maximum Ratings Thermal InformationSupply Voltage, V DD, V HB - V HS (Notes4, 5) . . . . . . . . . . . . . . . 0.3V to 18V LI and HI Voltages (Note5) . . . . . . . . . . . . . . . . . . . . . . .-0.3V to V DD + 0.3V Voltage on LO (Note5). . . . . . . . . . . . . . . . . . . . . . . . . . .-0.3V to V DD + 0.3V Voltage on HO relative to HS (Repetitive Transient < 100ns). . . . . . . . .-2V Voltage on LO relative to GND (Repetitive Transient < 100ns). . . . . . . .-2V Voltage on HO (Note5) . . . . . . . . . . . . . . . . . . . . . .V HS - 0.3V to V HB + 0.3V Voltage on HS (Continuous) (Note5). . . . . . . . . . . . . . . . . . . . . -1V to 110V Voltage on HB (Note5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118V Average Current in V DD to HB Diode . . . . . . . . . . . . . . . . . . . . . . . . . 100mA Maximum Recommended Operating ConditionsSupply Voltage, V DD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8V to 14V Voltage on HS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1V to 100V Voltage on HS . . . . . . . . . . . . . (Repetitive Transient < 100ns) -5V to 105V Voltage on HB . . . . . . . . . . .V HS+7V to V HS+14V and V DD - 1V to V DD+100V HS Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<50V/ns Thermal Resistance (Typical)θJA (°C/W)θJC (°C/W) 8 Ld SOIC (Notes6, 9) . . . . . . . . . . . . . . . . . 954610 Ld TDFN (Notes7, 8) . . . . . . . . . . . . . . . 40 2.512 Ld DFN (Notes7, 8) . . . . . . . . . . . . . . . . 39 2.58 Ld DFN (Notes7, 8). . . . . . . . . . . . . . . . . . 40 4.0 Max Power Dissipation at +25°C in Free Air8 Ld SOIC (Notes6, 9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3W 10 Ld TDFN (Notes7, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.0W 12 Ld DFN (Notes7, 8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1W 8 Ld DFN (Notes7, 8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3.1W Storage Temperature Range. . . . . . . . . . . . . . . . . . . . . . . .-65°C to +150°C Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . .-55°C to +150°C Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.NOTES:4.The ISL2110 and ISL2111 are capable of derated operation at supply voltages exceeding 14V. Figure 24 shows the high-side voltage derating curvefor this mode of operation.5.All voltages referenced to V SS unless otherwise specified.6.θJA is measured with the component mounted on a high-effective thermal conductivity test board in free air. See Tech Brief TB379 for details.7.θJA is measured in free air with the component mounted on a high-effective thermal conductivity test board with “direct attach” features. See TechBrief TB379.8.For θJC, the “case temp” location is the center of the exposed metal pad on the package underside.9.For θJC, the “case temp” location is taken at the package top center.Electrical Specifications V DD = V HB = 12V, V SS = V HS = 0V, no load on LO or HO, unless otherwise specified.PARAMETERS SYMBOL TEST CONDITIONST J = +25°C T J = -40°C to +125°CUNIT MIN(Note10)TYPMAX(Note10)MIN(Note10)MAX(Note10)SUPPLY CURRENTSV DD Quiescent Current I DD ISL2110; LI = HI = 0V- 0.100.25-0.30mA V DD Quiescent Current I DD ISL2111; LI = HI = 0V- 0.300.45-0.55mA V DD Operating Current I DDO ISL2110; f = 500kHz- 3.4 5.0- 5.5mA V DD Operating Current I DDO ISL2111; f = 500kHz- 3.5 5.0- 5.5mA Total HB Quiescent Current I HB LI = HI = 0V-0.100.15-0.20mA Total HB Operating Current I HBO f = 500kHz- 3.4 5.0- 5.5mA HB to V SS Current, Quiescent I HBS LI = HI = 0V; V HB = V HS = 114V-0.05 1.50-10µA HB to V SS Current, Operating I HBSO f = 500kHz; V HB = V HS = 114V- 1.2---mA INPUT PINSLow Level Input Voltage Threshold V IL ISL2110 3.7 4.4- 3.5-V Low Level Input Voltage Threshold V IL ISL2111 1.4 1.8- 1.2-V High Level Input Voltage Threshold V IH ISL2110- 6.67.4-7.6V High Level Input Voltage Threshold V IH ISL2111- 1.8 2.2- 2.4V Input Voltage Hysteresis V IHYS ISL2110- 2.2---VInput Pull-Down Resistance R I-210-100500k ΩUNDERVOLTAGE PROTECTION V DD Rising Threshold V DDR 6.1 6.67.1 5.87.4V V DD Threshold Hysteresis V DDH -0.6---V HB Rising Threshold V HBR 5.5 6.1 6.8 5.07.1V HB Threshold Hysteresis V HBH-0.6---VBOOTSTRAP DIODELow Current Forward Voltage V DL I VDD-HB = 100µA -0.50.6-0.7V High Current Forward Voltage V DH I VDD-HB = 100mA -0.70.9-1V Dynamic Resistance R DI VDD-HB = 100mA-0.71-1.5ΩLO GATE DRIVER Low Level Output Voltage V OLL I LO = 100mA-0.10.18-0.25V High Level Output Voltage V OHL I LO = -100mA, V OHL = V DD - V LO -0.160.23-0.3V Peak Pull-Up Current I OHL V LO = 0V -3---A Peak Pull-Down Current I OLLV LO = 12V-4---AHO GATE DRIVER Low Level Output Voltage V OLH I HO = 100mA-0.10.18-0.25V High Level Output Voltage V OHH I HO = -100mA, V OHH = V HB - V HO -0.160.23-0.3V Peak Pull-Up Current I OHH V HO = 0V -3---A Peak Pull-Down CurrentI OLHV HO = 12V-4---AElectrical SpecificationsV DD = V HB = 12V, V SS = V HS = 0V, no load on LO or HO, unless otherwise specified. (Continued)PARAMETERSSYMBOL TEST CONDITIONST J = +25°CT J = -40°C to +125°CUNIT MIN (Note 10)TYP MAX (Note 10)MIN (Note 10)MAX (Note 10)Switching SpecificationsV DD = V HB = 12V, V SS = V HS = 0V, No Load on LO or HO, unless otherwise specified.PARAMETERSSYMBOL TESTCONDITIONS T J = +25°CT J = -40°C to +125°C UNIT MIN (Note 10)TYP MAX (Note 10)MIN (Note 10)MAX (Note 10)Lower Turn-Off Propagation Delay (LI Falling to LO Falling)t LPHL -3250-60ns Upper Turn-Off Propagation Delay (HI Falling to HO Falling)t HPHL -3250-60ns Lower Turn-On Propagation Delay (LI Rising to LO Rising)t LPLH -3950-60ns Upper Turn-On Propagation Delay (HI Rising to HO Rising)t HPLH -3850-60ns Delay Matching: Upper Turn-Off to Lower Turn-On t MON 18--16ns Delay Matching: Lower Turn-Off to Upper Turn-On t MOFF 16--16ns Either Output Rise Time (10% to 90%)t RC C L = 1nF -9---ns Either Output Fall Time (90% to 10%)t FC C L = 1nF -7.5---ns Either Output Rise Time (3V to 9V)t R C L = 0.1µF -0.30.4-0.5µs Either Output Fall Time (9V to 3V)t F C L = 0.1µF-0.190.3-0.4µs Minimum Input Pulse Width that Changes the Output t PW ----50ns Bootstrap Diode Turn-On or Turn-Off Timet BS-10---nsNOTE:10.Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterizationand are not production tested.Timing DiagramsFIGURE 5.PROPAGATION DELAYSFIGURE 6.DELAY MATCHINGt HPLH ,t LPLHt HPHL ,t LPHLHI , LIHO , LOt MONt MOFFLIHILOHOTypical Performance CurvesFIGURE 7.ISL2110 I DD OPERATING CURRENT vs FREQUENCY FIGURE 8.ISL2111 I DD OPERATING CURRENT vs FREQUENCYFIGURE 9.I HB OPERATING CURRENT vs FREQUENCYFIGURE 10.I HBS OPERATING CURRENT vs FREQUENCYFIGURE 11.HIGH LEVEL OUTPUT VOLTAGE vs TEMPERATURE FIGURE 12.LOW LEVEL OUTPUT VOLTAGE vs TEMPERATURE0.11.010.0FREQUENCY (Hz)I D D O (m A )T = +25°CT = -40°CT = +125°CT = +150°C10k100k1.103k10k100k1.103k0.11.010.0FREQUENCY (Hz)I D D O (m A )T = +25°CT = -40°CT = +150°CT = +125°CFREQUENCY (Hz)I H B O (m A )0.011.010.0T = +25°CT = -40°CT = +125°CT = +150°C10k100k1.103k0.1FREQUENCY (Hz)I H B S O (m A )0.011.010.0T = -40°CT = +125°CT = +150°C10k100k1.103k0.1T = +25°C-505010015050100150200250300TEMPERATURE (°C)V O H L , V O H H (m V )V DD = V HB = 12VV DD = V HB = 14VV DD = V HB = 8V-505010015050100150200V O L L , V O L H (m V )TEMPERATURE (°C)V DD = V HB = 12VV DD = V HB = 14VV DD = V HB = 8VFIGURE 13.UNDERVOLTAGE LOCKOUT THRESHOLD vsTEMPERATUREFIGURE 14.UNDERVOLTAGE LOCKOUT HYSTERESIS vsTEMPERATUREFIGURE 15.ISL2110 PROPAGATION DELAYS vs TEMPERATURE FIGURE 16.ISL2111 PROPAGATION DELAYS vs TEMPERATUREFIGURE 17.ISL2110 DELAY MATCHING vs TEMPERATURE FIGURE 18.ISL2111 DELAY MATCHING vs TEMPERATURETypical Performance Curves (Continued)V D D R , V H B R (V )-50501001506.7TEMPERATURE (°C)V HBRV DDR6.56.36.15.95.75.55.3V D D H , V H B H (V )-50501001500.70TEMPERATURE (°C)V HBHV DDH0.650.600.550.500.450.4025303540455055t L P L H , t L P H L , t H P L H , t H P H L (n s )-5050100150TEMPERATURE (°C)t LPHLt HPHLt LPLHt HPLH25303540455055t L P L H , t L P H L , t H P L H , t H P H L (n s )-5050100150TEMPERATURE (°C)t LPHLt HPHLt LPLHt HPLH4.04.55.05.56.06.57.07.58.0t M O N , t M O F F (n s )-5050100150TEMPERATURE (°C)t MOFFt MON4.04.55.05.56.06.57.07.58.08.59.09.510.0t M O N , t M O F F (n s )-50050100150TEMPERATURE (°C)t MOFFt MONFIGURE 19.PEAK PULL-UP CURRENT vs OUTPUT VOLTAGE FIGURE 20.PEAK PULL-DOWN CURRENT vs OUTPUT VOLTAGEFIGURE 21.ISL2110 QUIESCENT CURRENT vs VOLTAGE FIGURE 22.ISL2111 QUIESCENT CURRENT vs VOLTAGEFIGURE 23.BOOTSTRAP DIODE I-V CHARACTERISTICSFIGURE 24.V HS VOLTAGE vs V DD VOLTAGETypical Performance Curves (Continued)48101200.51.01.52.02.53.03.5V LO , V HO (V)I O H L , I O H H (A )2648101201.52.02.53.03.54.04.5V LO , V HO (V)I O H L , I O H H (A )261.00.505101520102030405060708090100110120V DD , V HB (V)I D D , I H B (µA )I HBI DD05101520V DD , V HB (V)I D D , I H B (µA )20406080100120140160180200220240260280300320I HBI DD0.30.40.50.60.70.81.10-30.010.101.00FORWARD VOLTAGE (V)F O R W A R D C U R R E N T (A )1.10-41.10-51.10-61213141516020406080100120V H S T O V S S V O L T A G E (V )V DD TO V SS VOLTA GE (V)Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please visit our website to make sure you have the latest revision.DATE REVISION CHANGEApril 18, 2022FN6295.8Updated the Ordering information table to comply with the new standard, updated notes.In Absolute Maximum Ratings, added Voltage on HO relative to HS and Voltage on LO relative to GND.Updated POD M8.15 to the latest version: “Added the coplanarity spec into the drawing.”Removed Related Literature and About Intersil sections.Mar 16, 2017FN6295.7Corrected the branding of FG ISL2111BR4Z in the order information table from "211 1BR4A" to "2111BR4Z".Added Revision History table and About Intersil information.Updated L10.4x4 Package Outline Drawing from Rev 1 to Rev 2. Change since Rev 1 is:“Tiebar note update from ‘Tiebar shown (if present) is a non-functional feature’ to ‘Tiebar shown (ifpresent) is a non-functional feature and may be located on any of the 4 sides (or ends)’”.Updated L12.4x4A Package Outline Drawing from Rev 1 to Rev 3. Changes since Rev 1 are:“Tiebar note update from ‘Tiebar shown (if present) is a non-functional feature’ to ‘Tiebar shown (ifpresent) is a non-functional feature and may be located on any of the 4 sides (or ends)’”;“Bottom View changed from ‘3.2 REF’ TO ‘2.5 REF’";“Typical Recommended Land Pattern changed from ‘3.80’ to ‘3.75’";“Updated to new POD format by removing table listing dimensions and moving dimensions onto drawing”,and “Added typical recommended land pattern”.Updated M8.15 Package Outline Drawing from Rev 3 to Rev 4. Change since Rev 3 is:“Changed Note 1 from 1982 to 1994“.Updated L8.4x4 Package Outline Drawing from Rev 0 to Rev 1. Change since Rev 0 is:“Tiebar note update from ‘Tiebar shown (if present) is a non-functional feature’ to ‘Tiebar shown (ifpresent) is a non-functional feature and may be located on any of the 4 sides (or ends)’”.10 LEAD THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 2, 4/15TYPICAL RECOMMENDED LAND PATTERNDETAIL "X"SIDE VIEWTOP VIEWBOTTOM VIEWlocated within the zone indicated. The pin #1 identifier may be Unless otherwise specified, tolerance : Decimal ± 0.05The configuration of the pin #1 identifier is optional, but must be between 0.15mm and 0.30mm from the terminal tip.Dimension b applies to the metallized terminal and is measured Dimensions in ( ) for Reference Only.Dimensioning and tolerancing conform to AMSE Y14.5m-1994.6.either a mold or mark feature.3.5.4.2.Dimensions are in millimeters.1.NOTES:4.00 2.600.15(3.80)(4X)(10X 0.30)(8X 0.8)0 .75BASE PLANE CSEATING PLANE0.08C0.10C10 X 0.30SEE DETAIL "X"0.104C A M B INDEX AREA6PIN 14.00ABPIN #1 INDEX AREABSC3.2REF8X 0.806(10 X 0.60)0 . 00 MIN.0 . 05 MAX.C0 . 2 REF10X 0 . 403.00(2.60)( 3.00 )0.05M C 65101Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).12 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 3, 3/15TYPICAL RECOMMENDED LAND PATTERNDETAIL "X"SIDE VIEWTOP VIEWBOTTOM VIEWlocated within the zone indicated. The pin #1 identifier may be Unless otherwise specified, tolerance : Decimal ± 0.05The configuration of the pin #1 identifier is optional, but must be between 0.15mm and 0.30mm from the terminal tip.Lead width applies to the metallized terminal and is measured Dimensions in ( ) for Reference Only.Dimensioning and tolerancing conform to AMSE Y14.5m-1994.6.either a mold or mark feature.3.5.4.2.Dimensions are in millimeters.1.NOTES:4.00 1.580.15( 3.75)(4X)( 12X 0 . 25)( 10X 0 . 5 )1.00 MAXBASE PLANE CSEATING PLANE0.08C0.10C12 X 0.25SEE DETAIL "X"0.104C A M B INDEX AREA6PIN 14.00ABPIN #1 INDEX AREA2.5REF10X 0.50 BSC6( 12 X 0.65 )0 . 00 MIN.0 . 05 MAX.C0 . 2 REF12X 0 . 452.80( 1.58)( 2.80 )0.05M C 76121Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE Rev 1, 03/15TYPICAL RECOMMENDED LAND PATTERNDETAIL "X"SIDE VIEWTOP VIEWBOTTOM VIEWlocated within the zone indicated. The pin #1 identifier may be Unless otherwise specified, tolerance : Decimal ± 0.05The configuration of the pin #1 identifier is optional, but must be between 0.15mm and 0.30mm from the terminal tip.Dimension applies to the metallized terminal and is measured Dimensions in ( ) for Reference Only.Dimensioning and tolerancing conform to ASME Y14.5m-1994.6.either a mold or mark feature.3.5.4.2.Dimensions are in millimeters.1.NOTES:4.00 2.50 ± 0.100.15( 3.80)(4X)( 8X 0 . 30 )( 6X 0 . 8 )0 .9 ± 0.10BASE PLANE CSEATING PLANE0.08C0.10C8 X 0.30SEE DETAIL "X"0.104C A M B INDEX AREA6PIN 14.00ABPIN #1 INDEX AREABSC2.4REF6X 0.806( 8 X 0.60 )8X 0 . 40 ± 0.103.45 ± 0.10( 2.50)( 3.45 )0.05M C 54810 . 00 MIN.0 . 05 MAX.C0 . 2 REFTiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).Corporate HeadquartersTOYOSU FORESIA, 3-2-24 Toyosu,Koto-ku, Tokyo 135-0061, Japan Contact InformationFor further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:/contact/TrademarksRenesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.IMPORTANT NOTICE AND DISCLAIMERRENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDINGREFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.(Rev.1.0 Mar 2020)。

