阜南县第一中学校2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阜南县第一中学校2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.A是圆上固定的一定点,在圆上其他位置任取一点B,连接A、B两点,它是一条弦,它的长度大于等于半径长度的概率为()
A.B.C.D.
2.函数f(x)=有且只有一个零点时,a的取值范围是()
A.a≤0 B.0<a<C.<a<1 D.a≤0或a>1
3.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()
A.4 B.5 C.6 D.7
4.已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()
A.b>c>a B.b>a>c C.a>b>c D.c>b>a
5.如图,△ABC所在平面上的点P n(n∈N*)均满足△P n AB与△P n AC的面积比为3;1,=﹣
(2x n+1)(其中,{x n}是首项为1的正项数列),则x5等于
()
A .65
B .63
C .33
D .31
6. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( ) A
.
π B .2
π
C .
4
π
D
.
π
7.
已知,其中i 为虚数单位,则a+b=( )
A .﹣1
B .1
C .2
D .3
8. 如图F 1、F 2是椭圆C 1
:
+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共
点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )
A
. B
. C
. D
.
9. 设复数z 满足(1﹣i )z=2i ,则z=( )
A .﹣1+i
B .﹣1﹣i
C .1+i
D .1﹣i
10.设方程|x 2+3x ﹣3|=a 的解的个数为m ,则m 不可能等于( ) A .1
B .2
C .3
D .4
11.若直线:1l y kx =-与曲线C :1
()1e x
f x x =-+没有公共点,则实数k 的最大值为( ) A .-1 B .
1
2
C .1 D
【命题意图】考查直线与函数图象的位置关系、函数存在定理,意在考查逻辑思维能力、等价转化能力、运算求解能力.
12.已知实数[1,1]x ∈-,[0,2]y ∈,则点(,)P x y 落在区域20210220x y x y x y +-⎧⎪
-+⎨⎪-+⎩
……… 内的概率为( )
A.
34
B.
38
C.
14
D.
18
【命题意图】本题考查线性规划、几何概型等基础知识,意在考查数形结合思想及基本运算能力.
二、填空题
13.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .
14.已知函数f (x )=恰有两个零点,则a 的取值范围是 .
15.设函数
,若用表示不超过实数m 的最大整数,则函数
的值域为 .
16.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .
17.过点(0,1)的直线与x 2+y 2=4相交于A 、B 两点,则|AB|的最小值为 . 18.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .
三、解答题
19.【海安县2018届高三上学期第一次学业质量测试】已知函数()()
2x
f x x ax a e =++,其中a R ∈,e 是
自然对数的底数.
(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;
(3)若()4f x ≤在[]
4,0-恒成立,求a 的取值范围.
20.在等比数列{a n }中,a 2=3,a 5=81. (Ⅰ)求a n ;
(Ⅱ)设b n =log 3a n ,求数列{b n }的前n 项和S n .
21..已知定义域为R 的函数f (x )=是奇函数.
(1)求a 的值;
(2)判断f (x )在(﹣∞,+∞)上的单调性.(直接写出答案,不用证明);
(3)若对于任意t ∈R ,不等式f (t 2﹣2t )+f (2t 2
﹣k )<0恒成立,求k 的取值范围.
22.如图所示,在四棱锥P ABCD -中,底面ABCD 为菱形,E 为AC 与BD 的交点,PA ⊥平 面ABCD ,M 为PA 中点,N 为BC 中点. (1)证明:直线//MN 平面ABCD ;
(2)若点Q 为PC 中点,120BAD ∠=︒,3PA =,1AB =,求三棱锥A QCD -的体积.
23.(本小题满分12分)如图, 矩形ABCD 的两条对角线相交于点()2,0M ,AB 边所在直线的方 程为360x y --=点()1,1T -在AD 边所在直线上. (1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.
24.如图所示,一动圆与圆x 2+y 2+6x+5=0外切,同时与圆x 2+y 2﹣6x ﹣91=0内切,求动圆圆心M 的轨迹方程,并说明它是什么样的曲线.
