2017年安徽省江淮十校高考数学三模试卷(文科)及参考答案

合集下载

安徽省江南十校2017年高考数学模拟试卷(解析版)(文科)(3月份)

安徽省江南十校2017年高考数学模拟试卷(解析版)(文科)(3月份)

2017年安徽省江南十校高考数学模拟试卷(文科)(3月份)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣x﹣2≥0},B={x|0<x<3},则A∩B()A.(0,2] B.[﹣1,3)C.[2,3) D.[﹣1,0)2.若复数z满足,其中i是虚数单位,则复数z的共轭复数为=()A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i3.已知数列{a n}是等差数列,a3+a13=20,a2=﹣2,则a15=()A.20 B.24 C.28 D.344.若圆锥曲线Γ:=1(m≠0且m≠5)的一个焦点与抛物线y2=8x的焦点重合,则实数m=()A.9 B.7 C.1 D.﹣15.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π),它们的图象有一个横坐标为的交点,则φ=()A.B.C. D.6.中国的计量单位可以追溯到4000多年前的氏族社会末期,公元前221年,秦王统一中国后,颁布同一度量衡的诏书并制发了成套的权衡和容量标准器.下图是古代的一种度量工具“斗”(无盖,不计量厚度)的三视图(其正视图和侧视图为等腰梯形),则此“斗”的体积为(单位:立方厘米)()A.2000 B.2800 C.3000 D.60007.已知,c=cos50°cos10°+cos140°sin170°,则实数a,b,c 的大小关系是()A.a>c>b B.b>a>c C.a>b>c D.c>b>a8.若函数f(x)=(ax2+bx)e x的图象如图所示,则实数a,b的值可能为()A.a=1,b=2 B.a=1,b=﹣2 C.a=﹣1,b=2 D.a=﹣1,b=﹣29.三棱锥P﹣ABC中,侧棱PA=2,PB=PC=,则当三棱锥P﹣ABC的三个侧面的面积和最大时,经过点P,A,B,C的球的表面积是()A.4πB.8πC.12πD.16π10.已知双曲线的左、右焦点分别为F1,F2,焦距为2c,直线与双曲线的一个交点P满足∠PF2F1=2∠PF1F2,则双曲线的离心率e为()A.B.C.D.11.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.右面是一个算法的程序框图,当输入n的值为12时,则输出的结果为()A.2 B.3 C.4 D.512.已知数列{a n}满足,S n是数列{a n}的前n项和,若S2017+m=1010,且a1•m>0,则的最小值为()A.2 B.C.D.二、填空题13.已知平面向量=(1,m),=(2,5),=(m,3),且(+)∥(﹣),则m=.14.已知θ是第四象限,且,则=.15.过定点P(2,﹣1)作动圆C:x2+y2﹣2ay+a2﹣2=0的一条切线,切点为T,则线段PT长的最小值是.16.已知实x,y数满足,则的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知a,b,c分别为△ABC中角A,B,C的对边,函数且f(A)=5.(1)求角A 的大小;(2)若a=2,求△ABC 面积的最大值.18.(12分)某民调机构为了了解民众是否支持英国脱离欧盟,随机抽调了100名民众,他们的年龄的频数及支持英国脱离欧盟的人数分布如下表:(Ⅰ)由以上统计数据填下面列联表,并判断是否有99%的把握认为以50岁胃分界点对是否支持脱离欧盟的态度有差异;(Ⅱ)若采用分层抽样的方式从18﹣64岁且支持英国脱离欧盟的民众中选出7人,再从这7人中随机选出2人,求这2人至少有1人年龄在18﹣24岁的概率.19.(12分)如图,四边形ABCD 是边长为的正方形,CG ⊥平面ABCD ,DE∥BF ∥CG ,.P 为线段EF 的中点,AP 与平面ABCD 所成角为60°.在线段CG 上取一点H ,使得.(Ⅰ)求证:PH ⊥平面AEF ; (Ⅱ)求多面体ABDEFH 的体积.20.(12分)如图所示,在直角坐标系xOy中,抛物线C:y2=4x,Q(﹣1,0),设点P是第一象限内抛物线C上一点,且PQ为抛物线C的切线.(1)求点P的坐标;(2)圆C1、C2均与直线OP相切于点P,且均与x轴相切,求圆C1、C2的半径之和.21.(12分)已知函数.(Ⅰ)当0<a<2时,求函数f(x)的单调区间;(Ⅱ)已知a=1,函数.若对任意x1∈(0,e],都存在x2∈(0,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知P为曲线上的动点,直线C2的参数方程为(t为参数)求点P到直线C2距离的最大值,并求出点P的坐标.[选修4-5:不等式选讲]23.已知关于x的方程在x∈[0,3]上有解.(Ⅰ)求正实数a取值所组成的集合A;(Ⅱ)若t2﹣at﹣3≥0对任意a∈A恒成立,求实数t的取值范围.2017年安徽省江南十校高考数学模拟试卷(文科)(3月份)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣x﹣2≥0},B={x|0<x<3},则A∩B()A.(0,2] B.[﹣1,3)C.[2,3) D.[﹣1,0)【考点】交集及其运算.【分析】先求出集合A和B,由此利用交集定义能求出A∩B.【解答】解:∵集合A={x|x2﹣x﹣2≥0}={x|x≤﹣1或x≥2},B={x|0<x<3},∴A∩B={x|2≤x<3}=[2,3).故选:C.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若复数z满足,其中i是虚数单位,则复数z的共轭复数为=()A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i【考点】复数相等的充要条件.【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:∵,∴z=i(1+i)=﹣1+i,∴,故选:D.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.已知数列{a n}是等差数列,a3+a13=20,a2=﹣2,则a15=()A.20 B.24 C.28 D.34【考点】等差数列的通项公式.【分析】由已知结合等差数列的性质求得a8,进一步求得公差,再由等差数列的通项公式求得a15.【解答】解:∵a3+a13=2a8=20,∴a8=10,又a2=﹣2,∴d=2,得a15=a2+13d=24.故选:B.【点评】本题考查等差数列的通项公式,考查了等差数列的性质,是基础的计算题.4.若圆锥曲线Γ:=1(m≠0且m≠5)的一个焦点与抛物线y2=8x的焦点重合,则实数m=()A.9 B.7 C.1 D.﹣1【考点】椭圆的简单性质;抛物线的简单性质.【分析】由抛物线的性质求得焦点坐标,则c=2,由椭圆的性质可得m﹣5=4,即可求得m的值.【解答】解:由抛物线y2=8x的焦点(2,0),则抛物线的焦点在x轴上,c=2,∴m﹣5=4,∴m=9,故选A.【点评】本题考查圆锥曲线的简单几何性质,属于基础题.5.已知函数y=cosx与y=sin(2x+φ)(0≤φ≤π),它们的图象有一个横坐标为的交点,则φ=()A.B.C. D.【考点】三角函数的恒等变换及化简求值.【分析】利用在的函数值相等为,得到φ的表达式,利用已知范围求角.【解答】解:,或,或,又因为0≤φ≤π,所以;故选A.【点评】本题考查了函数值的求法,关键是将问题转化为在的函数值相等为,求出范围内的角.6.中国的计量单位可以追溯到4000多年前的氏族社会末期,公元前221年,秦王统一中国后,颁布同一度量衡的诏书并制发了成套的权衡和容量标准器.下图是古代的一种度量工具“斗”(无盖,不计量厚度)的三视图(其正视图和侧视图为等腰梯形),则此“斗”的体积为(单位:立方厘米)()A.2000 B.2800 C.3000 D.6000【考点】由三视图求面积、体积.【分析】由三视图得出该几何体是正四棱台,结合图中数据计算四棱台的体积即可.【解答】解:由三视图得该几何体是正四棱台,其上、下底面边长分别为10、20,棱台的高为12,所以棱台的体积为V四棱台=×(102+202+10×20)×12=2800.故选:B.【点评】本题考查了几何体三视图与棱台体积公式的应用问题,是基础题.7.已知,c=cos50°cos10°+cos140°sin170°,则实数a,b,c 的大小关系是()A.a>c>b B.b>a>c C.a>b>c D.c>b>a【考点】对数值大小的比较.【分析】利用诱导公式与和差公式可得c,再利用指数的运算性质可得a,b.【解答】解:>1,b==∈,c=cos50°cos10°﹣sin50°sin10°=cos(50°+10°)=cos60°=.∴a>b>c.故选:C.【点评】本题考查了诱导公式与和差公式、指数的运算性质,考查了推理能力与计算能力,属于基础题.8.若函数f(x)=(ax2+bx)e x的图象如图所示,则实数a,b的值可能为()A.a=1,b=2 B.a=1,b=﹣2 C.a=﹣1,b=2 D.a=﹣1,b=﹣2【考点】函数的图象.【分析】根据函数的零点可得其中一个零点x=﹣>1,即可判断.【解答】解:令f(x)=0,则(ax2+bx)e x=0,解得x=0或x=﹣,由图象可得﹣>1,故当a=1,b=﹣2时符合,故选:B【点评】本题考查了函数的图象和识别,属于基础题.9.三棱锥P﹣ABC中,侧棱PA=2,PB=PC=,则当三棱锥P﹣ABC的三个侧面的面积和最大时,经过点P,A,B,C的球的表面积是()A.4πB.8πC.12πD.16π【考点】球的体积和表面积.【分析】三棱锥P﹣ABC的三条侧棱PA、PB、PC两两互相垂直,三棱锥P﹣ABC 的三个侧面的面积之和最大,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积.【解答】解:当PA,PB,PC两两垂直时,三棱锥P﹣ABC的三个侧面的面积和最大,此时2R==4,S=4π•4=16π,故选D.【点评】本题考查球的表面积,几何体的外接球,考查空间想象能力,计算能力,是基础题.10.已知双曲线的左、右焦点分别为F1,F2,焦距为2c,直线与双曲线的一个交点P满足∠PF2F1=2∠PF1F2,则双曲线的离心率e为()A.B.C.D.【考点】双曲线的简单性质.【分析】由题意∠F1PF2=90°,利用直角三角形的边角关系即可得到|PF2|=c,|PF1|=c,再利用双曲线的定义及离心率的计算公式即可得出.【解答】解:如图所示,∠PF2F1=2∠PF1F2=60°,∠F1PF2=90°,∴|PF2|=c,|PF1|=c,由双曲线的定义可得:|PF1|﹣|PF2|=2a,∴,解得e==.故选:D.【点评】熟练掌握圆的性质、直角三角形的边角关系、双曲线的定义、离心率的计算公式是解题的关键.11.已知MOD函数是一个求余函数,其格式为MOD(n,m),其结果为n除以m的余数,例如MOD(8,3)=2.右面是一个算法的程序框图,当输入n的值为12时,则输出的结果为()A.2 B.3 C.4 D.5【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量j的值,模拟程序的运行过程,可得答案.【解答】解:模拟执行程序框图,可得:n=12,i=2,j=0满足条件i<12,MOD(12,0)无意义,其逻辑值为0,j=1,i=3满足条件i<n,MOD(12,1)=0,j=2,i=4满足条件i<n,MOD(12,2)=0,j=3,i=5满足条件i<n,MOD(12,3)=0,j=4,i=6满足条件i<n,MOD(12,4)=0,j=5,i=7满足条件i<n,MOD(12,5)=2,i=8满足条件i<n,MOD(12,5)=2,i=9满足条件i<n,MOD(12,5)=2,i=10满足条件i<n,MOD(12,5)=2,i=11满足条件i<n,MOD(12,5)=2,i=12不满足条件i<n,退出循环,输出j的值为5.故选:D.【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的MOD(n,i)的值是解题的关键,属于基础题.12.已知数列{a n}满足,S n是数列{a n}的前n项和,若S2017+m=1010,且a1•m>0,则的最小值为()A.2 B.C.D.【考点】数列与函数的综合;基本不等式.【分析】由S2017﹣a1=(a2+a3)+(a4+a5)+…+(a2016+a2017),结合余弦函数值求和,再由S2017+m=1010,可得a1+m=2,由a1•m>0,可得a1>0,m>0,运用乘1法和基本不等式即可得到所求最小值.【解答】解:数列{a n}满足,可得a2+a3=3cosπ=﹣3,a4+a5=5cos2π=5,a6+a7=7cos3π=﹣7,…,a2016+a2017=2017cos1008π=2017,则S2017﹣a1=(a2+a3)+(a4+a5)+…+(a2016+a2017)=﹣3+5﹣7+9﹣…+2017=1008,又S2017+m=1010,所以a1+m=2,由a1•m>0,可得a1>0,m>0,则=(a1+m)()=(2++)≥(2+2)=2.当且仅当a1=m=1时,取得最小值2.故选:A.【点评】本题考查数列与三角函数的结合,注意运用整体思想和转化思想,考查最值的求法,注意运用乘1法和基本不等式,考查运算能力,属于中档题.二、填空题13.已知平面向量=(1,m),=(2,5),=(m,3),且(+)∥(﹣),则m=.【考点】平行向量与共线向量.【分析】根据平面向量的坐标运算与共线定理,列出方程求出m的值.【解答】解:平面向量=(1,m),=(2,5),=(m,3),则+=(1+m,m+3),﹣=(﹣1m﹣5),且(+)∥(﹣),∴(1+m)(m﹣5)+(m+3)=0,m2﹣3m﹣2=0,解得m=或m=.故答案为:.【点评】本题考查了平面向量的坐标运算与共线定理应用问题,是基础题目.14.已知θ是第四象限,且,则=﹣.【考点】两角和与差的正切函数.【分析】利用同角三角函数的基本关系,诱导公式,求得cos(θ﹣)和sin(θ﹣)的值,再利用两角差的正切公式求得的值.【解答】解:因为θ为第四象限角且=cos(﹣θ)=cos(θ﹣),∴θ﹣还是第四象限角,故,∴==﹣,故答案为:﹣.【点评】本题主要考查同角三角函数的基本关系,诱导公式,以及三角函数在各个象限中的符号,两角差的正切公式的应用,属于基础题.15.过定点P(2,﹣1)作动圆C:x2+y2﹣2ay+a2﹣2=0的一条切线,切点为T,则线段PT长的最小值是.【考点】圆的切线方程.【分析】利用勾股定理表示PT,即可得出结论.【解答】解:由题意,当a=﹣1时PT长最小为,故答案为.【点评】本题主要考查直线和圆相切的性质,体现了转化的数学思想,属于基础题.16.已知实x,y数满足,则的取值范围为[0,1] .【考点】简单线性规划.【分析】由约束条件作出可行域,由的几何意义,即可行域内的动点与定点P(0,﹣1)连线的斜率结合导数求得答案.【解答】解:由约束条件作出可行域如图,的几何意义为可行域内的动点与定点P(0,﹣1)连线的斜率.设过P(0,﹣1)的直线与曲线y=lnx相切于点B(x0,lnx0),则,切线方程为y﹣lnx0=(x﹣x0),把(0,﹣1)代入得:﹣1﹣lnx0=﹣1,得x0=1.∴切线的斜率为1.则的取值范围为[0,1].故答案为:[0,1].【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,是中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2017•安徽模拟)已知a,b,c分别为△ABC中角A,B,C的对边,函数且f(A)=5.(1)求角A的大小;(2)若a=2,求△ABC面积的最大值.【考点】余弦定理.【分析】(1)利用三角恒等变换求得f(A)的解析式,由f(A)=5求得sin(2A+)的值,从而求得2A +的值,可得A 的值.(2)利用余弦定理,基本不等式,求得bc 的最大值,可得△ABC 面积bc•sinA 的最大值.【解答】解:(1)由题意可得:=3+sin2A +cos2A +1=4+2sin (2A +),∴sin (2A +)=,∵A ∈(0,π), ∴2A +∈(,),∴2A +=,∴A=.(2)由余弦定理可得:,即4=b 2+c 2﹣bc ≥bc (当且仅当b=c=2时“=”成立),即bc ≤4, ∴,故△ABC 面积的最大值是.【点评】本题主要考查三角恒等变换,余弦定理,基本不等式的应用,属于中档题.18.(12分)(2017•安徽模拟)某民调机构为了了解民众是否支持英国脱离欧盟,随机抽调了100名民众,他们的年龄的频数及支持英国脱离欧盟的人数分布如下表:(Ⅰ)由以上统计数据填下面列联表,并判断是否有99%的把握认为以50岁胃分界点对是否支持脱离欧盟的态度有差异;(Ⅱ)若采用分层抽样的方式从18﹣64岁且支持英国脱离欧盟的民众中选出7人,再从这7人中随机选出2人,求这2人至少有1人年龄在18﹣24岁的概率.【考点】独立性检验.【分析】(Ⅰ)根据统计数据,可得2×2列联表,根据列联表中的数据,计算K2的值,即可得到结论;(Ⅱ)利用列举法确定基本事件的个数,即可得出这2人至少有1人年龄在18﹣24岁的概率.【解答】解:(Ⅰ)所以有99%的把握认为以50岁为分界点对是否支持脱离欧盟的态度有差异.(Ⅱ)18﹣24岁2人,25﹣49岁2人,50﹣64岁3人.记18﹣24岁的两人为A,B;25﹣49岁的两人为C,D;50﹣64岁的三人为E,F,G,则AB,AC,AD,AE,AF,AG,BC,BD,BE,BF,BG,CD,CE,CF,CG,DE,DF,DG,EF,EG,FG共21种,其中含有A或B的有11种.故.【点评】本题考查独立性检验,考查概率的计算,考查学生的阅读与计算能力,属于中档题.19.(12分)(2017•安徽模拟)如图,四边形ABCD 是边长为的正方形,CG⊥平面ABCD ,DE ∥BF ∥CG ,.P 为线段EF 的中点,AP 与平面ABCD所成角为60°.在线段CG 上取一点H ,使得.(Ⅰ)求证:PH ⊥平面AEF ; (Ⅱ)求多面体ABDEFH 的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(Ⅰ)连接AC ,BD 交于点O ,连接OP ,则O 为BD 中点,说明∠PAO 为AP 与平面ABCD 所成角,通过计算勾股定理证明AP ⊥PH .结合PH ⊥EF .证明PH ⊥平面AEF .(Ⅱ)证明AC ⊥平面BDEF .求解,推出点H 到平面BFED 的距离等于点C 到平面BFED 的距离,通过V=V A ﹣BFED +V H ﹣EFBD ,求解即可【解答】解:(1)连接AC ,BD 交于点O ,连接OP ,则O 为BD 中点, ∴OP ⊥DE ∴OP ⊥平面ABCD ,∴∠PAO 为AP 与平面ABCD 所成角,∴∠PAO=60°.在Rt △AOP 中,∴.在Rt △AHC 中,.梯形OPHC 中,.∴AP 2+PH 2=AH 2∴AP ⊥PH .又EH=FH,∴PH⊥EF.又AP∩EF=P,∴PH⊥平面AEF.(2)由(1)知,OP⊥平面ABCD,∴OP⊥AC.又AC⊥BD,BD∩OP=O,∴AC⊥平面BDEF.∴.∵CG∥BF,BF⊂平面BFED,CG⊄平面BFED,∴CG∥平面BFED,∴点H到平面BFED的距离等于点C到平面BFED的距离,∴..【点评】本题考查直线与平面垂直的判定定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力,转化思想的应用.20.(12分)(2017•安徽模拟)如图所示,在直角坐标系xOy中,抛物线C:y2=4x,Q(﹣1,0),设点P是第一象限内抛物线C上一点,且PQ为抛物线C 的切线.(1)求点P的坐标;(2)圆C1、C2均与直线OP相切于点P,且均与x轴相切,求圆C1、C2的半径之和.【考点】圆与圆锥曲线的综合.【分析】(1)设直线PQ的方程为:x=my﹣1,联立利用PQ为抛物线C的切线,所以△=0求出m,可得点P(1,2).(2)OP直线方程为:y=2x,设圆C1、C2的圆心坐标分别为(a1,b1),(a2,b2),其中b1>0,b2>0,则圆C1、C2的半径分别为b1、b2,利用圆C1与直线OP相切于点P,推出.说明圆C1、C2的半径b1、b2是方程b2﹣5b+5=0的两根,利用韦达定理求解即可.【解答】解:(1)设直线PQ的方程为:x=my﹣1因为PQ为抛物线C的切线,所以△=16m2﹣16=0⇒m=±1.又因为点P是第一象限内抛物线C上一点,所以m=1,此时点P(1,2).(2)OP直线方程为:y=2x,设圆C1、C2的圆心坐标分别为(a1,b1),(a2,b2),其中b1>0,b2>0,则圆C1、C2的半径分别为b1、b2,因为圆C1与直线OP相切于点P,所以.同理因为圆C2与直线OP相切于点P,所以.即圆C1、C2的半径b1、b2是方程b2﹣5b+5=0的两根,故b1+b2=5.【点评】本题考查直线与抛物线的位置关系的应用,圆的方程的应用,考查转化思想以及计算能力.21.(12分)(2017•安徽模拟)已知函数.(Ⅰ)当0<a<2时,求函数f(x)的单调区间;(Ⅱ)已知a=1,函数.若对任意x1∈(0,e],都存在x2∈(0,2],使得f(x1)≥g(x2)成立,求实数b的取值范围.【考点】导数在最大值、最小值问题中的应用;利用导数研究函数的单调性.【分析】(Ⅰ)当0<a<2时,求出函数的导数,当时,当时,分别求解导函数的符号,判断函数的单调性求解单调区间即可.(Ⅱ)由(Ⅰ)知a=1,f(x)在(0,1)内单调递减,(1,2)内单调递增,(2,e)内单调递减,推出x1∈(0,e],f(x)|min=f(1)=﹣1,∀x1∈(0,e],∃x2∈[0,2]有f(x1)≥g(x2),转化为:只需g(x)在[0,2]上最小值小于等于﹣1即可.【解答】解:(Ⅰ)当0<a<2时,,当时,或0<x<2,f(x)在上递增,在(0,2)和上递减;当时,或,f(x)在上递增,在和(2,+∞)上递减;,f(x)在(0,+∞)上递减.(Ⅱ)由(Ⅰ)知a=1,f(x)在(0,1)内单调递减,(1,2)内单调递增,(2,e)内单调递减,又,∴x1∈(0,e],f(x)|min=f(1)=﹣1故∀x1∈(0,e],∃x2∈[0,2]有f(x1)≥g(x2),只需g(x)在[0,2]上最小值小于等于﹣1即可.x0=2b<0即b<0时g(x)最小值,不合题意,舍去;x0=2b∈[0,2],即0≤b≤1时g(x)最小值,;x0=2b>2即b>1时g(x)最小值,∴b>1;综上所述:.【点评】本题考查函数的导数的应用,函数的单调性以及极值的求法,函数的最值的求法,考查分类讨论思想以及转化思想的应用,考查计算能力.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)(2017•安徽模拟)已知P为曲线上的动点,直线C2的参数方程为(t为参数)求点P到直线C2距离的最大值,并求出点P的坐标.【考点】直线与椭圆的位置关系.【分析】化简直线的参数方程为普通方程,设椭圆的P的参数,利用点到直线的距离公式,通过三角函数的最值求解即可.【解答】解:由条件:.设点,点P到C2之距离..此时cosθ=﹣,此时点.【点评】本题考查直线的参数方程椭圆的参数方程的应用,点到直线的距离公式以及三角函数的最值,考查转化思想以及计算能力.[选修4-5:不等式选讲]23.(2017•安徽模拟)已知关于x的方程在x∈[0,3]上有解.(Ⅰ)求正实数a取值所组成的集合A;(Ⅱ)若t2﹣at﹣3≥0对任意a∈A恒成立,求实数t的取值范围.【考点】函数恒成立问题;函数零点的判定定理.【分析】(Ⅰ)求出,然后推出2≤|2a﹣1|≤3求解即可.(Ⅱ)设g(a)=t•a+t2﹣3,利用恒成立列出不等式组,求解即可.【解答】解:(Ⅰ)当x∈[0,3]时,2≤|2a﹣1|≤3且,∴.(Ⅱ)由(Ⅰ)知:,设g(a)=t•a+t2﹣3,则,可得或t≥3.【点评】本题考查函数的零点判定定理的应用,函数恒成立,考查转化思想以及计算能力.。

