专题讲解组合图形的计数(A)

合集下载

图形的计数(四年级奥数秋季思维训练教程)

图形的计数(四年级奥数秋季思维训练教程)

图形的计数(四年级奥数秋季思维训练教程)教学内容:第二讲图形的计数(四年级秋季思维训练教程)课时:第一、二课时课型:新授课教学目的:知识与技能理解并掌握数线段的两种方法:基本线段法、定端点法。

学会灵活地将数图形(三角形、正方形、长方形等)问题转化为数线段问题。

过程与方法通过引导学生复习旧知,鼓励学生总结归纳数线段的基本方法,培养学生的观察能力、抽象概括能力,增强学生探究问题的本领。

在观察、分析图形的过程中,要逐步培养学生掌握从特殊到一般的研究问题的方法。

情感态度与价值观在观察、总结归纳数线段的基本方法的过程中,体会探索新知的乐趣,养成善于思考,勇于探索,乐于交流的习惯。

在数图形个数时,要求按一定的顺序去做,做到不遗漏,不重复,提高学生的逻辑思维能力,养成严密的数学思维习惯。

教学重、难点:重点:通过观察、分析复杂图形并数出其中基本图形的个数的过程中,促进学生掌握类比转化的方法,培养学生分析和解决问题的能力。

难点:如何将复杂图形的计数问题转化为线段的计数问题教具、学具准备:教学过程:复习旧知,凝疑导入同学们,看看我左手上是什么?(粉笔)数数有几只?(三只)。

再看看老师右手上拿了什么?(纸)瞅瞅它们共有几张呢?我们两三岁时家人就开始教我们数数了,所以刚刚那两个问题对同学们来说都是小菜一碟,有没有?但是,不知,同学们还是否记得我们之前学过一种稍微复杂一点的数数问题---数线段。

下面我们来简单地复习一下:问题一:数一数下面图形中共有多少条线段?(10条)线段:有两个端点的直线组成的图形要求:不遗漏不重复展示与总结:定端点法:4+3+2+1=10(条)基本线段法:有4条基本线段由两条基本线段组成的线段:3条由三条基本线段组成的线段:2条由四条基本线段组成的线段:1条共有4+3+2+1=10(条)这道题有没有唤起同学们对以前学过知识的记忆呢?同学们应该都知道,学习是一个连续且不断发展的过程,随着我们年龄和年级的不断增加,我们会对同一个大问题进行更深入的研究,所以,理所当然,数数问题也需要我们对它进行更深一步的探究。

2023年名校真题精讲共讲第讲计数与组合专题学生版

2023年名校真题精讲共讲第讲计数与组合专题学生版

第6讲 计数和组合专题一、 计数问题1、枚举法枚举法就是把所有也许得状况一一列举出来,然后数一下总共有多种状况.2、加乘原理(1)加法原理——分类假如完毕一件事有几类措施,在每一类措施中又有不同样措施,那么把每类措施数相加就得到所有措施数.(2)乘法原理——分步假如完毕一件事有多种环节,在每一种环节中又有不同样措施,那么把每步措施数相乘就得到所有措施数.3、排列组合(1)排列从m 个不同样元素中取出n 个(n m ≤),并根据一定次序排成一列,其措施数叫做从m 个不同样元素中取出n 个排列数,记作n m A .其计算措施为: ()()11n m A m m m n =⨯-⨯⨯-+即从m 开始递减地连乘n 个数从m个不同样元素中取出n m个不同样元素中取出n其计算措施为:(m n⨯-4、分类法和排除法(1)分类法:分来法处理问题基础思想是通过度类拆解把一种复杂问题转化成多种相对简朴小问题来处理.(2)排除法:当题目中满足规定状况较多,分类法不好处理时,可以尝试用排除法,把不符合规定状况去掉,剩余就是符合.5、容斥原理(1)理解简朴容斥原理(两个之间重叠)和复杂容斥原理(三个之间重叠)(2)用文氏图协助解题6、递推措施(1)上楼梯模型(2)传球法——列表写出每一步中详细措施数(3)几何图形分平面——增量分析用于求解“把m个相似球放到n个不同样盒子中”此类问题(1)注意:球必需是相似,盒子必需是不同样.(2n-1个板插到m-1个空隙中)(3n个球,然后根据每个盒子至少1个去放,最终从每个盒子中拿出1个还回去)(4n个球放到3个盒子中,每个盒子至少1个)(5n个球放到3个盒子中,每个盒子可以为空)8、和旋转、翻转有关计数此类问题要想清晰与否有反复,反复了多少.一般求解时,要先固定部分对象,使其不能旋转或翻转.二、统筹计划1、安排工序问题2、最短路线或最短时间问题3、排队等待问题4、集合问题5、货品调度问题三、游戏对策(1)必胜方略往往是考虑“怎样让对方输”,即必胜方行动时怎样进行一次合适操作,把必输状态留给对方.(2)游戏对策中往往会运用对称性来处理问题,如桌子上放硬币问题(轮番在圆桌上放硬币,到谁放时候放不下了她就输了.先手方把第一种硬币用来占领圆桌中心点即可,后来后手方再怎么放,先手方所有能在桌上找到一种对称空位点可以放置硬币)四、逻辑推理解答推理问题常见措施有:排除法、假设法、反证法.一般可以从如下几方面考虑:1.选准突破口,分析时综合多种条件进行鉴定;2.根据题中条件,在推理过程中,不停排除不也许状况,从而得出规定结论;3.对也许出现状况作出假设,然后再根据条件推理,假如得到结论和条件不矛盾,阐明假设对的;4.碰到比较复杂推理问题,可以借助图表进行分析.常见题型:去伪存真题:有人说真话有人说假话,有人说真话;或每人说一部分对,一部分错.注意合适选择假设等措施协助解题.条件分析题:用列表或作图措施,对条件进行归纳整顿.体育比赛类问题:要注意弄清比赛规则,尤其是积分规则,对阵措施.若是画对阵关系图,注意箭头表胜败,虚线表达平局.例如:若是2分赛制,则获胜队2分,平局各1分,失败不得分,那么总得分为3分赛制时,获胜队得3分,平局各得1分,失败不得分.那么此时总分为“”五、抽屉原理1、最不利原则2、抽屉原理六、最值问题常见结论:(1)两数和一定,差越小,积越大(2)当多种数和一定是,越靠近乘积越大(3)两点之间线段最短(4)在周长一定封闭图形中,圆面积最大;在面积一定封闭图形中,圆周长最小七、构造论证1、构造往往用于阐明“能”,即给出也许状况;论证往往用于阐明“否”,即为何不行2、常见题型:(1)构造或论证:此类题目中一般会以“能否”等词汇发问.解答时,假如是“能”,就要构造出可行状况;假如是答“不能”,要论证为何.(2)构造和论证:常见于求最值问题,以求最大值问题,得出最大值后要先论证不能得更大值了,然后构造最大值对应可行状况,阐明这个最大值可以达到.一、枚举法例1.在所有三位数中,各位数字之和不超过4共有______个.二、加乘原理和排列组合例2.将1、2、3、4、5这五个数字填入下面五个方格中,使得阴影方格中填入数不小于相邻方格中数,共有_____种填法.例3.用0、1、2、3、4这五个数字能构成______个没有反复数字四位偶数.例4.从1~9选出7个数字分别填入图中7个圆圈中,使得每条线段两端点处所填数,上面比下面大,那么符合规定共_______种.三、容斥原理例5.图,数一数,图中共有多少个长方体?四、概率初步例6.某军官参与射击比赛,她射击命中率是80%.那么她连打3枪,恰好有2枪命中概率是________.例7.甲、乙两人玩掷硬币,出现正面甲得1分,背面乙得1分.先得10分者为胜.比赛进行一段时间后,甲得9分,乙得6分,那么甲获胜概率是_______五、递推计数例8.在一种平面上画3个三角形、1个圆、1条直线,最多可以把平面提成______个部分.例9.在世界杯一场小组赛中,巴西队以7:5击败南非队,假如巴西队在比赛中从未落后过,那么这场比赛共有_____种不同样进球次序.六、对应计数例10.(1)中关村一小六年级A班30名同学投票选举优秀少先队员,投票采用不记名措施,每人只能投1票且不能投弃权票(谁所有不选).假如候选人共3人,那么投票共_____种不同样也许.(2)假如这30名学生可以投弃权票,那么投票成果共______种不同样也许七、和翻转、旋转有关计数问题例11.用7种颜色为一种正方体6个面染色,规定每个面只能用1种颜色,且6个面颜色互不相似.那么共有______种不同样染色措施.八、统筹计划例12.北京、上海、杭州三地同步研制成了大型电子计算机若干台,除当地应用外,北京可以支援外地10台,上海可以支援外地4台,杭州可以支援外地6台.目前决定给武汉6台,重庆8台,深圳6台.若每台计算机运费如下表,表中运费单位是“百元”.上海、北京和杭州制造机器完全相似,应当怎样调运,才能使总运费最省?最省运费是________万元.九、游戏对策例13.根火柴,甲、乙轮番取,规定每次只可以取1、3、4根.假如以取完火柴人为胜,甲先取,那么谁有必胜方略?方略是什么?十、逻辑推理例14.老师在3个盒子里各放了一种彩色球,让小明、小亮、小强、小佳四人猜一下各个盒子里放是什么颜色球.小明说:“1号盒里是黄球,2号盒里是黑球,3号盒里是红球”小亮说:“1号盒里是橙球,2号盒里是黑球,3号盒里是绿球”小强说:“1号盒里是紫球,2号盒里是黄球,3号盒里是蓝球”小佳说:“1号盒里是橙球,2号盒里是绿球,3号盒里是紫球”老师说:“你们中有一人恰好猜对了两个,其他三人每人猜对一种.”那么第三个箱子中放是______球.例15.在一列国际列车上,有A、B、C、D四位不同样国籍旅客,她们分别穿蓝、黑、灰、褐色大衣,每边两个人面对面地坐在同一张桌子上.已知:(1)英国人坐B先生左侧;(2)A先生穿褐色大衣;(3)穿黑色大衣坐在德国人右侧;(4)D先生对面坐着美国旅客;(5)俄国旅客穿着灰色大衣.那么A、B、C、D分别是哪国人?分别穿什么颜色衣服?例16.5支球队进行单循环比赛,每两队之间比一场,获胜者得3分,负者0分,平手各得1分.最终5支球队积分各不相似,第三名得了7分,并且和第一名打平.请问:这5支球队得分从高到低依次是多少?十一、抽屉原理例17.有一种不透明魔法口袋,里面装有大小、形状完全相似小球,分为红、黄、蓝、白、黑五种颜色,每种颜色小球所有有足够多种.n个人在口袋里取球,每人随意取3个,不管怎么取,所有一定有5个人取到球种类完全相似,那么n至少是______.十二、最值问题例18.将1、2、3、4、5、6分别填在正方体6个表面上,计算具有公共棱两个面上数乘积,这样乘积共有12个,这12个乘积和最大是_______十三、构造论证例19.把图中圆圈任意涂上红色或蓝色.问:能否使得每一条直线上红圈个数所有是奇数?例20.有3堆小石子,每次许可进行如下操作:从每堆中取走同样数目的小石子,或是将其中某一石子数是偶数堆中二分之一石子移入此外一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子所有取光?(2)3堆中所有石子所有被取走?作业1.在所有三位数中,可以被9整除,并且三个数字恰好能构成等差数列(可以变化次序,如567、756)共有______个作业2.在4000~7000内有______个没有反复数字5倍数.作业3.有甲、乙、丙、丁四人过河,河上有一条小船,每次只能坐两个人,这样每次就必需有一人把船划回来接剩余人.那么四人过河有______措施.作业4.图,图中只含一种☆长方形有______个?作业5.一次吃自助餐,有10道菜,每人有4个盘子可以选菜,规定每个盘子只能装1种菜,不过可以反复选菜(例如某道菜很好吃,我可以把2个盘子所有装这1种菜),那么共有_____种选菜方案.作业6.(第六届高思杯六年级,参与了高思杯不过当时没做出来同学,看看自己目前与否会做了)正方体八个顶点分别标识为A、B、C、D、E、F、G、H.目前用四种颜色给顶点染色,规定有棱相连两个顶点颜色不同样,一共有_______不同样染色措施.(旋转或翻转后相似算不同样染法)作业7.把23表达到若干个互不相似自然数之和,那么这些自然数乘积最大是______.作业8.:一种新建5层楼房一种单元每层有东西两套房;各层房号图所示,现已经有赵、钱、孙、李、周五个人入住.一天她们在小区花园里聊天:赵说:“我家是第3个入住,第1个入住就住我对门.”钱说:“只有我一家住在最高层.”孙说:“我家入住时,我家同侧上一层和下一层所有已经有人入住了.”李说:“我家是五家中最终一种入住,我家楼下那层全空着.”周说:“我家住在106号,104号空着,108号也空着.”她们说就是真话,设第1、2、3、4、5家入住房号个位数字依次为A、B、C、D、E,那么五位数.作业9.六个足球队进行单循环比赛,每两队所有要赛一场.假如踢平,每队各得1分,否则胜队得3分,负队得0分.目前比赛已进行了四轮(每队所有已和4个队比胜过),各队4场得分之和互不相似.已知总得分居第三位队共得7分,并且有4场球赛踢成平局,那么总得分居第五位队最多可得分,至少可得分.作业10.(大数减小数),直到黑板上剩余一种数为止.问黑板上剩余数是奇数还是偶数?为何?。

