压缩模和压注模的设计

合集下载

塑料成型工艺与注射模具设计 (7)

塑料成型工艺与注射模具设计 (7)

(一)凹模的结构设计
凹模是成型塑件外表面的凹状 零件(包括零件的内腔和实体两 部分)。
它的结构取决于塑件的成型需要和 加工与装配的工艺要求,通常可分为 整体式和组合式
整体式凹模是由整块钢材直接 加工而成的,其结构如图7-2所示。 这种凹模结构简单,牢固可靠, 不易变形,成型的塑件质量较好。 但当塑件形状复杂时,其凹模的 加工工艺性较差(采用一般机械 加工方法)。 因此,在先进的型腔加工机床 尚未普遍应用之前,整体式凹模 适用形状简单的小型塑件的成型。
齿轮型腔的结构设计 模具成型零件的尺寸计算
1
任务引入
图7-1所示为塑料壳体零件简 图,生产批量10万件。 请分小组确定成型零件的结构 并计算工作尺寸。
2
相关知识点
在进行塑料成型零件的结构设 计时,首先应根据塑料的性能和 塑件的形状、尺寸及其他使用要 求,确定型腔的总体结构、压缩 模的加压方向或压注模和注射模 的浇注系统及浇口位置、分型面、 脱模方式、排气等,然后根据塑 件的形状、尺寸和成型零件的加 工及装配工艺要求进行成型零件 的结构设计和尺寸计算。
2
相关知识点
(1)嵌入式组合凹模
1)整体嵌入式组合凹模 对于小型塑件采用多型腔塑料模 成型时,各单个凹模一般采用冷挤 压、电加工、电铸等方法制成,然 后整体嵌入模中,其结构如图7-3所 示。这种凹模形状及尺寸的一致性 好,更换方便,加工效率高,可节 约贵重金属,但模具整体体积较大, 需用特殊的加工法。 其中图7-3(a)、(b)、(c) 称为通孔台肩式,凹模带有台肩, 从下面嵌入凹模固定板,再用垫板 螺钉紧固。
图7-3
2
相关知识点
2)局部镶嵌式组合凹模 为了加工方便或由于型腔某一 部位容易磨损,需要更换部位采 用局部镶嵌的办法,如图7-4所示, 此部位的镶件可单独制成,然后 再嵌入模体。

《塑料成型工艺及模具设计》课程标准

《塑料成型工艺及模具设计》课程标准

《塑料成型工艺及模具设计》课程标准一、课程定位本课程是模具设计与制造专业的主要专业课之一,也是模具设计与制造专业的核心课程之一。

本课程是在前序机械类课程:机械制图、公差配合与技术测量、机械基础学习基础上,以塑料模具为典型对象,为完成在实际岗位中对塑料模具设计的真实应用为目的的综合性、应用性的复合型课程。

为学生后续职业生存合发展奠定职业基础,是养成良好职业素养合严谨工作作风的整体能力的必须环节。

二、培养目标通过本课程的学习,使学生能运用课程的基本原理和方法,具备设计中等复杂程度的注塑模具的能力。

1.能力目标(1)模具工艺编制人员,具备分析塑料产品的工艺性,并能找出工艺难点,提出解决方法的能力;能编制常用的注塑成型工艺条件。

(2)模具设备维修人员,能选择合适的成型设备。

(3)模具设计人员,掌握塑料模具常用的几种分类和典型塑料模具结构,具备读图能力;能根据产品确定塑料模具的结构方案;能独立设计中等程度的注塑模具。

(4)模具钳工,能独立拆装简单的注射模具2.知识目标(1)了解塑料的物理性能、流动特性,成型过程中的物理、化学变化情况。

(2)掌握塑料的组成、分类以及常用塑料的特性。

(3)了解塑料成型的基本原理和工艺特点,正确分析成型工艺对模具的要求。

(4)掌握注塑成型设备对注射模具的要求(4)掌握常用注射模具的结构特点及相关零件的设计计算方法。

(6)掌握注射模具拆装的基本常识。

掌握注射模具基本零件的英文专业词汇。

3.其他目标(1)自我学习和信息获取能力——利用书籍或网络获得相关信息。

(2)使用工具能力。

(3)与人协作能力——互相帮助、共同学习、共同达到目标。

三、课程设计1.设计思想(1)坚持以高职教育培养目标为依据,基于本课程在模具制造类专业知识、能力构筑中的位置及这门技术的特点,突出应用能力和综合素质培养,充分注意“教、学、做”三结合。

(2)符合学生的认识过程和接受能力,遵循由浅入深、由易到难、循序渐进的原则。

注塑压缩成型案例

注塑压缩成型案例

注塑压缩成型案例
注塑压缩成型是一种塑料加工技术,其基本原理是将热塑性塑料或热固性塑料注入模具型腔中,然后通过压缩空气或压力将塑料压实,使其充满整个模具型腔,并最终冷却固化成型。

以下是一个注塑压缩成型的案例:
案例名称:注塑压缩成型制作手机壳
一、材料选择
本案例选择ABS塑料作为注塑压缩成型材料。

ABS塑料具有良好的强度、韧性、耐磨性和耐热性等性能,适合用于制作手机壳。

二、模具设计
根据手机壳的形状和尺寸,设计注塑模具。

模具应具有足够的强度和刚度,能够承受注射压力和锁模力,并且要求模具温度控制准确,以获得最佳的成型效果。

三、工艺参数设定
在注塑压缩成型过程中,需要设定适当的工艺参数,包括注射温度、注射压力、模具温度、压缩压力等。

这些参数将直接影响塑料的流动和成型质量。

四、生产过程
1.将ABS塑料加入注塑机中,加热熔融。

2.模具闭合,注射熔融的ABS塑料到模具型腔中。

3.通过压缩空气或压力将塑料压实,使其充满整个模具型腔。

4.冷却固化,开模取出成型后的手机壳。

5.对手机壳进行后处理,如去毛刺、抛光等。

五、质量控制
在注塑压缩成型过程中,应进行严格的质量控制,确保每个环节都符合工艺要求。

例如,检查塑料的熔融温度、注射压力和注射速度是否合适,检查模具温度和冷却时间是否符合要求等。

六、总结
通过注塑压缩成型制作手机壳的案例,我们可以了解到注塑压缩成型的基本原理和工艺过程。

在实际生产中,需要根据具体的塑料材料和产品要求,选择合适的模具和工艺参数,并进行严格的质量控制,以确保最终产品的质量和稳定性。

塑料成型工艺与模具设计第6章压缩和压注模具6.1

塑料成型工艺与模具设计第6章压缩和压注模具6.1

F n螺 F螺
(6-4)


式中 n螺——螺钉数量; F螺——每个螺钉所能承受的负荷,N,查表6-2。


(3)脱模力的计算 脱模力是指把制品完全从模具的型腔中脱出所需的力,此 力由压机的下液压缸提供。脱模力可按下式计算 Ft=Acf (6-5) 式中 Ft——理论计算的脱模力,N; Ac——制品之侧面积的总和(包括外侧面及内孔的侧面), cm2; f——单位面积的脱模阻力,N/cm2。酚醛树脂木粉充填 f=50;酚醛树脂玻璃纤维 充填,f=150;氨基塑料纤维素充 填f=60~80。
6.1.4 压缩模结构形式的确定


1.压机与模具结构形式的关系 我们在设计压缩模具时,原则上应以满足生产批量及生产时 间为前提来选择压机,而不是根据压机来决定模具。在选择 压机时,主要应进行以下几方面的计算和校核:


(1)成型压力的计算 压制时所需要的成型压力与制品的塑料种类及成型所需的压强(见表6-1)、 制品的结构形状大小等因素有关。 成型压力可用下式计算 F=pAn (6-1) 式中 F——成型压力或称计算成型压力,N; p——成型压强,MPa,按表6-1选取; A——单个型腔的投影面积,mm2; n——型腔数。
图6-12 不溢式压缩模常用凸凹模组合形式
图6-13 半溢式压缩模常用凸凹模组合形式



(1)引导环l2 引导环的作用是引导凸模顺利地进入凹模。除加料腔极浅 的凹模外,一般引导环都有一段斜度,并设有圆角R,以便 引入凸模,减少凸、凹模之间摩擦。有下凸模的型腔,也可 同样处理。推荐尺寸如下。 ①移动式模具: α=20′~1°30′; R=2~3mm。 ②固定式模具:α=20′~1° 下凸模α=3°~4°; R=1.5~2mm; l2=5~10mm; H加>30mm时l2=10~20mm。 总之,引导环的高度必须保证:当塑料粉达到融化时,凸模 必须已进入配合环。

