实验二 离散时间系统的时域和频域分析
数字信号处理知识点总结
数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
离散时间系统的时域特性分析实验报告
信号、系统与信号处理实验报告实验一、离散时间系统的时域特性分析姓名:学号:班级:专业:一.实验目的线性时不变(LTI)离散时间系统在时域中可以通过常系数线性差分方程来描述,冲激响应列可以刻画时域特性。
本次实验通过使用MATLAB函数研究离散时间系统的时域特性,以加深对离散时间系统的差分方程、冲激响应和系统的线性和时不变性的理解。
二.基本原理一个离散时间系统是将输入序列变换成输出序列的一种运算。
离散时间系统中最重要、最常用的是“线性时不变系统”。
1.线性系统满足叠加原理的系统称为线性系统,即若某一输入是由N个信号的加权和组成的,则输出就是系统对这几个信号中每一个输入的响应的加权和。
即那么当且仅当系统同时满足和时,系统是线性的。
在证明一个系统是线性系统时,必须证明此系统同时满足可加性和比例性,而且信号以及任何比例系数都可以是复数。
2.时不变系统系统的运算关系在整个运算过程中不随时间(也即序列的先后)而变化,这种系统称为时不变系统(或称移不变系统)。
若输入的输出为,则将输入序列移动任意位后,其输出序列除了跟着位移外,数值应该保持不变,即则满足以上关系的系统称为时不变系统。
3.常系数线性差分方程线性时不变离散系统的输入、输出关系可用以下常系数线性差分方程描述:当输入为单位冲激序列时,输出即为系统的单位冲激响应。
当时,是有限长度的,称系统为有限长单位冲激响应(FIR)系统;反之,则称系统为无限长单位冲激响应(IIR)系统。
三.实验内容及实验结果1.实验内容考虑如下差分方程描述的两个离散时间系统:系统1:系统2:输入:(1)编程求上述两个系统的输出,并画出系统的输入与输出波形。
(2)编程求上述两个系统的冲激响应序列,并画出波形。
(3)若系统的初始状态为零,判断系统2是否为时不变的?是否为线性的?2.实验结果(1)编程求上述两个系统的输出和冲激响应序列,并画出系统的输入、输出与冲激响应波形。
clf;n=0:300;x=cos((20*pi*n)/256)+cos((200*pi*n)/256);num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=filter(num1,den1,x);y2=filter(num2,den2,x);subplot(3,1,1);stem(n,x);xlabel('时间信号');ylabel('信号幅度');title('输入信号');subplot(3,1,2);stem(y1);xlabel('时间信号n');ylabel('信号幅度');title('输出信号');subplot(3,1,3);stem(y2);xlabel('时间序号n ');ylabel('信号幅度');title('冲激响应序列');(2)N=40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];y1=impz(num1,den1,N);y2=impz(num2,den2,N);subplot(2,1,1);stem(y1);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');subplot(2,1,2);stem(y2);xlabel('时间信号n ');ylabel('信号幅度');title('³冲激响应');1.应用叠加原理验证系统2是否为线性系统:clear allclcn = 0 : 1 : 299;x1 = cos(20 * pi * n / 256);x2 = cos(200 * pi * n / 256);x = x1 + x2;num = [0.45 0.5 0.45];den = [1 -0.53 0.46];y1 = filter(num, den, x1);y2 = filter(num, den, x2);y= filter(num, den, x);yt = y1 + y2;figuresubplot(2, 1, 1);stem(n, y, 'g');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;subplot(2, 1, 2);stem(n, yt, 'r');xlabel('时间信号n');ylabel('信号幅度');axis([0 100 -2 2]);grid;2.应用时延差值来判断系统2是否为时不变系统。
DSP实验报告--离散时间信号与系统的时、频域表示-离散傅立叶变换和z变换-数字滤波器的频域分析和实现-数字
南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。
在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。
实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。
clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。
运行修改的程序并显示产生的序列。
clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。
(完整版)数字信号处理实验二
y = filter(num,den,x,ic);
yt = a*y1 + b*y2;
d = y - yt;
subplot(3,1,1)
stem(n,y);
ylabel('振幅');
title('加权输入: a \cdot x_{1}[n] + b \cdot x_{2}[n]的输出');
subplot(3,1,2)
%扫频信号通过2.1系统:
clf;
n = 0:100;
s1 = cos(2*pi*0.05*n);
s2 = cos(2*pi*0.47*n);
a = pi/2/100;
b = 0;
