斜率乘积为定值问题

合集下载

椭圆中两直线斜率积(和)为定值与定点问题

椭圆中两直线斜率积(和)为定值与定点问题

椭圆中两直线斜率积(和)为定值与定点问题例1、已知A,B,P是椭圆x2a2+y2b2=1上不同的三点,且A,B连线经过坐标原点,若直线PA,PB 的斜率乘积k PA·k PB=-2 3,则该椭圆离心率为________.变式训练已知椭圆x2a2+y2b2=1(a>b>0)的离心率e=12,A,B是椭圆的左,右顶点,P为椭圆上不同于A,B的动点,直线PA,PB的倾斜角分别为α,β,则cos(α+β)cos(α-β)=________.例2:如图,在平面直角坐标系xOy中,椭圆22221(0)yx a ba b+=>>的右焦点为(1 0)F,,离心率为2.分别过O,F的两条弦AB,CD相交于点E(异于A,C两点),且OE EF=.(1)求椭圆的方程;(2)求证:直线AC,BD的斜率之和为定值.例3:过椭圆C:x24+y2=1的上顶点A分别交椭圆于M,N两点.求证:直线MN过定点,并求出该定点坐标.变式:已知椭圆C:x28+y24=1.M(0,2)是椭圆的一个顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=8,求出直线AB恒过定点的坐标.例4、如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b +=>>的离心率为12,右准线的方程为4x =,12,F F 分别为椭圆C 的左、右焦点,A,B 分别为椭圆C 的左右顶点。

(1)求椭圆C 的标准方程;(2)过T(t,0)(t>a)作斜率为k(k<0)的 直线l 交椭圆C 与M,N 两点(点M 在点N 的左侧),且12//.F M F N 设直线AM ,BN 的斜率分别为12,k k ,求12k k ⋅的值。

变式训练:在平面直角坐标系xOy 中,已知椭圆T 的方程为x 22+y 2=1.设A ,B ,M 是椭圆T 上的三点(异于椭圆顶点),且存在锐角θ,使OM →=cos θOA →+sin θOB →.(1) 求证:直线OA 与OB 的斜率之积为定值; (2) 求OA 2+OB 2的值.。

微专题:椭圆中斜率之积为定值的问题探究

微专题:椭圆中斜率之积为定值的问题探究

微专题:解析几何中斜率之积为定值(2221ab k k -=•)的问题探究【教学重点】掌握椭圆中2221ab k k -=•的形成的路径探寻及成果运用理性判断【教学难点】运算的设计和化简活动一:2221ab k k -=•形成的路径探寻1. 若AB 是椭圆)0(12222>>=+b a by a x 上的不过原点的弦,点P 是弦AB 的中点,且直线OP,AB的斜率都存在,求PO ABK K •.【解析】 :设点()0,y x P,()11,y x A ,()22,y x B ,则有;;)2(1)1(1222222221221=+=+bya xb y a x (代点作差)将①式减②式得,,,所以所以,即22ab K K POAB-=•.【结论形成总结】【结论1】 若AB 是椭圆)0(12222>>=+b a by a x 上的非直径的弦,点P 是弦AB 的中点,且直线OP,AB 的斜率都存在,则1222-=-=•e ab K K POAB .2.已知AB 是椭圆)0(12222>>=+b a by a x 上过原点的弦,点P 是椭圆异于A,B 的任意一点,若直线PA,PB 的斜率都存在,记直线PA,PB 的斜率分别为21k k ,.求21k k •的值。

【解法1】:设()0,y x P,()11,y x A 又因为A,B 是关于原点对称,所以点B 的坐标为()11-,-y x B ,所以212021201010101021x x y y x x y y x x y y k k --=++•--=•.又因为点()00,y x P ,()11,y x A 在椭圆上,所以有;;)2(1)1(1221221220220=+=+b y a x b y a x两式相减得,2221202120-ab x x y y =--,所以2221ab k k -=•.【方法小结】本解法从设点入手,利用“点在曲线上”代点作差使用“点差法”。