数学奥赛辅导组合计数

数学奥赛辅导组合计数

数学奥赛辅导 组合计数知识、方法、技能组合计数就是计算集合的元素个数。

它是组合数学的重要组成部分.在具体问题中给出的集合各式各样,都具有实际意义,而且集体中的元素是由某些条件所确定的,要判定一个元素是否属于某集合A ,已非易事,要确定A 的元素个数就更难了.这正是研究计算问题的原因。

解决组合计算问题虽然不需要高深理论知识,却需要重要的计算原理与思想方法. Ⅰ.几种特殊的排列、组合 1.圆排列定义1:从几个元素中任取r 个不同元素仅按元素之间的相对位置而不分首尾排成一个圆圈,这种排列称为n 个不同元素的r ——圆排列。

r ——圆排列数记为rn K .定理1:.rP K rn r n证:对n 个不同元素取r 个的任一圆排列,均有r 种不同的方式展开成r 个不同的直线排列,且不同的圆排列展开的直线排列也彼此不同,故有r ·rn K =P r n ,得正.2.重复排列定义2:从n 个不同元素中允许重复的任取r 个元素排成一列,称为n 个不同元素的r ——可重复排列.定理2:n 个不同元素的r ——可重排列数为n r .证:在按顺序选取的r 个元素中,每个元素都有n 种不同的选法,故由乘法原理有,其排列数为n r .3.不全相异元素的全排列定义3:设n 个元素可分为k 组,每一组中的元素是相同的,不同组间的元素是不同的,其中第i 组的元素个数为n i (i =1, 2, …, k ), n 1+n 2+…+n k =n . 则这n 个元素的全排列称为不全相异元素的全排列.定理3:n 个元素的不全相异元素的全排列个数为.!!!!.21k n n n n证:先把每组中的元素看做是不相同的,则n 个不同元素的全排列数为n!,然后分别将每个组的元素还其本来面目看成是相同的,则在这n!个全排列中,每个排列都重复出现了n 1!n 2!……n k !次,所以不全相异元素的全排列数.!!!!.21k n n n n4.多组组合定义4:将n 个不同的元素分成k 组的组合称为n 个不同元素的k ——组合.定理4:对于一个n 个不同元素的k ——组合,若第i 组有n i 个元素(i =1, 2, …,k ),则不同的分组方法数为.!!!!.21k n n n n证:我们把分组的过程安排成相继的k 个步骤.第一步,从n 个不同元素中选n 1个,有1nn C 种方法;第二步,从n -n 1个元素中选n 2个有21nn n C 种方法;…;第k 步,从n -(n 1+n 2+…+n k -1)个元素中选n k 个元素,有k nn C -(n 1+n 2+…+n k -1)种方法,再由乘法原理得证.5.重重组合定义5:从n 个不同元素中任取r 个允许元素重复出现的组合称为n 个不同元素的r ——可重组合.定理5:n 个不同元素的r ——可重组合的个数为C r n+r -1 .证:设(a 1 , a 2 ,…,a r )是取自{1,2,…,n}中的任一r 可重复组合,并设a 1≤a 2≤…≤a r .令 b i =a i +i -1(1≤i ≤r).从而b 1=a 1 , b 2=a 2+1 , b 3=a 3+2,…, b r =a+r -1r . 显然下面两组数是一对一的:a 1≤a 2≤a 3≤…≤a r , 1≤a 1<a 2+1<a 3+2<…<a r +r -1≤n+r -1.设 A={(a 1 , a 2 ,…,a r )|a i ∈{1,2,…,n},a 1≤a 2≤…≤a r }, B={(b 1, b 2,…,b r )|b i ∈{1,2,…,n+r -1},b 1< b 2<…<b r }. 则由A 、B 之间存在一一对应,故|A|=|B|=C r n+r -1 .Ⅱ.枚举法所谓枚举法就是把集合A 中的元素一一列举出来,从而计算出集体A 的元素个数。