arg = a*n.*n + b*n;
x = cos(arg);
M = input('滤波器所需的长度=');
num = ones(1,M);
三、实验器材及软件
1.微型计算机1台
2. MATLAB 7.0软件
四、实验原理
1.三点平滑滤波器是一个线性时不变的有限冲激响应系统,将输出延时一个抽样周期,可得到三点平滑滤波器的因果表达式,生成的滤波器表示为
归纳上式可得
此式表示了一个因果M点平滑FIR滤波器。
2.对线性离散时间系统,若y1[n]和y2[n]分别是输入序列x1[n]和x2[n]的响应,则输入
plot(n, y);
axis([0, 100, -2, 2]);
xlabel('时间序号 n'); ylabel('振幅');
第2章 时域离散信号和系统的频域分析
3、 非周期离散信号的傅里叶变换:频率函数是周期的连续函数 4、 离散周期序列的傅里叶变换:具有既是周期又是离散的频谱,即
时域和频域都是离散的、周期的 规律:一个域的离散就必然造成另一个域的周期延拓。 1、如果信号频域是离散的,则该信号在时域就表现为周期性的时间函 数。 2、在时域上是离散的,则该信号在频域必然表现为周期性的频率函 数。 3、如果时域信号离散且是周期的,由于它时域离散,其频谱必是周期 的,又由于时域是周期的,相应的频谱必是离散的, 4、离散周期序列一定具有既是周期又是离散的频谱,即时域和频域都 是离散周期的。
对于,将以为周期进行周期延拓,得到所示的周期序列, 周期为16, 求的DFS。 可以看出,在时,处频谱的幅度和处是一样的。也就是说,点数越多, 频谱越精确。
..2 离散周期序列的傅里叶变换 各种形式的傅里叶变换 1、 非周期实连续时间信号的傅里叶变换: 频谱是一个非周期的连续
函数 2、 周期性连续时间信号的傅里叶变换: 频谱是非周期性的离散频率
例:设, f0=50 Hz,以采样频率对进行采样, 得到采样信号和时域离 散信号, 求)、和的傅里叶变换的FT。
2.5 序列的Z变换 双边Z变换的定义:序列x(n)的Z变换定义为: 式中:z是一个复变量,它所在的复平面称为z平面。 注意在定义中,对 n求和是在±∞之间求和,可以称为双边Z变换。
为单边Z变换: 适用于因果序列,如果不特别强调,均用双边Z变换对信号进行分析和 变换。 Z变换成立条件: Z变量取值的域称为收敛域。 一般收敛域用环状域表示
在模拟系统中, 的傅里叶变换为 对于时域离散系统中, ,它的傅立叶变换 对于
(
例:求对进行的周期延拓后的周期序列的傅立叶变换FT 注意:对于同一个周期信号, 其DFS和FT分别取模的形状是一样的, 不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。 因此周期序列 的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数 的画法。 例:设 ,为有理数,求其FT 物理含义:的FT是在处的单位冲激函数,强度为π,且以2π为周期进行 延拓。
离散时间信号与系统的时域分析实验报告
离散时间信号与系统的时域分析实验报告报告⼆:⼀、设计题⽬1.绘制信号)()(1k k f δ=和)2()(2-=k k f δ的波形2.绘制直流信号)()(1k k f ε=和)2(2-=k f ε的波形3绘制信号)()(6k G k f =的波形⼆实验⽬的1.掌握⽤MATLAB 绘制离散时间信号(序列)波形图的基本原理。
2.掌握⽤MATLAB 绘制典型的离散时间信号(序列)。
3.通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。
三、设计原理离散时间信号(也称为离放序列)是指在时间上的取值是离散的,只在⼀些离放的瞬间才有定义的,⽽在其他时间没有定义,简称离放信号(也称为离散序列) 序列的离散时间间隔是等间隔(均匀)的,取时间间隔为T.以f(kT)表⽰该离散序列,k 为整数(k=0,±1.±2,...)。
为了简便,取T=1.则f(kT)简记为f(k), k 表⽰各函数值在序列中出现的序号。
序列f(k)的数学表达式可以写成闭合形式,也可逐⼀列出f(k)的值。
通常,把对应某序号K0的序列值称为序列的第K0个样点的“样点值”。
四、设计的过程及仿真1clear all; close all; clc;k1=-4;k2=4;k=k1:k2;n1=0;n2=2;f1=[(k-n1)==0];f2=[(k-n2)==0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('δ(k)')axis([k1,k2,-0.1,1.1]);subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);ylabel('f_2(k)');title('δ(k-2)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:2c lear all; close all; clc;k1=-2;k2=8;k=k1:k2;n1=0;n2=2; %阶跃序列开始出现的位置f1=[(k-n1)>=0]; f2=[(k-n2)>=0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('ε(k)')axis([k1,k2+0.2,-0.1,1.1])subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);xlabel('k');ylabel('f_2(k)');title('ε(k-2)')axis([k1,k2+0.2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:3clear all; close all; clc;k1=-2;k2=7;k=k1:k2; %建⽴时间序列n1=0;n2=6; f1=[(k-n1)>=0];f2=[(k-n2)>=0];f=f1-f2;stem(k,f,'fill','-k','linewidth',2);xlabel('k');ylabel('f(k)');title('G_6(k)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:五、设计的结论及收获实现了⽤matlab绘制离散时间信号, 通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。