江淮十校2017届高三第一次联考文数试题及答案(word)

江淮十校2017届高三第一次联考文数试题及答案(word)

“江淮十校”2017届高三第一次联考数 学(文科)命题单位:芜湖一中 命审人:王刚 万胜 朱宝义考生注意:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。

2.考生作答时,请将答案写在答题卡上。

必须在题号所指示的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。

3.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题号的题目涂黑。

第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题满分5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.若将集合{}4321,,,=A ,{}2≤∈=x N x B ,则=B A ( )A.{}4321,,,B.{}432101-2-,,,,,, C,{}2,1 D.{}432,,2.右图是某赛季甲、乙两名篮球运动员参加的每场比赛得分的茎叶图,则甲、乙两人在这几场比赛得分的中位数之和是( )A.65B.64C.63D.623.︒︒-︒︒10sin 20cos 170cos 20sin 等于( ) A.21- B.21 C.23- D.23 4.直线l 过点),(13且与直线2x-y-2=0平行,则直线l 的方程为( )A.052=--y xB.012=+-y xC.072=-+y xD.052=-+y x5.已知1.59.0=m ,9.01.5=n ,1.5log 9.0=p ,则p n m 、、的大小关系为( )A.p n m <<B.n m p <<C.m n p <<D.m p n << 6.从{}54321,,,,中随机抽取一个数为a ,从{}321,,中随机抽取一个数为b ,则a b >的概率是( ) A.54 B.53 C,52 D.517.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式为:弧田面积=1/2(弦´矢+矢2).弧田(如图),由圆弧和其所对弦A.6平方米B.9平方米C.12平方米D.15平方米8.设n m 、是两条不同的直线,βα、是两个不同的平面,下列命题正确的是( )A.若n m ⊥,α⊥m ,则βα// B,若α//m ,β//n ,βα//,则n m //C.若α⊥m ,β//n ,βα//,则β//mD.若n m //,α//m ,β//n ,则βα//9.将函数)42sin(1π++=x y 的图像向下平移1个单位,再向右平移8π个单位,所得到的函数解析式是( ) A.)82sin(π+=x y B.)832sin(π+=x y C.x y 2cos = D.x y 2sin = 10.某几何体的三视图如图,则该几何体的表面积为( )A.πB.π2512++ C.π2522++ D.π212+ 11.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≥=+-=-+10103y y x y x ,则x y z 2=的最小值是( ) A.-1 B.0 C.1 D.412.已知函数⎪⎩⎪⎨⎧++≥-=-0,440,15)(21<x x x x x f x ,则关于x 的方程04)(5)(2=+-x f x f 的实数根的个数为( ) A.2 B.3 C.6 D.7第II 卷(非选题 共90分)二、填空题:本大题共4小题,每小题5分,共20分。

安徽省马鞍山市高考数学三模试卷(文科)

安徽省马鞍山市高考数学三模试卷(文科)