单相半桥逆变器工作原理-概述说明以及解释

单相半桥逆变器工作原理-概述说明以及解释

单相半桥逆变器工作原理-概述说明以及解释1.引言1.1 概述单相半桥逆变器是一种常见的电力电子装置,用于将直流电源转换为交流电源。

它由一对开关管和相应的驱动电路组成,可以实现电压或频率的变换。

单相半桥逆变器具有结构简单、成本低廉、效率高等优点,因此在许多领域中得到了广泛应用。

单相半桥逆变器的工作原理基于开关管的开关动作来实现直流电源到交流电源的转换。

当开关管导通时,直流电源的电流通过开关管和输出电感,形成了一个闭合的回路,从而将电力传输到负载上。

而当开关管关断时,电感中的能量会形成反向电压,将负载端的电压逆变为负值或零值。

通过不断地交替开关管的导通和关断,单相半桥逆变器可以通过调节导通时间比例来控制输出交流电源的电压和频率。

单相半桥逆变器的工作过程可以简单描述为:当第一个开关管导通时,电流流过该开关管和输出电感,正负极性的电压分别施加在负载上;而第二个开关管关断时,电感中的能量会产生反向电压,将负载端的电压逆转为负值或零值。

通过不断地交替开关管的导通和关断,单相半桥逆变器可以控制输出的交流电源的电压和频率。

单相半桥逆变器在各个领域都有广泛的应用。

在家庭电器、工业机械、电子设备等领域中,单相半桥逆变器可以将直流电源转换为交流电源,从而实现对各种电动设备的供电。

此外,单相半桥逆变器还可以用于太阳能发电系统、电动汽车充电器、UPS电源等领域,为这些领域的电力转换和电能控制提供稳定可靠的解决方案。

综上所述,单相半桥逆变器是一种重要的电力电子装置,通过开关管的开关操作将直流电源转换为交流电源。

其工作原理简单,结构紧凑,成本低廉,并且在许多领域中具有广泛的应用前景。

对于未来的发展,进一步的研究可以集中在提高逆变器的效率、减小电磁干扰、改进控制策略等方面,以满足不断增长的电力转换需求。

1.2文章结构1.2 文章结构本文将围绕单相半桥逆变器的工作原理展开详细探讨。

为了方便读者更好地理解,本文将按照以下结构进行组织和叙述。

半桥式开关稳压电源说明书

半桥式开关稳压电源说明书

绪论我们所讲的开关电源是把220V的交流变成了直流,然后通过变换器把直流变成交流,最后又把交流变成直流输出。

其实,交流市电先由电源变压器变压,整流滤波后得到未稳定的直流电压,再经过调整后得到所需要的直流电压,这种电源技术很成熟,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音。

目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。

要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。

然而,开关速度提高后,会受电路中分布电感和电容或二极管中存储电荷的影响而产生浪涌或噪声。

这样,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。

其中,为防止随开关启-闭所发生的电压浪涌,可采用R-C或L-C缓冲器,而对由二极管存储电荷所致的电流浪涌可采用非晶态等磁芯制成的磁缓冲器。

不过,对1MHz以上的高频,要采用谐振电路,以使开关上的电压或通过开关的电流呈正弦波,这样既可减少开关损耗,同时也可控制浪涌的发生。

这种开关方式称为谐振式开关。

目前对这种开关电源的研究很活跃,因为采用这种方式不需要大幅度提高开关速度就可以在理论上把开关损耗降到零,而且噪声也小,可望成为开关电源的一种主要方式。

开关电源主要包括一次整流滤波、高频变换器、二次整流滤波、控制电路等组成(如下图所示)。

开关电源发展趋势是工作频率越来越高,且超大功率器件的驱动也比较困难,随着使用频率的进一步提高,高速开关与大功率M0SFET的转换(过渡)过程就成为整个开关过程的重要因素。

转换过程的快慢,不仅决定了工作频率的设计指标,而且对开关电源的效率、可靠性、寿命等带来了很大影响。

第1章开关电源的分类及应用开关电源高频化是发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。

半桥栅极驱动器FD2504S说明书

半桥栅极驱动器FD2504S说明书

FD2504S FD2504S 半桥栅极驱动器概述FD2504S是一个高电压、高速栅极驱动器,能够驱动N型功率MOSFET和IGBT。

内置欠压(UVLO)保护功能,防止功率管在过低的电压下工作。

FD2504S逻辑输入兼容TTL和CMOS(低至3.3V),方便与控制设备接口。

该驱动器输出具有最小驱动器跨导的高脉冲电流缓冲设计。

FD2504S内置直通防止和死区时间,防止被驱动的高低侧的MOSFET或IGBT直通,有效保护功率器件。

FD2504S集成使能关断功能,能同时关断高低通道HO、LO输出。

产品特点●悬浮绝对电压+600V●输出电流+0.29A/-0.6A● 3.3V/5V/15V输入逻辑兼容●欠压保护(UVLO)●高侧输出与输入同相,低侧输出与输入反相●内置直通防止●内置死区时间●集成使能关断功能●V CC/V BS内置钳位封装SOIC-8应用●电机驱动●DC-DC转换器●DC-AC逆变器●D类功率放大器注:V CC UV 为“L”表示低于V CC 欠压保护检测电压;电路框图SD V CC BSFD2504S芯片引脚配置逻辑功能时序图INHOSD*LOV CC IN SD *V B HO V S LO传输时间测试标准传输时间匹配测试标准50%50%IN(LO)IN(HO)死区时间测试标准50%50%IN使能关断时间测试标准图1A V CC电源电流vs V CC电源电压图1B V CC电源电流vs 温度图2A V BS电源电流vs V BS电源电压图2B V BS电源电流vs 温度图3A 高电平输入偏置电流vs V CC电源电压图3B 高电平输入偏置电流vs 温度图4A 低电平输入偏置电流vs V CC电源电压图4B 低电平输入偏置电流vs 温度图5A V CC欠压跳闸电压vs 温度图5B V CC欠压复位电压vs 温度图6A 高电平输入阈值电压vs V CC电源电压图6B 高电平输入阈值电压vs 温度图7A 低电平输入阈值电压vs V CC电源电压图7B 低电平输入阈值电压vs 温度图8A 高电平输出电压vs 电源电压图8B 高电平输出电压vs温度图9A 低电平输出电压vs 电源电压图9B 低电平输出电压vs 温度图10A 悬浮电源漏电流vs V B电压图10B 悬浮电源漏电流vs 温度图11A 高电平输出短路脉冲电流vs 电源电压图11B 高电平输出短路脉冲电流vs 温度图12A 低电平输出短路脉冲电流vs 电源电压图12B 低电平输出短路脉冲电流vs 温度图13A 输出上升沿传输时间vs 电源电压图13B 输出上升沿传输时间vs 温度图14A 输出下降沿传输时间vs 电源电压图14B 输出下降沿传输时间vs 温度图15A 上升时间vs 电源电压图15B 上升时间vs 温度图16A 下降时间vs 电源电压图16B下降时间vs 温度图17A 死区时间vs 电源电压图17B 死区时间vs 温度图18A 使能关断时间vs 电源电压图18B 使能关断时间vs 温度图19A V S静态负压vs 电源电压图19B V S静态负压vs 温度典型应用电路INSD*V SV CCC1:电源滤波电容,可选择10μF ,尽可能的靠近芯片管脚。