四年级奥数专题11组合图形的计数

四年级奥数专题11组合图形的计数

(7)十一、组合图形的计数(A)年级______班_____ 姓名_____得分_____一、填空题:1.右图一共有( )个长方形?2.右图一共有( )个长方形?3.右图一共有( )个长方形?4.右图一共有( )个正方形?5.右图一共有( )个长方形?6.右图一共有( )个平行四边形?7.右图一共有( )个梯形?8.右图一共有( )个正方形?9.右图一共有( )个正方形?10.右图一共有( )个正方形?二、解答题:11.下图共有几个正方形?(6)12.下图共有几个正方形?13.在一个图案中有100个矩形、100个菱形和40个正方形,这个图案中至少有多少个平行四边形?14.三个同样的正方形框架,摆放在适当的位置,最多可以数出多少个正方形来?十一、组合图形的计数(B )年级 ______班 _____ 姓名 _____得分 _____一、填空题:1.右图有( )个长方形.2.右图共有( )个长方形.3.下图共有( )个长方形.4.图中一共有多少个长方形?(含正方形).5.数一数图中三角形的个数.6.下图共有( )个三角形.7.下图一共有( )个三角形.8.图ABC ∆中,cm BC 4=,BC 边被分成四等分,BC 边上的高cm AH 2=,则图中所有三角形面积的和为多少?(以AH 为边的三角形不计算在内.9.下图共有( )个平行四边形.10.右图一共有( )个梯形.二、解答题:1.数一数,右图中有多少个正方形?2.如右图,数一数图中一共有多少个三角形?3.下图共有几个长方形?4.下图共有多少个长方形?———————————————答案——————————————————————一、填空题:1. 一共有321个.解: ①上横大长方形内有长方形:(8+7+6+5+4+3+2+1)⨯(1+2)=108(个);②下横大长方形内有长方形:(7⨯6÷2)⨯(3⨯2÷2)=63(个);③竖大长方形内有长方形:(5⨯4÷2)⨯(7⨯6÷2)=210(个);④中间重复的长方形共有:(5⨯4÷2)⨯(3⨯2÷2)⨯2=60(个).⑤图中共有长方形: 108+63+210-60=321(个).2. 一共有64个.3. 一共有107个.解: (1+2+3+4)⨯(1+2+3)=60(个);(1+2+3)⨯(1+2+3)=36(个);1+2=3(个);(1+2)⨯4+2=14(个);图中共有长方形: 60+36-3+14=107(个).4. 一共有18个.解:分三类计算,边长是1的正方形有2+4=13(个),边长为2的正方形有4(个),边长为3 的正方形有1个.因此,图中共有正方形13+4+1=18(个).5. 一共有79个.解: 在大长方形中共有长方形:(3+2+1)⨯(3+2+1)=36(个).在小长方形中共有长方形: (3+2+1)⨯(3+2+1)=36(个).在两个长方形中增加的长方形有:8(个).在大长方形和小长方形中重复计算了的长方形个数为1个.所以,这个图中长方形的个数为:36+36+8-1=79(个).6. 右图一共有(150)个平行四边形.(5⨯4÷2)⨯(6⨯5÷2)=150(个).点金术:与算平行四边形的方法一样.7. 一共有(90)个.(6⨯5÷2)⨯(4⨯3÷2)=90(个).8. 一共有(55)个.解:分类进行统计,得边长为1的正方形有5⨯5=25(个);边长为2的正方形有4⨯4=16(个);边长为3的正方形有3⨯3=9(个);边长为4的正方形有2⨯2=4(个);边长为5的正方形有1⨯1=1(个).图中共有正方形: 25+16+9+4+1=55(个).9. 一共有60个.解:分类进行统计,得边长为1的正方形有4⨯7=28(个);边长为2的正方形有3⨯6=18(个);边长为3的正方形有2⨯5=10(个);边长为4的正方形有1⨯4=4(个).图中共有正方形: 4⨯7+3⨯6+2⨯5+1⨯4=60(个).10. 右图一共有(110)个正方形.解: 图中ABCD是一个4⨯10方格,其中正方形的个数是:4⨯10+3⨯9+2⨯8+1⨯7=90(个);图中CEPN是一个4⨯6方格,其中正方形的个数是:4⨯6+3⨯5+2⨯4+1⨯3=50(个);在上面的两项统计中,CDMN内的正方形被重复计算了一次,应该扣除.因CDMN是4⨯4方格,其中正方形的个数是:4⨯4+3⨯3+2⨯2+1⨯1=30(个).所以,图中正方形的个数是: 90+50-30=110(个).二、解答题:11. 一共有95个.解: ①中间部分的正方形有:52+42+32+22+12=55(个);②上、下部分的正方形有:(4+2+1)⨯2=14(个);③左、右部分的正方形有:(9+2+2)⨯2=26(个).共有正方形: 55+14+26=95(个).12. 共有46个.解: ①正摆着的正方形有:4⨯3+3⨯2+2⨯1=20(个);②斜摆着的正方形有:a.最小的正方形有17个;b.由4个小正方形组成的正方形有8个,c.由9个小正方形组成的正方形有1个.③图中共有正方形: 20+17+8+1=46(个).13. 至少有160个.解: 因为矩形、菱形、正方形都是平行四边形,且正方形既是矩形也是菱形,所以,至少有平行四边形: 100+100-40=160(个).14. 最多有7个.解: 最多有7个正方形.摆法如右图.———————————————答案——————————————————————1. 58个2. 25个3. 29个4. 1980个OA线段10×11÷2=55(条),图中10OB边上共有线段8×9÷2=36(条),8因此,图中共有长方形55×36=1980(个).5. 27个这样的图形只能分类数,可以采用类似数正方形的方法,从边长为一条基本线段的最小三角形开始.Ⅰ.以一条基本线段为边的三角形:①尖朝上的三角形共有四层,它们的总数为:W①上=1+2+3+4=10(个).②尖朝下的三角形共有三层,它们的总数为:W①下=1+2+3=6(个).Ⅱ.以两条基本线段为边的三角形:①尖朝上的三角形共有三层,它们的总数为:W②上=1+2+3=6(个)②尖朝下的三角形只有一个,记为W=1(个).②下Ⅲ.以三条基本线段为边的三角形:①尖朝上的三角形共有二层,它们的总数为:W③上=1+2=3(个).②尖朝下的三角形零个,记为W=0(个).③下=1(个).Ⅳ.以四条基本线段为边的三角形,只有一个,记为W④上所以三角形的总数是10+6+6+1+3+1=27(个).我们还可以按另一种分类情况计算三角形的个数,即按尖朝上与朝下的三角形的两种分类情况计算三角形个数.Ⅰ.尖朝上的三角形共有四种:W①上=1+2+3+4=10W②上=1+2+3=6W③上=1+2=3W④上=1所以尖朝上的三角形共有:10+6+3+1=20(个)Ⅱ.尖朝下的三角形共有二种:W①下=1+2+3=6W②下=1W③下=0W④下=0则尖朝下的三角形共有6+1+0+0=7(个)所以,尖朝上与尖朝下的三角形一共有:20+7=27(个)尖朝上的三角形共有四种.每一种尖朝上的三角形个数都是由1开始的连续自然数的和,其中连续自然数最多的和中最大的加数就是三角形每边被分成的基本线段的条数,依次各个连续自然数的和都比上一次少一个最大的加数,直到1为止.尖朝下的三角形的个数也是从1开始的连续自然数的和,它的第一个恰是尖朝上的第二个和,依次各个和都比上一个和少最大的两个加数,以此类推直到零为止.6. 126个Ⅰ.尖朝上的三角形有五种:(1)W①上=8+7+6+5+4=30(2)W②上=7+6+5+4=22(3)W③上=6+5+4=15(4)W④上=5+4=9(5)W⑤上=4∴尖朝上的三角形共有:30+22+15+9+4=80(个)Ⅱ.尖朝下的三角形有四种:(1) W①下=3+4+5+6+7=25(2)W②下=2+3+4+5=14(3)W③下=1+2+3=6(4)W④下=1尖朝下的三角形共有25+14+6+1=46(个)∴80+46=126个.7. 35个Ⅰ.与ABE∆相同的三角形共有5个;Ⅱ.与ABP∆相同的三角形共有10个;Ⅲ.与ABF∆相同的三角形共有5个;Ⅳ.与AFP∆相同的三角形共有5个;∆相同的三角形共有5个;Ⅴ.与ACD∆相同的三角形共有5个.Ⅵ.与AGD所以图中共有三角形为5+10+5+5+5+5+5=35(个).8. 20平方厘米底边为1cm的三角形面积和为:)⨯÷⨯;cm=422(412底边为2cm的三角形面积和为:)=⨯÷⨯;cm3(62222底边为3cm的三角形面积和为:)=⨯÷⨯;cm2(62232底边为4cm的三角形面积和为:)=⨯÷⨯;cm(412242图中所有三角形面积和为:)=+++.cm(42420669. 315个=÷⨯⨯(个)7(=⨯⨯÷216315)215)26(510. 45个最好的办法是先数出长方形和梯形的总数,再减去长方形的个数.长方形和梯形的总数为:(1+2+3+4+5+6)×(1+2)=63(个)长方形的个数为:(1+2+3)×(1+2)=18(个)梯形的总数为:63-18=45(个)二、解答题11. 有124个.①基本的三角形有:4×9=36(个).:4×9=36(个).:4×3×2=24(个).④由九个基本的三角形组成的三角形:4×2=8(个).⑤由八个基本的三角形组成的三角形:4×4=16(个).⑥由十八个基本的三角形组成的三角形:4(个).共有三角形:36+36+24+8+16+4=124(个).12. 有100个.这是个对称图形,我们可按如下三步顺序来数:第一步:大矩形ABCD可分为四个相同的小矩形:AEOH、EBFO、OFCG、HOGD,每个小矩形内所包含的三角形个数是相同的.第二步:每两个小矩形组合成的图形共有四个,如:ABFH、EBCG、HFCD、AEGD,每一个这样的图形中所包含的三角形个数是相同的.第三步:每三个小矩形占据的部分图形共有四个:如△ABD、△ADC、△ABC、△DBC,每一个这样的图形中所包含的三角形个数是相同的.最后把每一步中每个图形所包含三角形个数求出相加再乘以4就是整个图形中所包含的三角形的个数.Ⅰ.在小矩形AEOH中:①由一个三角形构成的8个.②由两个三角形构成的三角形有5个.③由三个或三个以上三角形构成的三角形有5个.这样在一个小矩形内17个三角形.Ⅱ.在由两个小矩形组合成的图形中,如矩形AEGD,共有5个三角形.Ⅲ.由三个小矩形占据的部分图形中,如△ABC,共有2个三角形.所以整个图形共有三角形个数是:(8+5+5+5+2)×4=25×4=100(个).13. 有270个.①除去四周凸出部分,中间大长方形内共有长方形:(7×6÷2)×(4×3÷2)=126(个);②左、右凸出部分共有长方形:(3×2÷2)×(7+6)+(5×4÷2)×(5+4)=39+90=129(个);③上、下凸出部分共有长方形:1×(8+7)=15(个).④图中共有长方形:126+129+15=270(个).14. 有133个①在大长方形中共有长方形:(4+3+2+1)×(3+2+1)=60(个);②在小长方形中共有长方形:(4+3+2+1)×(3+2+1)=60(个);③在①与②中重复的长方形有:1+2=3(个);④两个长方形共同组成的长方形有:(1+2)×(2+2)+1×(2+2)=16(个).⑤图中共有长方形:60+60-3+16=133(个).。