2017年安徽省马鞍山市高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置将正确结论的代号用2B铅笔涂黑.1.已知集合A={x|(x﹣3)(x+1)≤0},B={x|﹣2<x≤2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2]C.[﹣1,1]D.[1,2]2.设i为虚数单位,则复数的模为()A.1 B.C.D.23.“α=2kπ﹣(k∈Z)”是“cosα=”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知双曲线(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为()A.x±y=0 B.C.D.2x±y=05.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问乙走的步数是()A.B.C.D.6.执行如图的程序框图,若输出的,则输入的整数p的值为()A.6 B.5 C.4 D.37.已知函数f(x)=cos(2x﹣)+sin2x,则f(x)的一个单调递减区间是()A.[﹣,]B.[﹣,]C.[﹣,]D.[,] 8.函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则f(5)=()A.﹣1 B.0 C.1 D.59.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.10.已知实数x,y满足,若z=3x﹣y的最大值为1,则m的值为()A.B.2 C.1 D.11.已知△ABC的顶点都在半径为R的球O的球面上,球心O到平面ABC的距离为,,则球O的体积是()A.B.16πC.D.32π12.已知函数f(x)=,若f(x)﹣f(﹣x)=0有四个不同的根,则m的取值范围是()A.(0,2e)B.(0,e) C.(0,1) D.(0,)二、填空题:本大题共4个小题,每小题5分,共20分.请在答题卡上答题.13.已知向量=(2,1),=(x,﹣1),若∥(﹣),则=.14.如图,扇形AOB的圆心角为90°,点P在弦AB上,且OP=AP,延长OP 交弧AB于点C,现向该扇形内随机投一点,则该点落在扇形AOC内的概率为.15.某几何体的三视图如图所示,则该几何体的体积为16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2,则a2+b2的取值范围是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.请在答题卡上答题.17.已知数列{a n}的前n项和为S n,且2S n=4a n﹣1.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=a n•a n+1﹣2,求数列{b n}的前n项和T n.18.2017年3月27日,一则“清华大学要求从2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.游泳作为一项重要的求生技能和运动项目受到很多人的喜爱.其实,已有不少高校将游泳列为必修内容.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为. (Ⅰ)请将上述列联表补充完整;(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?19.已知几何体ABCDEF 中,AB ∥CD ,AD ⊥DC ,EA ⊥平面ABCD ,FC ∥EA ,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD ⊥平面BCF ; (Ⅱ)求点B 到平面ECD 的距离.20.已知曲线C :y 2=4x ,M :(x ﹣1)2+y 2=4(x ≥1),直线l 与曲线C 相交于A 、B 两点,O 为坐标原点. (Ⅰ)若,求证:直线l 恒过定点,并求出定点坐标;(Ⅱ)若直线l与曲线C1相切,M(1,0),求的取值范围.21.已知函数f(x)=(x﹣1)lnx﹣(x﹣a)2(a∈R).(Ⅰ)若f(x)在(0,+∞)上单调递减,求a的取值范围;(Ⅱ)若f(x)有两个极值点x1,x2,求证:x1+x2>.选修4-4:坐标系与参数方程22.已知曲线C1的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:.(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求的值.选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R).(Ⅰ)试比较f(﹣1)与f(a)的大小;(Ⅱ)当a=﹣5时,求函数f(x)的图象与轴围成的图形面积.2017年安徽省马鞍山市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置将正确结论的代号用2B铅笔涂黑.1.已知集合A={x|(x﹣3)(x+1)≤0},B={x|﹣2<x≤2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2]C.[﹣1,1]D.[1,2]【考点】1E:交集及其运算.【分析】根据题意和交集的运算直接求出A∩B.【解答】解:因为A={x|(x﹣3)(x+1)≤0}=[﹣1,3],B={x|﹣2<x≤2}=(﹣2,2],所以A∩B=[﹣1,2],故选:B.2.设i为虚数单位,则复数的模为()A.1 B.C.D.2【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,∴|z|=1.故选:A.3.“α=2kπ﹣(k∈Z)”是“cosα=”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】cosα=⇔α=2kπ±(k∈Z),即可判断出结论.【解答】解:cosα=⇔α=2kπ±(k∈Z),∴“α=2kπ﹣(k∈Z)”是“cosα=”的充分不必要条件.故选:A.4.已知双曲线(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为()A.x±y=0 B.C.D.2x±y=0【考点】KB:双曲线的标准方程.【分析】根据题意,得双曲线的渐近线方程为y=±x.再由双曲线离心率为2,得到c=2a,由定义知b==a,代入即得此双曲线的渐近线方程.【解答】解:∵双曲线的方程是(a>0,b>0),∴双曲线渐近线为y=±x.又∵离心率为e==2,∴c=2a,∴b==a,由此可得双曲线渐近线为y=±x=±x,即:故答案为:.故选:C.5.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问乙走的步数是()A.B.C.D.【考点】HU:解三角形的实际应用.【分析】设甲、乙相遇经过的时间为x,由题意画出图形,由勾股定理列出方程求出x,即可求出答案.【解答】解:设甲、乙相遇经过的时间为x,如图:则AC=3x,AB=10,BC=7x﹣10,∵A=90°,∴BC2=AB2+AC2,即(7x﹣10)2=102+(3x)2,解得x=或x=0(舍去),∴AC=3x=,故选:C.6.执行如图的程序框图,若输出的,则输入的整数p的值为()A.6 B.5 C.4 D.3【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算满足S=+++…+=的整数p的值,并输出,结合等比数列通项公式,可得答案.【解答】解:由程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算满足S=+++…+=的整数p的值,∵+++…+=1﹣=,故==,故p=5.故选:B.7.已知函数f(x)=cos(2x﹣)+sin2x,则f(x)的一个单调递减区间是()A.[﹣,]B.[﹣,]C.[﹣,]D.[,]【考点】GI:三角函数的化简求值.【分析】利用两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;可得答案.【解答】解:函数f(x)=cos(2x﹣)+sin2x,化简可得:f(x)=cos2x+sin2x+sin2x=sin(2x+)令2x+,可得:≤x≤,∴f(x)的一个单调递减区间是[,].故选D8.函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则f(5)=()A.﹣1 B.0 C.1 D.5【考点】3L:函数奇偶性的性质.【分析】可知f(x+1)是R上的奇函数,从而得出f(1)=0,进而得出f(﹣3)=0,从而可得出f(5)=﹣f(﹣3)=0.【解答】解:根据条件,f(x+1)与f(x﹣1)都是R上的奇函数;∴f(0+1)=0;即f(1)=0;x=﹣2时,f(﹣2﹣1)=﹣f(2﹣1);即f(﹣3)=﹣f(1)=0;∴f(5)=f(4+1)=﹣f(﹣4+1)=﹣f(﹣3)=0.故选B.9.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.10.已知实数x,y满足,若z=3x﹣y的最大值为1,则m的值为()A.B.2 C.1 D.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.【解答】解:由约束条件足,作出可行域如图,联立,解得A(,),化目标函数z=3x﹣y为y=3x﹣z,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为﹣=1,解得:m=.故选:A11.已知△ABC的顶点都在半径为R的球O的球面上,球心O到平面ABC的距离为,,则球O的体积是()A.B.16πC.D.32π【考点】LR:球内接多面体.【分析】首先求出底面△ABC所在圆的半径r,结合条件和球的截面的性质和R2=r2+d2,求得R,再由球的体积公式计算即可得到所求值.【解答】解:由题意可得底面△ABC所在圆的半径为r=×=1,球心O到平面ABC的距离为d=R,且R2=r2+d2=1+R2,可得R=2,则球O的体积是πR3=π.故选:C.12.已知函数f(x)=,若f(x)﹣f(﹣x)=0有四个不同的根,则m的取值范围是()A.(0,2e)B.(0,e) C.(0,1) D.(0,)【考点】54:根的存在性及根的个数判断.【分析】由函数图象的对称性可得f(x)﹣f(﹣x)在(0,+∞)上有两解,分离参数得﹣m=xlnx,求出右侧函数的单调性和极值即可得出m的范围.【解答】解:∵f(x)﹣f(﹣x)=0有四个不同的根,且y=f(x)与y=f(﹣x)的图象关于y轴对称,∴f(x)=f(﹣x)在(0,+∞)上有2解,即lnx=﹣有2解,∴﹣m=xlnx有2解,令g(x)=xlnx,则g′(x)=lnx+1,∴当0<x时,g′(x)<0,当x>时,g′(x)>0,∴g(x)在(0,)上单调递减,在(,+∞)上单调递增,当x=时,f(x)取得极小值f()=﹣.作出g(x)的大致函数图象如图所示:∵﹣m=xlnx有两解,∴﹣<﹣m<0,即0<m<.故选D.二、填空题:本大题共4个小题,每小题5分,共20分.请在答题卡上答题.13.已知向量=(2,1),=(x,﹣1),若∥(﹣),则=﹣5.【考点】9R:平面向量数量积的运算.【分析】根据题意,由向量的坐标计算公式可得﹣,再由向量平行的坐标表示方法可得若∥(﹣),则有2×2=(2﹣x)×1,解可得x的值,即可得的坐标,由向量的数量积公式计算可得答案.【解答】解:根据题意,向量=(2,1),=(x,﹣1),则﹣=(2﹣x,2),若∥(﹣),则有2×2=(2﹣x)×1,解可得x=﹣2,即=(﹣2,﹣1),则=2×(﹣2)+1×(﹣1)=﹣5;故答案为:﹣5.14.如图,扇形AOB的圆心角为90°,点P在弦AB上,且OP=AP,延长OP 交弧AB于点C,现向该扇形内随机投一点,则该点落在扇形AOC内的概率为.【考点】CF:几何概型.【分析】求出扇形AOC的面积,扇形AOB的面积,从而得到所求概率.【解答】解:设AP=x,OP=x,由正弦定理可求得,sin∠AOP==,所以∠POA=30°,所以扇形AOC的面积为,扇形AOB的面积为,从而所求概率为.故答案为:.15.某几何体的三视图如图所示,则该几何体的体积为【考点】L!:由三视图求面积、体积.【分析】几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积【解答】解:由三视图知:几何体是直三棱柱消去一个三棱锥,如图:直三棱柱的体积为×2×2×2=4.消去的三棱锥的体积为××2×1×2=,∴几何体的体积V=4﹣=.故答案为:16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2,则a2+b2的取值范围是(20,24] .【考点】HP:正弦定理.【分析】由已知利用正弦定理,余弦定理可求C的值,进而由正弦定理可得a=4sinA,b=4sinB,令A=60°+α,B=60°﹣α,(0°≤α<30°),利用三角函数恒等变换的应用化简可得a2+b2=16(1+cos2α)的值,由范围0°≤2α<60°,利用余弦函数的图象和性质可求其取值范围.【解答】解:∵(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2,∴由正弦定理.∴由正弦定理:,令A=60°+α,B=60°﹣α,(0°≤α<30°),∴a2+b2=16(sin2A+sin2B)=16[sin2(60°+α)+sin2(60°﹣α)]=16[(cos)2+(cosα﹣sinα)2]=16(cos2α+sin2α)=16(×+)=16(1+cos2α),∵0°≤2α<60°,∴,∴从而有20<a2+b2≤24.故答案为:(20,24].三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.请在答题卡上答题.17.已知数列{a n}的前n项和为S n,且2S n=4a n﹣1.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=a n•a n+1﹣2,求数列{b n}的前n项和T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(I)利用递推关系与等比数列的通项公式即可得出.(II0利用等比数列的求和公式即可得出.【解答】解:(Ⅰ)∵2S n=4a n﹣1∴n=1时,2S1=4a1﹣1,即2a1=4a1﹣1,解得;n≥2时,2S n=4a n﹣1…①2S n﹣1=4a n﹣1﹣1…②由①﹣②得,所以a n=2a n﹣1∴数列{a n}是首项为,公比为2的等比数列,即…6分(Ⅱ)由(Ⅰ)知…8分∴==…12分.18.2017年3月27日,一则“清华大学要求从2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.游泳作为一项重要的求生技能和运动项目受到很多人的喜爱.其实,已有不少高校将游泳列为必修内容.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为. (Ⅰ)请将上述列联表补充完整;(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?【考点】BO :独立性检验的应用.【分析】(Ⅰ)根据题意计算喜欢游泳的学生人数,求出女生、男生有多少人,补充列联表即可;(Ⅱ)计算观测值K 2,对照临界值表即可得出结论.【解答】解:(Ⅰ)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为,所以喜欢游泳的学生人数为人;其中女生有20人,男生有40人,列联表补充如下:…5分(Ⅱ)因为K 2=≈16.67>10.828;所以有99.9%的把握认为喜欢游泳与性别有关.…12分.19.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.【考点】MK:点、线、面间的距离计算;LY:平面与平面垂直的判定.【分析】(I)先计算BD,BC,利用勾股定理的逆定理证明BD⊥BC,再利用EA ⊥平面ABCD得出AE⊥BD,从而有CF⊥BD,故而推出BD⊥平面FBC,于是平面EBD⊥平面BCF;(II)证明AB∥平面CDE,于是B到平面CDE的距离等于A到平面CDE的距离,过A作AM⊥DE,证明AM⊥平面CDE,于是AM的长即为B到平面CDE的距离.【解答】(I)证明:∵AB∥CD,AD⊥DC,AB=AD=1,CD=2,∴BD=BC=,∴BD2+BC2=CD2,∴BD⊥BC,∵EA⊥平面ABCD,BD⊂平面ABCD,∴EA⊥BD,∵EA∥FC,∴FC⊥BD,又BC⊂平面BCF,FC⊂平面BCF,BC∩CF=C,∴BD⊥平面FBC,又BD⊂平面BDE,∴平面BDE⊥平面BCF.(II)解:过A作AM⊥DE,垂足为M,∵EA⊥平面ABCD,CD⊂平面ABCD,∴EA⊥CD,又CD⊥AD,EA∩AD=A,∴CD⊥平面EAD,又AM⊂平面EAD,∴AM⊥CD,又AM⊥DE,DE∩CD=D,∴AM⊥平面CDE,∵AD=AE=1,EA⊥AD,∴AM=,即A到平面CDE的距离为,∵AB∥CD,CD⊂平面CDE,AB⊄平面CDE,∴AB∥平面CDE,∴B到平面CDE的距离为.20.已知曲线C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.(Ⅰ)若,求证:直线l恒过定点,并求出定点坐标;(Ⅱ)若直线l与曲线C1相切,M(1,0),求的取值范围.【考点】KN:直线与抛物线的位置关系.【分析】(Ⅰ)设A(x1,y1),B(x2,y2)代入到,求得x1x2+y1y2=﹣4,即n2﹣4n=﹣4,由此求得n=2.根据点A表示出AB的直线方程整理可知过定点(2,0),综合结论可得.(Ⅱ)由直线与圆相切的性质可得,变形可得4m2=n2﹣2n﹣3,结合(1)的方程可得,由根与系数的关系分析可得答案.【解答】解:(Ⅰ)由已知,可设l:x=my+n,A(x1,y1)¡¢,B(x2,y2)由得:y2﹣4my﹣4n=0,∴y1+y2=4m,y1•y2=﹣4n.∴.∴由可得:.解得:n=2.∴l:x=my+2,∴直线l恒过定点(2,0).(Ⅱ)∵直线l与曲线C1相切,M(1,0),显然n≥3,∴,整理得:4m2=n2﹣2n﹣3.①由(Ⅰ)及①可得:∴,即的取值范围是(﹣∞,﹣8].21.已知函数f(x)=(x﹣1)lnx﹣(x﹣a)2(a∈R).(Ⅰ)若f(x)在(0,+∞)上单调递减,求a的取值范围;(Ⅱ)若f(x)有两个极值点x1,x2,求证:x1+x2>.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,得到f′(x)≤0恒成立,令,求出函数的导数,根据函数的单调性得到g(x)max≤0,求出a的范围即可;(Ⅱ)根据f′(x1)=lnx1﹣﹣2x1+1+2a①,f′(x2)=lnx2﹣﹣2x2+1+2a②,得到:x1+x2的解析式,从而证明结论即可.【解答】解:(Ⅰ)由已知,恒成立令,则,﹣(2x+1)<0,令g′(x)>0,解得:0<x<1,令g′(x)<0,解得:x>1,故g(x)在(0,1)递增,在(1,+∞)递减,∴g(x)max=g(1)=2a﹣2∴由f'(x)≤0恒成立可得a≤1.即当f(x)在(0,+∞)上单调递减时,a的取值范围是(﹣∞,1].(Ⅱ)若f(x)有两个极值点x1,x2,不妨设0<x1<x2.由(Ⅰ)可知a>1,且f′(x1)=lnx1﹣﹣2x1+1+2a①,f′(x2)=lnx2﹣﹣2x2+1+2a ②,由①﹣②得:∴∴,即,由①+②得:,∴.选修4-4:坐标系与参数方程22.已知曲线C1的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:.(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(I)曲线C1的参数方程消去参数能求出曲线C1的普通方程;由曲线C2极坐标方程,能求出C2的直角坐标方程.(Ⅱ)由题意可设,与A、B两点对应的参数分别为t1,t2,将C1的参数方程代入C2的直角坐标方程,得:5t2+4t﹣12=0,由此能求出【解答】解:(I)∵曲线C1的参数方程为(为参数),∴,∴,∴曲线C1的普通方程为.…2分∵曲线C2:,∴3ρ2+ρ2sin2θ=12,∴3(x2+y2)+y2=12,∴3x2+4y2=12,∴C2的直角坐标方程为.…5分(Ⅱ)由题意可设,与A、B两点对应的参数分别为t1,t2,将C1的参数方程代入C2的直角坐标方程,化简整理得,5t2+4t﹣12=0,∴,…7分∴,∵,∴,∴…10分.选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R).(Ⅰ)试比较f(﹣1)与f(a)的大小;(Ⅱ)当a=﹣5时,求函数f(x)的图象与轴围成的图形面积.【考点】57:函数与方程的综合运用.【分析】(Ⅰ)f(﹣1)与f(a)作差化简表达式推出结果.(Ⅱ)去掉绝对值,通过三角形的坐标,推出面积,得到结果.【解答】解:(I)因为f(a)﹣f(﹣1)=|2a+2|﹣5﹣(|a+1|﹣5)=|a+1|≥0,于是f(a)≥f(﹣1).当且仅当a=﹣1时等号成立;…5分(Ⅱ)当a=﹣5时,,可知函数f(x)的图象和轴围成的图形是一个三角形,其中与轴的两个交点分别为A(﹣2,0),,三角形另一顶点坐标为C(﹣1,﹣1),从而△ABC面积为.…10分注:以上各题,其他解法请酌情给分.2017年6月3日。