反馈电容 半桥-概述说明以及解释

反馈电容 半桥-概述说明以及解释

反馈电容半桥-概述说明以及解释1.引言1.1 概述反馈电容半桥是一种常用的电路拓扑结构,在电力电子领域具有重要的应用价值。

通过合理设计反馈电容的参数和选择合适的半桥拓扑结构,可以实现电能的高效转换和有效控制,从而提高系统的性能和稳定性。

本文将从反馈电容的定义和原理入手,介绍半桥拓扑结构及其应用,深入探讨反馈电容半桥的优势与特点。

通过对反馈电容半桥的深入研究,可以帮助读者更好地理解该电路结构在电力电子领域的重要性和作用,为未来的发展提供有益的参考和启示。

1.2 文章结构:本文将分为引言、正文和结论三个部分。

在引言部分中,将介绍反馈电容半桥的概念及其在电子领域中的重要性,以及文章的目的和结构安排。

在正文部分中,将详细介绍反馈电容的定义和原理,半桥拓扑结构及其应用,以及反馈电容半桥的优势与特点。

在结论部分中,将总结反馈电容半桥的重要性,展望其未来发展,并以结束语作为结尾,为整篇文章做一个完美的收尾。

整篇文章结构清晰,层次分明,旨在为读者全面深入地介绍反馈电容半桥的相关知识和应用。

1.3 目的:本文的主要目的是探讨反馈电容半桥在电路设计中的重要性和应用价值。

通过深入分析反馈电容的定义和原理,以及半桥拓扑结构及其应用,我们将了解反馈电容半桥相较于传统电路设计的优势与特点,从而帮助读者更好地理解和运用这一技术。

通过本文的讨论,我们希望能够对工程师、研究人员和电子爱好者提供有益的信息和知识,促进反馈电容半桥在各种应用场景中的广泛应用,从而推动电路设计领域的发展和创新。

同时,我们也希望引起更多人对这一领域的关注,共同探讨未来反馈电容半桥技术的发展方向和潜力。

2.正文2.1 反馈电容的定义和原理反馈电容是一种常用的电子元件,用于在电路中储存能量和调节电压。

它通常由两个电极和一个绝缘介质组成,其中电极之间的电荷储存在介质中。

在电路中,反馈电容可以在信号传输过程中起到很多重要的作用。

首先,它可以对电压进行平滑和稳定的调节,避免电压尖峰或波动对其他元件造成损害。

半桥llc增益k值-概述说明以及解释

半桥llc增益k值-概述说明以及解释

半桥llc增益k值-概述说明以及解释1.引言1.1 概述在半桥LLC拓扑电路中,增益K值是一个重要的参数。

通过调整和控制增益K值,可以实现对LLC电路的输出电压和功率的有效管理。

因此,准确地计算和确定增益K值是设计和优化半桥LLC拓扑电路的关键步骤之一。

在实际应用中,半桥LLC拓扑电路被广泛应用于电源领域,尤其是高功率电源和高效率的变换器系统中。

它具有许多优点,如高效率、高功率密度、低电磁干扰等。

根据不同的应用需求,需要合理地选择和调节增益K值,以实现所需的电源输出性能。

增益K值反映了LLC拓扑电路中谐振电感和输出电感之间的传递函数关系。

它可以通过计算电感元件的参数和谐振电路的特性来获得。

增益K 值的大小直接影响着LLC拓扑电路的输出电压、输出功率和谐振电路的频率响应等重要性能指标。

通过准确计算和调节增益K值,可以实现半桥LLC拓扑电路的最佳工作状态,提高系统的效率和稳定性。

同时,增益K值还受到其他因素的影响,如电感参数、电容参数、负载特性等。

因此,在设计和优化半桥LLC拓扑电路时,需要综合考虑这些因素,并合理调节增益K值,以实现所需的电源输出性能。

本文将介绍半桥LLC拓扑电路的概念和特点,详细阐述了增益K值在电路中的意义和作用。

同时,将介绍增益K值的计算方法,提供了一种计算增益K值的有效途径。

最后,总结了半桥LLC增益K值的重要性,并展望了未来对此领域的研究方向。

1.2 文章结构本文将从以下几个方面来探讨半桥LLC增益K值的相关内容。

首先,在引言部分,我们将对文章的概述进行介绍,明确研究的目的和意义。

随后,在正文部分,我们将从半桥LLC拓扑简介入手,介绍其基本原理和结构,并详细阐述增益K值在该拓扑中的意义和作用。

接着,我们将针对增益K值的计算方法进行探讨,包括常见的计算公式和具体的计算步骤。

最后,在结论部分,我们将总结半桥LLC增益K值的重要性,并强调影响K 值的因素。

同时,我们也将展望未来研究方向,为读者提供进一步探索和研究的思路。

Monolithic Power MP6523三重半桥电机驱动器说明书

Monolithic Power MP6523三重半桥电机驱动器说明书

MP6523Triple Half-Bridge Motor Driverwith Serial Input ControlDESCRIPTIONThe MP6523 is a triple, half-bridge, DMOS, output driver with integrated power MOSFETs that can drive up to three different loads. The three half-bridges can be controlled separately from a standard serial data interface and has various diagnostic functions. The MP6523 has very low quiescent current in standby mode, making it suitable for a wide range of applications.Full protection features include short-circuit protection (SCP), under-voltage protection (UVP), and thermal shutdown.The MP6523 requires a minimal number of readily available, standard, external components and is available in a QFN-24 (4mmx4mm) package.FEATURES∙ Up to 0.9A Output Current∙ R DS(ON) (HS + LS) Typically 1.1Ω at 25°C,Maximum 2Ω at 150°C∙ Very Low Quiescent Current I VS < 6μA inStandby Mode Versus Total Temperature Range∙ Outputs Short-Circuit Protection∙ Over-Temperature Protection and Pre-Warning∙ Under-Voltage Protection (UVP) ∙ Serial Data Interface∙ Various Diagnostic Functions: ShortedOutput, Open-Load, Over-Temperature, and Under-Voltage ∙ Fault Output Flag∙ Daisy Chaining Possible∙ Serial Interface Clock Frequency up to3MHz, 3.3V and 5V Compatible ∙ Available in a QFN-24 (4mmx4mm)PackageAPPLICATIONS∙ Drives Various Loads in Automotive andIndustrial Applications ∙ DC MotorsAll MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. “MPS” and “The Future of Analog IC Technology” are registered trademarks of Monolithic Power Systems, Inc.TYPICAL APPLICATIONMP6523MCUEN DO CLK DI CS FAULTVCC VCC 5VAGNDOUT1OUT2OUT3PGNDMMVS VSV battORDERING INFORMATIONPart Number*Package Top MarkingMP6523GR QFN-24 (4mmx4mm) See Below *For Tape & Reel, add suffix –Z (e.g. MP6523GR–Z)TOP MARKINGMPS: MPS prefixY: Year codeWW: Week codeMP6523: Product code of MP6523GRLLLLLL: Lot numberPACKAGE REFERENCETOP VIEWQFN-24 (4mmx4mm)PIN FUNCTIONSPin # Name Description1 OUT2 Half-bridge output 2.2, 3, 4, 5 VS Power supply.6, 11, 23 NC No connection.7, 9, 10, 21, 22, 24 PGND Power ground.8 OUT1 Half-bridge output 1.12 EN Enable. Drive EN low for standby mode. Drive EN high for normal operation.13 DO Serial data output.14 VCC Logic supply voltage.15 FAULT Fault output. A low output at FAULT indicates that the IC has detected an over-temperature or over-current condition. This output is open-drain.16 AGND Analog ground.17 CS Chip select input.18 CLK Serial clock input.19 DI Serial data input.20 OUT3 Half-bridge output 3.ABSOLUTE MAXIMUM RATINGS (1) Supply voltage (V VS) (40V)V OUTx...................................... -0.3 to V VS + 0.3V Logic supply voltage (V VCC) ......... -0.3V to +6.5V Logic input voltage ............... -0.3 to V VCC + 0.3V Logic output voltage ............. -0.3 to V VCC + 0.3V Voltage at all other pins .............. -0.3V to +6.5V Continuous power dissipation (T A = +25°C) (2) QFN-24 (4mmx4mm) ....................................3W Junction temperature ............................... 150°C Lead temperature .................................... 260°C Storage temperature .................. -60°C to 150°C Recommended Operating Conditions (3) Supply voltage (V VS) .......................... 7V to 28V Logic supply voltage (V VCC) ........ 3.15V to 5.25V Operating junction temp. (T J) ... -40°C to +150°C Thermal Resistance (4)θJA θJCQFN-24 (4mmx4mm) ............ 42 ........ 9 .... °C/W NOTES:1) Exceeding these ratings may damage the device.2) The maximum allowable power dissipation is a function of themaximum junction temperature T J (MAX), the junction-to-ambient thermal resistance θJA, and the ambient temperature T A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P D (MAX) = (T J (MAX)-T A)/θJA. Exceeding the maximum allowable power dissipation produces an excessive die temperature, causing the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.3) The device is not guaranteed to function outside of its operatingconditions.4) Measured on JESD51-7, 4-layer PCB.ELECTRICAL CHARACTERISTICS7V < V < 28V, V = 5V, T = -40°C to +125°C, unless otherwise noted.Parameters Symbol Condition Min Typ Max UnitsOperating supply current (VS) I VS V VS < 28V normal operation,all output stages off2.2 6mA V VS < 28V normal operation,all output low stages on, no load2.65 6V VS < 28V normal operation,all output high stages on, no load2.7 6Operating supply current (VCC) I VCC 4.75V < V VCC < 5.25V, normaloperation65 90 