阜南县第一中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】B
【解析】解:在圆上其他位置任取一点B,设圆半径为R,
则B点位置所有情况对应的弧长为圆的周长2πR,
其中满足条件AB的长度大于等于半径长度的对应的弧长为2πR,
则AB弦的长度大于等于半径长度的概率P==.
故选B.
【点评】本题考查的知识点是几何概型,其中根据已知条件计算出所有基本事件对应的几何量及满足条件的基本事件对应的几何量是解答的关键.
2.【答案】D
【解析】解:∵f(1)=lg1=0,
∴当x≤0时,函数f(x)没有零点,
故﹣2x+a>0或﹣2x+a<0在(﹣∞,0]上恒成立,
即a>2x,或a<2x在(﹣∞,0]上恒成立,
故a>1或a≤0;
故选D.
【点评】本题考查了分段函数的应用,函数零点与方程的关系应用及恒成立问题,属于基础题.
3.【答案】A
解析:模拟执行程序框图,可得
S=0,n=0
满足条,0≤k,S=3,n=1
满足条件1≤k,S=7,n=2
满足条件2≤k,S=13,n=3
满足条件3≤k,S=23,n=4
满足条件4≤k,S=41,n=5
满足条件5≤k,S=75,n=6
…
若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
4.【答案】A
【解析】解:∵a=0.50.5,c=0.50.2,
∴0<a<c<1,b=20.5>1,
∴b>c>a,
故选:A.
5.【答案】D
【解析】解:由=﹣(2x n+1),
得+(2x n+1)=,
设,
以线段P n A、P n D作出图形如图,
则,
∴,∴,
∵,∴,
则,
即x n+1=2x n+1,∴x n+1+1=2(x n+1),
则{x n+1}构成以2为首项,以2为公比的等比数列,
∴x5+1=2•24=32,
则x5=31.
故选:D.
【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题.
6.【答案】C
【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;
已知球心到该截面的距离为1,所以球的半径为:,
所以球的体积为:=4π
故选:C.
7.【答案】B
【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1
另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.
故选B.
【点评】本题考查复数相等的意义、复数的基本运算,是基础题.
8.【答案】D
【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,
∴2a=4,b=1,c=;
∴|AF1|+|AF2|=2a=4,即x+y=4;①
又四边形AF1BF2为矩形,
∴+=,即x2+y2=(2c)2==12,②
由①②得:,解得x=2﹣,y=2+,设双曲线C
的实轴长为2m,焦距为2n,
2
则2m=|AF
|﹣|AF1|=y﹣x=2,2n=2c=2,
2
∴双曲线C2的离心率e===.
故选D.
【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.9.【答案】A
【解析】解:∵复数z 满足z (1﹣i )=2i , ∴
z==﹣1+i
故选A .
【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.
10.【答案】A
【解析】解:方程|x 2+3x ﹣3|=a 的解的个数可化为函数y=|x 2
+3x ﹣3|与y=a 的图象的交点的个数,
作函数y=|x 2
+3x ﹣3|与y=a 的图象如下,
,
结合图象可知, m 的可能值有2,3,4; 故选A .
11.【答案】C
【解析】令()()()()1
11e
x g x f x kx k x =--=-+
,则直线l :1y kx =-与曲线C :()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1
1
11101e k g k -⎛⎫
=-+< ⎪-⎝⎭
.又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没
有实数解”矛盾,故1k ≤.又1k =时,()1
0e x
g x =>,知方程()0g x =在R 上没有实数解,所以k 的最大值为1,故选C .
12.【答案】B 【
解
析
】
二、填空题
13.【答案】
.
【解析】解:∵数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *
),
∴当n ≥2时,a n =(a n ﹣a n ﹣1)+…+(a 2﹣a 1)+a 1=n+…+2+1=.
当n=1时,上式也成立,
∴a n =.
∴=2
.
∴数列{}的前n 项的和S n =
=
=
.
∴数列{
}的前10项的和为
.
故答案为:.
14.【答案】(﹣3,0).