数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析
实验一离散时间LTI系统的时域分析与Z域分析一、实验目的1、掌握用MATLAB求解离散时间系统的零状态响应、单位脉冲响应和单位阶跃响应;2、掌握离散时间系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的稳定性。
二、实验原理1、离散时间系统的时域分析(1)离散时间系统的零状态响应离散时间LTI系统可用线性常系数差分方程来描述,即MATLAB中函数filter可对式(1-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter的语句格式为:y=filter(b,a,x)其中,x为输入的离散序列;y为输出的离散序列;y的长度与x的长度一样;b与a分别为差分方程右端与左端的系数向量。
(2)离散时间系统的单位脉冲响应系统的单位脉冲响应定义为系统在 (n)激励下系统的零状态响应,用h(n)表示。
MATLAB求解单位脉冲响有两种方法:一种是利用函数filter;另一种是利用函数impz。
impz函数的常用语句格式为impz(b,a,n),其中b和a的定义见filter,n表示脉冲响应输出的序列个数。
(3)离散时间系统的单位阶跃响应系统的单位阶跃响应定义为系统在ε(n)激励下系统的零状态响应。
MATLAB求解单位脉冲响应有两种方法:一种是利用函数filter,另一种是利用函数stepz。
stepz函数的常用语句格式为stepz(b,a,N)其中,b和a的定义见filter,N表示脉冲响应输出的序列个数。
2、离散时间系统的Z域分析(1)系统函数的零极点分析离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即如果系统函数H(z)的有理函数表示式为那么,在MATLAB中系统函数的零极点就可通过函数roots得到,也可借助函数tf2zp得到。
roots的语法格式为:Z=roots(b)%计算零点b=[b1b2…bmbm+1]P=roots(a)%计算极点a=[a1a2…anan+1]tf2zp的语句格式为[Z,P,K]=tf2zp(b,a)其中,b与a分别表示H(z)的分子与分母多项式的系数向量。
实验二 离散控制系统的性能分析1
实验二离散控制系统的性能分析(时域/频域)一、实验目的1.掌握离散闭环系统的动态性能时域参数的分析与计算方法;2.掌握离散系统稳定性的频域典型参数分析与计算方法。
二、实验工具1.MATLAB 软件(6.5 以上版本);2.每人计算机一台。
三、实验内容1.在 Matlab 语言平台上,通过给定的闭环离散系统,深刻理解时域参数的物理意义与计算方法,内容包括如下:●阻尼比参数分析:Z 平面与 S 平面的极点相互转换编程实现;分析 S/Z 两个平面域特殊特性(水平线、垂直线、斜线、圆周等)的极点轨迹相互映射方法;系统阶跃响应参数:上升时间和超调量等。
2.采用频域分析方法,通过编程计算,进一步理解离散系统的稳定性参数,包括如下:●通过幅频图,进行增益裕度分析;●通过相频图,进行相位裕度分析。
四、实验步骤1.阻尼比计算注释:Example 1 Damping ratio computationts=0.1;gp=tf(1,[1 1 0])gz=c2d(gp,ts,'zoh')kz=tf(5*[1,-0.9],[1 -0.7],ts);sys_ta=feedback(gz*kz,1,-1)p=pole(sys_ta)- 2 -radii=abs(p);angl=angle(p)damp(sys_ta)real_s=log(radii)/tsimg_s=angl/tszeta=cos(atan(-img_s./real_s))wn=sqrt(real_s.^2+img_s.^2)运行结果:2.水平 S 平面线到 z 平面的映射注释:Example 2 Mapping of horizontal s-plane line to z-planexx=[0:0.05:1]'N=length(xx)s0=-xx*35;s=s0*[1 1 1 1 1]+j*ones(N,1)*[0,0.25,0.5,0.75,1]*pi/tsplot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',... real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',... real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid3.垂直 S 平面线到 z 平面的映射注释:Example 3 Mapping of vertical s-plane line to z-planes0=j*xx*pi/ts;s=ones(N,1)*[0,-5,-10,-20,-30]+s0*[1 1 1 1 1]plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',...real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',...real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid4.