2020年二轮微专题椭圆中两直线斜率之积为定值的问题

2020年二轮微专题椭圆中两直线斜率之积为定值的问题

微专题34 椭圆中两直线斜率之积为定值的问题定点定值问题是圆锥曲线中十分重要的研究课题,蕴含着动、静依存的辩证关系,深刻体现了数学的魅力,在高考中常常涉及此类问题且位于中档题的位置.本专题以椭圆中两直线斜率之积为条件,从具体问题入手,通过对解决方法进行总结辨析,使学生能够根据问题的条件寻找与设计更合理、更简捷的运算途径,并引导学生发现这类问题所具有的更一般性规律.过椭圆C :x 24+y 2=1的上顶点A 作互相垂直的直线分别交椭圆于M ,N 两点.求证:直线MN 过定点,并求出该定点坐标.本题考查的是定点问题,由题意可知,题中的两已知直线存在斜率,且斜率之积为-1,利用此结论,结合韦达定理及代数恒等变形,导出动直线可化为点斜式方程,其中所过的点是一个定点,从而证明动直线过定点.在平面直角坐标系xOy 中,椭圆C :x 24+y 23=1的左顶点为A ,P ,Q 是椭圆C 上的两个动点.(1)如图34-1,当P ,O ,Q 三点共线时,直线P A ,QA 分别与y轴交于M ,N 两点,求证:AM →·AN →为定值;(2)设直线AP ,AQ 的斜率分别为k 1,k 2,当k 1·k 2=-1时,求证:直线PQ 经过定点R.图34-1在平面直角坐标系xOy 中,已知椭圆T的方程为x 22+y 2=1.设A ,B ,M 是椭圆T 上的三点(异于椭圆顶点),且存在锐角θ,使OM→=cos θOA →+sin θOB →.(1)求证:直线OA 与OB 的斜率之积为定值;(2)求OA 2+OB 2的值.(江苏卷)如图34-2,在平面直角坐标系xOy 中,已知椭圆x 29+y 25=1的左、右顶点为A ,B ,设过点T (9,m )的直线TA ,TB 与此椭圆分别交于点M (x 1,y 1),N (x 2,y 2),其中m >0,y 1>0,y 2<0.图34-2求证:直线MN必过x轴上的一定点(其坐标与m无关).已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,两准线间距离为4 2.设A为椭圆C的左顶点,直线l过点D(1,0),且与椭圆C 相交于E,F两点.图34-3(1)求椭圆C的方程;(2)若△AEF的面积为10,求直线l的方程;(3)已知直线AE,AF分别交直线x=3于点M,N,线段MN的中点为Q,设直线l和QD的斜率分别为k(k≠0),k′,求证:k·k′为定值.(本小题满分16分)(2019·南京一模) 已知椭圆C:x2a2+y2b2=1(a>b>0)的两个焦点之间的距离为2,两条准线间的距离为8,直线l:y=k(x-m)(m∈R)与椭圆C相交于P,Q两点.(1)求椭圆C的方程;(2)设椭圆的左顶点为A,记直线AP、AQ的斜率分别为k1、k2.①若m=0,求k1k2的值;②若k 1k 2=-14,求实数m 的值. (1)x 24+y 23=1;(2)①-34;②m =1.因为椭圆C 的两个焦点间距离为2,两准线间的距离为2×a 2c =8,所以a =2,c =1,所以b 2=3,所以椭圆的方程为x 24+y 23=1. …………………………3分(求出椭圆方程)①设P (x 0,y 0),由于m =0,则Q (-x 0,-y 0),由x 204+y 203=1,得y 20=3-3x 204…………………………5分(设出点P (x 0,y 0)求出关系式y 20=3-34x 20)所以k 1k 2=y 0x 0+2·-y 0-x 0+2=y 20x 20-4=3-3x 204x 20-4=-34.…………………………8分(利用上面关系式,推证k 1k 2=定值.) ②由(1)得A (-2,0).设P (x 1,y 1),设直线AP 的方程为AP :y =k 1(x +2),联立⎩⎨⎧ x 24+y 23=1y =k 1(x +2),消去y ,得(3+4k 21)x 2+16k 21x +16k 21-12=0,所以x A ·x 1=16k 21-123+4k 21,…………………………10分(联立方程组,写出韦达定理)所以x 1=6-8k 213+4k 21, 代入y =k 1(x +2)得y 1=12k 13+4k 21, 所以P (6-8k 213+4k 21,12k 13+4k 21).…………………………12分(求出点P 的坐标) 由k 1k 2=-14,得k 2=-14k 1,所以Q (24k 21-21+12k 21,-12k 11+12k 21).…………………………13分(由点P 坐标求得Q 坐标) 设M (m ,0),由P ,Q ,M 三点共线,得PM →=λQM →,即12k 13+4k 21×(24k 21-21+12k 21-m )=-12k 11+12k 21×(6-8k 213+4k 21-m ), 化简得(m -1)(16k 21+4)=0,所以m =1. …………………………16分(由三点共线构建方程,并求出m 的值)设P (x 1,y 1),Q (x 2,y 2),联立⎩⎨⎧ x 24+y 23=1y =k (x -m ),消去y ,得(3+4k 2)x 2-8mk 2x +4m 2k 2-12=0,所以x 1+x 2=8mk 23+4k 2,x 1·x 2=4m 2k 2-123+4k 2…………………………10分 而k 1k 2=y 1x 1+2·y 2x 2+2=k (x 1-m )x 1+2·k (x 2-m )x 2+2=k 2[x 1x 2-m (x 1+x 2)+m 2]x 1x 2+2(x 1+x 2)+4=-14,13分 化简得k 2(3m 2-12)4m 2k 2+16mk 2+16k2=-14,即m 2k 2+mk 2-2k 2=0. 因为k 2≠0,所以m 2+m -2=0,解得m =1或m =-2(舍去). 当m =1时,Δ>0,所以,m =1. …………………………16分答题模板 第一步:求出椭圆方程;第二步:设点P 坐标,推出点P 坐标满足的等式,y 20=3-34x 20;第三步:利用第二步中的等式推出k 1k 2=-34;第四步:联立方程组,写出韦达定理;第五步:写出点P 的坐标;第六步:由条件求出Q 点坐标;第七步:由P ,M ,Q 共线,列出关于m 的方程,并求得解.作业评价已知椭圆x 216+y 24=1的左顶点为A ,过A 作两条弦AM ,AN 分别交椭圆于M ,N 两点,直线AM ,AN 的斜率记为k 1,k 2,满足k 1·k 2=-2,则直线MN 经过的定点为________.已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .则直线OM 的斜率与l 的斜率的乘积为____________.如图34-4所示,已知椭圆C :x 24+y 2=1的上、下顶点分别为A ,B ,点P 在椭圆上,且异于点A ,B ,直线AP ,BP 与直线l :y =-2分别交于点M ,N .当点P 运动时,以MN 为直径的圆经过的定点是______.图34-4已知椭圆C :x 24+y 22=1的上顶点为A ,直线l :y =kx +m 交椭圆于P ,Q 两点,设直线AP ,AQ 的斜率分别为k 1,k 2.若k 1·k 2=-1,则直线l :y =kx +m 过定点________.(1)求椭圆E 的方程;(2)若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆上异于A ,B 的任意一点,直线AP 交l 于点M .(i )设直线OM 的斜率为k 1,直线BP 的斜率为k 2,求证:k 1k 2为定值;(ii )设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.已知椭圆C :x 2a 2+y 2b 2=1()a >b >0的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切.(1)求椭圆C 的方程;(2)设A ()-4,0,过点R ()3,0作与x 轴不重合的直线l 交椭圆C于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为22,且过点P(22,12),记椭圆的左顶点为A.(1)求椭圆的方程;(2)设垂直于y轴的直线l交椭圆于B,C两点,试求△ABC面积的最大值;(3)过点A作两条斜率分别为k1,k2的直线交椭圆于D,E两点,且k1k2=2,求证:直线DE恒过定点.在平面直角坐标系xOy中,已知椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别为A、B,焦距为2,直线l与椭圆交于C,D两点(均异于椭圆的左、右顶点).当直线l过椭圆的右焦点F且垂直于x轴时,四边形ACBD的面积为6.⑴求椭圆的标准方程;(2)设直线AC,BD的斜率分别为k1,k2.①若k2=3k1,求证:直线l过定点;②若直线l过椭圆的右焦点F,试判断k1k2是否为定值,并说明理由.。