第五章压缩成型工艺与模具设计

第五章压缩成型工艺与模具设计

•压缩模类型选用原则
•塑件批量大•—— 固定式模具 •批量中等•—— 固定式或半固定式模具 •小批量或试生产•—— 移动式模具
•水平分型面模具结构简单,操作方便,优先选用。
•流动性差的塑料,塑件形状复杂•——不溢式模具 •塑件高度尺寸要求高,带有小型嵌件•—— 半溢式模具 •形状简单,大而扁平的盘形塑件•—— 溢式压缩模
▪特别适合压制有棉布、玻璃布、长纤维 填充的制品; ▪飞边与分型面垂直分布,便于去除。
5、不溢式压缩模 ➢不溢式压模特点:
▪因溢料量很少,加料精度直接影响制品高度尺寸,要求准确计量; ▪型芯与型腔侧壁摩擦严重,制品脱模易刮擦,改进结构见图所示; ▪不溢式压模必须设脱模机构。
6、半溢式压缩模
➢半溢式压模特点:
6、半溢式压缩模
➢半溢式压模改进: ▪将加料腔制成可移动式,方便挤压面和模具型腔的清理 。
7、多型腔压缩模
➢多型腔压模:如图,可为溢式或半溢式结构,图a)、b) 需对每个型腔单独加料,个别型腔损坏不影响模具工作。
7、多型腔压缩模
➢为方便多腔模加料,可 采用右图所示的加料器 快速加料。
➢多腔共用加料室有利于 缩小模具尺寸,方便加料 ,但边角的型腔易缺料。
第五章压缩成型工艺与 模具设计
2020年7月10日星期五
第五章 压缩成型工艺及模具设计
•成型压缩原理
一、 压缩成型原理及特点
压缩成型原理 压缩成型特点
•压缩成型过程 •原料放入模具 •加热加压使材料成型硬化 •取出塑件
•一、 压缩成型原理:
将塑料加入高温的型腔和加料室,然 后以一定的速度将模具闭合,塑料在热和压 力的作用下熔融流动,并且很快地充满整个 型腔,树脂和固化剂作用发生交联反应,生 成不熔不溶的体型化合物,塑料因而固化, 成为具有一定形状的制品,当制品完全定型 并且具有最佳性能时,即开启模具取出制品.

塑料成形术语

塑料成形术语

塑料成形术语(摘自GB/T8846-1988)1.塑料成形模具(简称塑料模)(mould for plastics):在塑料成形工艺中,成形塑件用的模具。

1.1 按材料分:1.热塑性塑料模(mould for thermoplastics):热塑性塑料成形塑件用的模具。

2.热固性塑料模(mould for thermosets):热固性塑料成形塑件用的模具。

1.2 热成形工艺分:1.压缩模(compression mould):借助加压和加热,使直接放入型腔内的塑料熔融并固化成形所有的模具。

2.压注模,传递模(transfer mould):通过柱塞,使在加料腔内受热塑化熔融的热固性塑料经浇注系统,压入被加热的闭合型腔,固化成形所用的模具。

3.注射模(injection mould):由注塑机的螺杆或活塞,使料筒内塑化熔融的塑料经喷嘴、浇注系统,注入型腔,固化成形所用的模具。

3.1 热塑性塑料注射模(injection mould for thermoplastics):成形热塑性塑件用的注射模。

3.2 热固性塑料注射模(injection mould for thermosets):成形热固性塑件用的注射模。

1.3 按溢料分:1.溢式压缩模(flash mould):加热腔即型腔。

合模时,允许过量的塑料溢出的压缩模。

2.半溢式压缩模(semi-positive mould):加料腔是型腔向上的扩大部分。

合模时,允许少量的塑料溢出的压缩模。

3.不溢式压缩模(positive mould):加料腔是型腔向上的延伸部分。

工作压力全部施加在塑料上,几乎无塑料溢出的压缩模。

1.4 按机外、机内装卸方式分:1.移动式压缩模(portable compression mould):将成形中的辅助作业如开模,卸件,装料,合模等移到压机工作台外进行的压缩模。

2.移动式压注模(portable transfer mould):将成形中的辅助作业如开模,卸件,装料,合模等移到压机工作台外进行的压注模。

《塑料成型工艺与模具设计》课程教学大纲

《塑料成型工艺与模具设计》课程教学大纲

《塑料成型工艺与模具设计》课程教学大纲课程代号:ABJD0708课程中文名称:塑料成型工艺与模具设计课程英文名称:Thep1astictechno1ogyofmou1danddesignofmou1d课程类型:选修课程学分数:3学分课程学时数:48学时授课对象:材料成型与控制工程专业本课程的前导课程:画法几何及工程制图、材料力学、金属学及热处理、机械制造技术基础等课程。

一、课程简介《塑料成型工艺与模具设计》课程是材料成型与控制专业的一门专业必修课,是主干课之一。

主要研究塑料的成型工艺及其模具设计的一般理性知识,重点掌握注射成型的设计计算方法,达到能独立设计中等复杂程度塑料模具的能力,对气辅注射成型、精密注射模具设计、热流道模具设计等基本知识有所了解。

通过对本课程的学习,使学生掌握塑料的组成及特性,塑料成型工艺的特点,塑料制品结构设计,各种塑料模具的结构、设计原理和设计方法,了解模具制造技术的现状及发展趋势,为学生以后从事有关模具设计打下必要的基础。

二、教学基本内容和要求绪论课程教学内容:塑料及塑料工业的发展、塑料成型在在工业生产中的重要性、塑料模具的分类;塑料成型技术的现状与发展趋势;本课程的任务和学习方法。

课程的重点、难点:本章重点是塑料成型在在工业生产中的重要性、模具与塑料模具的概念;本章难点是模具CAD/CAE/CAM及塑料模标准化的理解。

课程教学要求:了解国内外塑料工业的发展概况;了解塑料成型在在工业生产中的重要性;理解本课程的性质和任务。

第1章高分子聚合物结构特点与性能课程教学内容:树脂与高聚物、聚合物的分子结构特点、高聚物的热力学性能及成型过程中的变化、塑料流变学、塑料粘度的调节、分子定向与定向作用。

课程的重点、难点:本章重点是高聚物的热力学性能及成型过程中的变化、高聚物的结晶、取向、降解的影响;本章难点是结晶、取向、降解的概念的理解。

课程教学要求:掌握树脂与塑料的概念;了解高分子与低分子的区别;掌握高聚物的分子结构与特性;理解结晶与非结晶的区别;掌握高聚物的热力学性能;了解高聚物的加工工艺性能;理解高聚物的结晶、取向、降解的概念。

压缩模设计

压缩模设计
第5章 压缩模设计
• 5.1 压缩模结构及分类 • 5.2 压缩模与压力机的关系 • 5.3 压缩模的设计
5.1 压缩模结构及分类
• 5.1.1压缩模的基本结构
• 压缩模的典型结构如图5-2所示。模具的上模和下模分别安装在压 力机的上、下工作台上,上下模通过导柱、导套导向定位。上工作台 下降,使上凸模3进入下模加料室4与装入的塑料接触并对其加热。当 塑料成为熔融状态后,上工作台继续下降,熔料在受热受压的作用下 充满型腔并发生固化交联反应。塑件固化成型后,上工作台上升,模 具分型,同时压力机下面的辅助液压缸开始工作,脱模机构将塑件脱 出。压缩模按各零部件的功能作用可分为以下几大部分:成型零件;加 料室;导向机构;侧向分型与抽芯机构;脱模机构;加热系统;支承零部件。
• ③按工作流体种类可分为油驱动的油压力机和油水乳液驱动的水压 力机。
• 水压力机一般采用中心蓄能站,用它能同时驱动多台压力机,生产 规模很大时较为有利,但近年来已较少使用。
• 图5-8和图5-9所示为部分国产上压式液压压力机示意图,图中仅 标出了一些与安装模具有关的参数。各种压力机的技术参数详见有关 手册。
打开模具把塑料加人型腔,然后将上下模合拢,送人压力机工作台上 对塑料进行加热加压成型固化。成型后将模具移出压力机,使用专门 卸模工具开模脱出塑件。图5-3中是采用U形支架撞击上下模板,使 模具分开脱出塑件。
上一页 下一页 返回
5.1 压缩模结构及分类
• 这种模具结构简单,制造周期短,但因加料、开模、取件等工序均 手工操作,劳动强度大、生产率低、易磨损,适用于压缩成型批量不 大的中小型塑件以及形状复杂、嵌件较多、加料困难及带有螺纹的塑 件。
水平投影面积、成型工艺等因素有关。 • 2.开模力和脱模力的校核 • (1)开模力的校核 • 压力机的压力是保证压缩模开模的动力。