恒定阻尼比 S 平面线映射到 z 平面注释:Example 4 Mapping of constant damping ratio s-plane lines into z-plane s=s0*[1 1 1 1]-imag(s0)*[0,1/tan(67.5*pi/180),...1/tan(45*pi/180),1/tan(22.5*pi/180)]s=[s,real(s(:,4))];plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',...real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',...real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid5.将圆 s 平面线映射到 z 平面注释:Example 5 Mapping of circle s-plane line to z-planephi=xx*pi/2s0=(pi/ts)*(-cos(phi)+j*sin(phi))s=s0*[1,0.75,0.5,0.25,0]plot(real(s(:,1)),imag(s(:,1)),'-o',real(s(:,2)),imag(s(:,2)),'-s',... real(s(:,3)),imag(s(:,3)),'-^',real(s(:,4)),imag(s(:,4)),'-*',...real(s(:,5)),imag(s(:,5)),'-v'),sgridz=exp(s*ts)plot(real(z(:,1)),imag(z(:,1)),'-o',real(z(:,2)),imag(z(:,2)),'-s',... real(z(:,3)),imag(z(:,3)),'-^',real(z(:,4)),imag(z(:,4)),'-*',...real(z(:,5)),imag(z(:,5)),'-v'),zgrid6.阶跃响应注释:Example 6 Step response measurek=[0:1:60];step(sys_ta,k*ts);7.根轨迹注释:Example 7 Root-locus analysisrlocus(gz*kz)Amplitude;注释:Example 8 Root-locus analysis in page 56 numg=[1 0.5];deng=conv([1 -0.5 0],[1 -1 0.5]);sys_z=tf(numg,deng,-1)rlocus(sys_z)注释:Example 9 Root-locus analysis in page 57numg=[1];deng=[1 4 0];ts=0.25sys_s2=tf(numg,deng)sys_z2=c2d(sys_s2,ts,'imp')rlocus(sys_z2)8.频率响应注释:Example 10 Analysis of frequency response and roots locus in page 59 a=1.583e-7;k=[1e7,6.32e6,1.65e6];w1=-1;w2=1;ts=0.1;v=logspace(w1,w2,100);deng=[1.638 1 0];numg1=k(1,1)*a*[-1 1]numg2=k(1,2)*a*[-1 1]numg3=k(1,3)*a*[-1 1]sys_s1=tf(numg1,deng)sys_s2=tf(numg2,deng)sys_s3=tf(numg3,deng)bode(sys_s1,sys_s2,sys_s3,v),grid onnumg=1.2e-7*[1 1]deng=conv([1 -1],[1 -0.242]);sys_z2=tf(numg,deng,ts)rlocus(sys_z2),grid on五、实验思考1. S 平面与 Z 平面不同位置的映射关系分析s平面虚轴的映射s平面整个虚轴映射为z平面单位圆,左半平面任一点映射在z平面单位圆内,右半平面任一点映射在单位圆外。
离散信号与系统的时域和频域分析
h(k n) an1h(k n 1) an2h(k n 2) ... a0h(k ) 0 K>0时, n 齐次差分方程解: k
h(k ) [ ci ( ) ] (k )
离散信号与系统分析
开始
下一页
结束
本章说明
与连续信号与系统相比较,离散系统的数学描述是激励响应的差分方 程,其系统分析求响应实质是求解描述离散系统的差分方程。离散系 统的零状态响应可以用卷积和来求取。 时域分析: 1.掌握离散信号与系统的基本概念。 2.熟悉并掌握常用基本信号的描述、特性、运算与变换。 3.深刻理解采样定理的意义、内容及应用。 4.掌握离散系统的数学描述方法—差分方程及模拟图 5.掌握离散系统的时域分析—经典法求零输入响应、零状态响应。 6.熟悉卷积和法及其主要性质并会应用卷积和法求零状态响应。
4、图解法卷积
①变量代换 f1(n) 变成f1(k) f2(n) 变成f2( ②反折其中之一信号 ③将反折信号移位 m f2(-k) f2(m-k) 以k代n
④e将平移后的f2(m-k)与对应的f1(k)相乘 ⑤将各乘积值相加可画出全部y(m) ⑥重复步骤③到⑤可画出全部y(n) 5、系统零状态响应为
5、序列的运算
④差分:离散信号的差分运算 f (k ) f (k 1) f (k ) 前向差分: f (k ) f (k ) f (k 1) 后向差分: ⑤反折:将离散信号以纵轴为对称轴反折(转) ⑥压扩:将离散信号中f(k)的自变量k置换为ak得到的过程称为信号的尺 度变换 注意:不存在非整数ak的值! ⑦求和:离散信号的求和运算是对某一离散信号进行历史推演的求和过程。
2010信号与系统实验2
实验二:连续和离散系统的频域分析一:实验目的1:学习傅里叶正变换和逆变换,理解频谱图形的物理含义2:了解连续和离散时间系统的单位脉冲响应3:掌握连续时间系统的频率特性二:实验原理1. 傅里叶正变换和逆变换公式 正变换:()()j t F f t e dt ωω∞--∞=⎰逆变换:1()()2j t f t F e d ωωωπ∞-∞=⎰2. 频域分析t j tj e d d e t e ωωωπωωωπ⎰⎰∞∞-∞∞-E =E =)(21)(21)(将激励信号分解为无穷多个正弦分量的和。