2020年小升初数学专题复习训练—拓展与提高:几何图形(1)(知识点总结+同步测试) 通用版

2020年小升初数学专题复习训练—拓展与提高:几何图形(1)(知识点总结+同步测试)  通用版
解:如图所示:
点评:此题解答的关键在于找出三角形 ABC 边的中点,进而解决问题.
五.等积变形(位移、割补)
【知识点归纳】 等积变形的主要方法是: 1.三角形内等底等高的三角形
2.平行线内等底等高的三角形 3.公共部分的传递性 4.极值原理(变与不变) 【命题方向】
例 1:求如图的体积.(π取 3.14)
解:小路面积为:(20+14)×2-2×2=64(平方米), 答:小路的占地面积 64 平方米. 点评:利用等积变形、平移知识把曲折的小路拉直,就变成规则的图形包括三部分竖的长方形, 横的长方形和重叠的小正方形,进而解答.
同步测试
一.选择题(共 10 小题) 1.数一数,图中共有( )条线段.
A.1
A.不公平 5.如图中,一共有线段(
B.公平 )条.
C.无法判断
A.5
B.7
C.8
D.9
6.如图,一个正方形被分成甲和乙两部分,两部分的周长相比,甲的周长(
)乙的周长.
A.大于
B.等于
C.小于
7.一只小蚂蚁沿着甲、乙两图分别行走一周(如图),它行走的路线( )
A.一样长
B.甲长
C.乙长
D.不确定
8.有一些长 3 厘米,宽 1 厘米的长方形纸片,至少需要( )张这样的纸片才能拼成一个正方形.
B.2
C.3
2.把一张平行四边形卡片剪一刀分成两个图形,下面几种情况中不可能出现的是( )
A.两个三角形
B.两个平行四边形
C.两个梯形
D.一个平行四边形与一个梯形
3.如图中,甲、乙两部分的周长相比( )
A.一样长
B.甲图长
C.乙图长
D.无法判断

小升初数学复习几何图形—专题01《组合图形的计数》(解析版)

小升初数学复习几何图形—专题01《组合图形的计数》(解析版)

几何图形—专题01《组合图形的计数》一.选择题1.(2019秋•丰台区期末)如图中,一共有线段()条.A.5B.7C.8D.9【解答】解:(321)(21)++++=+63=(条)9答:一共有线段9条.故选:D.2.(2019秋•皇姑区期末)数一数,图形中有()个三角形.A.3B.4C.5D.6【解答】解:根据题干分析可得:3216++=(个).答:图形中有6个三角形.故选:D.3.(2019秋•白云区期末)如图,以给出的点为端点,能画出()条线段.A.5B.6C.无数条++=(条)【解答】解:3216答:能画出6条线段.故选:B.4.(2019秋•迎江区期末)图中共有()条线段.A.8B.9C.10+++=(条).【解答】解:根据线段的定义可得:图中的线段有:432110答:图中共有10条线段.故选:C.5.(2019•郑州)如图所示,已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的格点上,点C也在小方格的格点上,且以A,B,C为顶点的三角形的面积为1个平方单位,则满足条件的C点的个数为()A.3 个B.4 个C.5 个D.6 个∆的面积为1时,可分两种情况;当底边为2,高为1时,如图:【解答】解:由分析可知:ABC有6种情况;当底边为1,高为2时,没有符合的点使三角形的面积为1,所以符合条件的格点C共有6个.故选:D.6.(2018秋•长春期中)把6个完全相同的小正方体摆放在墙角,()摆法露在外面的面最多.A.B.C.D.++=(个)【解答】解:A、54312++=(个)B、54413++=(个)C、54413++=(个)D、55414<<121314故选:D.7.如图,每个小方格里最多放入一个“☆”,要想使得同一行、同一列或对角线上的三个小方格都不同时出现三个“☆”,那么这九个小方格里最多能放入()个.A.1B.5C.6D.7++=(个),【解答】解:如图2226答:九个小方格里最多能放入“☆”6个.故选:C.8.如图是用三个大小相等的圆制作出的图案,这个图案可以分割出10个同样的扇形.照这样用五个大小相等的圆制作出的图案,可以分割出()个同样的扇形.A.12B.14C.16+-⨯【解答】解:6(51)2=+68=(个)14答:可以分割出14个同样的扇形.故选:B.二.填空题9.(2019秋•濉溪县期末)如图中有7个梯形,个平行四边形,个三角形.++=(个)【解答】解:梯形有:3227平行四边形有4个三角形有4个.答:有7个梯形,4个平行四边形,4个三角形.故答案为:7;4;4.10.(2019秋•薛城区期末)观察图中数角.3个直角,个锐角,个钝角.【解答】解:观察图可知:3个直角,7个锐角,2个钝角.故答案为:3,7,2.11.(2019春•端州区月考)是由4个小三角形拼成的.【解答】解:根据分析可得,+=(个)134答:是由4个小三角形拼成的.故答案为:4.12.(2019•深圳)如图中共有27个等边三角形.【解答】解:单个的小三角形有16个,由4个小三角形组成的三角形有7个,9个小三角形组成的大三角形有3个,16个小三角形组成的大三角形有1个,1673127+++=(个)答:如图中共有27个等边三角形.故答案为:27.13.(2019•北京模拟)用同样大小的木块堆成了如图所示的形状,这里共用了50个木块.【解答】解:第1层木块的个数为16,第2层木块的个数为15,第3层木块的个数为12,第4层木块的个数为7,+++=(个)161512750答:这里共用了50个木块.故答案为:50.14.(2019•湘潭模拟)平面中有15个红点,在这些红点间连一些线段,一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了85条线段.【解答】解:将15个点分为5组,每组分别有1,2,3,4,5个点,⨯+⨯+⨯+⨯+⨯÷(114213312411510)2=÷1702=(条)85答:这15个红点间最多连了85条线段.故答案为:85.15.(2018秋•沧州期末)图中有10条线段.【解答】解:由图可知:以A、B、C、D、E为起点的线段各有4条;则图中线段的条数,剔除重复计算的线段后共有:⨯÷452=÷202=(条).10答:图中有10条线段.故答案为:10.16.(2018秋•长阳县期末)图中有10条线段,条射线,条直线.【解答】解:由分析可知:图中有10条线段,10条射线,1条直线;故答案为:10,10,1.17.(2018春•青龙县期末)如图中一共有55个三角形.++⋯++++【解答】解:底边上线段一共有:1094321=⨯+÷10(101)2=(个)55所以一共有55个三角形.故答案为:55.三.判断题18.(2019秋•文水县期末)淘气数出如图中有16条线段.⨯(判断对错)++++⨯+【解答】解:根据题干分析可得:(54321)26=⨯+1526=+306=(条)36所以图中一共有36条线段,淘气的说法是错误的.故答案为:⨯.19.(2019•亳州模拟)在一条线段上共有9个点,则这9个点可以构成38条线段.⨯(判断对错)【解答】解:8765432136+++++++=(条)即,在一条线段上共有9个点,则这9个点可以构成36条线段.原题说法错误.故答案为:⨯.20.(2018秋•惠州期末)如图,一共有15条线段.⨯(判断对错)【解答】解:762⨯÷422=÷21=(条)答:一共有21条线段.故题干的说法是错误的.故答案为:⨯.21.(2018•上海)在一条线段中间另有6个点,则这8个点可以构成27条线段.⨯(判断对错)【解答】解:这条线段上有628+=个点故这条线段上的线段共有:(1)8(81)2822n n-⨯-==(条).原题说法错误.故答案为:⨯.22.在一张纸上画3条直线,最多可以将纸分成7部分.√(判断对错)【解答】解:11237+++=(部分)答:最多可以将纸分成7部分.故题干的说法是正确的.故答案为:√.四.应用题23.如图中一共有几个角?⨯÷【解答】解:652=÷302=(个)15答:图中一共有15个角.24.观察下面的图,数一数,图中有多少个三角形?【解答】解:图中单个的三角形有16个;2个组合的三角形有16个;4个组合的三角形有8个;8个组合的三角形有4个.+++=(个).所以共有三角形:16168444答:图中有44个三角形.25.(2015•徐州)今有长度分别为1,2,⋯,9的线段各一条,现从中选出若干条线段组成“线段组”由这一组线段恰好可以拼成一个正方形,请通过分析说明这样的“线段组”的组数总共有多少?【解答】解:不同的选法有9种:选用8条的3种:+=+=+=+(边长为11),第1种(不用1):29384756+=+=+=+(边长为10),第2种(不用5):19283746+=+=+=+(边长为9),第3种(不用9):18273645选用7条的6种:+=+=+=(边长为9),第4种(不用1和8):2736459+=+=+=(边长为9),第5种(不用2和7):1836459+=+=+=(边长为9),第6种(不用3和6):1827459+=+=+=(边长为9),第7种(不用4和5):1827369+=+=+=(边长为8),第8种(不用4和9):1726358+=+=+=(边长为7),第9种(不用8和9):1625347=+=+,还剩3选用6条以下的除了最大的一条边,其余最多剩5条组成不了另三条相等的边如:61524没法组成6了.答:这样的“线段组”的组数总共有9种.26.一条线段上有21个点(包括两个端点),相邻两点的距离都是4厘米,所有线段长度的总和是多少?-=份,【解答】解:每相邻的两点之间的距离看作1个单位长度,最长的线段有21120+⨯÷(201)2022110=⨯=(个)210⨯÷+⨯÷+⨯÷+⋯+⨯÷+⨯÷2120220192191823222121=⨯⨯⨯÷(202122)32=1540⨯=(厘米)415406160答:所有线段长度的总和是6160厘米.五.操作题27.(2017秋•瑞金市期中)数一数每个图形各有多少个小正方体.++=(个)【解答】解:(1)4318++=(个)(2)54110++=(个)(3)86317++=(个)(4)74213故答案为:8、10、17、13.28.(2017秋•瑞金市期中)数一数.图1一共10个角图2 一共有个三角形,个梯形,个平行四边形.-⨯÷【解答】解:(1)(51)52=÷202=(个)10答:一共10个角.+=(个)(2)三角形有112+++=(个)梯形有11114+=(个)平行四边形有213答:图中有2个三角形,4个梯形,3个平行四边形.故答案为:10;2,4,3.29.数一数、填一填.++=(个)【解答】解:(1)3216答:一共有6个角.++=(个)(2)94114答:一共有14个角.故答案为:.30.在“三子棋”中.棋盘为九宫格(如图),请问九宫格中可以三格相连的直线共有几条?并在图中画出来.【解答】解:如图答:九宫格中可以三格相连的直线共有8条.并在图中画出来如上图.31.(2016秋•七里河区校级期中)数一数15条线段.++++=(条)【解答】解:1234515答:有15条线段.故答案为:15.32.(2015秋•武汉期中)数数图中有多少条线段++++++【解答】解:(123)(1234)=+610=(条)16答:图中有16条线段.33.(2015春•江门校级期末)数一数,下面的图形有几个梯形?几个平行四边形?梯形有15个,平行四边形有个.【解答】解:由分析得出:++++++=(个)212133315平行四边形有3个答:梯形有15个,平行四边形有3个.故答案为:15,3.34.用四条直线分别画出交点数是1、3、5个的图形.(下图是交点数为4个的图形).4条直线最多能有几个交点?【解答】解:如图:答:4条直线最多能有6个交点.35.(1)请画一个60度的角(2)请画一个比平角小45度的角.(3)下图中各有几个角?【解答】解:(1)(2)(3)六.解答题36.(2019秋•綦江区期末)图中直角有5个,锐角有个,钝角有个.【解答】解:观察图形可知,图中直角有5个,锐角有2个,钝角有1个.故答案为:5,2,1.37.(2019秋•会宁县期末)下图一共有10条线段.【解答】解:由题意可得,图形中的线段有:AC,AD,AE,AB,CD,CE,CB,DE,DB,EB,共10条.故答案为:10.38.(2019春•黄冈期末)在原图中,分别添加1条、2条、3条竖线,每幅图中各包含多少个长方形?请将个数填入图形下方的括号里.【解答】解:由分析可得:故答案为:3;6;10.39.(2018秋•涿州市期末)数一数.【解答】解:角:4(41)62⨯-=(个)线段:5(51)102⨯-=(条)正方形:11⨯的正方形有6个,由22⨯个小方格构成的正方形有2个,628+=(个)如图所示:故答案为:6,10,8.40.(2018秋•高碑店市期末)观察如图所示的图形,第(1)个图形有3个三角形,第2个图形有8个三角形.(1)数一数,第(3)个图形中共有15个三角形;笫(4)个图形中共有个三角形.(2)根据你发现的规律判断:第(20)个图形共有个三角形.++⨯+【解答】解:(1)(321)23623=⨯+=+123=(个)15+++⨯+(4321)24=⨯+1024=+20424=(个)答:第(3)个图形中共有15个三角形;笫(4)个图形中共有24个三角形;(2)由(1)的计数方法可得:(120)202220+⨯÷⨯+=⨯÷⨯+21202220=+42020440=(个)答:第(20)个图形共有440个三角形.故答案为:15;24;440.41.(2016秋•七里河区校级期中)图中共有10个角.+++=(个)【解答】解:根据题干分析可得:432110答:一共有10个角.故答案为:10.。