注塑模具毕业设计论文

注塑模具毕业设计论文

前言塑料模具技术的发展日新月异,在现代工业、餐具、玩具等行业中的应用很广泛,模具是生产各种产品的重要工艺装备。

此次毕业设计的题目是塑料成型模具的设计。

塑料模具的分类很多,按照塑料制件的不同可分为:注射模、压缩模、压注模、挤出模、气动成型模等。

注塑模具又称注塑成型,是热塑性塑料制品生产的一种重要的方法。

除少数塑料制品外,几乎所有的热塑性塑料都可以用注射成型方法生产塑料制品。

注塑模具不仅用于热塑性塑料的成型,而且成功用于热固性塑料的成型。

模具以其特定的形状通过一定的方式使原料成型。

模具的制造精度越高,制造成本越高,因此应延长模具的使用寿命,尽量缩短模具的制造周期,来降低生产成本。

塑料制品以其密度小、质量轻的优点在工业中的应用日益普遍,大有“以塑代钢”的趋势。

塑料模具可以满足塑料的加工工艺要求和使用要求,可以很好的降低塑料制品的生产成本。

塑料的质量要靠模具的正确结构和模具成型零件的正确形状,精确尺寸几较低的表面粗糙度来保证。

本次设计的模具用于有机玻璃制品的生产制造。

聚甲基丙烯酸甲酯(PMMA),俗称有机玻璃,属于热塑性刚性硬质无色的透明材料,具有良好的综合力学性能及电绝缘性,制品尺寸稳定,容易成型,有一定的耐热性、耐寒性和耐气候性,表面硬度不够,容易擦伤,易溶于有机溶剂,又可以软化熔融,可再次成型为一定形状的制品,如此可反复多次。

因此选用该塑料有助于废料和旧弃塑件的二次回收,循环利用。

有一定的环保效应,减少了现实中的“白色污染”。

第一章塑件成型工艺分析第1.1节塑件分析1.1.1 塑件二维工作图如图1-1所示图1-11.1.2 塑件1.塑件材料名称有机玻璃(PMMA);2.色调无色透明;3.生产纲领大批量;4.塑件结构该塑件外形为长方体类零件,但内有凹腔和凸台,塑件壁厚均约为2mm,其脱模斜度为30/~1°30/(取1°),采用一般精度等级MT5级。

第1.2节塑件原料(PPMA)的工艺性能1.2.1 支架底托的原料聚甲基丙烯酸甲酯(PMMA)1.物料性能聚甲基丙烯酸甲酯是刚性硬质无色的透明材料,具有良好的综合力学性能及电绝缘性,制品尺寸稳定,容易成型,有一定的耐热性、耐寒性和耐气候性,易溶于有机溶剂,表面硬度不够,容易擦伤。