安徽省江南十校2017届高三3月联考数学(文)试题

安徽省江南十校2017届高三3月联考数学(文)试题

1.C {}21|≥-≤=x x x A 或 ,{}|23A B x x ∴=≤< 2.D 1i,1i z z =-+∴=--3.B 31388210a a a a +=⇒=又2413222152=+=⇒=∴-=d a a d a4.A 9,45,2=∴=-∴=m m c5.A 21)32sin(=+ϕπ,Z k k k ∈++=+,6526232ππππϕπ或 Z k k k ∈+-=,6222ππππϕ或,又因为πϕ<≤0,所以6πϕ=6.B ()28001220040010031=⨯++=V 7.C 21,3,22131===--c b a ,所以c b a >> 8.B ()()'22xf x ax a b x b e ⎡⎤=+++⋅⎣⎦,由图像可知,所以选B9. D 当PC PB PA ,,两两垂直时,三棱锥ABC P -的三个侧面的面积和最大ππ164446622==∴=++=R S R10.D 9060,30211221=∠∴=∠=∠PF F F PF F PF c PF c PF3,12==∴ 由双曲线定义知:()1313221+=∴-=-=e c PF PF a11. C12.A 100812017=-a S ,10102017=+m S ,所以21=+m a()222111*********≥⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫ ⎝⎛+⋅+=+a m m a m a m a m a 13.32± 2173023),5,1(),3,1(2±=⇒=----=-++=+m m m m m m 由条件: 14.512-5cos 413πθ⎛⎫-= ⎪⎝⎭因为θ为第四象限角且cos 04πθ⎛⎫-> ⎪⎝⎭,故12sin413πθ⎛⎫-=-⎪⎝⎭12tan45πθ⎛⎫∴-=-⎪⎝⎭PT==当1a=-时PT16.]1,0[17.(1)由题意可得:()5cos2cossin3232=++=AAAAf())()2cos21cossin sin00,sin0A A AA A AA Aπ∴=-∴-=∈∴≠AA cos3sin=∴,即3tan=A,3π=A.................6分(2)由余弦定理可得:3cos2422πbccb-+=”成立)时“当且仅当===≥-+=2(422cbbcbccb344343sin21=⨯≤==∴∆bcAbcSABC故ABC∆面积的最大值是3............................12分18.(1)........3分22100(20153035)9.091 6.63555455050K⨯⨯-⨯=≈>⨯⨯⨯所以有99%的把握认为以50岁为分界点对是否支持脱离欧盟的态度有差异........6分(2)18-24岁2人,25-49岁2人,50-64岁3人 .......8分记18-24岁的两人为BA,;25-49岁的两人为DC,;50-64岁的三人为GFE,,则DGDFDECGCFCECDBGBFBEBDBCAGAFAEADACAB,,,,,,,,,,,,,,,,,FG EG EF ,, 共21种,其中含有A 或B 的有11种 .......10分2111=P ........12分 19.(1)连接,AC BD 交于点O ,连接OP ,则O 为BD 中点,OP DE ∴ OP ∴⊥平面ABCD ,PAO ∴∠为AP 与平面ABCD 所成角, 60PAO ∴∠= .....................2分AOP Rt ∆中,1,2AO OP AP ===CG CH ∴==Rt AHC ∆中,3AH ==.梯形OPHC 中,PH =.......................4分 222AP PH AH ∴+=AP PH ∴⊥.又EH FH =PH EF ∴⊥.又AP EF P = PH ∴⊥平面AEF ......................6分 (2)由(1)知,OP ⊥平面ABCD OP AC ∴⊥. 又AC BD ⊥,BD OP O = AC ∴⊥平面BDEF .1||33A BFED BFED V S AO -∴=⨯⨯=..................8分 ,CG BF BF ⊂ 平面BFED ,CG ⊄平面BFED ,CG ∴ 平面BFED ∴点H 到平面BFED 的距离等于点C 到平面BFED 的距离,1||3H BFED BFED V S CO -∴=⨯⨯=....................11分3A BFED H EFBD V V V --=+=..................12分 20.(1)设直线PQ 的方程为:1-=my x0444122=+-⇒⎩⎨⎧=-=my y xy my x因为PQ 为抛物线C 的切线,所以1016162±=⇒=-=∆m m .......................4分又因为点P 是第一象限内抛物线C 上一点,所以1=m ,此时点()2,1P ....................6分 (2)OP 直线方程为:x y 2=设圆1C 、2C 的圆心坐标分别为()()2211,,,b a b a ,其中120,0b b >>, 则圆1C 、2C 的半径分别为21,b b ,因为圆1C 与直线OP 相切于点P ,所以0555*******111111=+-⇒⎪⎪⎩⎪⎪⎨⎧=--=--b b bb a a b .......8分 同理因为圆2C 与直线OP 相切于点P ,所以05552211222222222=+-⇒⎪⎪⎩⎪⎪⎨⎧=--=--b b bb a a b 即圆1C , 2C 的半径21,b b 是方程0552=+-b b 的两根,...........10分 故521=+b b .....................12分21.(1)02a <<时,[]222)2()2()2(2)2()(x a ax x x a x a ax x f ----=-++--=' 时当3201<<a 2020)(,220)(<<->⇒<'-<<⇒>'x a ax x f a a x x f 或上递减)和(,上递增,在(在),220)2,2()(+∞--a aa a x f2当223a <<时a a x x x f x a a x f -<<>⇒<'<<-⇒>'2020)(,220)(或 上递减)和(,上递增,在(在),220)2,2()(+∞--aaa a x f,323时当=a22)2(32)(x x x f --=',上递减在),0()(+∞x f ..........6分(2)由(2)知1,()(0,1)a f x =在内单调递减,(1,2)内单调递增,(2,)e 内单调递减, 又12)(,1)1(+-=-=e e e f f 03)1(22)1()(2>---=+-=-ee e ef e f ]1min (0,()|(1)1x e f x f ∴∈==-,][])()(2,0,,0(2121xg x f x e x ≥∈∃∈∀有故 []()0,21g x -只需在上最小值小于等于即可 不合题意,舍去最小值时即,141)0()(00210->-==<<=g x g b b x []1431414)2()(102,02220≤≤⇒-≤--==≤≤∈=b b b g x g b b x 最小值时即 1,321918415)2()(12230>∴≥⇒-≤-==>>=b b b g x g b b x 最小值时即 综上所述:43≥b …………12分 22.解:由条件:,063:31332=-+⇒-=--y x C x y .......2分 之距离到点设点2),sin 2,cos 32(C P P θθ 3)4sin(626sin 32cos 32-+=-+=πθθθd .......6分 36max +=d …………8分 )2,6(--P 此时点 …………10分 23. (1) 当[]0,3x ∈ 时[]2222log (25)log (1)42,3x x x ⎡⎤-+=-+∈⎣⎦..........2分 33221302,|222a a a A a a ⎧⎫≤-≤>⇒≤≤∴=≤≤⎨⎬⎩⎭且…………6分 ⎪⎩⎪⎨⎧-≤≥--≤-≥⇒⎪⎩⎪⎨⎧≥≥-+⋅=≤≤31457343570)2(0)23(,3)(,2231)2(2t t t t g g t a t a g a 或或则设)知:由(34357-≤-≥t t 或 .......10分 (若其它解法正确可酌情赋分!)。

安徽省2017届高三阶段联考能力检测文科数学含答案

安徽省2017届高三阶段联考能力检测文科数学含答案

安徽省2017届高三阶段联考能力检测数学试题 文科满分150分 时间120分钟第 I 卷 选择题一、选择题(本大题共12小题,每题5分,在每小题四个选项中,只有一个是符合题目要求的)1. 已知集合{}2|21,A y y x x x R ==--∈,1|,0B y y x x R x x ⎧⎫==+∈≠⎨⎬⎩⎭且,则()R C B A ⋂=( )A .(2,2]-B .[2,2)-C .[2,)-+∞D .(2,2)- 2.在复平面内,复数212iz i=-(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.下列推理过程是演绎推理的是( ) A .由平面三角形的性质推测空间三棱锥的性质B .某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人C .两条直线平行,同位角相等;若A ∠与B ∠是两条平行直线的同位角,则A B ∠=∠D .在数列{}n a 中,12a =,121(2)n n a a n -=+≥,由此归纳出{}n a 的通项公式 4.已知0tan <α,则( ) A .0sin <α B .02sin <α C .0cos <α D .02cos <α 5.已知,,αβγ是三个相互平行的平面.平面,αβ之间的距离为1d ,平面,βγ之间的距离为2d .直线l 与,,αβγ分别相交于123,,P P P ,那么“1223PP P P =”是“12d d =”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设61014357log ,log ,log a b c ===,则( )A .a b c >>B .b c a >>C .a c b >>D .c b a >>7.设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则z x y =+的最大值是( )A .10B .30C .20D .908.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为( )A .11B .10C .9D .89.已知函数x a x y cos sin +=的图象关于3x π=对称,则函数x x a y cos sin +=的图象的一条对称轴是( )A. 56x π=B. 32π=xC. 3π=xD. 6x π= 第8题图10.在整数集Z 中,被7除所得余数为r 的所有整数组成一个“类”,记为[r ],即[r ]={7k+r |k ∈Z},r =0,1,2,…,6。

2017安徽高考文科数学真题及答案

2017安徽高考文科数学真题及答案

2017安徽高考文科数学真题及答案本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则( )。

A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R【答案】A 【难度】简单【点评】本题在高考数学(理)提高班讲座 第一章《集合》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )。

A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B 【难度】简单【点评】本题在高考数学(理)提高班讲座 第十六章《计数技巧》中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

3.下列各式的运算结果为纯虚数的是( )。

A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)【答案】C 【难度】一般【点评】本题在高考数学(理)提高班讲座中有详细讲解,在寒假特训班、百日冲刺班中均有涉及。