第10讲 组合计数

第10讲 组合计数

第10讲 组合计数一、知识解读组合计数就是计算集合的元素个数.它是组合数学的重要组成部分.在具体问题中给出的集合各式各样,都具有实际意义,而且集体中的元素是由某些条件所确定的,要判定一个元素是否属于某集合A ,已非易事,要确定A 的元素个数就更难了.这正是研究计算问题的原因.解决组合计算问题虽然不需要高深理论知识,却需要重要的计算原理与思想方法. 排列组合题的求解策略:(1)排除:对有限条件的问题,先从总体考虑,再把不符合条件的所有情况排除,这是解决排列组合题的常用策略.(2)分类与分步:有些问题的处理可分成若干类,用加法原理,要注意每两类的交集为空集,所有各类的并集是全集;有些问题的处理分成几个步骤,把各个步骤的方法数相乘,即得总的方法数,这是乘法原理.(3)优先法:对于带有特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其它元素.(4)插空:某些元素不能相邻或某些元素在特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后将有限制条件的元素按要求插入到排好的元素之间.(5)捆绑:把相邻的若干特殊元素“捆绑”为一个“大元素”,然后与其它“普通元素”全排列,然后再“松绑”,将这些特殊元素在这些位置上全排列.(6)定序法:对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一同排列,然后用总排列数除以这几个元素的全排列数.(7)隔板模型:对于将不可辨的球装入可辨的盒子中,求装的方法数,常用隔板模型.如将12个完全相同的球排成一列,在它们之间形成的11个缝隙中任意插入3块隔板,把球分成4堆,分别装入4个不同的盒子中的方法数应为311C ,这也就是方程12a b c d +++=的正整数解的个数.几种特殊的排列、组合 1.重复排列定义2:从n 个不同元素中允许重复的任取r 个元素排成一列,称为n 个不同元素的r ——可重复排列.定理2:n 个不同元素的r ——可重排列数为r n .证明:在按顺序选取的r 个元素中,每个元素都有n 种不同的选法,故由乘法原理有,其排列数为r n .2.圆排列定义1:从n 个不同元素中任取r 个元素仅按元素之间的相对位置而不分首尾排成一个圆圈,这种排列称为n 个不同元素的r ——圆排列.r ——圆排列数记为r n K .定理1:.r r nnA K r=证明:对n 个不同元素取r 个的任一圆排列,均有r 种不同的方式展开成r 个不同的直线排列,且不同的圆排列展开的直线排列也彼此不同,故有r rn nr K A ⋅=. 3.不全相异元素的全排列定义3:设n 个元素可分为k 组,每一组中的元素是相同的,不同组间的元素是不同的,其中第i 组的元素个数为(1, 2,, )i n i k =⋯, 12k n n n n ++⋯+=,则这n 个元素的全排列称为不全相异元素的全排列.定理3:n 个元素的不全相异元素的全排列个数为12!..!!!k n n n n证明:先把每组中的元素看做是不相同的,则n 个不同元素的全排列数为n !,然后分别将每个组的元素还其本来面目看成是相同的,则在这n!个全排列中,每个排列都重复出现了12!!!k n n n 次,所以不全相异元素的全排列数12!..!!!k n n n n4.多组组合定义4:将n 个不同的元素分成k 组的组合称为n 个不同元素的k ——组合.定理4:对于一个n 个不同元素的k ——组合,若第i 组有n i 个元素(i =1, 2, …,k ),则不同的分组方法数为12!..!!!k n n n n证明:我们把分组的过程安排成相继的k 个步骤.第一步,从n 个不同元素中选n 1个,有1n n C 种方法;第二步,从n -n 1个元素中选n 2个有21n n n C -种方法;…;第k 步,从121k n n n n --++⋯+()个元素中选n k 个元素,有121kk n n n n n C --++⋯+()种方法,再由乘法原理得证.5.重复组合定义5:从n 个不同元素中任取r 个允许元素重复出现的组合称为n 个不同元素的r ——可重组合.定理5:n 个不同元素的r ——可重组合的个数为1n r r C +-.证明:设(a 1 , a 2 ,…,a r )是取自{1,2,…,n }中的任一r 可重复组合,并设a 1≤a 2≤…≤a r .令 b i =a i +i -1(1≤i ≤r ),从而b 1=a 1 , b 2=a 2+1 , b 3=a 3+2,…, b r =a r +r -1.显然下面两组数是一对一的:a 1≤a 2≤…≤a r ,1≤a 1<a 2+1<a 3+2<…<a r +r -1≤n+r -1. 设 1212{,,,|{12,,},}r i r A a a a a n a a a =⋯∈⋯≤≤⋯≤(),, 1212 {,,,|{12,1}}r i r B b b b b n r b b b =⋯∈⋯+<<⋯<(),,-,.则由A 、B 之间存在一一对应,故r ——可重组合的个数为1n r r C +- . 二、解题指导例1. (1)被3整除而又含有数字6的五位数有 .解答:12504(2)用8个数字1,1,7,7,8,8,9,9可以组成不同的四位数有 个. 解答:4212224443426+204A C C C A C +⋅⋅⋅=(3)将1n +个不同的小球放入n 个不同的盒子中,要使每个盒子都不空,共有种放法. 解答:21!C n n +(4)用4个1号球,3个2号球,2个3号球摇出一个9位的奖号,共有 种可能的号码. 解答:4329521260C C C =(5)方程1231023x x x x +++⋯+=有 个非负整数解.解答:设(x 1, x 2,…,x 10)是原方程组的一个非负整数解,由于x i ≥0(i=1, 2, 10),因此, 2x 1≤2x 1+x 2+x 3+x 4+x 5+x 6+x 7+x 8+x 9+x 10=3,即2x 1≤3,所以x 1=0,1.下面分两种情形: (1)x 1=0,则x 2+x 3+…+x 10=3, 所以x i =0 , 1, 2 , 3 (i=2, 3 , …,10). 如果有某个x i =3,则其他x i =0,这样解有C 19=9(个).如果某个x i ≠3,若某个x i =2,则必有一个x j =1,i ≠j ,2≤i, j ≤9,这样解有C 19·C 18=72 如果对每个x i ≠2,3,则x 2, x 3,…,x 10中必有三个x i (2≤i ≤10)为1,这样解有C 93=84 (2)x 1=1,则x 2+x 3+…+x 10=1, 因此x 1,x 2,x 3…x 10中仅有一个是1,这样解有C 19=9 于是原方程组有1741939181919=++⋅+C C C C C 个非负整数解.例2. 数1447,1005,1231有某些共同点,即每个数都是首位为1的四位数,且每个四位数中恰有两个数字相同,这样的四位数共有多少个?解答:【解】符合条件的四位数必含有一个1或者两个1.(1)含有两个1的情形从除1之外的其余9个数字中任取两个,有C 29种取法,再与其中的一个1组成任意排列的三位数,有P 33种,这样构成的首位为1的四位数共有N 1= C 29 P 33(个). (2)只含有一个1的情形从其余的9个数字中任取两个,有C 29 种取法,其中一个数字被重复选出,有C 12种,这样的三个数字组成的三位数共有233P ,这样构成的首位为1的四位数共有23312292P C C N ⋅⋅=(个).因此,符合题意的四位数共有N=N 1+N 2=432(个).例3. 在正方体的8个顶点,12条棱的中点,6个面的中心及正方体的中心共27个点中,共线的三点组的个数是多少个?解答:27个点成3*3*3排列。