注塑模具设计说明书

注塑模具设计说明书

绪论模具作为重要的生产工艺装备,在现代工业的规模生产中日益发挥着重在作用;通过模具进行产品生产具有优质、高效、节能、节材、成本低等显著特点,在汽车、机械、电子、轻工、家电、通信、军事和航空航天等领域获得了广泛应用,对塑料模具的需求越来越大,对产品质量要求越来越高,用不可代替;塑料模具是当今工业生产中利用特定的形状,通过一定的方式来成型塑料制品的工艺装配或工具,它属于型腔模的范畴;通常情况下,塑件质量的优劣及生产效率的高低,其模具的因素约占80%,然而模具的质量好坏又直接与模具的设计与制造有很大的关系随着国民经济的领域的各个部门对塑件的品种和产量需求愈来愈大,产品更新换代周期也和质量提出了更高的要求,这就促使塑料模具设计和制造技术不断向前发展,从而也推动了塑料工业以及机械加工工业的告诉发展,可以说,模具技术,特别是设计与制造大型,精密,长寿命的模具技术便成为衡量一个国家机械制造水平的重要标志;模具在世界上占有的比列大,我作为一个学模具专业的学生,应在学完所学的知识之后来很好的进行模具设计;我们进行设计之前,不许具备机械制图,公差与技术测量,机械原理及零件,模具材料及热处理,模具制造技术,塑料制品成型工艺及模具设计等方面必要的基础知识和专业知识,并且通过教学和生产实习,初步了解塑料制品的生产过程,熟悉多种塑料模具的典型结构;近几年来,我国模具工业的技术水平已取得了很大的进步,但总体上与工业发达的国家相比仍有较大的差距;例如,精密加工设备还很少,许多先进的技术如CAD/CAE/CAM技术的普及率还不高,特别是大型、精密、复杂和长寿命模具远远不能满足国民经济各行业的发展需要;纵观发达国家对模具工业的认识与重视,我们感受到制造理念陈旧则是我国模具工业发展滞后的直接原因;模具技术水平的高低,决定着产品的质量、效益和新产品开发能力,它已成为衡量一个国家制造业水平高低的重要标志;目前,我国模具工业的当务之急是加快技术进步,调整产品结构,增加高档模具的比重,质中求效益,提高模具的国产化程度,减少对进口模具的依赖;现代模具技术的发展,在很大程度上依赖于模具标准化、优质模具材料的研究、先进的设计与制造技术、专用的机床设备,更重要的是生产技术的管理等;21世纪模具行业的基本特征是高度集成化、智能化、柔性化和网络化;追求的目标是提高产品的质量及生产效率,缩短设计及制造周期,降低生产成本,最大限度地提高模具行业的应变能力,满足用户需要;在科技发展中,人是第一因素,因此我们要特别注重人才的培养,实现产、学、研相结合,培养更多的模具人才,搞好技术创新,提高模具设计制造水平;在制造中积极采用多媒体与虚拟现实技术,逐步走向网络化、智能化环境,实现模具企业的敏捷制造、动态联盟与系统集成;模具类型塑料模具分类的方法很多,按照塑料制作的成型方法不同可分为以下几类:注射模,压缩模,挤出模,压注模;本次设计主要是注射模,又叫注塑模,注射成型是根据金属压铸成型原理发展起来的,首先将粒状或粉末状的塑料原料加入到注射机的料筒中,经过加热熔融成粘流态,然后在柱塞或螺杆的推动下,以一定的流速通过料筒前端的喷嘴和模具的浇注系统,注射入闭合的模具型腔中,经过一定的时间后,模具在模内硬化成型,近几年来,热固性塑料注射成型的应用也在逐渐增加;塑料制件主要是靠成型模具获得的,而它的质量是靠模具的正确结构和模具成型零件的正确形状,精确尺寸及较低的表面粗糙度来保证的;由于塑料成型工艺的飞速发展,模具的结构也日益趋于多功能和复杂化,这对模具的设计工作提出了更高的要求;虽然模具制作的质量与许多因素有关,但合格的塑料制作首先取决于模具的设计与制造的质量,其次取决与合理的成型工艺;塑料成型加工技术发展很快,塑料模具的各种结构也在不断的创新,我们在学习成型的同时,还应注意了解塑料模具的新技术、新工艺和新材料的发展动态,学习和掌握新知识,为振兴我国的塑料成型加工技术做出贡献;塑料成型工艺分析1、制品的分析制品的设计要求本次设计制品的用途是线盒盖,该制品结构形状较简单,形状尺寸小,壁厚均匀,基本对称,精度要求中等;制品的生产批量本制品为大批量生产,为了缩短周期,提高生产率,制品使用一模四腔和全自动化生产,浇口形式可采用侧浇口;该塑件很小,壁不厚,因此只采用一个点进料,都可以满足充满型腔,利用模具的顶出机构,将制品推出模腔,再利用拉料杆和二次脱模机构使制品流道凝料脱落;为了提高生产率,制品在模具中直接成型;制品成型设计该制品使用二次分型机构,采用点浇口形式,虽然其他的浇口形式还有直接浇口、侧浇口、扇形浇口、薄片式浇口、环行浇口、轮辐浇口、爪形浇口、潜伏浇口、护耳浇口等,但他们都不容易在开模时实现自动切断,而点浇口就具有这个优点,而且其留于塑件的疤痕较小,不影响塑件外观;2、注射成型工艺的设计塑料制品分析本制品采用ABS为原料苯乙烯—丁二烯—丙烯氰共聚物;ABS主要技术指标:表1-1 热物理性能表1-2 力学性能表1-3 电气性能1无定性料,流动性中等,比聚苯乙烯、AS差,但比聚氯乙烯好,溢边值为0.04 mm左右;2吸湿性强,必须充分干燥,表面要求光泽的塑料须经长时间的预热干燥;3成型时宜取高料温,但料温过高易分解分解温度≥250℃,对精度较高的塑料,模温宜取50~60℃,对光泽要求较高的耐热塑料模温宜取注射压力高于聚苯乙烯;用柱塞式注射机成型时,料温为60~80℃,180~200℃,注射压力为1000~1400MPa,用螺杆式注射机成型时,料温为160~220℃,注射压力为700~1000×10MPa;4 ABS的其他成型工艺参数注射机类型:螺杆式制品收缩率:~%预热温度:80~85℃时间:2~3 h料筒温度:后段 150~170℃中段 165~180℃前段180~200℃喷嘴温度:170~180℃模具温度:50~80℃注射压力:60~100 MPa成型时间:注射时间20~90 s 保压时间0~5 s冷却时间20~120 s 总周期50~220 s螺杆转速:30 r/min适用注射机类型:螺杆、柱塞均可后处理方法:红外线灯、鼓风烘箱温度70℃时间2~4 h制品成型方法及工艺流程本制品采用注射成型,工艺流程包括模前准备,模塑成型和后处理及二次加工工艺流程步骤如下:1预热ABS吸湿性强,必须充分干燥,表面要求光泽的塑料须经长时间的预热干燥;2注射注射过程包括加料、塑化、注射冷却和脱模几个步骤;加料由于注射成型是一个间歇过程,因而须定量加料,以保证操作稳定,塑料塑化均匀,最终获得良好的塑件;加料过多;受热的时间过长等容易引起物料的热降解,同时注射及功率损耗增多;加料过少,料筒内缺少传压介质,型腔中塑料融化压力降低,难于补料,容易引起塑件出现收缩、凹陷、空洞等缺陷;塑化加入的塑料在料筒中进行加热,由固体颗粒转化成粘流态,并且受到良好的剪切力作用;通过料筒对物料加热,使聚合物分子松弛,出现由固体向液体转变;一定的温度使塑料得到变形、熔融和塑化的必要条件,螺杆的剪切作用能在塑料中产生更多的摩擦热,促进了塑料的塑化,因而螺杆式注射机对塑料的温度尽量均匀一致,还有使热分解物的含量达到最小值,并且能提供上述质量的足够的熔融塑料以保证产生连续并顺利的进行,这些要求与塑料的特性、工艺条件的控制及注射机的塑化装置的结构等密切相关;注射不论何种形式的注射机,注射的过程可分为充模,保压倒流,浇口冻结后的冷却和脱模等几个阶段;塑件的后处理注射成型的塑件经脱模或机械加工之后,常需要进行适当的后处理以消除存在的内应力,改善塑件的性能和提高尺寸稳定性;其主要方法是退火和调湿处理;退火处理是将注射塑件在定温的加热液体介质或热烘箱中静置一段时间,塑料制件的氧化,加快吸湿平衡速度的一种处理方法,其目的是使制作的颜色、性能以及尺寸得到稳定;本次设计采用退火后处理;工艺流程图解:成型工艺条件注射成型的核心问题,就是采用一切措施得到塑化良好的塑料;熔体,并把它注射到型腔中去,在控制条件下冷却定型,使塑件;达到所要求的质量,影响注射成型工艺的重要参数是塑化流动和;冷却的温度、压力以及影响的各个作用时间;1注射成型过程需要控制的温度有料筒温度,喷嘴温度和模具温度等;前两个温度主要影响塑件的塑化和流动,而后一个温度主要是影响塑件的流动和冷却,料筒温度的选择与各种塑料的特性有关;每种塑料都具有不同的粘流态温度,为了保证塑件溶体的正常流动不使物料发生质分解,料筒最合适的温度范围应在粘流态温度和热分解温度之间;柱塞式和螺杆式柱塞注射机由于其塑化过程不同,因而选择料筒也不同,通常后者选择的温度低一点,料筒温度在70~93℃之间,喷嘴温度稍低于料筒温度,在65~90℃之间,模温在要求塑件光泽时控制在60~80℃之间;2压力包括塑化压力和注射压力两种,他们直接影响塑料的塑化和塑料质量;塑化压力是指背压,是指采用螺杆式注射机时,螺杆头部熔体在螺杆转动后退时所受到的压力,塑化压力在保证塑件质量的前提下越低越好,其具体数值时随所用塑料的品种而异的,但通常很少超过20MP,注射压力是指柱塞式螺杆头部对塑件熔体所施加的压力;在注射机上常用表压指示注射压力的大小,一般在40~130MP之间;其作用式克服塑料熔体从料筒流向型腔的流动阻力,给予熔体一定的充型速率以及对熔体进行压实等;3完成一次注射成型过程所需要的时间称成型周期,成型周期直接影响到劳动生产率和注射机使用率,因此在生产中,在保证质量的前提下,尽量缩短成型周期中各个阶段的有关时间,一般生产中,充模时间为3~5S,保压时间为20~25S,冷冲压时间一般在30~120S;3 