【解析】解:由题意,a≥0时,
x<0,y=2x3﹣ax2﹣1,y′=6x2﹣2ax>0恒成立,
f(x)在(0,+∞)上至多一个零点;
x≥0,函数y=|x﹣3|+a无零点,
∴a≥0,不符合题意;
﹣3<a<0时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上无零点,符合题意;
a=﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a<﹣3时,函数y=|x﹣3|+a在[0,+∞)上有两个零点,
函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a的取值范围是(﹣3,0).
故答案为(﹣3,0).
15.【答案】{0,1}.
【解析】解:
=[﹣]+[+]
=[﹣]+[+],
∵0<<1,
∴﹣<﹣<,<+<,
①当0<<时,
0<﹣<,<+<1,
故y=0;
②当=时,
﹣=0, +=1,
故y=1;
③<
<1时,
﹣<﹣<0,1<
+<,
故y=﹣1+1=0;
故函数
的值域为{0,1}.
故答案为:{0,1}.
【点评】本题考查了学生的化简运算能力及分类讨论的思想应用.
16.【答案】 [,4] .
【解析】解:由题意知≤log
2x ≤2,即log 2≤log 2x ≤log 24,
∴
≤x ≤4.
故答案为:[
,4].
【点评】本题考查函数的定义域及其求法,正确理解“函数y=f (x )的定义域是[,2],得到≤log 2x ≤2”是关键,考查理解与运算能力,属于中档题.
17.【答案】 2
【解析】解:∵x 2+y 2
=4的圆心O (0,0),半径r=2, ∴点(0,1)到圆心O (0,0)的距离d=1, ∴点(0,1)在圆内.
如图,|AB|最小时,弦心距最大为1,
∴|AB|min =2=2
.
故答案为:2
.
18.【答案】 2:1 .
【解析】解:设圆锥、圆柱的母线为l ,底面半径为r ,
所以圆锥的侧面积为: =πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1 故答案为:2:1
三、解答题
19.【答案】(1)210x y -+=(2)当2a =时,()f x 无单调减区间;当2a <时,()f x 的单调减区间
是()2,a --;当2a >时,()f x 的单调减区间是(),2a --.(3)2
44,4e ⎡⎤-⎣⎦
【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式()4f x ≤进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极
值与最值,进而分析推证不等式的成立求出参数的取值范围。
(2) 因为()()()()2
'222x
x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦,
当2a =时,()()2
'20x
f x x e =+≥,所以()f x 无单调减区间.
当2a ->-即2a <时,列表如下:
所以()f x 的单调减区间是()2,a --.
当2a -<-即2a >时,()()()'2x
f x x x a e =++,列表如下:
所以()f x 的单调减区间是(),2a --.
综上,当2a =时,()f x 无单调减区间;
当2a <时,()f x 的单调减区间是()2,a --; 当2a >时,()f x 的单调减区间是(),2a --.
(3)()()()()2'222x x
f x x a x a e x a x e ⎡⎤=+++=++⎣⎦.
当2a =时,由(2)可得,()f x 为R 上单调增函数,
所以()f x 在区间[]
4,0-上的最大值()024f =≤,符合题意. 当2a <时,由(2)可得,要使()4f x ≤在区间[]
4,0-上恒成立,
只需()04f a =≤,()()2
244f a e --=-≤,解得2442e a -≤<.
当24a <≤时,可得()4a
a
f a e -=
≤,()04f a =≤. 设()a a g a e =,则()1'a a
g a e
-=,列表如下:
所以()()max
114g a g e ⎡⎤==
<⎣⎦
,可得4a a
e
≤恒成立,所以24a <≤. 当4a >时,可得()04f a =≤,无解.
综上,a 的取值范围是2
44,4e ⎡⎤-⎣⎦.
20.【答案】
【解析】解:(Ⅰ)设等比数列{a n }的公比为q , 由a 2=3,a 5=81,得
,解得
.
∴;
(Ⅱ)∵
,b n =log 3a n ,
∴.