与椭圆有关的斜率之积为定值的几个命题

与椭圆有关的斜率之积为定值的几个命题

4220215与椭圆有关的斜率之积为定值的几个命题*山东省泰安市宁阳县第一中学(271400)刘才华摘要本文从点的坐标间的关系、线段长度间的关系和直线斜率间的关系三个角度出发,给出了与椭圆有关的两直线斜率之积为定值的6个命题.关键词椭圆;斜率;坐标;长度;定值在与椭圆相关的综合型问题中,有这样一类问题,题目中含有条件“对于椭圆上两点P,Q ,O 为坐标原点,满足k OP ·k OQ =b 2a2”,此类问题一般的解题思路需要将直线方程和椭圆方程联立方程组,通过消元化归为一元二次方程,再利用韦达定理进行较为复杂的运算给出解答.我们在解答这些题目的时候,通过观察探究和整体运算求解发现,具有上述条件的椭圆有着一些特殊的结论,并且结论之间有着相互的内在联系.本文从点的坐标间的关系、线段长度间的关系和直线斜率间的关系三个角度出发,得到如下几个优美的命题.命题1如图1,椭圆x 2a2+y 2b 2=1(a >b >0)上有两点P (x 1,y 1),Q (x 2,y 2),O 是坐标原点,若直线OP,OQ 的斜率满足k OP ·k OQ =b 2a 2,则图1x 21+x 22=a 2,y 21+y 22=b 2.证明由x 21a 2+y 21b 2=1得y 21=b 2(1−x 21a 2),同理有y 22=b 2(1−x 22a 2).由k OP ·k OQ =b 2a 2得y 1y 2x 1x 2=b 2a2,则y 21y 22=b 4a4x 21x 22.由y 21y 22=b 4(1−x 21a 2)(1−x 22a 2)=b 4(1−x 21+x 22a 2+x 21x 22a 4)=b 4(1−x 21+x 22a 2)+b 4x 21x 22a 4=b 4(1−x 21+x 22a 2)+y 21y 22得x 21+x 22=a 2.由x 21x 22=a 4(1−y 21b 2)(1−y 22b 2)=a 4(1−y 21+y 22b 2+y 21y 22b4)=a 4(1−y 21+y 22b 2)+a 4y 21y 22b 4=a 4(1−y 21+y 22b2)+x 21x 22得y 21+y 22=b 2.命题1给出了一条坐标间的定值性质:满足条件的两点间横坐标的平方和与纵坐标的平方和均为定值.命题2如图1,椭圆x 2a 2+y 2b2=1(a >b >0)有两点P (x 1,y 1),Q (x 2,y 2),O 是坐标原点,若直线OP,OQ 的斜率满足k OP ·k OQ =b 2a2,则x 1y 1=x 2y 2.证明由命题1得x 21+x 22=a 2.由x 21a 2+y 21b 2=1得y 21=b 2a 2(a 2−x 21),同理有y 22=b 2a 2(a 2−x 22).由k OP ·k OQ =b 2a 2得y 1y 2x 1x 2=b 2a 2,则y 1y 2=b 2a2x 1x 2.于是(x 2y 2−x 1y 1)2=x 22y 22−2(x 1x 2)(y 1y 2)+x 21y 21=b 2a 2x 22(a 2−x 22)−2b 2a 2(x 21x 22)+b 2a 2x 21(a 2−x 21)=b 2(x 21+x 22)−b 2a 2(x 21+x 22)2=b 2×a 2−b 2a 2×a 4=0,故x 1y 1=x 2y 2.命题2给出了满足条件的两点间对应坐标乘积间的关系.通过探究条件中与点P,Q 相关的线段长度间的关系,我们得到命题3如图1,椭圆x 2a 2+y 2b2=1(a >b >0)上有两点P (x 1,y 1),Q (x 2,y 2),O 是坐标原点,若直线OP,OQ 的斜率满足k OP ·k OQ =b 2a2,则|OP |2+|OQ |2=a 2+b 2(定值).证明设P (x 1,y 1),Q (x 2,y 2),由命题1得x 21+x 22=a 2,y 21+y 22=b 2.则|OP |2+|OQ |2=(x 21+y 21)+(x 22+y 22)=(x 21+x 22)+(y 21+y 22)=a 2+b 2,故|OP |2+|OQ |2=a 2+b 2(定值).命题3给出了一条定值性质:满足条件的两条线段长度的平方和为定值.命题4如图2,四边形ABCD 内接于椭圆x 2a 2+y 2b2=1(a >b >0),且AC,BD 相交于坐标原点O ,若直线OA,OD 的斜率满足k OA ·k OD =b 2a 2,则|AB |2+|BC |2+|CD |2+|DA |2=4(a 2+b 2)(定值).证明由命题3得|OA |2+|OD |2=a 2+b 2.*本文是山东省教育科学“十三五”规划2020年度重点课题:“多元”思维模型教学的理论建构与实践探索的部分成果,课题批准号:2020ZD049.2021543成也“消和”,败也“消和”—–例谈由数列的前n 项和求解通项公式南京市第九中学(210018)宗园摘要已知数列的前n 项和求通项公式是高中数列学习中的必备技能,教学过程中发现始终有学生忽略解题要点、混淆题目类型、错用解题方法,故作本文梳理典型例题,总结此类题型的求解方法.关键词数列;前n 项和;通项公式解题背景在数列的起始课时,学生便已经知道数列{a n }前n 项和S n 的概念,可用数学符号语言描述为:S n =a 1+a 2+a 3+···+a n ,这个简单的定义式衍生出了由数列的前n 项和求解通项公式的通式:a n =S 1,n =1S n −S n −1,n 2(∗)在实际应用中,一方面,我们可以利用(∗)式将题目条件中的前n 项和S n 消去,得到通项a n ,下文称此法为“消和”法;另一方面,我们也可以反其道行之,将题目条件中的a n 换成S n −S n −1,将条件中的通项与和的关系转换成和的递推关系,下文称此法为“消项”法.题型剖析类型一:已知S n =f (n ),求a n .典例1已知数列{a n }的前n 项和S n =2n −3,求数列{a n }的通项公式.解题思路直接使用(∗)式求解得a n =−1,n =1,2n −1,n 2.由椭圆的对称性知四边形ABCD 为平行四边形.由平行四边形的四条边长的平方和等于对角线长的平方和得|AB |2+|BC |2+|CD |2+|DA |2=|AC |2+|BD |2=图24(|OA |2+|OD |2)=4(a 2+b 2),故|AB |2+|BC |2+|CD |2+|DA |2=4(a 2+b 2)(定值).命题4给出了一条定值性质:由满足条件的两条线段生成的平行四边形中四条边长的平方和为定值.通过探究条件中与点P,Q 相关的直线斜率间的关系,我们得到命题5如图1,椭圆x 2a 2+y 2b 2=1(a >b >0)上有两点P (x 1,y 1),Q (x 2,y 2),O 是坐标原点,若直线OQ,OP 的斜率满足k OP ·k OQ =b 2a 2,则k 2P Q =b 2a2.证明由命题1得x 21+x 22=a 2,y 21+y 22=b 2.由k OP ·k OQ =b 2a 2得y 1y 2x 1x 2=b 2a 2,则y 1y 2=b 2a2x 1x 2.由斜率公式得k P Q =y 2−y 1x 2−x 1,则k 2P Q =y 22−2y 1y 2+y 21x 22−2x 1x 2+x 21=b 2−2b 2a 2x 1x 2a 2−2x 1x 2=b 2a 2,故k 2P Q =b 2a2.命题5给出了一条斜率性质:k P Q 为k OP 和k OQ 的等比中项.命题6如图2,四边形ABCD 内接于椭圆x 2a 2+y 2b 2=1(a >b >0),且AC,BD 相交于坐标原点O ,若直线OA,OD 的斜率满足k OA ·k OD =b 2a2,则k AB +k AD =0.证法1设A (x 1,y 1),B (x 2,y 2),则由题意得D (−x 2,−y 2),则k AB +k AD =y 2−y 1x 2−x 1+y 2+y 1x 2+x 1=2(x 2y 2−x 1y 1)x 22−x 21.由命题2得x 1y 1=x 2y 2,故k AB +k AD =0.证法2由题意得k OA ·k OB =k OA ·k OD =b 2a2.由命题5得k 2AB =k 2AD =b 2a2.由于k AB 与k AD 一正一负,故k AB +k AD =0.命题6给出了一条斜率性质:由满足条件的两条线段生成的平行四边形中,两条邻边所在直线的斜率为互为相反数.。