注射机的选用注射机的选用包括两方面的内容:一是要确定注射机的型号,使塑料、塑件、注射模、注射工艺等所要求的注射机的规格参数点在所选注射机的规格参数可调范围之内,即要满足所需的参数在额定的范围之内;二是调整注射机的技术参数至所需的参数点;注射机的两种类型的优缺点采用卧式注射机的优点是注射部分和锁模部分在同一水平线上,工作位置低,操作方便,稳定性好,顶出后塑件可以自动脱落,是应用广泛的注射机,适用于大、中、小个各型注射机,但唯一的缺点是占地面积大;采用立式注射机的优点是占地面积小,缺点是操作位置高,对于注射量大的注射机,势必使注射机高度增加,操作台升高,操作不方便,注射机的工作稳定性也减小;因此,立式注射机多限于小型注射机;选用注射机按流量选择注塑机,选择SZ—40/32立式注射机,表为该注射机的技术参数;模具结构的设计1、塑件成型位置及分型面的选择分型面即打开模具取出塑件或取出浇注系统凝料的面,分型面的位置影响着成型零部件的结构形状,型腔的排气情况也与分型面的开设密切相关;分型面的选择应注意以下几点:1不影响塑件外观,尤其是对外观有明确要求的制品;2有利于保证塑件的精度要求;3有利于模具加工,特别是型腔的加工;4有利于浇注系统、排气系统、冷却系统的设计;5便于制件的脱模,尽量使塑件开模时留在动模一边.6分型面应有利于侧向抽心;7分型面应取塑件尺寸最大处;8拔模斜度小或塑件较高时,为了便于脱模,可将分型面选在塑件的中间部位;2、型腔的排列形式及流道布局的确定型腔数目确定方法常见的有四种:1根据经济性确定型腔树木2根据注射机的额定锁模力确定型腔树木3根据注射机的最大注射量确定型腔数目4根据制品精度确定型腔数目对于高精度制品,由于多型腔模具难以使各型腔的成型条件均匀一致;故通常推荐型腔数目不超过6个,本设计为四型腔注射模;型腔数量的确定该制品精度要求不高,属于小零件,又要大量的生产,为了考虑生产效率和模具制造费用低点,给公司带来更多的效益,因此本设计初步拟定于一模八腔模具的形式生产;根据注射机的最大注射量确定型腔数目,即只要满足下式,就符合要求 210.8G W n W -≤ 式中:n —型腔数目G —注射机的最大注射量,g ;W 1—单个制品的质量,g ;W 2—浇注系统的质量,g ;210.8G W W -0.8600.910.64 1.421.4228.36⨯⨯-⨯⨯== 28.36>4,因此一模四腔符合要求;型腔的排列在设计时要注意以下几点1尽可能采用平衡式排列确保制品的质量的均一和稳定2型腔布置与浇口开设部位应力求对称,以便防止模具承受偏载而产生溢料现象,尽量使型腔排的紧凑,以便减少模具的外形尺寸;该塑件侧面有一个梯形槽,需要有侧向抽心,为了便于抽心及节省流道凝料,因此采用下列的型腔排列及流道布局;型腔的排列及流道布局3、 浇注系统的设计浇注系统通常由主流道 分流道 浇口料穴等组成;浇注系统是塑料容体由注射机的喷嘴向模具型腔的流动通道;因此它应该保证容体迅速顺利有序地充满型腔各处,获得外观清晰,内在优良的塑料件;对于浇注系统设计的具体要求有:①重点考虑型腔布局;②热量及压力损失要小,为此浇注系统流程应尽可能短,截面尺寸应尽可能大,弯折尽量少,表面粗糙度要低;③均衡进料,即分流道尽可能采用平衡式布置;④塑料耗量要少,满足各型腔充满的前提下,浇注系统容积尽量小,以减少塑料耗.⑤消除冷料,浇注系统应能收集温度较低的“冷料”;⑥排气良好;⑦防止塑件出现缺陷,避免熔体出现充填不足或塑件出现气孔、缩孔、残余应力;⑧保证塑件外观质量;⑨较高的生产效率;⑩塑料熔体流动特性;4、主流道的设计主流道是指连接注射机喷嘴与风流道或型腔的进料通道;负责将塑料溶体从喷嘴引入模具,其形状,大小直接影响塑料的流速及填充时间;主流道是塑料容体进入模具型腔时经过的部分,它将注射机的喷嘴注出的塑料容体导入分流道或型腔;其形状为圆锥形,便于容体顺利地向前流动,开模时主流道凝料又能顺利拉出来;主流道的尺寸直接影响到塑料容体的流动速度和充填时间;由于主流道要与高温塑料和喷嘴反复接触和碰撞,通常不直接开在定模板上,而是将它单独设计成主流道衬套镶入定模板内;主流道的尺寸①半锥角一般在1°~3°内选取,主流道带锥度是为了在模具打开时使主流道凝料容易脱离定模;本设计选取锥度为3°;②主流道径向尺寸的小端与喷嘴连接的一端应大于喷嘴口孔径~㎜;当主流道与喷嘴同轴度有偏差时,可以防止主流道凝料不易从定模一侧拉下来;D=d+~1㎜式中:d—注射机喷嘴口直径D—浇口套进料口直径③凹球面半径R应比喷嘴球径1R大1~2㎜,可以;保证注射过2程中喷嘴与模具紧密接触,防止两球面之间产生间隙而使容体充入这间隙中,妨碍主流道凝料顺利从定模上拉出;④主流道内壁的表面粗糙度R在以下,主流道的长度L一般根据a模板的厚度而定,为了减少压力损失和物料损耗;应尽可能减少主流道的长度,一般控制在60mm以内;主流道出口处的圆角半径较小,一D般取r=18⑤主流道上开设浇口套;将主流道开设在一个专用零件主流道衬套上而不是直接加工在定模板上的方法较好,因为主流道的表面粗糙度和硬度要求一般都比定模板高,可以选用较好的钢材;损坏后也容易更换,一般选用T8或T10制作,淬火硬度为50~55HRC,浇口套的形式如下图a b c e f g浇口套的形式(a)是浇口套和定位圈做成一体,仅适用于小型模具;(b)采用螺钉将定位圈和定模座板连接,防止浇口套受容体的反压力而脱出,是常用结构;(c)用定位圈的凸肩将其压在注射机的固定板下,当浇口套端面尺寸较小时,仅靠注射机喷嘴的推力就能将浇口套压紧,也是常用结构;(d)通过浇口套上挖出凹坑来减少主流道的长度;(e)直接在定模座板上开主流道,适用用于小型模具的小批生产,上述几种情况适用与注射机为球面的情况;(f)用于喷嘴头为平面的结构,优点是接触面积大,密封好容体不外溢,缺点是对注射机的精度要求很高;本设计采用b图的结构5、分流道的设计分流道是指主流道与模具型腔浇口之间的一段流道,在多型腔或单型腔多浇口塑件尺寸大时应设置分流道,分流道是指主流道末端与浇口之间这一段塑料熔体的流动通道;它是浇注系统中熔融状态的塑料由主流道流入型腔前,通过截面积的变化及流向变换以获得平稳流态的过渡段;因此分流道设计应满足良好的压力传递和保持理想的充填状态,并在流动过程中压力损失尽可能小,能将塑料熔体均衡地分配到各个型腔;分流道的布置常用塑料的分流道直径列于下表,由表可见,对于流动性极好的塑料,当分流道很短时,其直径可小到2mm左右;对于流动性差的塑料,分流道直径可以大到13mm;大多塑料所用分流道的直径为6mm~10mm;在多型腔模具中分流道的布置中有平衡式和非平衡式;平衡式布置是指分流道到各型腔浇口的长度、断面形状、尺寸都相等的布置形式;它要求各对应部分的尺寸相等,这种布置可实现均衡送料和同时充满型腔的目的,使成型的塑件力学性能基本一致;但是这种布置使分流道较长;非平衡式布置是指分流道到各个型腔浇口的长度相等的布置;这种布置使塑料进入各个型腔有先后顺序,因此不利于均衡送料,但对型腔数量多的模具,为不使流道过长,也常采用;为了达到同时充满型腔的目的,各个浇口的断面尺寸要制作得不相同,在试模的时候要多修改才能实现;a b分流道的平衡布置示意图分流道的非平衡布置示意图本设计中为了成型的塑件力学性能基本一致,采用图a结构,分流道的平衡布置;6、浇口的设计浇口亦称进料口,是连接分流道与型腔的通道,除直接浇口外,它是浇注系统中截面最小的部分,但却是浇注系统的关键部分,浇口的位置、形状及尺寸对塑件性能和质量的影响很大;浇口的主要作用:➢型腔充满后,熔体在浇口处首先凝结,防止其倒流;➢易于切除浇口尾料;➢对于多型腔模具,用以控制熔接痕的位置;当塑料熔体通过浇口时,剪切速率增高,同时熔体的内摩擦加剧,使料流的温度升高,黏度降低,提高流动性能,有利于充型,但是浇口尺寸过小会使压力增大,凝料加快,补缩困难,甚至形成喷射现象, 影响塑件质量;浇口类型的选择浇口是典型的矩形截面浇口,有以下优点:①浇口的位置一般都在分型面上,从塑件的外侧进料;②塑件容易形成熔接纹、缩孔,凹陷等缺陷,注射压力损失较大,对壳体件排气不良;③截面形状简单,加工方便;④位置选择灵活,去除浇口方便,痕迹小;⑤广泛用于两板式多型腔模具以及断面尺寸较小的塑件;本设计采用侧浇口的结构形式;浇口位置的选择模具设计时,浇口的位置及尺寸要求比较严格,初步试模后还需进一步修改浇口尺寸,无论采用何种浇口,其开设位置对塑件成型性能及质量影响很大,因此合理选择浇口的开设位置是提高质量的重要环节,同时浇口位置的不同还影响模具结构;总之要使塑件具有良好的性能与外表,一定要认真考虑浇口位置的选择,通常要考虑以下几项原则:①避免制件上产生喷射等缺陷②浇口应开设在塑件截面最厚处;③有利于塑件熔体流动;④有利于型腔排气;⑤考虑塑件使用时的载荷状况;⑥减少或避免塑件的熔接痕;⑦考虑分子取向对塑件性能的影响;⑧考虑浇口位置和数目对塑件成型尺寸的影响;⑨防止将型芯或嵌件挤歪变形;下图为本设计塑所选的浇口位置浇口位置浇注系统的平衡对于中小型塑件的注射模具己广泛使用一模多腔的形式,设计应尽量保证所有的型腔同时得到均一的充填和成型;一般在塑件形状及模具结构允许的情况下,应将从主流道到各个型腔的分流道设计成长度相等、形状及截面尺寸相同型腔布局为平衡式的形式,否则就需要通过调节浇口尺寸使各浇口的流量及成型工艺条件达到一致,这就是浇注系统的平衡;显然,我们设计的模具是平衡式的,即从主流道到各个型腔的分流道的长度相等,形状及截面尺寸都相同;7、冷料穴的设计冷料穴的作用是储存因两次注射间隔而产生的冷料头以及塥体流动的前锋冷料,以防止溶体冷料进入型腔;冷料穴一般设在主流道的末端,冷料穴底部常作成曲折的钩行或下陷的凹槽,使冷料穴兼有分模时将主流道衬套中拉出,并留在动模一侧的作用;在完成一次注射循环的间隔,考虑到注射机喷嘴和主流道入口这一小段熔体因辐射散热而低于所要求的塑料熔体的温度,从喷嘴端部到注射机料筒以内约10-25mm的深度有个温度逐渐升高的区域,这时才达到正常的塑。