2017届安徽省江南十校高三3月联考文科数学试题及答案

2017届安徽省江南十校高三3月联考文科数学试题及答案

2017年安徽省“江南十校”高三联考数 学(文科)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、复数22i i+-(i 为虚数单位)的虚部为( )A .35B .45C .35iD .45i2、设集合{}ln ,1y y x x A ==>,集合{x y B ==,则()RA B =ð( ) A .∅B .(]0,2C .()2,+∞D .()(),22,-∞-+∞ 3、设命题:p ()3,1a =,(),2b m = ,且//a b ;命题:q 关于x 的函数()255x y m m a =--(0a >且1a ≠)是指数函数,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件 C.充要条件D .既不充分也不必要条件4、运行如图所示的程序框图后,输出的结果是( )A .0B .1C .12+D .15、设等比数列{}n a 的前n 项和为n S ,且32S =,66S =,则131415a a a ++的值是( )A .18B .28C .32D .1446、若函数21x y a -=+(0a >且1a ≠)的图象经过定点(),m n P ,且过点()Q 1,m n -的直线l 被圆C :222270x y x y ++--=截得的弦长为则直线l 的斜率为( )A .1-或7-B .7-或43C .0或43D .0或1-7、已知点()0,1A 、()2,3B -、()C 1,2-、()D 1,5,则向量C A 在D B 方向上的投影为( ) A. B. C.D. 8、已知函数()1sin 1cos 22f x a x a x ⎛⎫⎛=++ ⎪ ⎪⎝⎝⎭,将()f x 图象向右平移3π个单位长度得到函数()g x 的图象,若对任意R x ∈,都有()4g x g π⎛⎫≤ ⎪⎝⎭成立,则a 的值为( )A .1-B .1C .2-D .2 9、已知函数()()()()12010x x f x f x x ⎧⎪≥=⎨⎪+<⎩若函数()()g x f x x a =++在R上恰有两个相异零点,则实数a 的取值范围为( )A .[)1,-+∞B .()1,-+∞C .(),0-∞D .(],1-∞10、在正方体1111CD C D AB -A B 中,①经过点A 垂直于平面1D A B 的直线也垂直于平面11D C B ; ②设O 为C A 和D B 的交点,则异面直线1AB 与1C O 所成的角是6π;③若正方体的棱长为2,则经过棱11D C 、11C B 、1BB 中点的正方体的截面面积为④若点P 是正方形CD AB 内(包括边界)的动点,点Q 在对角线1C A 上,且满足1Q C P ⊥A ,Q PA =P ,则点P 的轨迹是线段.以上命题正确的个数为( )A .1B .2C .3D .4二、填空题(本大题共5小题,每小题5分,共25分.) 11、命题:“存在Rx ∈,使得”的否定是 . 12、)30log 2sin33013++=.13、若实数x ,y 满足约束条件430260x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则21yx +的取值范围为 .14、在坐标平面内横纵坐标均为整数的点称为格点.现有一只蚂蚁从坐标平面的原点出发,按如下线路沿顺时针方向爬过格点:O →()11,0A →()21,1A -→()30,1A -→()41,1A --→()51,0A -→()61,1A -→()70,1A →()81,1A →()92,1A →⋅⋅⋅→()122,2A -→⋅⋅⋅→()162,2A --→⋅⋅⋅→()202,2A -→⋅⋅⋅→()253,2A →⋅⋅⋅,则蚂蚁在爬行过程中经过的第350个格点350A 坐标为 .15、若曲线C 上任意一点与直线l 上任意一点的距离都大于1,则称曲线C “远离”直线l .在下列曲线中,“远离”直线:l 2y x =的曲线有 .(写出所有符合条件的曲线C 的编号)①曲线C :20x y -=;②曲线C :2924y x x =-+-; ③曲线C :()2251x y +-=;④曲线C :1x y e =+; ⑤曲线C :ln 2y x =-.三、解答题(本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.)16、(本小题满分12分)已知函数()4sin cos 16f x x x π⎛⎫=++ ⎪⎝⎭.()I 求函数()f x 的最小正周期;()II 在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c ,若()2f A =,3a =,C S ∆AB 22b c +的值.17、(本小题满分12分)某校高三文科(1)班学生参加“江南十校”联考,其数学成绩(已折合成百分制)的频率分布直方图如图所示,其中成绩分布区间为[)40,50,[)50,60,[)60,70,[)70,80,[)80,90,[]90,100,现已知成绩落在[]90,100的有5人.()I 求该校高三文科(1)班参加“江南十校”联考的总人数;()II 根据频率分布直方图,估计该班此次数学成绩的平均分(可用中值代替各组数据的平均值);()III 现要从成绩在[)40,50和[]90,100的学生中共选2人参加某项座谈会,求2人来自于同一分数段的概率.18、(本小题满分12分)已知各项均为正数的数列{}n a满足214n n n a a a +++=-(n *∈N ),且11a =,24a =. ()I证明:数列是等差数列;()II 设121n n n n b a a ++=,{}n b 的前n 项和为n S ,求证:1n S <.19、(本小题满分13分)如图,圆柱1OO 的底面圆半径为2,CDAB为经过圆柱轴1OO 的截面,点P 在 AB上且 13AP =APB ,Q 为D P 上任意一点.()I 求证:Q A ⊥PB ;()II 若直线D P 与面CD AB 所成的角为30 ,求圆柱1OO 的体积.20、(本小题满分13分)已知函数()()1ln 1a xf x a x x +=-+,其中0a ≥. ()I 当1a =时,求曲线()y f x =在()()1,1f 处的切线方程; ()II 讨论()f x 在其定义域上的单调性.21、(本小题满分13分)已知椭圆C :22221x y a b+=(0a b >>)经过点31,2⎛⎫ ⎪⎝⎭,它的左焦点为()F ,0c -,直线1:l y x c =-与椭圆C 交于A ,B 两点,F ∆AB 的周长为3a .()I 求椭圆C 的方程;()II 若点P 是直线2:l 3y x c =-上的一个动点,过点P 作椭圆C 的两条切线PM 、PN ,M 、N 分别为切点,求证:直线MN 过定点,并求出此定点坐标.(注:经过椭圆22221x y a b+=(0a b >>)上一点()00,x y 的椭圆的切线方程为00221x x y ya b +=)参考答案1.B .22(2)342(2)(2)55i i i i i i ++==+--+,故选B2.C.{}{}0,22A x x B x x =>=-≤≤,{}=2x 2,R C B x x ><-或{}=2,R A C B x x ∴⋂>故选C3.A .命题:320,6p m m ⨯-==;命题2:55116q m m m --==-由得或,故选A4.A .由程序框图可知,最后输出的215sin sin sin 0444p πππ=+++= ,故选A5.C .由等比数列性质可知363961291512,S S S S S S S S S ----,,,也成等比,易求出131415151232a a a S S ++=-=, 故选C6.A.(22),(12)P Q ,,,设2(1),20l y k x kx y k -=--+-=:即,圆C :22(1)(1)9x y ++-=,圆心-1,1C()到l的距离d ==2870k k ∴++=,17,k =--或故选A7.D .(11),(32),AC BD =-=∴,,AC在BD方向上的投影为AC BD BD ==13=-,故选D8. D.1()sin cos cos 22f x a x a x x x =++ =sin()2cos()33a x x ππ+++()()sin 2cos 3g x f x a x x π∴=-=+,由题意得(g x )图象关于直线4x π=对称,()(0),22g g a π∴=∴=,故选D 9B.()0()g x f x x a=⇔=--,当[)1,0x ∈-时,[)10,1x +∈,()(1)f x f x =+=y =[)0,1上的部分向左平移1个单位得到()f x 在[)1,0-上的图象,再把()f x 在[)1,0-上的图象每次向左平移1个单位连续平移就得到()f x 在R 上的图象,再作出y x a =--的图象,由图象可得1a -<,1a >-,故选B10.D .易证1//A BD 面11B D C 选,∴①正确;11//A B D C ,1OC D ∠就是异面直线1AB 与1OC 所成的角.1,BD OC BD CC ⊥⊥ ,BD ∴⊥面1OCC ,1BD OC ∴⊥,又11122OD BD C D ==,16OC D π∴∠=,∴②正确;设棱111111,,,,,B D BC BB AB AD DD 的中点分别为,,,,,E F G H M N ,则过点,,E F G的正方形截面就是正六边形EFGHMN ,26S ==∴③正确;连结1A P ,易证1AA AP ⊥,又1PQ AC ⊥,11,PA PQ PA PA ==,1111,Rt A PA Rt A PQ A A AQ ∴∆≅∆=,∴Q 为1AC 上定点,又PA PQ =,点P 在线段AQ 的中垂面上,∴点P 在AQ 的中垂面与正方形ABCD 的交线上,∴④正确;故选D 11.对任意x R ∈0≠.12.52原式15sin(30)12322=-++=-+= .13.4,45⎡⎤-⎢⎥⎣⎦21yx +可看作点()1,0P -与点(),x y 连线斜率的2倍,画出可行域,由4260x x y =⎧⎨+-=⎩得()4,2A -,由30260x y x y -+=⎧⎨+-=⎩得()1,4B , 2,2,5PA PB k k =-= ∴21y x +的取值范围为4,45⎡⎤-⎢⎥⎣⎦.14.()1,9-以O 为中心,边长为2的正方形上共有格点18a =个,且蚂蚁在其上爬过的最后一个格点为()1,1以O 为中心,边长为4的正方形上共有格点216a =个,且蚂蚁在其上爬过的最后一个格点为()2,2以O 为中心,边长为6的正方形上共有格点324a =个,且蚂蚁在其上爬过的最后一个格点为()3,3 ………以O 为中心,边长为2n 的正方形上共有格点8n a n =个,且蚂蚁在其上爬过的最后一个格点为(),n n ,由前n 个正方形上格点的总数123n S a a a =+++…81624n a +=+++…(88)83502n n n ++=≥得9n ≥.当9n =时,前9个正方形上格点的总数99(872)3602S +==,且蚂蚁在第9个正方形(边长为18)上爬过的最后一个格点为()3609,9A ,故蚂蚁在爬行过程中经过的第350个格点350A 坐标为()1,9-. 15.②③⑤对①:1d == ,∴不合题意;对②:设直线1:2l y x b=+与曲线29:24C y x x =-+-相切,把2y x b=+代入2924y x x =-+-得2904x b ++=,由90404b ⎛⎫∆=-+= ⎪⎝⎭,得94b =-,此时直线1l 与l的距离91d ==>,符合题意;对③: 圆心()0,5C 到直线l的距离d ==∴圆C 上的点到l距离的最小值为11>,符合题意;对④:设曲线C 上斜率为2的切线的切点为()00,P x y ,'x y e = ,00'2,x x x k y e =∴===0ln 2x ∴=,()ln 2,3P ∴,切线:()32ln 2y x -=-,即:232ln 20x y -+-=,∴切线与C的距离d ==,()ln 41,2∈ ,()3ln41,2∴-∈2,1d >∴<,不合题意;对⑤:设切点为()00,P x y ,'1y x= ,'012,x x k y x =∴===012x ∴=,1,2ln 22P ⎛⎫∴-- ⎪⎝⎭,1,d ∴==>符合题意。