则数列{b n }的首项为b 1=0,
由b n ﹣b n ﹣1=n ﹣1﹣(n ﹣2)=1(n ≥2), 可知数列{b n }是以1为公差的等差数列.
∴
.
【点评】本题考查等比数列的通项公式,考查了等差数列的前n 项和公式,是基础的计算题.
21.【答案】
【解析】解:(1)因为f (x )为R 上的奇函数
所以f (0)=0即=0,
∴a=1 …
(2)f (x )=
=﹣1+
,在(﹣∞,+∞)上单调递减…
(3)f (t 2﹣2t )+f (2t 2﹣k )<0⇔f (t 2﹣2t )<﹣f (2t 2﹣k )=f (﹣2t 2
+k ),
又f (x )=在(﹣∞,+∞)上单调递减,
∴t 2﹣2t >﹣2t 2
+k ,
即3t 2
﹣2t ﹣k >0恒成立,
∴△=4+12k <0,
∴k <﹣.…(利用分离参数也可).
22.【答案】(1)证明见解析;(2)18
. 【解析】
试题解析:(1)证明:取PD 中点R ,连结MR ,RC , ∵//MR AD ,//NC AD ,1
2
MR NC AD ==, ∴//MR NC ,MR AC =,
∴四边形MNCR 为平行四边形,
∴//MN RC ,又∵RC ⊂平面PCD ,MN ⊄平面PCD , ∴//MN 平面PCD .
(2)由已知条件得1AC AD CD ===,所以ACD S ∆=, 所以111328
A QCD Q ACD ACD V V S PA --∆==
⨯⨯=.
考点:1、直线与平面平行的判定;2、等积变换及棱锥的体积公式.
23.【答案】(1)320x y ++=;(2)()2
2
28x y -+=.
【解析】
试题分析:(1)由已知中AB 边所在直线方程为360x y --=,且AD 与AB 垂直,结合点()1,1T -在直线AD 上,可得到AD 边所在直线的点斜式方程,即可求得AD 边所在直线的方程;(2)根据矩形的性质可得
矩形ABCD 外接圆圆心纪委两条直线的交点()2,0M ,根据(1)中直线,即可得到圆的圆心和半径,即可求得矩形ABCD 外接圆的方程.
(2)由360
320
x y x y --=⎧⎨
++=⎩解得点A 的坐标为()0,2-,
因为矩形ABCD 两条对角线的交点为()2,0M ,
所以M 为距形ABCD 外接圆的圆心, 又AM =
=
从而距形ABCD 外接圆的方程为()2
2
28x y -+=.1
考点:直线的点斜式方程;圆的方程的求解.
【方法点晴】本题主要考查了直线的点斜式方程、圆的方程的求解,其中解答中涉及到两条直线的交点坐标,圆的标准方程,其中(1)中的关键是根据已知中AB 边所在的直线方程以及AD 与AB 垂直,求出直线AD 的斜率;(2)中的关键是求出A 点的坐标,进而求解圆的圆心坐标和半径,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力.
24.【答案】
【解析】解:(方法一)设动圆圆心为M (x ,y ),半径为R ,设已知圆的圆心分别为O 1、O 2,
将圆的方程分别配方得:(x+3)2+y 2=4,(x ﹣3)2+y 2
=100, 当动圆与圆O 1相外切时,有|O 1M|=R+2…① 当动圆与圆O 2相内切时,有|O 2M|=10﹣R …② 将①②两式相加,得|O 1M|+|O 2M|=12>|O 1O 2|,
∴动圆圆心M (x ,y )到点O 1(﹣3,0)和O 2(3,0)的距离和是常数12,
所以点M 的轨迹是焦点为点O 1(﹣3,0)、O 2(3,0),长轴长等于12的椭圆.
∴2c=6,2a=12, ∴c=3,a=6
∴b 2
=36﹣9=27
∴圆心轨迹方程为
,轨迹为椭圆.
(方法二):由方法一可得方程,移项再两边分别平方得:
2
两边再平方得:3x 2+4y 2
﹣108=0,整理得
所以圆心轨迹方程为,轨迹为椭圆.
【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键.。