一点引两弦斜率积为定值充要条件的探讨及应用(长沙市南雅中学石向阳)

一点引两弦斜率积为定值充要条件的探讨及应用(长沙市南雅中学石向阳)

(
2 2 2 2 λa + b λa + b - 2 2 2 x0 , 2 y0 ; λa - b λa - b
)
2 ) 双 曲 线 Ф: (≠-
y2 x2 = 1, k PQ · k PR = λ 2 - a b2
b2 ) 为定值的充要条件是动直线 QR 过定点 a2
( y' x' )
2
(
2 2 2 2 λa - b λa - b - 2 2 2 x0 , 2 y0 ; λa + b λa + b
)
+ ( B + Φ1 m + Φ2 l ) ( A + Φ1 l ) = 0 .
y' + x' ( 2)
k PQ · k PR = λ ( ≠0 ) 的充要 3 ) 抛物线 y2 = 2 px, 条件是动直线 QR 过定点 x0 - 推论 2 定值. λ=
(
2p , - y0 . λ
)
因为 k PQ =
)
(
k QR = - 当 λ≠
A 时的特殊情况: C
1 ) 椭圆 Ф:
x2 y2 b2 k PQ · k PR = λ ( ≠ 2 ) 为 2 + 2 = 1, a b a
定 值 的 充 要 条 件 是 动 直 线 QR 过 定 点
2 Cy0 + E ) . y) = 0 得 Ф( x, Ax' 2 + Bx'y' + Cy' 2 + Φ1 x' + Φ2 y' = 0 . ( 1 ) 设 QR 的方程为 lx' + my' = 1 , 代入式( 1 ) 得 Ax'2 + Bx'y' + Cy'2 + ( Φ1 x' + Φ2 y') ( lx' + my') = 0, 整理得 ( C + Φ2 m )

经典:斜率乘积为定值问题

经典:斜率乘积为定值问题

2.热身练习
(数学之友P40第3题)
推广:
1 3
椭 圆 k1 • k2=
b2 a2
双 曲 线 k1 • k2=
b2 a2
圆 k1 • k2= 1
3.例题讲解
例题1
(数学之友P46第5题)
一般结论:过椭圆 x2 a2
+
y2 b2
= 1一点定p(x0 ,
y0 )
的直线l1, l2分别交椭圆与A,B。若kl1 kl2 = m
斜率乘积为定值问题
1.回归课本
选修2-1 P39第4题
在 A B C 中 , B ( 6, 0) , C ( 6, 0) 直 线 AB, AC 的 斜 率 乘 积 为 9 4, 求 顶 点 A 的 轨 迹 方 程 。
变式1
:9改为-9
4
4
变式2 : 9 4改为m (m0)
变式3:乘积 改为 差 (教材2-1 P59) 抛物线
(ⅱ) y1y2 2
(
x1x2 )2 2
x12 2
x22 2
(1
y12)(1
y22)
1 (y12 y22) y12y22,故y12 y22 1.
又( x12 2
y12
)
(
x22 2
y22)
2,故x12
x22
2.
所以OA2 OB2 x12 y12 x22 y22 3.
评析:本题第(1)问主要考查椭圆及圆的几何性质的应 用;第(2)问是定值问题,切入的关键在于设三点A, B,M的坐标,通过向量条件及三点在椭圆上,寻求 出三来自坐标间的关系,从而使问题获解 。
2
ⅰ( )设
A
(
x1,
y1

微专题:椭圆中斜率之积为定值的问题探究

微专题:椭圆中斜率之积为定值的问题探究

微专题:解析几何中斜率之积为定值(2221ab k k -=•)的问题探究【教学重点】掌握椭圆中2221ab k k -=•的形成的路径探寻及成果运用理性判断【教学难点】运算的设计和化简活动一:2221ab k k -=•形成的路径探寻1. 若AB 是椭圆)0(12222>>=+b a by a x 上的不过原点的弦,点P 是弦AB 的中点,且直线OP,AB的斜率都存在,求PO ABK K •.【解析】 :设点()0,y x P,()11,y x A ,()22,y x B ,则有;;)2(1)1(1222222221221=+=+bya xb y a x (代点作差)将①式减②式得,,,所以所以,即22ab K K POAB-=•.【结论形成总结】【结论1】 若AB 是椭圆)0(12222>>=+b a by a x 上的非直径的弦,点P 是弦AB 的中点,且直线OP,AB 的斜率都存在,则1222-=-=•e ab K K POAB .2.已知AB 是椭圆)0(12222>>=+b a by a x 上过原点的弦,点P 是椭圆异于A,B 的任意一点,若直线PA,PB 的斜率都存在,记直线PA,PB 的斜率分别为21k k ,.求21k k •的值。

【解法1】:设()0,y x P,()11,y x A 又因为A,B 是关于原点对称,所以点B 的坐标为()11-,-y x B ,所以212021201010101021x x y y x x y y x x y y k k --=++•--=•.又因为点()00,y x P ,()11,y x A 在椭圆上,所以有;;)2(1)1(1221221220220=+=+b y a x b y a x两式相减得,2221202120-ab x x y y =--,所以2221ab k k -=•.【方法小结】本解法从设点入手,利用“点在曲线上”代点作差使用“点差法”。