⎰∞∞-H E =ωωωπωd e t r tj zs )()(21)(,R(ω)为)(t r zs 傅里叶变换;πωωd )(E 各频率分量的复数振幅 激励单位冲激响应时的零状态响应→ )(t δ)(t h单位阶跃响应时的零状态响应激励→)(t u )(t g3 各函数说明:(1)impulse 冲激响应函数:[Y ,X,T]=impulse(num,den);)1()2()1()1()2()1()()()(11++++++++==--n a s a s a m b s b s b s A s B s H n n m m num 分子多项式系数; num=[b(1) b(2) … b(n+1)]; den 分母多项式系数; den=[a(1) a(2) … a(n+1)];Y ,X,T 分别表示输出响应,中间状态变量和时间变量; 如:352)(2+++=s s s s H ,等价于)(2)()(3)(5)(t e t e t r t r t r +=++ 定义den=[1 5 3];num=[1 2]; [Y ,X,T]=impulse(num,den);(2)step 阶跃响应函数:[Y,X,T]=step(num,den);num 分子多项式;den 分母多项式 Y ,X,T 分别表示输出响应,中间状态变量和时间变量;如:352)(2+++=s s s s H ,den=[1 5 3];num=[1 2];[Y ,X,T]= step (num,den);(3)impz 数字滤波器的冲激响应 [h,t] = impz(b,a,n) b 分子多项式系数;a 分母多项式系数;n 采样样本h 离散系统冲激响应;t 冲激时间,其中t=[0:n-1]', n=length(t)时间样本数(4)freqs 频域响应 [h,w] = freqs(b,a,f) b,a 定义同上,f 频率点个数 h 频域响应,w 频域变量)1()2()1()1()2()1()()()(11++++++++==--m a s a s a n b s b s b s A s B s H m m n n三.实验内容1 周期信号傅里叶级数 已知连续时间信号()()2/8cos 3/4coscos )(321ππ++++=t A t A wt A t x ,其中321,,A A A 取值如下:(X 为学号的后两位)]10,1[,5.02321∈⎪⎩⎪⎨⎧===X X A X A X A ]20,11[,55321∈⎪⎩⎪⎨⎧+==-=X X A XA X A ⎪⎩⎪⎨⎧=-=-=X A X A X A 32151020,>X 要求画出信号的时域波形和频域波形(幅度谱和相位谱)。
硕士信号处理实验报告(3篇)
第1篇一、实验背景随着信息技术的飞速发展,数字信号处理(DSP)技术已成为通信、图像处理、语音识别等领域的重要工具。
本实验旨在通过一系列实验,加深对数字信号处理基本原理和方法的理解,提高实际应用能力。
二、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握常用信号处理算法的MATLAB实现。
3. 培养分析和解决实际问题的能力。
三、实验内容本实验共分为五个部分,具体如下:1. 离散时间信号的基本操作(1)实验目的:熟悉离散时间信号的基本操作,如加法、减法、乘法、除法、延时、翻转等。
(2)实验步骤:- 使用MATLAB生成两个离散时间信号。
- 对信号进行基本操作,如加法、减法、乘法、除法、延时、翻转等。
- 观察并分析操作结果。
2. 离散时间系统的时域分析(1)实验目的:掌握离散时间系统的时域分析方法,如单位脉冲响应、零状态响应、零输入响应等。
(2)实验步骤:- 使用MATLAB设计一个离散时间系统。
- 计算系统的单位脉冲响应、零状态响应和零输入响应。
- 分析系统特性。
(1)实验目的:掌握离散时间信号的频域分析方法,如快速傅里叶变换(FFT)、离散傅里叶变换(DFT)等。
(2)实验步骤:- 使用MATLAB生成一个离散时间信号。
- 对信号进行FFT和DFT变换。
- 分析信号频谱。
4. 数字滤波器的设计与实现(1)实验目的:掌握数字滤波器的设计与实现方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。
(2)实验步骤:- 使用MATLAB设计一个低通滤波器。
- 使用窗函数法实现滤波器。
- 对滤波器进行性能分析。
5. 信号处理在实际应用中的案例分析(1)实验目的:了解信号处理在实际应用中的案例分析,如语音信号处理、图像处理等。
(2)实验步骤:- 选择一个信号处理应用案例。
- 分析案例中使用的信号处理方法。
- 总结案例中的经验和教训。
四、实验结果与分析1. 离散时间信号的基本操作实验结果表明,离散时间信号的基本操作简单易懂,通过MATLAB可以实现各种操作,方便快捷。
实验二离散时间系统的时域分析实验
数字信号处理——实验二武汉工程大学电气信息学院通信工程红烧大白兔一、实验目的1、在时域中仿真离散时间系统,进而理解离散时间系统对输入信号或延时信号进行简单运算处理,生成具有所需特性的输出信号的方法。
2、仿真并理解线性与非线性、时变与时不变等离散时间系统。
3、掌握线性时不变系统的冲激响应的计算并用计算机仿真实现。
4、仿真并理解线性时不变系统的级联、验证线性时不变系统的稳定特性。
二、实验设备计算机,MATLAB语言环境三、实验根底理论1、系统的线性线性性质表现为系统满足线性叠加原理:假设某一输入是由N个信号的加权和组成的,输出就是由系统对这N个信号中每一个的响应的相应加权和组成的。
设x1〔n〕和〔n〕分别作为系统的输入序列,其输出分别用y1(n)和y2(n)表示,即Y1(n)=T[x1(n)],y2(n)=T[x2(n)]假设满足T[a1x1(n)+a2x2(n)]=a1y1(n)+a2y2(n)x2那么那么该系统服从线性叠加原理,或者称为该系统为线性系统。
2、系统的时不变特性假设系统的变换关系不随时间变化而变化,或者说系统的输出随输入的移位而相应移位但形状不变,那么称该系统为时不变系统。