安徽省2017届高三模拟考试含答案

安徽省2017届高三模拟考试含答案

安徽省2017届高三模拟考试含答案数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{N |24}A x x =∈-<<,1{|24}2x B x =≤≤,则A B =( ) A .{|12}x x -≤≤ B .{1,0,1,2}- C .{1,2} D .{0,1,2}2.已知i 为虚数单位,若复数11ti z i-=+在复平面内对应的点在第四象限,则t 的取值范围为( ) A .[1,1]- B .(1,1)- C .(,1)-∞-D .(1,)+∞ 3.下列函数中,与函数3y x =的单调性和奇偶性一致的函数是( )A.y =.tan y x = C.1y x x=+ D .e e x x y -=- 4.已知双曲线1C :22143x y -=与双曲线2C :22143x y -=-,给出下列说法,其中错误的是( ) A.它们的焦距相等 B .它们的焦点在同一个圆上C.它们的渐近线方程相同 D .它们的离心率相等5.某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为8:00~8:40,课间休息10分钟.某学生因故迟到,若他在9:10~10:00之间到达教室,则他听第二节课的时间不少于10分钟的概率为( )A .15B .310C .25D .456.若倾斜角为α的直线l 与曲线4y x =相切于点()1,1,则2cos sin 2αα-的值为( )A .12-B .1C .35-D .717- 7.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =±”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.执行如图所示的程序框图,则输出的S 值为( )A.1009 B .-1009 C.-1007 D .10089.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+B .112π+C .1123π+D .143π+ 10.已知函数()sin()f x A x ωϕ=+(0,0,||)A ωϕπ>><的部分图象如图所示,则函数()cos()g x A x ϕω=+图象的一个对称中心可能为( )A .5(,0)2-B .1(,0)6 C.1(,0)2- D .11(,0)6- 11.《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF AB ⊥,设AC a =,BC b =,则该图形可以完成的无字证明为( )A.2a b +≥(0,0)a b >> B .222a b ab +≥(0,0)a b >>C.2ab a b ≤+(0,0)a b >> D .2a b +≤(0,0)a b >> 12.已知球O 是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A BCD -的外接球,3BC =,AB =E 在线段BD 上,且3BD BE =,过点E 作圆O 的截面,则所得截面圆面积的取值范围是( )A .[],4ππB .[]2,4ππC .[]3,4ππD .(]0,4π第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知(1,)a λ= ,(2,1)b = ,若向量2a b + 与(8,6)c = 共线,则a = .14.已知实数x ,y 满足不等式组20,250,20,x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩目标函数422log log z y x =-,则z 的最大值为 .15.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,cos c B -是cos b B 与cos a A的等差中项且8a =,ABC ∆的面积为b c +的值为 .16.已知抛物线C :24y x =的焦点是F ,直线1l :1y x =-交抛物线于A ,B 两点,分别从A ,B 两点向直线2l :2x =-作垂线,垂足是D ,C ,则四边形ABCD 的周长为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数()212f x x mx =+(0m >),数列{}n a 的前n 项和为n S ,点(),n n S 在()f x 图象上,且()f x 的最小值为18-. (1)求数列{}n a 的通项公式;(2)数列{}n b 满足12(21)(21)nn n a n a a b +=--,记数列{}n b 的前n 项和为n T ,求证:1n T <. 18.如图,点C 在以AB 为直径的圆O 上,PA 垂直与圆O 所在平面,G 为AOC ∆的垂心.(1)求证:平面OPG ⊥平面PAC ;(2)若22PA AB AC ===,点Q 在线段PA 上,且2PQ QA =,求三棱锥P QGC -的体积.19.2017高考特别强调了要增加对数学文化的考查,为此某校高三年级特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为[)50,60,[)60,70,…,[]90,100分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).(1)求频率分布直方图中的x 的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表);(2)若高三年级共有2000名学生,试估计高三学生中这次测试成绩不低于70分的人数;(3)若在样本中,利用分层抽样的方法从成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求[)[]80,90,90,100两组中至少有1人被抽到的概率.20.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为,且椭圆C 与圆M :221(1)2x y -+=的公共(1)求椭圆C 的方程.(2)经过原点作直线l (不与坐标轴重合)交椭圆于A ,B 两点,AD x ⊥轴于点D ,点E 在椭圆C 上,且()()0AB EB DB AD -⋅+=uu u r uu r uu u r uuu r ,求证:B ,D ,E 三点共线.. 21.已知函数()2ln f x m x x =-,()23e 3x g x x -=(R m ∈,e 为自然对数的底数). (1)试讨论函数()f x 的极值情况;(2)证明:当1m >且0x >时,总有()()30g x f x '+>.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.已知直线l的参数方程为4,x y ⎧=+⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为4cos ρθ=,直线l 与圆C 交于A ,B 两点.(1)求圆C 的直角坐标方程及弦AB 的长;(2)动点P 在圆C 上(不与A ,B 重合),试求ABP ∆的面积的最大值.23.已知函数()|21||1|f x x x =-++.(1)求函数()f x 的值域M ;(2)若a M ∈,试比较|1||1|a a -++,32a ,722a -的大小.试 卷 答 案一、选择题1-5:D B D D A 6-10:D A B C C 11 D 、12: B二、填空题13.1 15..18+三、解答题17.(1)解:()()22122m f x x m =+-, 故()f x 的最小值为2128m -=-. 又0m >,所以12m =,即21122n S n n =+. 所以当2n ≥时,1n n n a S S n -=-=;当1n =时,11a =也适合上式,所以数列{}n a 的通项公式为n a n =.(2)证明:由(1)知12(21)(21)nn n n b +==--1112121n n +---, 所以11111113372121n n n T +=-+-++--- 11121n +=--, 所以1n T <.18.(1)证明:如图,延长OG 交AC 于点M .因为G 为AOC ∆的重心,所以M 为AC 的中点.因为O 为AB 的中点,所以//OM BC .因为AB 是圆O 的直径,所以BC AC ⊥,所以OM AC ⊥.因为PA ⊥平面ABC ,OM ⊂平面ABC ,所以PA OM ⊥.又PA ⊂平面PAC ,AC ⊂平面PAC ,PA AC A = ,所以OM ⊥平面PAC ,即OG ⊥平面PAC .又OG ⊂平面OPG ,所以平面OPG ⊥平面PAC .(2)解:由(1)知OM ⊥平面PAC ,所以GM 就是点G 到平面PAC 的距离.由已知可得,1OA OC AC ===,所以AOC V 为正三角形,所以2OM =.又点G 为AOC V 的重心,所以136GM OM ==.故点G 到平面PQC所以13P QGC G PQC PQC V V S --==V 1233PAC GM S GM ⋅=⨯⋅V 212192=⨯⨯⨯=19.解:(1)由频率分布直方图可得第4组的频率为10.10.30.3---0.10.2-=,故0.02x =.故可估计所抽取的50名学生成绩的平均数为(550.01650.03⨯+⨯750.03850.02+⨯+⨯+)950.011074⨯⨯=(分).由于前两组的频率之和为0.10.30.4+=,前三组的频率之和为0.10.30.30.7++=,故中位数在第3组中. 设中位数为t 分,则有()700.030.1t -⨯=,所以1733t =, 即所求的中位数为1733分. (2)由(1)可知,50名学生中成绩不低于70分的频率为0.30.20.10.6++=,由以上样本的频率,可以估计高三年级2000名学生中成绩不低于70分的人数为20000.61200⨯=.(3)由(1)可知,后三组中的人数分别为15,10,5,故这三组中所抽取的人数分别为3,2,1.记成绩在[)70,80这组的3名学生分别为a ,b ,c ,成绩在[)80,90这组的2名学生分别为d ,e ,成绩在[]90,100这组的1名学生为f ,则从中任抽取3人的所有可能结果为(),,a b c ,(),,a b d ,(),,a b e ,(),,a b f ,(),,a c d ,(),,a c e ,(),,a c f ,(),,a d e ,(),,a d f ,(),,a e f ,(),,b c d ,(),,b c e ,(),,b c f ,(),,b d e ,(),,b d f ,(),,b e f ,(),,c d e ,(),,c d f ,(),,c e f ,(),,d e f 共20种.其中[)[]80,90,90,100两组中没有人被抽到的可能结果为(),,a b c ,只有1种, 故[)[]80,90,90,100两组中至少有1人被抽到的概率为11912020P =-=. 20.(1)解:由题意得2a =a =由椭圆C 与圆M :()22112x y -+=其长度等于圆M 的直径,可得椭圆C经过点1,⎛ ⎝⎭, 所以211212b+=,解得1b =. 所以椭圆C 的方程为2212x y +=. (2)证明:设()11,A x y ,()22,E x y ,则()11,B x y --,()1,0D x .因为点A ,E 都在椭圆C 上,所以2211222222,22,x y x y ⎧+=⎪⎨+=⎪⎩ 所以()()1212x x x x -++()()121220y y y y -+=, 即()121212122y y x x x x y y -+=--+. 又()()AB EB DB AD -⋅+uu u r uu r uu u r uuu r 0AE AB =⋅=uu u r uu u r , 所以1AB AE k k ⋅=-, 即1121121y y y x x x -⋅=--, 所以()11211212y x x x y y +⋅=+ 所以()1211122y y y x x x +=+ 又1211212BE BD y y y k k x x x +-=-=+121212120y y y y x x x x ++-=++, 所以BE BD k k =,所以B ,D ,E 三点共线.21.(1)解:()f x 的定义域为()0,+∞,()21m f x x '=-=2x m x--. ①当0m ≤时,()0f x '<,故()f x 在()0,+∞内单调递减,()f x 无极值;②当0m >时,令()0f x '>,得02x m <<;令()0f x '<,得2x m >.故()f x 在2x m =处取得极大值,且极大值为()()22ln 22f m m m m =-,()f x 无极小值.(2)证法一:当0x >时,()()30g x f x '+>⇔23e 3630x m x x-+->⇔23e 3630x x mx -+->. 设函数()23e 3x u x x =-63mx +-,则()()3e 22x u x x m '=-+.记()e 22x v x x m =-+, 则()e 2xv x '=-. 当x 变化时,()v x ',()v x 的变化情况如下表:由上表可知()()ln 2v x v ≥,而()ln2ln 2e 2ln 22v m =-+=22ln 22m -+=()2ln 21m -+,由1m >,知ln 21m >-,所以()ln 20v >,所以()0v x >,即()0u x '>.所以()u x 在()0,+∞内为单调递增函数.所以当0x >时,()()00u x u >=.即当1m >且0x >时,23e 3x x -630mx +->.所以当1m >且0x >时,总有()()30g x f x '+>.证法二:当0x >时,()()30g x f x '+>⇔23e 3630x m x x-+->⇔23e 3630x x mx -+->. 因为1m >且0x >,故只需证()22211x e x x x >-+=-.当01x <<时,()21x e x >1>-成立;当1x ≥时,()221xx e x e x >-⇔>-1,即证2x e x >-1.令()2x x e x ϕ=-+1,则由()212x x e ϕ'=-1=0,得2ln 2x =. 在()1,2ln 2内,()0x ϕ'<;在()2ln 2,+∞内,()0x ϕ'>,所以()()2ln 222ln 210x ϕϕ≥=-+>.故当1x ≥时,()21x e x >-成立.综上得原不等式成立.22.解:(1)由4cos ρθ=得24cos ρρθ=,所以2240x y x +-=,所以圆C 的直角坐标方程为22(2)4x y -+=.将直线l 的参数方程代入圆:C 22(2)4x y -+=,并整理得20t +=, 解得10t =,2t =-.所以直线l 被圆C截得的弦长为12||t t -=(2)直线l 的普通方程为40x y --=.圆C 的参数方程为22cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数), 可设圆C 上的动点(22cos ,2sin )P θθ+,则点P 到直线l的距离d=|2cos()4πθ=+. 当cos()14πθ+=-时,d 取最大值,且d的最大值为2所以12ABP S ∆≤⨯(22=+ 即ABP ∆的面积的最大值为223. 解:(1)3,1,1()2,1,213,.2x x f x x x x x ⎧⎪-<-⎪⎪=--≤≤⎨⎪⎪>⎪⎩ 根据函数()f x 的单调性可知, 当12x =时,min 13()()22f x f ==. 所以函数()f x 的值域3[,)2M =+∞.(2)因为a M ∈,所以32a ≥,所以3012a <≤. 因为|1||1|1a a a -++=-123a a ++=≥, 所以3|1||1|2a a a-++> 因为37222a a ⎛⎫--= ⎪⎝⎭24732a a a -+=()()1432a a a -- 又由32a ≥,知10a ->,430a ->, 所以(1)(43)02a a a-->, 所以37222a a >-, 所以|1||1|a a -++>37222a a >-.。

2017年合肥三模数学(文)试卷(含答案)

2017年合肥三模数学(文)试卷(含答案)

合肥市2017年高三第三次教学质量检测数学试题(文)参考答案及评分标准一、选择题:选择题:本大题共12小题.每小题5分,共60分.13.2 14.15.4 16.三.解答题:17.解:(Ⅰ)由正弦定理及可得,因为; …………6分,所以,所以(Ⅱ)由条件, 则,在△ABD 中,由正弦定理得,故…………12分18.解:(Ⅰ)由数据,得, 由公式,求得,所以y 关于x 的回归方程是;…………8分(Ⅱ)当39.5亿元,预计2017年销售收入达到39.5亿元.…………12分19.解:(Ⅰ)证明:取 的中点 ,连结由 为中点得:同理可时,,, 所 以, 由, 设平 面 ,平 面得:又;…………6分(Ⅱ)证明:连结且 为 的中点在直角梯形中,,,又.…………12分20.解:(Ⅰ)由已知, 由由椭圆定义:, 所 以且 点在 第 一 象 限 得:即平 面平 面, 即中,平 面平 面平 面平 面平 面平 面平 面平 面得:;……5分(Ⅱ)由题可知,直线1的斜率必然存在。

①当直线1的斜率为0时,则直线2的斜率不存在,此时,,不满足题意;②当直线1的斜率存在且不为0时,设设从而由从而由已知所以,直线…………12分21.解:(Ⅰ)得: 解 得消 去得:, 由消 去得 :, 则,, 所 以 , 椭 圆 M 的 方 程 为由已知,…………4分(Ⅱ)对于任意的负数 ,总存在 ,使成立即对于任意的负数 ,当 ,使 成立由(Ⅰ)可得:令∴ 在上单调递减,在上单调递增;即时,要满足题意,只需令( ),则∴上单调递增,即 .…………12分22.解:(Ⅰ)由得;…………5分 (Ⅱ)由条件可设直线的参数方程为(t 为参数),代入圆的方程有在, 所 以对 任 意 的成 立,当时, , 且,;,, 解 得, 所 以,, 解得. …………10分23.解:(Ⅰ)由条件,故不等式; …………5分(Ⅱ)由(Ⅰ)知,,三角形面积(舍负), 故所求的值为3. …………10分的 解 集 为当时 ,( 舍 负 ) , 故或设点 对 应 的 参 数 分 别 为, , 则。

2017年安徽省江淮十校高考数学三模试卷及答案(文科)

2017年安徽省江淮十校高考数学三模试卷及答案(文科)