诱人性质 独特解法 源于探究——“两直线斜率乘积为定值”定理及其应用

诱人性质 独特解法 源于探究——“两直线斜率乘积为定值”定理及其应用


因为 直 线 PA、 P B 的斜 率 都 存 在 , 所 以
( 2 )若 AB 是 圆 O 的 弦 , M 是 AB 的 中 点 , 当 直
女 m・
b 二 ,
一 一
一 三 。丑 y o +yl
zn — 1 . r( ) 1 I了 , l
Y ≥ o — 二 - Y ,一
并介绍定理的应用. 1 .定 理 的 提 出
P T 、 ( 的 斜 率 都 存 在 时 , 那 么 ・ 一 一 等 .
这 里 我们 对 定 理 ( 1 ) 、 ( 2 ) 进行证明 : ( 1 ) 设 点 AC x 1 , Y 1 ) , P ( “ _ , , ) , 则知 B ( 1 , 一 一 1 ) 因 为 A、 P 都在 椭 圆 上 , 所 以
r —
线 AB、 O M 的斜率都存在时 , 有是 c M・ 志 A B 一一1 ;
( 3 )若 PT 是 圆 0 的 切 线 , P是切点, 当 直 线
“ 。 ( i
PT 、 O P的斜率都存在时 , 那么 k o e— k v r 1 . 1 . 2 椭 圆可以看成是 由圆 “ 伸缩 ” 而成, 那 么与 圆中的“ 两直线斜率 乘积 为定值 ” 的性质 相对应 地在 椭圆 中是否还保留?又有什 么变异?
我们容易得 到 , 椭圆 + 一 1 ( n >6 >o , 0为

“ 。
故定理得证.
( 2 )设 点 A( x 1 , y ) , B( x 2 , Y 2 ) , 线 段 AB 的 中 点 为M( x 0 , y o )
因为 A、 B都在椭 圆上 , 所以
a 2 - b 2— 1, + 一 1 ,

椭圆斜率之积是定值专题

椭圆斜率之积是定值专题

OxyPAB椭圆斜率之积为定值专题性质 如图1,椭圆22221(0)x y a b a b+=>>上任意一点P 与过中心的弦AB 的两端点A 、B 连线PA 、PB 与坐标轴不平行,则直线PA 、PB 的斜率之积PA PB k k ⋅为定值22b a-.证明 设(,)P x y ,11(,)A x y ,则11(,)B x y --.所以12222=+by a x ①1221221=+b y a x ② 由①-②得22122212by y a x x --=-, 所以22212212a b x x y y -=--, 所以222111222111PA PBy y y y y y b k k x x x x x x a-+-⋅=⋅==--+-为定值. 这条性质是圆的性质:圆上一点对直径所张成的角为直角在椭圆中的推广,它充分揭示了椭圆的本质属性,因而能简洁解决问题,下举例说明.一、证明直线垂直例1 如图2,已知椭圆22142x y +=,,A B 是其左、右顶点,动点M 满足MB AB ⊥,连结AM 交椭圆于点P .求证:MO PB ⊥.证明 设(2,)M y ,由性质知12PA PBk k ⋅=-,即12MA PB k k ⋅=- ③图1图2直线MA ,MO 的斜率分别为24MA y y k a == ,2MO y y k a ==, 所以12MA MO k k =④ 将④代入③得1MO PB k k ⋅=-,所以MO PB ⊥.例2 如图3,PQ 是椭圆不过中心的弦,A 1、A 2为长轴的两端点,A 1P 与Q A 2相交于M ,P A 2与A 1Q 相交于点N ,则MN ⊥A 1A 2.证明 设M (x 1,y 1),N (x 2,y 2).由性质知1222PA PA b k k a ⋅=-,即1222MA NA b k k a ⋅=-,所以222211ab a x y a x y -=-⋅+ ⑤1222QA QA b k k a ⋅=, 即2122MA NA b k k a ⋅=-,所以221122ab a x y a x y -=-⋅+ ⑥ 比较⑤与⑥得1221()()()()x a x a x a x a +-=+-,所以2112()()a x x a x x -=-, 所以12x x =.所以MN ⊥x 轴,即MN ⊥A 1A 2.二、证明直线定向例3 如图4,已知A (2,1),B (-2,-1)是椭圆E :x 26+y 23=1上的两点,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点M ,直线AD ,BC 相交于点N .CA ,CB ,DA ,DB 的斜率都存在.求证:直线MN 的斜率为定值.证明 设(,)M M M x y ,(,)N N N x y ,由性质知12CA CB k k ⋅=-,即12MA NB k k ⋅=-, 12DA DBk k ⋅=-,即12NA MB k k ⋅=-.所以111222N M M N y y x x +-⋅=--+,11(224)2M N M N M N M N y y y y x x x x +--=-+-- ⑦xy AOB CDMN 图4图3111222N M M N y y x x -+⋅=-+-,11(224)2M N M N M N M N y y y y x x x x -+-=--+- ⑧由⑦-⑧得()M N M N y y x x -=--所以1MN k =-,即直线MN 的斜率为定值1-.三、证明点的纵坐标之积为定值例4 如图5,已知椭圆C :x 24+y 23=1,过椭圆C 的右焦点F 且与x 轴不重合的直线与椭圆C 交于A ,B 两点,点B 关于坐标原点的对称点为P ,直线P A ,PB 分别交椭圆C 的右准线l 于M ,N 两点. 记M ,N 两点的纵坐标分别为y M ,y N ,求证:y M ·y N 为定值.证明 当直线AB 的斜率k 不存在时,易得y M ·y N =-9.当直线AB 的斜率k 存在时,由性质知k P A k =-34,所以k P A =-34k .设A (x 1,y 1),B (x 2,y 2),则P (-x 2,-y 2), 所以直线P A 的方程为y +y 2=-34k (x +x 2),因为右准线l 的方程为4x =, 所以y M =-34k(x 2+4)-y 2,因为,,A F B 三点共线,所以直线AB 的斜率k =y 2(x 2-1).所以y M =-3(x 2+4)(x 2-1)4y 2-y 2.因为直线PB 的方程为y =y 2x 2x ,所以y N =4y 2x 2.所以y M y N =-3×(x 2+4)(x 2-1)x 2-4y 22x 2.又因为x 224+y 223=1,所以4y 22=12-3x 22, 所以y M y N =-3×(x 2+4)(x 2-1)+4-x 22x 2=-9,所以y M y N 为定值-9.图5由以上几个例题,同学们会看到,这个性质解决问题中起到了化繁为简作用,希望同学们领悟其中的道理,并进一步运用这个性质解决更多的问题.。

微专题5 圆锥曲线中斜率定值问题(解析版)

微专题5 圆锥曲线中斜率定值问题(解析版)