压缩模与压注模

压缩模与压注模
一、压注成型原理:
• 把预热的原料加到加料腔内,塑料经过
加热塑化,在压力机柱塞的压力下经过模 具的浇注系统挤入型腔,型腔内的塑料 在 一定压力和温度下保持一定时间充分固化, 得到所需的塑件。在挤塑的时候加料腔的 底部必须留有一定厚度的塑料垫,以供压 力传递。 • 熔料经过浇注系统才进入型腔,会有一 定的压力损失;而熔料经过浇注系统时, 会产生摩擦热,从而使塑料的流动性增大, 有利于填充型腔,又有利于提高塑料的固 化速度。
压缩模结构及分类
一、压缩模具的 结构组成
1、组成
型腔 加料室 导向机构 侧向分型抽芯机构推
出机构 加热系统 排气系统
压缩模结构及分类
2、压缩模的分类
按模具加料室的形式分
溢式压缩模 不溢式压缩模 半溢式压缩模
按模具在压机上的固定方式分: 固定式压缩模 移动式压缩模 半固定式压缩模
热固性塑料的压缩、压注、注射成型各有其优缺点及其
适用范围,现比较如下:
(1)就成型效率来看,以注射成型为高,压注成型次之,压缩成型较低。 (2)就塑件质量来看,由于注射和压注成型能使塑料受到均匀地加热,故
而获得的制品在其整个断面上固化程度比较均匀,有较良的电气性能和 较高的机械强度。 (3)注射和压注成型时,塑料注入闭合的型腔内,因此制品在分型面处产 生的飞边很薄,容易修除,或无飞边,塑件高度能达到较高的尺寸精度, 而压缩成型则不能。 (4)注射和压注成型可用于成型带有精细孔、细小嵌件的塑件,而压缩成 型则不能。 (5)注射成型比压缩、压注成型都更容易实现机械化和自动化,工人劳动 强度可得到大大地改善。 (6)压缩模适用于流动性较好的塑料和形状较复杂的带小嵌件的塑件。
三、压注模的典型结构
1、组成

塑料及模具设计教程:挤出、压缩成型详解

塑料及模具设计教程:挤出、压缩成型详解
(三)挤出成型的特点
1、连续型生产,效率高; 2、应用广 3、设备成本低
21
管材挤出成型示意图
22
挤出工艺过程
23
实验室挤出成型机
24
挤出型材
25
挤出管材
26
27
28
29
30
复合管挤出设备
31
复合管收卷设备
32
医用精密复合管挤出设备
33
瓦陵板单螺杆挤出机
34
第三节 挤出成型
压注(传递)
较短 好 无或较薄 方便 方便 不易实现 低 大 较大 可以成型 复杂
20
第三节 挤出成型
一、挤出成型原理、工艺过程及挤出设备
(一)成型原理及工艺过程
干法塑化挤出成型工艺过程: 1、原料准备;2、挤出成型;3、塑件的定型与冷却; 4、塑件的牵引、卷取和切割
(二)挤出设备
1、挤出机;2、机头 3、辅助设备(定型、冷却、牵引、切割、卷取)
二是为成型提供热塑料。
效果:缩短成型周期,提高塑件内部固化的均匀性,从而提高塑件的物理力学性能。
(2)预压
在室温下将松散的塑料预压成一定重量和形状的型坯。
预压的优点:
1、压缩时加料简单、迅速、准确; 2、降低了压缩成型时物料的压缩率,减小了模具加料腔尺寸; 3、便于成型形状复杂或带精细嵌件的塑件; 4、可以提高预热温度,缩短预热时间和固化时间; 5、避免加料过程中粉料飞扬,改善劳动条件。
经过浇注系统注入型腔,并在型腔内进一步加热加
压,从而产生交联反应并固化定型。
14
传递成型
15
移动式压注模原理示意图
16
传递成型的特点
(1)制品性能均匀密实,质量好 (2)塑件的尺寸精度较高 (3)成型周期较短,生产效率高 (4)可以成型深腔薄壁塑件或带有深孔的塑件,也

2.1 塑料成型工艺(注射、压缩)

2.1 塑料成型工艺(注射、压缩)
27
C、分流梭 设置在塑化室的中央,与加热料筒的内壁形成均匀 分布的薄浅流道。料筒的部分热量通过数根翅翼 ( 亦 称肋 ) 使分流梭受热。当塑料进入加热室时,就形成 了一个较薄的塑料层,同时受到加热料筒和分流梭两 方面的受热,从而提高了塑化能力,改善了塑化质量。
分流梭
28
②螺杆式塑化部件 结构:由螺杆、料筒、喷嘴等组成。 功能: 塑料在转动螺杆的连续推进过程中,实现 物理状态的变化,最后呈熔融状态而被注入模腔,完 成均匀塑化、定量注射。
32
C、喷嘴 主要功能: 预塑时,建立背压,排除气体,防止熔料流涎,提 高塑化质量。 注射时,使喷嘴与模具主流道良好接触,保证熔料 在高压下不外溢;建立熔体压力,提高剪切应力,并 将压力能转换为动能,提高注射速率和升温,加强混 炼效果和均化作用。 保压时,便于向模腔补料。 冷却定型时,增加回流阻力,防止模腔中的熔料回 流。 调温、保温和断料功能。
熔体经过喷嘴及模具浇注系统充满型腔为止。
36
保压阶段:塑料熔体充满型腔后,熔体开始冷 却收缩,但柱塞或螺杆继续保持施压状态,料筒内
的熔料会向模具型腔内继续流入进行补缩,以形成
形状完整而致密的塑件。 倒流阶段:是柱塞或螺杆开始后退保压结束时 开始的,这时型腔内的压力比流道内的压力高,因 此会发生塑料熔体的倒流,从而使型腔内的压力迅
15
(3)料筒的清洗
在注塑生产中,经常需要更换原料、调换颜色,或 由于温度的升高会造成原料分解,所有这些情况发生 时,都需要对注塑机的料筒进行清洗。清理方法有如 下几种: ①柱塞式注塑机料筒的清洗,要把组装件拆卸后再 进行清洗。 ②螺杆式注塑机料筒的清洗,通常采用直接换料清 洗。为了便于料筒清洗,一般颜色浅的、熔融温度 低的、热稳定性差的注射制品先加工。

塑料成型工艺与模具设计课程标准

塑料成型工艺与模具设计课程标准

《塑料成型工艺与模具设计》课程标准一、课程基本信息课程名称:塑料成型工艺与模具设计课程代码:课程类别:专业核心课课程类型: B类(理论+实践课)是否为精品课程:院内一般课程总学时:64(理论学时数:48,实践学时数:16)学分:4分二、课程定位与课程设计(一)课程性质与作用《塑料成型工艺与模具设计》是模具设计与制造专业的核心专业技术课程之一。

它是一门基于职业岗位群和工作任务分析,以工作过程为导向,以简单到中等复杂塑件和模具为载体,将塑料成型工艺与模具设计制造有机融合,理论与实践一体化的专业技术课程。

通过该课程的学习,使学生明确塑料成型基本原理、工艺方法、常用塑料成型模具的结构特点、设计理论和设计方法。

培养学生具有从事编制塑料成型工艺、设计中等复杂程度的塑料成型模具,编写模具制造工艺规程的能力,以及模具装配、调试、维修的操作能力。

三、课程的教学目标1.系统掌握塑料成型工艺与模具设计的专业知识;2.了解常用塑料的性质及塑料的成型工艺方法,掌握塑料制件的设计原则,正确合理地设计塑料产品;3.掌握塑料模具的设计要领,具备设计中等复杂程度塑件的注射模具的能力;具备设计简单压缩模具,压注模具和挤出模具的能力;4.掌握塑料成型设备的操作使用、日常维护等基本知识,能够分析和解决生产中成品质量和模具方面的技术问题;5.培养诚实守信、爱岗敬业、科学严谨的工作态度和树立守法、安全、质量、效率和环保的意识,具备良好的职业道德。