μAQuiescent current (VS) I VS V VS = 28V, V VCC = 0V or V VCC =5V, EN = low, or V VCC = 5V, bitSE = low, output pins to VS andGND1.5 6 μAQuiescent current (VCC) I VCC 4.75V < V VCC < 5.25V, EN or bitSE = low23 35 μADischarge current (VS) I VS V VS = 40V, EN = low 3 mA Internal oscillator frequency f OSC85 120 166 kHz Power-on reset threshold V VCC 2.3 2.6 3.0 V Power-on reset delay After switching on V VCC30 100 190 μs Under-voltage lockout thresholdrising5.56.5 V Under-voltage lockout thresholdhysteresis0.6 V Under-voltage lockout delay time 7 14 23 ms Output SpecificationHS + LS switch-on resistance RDS(ON) T J = -40°C to +125°C 1.1 1.7 ΩT J = +150°C (6) 2 ΩInductive shutdown energy (6) 15 mJ Over-current limit IOCP 1 1.3 1.8 AOver-current shutdown delay time Bit14 (SCT) = low, V VS = 13V 0.1 0.21 0.3ms Bit14 (SCT) = high, V VS = 13V 0.28 0.53 0.72Open-load detection current Bit13 (OLD) = low, output off 1.4 1.9 2.4 mA Output switch-on/-off delay V VS = 13V, R LOAD= 50Ω60 μsOUTx rising time V VS = 13V, 10% to 90% V OUT,R LOAD = 50Ω2 20 50 μsOUTx falling time V VS = 13V, 10% to 90% V OUT,R LOAD = 50Ω2 20 45 μsDead time V VS = 13V, R LOAD= 50Ω 2 μsELECTRICAL CHARACTERISTICS (continued)7V < V < 28V, V = 5V, T = -40°C to +125°C, unless otherwise noted.Parameters Symbol Condition Min Typ Max Units EN InputEN low-level threshold 0.8 V EN high-level threshold 3 1.7 V Pull-down current of EN input V EN = V VCC10 80 μA Thermal Shutdown and Pre-Warning (6)Thermal pre-warning threshold 120 145 170 °C Thermal pre-warning hysteresis 15 °C Thermal shutdown threshold 150 175 200 °C Thermal shutdown hysteresis 15 °C Ratio thermal shutdown/thermal1.05 1.2pre-warningSERIAL INTERFACE TIMING ELECTRICAL CHARACTERISTICS (6)7V < V < 28V, V = 5V, T = -40°C to +125°C, unless otherwise noted.Parameters Symbol Condition Min Typ Max Units Logic Inputs (DI, CLK, CS)Input low-level threshold 0.3 xV VCCVInput high-level threshold 0.7 xV VCCVPull-down current of DI, CLK V DI, V CLK = V VCC 2 50 μA Pull-up current of CS V CS = 0V 2 50 μA Logic Output (DO)Output low level 0.5 VOutput high level V VCC -0.7VVLeakage current (tri-state) 0V < V DO < V VCC, V CS = V VCC-10 10 μA Timing CharacteristicsDO enable after CS falling edge T1C DO = 100pF 200 ns DO disable after CS rising edge T2C DO = 100pF 200 ns DO falling/rising time C DO = 100pF 100 ns DO valid time T10C DO = 100pF 200 ns CS set-up time (high to low) T4150 ns CS set-up time (low to high) T8150 nsCS high time T9Bit14 (SCT) = high 0.75 ms Bit14 (SCT) = low 0.3 msCLK high time T5150 ns CLK low time T6150 ns CLK period time 333 ns CLK set-up time (high to low) T7150 ns CLK set-up time (low to high) T3150 ns DI set-up time T1126 ns DI hold time T1226 ns NOTES:5) Guaranteed by characterization, not tested in production.6) Not subject to production test, specified by design.SERIAL INTERFACE TIMING DIAGRAMS12CSCS CLKDO4356798111012CLKDIDOInputs DI, CLK, CS: High Level = 0.7 x Vcc, Low Level = 0.3 x VccOutput DO: High Level = 0.8 x Vcc, Low Level = 0.2 x VccTYPICAL PERFORMANCE CHARACTERISTICS V VS = 13V, V VCC = 5V, T A = 25°C, unless otherwise noted.TYPICAL PERFORMANCE CHARACTERISTICS (continued) V VS = 13V, V VCC = 5V, T A = 25°C, unless otherwise noted.BLOCK DIAGRAMCharge PumpVSOUT1OUT2OUT3PGNDLS Gate DriverHS Gate DriverGH1GH2GH3GL1GL2GL3GH1GH2GH3GL1GL2GL3ENDO DI CS VCC Power on resetControl LogicSerial interfaceInput register Output registerSRR n. u.n. u.LS1HS1n. u.n. u.LS2HS2n. u.n. u.LS3HS3OLD SCT SETP n. u.n. u.SLS1SHS1n. u.n. u.SLS2SHS2n. u.n. u.SLS3SHS3SCD EN PSFUVLO ComparatorFault HandlingVSTSDUVLO_REF FAULTAGNDOver load and short circuit protectionFigure 1: Functional Block DiagramOPERATIONThe MP6523 is a three, half-bridge, motor driver that can drive up to three different loads with separate controls for high-side or low-side MOSFETs from a standard serial data interface. Serial InterfaceData transfer starts with the falling edge of the CS signal (see Figure 2). Execution of new input data is enabled on the rising edge of the CS signal. Data must appear at DI synchronized to CLK and is accepted on the falling edge of the CLK signal. The LSB (bit0, SRR) must be transferred first.The output data at DO is enabled on the falling edge of CS. The output data changes state with the rising edge of CLK and remains stable until the next rising edge of CLK appears. When CS is high, DO is in a tri-state condition. The LSB (bit0, TP) is transferred first.CSDICLKDO DOTP n.u. n.u. SLS1 SHS1 n.u. n.u. SLS2 SHS2 n.u. n.u. SLS3 SHS3 SCD EN PSFSRR n.u. n.u. LS1 HS1 n.u. n.u. LS2 HS2 n.u. n.u. LS3 HS3 OLD SCT SE 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Figure 2: Data Transfer Table 1: Input Data ProtocolBit Input Register Function0 SRR Status register reset (high = reset; the bits PSF, SCD and over-temperature shutdown in the output data register are set to low). 1n. u. Not used. 2 n. u. Not used.3 LS1 Controls output LS1 (high = switch output LS1 on).4 HS1 Controls output HS1 (high = switch output HS1 on).5 n. u. Not used.6 n. u. Not used.7 LS2 Controls output LS2 (high = switch output LS2 on). 8 HS2 Controls output HS2 (high = switch output HS2 on). 9 n. u. Not used. 10 n. u. Not used.11 LS3 Controls output LS3 (high = switch output LS3 on). 12 HS3 Controls output HS3 (high = switch output HS3 on). 13 OLD Open-load detection (low = on).14 SCT Programmable time delay for short circuit (shutdown delay high/low = 12ms/1.5ms).15SESoftware enable. Low = standby, high = normal operation (data transfer is not affected by standby function because the digital part is still powered).Table 2: Output Data Protocol Bit Input Register Function0 TP Temperature pre-warning: high = warning (over-temperature shutdown see remark below).1 n. u. Not used.2 n. u. Not used.3 Status LS1 Normal operation: high = output is on, low = output is off. Open-load detection: high = open load, low = no open load (correct load condition is detected if the corresponding output is switched off).4 Status HS1 Normal operation: high = output is on, low = output is off. Open-load detection: high = open load, low = no open load (correct load condition is detected if the corresponding output is switched off).5 n. u. Not used.6 n. u. Not used.7 Status LS2 See LS1.8 Status HS2 See HS1.9 n. u. Not used.10 n. u. Not used.11 Status LS3 See LS1.12 Status HS3 See HS1.13 SCD Short circuit detected. Set SCD high when at least one output is switched off by a short-circuit condition.14 EN Enable. EN is controlled by software (bit SE in input register) and hardware Enable (EN). Low = standby, high = normal operation.15 PSF Power supply fail. Under-voltage at VS detected. NOTE: Bit0 to 15 = high: over-temperature shutdown.Table 3: Status of the Input Register after Power-On ResetBit15 (SE) Bit14(SCT)Bit13(OLD)Bit12(HS3)Bit11(LS3)Bit10 Bit9Bit8(HS2)Bit7(LS2)Bit6 Bit5Bit4(HS1)Bit3(LS1)Bit2 Bit1Bit0(SRR)H H H L L x x L L x x L L x x LEnable Control (EN)There are two ways to enable or disable the MP6523:∙Controlled by software: set bit SE in the input register. Low = standby, high = normal operation.