微专题5 圆锥曲线中斜率定值问题一、背景研究:圆锥曲线是高考的必考知识之一,也是很多学生突破高分中的拦路虎,计算量大,综合性强是圆锥曲线的特点,因此很多学生视其为“眼中钉、肉中刺”。

不过圆锥曲线题目是有规律也寻的,特别是经常会遇到这样一类问题,它不仅仅是“定值”问题,更重要的是证明或者探究直线的斜率为定值问题,只有真正做好练习和巩固,这类问题便可手到擒来。

二、知识回顾:1、斜率反应了直线的倾斜程度,是高考中必考的知识点;2、已知点()11,y x A 和点()22,y x B ,且21x x ≠,则直线AB 的斜率为2121x x y y k AB --=;3、在出现斜率为定值的问题当中,经常会证明一条直线或者两条直线斜率和,差或者积与商为定值,我们需要先将斜率表示出来。

三、经典例题:【例1】已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线P A 交y 轴于M ,直线PB 交y 轴于N 。

(1)求直线l 的斜率的取值范围;(2)设O 为原点,QM QO λ=,QN QO μ=,求证:11λμ+为定值。

解析:(1)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0)。

由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=。

依题意22(24)410k k ∆=--⨯⨯>,解得k < 0或0 < k < 1。

又P A ,PB 与y 轴相交,故直线l 不过点(1,-2)。

从而k ≠-3。

所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1)。

(2)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k=。

圆与椭圆两个几何性质的类比——椭圆中两直线斜率乘积为定值的应用

圆与椭圆两个几何性质的类比——椭圆中两直线斜率乘积为定值的应用
1- 2 )
y -y
a
a

2=

x2
x2
1 -x2
1 -x2




b2 2
- 2(
x1 -x2
2)
a
b2
=-


x2
a2
1 -x2
圆的性质 2 垂 径 定 理:平 分 弦 (非 直 径)的 直 径
垂直于弦 .
如图 5 所示,圆 O 中若 M 是弦 AB (
AB 不
是直径)的 中 点,则 OM ⊥AB .
a
,
)
,
(
证明 设 Q (
x1 y1 B x2 ,
y2 ),则 A (-x2 ,
y1-(-y2) y1+y2
y1-y2
,
,
-y2),得 kAQ =

k
BQ =
x1-(-x2) x1+x2
x1-x2
所以
y1 +y2 y1 -y2

kAQ kBQ =

x1 +x2 x1 -x2
x2
x2


b2(
1- 2 )-b2(
0).如 图 11
所 示, 设 P (
x0 ,y0 ), 则
Q (-x0 ,- y0 ),且 知
x2



y2


=1,即 x2
0 +2
y0 =4.

因为 A (-2,
0),所以
图 11
y0
y2
y2
-y0




kAP kAQ =
=-

2019届高三斜率乘积为定值的问题探究

2019届高三斜率乘积为定值的问题探究

ON // PB,PA PB .
法三:设 P(s,t) ,则 C(s,0)
A(s, t) , kAP

t s
, kAB
kAC

0t ss

t 2s
,即 kAP
2kAB ,
k1.k2=
.
问题 2.(类比迁移 1)点 P 是椭圆上 x2 y2 1上异于长轴端点以外的任一点,A、B 是该椭圆长轴的两个端点, 43
直线 PA,PB 的斜率分别为 k1,k2,则 k1k2=
.
问题
3.(引申拓展 1)求证:椭圆
x2 a2

y2 b2
1(a
b 0)
长轴的两个端点与椭圆上除这两个顶点外的任一点连
KABKPB=
b2 a2
=
1 2

图3
第1页共5页
法一:由题意设 P(x0, y0 ), A(x0, y0 ), B(x1, y1), 则C(x0, 0) ,
A、C、B 三点共线, y1 y0 y1 y0 , x1 x0 2x0 x1 x0
又因为点
P、B
在 椭 圆 上 , x02 y02 1, x12 y12 1 42 42

3.(2016
如东月考)已知椭圆 C
:
x2 2

y2
1
,点
M1, M 2 ,
, M5 为其长轴 AB 的 6
等分点,分别过这五点作斜率为 k(k 0) 的一组平行线,交椭圆 C 于点 P1, P2 , , P10 ,则
这 10 条直线 AP1 , AP2 , , AP10 的斜率的乘积为
1 32
求证:PA⊥PB.

押题第34道 椭圆中两直线斜率之积为定值的问题(解析版)

押题第34道 椭圆中两直线斜率之积为定值的问题(解析版)

所以x=0 x2+y2+4y-8=0.
,所以 MN 为直径的圆过定点(0,-2±2
3).
3、(2020·连云港高三)已知椭圆 C:x42+y22=1 的上顶点为 A,直线 l:y=kx+m 交椭圆于 P,Q 两点,设 直线 AP,AQ 的斜率分别为 k1,k2.若 k1·k2=-1,则直线 l:y=kx+m 过定点________.
(kx1+m)(kx2+m)- 2(kx1+m+kx2+m)+x1x2+2=0,k2x1x2+
mk(x1+x2)+m2- 2k(x1+x2)-2 2m+x1x2+2=0, (k2+1)21m+2-2k42 +k(m- 2)(-1+4km2k2)+m2-2 2m+2=0,(k2+1)(2m2-4)+k(m- 2)· (-4km)+(m2-2 2m+2)(1+2k2)=0.所以 3m2-2 2m-2=0,
2
2
故直线 l 的斜率存在,设直线 l:y=k(x-1),代入椭圆方程得(1+2k2)x-4k2x+2k2-4=0.
因为 D(1,0)在椭圆内,所以
Δ>0 恒成立.设
E(x1,y1),F(x2,y2),则有
x1+x2=
1
4k 2 2k
2
,x1x2=
2k 2 1 2k
4
2
.故 EF=ຫໍສະໝຸດ x1 x2 2 y1 y2 2 =
,由(2)知
x1+x2=
1
4k 2 2k
2

x1x2=
2k 2 4 1 2k 2
,代入上式得
y1 x1
2

y2 x2
2
=k·
4k 2 8 2k 2
4
4k 2 4 8k 2

椭圆中的斜率积与定点问题

椭圆中的斜率积与定点问题

椭圆中由斜率积引发的定点问题在处理解析几何的定点问题时,我一直在引导学生探究:做过的定点问题究竟是偶然还是必然?本文就“过椭圆的顶点作互相垂直的两条直线,分别交椭圆于A,B 两点,则直线AB 是否过定点?”这一问题进行探究。