小学奥数第五讲:图形的计数

小学奥数第五讲:图形的计数

小学奥林匹克数学第一集:第五讲:图形的计数一、数一数小朋友,你知道中有多少个三角形吗?我们可以这样想,图中的小三角形一共有4个,大三角形有1个,所以一共有5个三角形。

在数数时,要做到有次序,有条理,不遗漏也不重复,这样才能正确地数数。

例1:数一数下图各有几条线段?分析:我们可以照下面的方法数:解:共有线段4+3+2+1=10(条)例2:图中有多少个小正方体?分析:这个图形是由小正方体组成的。

可以采用数数的方法,按顺序数。

也可以根据图形的组成规律进行计算,如果每2个一摞,一共有4摞。

解:方法一:一个一个地数出8个正方体。

方法二:2×4=8(个)答:共有8个小正方体。

例3:将9个小正方体组成如图所示的“十”字形,再将表面涂成红色,然后将小正方体分开。

问(1)2面涂成红色的有几个?(2)4面涂成红色的有几个?(3)5面涂成红色的有几个?分析:整个图形表面涂成红色。

只有“粘在一起的”面没有涂色。

中间的一个小正方体2面涂色,四端的4个小正方体都是5面涂色,剩下的四个小正方体都是4面涂色。

解:(1)2面涂成红色的小正方体只有1个。

(2)4面涂成红色的小正方体有4个。

(3)5面涂成红色的小正方体有4个。

例4:亮亮从1写到100,他一共写了多少数字“1”?分析:在1到100这100个数中,“1”可能出现在个位、十位或百位上。

应分三种情况计数:“1”在个位上的数有:1、11、21、31、41、51、61、71、81、91共10个;“1”在十位上的数有:10、11、12、13、14、15、16、17、18、19共10个;“1”在百位上的数有:100 只有1个。

解:10+10+1=21(个)答:共写21个。

例5:27个小方块堆成一个正方体。

如果将表面涂成黄色,求:(1)3面涂成黄色的小方块有几块?(2)1面涂成黄色的小方块有几块?(3)2面涂成黄色的小方块有几块?分析:涂色的有26个小方块。

3面涂色的只有顶点上的8个小方块;1面涂色的只有六个面上中间的小方块;其余的必然是2面涂色的小方块。

基本的组合计数公式

基本的组合计数公式

02 基本的组合计数公式
定义
• 排列数公式是指从n个不同元素中取出m个元素(0≤m≤n) 进行排列的种数。计算公式阶乘表示法
$A_{n}^{m} = n(n-1)(n-2)...(n-m+1)$
排列数公式
$A_{n}^{m} = frac{n!}{(n-m)!}$
应用
• 排列数公式在组合数学、统计学、概率论等领域 有广泛应用,用于计算排列组合问题。
组合计数的应用场景
01
02
03
04
概率计算
在概率论中,组合计数用于计 算事件发生的可能性,如排列 组合问题、贝叶斯定理等。
统计学
在统计学中,组合计数用于样 本空间大小的计算,以及参数
估计和假设检验等。
计算机科学
在计算机科学中,组合计数用 于算法复杂度分析、数据结构
和算法设计等。
金融学
在金融学中,组合计数用于资 产配置和风险管理等。
基本的组合计数公式
目 录
• 组合计数的定义 • 基本的组合计数公式 • 组合计数公式的推导 • 组合计数公式的证明 • 组合计数公式的应用
01 组合计数的定义
组合计数的概念
组合计数是数学中研究从n个不 同元素中选取r个元素(不放回) 的种数的方法。
组合计数公式通常表示为C(n, r) = n! / (r!(n-r)!),其中"!"表示 阶乘。
THANKS FOR WATCHING
感谢您的观看
错排公式的推导
错排公式
$D_n = n!*(1/2! - 1/3! + ... + (-1)^n/n!)$
推导过程
错排公式是用来计算在n个元素中放错位置的排列个数 。首先,考虑所有元素都放错位置的情况,即第一个元 素放在第二个位置,第二个元素放在第三个位置,以此 类推,最后一个元素放在第一个位置。这种情况下的排 列数为$n!/2!$。然后考虑只有一个元素放错位置的情 况,即第一个元素放在第二个位置,第二个元素放在第 一个位置,其他元素都放错位置,这种情况下的排列数 为$n(n-1)!/2!$。以此类推,可以得到错排公式。

七年级数学奥数《几何图形的计数问题》教学课件

七年级数学奥数《几何图形的计数问题》教学课件
• 4×8+5×16+6×4+10×4+8×4+11×4+16×1
=268(个).
• 例6、(1)、图1-70(a)中有多少个三角形? • (2)、图1-70(b)中又有多少个三角形?
• 解: • (1) 图1-70(a)中有6条直线.一般来说,每3条直
线能围成一个三角形,但是这3条直线如果相交 于同一点,那么,它们就不能围成三角形了. • 从6条直线中选3条, • 有 6 5 4 20 种选法(见说明),
有三个最小的尖向上的三角形(左、右、下各一个), • 所以最小的三角形不是21个而是24个. • 于是尖向上的三角形共1+3+6+10+15+24=59(个). • 图中共有三角形59×2=118(个).
• 例5、图1-69中有多少个等腰直角三角形?
• 解:图1-69中有5×5+4×4=41个点.在每点标 一个数,它等于以这点为直角顶点的等腰直角三 角形的个数.因此,共有等腰直角三角形
• (1)、若点Pn在某个小三角形的内部,如图1-73(a),则原 小三角形的三个顶点连同Pn将这个小三角形一分为三, 即增加了两个小三角形;
• (2)、若点Pn在某两个小三角形公共边上,如图1-73(b).
• 则这两个小三角形的顶点连同点Pn将这两个小三角形分 别一分为二,即也增加了两个小三角形.
• 4个圆最多将平面分成8+6=14个部分.
• 5个圆最多将平面分成14+8=22个部分.
• 所以,5个圆最多将平面分成22个部分.
• 说明:用上面类似的方法,我们可 以计算出n个圆最多分平面的部分 数为:
• 2+1×2+2×2+…+(n-1)×2