2017年安徽省江淮十校高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=cos 3+isin 3(i为虚数单位),则|z|为()A.1 B.2 C.3 D.42.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)已知等差数列{a n}中,a2,a2016是方程x2﹣2x﹣2=0的两根,则S2017=()A.﹣2017 B.﹣1008 C.1008 D.20174.(5分)若向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或﹣5.(5分)|x|•(1﹣2x)>0的解集为()A.(﹣∞,0)∪(0,)B.(﹣∞,) C.(,+∞)D.(0,)6.(5分)执行如图所示的程序框图,若输入的n的值为5,则输出的S的值为()A.17 B.36 C.52 D.727.(5分)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1与e2满足的关系是()A.+=2 B.﹣=2 C.e1+e2=2 D.e2﹣e1=28.(5分)一光源P在桌面A的正上方,半径为2的球与桌面相切,且PA与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△PAB,其中PA=6,则该椭圆的长轴长为()A.6 B.8 C.D.39.(5分)如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为()A.B.C.D.10.(5分)函数f(x)=x2﹣bx+c满足f(1+x)=f(1﹣x)且f(0)=3,则f(b x)和f(c x)的大小关系是()A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同11.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y ﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)12.(5分)若函数f(x)=﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a 的取值范围是()A.1<a≤2 B.a≥4 C.a≤2 D.0<a≤3二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)一支田径队员有男运动员56人,女运动员42人,若采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为.14.(5分)设有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是.15.(1+2x2)(x﹣)8的展开式中常数项为.16.(5分)如果x、y满足不等式组,那么目标函数z=x﹣y的最小值是.17.(5分)如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中:①|BM|是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.其中正确的命题是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.(12分)某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(Ⅰ)求这次铅球测试成绩合格的人数;(Ⅱ)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知学生a、b的成绩均为优秀,求两人a、b至少有1人入选的概率.19.(12分)已知向量=(sinx,﹣1),向量=(cosx,﹣),函数f(x)=(+)•.(1)求f(x)的最小正周期T;(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且f(A)恰是f(x)在[0,]上的最大值,求A和b.20.(12分)四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.(1)求证:QP⊥AC;(2)当面PAC⊥面QAC时,求三棱锥Q﹣ACP的体积.21.(12分)已知函数f(x)=xlnx(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.22.(12分)已知抛物线C:y2=2px(p>0)的焦点F与椭圆C':=1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若,|BM|2+|BN|2=40,求实数λ的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)23.(10分)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是(t为参数),曲线C的极坐标方程为ρ=sin().(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于M、N两点,求M、N两点间的距离.[选修4-5:不等式选讲](共1小题,满分0分)24.已知函数f(x)=|x+4|﹣|x﹣1|.(1)解不等式f(x)>3;(2)若不等式f(x)+1≤4a﹣5×2a有解,求实数a的取值范围.2017年安徽省江淮十校高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=cos 3+isin 3(i为虚数单位),则|z|为()A.1 B.2 C.3 D.4【解答】解:|z|==1.故选:A.2.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.3.(5分)已知等差数列{a n}中,a2,a2016是方程x2﹣2x﹣2=0的两根,则S2017=()A.﹣2017 B.﹣1008 C.1008 D.2017【解答】解:等差数列{a n}中,a2,a2016是方程x2﹣2x﹣2=0的两根,可得a2+a2016=2.S2017===2017.故选:D.4.(5分)若向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或﹣【解答】解:由题意向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,故有cos<,>===,解得:λ=﹣2或.故应选C.5.(5分)|x|•(1﹣2x)>0的解集为()A.(﹣∞,0)∪(0,)B.(﹣∞,) C.(,+∞)D.(0,)【解答】解:由不等式|x|(1﹣2x)>0可得x≠0,且1﹣2x>0,求得x<,且x≠0,故选:A6.(5分)执行如图所示的程序框图,若输入的n的值为5,则输出的S的值为()A.17 B.36 C.52 D.72【解答】解:根据程序框图可知k=1,S=0,进入循环体后,循环次数、S 的值、k 的值的变化情况为:所以输出的S 的值为72. 故选:D .7.(5分)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F 1,F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1与e 2满足的关系是( ) A .+=2 B .﹣=2 C .e 1+e 2=2 D .e 2﹣e 1=2【解答】解:如图,设椭圆和双曲线的半焦距为c ,|PF 1|=m ,|PF 2|=n ,(m >n ), 由于△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10, 即有m=10,n=2c ,由椭圆的定义可得10+n=2a 1, 由双曲线的定义可得10﹣n=2a 2, 则n=a 1﹣a 2, ∵,,∴.故选:B .8.(5分)一光源P 在桌面A 的正上方,半径为2的球与桌面相切,且PA 与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△PAB,其中PA=6,则该椭圆的长轴长为()A.6 B.8 C.D.3【解答】解:以A为原点,以AB,AP为坐标轴建立平面直角坐标系,则球在平面xoy上的截面圆方程为(x﹣2)2+(y﹣2)2=4,P(0,6),设直线PB的方程为y=kx+6,则圆心(2,2)到直线PB的距离d==2,解得k=﹣.∴PB的方程为y=﹣+6,令y=0得x=8,即AB=8.故选B.9.(5分)如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为()A.B.C.D.【解答】解:记“硬币落下后与小圆无公共点”为事件A,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π,无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2cm,以纸板的圆心为圆心,作一个半径2cm的圆,硬币的圆心在此圆外面,则硬币与半径为1cm的小圆无公共交点.所以有公共点的概率为,无公共点的概率为P(A)=1﹣=,故选:D.10.(5分)函数f(x)=x2﹣bx+c满足f(1+x)=f(1﹣x)且f(0)=3,则f(b x)和f(c x)的大小关系是()A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同【解答】解:∵f(1+x)=f(1﹣x),∴f(x)图象的对称轴为直线x=1,由此得b=2.又f(0)=3,∴c=3.∴f(x)在(﹣∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).故选A.11.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y ﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选D12.(5分)若函数f(x)=﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a 的取值范围是()A.1<a≤2 B.a≥4 C.a≤2 D.0<a≤3【解答】解:∵,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)一支田径队员有男运动员56人,女运动员42人,若采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为16.【解答】解:一支田径队员有男运动员56人,女运动员42人,采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为:=16.故答案为:16.14.(5分)设有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是或a≥1.【解答】解:p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0},则0<a<1;q:函数y=lg(ax2﹣x+a)的定义域为R,a=0时不成立,a≠0时,则,解得.如果p∨q为真命题,p∧q为假命题,则命题p与q必然一真一假.∴,或,解得则实数a的取值范围是.故答案为:或a≥1.15.(1+2x2)(x﹣)8的展开式中常数项为﹣42.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4216.(5分)如果x、y满足不等式组,那么目标函数z=x﹣y的最小值是﹣9.【解答】解:作出不等式组对应的平面区域如图:由目标函数z=x﹣y得y=x﹣z,平移直线y=x﹣z,由图象可知当直线经过点A时,直线的截距最大,此时z最小,由,解得A(﹣2,7),此时z min=x﹣y=﹣2﹣7=﹣9,故答案为:﹣9.17.(5分)如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中:①|BM|是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.其中正确的命题是①②④.【解答】解:取A1D的中点N,连结MN,EN,则MN为△A1CD的中位线,∴MN CD,∵E是矩形ABCD的边AB的中点,∴BE CD,∴MN BE,∴四边形MNEB是平行四边形,∴BM EN,∴BM为定值,M在以B为球心,以BM为半径的球面上,故①正确,②正确;又NE⊂平面A1DE,BM⊄平面A1DE,∴BM∥平面A1DE,故④正确;由勾股定理可得DE=CE=2,∴DE2+CE2=CD2,∴DE⊥CE,若DE⊥A1C,又A1C∩CE=C,∴DE⊥平面A1CE,又A1E⊂平面A1CE,∴DE⊥A1E,而这与∠AED=45°矛盾.故③错误.故答案为:①②④.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.(12分)某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(Ⅰ)求这次铅球测试成绩合格的人数;(Ⅱ)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知学生a、b的成绩均为优秀,求两人a、b至少有1人入选的概率.【解答】解:(Ⅰ)第6小组的频率为1﹣(0.04+0.10+0.14+0.28+0.30)=0.14,∴此次测试总人数为(人).∴第4、5、6组成绩均合格,人数为(0.28+0.30+0.14)×50=36(人).(Ⅱ)设成绩优秀的9人分别为a,b,c,d,e,f,g,h,k,则选出的2人所有可能的情况为:ab,ac,ad,ae,af,ag,ah,ak;bc,bd,be,bf,bg,bh,bk;cd,ce,cf,cg,ch,ck;de,df,dg,dh,dk;ef,eg,eh,ek;fg,fh,fk;gh,gk;hk.共36种,其中a、b到少有1人入选的情况有15种,∴a、b两人至少有1人入选的概率为.19.(12分)已知向量=(sinx,﹣1),向量=(cosx,﹣),函数f(x)=(+)•.(1)求f(x)的最小正周期T;(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且f(A)恰是f(x)在[0,]上的最大值,求A和b.【解答】解:(1)∵向量=(sinx,﹣1),向量=(cosx,﹣),∴f(x)=(+)•=sin2x+1+sinxcosx+=+1+sin2x+=sin2x﹣cos2x+2=sin(2x﹣)+2,∵ω=2,∴函数f(x)的最小正周期T==π;(2)由(1)知:f(x)=sin(2x﹣)+2,∵x∈[0,],∴﹣≤2x﹣≤,∴当2x﹣=时,f(x)取得最大值3,此时x=,∴由f(A)=3得:A=,由余弦定理,得a2=b2+c2﹣2bccosA,∴12=b2+16﹣4b,即(b﹣2)2=0,∴b=2.20.(12分)四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.(1)求证:QP⊥AC;(2)当面PAC⊥面QAC时,求三棱锥Q﹣ACP的体积.【解答】证明:(1)由题意知直线QP在面ABCD上的射影为DB,又菱形ABCD中DB⊥AC,由三垂线定理知QP⊥AC.解:(2)△PAC和△QAC都是以AC为底的等腰三角形,设AC和BD的交点为O,连接OP、OQ,则OP⊥AC,OQ⊥AC,∴AC⊥面POQ.面PAC⊥面QAC知:OP ⊥OQ.在Rt△POD中,,设QB=x,则Rt△OBQ中,,在直角梯形PDBQ中,,在△POQ中,,故,解得,即.同时,,∴三棱锥Q﹣ACP的体积.21.(12分)已知函数f(x)=xlnx(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.【解答】解析:(1)f'(x)=lnx+1,f′(x)>0⇒x>,f′(x)<0⇒0<x<∴f(x)的单调增区间是,单调减区间是.∴f(x)在处取得极小值,极小值为.(2)由变形,得恒成立,令,,由g'(x)>0⇒x>1,g'(x)<0⇒0<x<1.所以,g(x)在(0,1)上是减函数,在(1,+∞)上是增函数.所以,g(x)min=g(1)=4,即m≤4,所以m的最大值是4.22.(12分)已知抛物线C:y2=2px(p>0)的焦点F与椭圆C':=1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若,|BM|2+|BN|2=40,求实数λ的值.【解答】解:(1)依题意,椭圆中,a2=6,b2=5,故c2=a2﹣b2=1,故,则2p=4,可得抛物线C的方程为y2=4x.将A(x0,2)代入y2=4x,解得x0=1,故.(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),联立方程,消去x,得y2﹣4my﹣4=0.所以,①且,又,则(1﹣x1,﹣y1)=λ(x2﹣1,y2),即y1=﹣λy2,代入①得,消去y2得,易得B(﹣1,0),则,则===(m2+1)(16m2+8)+4m•4m+8=16m4+40m2+16,当16m4+40m2+16=40,解得,故.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)23.(10分)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是(t为参数),曲线C的极坐标方程为ρ=sin().(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于M、N两点,求M、N两点间的距离.【解答】解:(1)将曲线C的极坐标方程化为ρ=sin()=cosθ+sinθ两边都乘以ρ,得ρ2=ρcosθ+ρsinθ因为x=ρcosθ,y=ρsinθ,ρ2=x2+y 2代入上式,得方求曲线C的直角坐标方程为:x2+y2﹣x﹣y=0(2)直线l的参数方程是(t为参数),消去参数t得普通方程:4x﹣3y+1=0,将圆C的极坐标方程化为普通方程为:x2+y2﹣x﹣y=0,所以()为圆心,半径等于所以,圆心C到直线l的距离d=所以直线l被圆C截得的弦长为:|MN|=2 =.即M、N两点间的距离为.[选修4-5:不等式选讲](共1小题,满分0分)24.已知函数f(x)=|x+4|﹣|x﹣1|.(1)解不等式f(x)>3;(2)若不等式f(x)+1≤4a﹣5×2a有解,求实数a的取值范围.【解答】解:(1)由题意可得,则当x≤﹣4时,不成立;当﹣4<x<1时,2x+3>3,解得0<x<1;当x≥1时,5>3成立,故原不等式的解集为{x|x>0}.(2)根据题意可得的最小值为﹣5,由即f(x)≤4a﹣5×2a﹣1有解,∴4a﹣5×2a﹣1≥﹣5,即4a﹣5×2a+4≥0,即2a≥4或2a≤1,∴a≥2或a≤0,故实数a的取值范围是(﹣∞,0]∪[2,+∞).。

安徽省江南十校2017届高三摸底联考数学(文)试题(解析版)