对于时不变系统,假设y(n)=T[x(n)]那么T[x(n-m)]=y(n-m)3、系统的因果性系统的因果性既系统的可实现性。
如果系统n时刻的输出取决于n时刻及n时刻以前的输入,而和以后的输入无关,那么该系统是可实现的,是因果系统。
系统具有因果性的充分必要条件是h(n)=0,n<04、系统的稳定性稳定系统是指有界输入产生有界输出〔BIBO)的系统。
如果对于输入序列x(n),存在一个不变的正有限值M,对于所有n值满足|x(n)|≤M<∞那么称该输入序列是有界的。
稳定性要求对于每个有界输入存在一个不变的正有限值K,对于所有n值,输出序列y(n)满足|y(n)|≤K<∞系统稳定的充分必要条件是系统的单位取样响应绝对可和,用公式表示为|h(n)|n5、系统的冲激响应设系统输入x(n)=δ(n),系统输出y(n)的初始状态为零,这时系统输出用即h(n)=T[δ(n)]那么称h(n)为系统的单位脉冲响应。
武汉工程大学matlab实验二离散时间信号的分析实验【范本模板】
武汉工程大学数字信号处理实验报告二专业班级:14级通信03班学生姓名:秦重双学号:1404201114实验时间:2017年5月3日实验地点:4B315指导老师: 杨述斌实验一离散时间信号的分析实验一、实验目的①认识常用的各种信号,理解其数学表达式和波形表示。
②掌握在计算机中生成及绘制数值信号波形的方法。
③掌握序列的简单运算及计算机实现与作用。
④理解离散时间傅里叶变换、Z变换及它们的性质和信号的频域特性。
二、实验设备计算机,MATLAB语言环境。
三、实验基础理论1、序列的相关概念离散时间信号用一个称为样本的数字序列来表示。
一般用{x[n]}表示,其中自变量n的取值范围是﹣∞到﹢∞之间的整数。
为了表示方便,序列通常直接用x[n]表示。
离散时间信号可以是一个有限长序列,也可以是一个无限长序列。
有限长(也称为有限时宽)序列仅定义在有限的时间间隔中:﹣∞≤N1 ≤N2 ≤+∝。
有限长序列的长度或时宽为N=N1 -N2+1。
满足x[n+kN]=x[n](对于所有n)的序列称为周期为N的周期序列,其中N取任意正整数;k取任意整数;2、常见序列常见序列有单位取样值信号、单位阶跃序列、矩形序列、斜变序列、单边指数序列、正弦序列、复指数序列等。
3、序列的基本运算序列的基本运算有加法、乘法、倒置(反转)、移位、尺度变换、卷积等。
4、离散傅里叶变换的相关概念5、Z变换的相关概念四.实验内容与步骤1、知识准备认真复习以上基础理论,理解本实验所用到的实验原理。
2、离散时间信号(序列)的产生利用MATLAB语言编程和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形,以加深对离散信号时域表示的理解。
①单位取样值信号Matlab程序x=0;y=1;stem(x,y);title('单位样值’);axis([—2,2,0,1]);②单位阶跃序列Matlab程序n0=0;n1=—5;n2=5;n=[n1:n2];x=[(n—n0)>=0];stem(n,x);xlabel('n');ylabel(’x(n)’);title(’单位阶跃序列’);③指数序列、正弦序列Matlab程序n=[0:10];x=(1/3)。
离散时间系统的时域特性分析
离散时间系统的时域特性分析离散时间系统是指输入和输出均为离散时间信号的系统,如数字滤波器、数字控制系统等。
时域分析是研究系统在时间上的响应特性,包括系统的稳定性、响应速度、能否达到稳态等。
在时域分析中,我们通常关注系统的单位采样响应、阶跃响应和脉冲响应。
1. 单位采样响应单位采样响应是指当输入信号为单位脉冲序列时,系统的输出响应。
在时间域上,单位脉冲序列可以表示为:$$ u[n] = \begin{cases}1 & n=0\\ 0 & n \neq 0\end{cases} $$系统的单位采样响应可以表示为:$$ h[n] = T\{ \delta[n]\} $$其中,$T\{\}$表示系统的传输函数,$\delta[n]$表示单位脉冲序列。
通常情况下,我们可以通过借助系统的差分方程求得系统的单位采样响应。
对于一种具有一阶差分方程的系统,其单位采样响应可以表示为:2. 阶跃响应其中,$\alpha$为系统的传递常数。
3. 脉冲响应脉冲响应是指当输入信号为任意离散时间信号时,系统的输出响应。
其主要思路是通过将任意输入信号拆解成单位脉冲序列的线性组合,进而求得系统的输出响应。
设输入信号为$x[n]$,系统的脉冲响应为$h[n]$,则系统的输出信号$y[n]$可以表示为:$$ y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] $$在实际计算中,通常采用卷积算法实现脉冲响应的计算,即将输入信号和脉冲响应进行卷积运算。
总之,时域特性分析是对离散时间系统进行分析和设计时的基础。
对于实际工程应用中的系统,需要综合考虑其时域和频域特性,进而选择合适的滤波器结构、控制算法等来实现系统的优化设计。
离散时间信号和系统的频域分析
离散时间信号和系统的频域分析离散时间信号与系统是研究数字信号与系统的频域分析,其中离散时间信号是对连续时间信号进行采样得到的,而离散时间系统是对连续时间系统进行离散化得到的。
频域分析是对信号与系统在频率域上的特性进行研究和分析。
对于离散时间信号,其离散化的过程是将连续时间信号在时间轴上进行均匀采样,得到指定的采样间隔,得到离散时间序列。
在频域上,其频谱是周期性的,并且频谱是以单位圆为单位周期的。
频域分析的目的是研究离散时间信号在频率域上的特性,包括频谱范围、频率分辨率、功率谱密度等。
离散时间信号的频域分析可以通过离散时间傅里叶变换(DTFT)来实现。
DTFT是信号在频域上的完全变换,将一个离散时间信号映射到一个连续的频率域函数。
DTFT是一个复数函数,表示信号在不同频率上的振幅和相位。
频谱的振幅可以表示信号在该频率上的能量大小,相位可以表示信号在该频率上的相对位置。
除了DTFT之外,还可以使用离散傅里叶变换(DFT)进行频域分析。
DFT是DTFT的一种计算方法,可以将离散时间信号转换为有限的频域信号。