【小升初专项训练】01 组合图形的计数

【小升初专项训练】01 组合图形的计数

第1讲组合图形的计数第一关【知识点】1.组合图形的概念:圆,三角形,正多边形,梯形,平行四边形为基本图形其余的为组合图形,可以用辅助线分解为基本图.2.组合图形的计数实质上就是分类数图形,解决方法是:(1)合理进行分类.(2)利用排列组合的有关公式进行每一个类的数量计算.(3)将所有的类的数量进行相加.(4)仔细检查,防止遗漏.【例1】图中有多少个三角形?【答案】3【例2】数一数,图中一共有多少个三角形?【答案】13【例3】数一数,图中一共有多少个三角形?【答案】27【例4】数一数,图中一共有多少个三角形?【答案】48【例5】数一数,图中一共有多少个三角形?【答案】9【例6】数一数,图中一共有多少个三角形?【答案】8【例7】数一数,图中一共有多少个三角形?【答案】8【例8】数一数,图中一共有多少个三角形?【答案】20;24;24【例9】数一数,图中一共有多少个三角形?【答案】35【例10】数一数,图中一共有多少个三角形?【答案】67【例11】数一数,图中一共有多少个三角形?【答案】11【例12】数一数,图中一共有多少个三角形?【答案】40【例13】图中,有多少个三角形?【答案】16【例14】数一数,图中一共有多少个三角形?【答案】8【例15】数一数,图中一共有多少个三角形?【答案】13【例16】数一数,图中一共有多少个三角形?【答案】12【例17】数一数,图中一共有多少个三角形?【答案】11【例18】数一数,图中一共有多少个三角形?【答案】20【例19】数一数,图中一共有多少个三角形?【答案】12【例20】如图中有多少个三角形?【答案】27【例21】如图中有多少个三角形?【答案】17【例22】如图中有多少个三角形?【答案】10【例23】数一数,图中有多少个三角形?【答案】27【例24】图中有多少个三角形?【答案】14【例25】图中有多少个三角形?【答案】11【例26】数一数,图中共有多少个三角形?【答案】15【例27】如图是一些等腰直角三角形组成的图形,图中一共有多少个三角形?【答案】23【例28】如图中,一共有多少个三角板?【答案】12【例29】如图中共能数出多少个三角形?【答案】24【答案】24【例31】在△ABC中,D1、D2、D3为AB边的内分点,E1、E2、E3为AC边的内分点,那么图中有多少个三角形?【答案】64【例32】如图中共能数出多少个三角形?【答案】11【例33】如图中,共有多少个三角形?【答案】10【例34】数一数,图中共有多少个三角形?【答案】10【例35】数一数,图中共有多少个三角形?【答案】12【答案】16【例37】数一数,图中共有多少个三角形?【答案】18【例38】数一数,图中共有多少个三角形?【答案】30【例39】数一数,图中共有多少个三角形?【答案】28【例40】如图中,一共有多少个三角形?【答案】32【例41】如图中,一共有多少个三角形?【答案】72【例42】如图中,一共有多少个三角形?【答案】22【例43】图中共有多少个三角形?【答案】60【例44】下图中共有多少个三角形?【答案】8【例45】下图中共有多少个三角形?【答案】24【例46】下图中共有多少个三角形?【答案】34【例47】下图中共有多少个三角形?【答案】35【例48】下图中共有多少个三角形?【答案】16【例49】下图中共有多少个三角形?【答案】30【例50】下图中共有多少个三角形?【答案】22【例51】下图中共有多少个三角形?【答案】62【例52】下图中共有多少个三角形?【答案】10【例53】下图中共有多少个三角形?【答案】35【例54】下图中共有多少个三角形?【答案】32【例55】下图“七角星”中共有多少个三角形?【答案】35【例56】下图中共有多少个三角形?【答案】20【例57】下图中共有多少个三角形?【答案】40【例58】如图,图中3个大三角形都是等边三角形,则图中共有多少个三角形?【答案】30【例59】如图中有多少个三角形?【答案】76【例60】如图中有多少个三角形?【答案】76【例61】如图中,包含“”的三角形有多少个?【答案】4【例62】如图,数一数其中共有多少个包含“☆”的三角形?【答案】8【例63】如图是由18个大小相同的小正三角形拼成的四边形.其中某些相邻的小正三角形可以拼成较大的正三角形若干个.那么,图中包含“*”号的大、小正三角形一共有多少个?【答案】6【例64】如图,图中包含“★”的大、小三角形共有多少个?【答案】12【例65】数一数如图中共有多少个包含“﹡”号的三角形?【答案】6【例66】图中,共有多少个直角三角形?【答案】16【例67】图中,共有多少个等边三角形?【答案】14【例68】数一数,图中一共有多少个正三角形?【答案】44【例69】如图,四边形ABCD与CEFG是边长相等的正方形,且B、C、G在一条直线上,则图中有多少个等腰直角三角形?【答案】22【例70】如图,连接一个正六边形的各顶点,问图中共有多少个等腰三角形(包括等边三角形)?【答案】38【例71】圆周上有8个点,把它们两两相连,若任意三条线都不交于一点,那么图中顶点全在圆内的三角形共有多少个?【答案】56【例72】如图,有这样的两条线,请问从这5个点中任选三个点可以构成多少个不同的三角形?【答案】8【例73】木板上钉有五颗钉子(如图所示,排成两行),用橡皮筋可以套出多少个三角形?【答案】9【例74】如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出多少个正三角形?【答案】13【例75】以平面上4个点为端点连接线段,形成的图形中最多可以有多少个三角形?【答案】8【例76】平面上有四个点,任意三个点都不在﹣条直线上.以这四个点为端点连接六条线段,在所组成的图形中用它们作顶点可以组成多少个三角形?【答案】4【例77】以平面上任意4个点为顶点的三角形中,钝角三角形最多有多少个?【答案】4【例78】从图中两个正方形的7个顶点中选出3个点作为顶点构成三角形,一共可以构成多少个不同的三角形?【答案】32【例79】如图由5个大小相同的正方形构成.以图中12个点为顶点的三角形共有多少个?【答案】200【例80】长方形内有2017个点,连同长方形的4个顶点在内,共有2021个点,任意3个点都不在同一条直线上,以这2021个点中的某三点为顶点,可作出多少个互不重叠的三角形?【答案】4036【例81】如图,是由9个点组成的点阵,那么以图中3个点为顶点的直角三角形有多少个?【答案】44【例82】如图有12个点,相邻两个点之间的距离是1厘米,这些点为顶点可以连成多少个面积为3平方厘米的三角形?【答案】26【例83】如图是由四个边长为1的小正方形组织的图形,图中共有9个格点(格点即为小正方形的顶点).如果以这些格点为顶点,那么一共可组成多少个等腰三角形?【答案】36【例84】如图是由32个面积为1的等边三角形组成的一个大的平行四边形,这个大的平行四边形内部及边上共有25个交叉点.以这些交叉点为顶点,可以连成多少个等边三角形?【答案】28【例85】在一个圆周上均匀分布10个点,以这些点为顶点,可以画出多少个不同的钝角三角形?(补充知识:由直径和圆周上的一点构成的三角形一定是直角三角形,其中直径的边所对的角是直角,所以如果圆周上三点在同一段半圆周上,则这三点构成钝角三角形)【答案】60【例86】用9个钉子钉成相互间隔为l厘米的正方阵(如图).如果用一根橡皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形有多少个?【答案】32【例87】如图由4个正六边形组成,每个面积是6,以这4个正六边形的顶点为顶点,可以连接面积为4的等边三角形有多少个?【答案】8【例88】如图,大三角形由9个形状、大小相同的等边三角形组成,共有10个顶点,以这些顶点为顶点构成的三角形中,面积与阴影部分面积相等的三角形共有多少个?【答案】36【例89】如图,一小正方形的边为边向小正方形外作四个正方形,再依次连接几个定点,若图中阴影三角形的面积是S,则面积为2S的三角形有_______个,面积为8S的正方形有_______个【答案】20;1【例90】如图由九个边长为1厘米的正方形组成,在如图中面积为0.5平方厘米的三角形有_______个.面积为1平方厘米的三角形有_______个,面积为1.5平方厘米的三角形有_______个,面积最大的三角形的面积是_______平方厘米.【答案】5;11;2;2.5【例91】在图中填上2条直线,最多能数出多少个三角形?【答案】10【例92】今有甲、乙两个大小相同的正三角形,各画出了一条两边中点的连线,如图,甲、乙位置左右对称,但甲、乙内部所画线段的位置不对称,从图中所示的位置开始,甲向右水平移动,直至两个三角形重叠后在离开.在移动过程中的每个位置,甲与乙所组成的图形中都有若干个三角形,那么三角形个数最多的位置,图形中有多少个三角形?【答案】11【例93】如图,在正方形的内部放入1个点,就可以把原来的正方形分成了4个小三角形;在正方形的内部放入2个点,就可以把原来的正方形分成了6个小三角形.那么如果在正方形的内部放入10个点,最多能把原来的正方形分成了多少个小三角形?【答案】22【例94】在一张三角形纸内任作2009个互不重合的点(所有的点都不在三角形的任意一条边上),以这2009个点和三角形纸的3个顶点为顶点的三角形,最多能剪出多少个?【答案】4019【例95】在三角形ABC中,D是BC的中点,图中面积相等的三角形共有多少对?【答案】6第二关【知识点】【例96】图中一共能数出多少正方形?【答案】26【例97】图中一共能数出多少正方形?【答案】55【例98】图中一共能数出多少正方形?【答案】26【例99】图中一共能数出多少正方形?【答案】23【例100】图中一共能数出多少正方形?【答案】14【例101】.将4×4的大正方形切割为16个1×1的小正方形,擦去其中的两条线段,得到如图所示图形.则图中一共有多少个正方形?【答案】22【例102】图中一共能数出多少正方形?【答案】20【例103】图中一共能数出多少正方形?【答案】13【例104】图中一共能数出多少正方形?【答案】17【例105】图中一共能数出多少正方形?【答案】35【例106】图中一共能数出多少正方形?【答案】46【例107】图中一共能数出多少正方形?【答案】10【例108】图中一共能数出多少正方形?【答案】14【例109】图中共有多少个正方形?【答案】17【例110】数一数,图中共有多少个正方形?【答案】23【例111】数一数,图中共有多少个正方形?【答案】18【例112】数一数,图中共有多少个正方形?【答案】11【例113】数一数,图中共有多少个正方形?【答案】20【例114】数一数,图中共有多少个正方形?【答案】15【例115】数一数,图中共有多少个正方形?【答案】28【例116】如图由相同的正方形和相同的等腰直角三角形构成,求正方形的个数。