∙Hardware enable (EN): low = standby, high = normal operation.In both cases, if the device is disabled, then all output stages are turned off, but the serial interface remains active. The output stages can be activated again by setting the bit SE high (when EN = high) or by switching EN back to high (when SE = high).Open-Load DetectionWhen the open-load detection bit (OLD) is set to low, open-load detection is enabled. In this mode, a pull-down current for each low-side switch is turned on. When an open load has been detected, the corresponding output bit (LSx or HSx) in the output data register is set to high. Once the open-load is removed, the corresponding DO bit is cleared, indicating the end of the open-load event.Testing the open load of an H-bridge configuration is a two-step process. First, switch off all high-side (HSx/HSy) and low-side (LSx/LSy) drivers. The voltage at both clamps in this condition is pulled down. Next, with both low-side drivers off, switch on one high-side driver (HSx or HSy). Since the DC motor has a relatively low internal resistance, the voltage of the inactive high-side output should be at the same level as the activated high-side output. In the case of an open-load, the inactive high-side output register reports a 0 if the active high-side output is 1. Conversely, if the load is connected, the inactive high-side output reports a 1. Discharge CircuitMany typical applications use an inverse-polarity protection diode (see D1 in Figure 3). However, this method involves a certain danger. During inhibit mode, the IC consumes only an extremely low current (I VS), such as 20μA maximum. Any peaks on the supply voltage charge the blocking capacitor gradually. D1 prevents the capacitor from discharging via the power supply. Due to the extremely small quiescent current, discharging via the IC can also be neglected. This means that during long periods in inhibit mode, the IC's supply voltage could increase continuously until the maximum supply voltage limit of 40V is exceeded, damaging the IC. The device features a discharger circuit that prevents such unwanted effects. If VS exceeds a threshold value of approximately 37V, the blocking capacitor is discharged via an integrated resistor until VS falls below the threshold again.MP6523V battC1D1pkFigure 3: Functional Principle of the DischargerCircuitOver-Current Protection (OCP)The MP6523 has internal overload and short-circuit protection. The currents in both the high-side and low-side MOSFETs are measured and if the current exceeds the current limit, an internal timer is started. When a permanent over-current shutdown delay time programmed by the short-circuit timer bit (SCT) is reached, the short-circuit detection bit (SCD) is set, and the shorted output is disabled. By writing a high to the SRR bit in the input register, the SCD bit is reset, and the disabled outputs are enabled.Thermal Shutdown and Pre-Warning Thermal monitoring is also integrated into the MP6523. If the junction temperature rises above the thermal pre-warning threshold, the temperature pre-warning bit (TP) in the output register is set. When the temperature falls below the thermal pre-warning threshold, the bit TP is reset. The bit TP can be read without transferring a complete 16-bit data word. When CS = high to low, the state of TP appears at DO. After the microcontroller has read this information, CS is set high and the data transfer is interrupted without affecting the state of the input and output registers.If the junction temperature rises above the thermal shutdown threshold, all switches turn off, and all bits in the output register are set high. Operation resumes immediately when the junction temperature has fallen below the thermal shutdown threshold and when a high has been written to the SRR bit in the input register.The thermal pre-warning and shutdown threshold have hysteresis.Note that bit0 to 15 = high indicates an over-temperature shutdown.Power-Supply FailIf at any time the voltage on VS falls below the under-voltage lockout (UVLO) threshold voltage, an internal timer is started. The power supply fail bit (PSF) in the output register is set, and all outputs are disabled when a permanent UVLO delay time is reached.Operation resumes immediately when VS rises above the UVLO threshold. The PSF bit remains high until it is reset by the SRR bit in the input register.Fault OutputThe MP6523 includes an open-drain, active-low fault indicator output (FAULT). A fault is indicated if the current limit is tripped or thermal shutdown is tripped. A fault on any channel causes FAULT to be pulled low. The FAULT value is maintained until the fault condition is removed and normal operation resumes. Do not apply more than 6V to FAULT.PACKAGE INFORMATIONQFN-24 (4mmx4mm)SIDE VIEWTOP VIEW1241918131276BOTTOM VIEW3.904.102.502.803.904.102.502.800.50BSC 0.180.300.801.000.000.050.20 REFPIN 1 ID MARKING2.700.25RECOMMENDED LAND PATTERN3.90NOTE:1) ALL DIMENSIONS ARE IN MILLIMETERS.2) EXPOSED PADDLE SIZE DOES NOT INCLUDE MOLD FLASH. 3) LEAD COPLANARITY SHALL BE 0.10 MILLIMETER MAX.4) DRAWING CONFIRMS TO JEDEC MO-220, VARIATION VGGD. 5) DRAWING IS NOT TO SCALE.PIN 1 IDSEE DETAIL APIN 1 ID OPTION A 0.30x45º TYP.PIN 1 ID OPTION B DETAIL APIN 1 IDINDEX AREA0.700.350.450.50NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.Revision History Revision #Revision Date DescriptionPages Updatedr1.17/27/2020Add “3.3V compatible” in Features ;1 Change recommended operating min. spec of VCC from 4.75V to 3.15V.3。