DFT的计算是通过对离散时间信号进行有限长的时间窗口进行采样,并进行频域变换得到的。
DFT的结果是一个离散的频域信号,也称为频谱。
DFT通常使用快速傅里叶变换(FFT)算法来快速计算。
离散时间系统的频域分析主要是通过系统的频率响应函数来实现。
频率响应函数是系统在不同频率上对信号的响应情况的描述。
对于线性时不变系统,其频率响应函数是系统的传递函数的傅里叶变换。
频率响应函数拥有类似信号的频谱特性,可以描述系统对不同频率的信号的增益和相位。
频域分析在离散时间信号与系统中有着广泛的应用。
首先,频域分析可以帮助我们理解信号的频率构成和能量分布情况,有助于对信号进行合理的处理和分析。
其次,频域分析可以快速计算离散时间系统的响应,能够有效地评估系统的性能和稳定性。
此外,频域分析还可以进行滤波器设计、信号压缩、信号重构等应用。
离散时间信号与系统的频域分析
[解] ◆ 求系统函数H(z)
◆
6.5 离散时间系统的z变换分析法(续)
2.利用z变换求解差分方程
利用z变换求解系统零状态响应思路:
差分方程
Z反变换
Z变换 零状态响应
6.5 离散时间系统的z变换分析法(续)
[例6-6] 已知系统差分方程如下,求该系统的零状态响应。
1
1
1 az-1
其收敛域为: |z|<|a|
|a-1z|<1时
※由左边序列特性及z变换极点也可知收敛域为:|z|<|a|
6.1 z变换的定义(续)
由上看出,序列不同,其z变换可能相同,但其收敛域不同。
① x(n)=anu(n)
(右边序列)
② x(n)=-anu(-n-1)
(左边序列)
z变换:
② 与的关系: T (s到z平面的映射是多值映射)
T
s左半平面例, 右半平面类似
6.5 离散时间系统的z变换分析法
1.系统函数与差分方程的关系
◆线性时不变系统的差分方程描述式
◆若系统初始状态为零,两边取Z变换,则得系统函数:
系统函数
6.5 离散时间系统的z变换分析法(续)
x(n) Z1X(z) Z1 X1(z) Z1X2(z) Z1XN(z)
6.3 z反变换(续)
◆部分分式展开法求z反变换的步骤: ① X(z)除以z → X(z)/z, ②求出X(z)/z的极点,并根据极点展成分式 ③由留数定理求各分式系数 ④根据z变换表及收敛域求z反变换
6.3 z反变换(续)
③ 幂级数展开时的排幂方法 ◆收敛域 |z|>Rx- 时(右序列),X(z)展成z的降幂级数
第2章 时域离散信号和系统的频域分析
1第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性22.1 引言信号和系统的分析方法:时域分析方法和变换域分析方法。
频域变换(傅里叶变换->复频域拉氏变换)连续时间信号(系统微分方程)频域变换(傅里叶变换->复频域Z 变换)时域离散信号(系统差分方程)本章学习内容是本书也是数字信号处理这一领域的基础。
3第2章时域离散信号和系统的频域分析z 2.1 引言z 2.2 序列的傅里叶变换的定义及性质z 2.4 时域离散信号的傅里叶变换与模拟信号傅里叶变换之间的关系z 2.5 序列的Z 变换z 2.6 利用Z变换分析信号和系统的频域特性2.2 序列的傅里叶变换的定义及性质5例2.2.1 设x(n)=R 4(n),求x(n)的DTFT 图2.2.1 R (n)的幅度与相位曲线sin /2ω常用序列的傅立叶变换7(2)()j M nn x n eωπ∞−+=−∞=∑二、序列离散时间傅里叶变换(DTFT)的性质1. DTFT 的周期性()()j j nn X e x n eωω∞−=−∞=∑(2)()j M X eωπ+=时域离散,频域周期函数。
周期是2π。
由于DTFT 的周期,一般只分析0-2π之间的DTFT 。
2. 线性1122:()[()],()[()]j j X e DTFT x n X e DTFT x n ωω==若1212:[()()]()()j j DTFT ax n bx n aX e bX e ωω+=+则3. 时移与频移00(0:[()](),[()]()j n j nj j DTFT x n n eX e DTFT ex n X eωωωωω−−−==则:()[()]j X e DTFT x n ω=若4. 反转7. 帕斯维尔(Parseval)定理8. 频域微分序列的Fourier变换的对称性质*()x n−)n也可分解成:e−*(e对称性质•序列Fourier 变换()()j x n X e ωRe[()]()j e x n X e ωIm[()]()j o j x n X e ω()Re[()]j e x n X e ω()Im[()]j o x n j X e ω实数序列的对称性质•序列Fourier 变换Re[()]()()j j e x n X e X e ωω=Im[()]0()0j o j x n X e ω==()Re[()]j e x n X e ω()Im[()]j o x n j X e ω)j eω−变换满足共轭对称性()]j X eω−Im[()]j X e ω−)arg[结论:z序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。
第2章 离散时间信号与系统的变换域分析
bi z i
M
因此,X(z)可以展成以下部分分式形式
r Ak Ck n X ( z ) Bn z 1 1 zk z (1 zi z 1 ) k n 0 k 1 k 1 M N N r
其中,M≥N时,才存在Bn;Zk为X(z)的各单极点, Zi为X(z)的一个r阶极点。而系数Ak,Ck 分别为: A Re s[ X ( z ) ] z z zk k 1 d r k r x( z ) Ck r k [( z zi ) (r k )! dz z zz ,
X ( z)
0
n
0
n2 n
n
x ( n) z
n
n2
n
x ( n) z
x ( n) z
n 1
n2
n
14
第二项为有限长序列,其收敛域 0 z ; 第一项为z的正幂次级数,根据阿贝尔定理, 其收敛域为 0 z Rx ; R x 为最大收敛半径 .