6.具备良好的身体素质,能够吃苦耐劳、团结协作。

四、课程的教学内容与建议学时五、技能考核要求1.考核采取理论考试与实训考试相结合,各以百分制计算,取加权数核算最终成绩。

获得相应的资格证书,部分优秀学生可取得相应的高级工资格证书。

压注成型原理及工艺

压注成型原理及工艺

压注成型原理及工艺压注成型又称传递成型,是在压缩成型基础上发展起来的一种热固性塑料的成型方法,能成型外形复杂、薄壁或壁厚变化很大、带有精细嵌件的塑件。

压注成型与压缩成型有许多共同之处,压注模与压缩模的型腔结构、脱模机构、成型零件的结构及计算方法、加热方式等也基本相同,两者最大的区别在于压注模有单独的加料室和浇注系统。

一压注成型原理及特点压注成型原理如图2-3所示。

压注成型时,将热固性塑料原料(和压缩成型时一样,塑料原料为粉料或预压成锭的坯料)装入闭合模具的加料室内,使其在加料室内受热塑化,如图2-3a所示;塑化后熔融的塑料在压柱压力的作用下,通过加料室底部的浇注系统进入闭合的型腔,如图2-3b所示;塑料在型腔内继续受热、受压而固化成型,最后打开模具取出塑件,如图2-3c所示。

图2-3 压注成型原理压注成型与压缩成型相比具有以下一些特点:(1)成型周期短,生产效率高塑料在加料室首先被加热塑化,成型时塑料高速通过浇注系统被压入型腔,未完全塑化的塑料与高温的浇注系统相接触,使塑料升温快而均匀。

同时,熔料在通过浇注系统的窄小部位时吸收摩擦热使温度进一步提高,有利于塑料制件在型腔内迅速硬化,从而缩短了硬化时间。

压注成型的硬化时间只相当于压缩成型的1/3~l/5。

(2)塑件的尺寸精度高、表面质量好由于塑料受热均匀,交联硬化充分,因此改善了塑件的机械性能,使塑件的强度、力学性能、电性能都得以提高。

塑件高度方向的尺寸精度较高,飞边很薄。

(3)可以成型带有细小嵌件、较深侧孔及较复杂的塑件由于塑料是以熔融状态压入型腔的,因此对细长型芯、嵌件等产生的挤压力比压缩模小。

一般的压缩成型在垂直方向上成型的孔深不大于其直径的3倍,侧向孔深不大于其直径的1.5倍,而压注成型可成型孔深不大于直径10倍的通孔、不大于直径3倍的盲孔。

(4)消耗原材料较多由于存在浇注系统凝料,故塑料消耗比较多,这对小型塑件尤为突出。

(5)压注成型收缩率大于压缩成型收缩率一般酚醛塑料在压缩成型时的收缩率为0.8%,但压注成型时的收缩率则为0.9%~l%,而且收缩率具有方向性。

压注和压缩的区别

压注和压缩的区别

压注成型

原理
1、把预热的原料加到料腔里,塑料经过加 热塑化,在压力机柱塞的压力下经过模具 的浇注系统挤入型腔,型腔内的塑料,在 一定的压力和温度下保持一定的时间充分 固化,得到所需的塑件。 压注成型和压缩(模压)成型都是热固性 塑料常用的成型方法。

压缩成型

原理
成型热固性塑料时,置于模具型腔中的成型 物料由于高温高压的作用,由固态变成粘流状态, 并在此状态下充满型腔,同时高聚物产生交联反 应,随着交联反应的深化,熔料逐渐变为固态, 最后脱模获得塑件
压注成型与压缩成型区别


压注成型工艺过程和压缩成型基本相似,它 们的主要区别在于压缩成型过程是先加料后 闭模,而一般结构的压注模成型则要求先闭 模后加料 在工艺参数上的不同:
压注成型的主要工艺参数包括压力、成型温 度和成型周期,它们与压缩成型的有关参数 相似,但有区别