【例1】已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,直线x y =被椭圆C 截得的(1)求椭圆C 的标准方程; (2)过椭圆C 的右顶点作互相垂直的两条直线12,l l 分别交椭圆C 于,M N 两点(点,M N 不同于椭圆C 的右顶点),证明:直线MN 过定点6,05⎛⎫ ⎪⎝⎭.【解析】(1)设直线y x =与椭圆交于,P Q 两点,不妨设P 点在第一象限又PQ.∴点P ⎝⎭,2244551a b ∴+=,即222254a b a b +=, 又24a =,2,1a b ∴==,∴椭圆C 的标准方程为:2214x y +=;(2)显然直线12,l l 的斜率存在且不为0,设直线1l 的方程为:2x my =+,则直线2l 的方程为:12x y m=-+, 联立方程22214x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:()22440m y my ++=, 2404M m y m -∴+=+,244M my m -∴=+,222284,44m m M m m ⎛⎫-+-∴ ⎪++⎝⎭, 同理可得222284,4141m m N m m ⎛⎫-+ ⎪++⎝⎭,此时()2541MN m k m =-, ∴直线MN 的方程为:()222245284441m m m y x m m m ⎛⎫-++=- ⎪++-⎝⎭,整理得:()()()22256565414141mmmy x x m m m -⎛⎫=+=-⎪---⎝⎭,∴直线MN 过定点6,05⎛⎫⎪⎝⎭, 当1m =±时,直线MN 的方程为65x =,直线也过点6,05⎛⎫⎪⎝⎭,综上所述,直线MN 过定点6,05⎛⎫⎪⎝⎭.【例2】已知椭圆过点,且离心率.(1)求椭圆的标准方程;(2)若直线与椭圆相交于,两点(不是左右顶点),椭圆的右顶点为,且满足0DA ,试判断直线是否过定点,若过定点,求出该⋅DB=定点的坐标;若不过定点,请说明理由.【解析】(1) 即,∴椭圆方程为又点在椭圆上, 解得∴椭圆的方程为(2)设,联立消去y得,且有⋅DBDA,所以=即化简的,解得当时, ,直线过定点与已知矛盾当 时, ,直线过定点综上可知,当 时,直线过定点,定点坐标为【思考】两个例题,两种方法,哪一个更好?【一般化结论】过椭圆的左顶点A 作互相垂直的两条直线分别交椭圆于M ,N两点,则直线MN 过定点)0,)((2222b a b a a +--。

2020年青岛二模题目例谈解析几何中斜率之积为定值问题

2020年青岛二模题目例谈解析几何中斜率之积为定值问题

2020年青岛二模题目例谈解析几何中斜率之积为定值问题定值问题的本质是动中生静,是在一个运动变化过程中,由某个变量的变化引起另一个量不变的问题.本文从2020年青岛二模的题目出发,总结在解析几何中四种斜率乘积为定值的情况,然后通过一个题目展示条件隐藏的斜率乘积为定值的题目,将数学运算的学科素养能力进一步提升。

关键词:斜率之积定值数学运算一、斜率之积问题的课本溯源:普通高中课程标准试验教科书《数学》(选修 2-1) 人教 A版的探究题:点的坐标分别是直线相交于点 , 且它们的斜率之积是 , 试求点的轨迹方程, 并由点的轨迹方程判断轨迹的形状。

思考1 平面内一个点到两定点的斜率乘积为定值(),则该点的轨迹是什么?思考2 平面内一个点到两定点的斜率乘积为定值(除之外的负值),则该点的轨迹是什么?思考3 平面内一个点到两定点的斜率乘积为定值(正数),则该点的轨迹是什么?通过对课本溯源以及三个问题的思考,我们可以得出一般性结论:斜率定值为,则轨迹为以为直径的圆;斜率定值为除了的负值,则轨迹为椭圆;斜率定值为正数,则轨迹为双曲线。

斜率之积为定值,可以得到唯一确定的圆锥曲线,因此该定值应该是于圆锥曲线的离心率是有联系的。

下面我们从2020年青岛二模中的题目出发,已知圆锥曲线方程去探究斜率乘积的定值问题。

二、模拟题中的问题呈现及变式探究(2020年青岛二模节选)已知为坐标原点,椭圆的离心率为,双曲线的渐近线与椭圆的交点到原点的距离均为 .1.求椭圆的标准方程;2.若点为椭圆上的动点,三点共线,直线的斜率分别为证明: .解析:(1)椭圆方程为,过程略。

(2)设 ,则.设由点在椭圆上,得:① ,②两式相减并整理,得即模拟题的解题溯源:椭圆 (a>b>0)上任一动点 P( x,y)到椭圆任意一条直径(过椭圆中心的弦)的两个端点的斜率乘积等于多少?解:设椭圆 (a>b>0)的任意一条直径为 ,∵是直径∴点关于原点称.设 ,则.由点在椭圆上,得:① ②两式相减并整理,得即点拨:对于本类证明,采用两式相减消参,借助直线的斜率公式得出结果。

斜率乘积为定值的问题探究

斜率乘积为定值的问题探究
斜率乘积为定值的问题探究
【教学目标】 会合理选择参数(坐标、斜率等)表示动态几何对象和几何量,探究、证明动态图形中的不 变性质,体会“设而不求” 、 “整体代换”在简化运算中作用. 【教学难、重点】解题思路的优化. 【教学过程】
一.基础知识、基本方法梳理
问题 1.已知 AB 是圆 O 的直径,点 P 是圆 O 上异于 A,B 的两点,直线 PA,PB 的斜率分 别为 k1,k2,则 k1.k2= .
y
长轴的两个端点与椭圆上除这两个顶点外的任一点连 线斜率之积为
y
A
P
b2 . a2
o
Bx
x2 y 2 1(a b 0) 上关于原点对称的两点,点 P a 2 b2 是该椭圆上不同于 A,B 的任一点,直线 PA,PB 的斜率分别为 k1,k2,则 k1k2 是否为定值?并 给予证明.
第 2 页 共 13 页
kCD
b c 4 3 12 . a a 5 5 25
x2 y2 1 , 点 2
3.( 2016 如 东 月 考 ) 已 知 椭 圆 C :
分别过这五点作斜率为 M 1 , M 2 , , M 5 为其长轴 AB 的 6 等分点,
k (k 0) 的一组平行线,交椭圆 C 于点 P 1, P 2 , , P 10 ,则这 10 条
x2 y2 1, 4 2
过坐标原点的直线交椭圆 于 P、A 两点,其中 P 在第一象限,过 P 作 x 轴的垂线,垂足为 C,连接 AC,并延长交椭圆于点 B,设直线 PA 的斜 率为 k,对任意 k 0 , 求证:PA⊥PB. 分析:可以转化为证明 KPAKPB=-1,注意到 KABKPB=
x2 y 2 1 联立 4 ,消去 y ,得 (1 2k 2 ) x 2 4kmx 2m 2 4 0 , 2 y kx m 因为 2m 2 2k 2 1 , m 0 , 所 以 (4km) 2 4(1 2k 2 )(2m 2 4) 0 恒 成 立 ,