组合计数(高中数学竞赛)

组合计数(高中数学竞赛)

组合计数(高中数学竞赛)兰州老师讲的组合数学,看晚会有一定帮助高中数学竞赛中组合方法应用组合计数主讲人:刘海宁兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数应用组合方法解决计数问题(组合计数问题)1分类计数2几个计数原理(加法原理与乘法原理、极值原理、抽屉原理、容斥原理、最小数原理、从反面考虑问题等)3排列组合计数公式:Cnmn(n1)(n2)(nm1)m!Pnmn(n1)(n2)(nm1)兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数4不定方程非负整数解的组数的计数公式模型不定方程某1某2某nm的正整数解(某1,某2,,某n)的个数为:Cm1n1不定方程某1某2某nm的非负整数解n(某1,某2,,某n)的个数为:m1n1C5数学归纳法、递推、逐步调整、算两次等方法与技巧兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院兰州老师讲的组合数学,看晚会有一定帮助组合方法组合计数兰州交通大学数理与软件工程学院。

高一联赛班寒假第1讲组合计数(一)

高一联赛班寒假第1讲组合计数(一)

组合数学是竞赛中最重要的一个板块,也是变化最多,最灵活,难以掌握,至今还没有一个系统体系的.解决竞赛中的组合数学问题,往往不需要太多专门的知识,而是要求深刻的洞察能力和强大的化归、转化能力.所谓“得组合者得天下”,在联赛一二试乃至冬令营、集训队、IMO 中,最后的胜者往往是成功完成组合问题的同学.因此,学习组合数学对于竞赛获奖以及数学能力的培养都有着十分重要的意义.从本讲开始,我们将用七讲来对组合数学做一个大致的勾勒.通过这七讲的学习,达到以下目的: 1、掌握联赛一二试组合问题的特点与解法;2、对组合数学这门有一个初步的认识,为进一步学习打下基础;3、了解部分冬令营级别组合问题的难度与解题模式.七讲内容分别为:一、组合计数(1) 比高考略难的基本计数问题 二、组合计数(2) 需要较多技巧的专门计数问题 三、组合恒等式 较为重要和有趣味的组合恒等式 四、抽屉原理与存在性问题 五、容斥原理与极端性原理六、染色问题与操作问题 七、组合数学综合问题本讲中,假定各位同学已经大致学完了高考难度的排列组合模块内容,对加法原理、乘法原理等有一定的理解并能完成相关的问题.首先给出一些相关的基本知识:1、 加法原理与乘法原理加法原理:完成一件事的方法可分成n 个互不相交的类,在第1类到第n 类分别有12,,...,n m m m 种方法,则总共完成这件事有121...ni n i m m m m ==+++∑种方法.应用加法原理的关键在于通过适当的分类,使得每一类都相对易于计数.乘法原理:完成一件事的方法有n 个步骤,,在第1步到第n 步分别有12,,...,n m m m 种方法,则总共本讲概述第1讲 组合计数(一)完成这件事有121...ni n i m m m m ==∏种方法. 应用乘法原理的关键在于通过适当的分步,使得每一步都相对易于计数.由上可见,加法原理与乘法原理也是化归思想的应用,通过这两个原理以及它们的组合,可以将一个复杂的组合计数问题分解成若干个便于计数的小问题.2、 无重排列与组合阶乘:定义 !(1)(2)...21n n n n =⋅-⋅-⋅⋅⋅,读作n 的阶乘无重排列:从n 个不同元素中任取m 个不同元素排成一列,不同的排列种数称为排列数,记为mn A (部分书中记为m n P ),由乘法原理得到!(1)...(1)()!mn n A n n n m n m ==⋅-⋅⋅⋅-+-无重组合:从n 个不同元素中任取m 个元素并为一组,不同的组合种数称为组合数,记为m n C ,其公式为(1)...(1)!!!()!!m mn nA n n n m n C m m n m m ⋅-⋅⋅⋅-+===- 3、 可重排列与组合可重排列:从n 个不同元素中可重复地任取m 个元素排成一列,不同的排列种数有m n 种; 有限个重复元素的全排列:设n 个元素由k 个不同元素12,,...,k a a a 组成,分别有12,,...,k n n n 个(12...k n n n n +++=),那么这n 个元素的全排列数为12!!!...!k n n n n ⋅⋅⋅可重组合:从n 个不同元素中,任意可重复地选取m 个元素,称为n 个不同元素中取m 个元素的可重组合,其种数为1mn m C +-4、 圆排列在n 个不同元素中,每次取出m 个元素排在一个圆环上,叫做一个圆排列(或叫环状排列).圆排列有三个特点:⑴ 无头无尾;⑵ 按照同一方向转换后仍是同一排列;⑶ 两个圆排列只有在元素不同或者元素虽然相同,但元素之间的顺序不同,才是不同的圆排列.在12{,,...,}n A a a a =的n 个元素中,每次取出m 个不同的元素进行圆排列,圆排列数为m nA m.联赛一试的填空题中出现的计数问题有接近一半的问题不需要用到很高深的技巧,而是直接利用最基本的加法、乘法原理,以及枚举方法来计数.这主要是考虑到有一部分参加联赛的同学并未经过专业的竞赛训练.虽然如此,这部分计数问题枚举起来往往分类复杂,需要小心仔细.从往年的联赛试题来看,枚举法解决计数问题是最主要的题型之一,其难点在于做到“不重不漏”,这是加法原理的一个简单的应用.枚举过程中,采用恰当的分类、分步形式,往往会收到化难为易的效1.1简单计数知识点睛果.经典精讲【例1】 (高考难度的热身问题)⑴等腰三角形的三边均为正整数.它们周长不大于10.这样不同的三角形的种数为.⑵有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 .【例2】⑴有多少个能被3整除而又含有数字6的五位数?⑵集合{1,2,...,100}的子集中共有多少个至少包含一个奇数?【例3】设ABCDEF为正六边形,一只青蛙开始在顶点A处,它每次可随意地跳到相邻两顶点之一.若在5次之内跳到D点,则停止跳动;若5次之内不能到达D点,则跳完5次也停止跳动,那么这只青蛙从开始到停止,可能出现的不同跳法共种.【例4】从给定的六种不同颜色中选用若干种颜色,将一个正方体的六个面染色,每面恰染一种颜色,每两个具有公共棱的面染成不同的颜色。

初中奥数讲义 组合计数技巧

初中奥数讲义  组合计数技巧

枚举法:设第 i 天取得 ai 1 块金牌,则 ai 0, a1 a2 a11 5 , 若 ai 中有一个 5, 则有 11 种情况; 若 ai 中有 4 和 1,或 2 和 3, 则有 A11 2 220
2
种;若 ai 中有 3、1、1 或 2、2、1,则有
例 1.5(2004 联赛试题)设三位数 n abc ,若以 a,b,c 为三条边的长可以 构成一个等腰(含等边)三角形,则这样的三位数 n 有( A. 45 个 B. 81 个 C. 165 个 )
D. 216 个
【解析】本题是标准的枚举问题,情况繁多. a,b,c 要能构成三角形的边长,显然均不为 0。即 a, b, c {1, 2,...,9} (1)若构成等边三角形,设这样的三位数的个数为 n1 ,由于三位数中三个数码都相同, 所以, n1 C9 9 。
组合计数技巧
计数是组合数学的主要课题,一般来说,组合计数方法是运用排列、组合的 基本公式为基础,依据加法原理、乘法原理,容斥原理,或建立一一对应关系, 递推关系等,以求出精确的计数式 . 组合计数问题是组合数学的基础和重要板 块,所谓“得组合者得天下” ,掌握组合计数技巧的重要性不言而喻. 因此,学 习组合数学, 掌握组合计数技巧对于竞赛获奖以及数学能力的培养都有着十分重 要的意义. 组合计数技巧多种多样,包括组合原理、枚举法、一一对应方法、生成函数 法、递归法等等,本讲重点讲解加法、乘法原理,枚举方法以及一一对应方法.
(1,3,3),(1,4,4),(2,2,2),(2,2,3),(2,3,3),(2,4,4),(3,3,3),(3,3, 4)共 10 种. (2) B
2 限邻排列问题 前排中间的 3 个座位不能坐,有排法 A20 ,其中相邻的分三类,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合图形的计数(A )
年级 ______班 _____ 姓名 _____得分 _____
一、填空题:
1.右图一共有( )个长方形?
2.右图一共有( )个长方形?
3.右图一共有( )个长方
形?
4.右图一共有( )个正方形?
5.右图一共有( )个长方形?
6.右图一共有( )
7.右图一共有( )
8.右图一共有( )
9.右图一共有( )个正方形?
10.右图一共有( )个正方形?
二、解答题:
11.下图共有几个正方形?
12.下图共有几个正方形?
13.在一个图案中有100个矩形、100个菱形和40个正方形,这个图案中至少有多少个平行四边形?
14.三个同样的正方形框架,摆放在适当的位置,最多可以数出多少个正方形来?。

相关文档
最新文档