Hale Waihona Puke 1、成型压力 在压注成型过程中,熔融塑料要经过浇注系统进入型腔, 由于阻力导致压力损失,压注成型的压力一般为压缩成型 压力的2-3倍 2、成型温度 压注成型温度包括加料室的温度和模具本身的温度。为了 保证塑料具有好的流动性,一般塑件的温度低于交联温度。 成型中由于熔融塑料通过浇注系统进入模具型腔,经过浇 注系统是会产生摩擦热,因此压注成型温度可以比压缩成 型温度低一些,大概底15℃-30℃ 3、成型周期 压注成型周期包括加料时间、冲模时间、保压固化时间、 脱模时间和清理模具时间 由于塑料进入型腔前充分塑化,而且流经浇注系统是摩擦 生热,所以塑件塑化均匀,塑料进入型腔时已临近树脂固 化的最后温度。因此塑料在模具中的保压固化时间较短, 比压缩成型中保压时间短一些
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上一页 下一页 返回
11.1 压缩模
• 3) 固定式压缩模具。 其特点是上模连同加热器板固定在普通液压 机的动梁上, 下模固定在工作台上。 脱模时, 由液压机的下推杆通 过推出机构将制品推出。 由于开模、 合模、 脱模等工序均在液压机 内进行, 故生产率高、 操作简单、 劳动强度小、 模具寿命长, 但 其结构复杂、 成本高, 且安放嵌件不方便。 此类模具适用于成型批 量较大或尺寸较大的塑件。
上一页 下一页 返回
11.1 压缩模
• 3.压缩模用压力机的选用与校核 • 压力机是压缩成型的主要设备, 按传动方式, 压力机可分为机械式
和液压式。 机械式压力机常用螺旋式压力机, 其与液压机比较虽然 结构简单, 但是技术性能不稳定。 液压式压力机按其结构动作方式 可分为上压式液压机、 下压式液压机和特种液压机; 按其机身结构 可分为柱式液压机和框架式液压机。 • 压力机的技术参数与压缩成型生产时的压力、 制品的尺寸大小及压 缩模具的结构设计密切相关。 设计压缩模时应对压力机的总压力、 开模力、 推出力和装模部分有关技术参数进行校核。 • (1) 最大压力的校核 • 成型压力要满足 • F M ≤KF P (11 -1)
上一页 下一页 返回
11.1 压缩模
• 2.压缩模的基本结构 • 一个典型的压缩模结构如图 11 -7 所示, 它可分为固定于压力机
上工作台的上模和下工作台的下模两大部分, 两大部分靠导柱导向 开合。 其工作原理为加料前先将侧型芯复位, 加料合模后, 热固性 塑料在加料腔和型腔中受热受压, 成为熔融状态而充满型腔, 固化 成型后开模。 开模时, 上工作台上移, 上凸模 3 脱离下模一段距 离, 侧型芯 18 用手工将其抽出,下液压缸工作, 推板 15 推动 推杆 11 将塑件推出模外。 侧型芯复位后加料, 接着又开始下一个 压缩成型循环。
上一页 下一页 返回
11.1 压缩模
• 2) 配合环是凸模与凹模加料腔的配合部分。 它的作用是保证凸模 与凹模定位准确, 阻止塑料溢出, 并能通畅地排出气体。 凹凸模配 合间隙应按照塑料的流动性及塑件尺寸大小来定。
• 3) 挤压环的作用是限制凸模下行位置, 并保证最薄的水平飞边。 挤压环主要用于半溢式和溢式压缩模, 不溢式压缩模没有挤压环。 挤压环的形式如图 11 -11 所示, 挤压环的宽度 B 值按塑件大 小及模具用钢而定。
• 7) 加料腔是供容纳塑料粉用的空间, 其结构形式及有关计算将在 后面讨论。
• (2) 凸凹模配合的结构形式 • 压缩模凸模与凹模配合的结构形式及该处的尺寸是模具设计的关键所
在, 结构形式若设计恰当, 就能使压缩工作顺利进行, 使生产的塑 件精度高, 质量好。 其形式和尺寸根据压缩模类型的不同而不同。
项目 11 压缩模和压注模的设计
• 11.1 压缩模 • 11.2 压注模
返回
11.1 压缩模
• 1.压缩模的分类 • 压缩模的分类方法很多, 可按分型面特征进行分类, 也可按模具在
液压机上的固定方式进行分类, 还可按模具加料室的形式进行分类。 下面就其中的几种形式进行介绍。 • (1) 按分型面特征分类 • 1) 水平分型面压缩模具。 一个水平分型面的溢式压缩模具如图 1 1 -2 (a) 所示, 两个水平分型面的不溢式压缩模具如图 11 -2 (b) 所示。 • 2) 垂直分型面的压缩模具。 垂直分型面的半溢式压缩模具如图 1 1 -2 (c) 所示。
上一页 下一页 返回
11.1 压缩模
• 2) 半溢式压缩模具, 如图 11 - 5 所示。模具在型腔上方设一 截面尺寸大于塑件尺寸的加料腔, 凸模与加料腔呈间隙配合, 加料
• 腔与型腔分界处有一个环形挤压面, 其宽度为 4 ~5 mm, 凸模 下压到挤压面接触为止。 在每个循环压制中加料量若稍有过量, 过 剩的原料可通过配合间隙或从凸模上专门开出的溢料槽中排出。 溢 料速度可通过间隙大小和溢料槽数目来进行调节, 其塑件的紧密程 度比溢式压缩模具好。
• 4) 储料槽的作用是供排出余料。 因此, 凹凸模配合后应留有小空 间 Z =0.5 ~1.5 mm,作为储料槽。 为避免填充不足, 压缩 模的加料必须比实际用料多, 而多余的料会造成合模方向上的尺寸 误差, 所以必须使多余料有储存的空间。 半溢式压缩模的储料槽形 式如图 11 -12所示; 半溢式压缩模的储料槽设计在凸模上, 如 图 11 -12 所示, 这种储料槽不能设计成连续的环形槽, 否则 余料会牢固地包在凸模上难以清理。
上一页 下一页 返回
11.1 压缩模
• 6) 承压面的作用是减少轻挤压环的载荷, 延长模具的使用寿命。 若无承压面, 则凸模压力将直接全部加于制品上, 当压强过大时, 容易破坏型腔精度。 承压面的结构形式如图 11 -14 所示。 图 11 -14 (a) 的结构形式是以挤压环作为承压面, 模具容易变 形或压坏,但飞边较薄; 图11 -14 (b) 的形式是凹凸模之间 留有0.03 ~0.05 mm 的间隙, 由凸模固定板与凹模上端面作 承压面, 可防止挤压边变形损坏, 延长模具寿命, 但飞边较厚, 主 要用于移动式压缩模。 对于固定式压缩模, 最好采用如图 11 -1 4 (c) 所示承压块的形式, 通过调节承压块的厚度来控制凸模进 入凹模的深度或与挤压边缘之间的间隙, 减少飞边厚度, 承受液压 机余压, 有时还可调节塑件高度。
上一页 下一页 返回
11.1 压缩模
• 5) 排气溢料槽。 为了减少飞边, 保证塑件的精度及质量, 成型时 必须将产生的气体及余料排出模外。
• 一般可通过压缩过程中的 “放气” 操作或利用凹凸模配合间隙来实 现排气。 但当成型形状复杂的塑件及流动性较差的纤维填料的塑料 时, 或在压缩时不能排出气体时, 则应在凸模上选择适当的位置开 设排气溢料槽。 图 11 -13 所示为半溢式压缩模排气溢料槽的形 式。图11 -13 (a) 为圆形凸模上开设出4 条0.2 ~0.3 mm 的凹槽, 凹槽与凹模内圆面间形成溢料槽; 图11 -13 (b) 为在圆形凸模上磨出深0.2 ~0.3 mm 的平面进行排气溢 料; 图11 -13 (c)和图11 -13 (d) 是矩形截面凸模 上开设排气溢料槽的形式。 排气溢料槽应开到凸模的上端, 使合模 后高出加料腔上平面, 以便使余料排出模外。
上一页 下一页 返回
11.1 压缩模
• 1) 溢式压缩模的配合形式。 溢式压缩模没有加料腔, 仅利用凹模 型腔装料, 凸模与凹模之间没有引导环和配合环, 只是在分型面水 平接触。 为了减少溢料量, 接触面要光滑平整, 为了使毛边变薄, 接触面积不宜太大, 一般设计成宽度为 3 ~ 5 mm 的环形面, 因 此,该接触面被称为溢料面或挤压面, 如图 11 -16 (a) 所 示。 由于溢料面面积小, 为防止此面受液压机余压作用而导致挤压 面过早被压塌、 变形或磨损, 使取件困难, 可在溢料面处另外再增 加承压面, 或在型腔周围距边缘 3 ~5 mm 处开设溢料槽, 如图 11 -16 (b) 所示。
上一页 下一页 返回
11.1 压缩模
• 承压块的形式如图 11 -15 所示。 矩形模具用长条形的, 如图 11 -15 (a) 所示; 圆形模具用弯月形的, 如图 11 -15 (b) 所示; 小型模具可用圆形的, 如图 11 - 15 (c) 所 示,或用圆柱形的, 如图 11 -15 (d) 所示。 它们的厚度一 般为 8 ~10 mm, 安装形式有单面安装和双面安装。 承压块材 料可用 T7、 T8 或 45 钢, 硬度为 35 ~40 HRC。
下一页 返回
11.1 压缩模
• (2) 按模具在液压机上的固定方式分类 • 1) 移动式压缩模具, 如图 11 - 3 所示。 • 模具的特点是: 模具不固定在液压机上, 成型后将模具移出液压机,
用卸模专用工具(如卸模架) 开模, 先抽出侧型芯, 再取出塑件。 在清理加料室后, 将模具重新组合好,然后放入液压机内再进行下 一个循环的压缩成型。 其模具结构简单, 制造周期短。 • 2) 半固定式压缩模具。 其特点是开合模在机内进行, 一般将上模 固定在液压机上模,下模可沿导轨 (下模增设一组导轨, 将工作台 接长。 装料时把下模沿导轨拉出, 压缩时推进、 定位) 移动, 用 定位块定位。 脱模时, 可以在装料位置上用卸模架或其他卸模工具 脱出制品。 该结构便于安放嵌件和加料, 可减小劳动强度。 当移动 式模具过重或嵌件较多时,为便于操作, 可采用此类模具。
• 3) 不溢式压缩模具, 如图 11 - 6 所示。这种模具型腔较深, 加料腔为型腔上部截面的延续, 无挤压面。 凸模与加料腔有较高精
• 度的间隙配合, 故塑件径向壁厚尺寸精度较高。 理论上液压机所施 的压力将全部作用到塑件上, 故塑件的密度高; 塑料的溢出量很少, 使塑件在垂直方向上形成很薄的飞边,这些飞边容易被去除。 配合 高度不宜过大, 不配合部分可以将凸模上部截面减小, 也可将凹模 对应部分尺寸逐渐增大而形成 15° ~20°的锥面。
• (3) 按模具加料室的形式分类 • 1) 溢式压缩模具, 如图 11 - 4 所示。 这种模具没有单独的加
料腔, 型腔就是加料腔,型腔的高度 h 约等于塑件的高度。 模具工 作时, 由于凸凹模之间无配合部分, 完全靠导柱定位, 故加压后多 余的塑料会从分型面溢出成为飞边。 环行面是挤压面, 其宽度 B 比 较窄,以减薄塑件的飞边。 合模时原料受压缩, 合模到终点时挤压 面才能完全密合。 因此, 塑件密度往往较低, 强度等力学性能不高。 特别是如果模具闭合太快, 会造成溢料
• (3) 脱模力的校核 • 脱模力的计算公式为 • F t = A c P f (11 -5) • (4) 合模高度与开模行程的校核 • 为了使模具正常工作, 必须使模具闭合高度和开模行程与压力机上
下工作台之间的最大和最小开距以及活动压板的工作行程相适应, 如图11 -7 所示。 • (5) 顶出机构的校核 • 压力机最大顶出行程应大于模具所需的推出行程,且必须保证塑件推 出型腔后高于型腔表面 10 mm 以上,如图 11 -9 所示。
相关文档
最新文档