半桥和全桥磁芯_解释说明以及概述

半桥和全桥磁芯_解释说明以及概述

半桥和全桥磁芯解释说明以及概述1. 引言1.1 概述:在现代电力转换领域中,桥式变换器是一种常见的拓扑结构。

在桥式变换器中,磁芯起着至关重要的作用。

磁芯材料的选择对于变换器的性能和效率具有重要影响。

本文将讨论半桥和全桥磁芯两种主要类型,并比较它们在桥式变换器中的应用、优缺点以及选择时的考虑因素。

1.2 文章结构:本文共分为五个部分。

引言部分(第一部分)将介绍文章的目的和概述。

随后,第二和第三部分将详细介绍半桥磁芯和全桥磁芯的定义、原理以及特点与应用。

接下来,第四部分将比较两种磁芯在桥式变换器中的差异与影响,并给出选择建议。

最后,结论部分(第五部分)将总结文章内容并提供进一步展望。

1.3 目的:本文旨在深入了解半桥和全桥磁芯,在描述其定义、原理以及特点与应用方面进行详尽解释。

通过对两种类型磁芯的优缺点分析和比较,我们将帮助读者更好地理解桥式变换器中磁芯选择的重要性,并提供合适的选择建议。

此外,本文还将讨论桥式变换器的工作原理和电路拓扑分析,以便读者对半桥和全桥磁芯在实际应用中的差异具有更清晰的认识。

2. 半桥磁芯2.1 定义和原理半桥磁芯是一种用于电力变换器的重要元件,用于转换电能并实现功率调节。

它由两个互补的开关管组成,常见的是MOSFET或IGBT。

这两个开关管分别被连接到能量源和输出负载之间的中点处。

当一个开关管导通时,另一个开关管会关闭。

在半桥磁芯中,输入能量通过输入电容器被存储,并通过控制其中一个开关管的导通时间来传递给输出负载。

控制导通时间可以调整输出功率。

2.2 特点和应用半桥磁芯具有以下特点:- 简单而紧凑:与全桥相比,半桥磁芯只需要两个开关管,因此结构更加简单、紧凑。

- 成本较低:由于组件数量较少,制造成本相对较低。

半桥磁芯广泛应用于各种电力变换器中,如无线充电设备、交流变直流供电适配器、马达控制等领域。

它们可以将输入直流电源转换为所需的交流输出,并且具有较高效率和良好的电路控制性能。

半桥整流 电容-概述说明以及解释

半桥整流 电容-概述说明以及解释

半桥整流电容-概述说明以及解释1.引言1.1 概述半桥整流和电容是电子领域中两个重要的概念和组件。

半桥整流是一种电路结构,常用于将交流电转换为直流电的过程中。

而电容则是一种被广泛使用的电子元件,具有存储电荷、平滑电流和过滤噪声等特点。

半桥整流的原理主要是通过两个晶体管和两个二极管组合成的电路,有效地将交流信号转化为具有相同方向的脉动直流信号。

相比于其他整流电路结构,半桥整流具有效率高、损耗低等优点,因此在许多领域得到了广泛应用。

例如在电源和电机驱动领域,半桥整流电路可以实现电能的稳定输出和高效转换,提高系统的性能和效率。

电容则是一种具有两个电极并能够储存电荷的元件。

它能够通过存储和释放电荷来平滑电流信号,保持电路中的稳定性。

电容还能够作为滤波器使用,去除电路中的噪声和干扰信号,提供干净稳定的电源。

此外,电容还具有存储能量的功能,如电子器件的电源备份电容。

它还可以在电路中实现信号的耦合和隔离,提高电路的可靠性和性能。

综上所述,半桥整流和电容在电子领域中具有重要的作用。

半桥整流能够将交流电转换为直流电,提供稳定高效的电能输出。

而电容则能够存储电荷、平滑电流、过滤噪声,保持电路的稳定性和可靠性。

对于电子系统的设计和应用来说,深入理解和正确应用半桥整流和电容是非常重要的。

未来,随着电子技术的不断发展,半桥整流和电容的应用领域还将进一步扩大,为电子设备和系统的性能提升和能源利用效率的提高做出更大的贡献。

文章结构可以帮助读者更好地理解和组织文章内容,下面是本文的结构安排:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 半桥整流2.1.1 原理2.1.2 优点和应用2.2 电容2.2.1 概述2.2.2 作用和特点3. 结论3.1 总结半桥整流和电容的重要性3.2 展望未来发展在引言部分,我们首先对半桥整流和电容进行简要的概述,说明它们在电子领域中的应用和重要性。

然后,我们引入本文的结构,明确文中各个部分的内容和顺序,以帮助读者理解文章的整体构架。

屹晶微电子 EG2107 半桥驱动芯片用户手册说明书

屹晶微电子 EG2107 半桥驱动芯片用户手册说明书

版本变更记录目录1. 特性 (1)2. 描述 (1)3. 应用领域 (1)4. 引脚 (2)4.1 引脚定义 (2)4.2 引脚描述 (2)5. 结构框图 (3)6. 典型应用电路 (3)7. 电气特性 (4)7.1 极限参数 (4)7.2 典型参数 (5)7.3 开关时间特性及死区时间波形图 (6)8. 应用设计 (7)8.1 Vcc端电源电压 (7)8.2 输入逻辑信号要求和输出驱动器特性 (7)8.3 自举电路 (8)9. 封装尺寸 (9)9.1 SOP8封装尺寸 (9)EG2107芯片数据手册V1.01. 特性◼高端悬浮自举电源设计,耐压可达500V◼适应5V、3.3V输入电压◼最高频率支持500KHZ◼VCC和VB端欠压关断输出◼输出电流能力I O+/- 0.8A/1.3A◼内建死区控制电路◼CS逐周保护功能,高电平关闭HO、LO输出◼外围器件少◼封装形式:SOP8◼无铅无卤符合ROHS标准2. 描述EG2107是一款高性价比带CS逐周保护功能半桥驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时间控制电路、欠压关断电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路。

EG2107高端的工作电压可达500V,低端Vcc的电源电压范围宽8V~20V,静态功耗低。

该芯片具有闭锁功能防止输出功率管同时导通,输入通道IN内建了250K下拉电阻,在输入悬空时使上、下功率MOS管处于关闭状态,输出电流能力I O+/- 0.8/1.3A,采用SOP8封装。

3. 应用领域◼LED电源◼电动车控制器◼变频水泵控制器◼500V降压型开关电源◼无刷电机驱动器◼高压Class-D类功放4. 引脚4.1 引脚定义图4-1. EG2107管脚定义4.2 引脚描述5. 结构框图LOGNDVccHOVS VBCS图5-1. EG2107内部电路图6. 典型应用电路+12V+500VIN图6-1. EG2107典型应用电路图7. 电气特性7.1 极限参数7.2 典型参数A L7.3 开关时间特性及死区时间波形图图7-1. 低端输出LO 开关时间波形图图7-2. 高端输出HO 开关时间波形图50%50%IN图7-3. 死区时间波形图8. 应用设计8.1 Vcc端电源电压在考虑有足够的驱动电压去驱动N沟道功率MOS管,推荐电源Vcc工作电压典型值为8V-20V;EG2107芯片的地跟MCU的地共地。

半桥llc用芯片-概述说明以及解释

半桥llc用芯片-概述说明以及解释

半桥llc用芯片-概述说明以及解释1.引言1.1 概述概述部分:半桥LLC用芯片是一种在电子领域广泛应用的技术,它基于半桥拓扑结构,并结合LLC谐振电路实现高效的功率转换和控制。

该技术在电源管理、充电器、逆变器等领域有着重要的应用价值,并且在节能、高效、稳定的要求下得到越来越广泛的应用。

本文将深入介绍半桥LLC用芯片的原理、应用领域、优势以及未来发展方向,希望可以为读者提供深入了解和探讨这一前沿技术的思路。

文章结构部分应该包括以下内容:文章结构部分应该包括以下内容:文章结构部分应该包括以下内容:在本篇长文中,我们将探讨半桥LLC用芯片的概念、原理、应用领域、优势和未来发展。

具体结构如下:1. 引言1.1 概述:介绍半桥LLC用芯片的基本概念和作用。

1.2 文章结构:介绍本文将要讨论的内容和结构安排。

1.3 目的:说明本文的写作目的和意义。

2. 正文2.1 半桥LLC用芯片的概念及原理:深入解析半桥LLC用芯片的工作原理和技术特点。

2.2 半桥LLC用芯片的应用领域:探讨半桥LLC用芯片在实际应用中的各种场景和行业。

2.3 半桥LLC用芯片的优势和未来发展:分析半桥LLC用芯片相对于其他技术的优势,并展望其未来在市场上的发展趋势。

3. 结论3.1 总结半桥LLC用芯片的重要性:总结半桥LLC用芯片在现代科技领域的重要作用。

3.2 展望半桥LLC用芯片的发展前景:对半桥LLC用芯片未来发展的预测和展望。

3.3 结束语:总结全文,强调半桥LLC用芯片的重要性和价值。

1.3 目的:本文的目的是介绍半桥LLC用芯片这一新型技术在电子领域的应用情况以及优势,探讨其未来发展趋势。

通过深入了解半桥LLC用芯片的概念、原理和应用领域,可以帮助读者更全面地了解这一领域的发展动态,为读者提供参考和启发。

同时,本文还将对半桥LLC用芯片技术的重要性进行总结,并展望其未来的发展前景,以期为相关领域的研究人员和从业者提供一定的参考和借鉴价值。

半桥大功率电磁炉工作原理

半桥大功率电磁炉工作原理

工作原理一.整机方框图:见附页二.原理图(见附页)三.各方框图原理阐述,以上原理图为例说明1).滤波部分:这单元电路包括X滤波电容C1~C3和共模电感L1,此三个元件组成星式滤波器,用以滤除电源线中的杂波和抑制本机的有害杂波通过电源线向电力电源中传导。

这部分电路对于功率不大,要求很低的场合,电路设计合理的电路板可以省略。

2).整流部分:这单元电路包括整流桥DB1,扼流圈L1,高频滤波电容C8,这部分电路的作用就是把交流电整流成直流电,然后经过电容电感的滤波作用,给后级能量转换提供电源。

3).能量转换:这单元电路包括两个IGBT(上桥IG1和下桥IG2),高频吸收电容C5,C6,阻尼电阻R11,R12,谐振电容C7,C9,电磁线圈;其工作原理为:两个IGBT依次导通,让电源电流在电磁线圈中形成交变电流而产生交变磁场,此磁场会对放置在线圈上面的锅具产生强大的感应电流而使锅具自身发热。

两个IGBT的作用就是依次轮流导通而使线圈中产生交变电流,高频吸收电容的作用为吸收IGBT关断时产生的尖峰电压,保护IGBT免受尖峰电压损坏,阻尼电阻的作用是防止高频吸收电容与电磁线圈产生谐振而损坏IGBT,谐振电容的作用是配合电磁线圈工作在谐振状态,完成IGBT的软开关,减少IGBT开关损耗。