i
k 1, 2r 29
分别求出各部分分式的z反变换(可查 P39 表2-1-1),然后相加即得X(z)的z反变换。
[例2-5]利用部分分式法,求X ( z) 1 (1 2 z 1 ) (1 0.5z 1 ) , z 2 的z反变换。 解:
1 z X ( z) 1 1 (1 2 z )(1 0.5 z ) ( z 2)( z 0.5) X ( z) z A1 A2 z ( z 2)( z 0.5) z 2 z 0.5
对采样信号 进行拉普拉斯变换
x a (t )
n
x (nT ) (t nT )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:电信 0805
姓名:路 亮 学号:200804135135
1.
已知某系统ห้องสมุดไป่ตู้系统函数为 H (z)
1 2z 1 1 0.4z 1 0.12z 2
,
f
(n)
u(n) ,要求:(1)
理论上求解系统的单位冲激响应和零状态响应,并根据求解结果用 MATLAB 绘制其时域波 形;(2)试分别用 MATLAB 的 impz()函数和 filter()函数绘制系统的单位冲激响应和零状态响 应。
幅频特性曲线
-1 0 5 10 15 20
相频特性曲线
on; axis([0 22 -1.2 1.2 ])
1
2
1
subplot(223)
stem(w,abs(H),'.');title(' 幅 频 特 性 曲
0.5
0
线');grid on;
-1
axis([0 22 -0.1 1.2 ])
0
-2
subplot(224)
0 5 10 15 20
0 5 10 15 20
stem(w,angle(H),'.');title(' 相 频 特 性 曲
线');grid on;
axis([0 22 -2.5 2.5])
n=0:N-1;
x=ones(1,20);
1
hn=(11/4)*0.2.^n-(7/4)*(-0.6).^n;
yn=75/32+(35/32)*(-0.6).^(n+1)-(55
0
/16)*0.2.^(n+1);
h=impz(b,a,N); yzs=filter(b,a,x); subplot(221);title('理论计算 h(n)'); stem(n,hn,'.');
-1 0 5 10 15 20
impz函 数 计 算 的 单 位 序 列 响 应 2
subplot(222);title('理论计算 yzs(n)');
1
stem(n,yn,'.');
subplot(223)
0
理 论 计 算 yzs(n) 3
2
1
0 0 5 10 15 20 filter函 数 计 算 的 零 状 态 响 应
0.5
0.6
0.7
0.8
0.9
1
Normalized Frequency ( rad/sample)
0
Phase (degrees)
-10
-20
-30
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
Normalized Frequency ( rad/sample)
3. 知某系统的差分方程为 y(n) b1 y(n 1) b2 y(n 2) b2 x(n) b1x(n 1) x(n 2) , 其中, b1 1.1, b2 0.6 ,设输入信号为 x(n) sin(0.1n) ,绘出该系统的幅频特性曲
3
2
1
2. 已知某系统的系统函数为
H(z) z z 0.5
(1)绘制其零极点图 (2)用 freqz()函数绘出该系统的幅频特 性曲线和相频特性曲线,并说明该系 统的作用。 b=[1 0]; a=[1 -0.5]; figure(1) zplane(b,a); title('零极点分布图'); figure(2) freqz(b,a); 零极点图如右图所示:
1
1
0.5
0.5
0
0
subplot(221)
-0.5
-0.5
stem(n,x,'.');title('输入信号');grid on; axis([0 21 -1.2 1.2 ]) subplot(222) stem(n,yzs,'.');title(' 系 统 响 应 ');grid
-1 0 5 10 15 20
理论计算值:①单位冲激响应:h(n)=
11×0.2n
−
7×(
−
n
0.6)
4
4
②������������������ (n)=75/32+(35/32)*(-0.6).^(n+1)-(55/16)*0.2.^(n+1); a=[1 0.4 -0.12];
b=[1 2]; N=20;
理 论 计 算 h(n) 2
线和相频特性曲线,以及系统的输入信号和响应,并说明该系统的性能。
源代码:
b=[0.6 -1.1 1];
a=[1 -1.1 0.6];
n=0:21;
输入信号
系统响应
w=0:pi/20:2*pi; x=sin(0.1*pi.*n); yzs=filter(b,a,x); [H,w]=freqz(b,a,n);
Imaginary Part
-1
0
0 5 10 15 20
0 5 10 15 20
零极点分布图
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
-1
-0.5
0
0.5
1
Real Part
系统的幅频特性和相频特性如下图所示:
10
Magnitude (dB)
5
0
-5
0
0.1
0.2
0.3
0.4