与椭圆有关的斜率之积为定值的问题

与椭圆有关的斜率之积为定值的问题

则 4m2n2 (m2k 2 n2 t2 ) .
从而,当 kOA kOB
a2b2k 2 b2t2 a2b2 a2t2
n2 m2
时,可得 t2
m2k 2
n2 ,即 0 .
当 0 时,可得 t2
m2k 2 n2 ,即 kOA kOB
a2b2k 2 b2t2 a2b2 a2t2
kOB
n2 m2
kHale Waihona Puke AkQBm2b4 n2a4
直线 AB 与曲线 C1 相切 点 Q 在曲线 C2 上.
y
b T
n B
O
m
a
x
P Q
A
证明:设点 A(x1, y1) , B(x2, y2 ) , Q(x0, y0 ) ,则:
(1) kOA
kOB
n2 m2
kQA
kQB
m2b4 n2a4
.
由于椭圆 C
1.当 m2
a2b2 a2 b2
,
n2
a2b2 a2 b2
时,可得:
结论 1. kOA kOB
1
kQA kQB
b4 a4
OP AB
直线
AB 与圆 C1 :
x2 a2b2 a2 b2
y2 a2b2 a2 b2
1 相切 点 Q 在椭圆 C2 :
x2 a2(a2 b2)
b2
y2 b2(a2 b2)
将上下而求索.
n2 y02 b4
1得 b4 x02 a2b4 a4 y02 a4b2
n2 m2
,即 kOA kOB
n2 m2
.
所以,结论“ kOA kOB
n2 m2
点 Q 在曲线 C2 上”是成立的.

椭圆中一类斜率之积为定值 高考数学

椭圆中一类斜率之积为定值 高考数学
微专题—椭圆中一类斜率之积为定值
主讲人:某某某老师
某某学校
一、教材习题变式构建模型
二、高考解题析游刃有余
试卷讲评课件
椭圆是高考考查的难点之一,椭圆中一类斜率之积问题早有出现.
本文从教材出发,通过一系列的变式,转化和化归达到高考考查要求,
体现出试题源于教材且高于教材的理念,同时,找到在椭圆中一类斜
−′
=


=
,则

=



= ,则′ = −





−′




故,直线与直线的斜率之积为定值− 。

=
........②



− ,

........③
试卷讲评课件
x2
[变式3]:已知椭圆Γ: 2
率之积问题的通性.
一、教材习题变式构建模型
试卷讲评课件
典型习题:(人教A版选修2-1)设点A,B的
坐标分别为 −5,0 、 5,0 ,直线AM,BM相交
4
于点M,且他们的斜率之积为− ,求点M的轨
9
迹方程。
试卷讲评课件
解:如图1,设点 , ,由已知得, =
⋅ =
⋅ =




故,直线与直线的斜率之积为定值− 。

试卷讲评课件
【评析】此题也属于斜率之积为定值,但此解法与变式1、2、3有所不
同,直线与椭圆有一个交点,联立两直线方程得出点的坐标,继
而得出 ∗ 式,再联立直线方程与椭圆方程,消去其中一个变量,得出
关于另一变量的一元二次方程,再利用一元二次方程有一个实数解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 2 2
2
2
例题2
(数学之友P46第8题)
x2 y 2 2 已知椭圆 2 2 1(a>b>0)的离心率为 , a b 2 其焦点在圆x 2 y 2 1上.
uuur uur uuu r 且存在锐角,使OM cos OA sin OB. (ⅱ)求OA2 OB 2 .
2 x1 x2 2 x12 x2 2 2 (ⅱ) y1 y2 ( ) (1 y12 )(1 y2 ) 2 2 2 2 2 2 1 ( y12 y2 ) y12 y2,故y12 y2 1.
x x 2 2 2 2 又( y1 ) ( y2 ) 2,故x1 x2 2. 2 2 2 2 2 2 2 2 所以OA OB x1 y1 x2 y)
1 3
推广: b2 椭圆k1 k2 = 2 a b2 双曲线k1 k2 = 2 a 圆k1 k2 = 1
3.例题讲解
例题1
(数学之友P46第5题)
x y 一般结论:过椭圆 2 + 2 = 1一点定p ( x0 , y0 ) a b 的直线l1 , l2分别交椭圆与A,B。若kl1 kl2 = m ma +b ma +b 则直线AB过定点( x0 ,y0 )。 2 2 2 2 ma - b ma - b
因M 在椭圆上, ( x1cos x2 sin ) 2 故 ( y1cos y2sin ) 2 1. 2 2 x12 x2 x1 x2 2 2 2 2 整理得( y1 )cos ( y2 )sin 2( y1 y2 )cos sin 1. 2 2 2 将①②代入上式, x1 x2 并注意cos sin 0,得 y1 y2 0. 2 y1 y2 1 所以,kOA kOB 为定值. x1 x2 2
1 求椭圆的方程; 2 设A,B,M 是椭圆上的三点(异于椭圆顶点),
ⅰ求证:直线OA与OB的斜率之积为定值; ()
解析: 依题意,得c 1.于是,a 2,b 1. 1 x2 所以所求椭圆的方程为 y 2 1. 2 x12 () 2 ⅰ设A( x1,y1 ),B( x2,y2 ),则 y12 1,① 2 2 x2 2 y2 1.② 2 uuur uur uuu r 又设M ( x,y ),因为OM cos OA sin OB, x x1cos x2 sin 故 . y y1cos y2 sin
斜率乘积为定值问题
1.回归课本
选修2-1 P39第4题
在 ABC中,( 6, B 0),C 6, 直线 AB,AC ( 0) 9 的斜率乘积为 ,求顶点A的轨迹方程。 4
9 9 变式1 : 改为4 4
9 变式2 : 改为m m 0) ( 4
变式3:乘积 改为 差 (教材2-1 P59) 抛物线
2 1
2 2
评析:本题第(1)问主要考查椭圆及圆的几何性质的应 用;第(2)问是定值问题,切入的关键在于设三点A, B,M的坐标,通过向量条件及三点在椭圆上,寻求 出三点坐标间的关系,从而使问题获解 。
4.感受高考
相关文档
最新文档