1.4).IGBT推动与IGBT过流保护:此单元电路包括IGBT驱动模块U4,U5,及其周边元件IGBT_UCE 电压检测二极管D11、D12,具体请见附页说明书,驱动模块完成对IGBT的驱动和IGBT过流信号的检测。

5):半桥驱动波形发生器:此单元电路包括H_F03A,E18,E19。

此模块主要产生半桥驱动信号,并经OUTA,OUTB输出相互错开的驱动信号,E18的作用用于驱动信号的稳定度滤波,当发生驱动信号抖动厉害或驱动信号不稳定时,检查此电容,E19为内部比较器参考电压滤波,此参考电压为稳定5.1V。

半桥模块各引脚功能如下:1.INA:反馈信号输入A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半桥型开关电源的设计
目录
1 半桥稳压电源设计 (2)
1.1总体设计方案 (2)
1.2电路设计 (3)
1.2.1逆变回路设计 (3)
1.2.2输出整流滤波设计 (4)
1.2.3主电路设计 (4)
1.2.4 控制电路 (5)
1.2.5总体电路图 (6)
2变压器的分析计算 (10)
1
2
1 半桥稳压电源设计
开关电源是现代电力电子设备不可或缺的组成部分,其质量的优劣直接影响设备性能,其体积的大小也直接影响到电子设备整体的体积。

本设计根据设计任务,设计了相应的硬件电路,研制了50W 半桥开关电源。

整个系统包括主电路、控制电路和驱动电路三部分内容。

系统主电路包括单相输入直流、半桥式逆变、高频交流输出、输出整流、输出滤波几部分。

控制电路包括主电路开关管控制脉冲的产生和保护电路。

论文具体地介绍了主电路、控制电路、驱动电路等各部分的设计,包括元器件的选取以及参数计算。

本文介绍一种半桥电路的开关电源,是输入为直流电60V ,输出直流电压5V ,输出直流电流10A ,最大功率50W 。

1.1总体设计方案
整个设计分为三部分。

一、主电路的设计,包括直流输入、半桥式逆变电路、输出整流、输出滤波。

二、开关管的驱动电路。

三、控制电路的设计,包括控制逆变电路开关管工作的脉冲输出、软启动、调占空比以及保护电路。

半桥型开关稳压电源设计方案遵循开关电源的变换框图。

如1图所示:
图1开关电源变换
由直流输入,再由半桥开开关逆变得到高频交流电,经整流滤波后得到所需直流电。

可供电子设备使用。

首先,电源流入输入整流滤波回路将交流电通过整流模块变换成含有脉动成分的直流电,然后通过输入滤波电容将脉动直流电变为较平滑的直流电。

其次,功率开关桥由控制电路提供触发脉冲把滤波得到的直流电变换为高频的方波电压,通过高频变压器传送到输出侧。

最后,输出整流滤波回路将高频方波电压滤波成为所需的直流电压或电流。

1.2电路设计
1.2.1 逆变回路设计
逆变回路的基本原理
在半桥式逆变电路中,变压器一次侧的两端分别连接在电容C1,C2的中点和开关S1, S2中点。

电容C1,C2的中点电压为Ui/2。

S1与S2交替导通,使变压器一次侧形成幅值为Ui/2的交流电压,改变开关的占空比,就可以改变二次侧整流电压Ud的平均值,也就改变了输出电压Uo。

半桥式电路的结构如图所示。

S1导通时,二极管VD1处于通态;S2导通时,二极管VD2处于通态,当两个开关都关断时,变压器绕组W1中的电流为零,根据变压器的磁势平衡方程,绕组W2和W3中的电流大小相等,方向相反,所以VD1和VD2都处于通态,各分担一半的电流。

S1或S2导通是电感L的电流逐渐上升,两个开关都关断时,电感L的电流逐渐下降。

S1和S2断态时承受的峰值电压均为Ui。

由于电容的隔直作用,半桥型电路对由于两个开关管导通时间不对称而造成的变压器一次电压的直流分量具有自动平衡作用,因此该电路不容易发生变压器偏磁和直流磁饱和的问题,无须另加隔直电容。

1.2.2输出整流滤波设计
电源的能量输出通过高频变压器实现,其主要作用是电压变换、功率传递和实现输入输出之间的隔离,与普通电力变压器的功能相仿。

因此,在绕制高频变压器时要尽量减小原、副边的漏感,从而减小功率开关管关断时的尖峰电压,降低损耗,提高效率。

在副边使用全波整流的方式,然后由滤波电感和滤波电容共同完成输出滤波功能,使输出达到设计要求。

3
4
图3输出整流滤波电路图
输出滤波电路包括电感、电容和两个二极管。

经过整流滤波后即可得到所需直流稳压电源。

输出整流滤波电路是通过快恢复整流二极管的整流和滤波电感及滤波电容将高频变压器输出的高频交变电压或电流变换成符合要求的输出电压或电流。

高频变压器副边选用全桥式整流,以提高安全可靠性。

1.2.3主电路设计
半桥式开关电源主电路如图5所示。

图中开关管Q1、Q2选用MOSFET,电路的工作频率100KHZ 。

因为它是电压驱动全控型器件,具有驱动电路简单、驱动功率小、开关速度快及安全工作区大等优点。

半桥式逆变电路一个桥臂由开关管Q1、Q2组成,另一个桥臂由电容C2、C3组成。

高频变压器初级一端接在C2、C3的中点,另一端接在Q1、Q2的公共连接端,Q1、Q2中点的电压等于直流输入电压的一半,开关Q1、Q2交替导通就在变压器的次级形成幅值为Vi/2
的交流方波电压。

通过调节开关管的占空比,就能改变变压器二次侧整流输出平均电压O V 。

Q1、
Q2断态时承受的峰值电压均为Vi ,C4、R11和C5、R12为MOS 管两端的吸收电路,C4和R11用来吸收高频尖峰。

1.2.4控制电路
控制电路是整个电源系统重要部位,由它控制整个电源的工作并实现相应的保护功能。

一般来说,控制电路应具有以下功能:控制脉冲产生电路、电压反馈控制电路、、占空比可调、软启动及各种保护电路等。

根据电路功能的分工可将控制电路分为几大部分:脉冲产生电路、触发电路、电压反馈控制电路、软启动电路、保护电路等。

5
脉冲产生电路是控制电路的核心。

脉冲产生电路根据电压反馈控制电路信号产生出所需的脉冲信号保护电路以及软启动电路等提供的控制。

电压反馈控制电路通过检测输出电压的大小,对输出电压进行分压采样,然后将采样电压和参考电压相比较得出误差信号来调节输出脉冲的脉宽达到调节输出电压的目的。

设计电路的控制电路是整个电路的主要部分。

目前实际产品应用中有各种典型的控制电路,鉴于对电源和驱动的要求,结合本次设计选择SG3525。

SG3525A的内部结构见图6:
由基准电压调整器、振荡器、误差放大器、比较器、锁存器、欠压锁定电路、闭锁控制电路、软起动电路、输出电路构。

SG3525的特点SG3525脉宽调制型控制器是美国通用电气公司的产品。

它的主要特点是:
1、输出级采用推挽输出,双通道输出。

6
2、占空比0-50%可调。

3、每一通道的驱动电流最大值可达200mA,灌拉电流峰值可达500mA。

可直接驱动功率MOS管。

4、工作频率高达400KHz。

5、具有欠压锁定、过压保护和软启动等功能。

6、可正常工作的温度范围是0-700℃。

7、基准电压为5.1 V士1%。

8、工作电压范围很宽,为8V到35V。

1.2.5总体电路图
由具体电路可得总体电路图7
7
8
2 变压器的分析
EE40卧式变压器说明如下:
EE40高频变压器具有绕制方便,价格适中,可靠性高的特点。

EE 型变压器是基本型的铁氧体磁芯,性能稳定,成本低,电流大。

广泛应用于电源转换和线路滤波。

体积由小到大,满足各种应用电路的需求。

如使用耐温155℃或180℃聚安脂漆包线,可满足不同的温度条件,适用于各种开关电源及逆变器,UPS 等。

本设计所采用的变压器是根据实际电路需要匹配的,即绕线原边为30匝,辅助供电匝数为11匝,两个副边各位3匝,
变压器变比:
/i o K U U */ON S T
T =60/6*1/2=3
电源功率:
P=5*10=50W
通过熟悉典型开关电源主电路的结构,元器件和工作原理,了解PWM 控制与驱动电路的
原理和常用的集成电路以及反馈控制对电源稳压性能的影响。

9。

相关文档
最新文档