安徽省江南十校2017届高三摸底联考数学(文)试题(解析版)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.已知i 为虚数单位,复数31z i=+,则z 的虚部为( ) A .32B .32-C .32i -D .-3【答案】B考点:复数的运算及复数的概念.【方法点睛】本题考查复数的乘法除法运算,意在考查学生对复数代数形式四则运算的掌握情况,基本思路就是复数的除法运算按“分母实数化”原则,结合复数的乘法进行计算,而复数的乘法则是按多项式的乘法法则进行处理,对于复数),(R b a bi a z ∈+=,它的模为22b a +,实部为a ,虚部为b ;复数的概念的扩充部分主要知识点有:复数的概念、分类,复数的几何意义、复数的模,复数的运算,特别是复数的乘法与除法运算,运算时注意21i=-,同时注意运算的准确性.2.已知集合(){}{}22|log 11,|230A x x B x x x =-<=--<,则“x A Δ是“x B Δ的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】A 【解析】 试题分析:集合(){}(){}{}{}222|log 11=|log 1log 2|012|13,A x x x x x x x x =-<-<=<-<=<<{}{}{}2|230|(3)(1)0|13B x x x x x x x x =--<=-+<=-<<所以集合A 是集合B 的真子集,所以“x A ∈”是“x B ∈”充分不必要条件.考点:集合的运算及充分必要条件的判定. 【方法点睛】判断充分条件和必要条件的方法 (1)命题判断法:设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,p 是q 的充分不必要条件; ②原命题为假,逆命题为真时,p 是q 的必要不充分条件; ③原命题与逆命题都为真时,p 是q 的充要条件;④原命题与逆命题都为假时,p 是q 的既不充分也不必要条件. (2)集合判断法:从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么: ①若A ⊆B ,则p 是q 的充分条件;若A B 时,则p 是q 的充分不必要条件; ②若B ⊆A ,则p 是q 的必要条件;若B A 时,则p 是q 的必要不充分条件; ③若A ⊆B 且B ⊆A ,即A =B 时,则p 是q 的充要条件. (3)等价转化法:p 是q 的什么条件等价于非q 是非p 的什么条件.3.将函数()sin 2x cos 2x f x =-的图像经过恰当平移后得到一个奇函数的图像,则这个平移可以是( ) A .向左平移8π个单位 B .向左平移4π个单位 C .向右平移8π个单位 D .向右平移4π个单位【答案】A考点:三角函数图像的平移.4.已知直线()20x ay a R ++=?与圆222210x y x y ++-+=相切,则a 的值为( )A .1B .-1C .0D .0或1【答案】C考点:直线和圆的位置关系.5.某几何体的三视图如图所示,则该几何体的表面积为( )A .24+.16+.24+ D .48 【答案】C 【解析】试题分析:由三视图可得该几何体是三棱柱,底面是有一个角是30°斜边为4且斜边上的高为3的直角三角形,可得三角形另外两边为2,32,三棱柱的高为4,该几何体的表面积为1242442创?+?()24+.考点:三视图.6.已知矩形ABCD 中,12,1,3AB AD AM AB ===,则MC MD 的值为( )A .13B .23C .19D .49【答案】C 【解析】试题分析:在矩形ABCD 中,0AB AD AM AD ^\?,,由题意2=3MC MB BC AB BC +=+ ,13MD MA AD AB BC =+=-+,MC MD = 2()3AB BC +? 22122181()1393399AB BC AB AB BC AB BC BC -+=-+??=-+=,应选C.考点:向量数量积的运算.7.执行如图所示的程序框图,如果输入的x 值是407,y 值是259,那么输出的x 值是( )A .2849B .37C .74D .77 【答案】B考点:程序框图的应用.8.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,2369127,27a a a a == ,则当n T 最大时,n 的值为( )A .5或6B .6C .5D .4或5 【答案】D 【解析】试题分析:数列{}n a 是各项均为正数的等比数列,343696621111113==27,,2727327813a a a a a a q q =\=\=== ,,,22521127()()33n n n n a a q ---==? 令51()13n n a -==,解得5n =,则当n T 最大时,n 的值为4或5.考点:等比数列的通项公式及性质.9.已知实数,x y 满足044220x y x y x y ì-?ïï+?íï-+?ïî,则142yx z 骣琪=琪桫的最大值为( )A .1B .432 C .4 D .2【答案】C考点:线性规划.10.已知a 为第三象限角,4tan 23a =-,则sin α的值为( ) A.±B.- C.- D .45-【答案】B考点:同角三角函数的基本关系.11.已知双曲线()222210,0x y a b a b -=>>,则该双曲线的标准方程为( )A .221128x y -=B .221168x y -=C .2211612x y -=D .22184x y -=【答案】D 【解析】试题分析:因为双曲线()222210,0x y a b a b -=>>222223,22c a b a b a a +==\=,双曲线()222210,0x y a b a b -=>>的左顶点坐标为(-a,o ),其中一条渐近线方程为y=b x x a =,由题意=,解得a=8,则b=4,所以双曲线的标准方程为22184x y -=. 考点:双曲线的性质.12.已知定义在R 上的函数()f x 的图像关于y 轴对称,且满足()()2f x f x +=-,若当[]0,1x Î时,()13x f x -=,则13log 10f 骣琪琪桫的值为( )A .3B .109C .23D .1027【答案】D考点:函数的奇偶性及周期性.第Ⅱ卷(共90分)二、填空题(每题4分,满分16分,将答案填在答题纸上)13.函数()3221f x x x =-+的单调递减区间为 ___________.【答案】 440,0,33骣骣轾琪琪犏琪琪犏桫臌桫或【解析】试题分析:因为函数()3221f x x x =-+,所以函数()2434=3()3f x x x x x ¢=--,令()4=3()03f x x x ¢-<解得403x <<,所以函数()3221f x x x =-+的单调递减区间为440,0,33骣骣轾琪琪犏琪琪犏桫臌桫或.考点:函数的单调性及导数.14.某学校高三年级共有11个班,其中14 班为文科班,511 班是理科班,现从该校文科班和理科班中各选一个班的学生参加学校组织的一项公益活动,则所选两个班的序号之积为3的倍数的概率为__________. 【答案】1328【解析】试题分析:某学校高三年级共有11个班,其中14 班为文科班,511 班是理科班,现从该校文科班和理科班中各选一个班的学生参加学校组织的一项公益活动,共有47=28 种,所选两个班的序号之积为3的倍数的,从理科班可抽3的倍数班6,9,文科班有4种取法,共有8种取法时;文科班取3班时,理科班有7种选法;除去重复的两种,总共有13种取法,所以所选两个班的序号之积为3的倍数的概率1328. 考点:古典概型概率公式的应用.【方法点睛】(1)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;(2)当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举,当基本事件总数较多时,注意去分排列与组合;(3)注意判断是古典概型还是几何概型,基本事件前者是有限的,后者是无限的,两者都是等可能性. 15.已知直线()200,0ax by a b -+=>>过点()1,1-,则12a b+的最小值为_________.【答案】32+考点:基本不等式的应用.【方法点睛】(1)利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值;(2)基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点. 16..已知数列{}n a 满足()*111223344521222113,,22n n n n n n n a a a n N S a a a a a a a a a a a a +-+==-∈=-+-++- ,则10S =___________. 【答案】 -435 【解析】考点:等差数列通项公式及求和公式.三、解答题 (本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知,,a b c 分别为ABC ∆三个内角,,A B Csin cos 20A a B a --=. (1)求B ∠的大小 ; (2)若b ABC =∆,求,a c 的值. 【答案】(1)23B π=,(2)1221a a c c ⎧=-=⎧⎨⎨==⎩⎩或【解析】试题分析:(1sin cos 20A a B a --=,由正弦定理把边化成角,利用两角和或两角差的公式得, 可得23B π=(2)由三角形的面积公式和余弦定理即可求得,a c 的值.试题解析:(1)sin cos 20A a B a --=,sin sin cos 2sin 0B A A B A =-=,cos 2,sin 16B B B π⎛⎫-=-= ⎪⎝⎭,∴23B π=.......................6分(2)∵2221sinB 22cos ABC S ac b a c ac B ∆⎧=⎪⎨⎪=+-⎩,∴2212sin 2322cos 73ac a c ac ππ⎧=⎪⎪⎨⎪+-=⎪⎩,即2225ac a c =⎧⎨+=⎩,∴1221a a c c ⎧=-=⎧⎨⎨==⎩⎩或...........................12分考点:正余弦定理的应用.【方法点睛】1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角兴中,注意隐含条件π=++C B A (3)解决三角形问题时,根据边角关系灵活的选用定理和公式. 18.(本小题满分12分)在2016年6月英国“脱欧”公投前夕,为了统计该国公民是否有“留欧”意愿,该国某中学数学兴趣小组随机抽查了50名不同年龄层次的公民,调查统计他们是赞成“留欧”还是反对“留欧”.现已得知50人中赞成“留欧”的占60%,统计情况如下表:(1)请补充完整上述列联表;(2)请问是否有97.5%的把握认为赞成“留欧”与年龄层次有关?请说明理由.参考公式与数据:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++【答案】(1)见解析,(2)有97.5%的把握认为赞成“留欧”与年龄层次有关考点:变量间的相关关系.19.(本小题满分12分)如图,在四棱锥A CDFE -中,四边形CDFE 为直角梯形,//,,CE DF EF FD AF ⊥⊥平面 CEFD ,P 为AD 的中点,12EC FD =.(1)求证://CP 平面 AEF ;(2)设2,3,4EF AF FD ===,求点F 到平面 ACD 的距离.【答案】(1)见解析,(2【解析】 试题分析:(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(2)利用棱锥的体积公式Sh V 31=求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)证明:(2)解:(方法一)∵四边形CDFE 为直角梯形,12,4,22EF FD EC FD ====. ∴四边形CEFQ 为正方形,CDQ ∆为等腰直角三角形.∴090FCD ∠=,即CD FC ⊥.又∵AF ⊥平面 CEFD ,∴AF CD ⊥.又FC AF F = ,∴CD ⊥平面 AFC ,面CD ⊂平面 ACD ,∴平面 ACD ⊥平面 AFC ........................9分过F 作FH AC ⊥于点H ,则FH ⊥平面 ACD ,即FH 为点F 到平面ACD 的距离.∵3,AF FC ==,∴AC =,∴AF FC FH AC === 点F 到平面 ACD 的距离......................12分考点:线面平行及点到平面的距离.20.(本小题满分12分)在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离大1.(1)求点M 的轨迹C 的方程;(2)若在y 轴右侧,曲线 C 上存在两点关于直线20x y m --=对称,求m 的取值范围.【答案】(1)()()24000y x x y x =≥=<或;(2)9,4⎛⎫+∞ ⎪⎝⎭【解析】试题分析:(1)先设点M 的坐标为(),x y .可得1MF x =+,再对列出,x y 的关于化简得,点M 的轨迹C 的方程(2)设曲线C 上的横坐标大于0的两点,关于直线20x y m --=对称,则可得所设两点所在的直线与直线20x y m --=垂直,且与抛物线有两个交点.且所设两点的中点在直线20x y m --=上可求得m 的取值范围试题解析:(1)设点M 的坐标为(),x y .由题意,1MF x =+.....................2分 化简得,()()24000y x x y x =≥=<或,∴点M 的轨迹C 的方程为()()24000y x x y x =≥=<或.................4分考点:求轨迹方程及求参数的取值范围.【方法点睛】一般直译法求轨迹方程有下列几种情况:1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。

安徽省2017届高三阶段联考能力检测文科数学含答案

安徽省2017届高三阶段联考能力检测文科数学含答案

安徽省2017届高三阶段联考能力检测数学试题 文科满分150分 时间120分钟第 I 卷 选择题一、选择题(本大题共12小题,每题5分,在每小题四个选项中,只有一个是符合题目要求的)1. 已知集合{}2|21,A y y x x x R ==--∈,1|,0B y y x x R x x ⎧⎫==+∈≠⎨⎬⎩⎭且,则()R C B A ⋂=( )A .(2,2]-B .[2,2)-C .[2,)-+∞D .(2,2)- 2.在复平面内,复数212iz i=-(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.下列推理过程是演绎推理的是( ) A .由平面三角形的性质推测空间三棱锥的性质B .某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人C .两条直线平行,同位角相等;若A ∠与B ∠是两条平行直线的同位角,则A B ∠=∠D .在数列{}n a 中,12a =,121(2)n n a a n -=+≥,由此归纳出{}n a 的通项公式 4.已知0tan <α,则( ) A .0sin <α B .02sin <α C .0cos <α D .02cos <α 5.已知,,αβγ是三个相互平行的平面.平面,αβ之间的距离为1d ,平面,βγ之间的距离为2d .直线l 与,,αβγ分别相交于123,,P P P ,那么“1223PP P P =”是“12d d =”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.设61014357log ,log ,log a b c ===,则( )A .a b c >>B .b c a >>C .a c b >>D .c b a >>7.设动点),(y x P 满足,则z x y =+的最大值是( )⎪ ⎪ ⎩ ⎪ ⎪ ⎨⎧ ≥ ≥ ≤ + ≤ + 00 50 2 40 2 y x y x y xA .10B .30C .20D .908.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为( )A .11B .10C .9D .8 9.已知函数x a x y cos sin +=的图象关于3x π=对称,则函数x x a y cos sin +=的图象的一条对称轴是( )A. 56x π=B. 32π=xC. 3π=xD. 6x π= 第8题图10.在整数集Z 中,被7除所得余数为r 的所有整数组成一个“类”,记为[r ],即[r ]={7k+r |k ∈Z},r =0,1,2,…,6。

安徽省江南十校2017届高三3月联考数学(理)试题 Word版

安徽省江南十校2017届高三3月联考数学(理)试题 Word版

2017年安徽省“江南十校”度高三联考数学(理科) 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.若22iz i-=+,则z =( ) A .15B.1 C .5 D .25 2. 设集合{}2A x Z x =∈≤,312B xx ⎧⎫=≤⎨⎬⎩⎭,则A B ( )A.{1,2} B .{-1,-2} C .{-2,-1,2} D .{-2,-1,0,2}3. 已知平面向量(1,),(2,5),(,3)a m b c m ===,且()//()a c a b +-,则m =( )A .32- B .32 C. 32- D .324.已知3tan 4α=-,则sin (cos )sian ααα-=( ) A .2125 B .2521C. 45D. 545. 已知MOD 函数是一个求余函数,其格式为(,)MOD n m ,其结果为n 除以m 的余数,例如(8,3)2MOD =.下面是一个算法的程序框图,当输入n 的值为36时,则输出的结果为( )A .4B .5 C.6 D .76.质地均匀的正四面体表明分别印有0,1,2,3四个数字,某同学随机的抛掷次正四面体2次,若正四面体与地面重合的表面数字分别记为,m n ,且两次结果相互独立,互不影响.记224m n +≤为事件A ,则事件A 发生的概率为( )A .38 B .316 C. 8π D .16π 7.《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A B C D E 、、、、五人分5钱,A B 、两人所得与C D E 、、三人所得相同,且A B C D E 、、、、每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 所得为( ) A .23钱 B .43钱 C. 56钱 D. 32钱 8.如图,网格纸上小正方形的边长为1,实线画出的是某多面体的三视图,则该多面体的体积为( )A .20B .22 C.24 D .269.设ABC ∆的面积为1S ,它的外接圆面积为2S ,若ABC ∆的三个内角大小满足3:4:5A B C =::,则12S S 的值为( ) A .2512π B .2524πD10.若函数()f x 的图像如图所示,则()f x 的解析式可能是( )A .21()1x e f x x -=-B .2()1x e f x x =- C. 321()1x x f x x ++=- D .421()1x x f x x ++=-11.已知球的直径6,SC A B =、是该球球面上的两点,且3AB SA SB ===,则棱锥S ABC -的体积为( )A.4 B.42 D.212.设x ⎡⎤⎢⎥表示不小于实数x 的最小整数,如 2.63, 3.53=-=-⎡⎤⎡⎤⎢⎥⎢⎥.已知函数2()2f x x x =-⎡⎤⎡⎤⎢⎥⎢⎥,若函数()()(2)2F x f x k x =--+在(-1,4]上有2个零点,则的取值范围是( ) A .5,1[2,5)2⎡⎫--⎪⎢⎣⎭ B .21,[5,10)3⎡⎫--⎪⎢⎣⎭ C. 4,1[5,10)3⎛⎤-- ⎥⎝⎦D .4,1[5,10)3⎡⎤--⎢⎥⎣⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知实,x y 数满足关系20400x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,则22x y -+的最大值是 .14.若35()(2)x y x y a +-+的展开式中各项系数的和为32,则该展开式中只含字母x 且x 的次数为1的项的系数为 .15.已知双曲线2211630x y -=上一点(,)P x y 到双曲线一个交点的距离是9,则22x y +的值是 .16.将函数22sin cos y x x =-的函数图像向右平移m 个单位以后得到的图像与sin cos (0)y k x x k =>的图像关于(,0)3π对称,则k m +的最小正值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知n S 是数列{}n a 的前n 项和,且满足24n n S a n -=-. (Ⅰ)证明{}2n S n -+为等比数列; (Ⅱ)求数列{}n S 的前n 项和n T .18.美团外卖和百度外卖两家公司其“骑手”的日工资方案如下:美团外卖规定底薪70元,每单抽成1元;百度外卖规定底薪100元,每日前45单无抽成,超出45单的部分每单抽成6元,假设同一公司的“骑手”一日送餐单数相同,现从两家公司个随机抽取一名“骑手”并记录其100天的送餐单数,得到如下条形图:(Ⅰ)求百度外卖公司的“骑手”一日工资y (单位:元)与送餐单数n 的函数关系; (Ⅱ)若将频率视为概率,回答下列问题:①记百度外卖的“骑手”日工资为X (单位:元),求X 的分布列和数学期望;②小明拟到这两家公司中的一家应聘“骑手”的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.19. 如图,四边形ABCD CG ⊥平面ABCD ,////DE BF CG ,35DE BF CG ==. P 为线段EF 的中点,AP 与平面ABCD 所成角为60°.在线段CG 上取一点H ,使得35GH CG =.(Ⅰ)求证:PH ⊥平面AEF ; (Ⅱ)求多面体A EF G --的余弦值.20. 在平面直角坐标系中,0y m -+=不过原点,且与椭圆22142y x +=有两个不同的公共点,A B .(Ⅰ)求实数m 取值所组成的集合M ;(Ⅱ)是否存在定点P 使得任意的m M ∈,都有直线,PA PB 的倾斜角互补.若存在,求出所有定点P 的坐标;若不存在,请说明理由.21. 已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈. (Ⅰ)若曲线()y f x =与直线y x =相切,求a 的值; (Ⅱ)在(Ⅰ)的条件下,证明:()()1f x g x ≥+;(Ⅲ)若函数()f x 与函数()g x 的图像有且仅有一个公共点00(,)P x y ,证明:02x <. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程已知P 为曲线221:1124x y C +=上的动点,直线2C的参数方程为312x y t⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)求点P 到直线2C 距离的最大值,并求出点P 的坐标. 23.选修4-5:不等式选讲已知关于x 的方程22log (25)210x x a -+--=在[0,3]x ∈上有解. (Ⅰ)求正实数a 取值所组成的集合A ;(Ⅱ)若230t at --≥对任意a A ∈恒成立,求实数t 的取值范围.试卷答案一、选择题1.B 34,155z i z =-= 2.C {}2332,1,0,1,2,0{22x A B xx x x -⎧⎫=--=≥=≥⎨⎬⎩⎭或}0x < 3.C (1,3),(1,5)a c m m a b m +=++-=--由条件:2320m m m --=⇒=4.A 22222sin sin cos tan tan 21sin (sin cos )sin cos tan 125ααααααααααα---===++5.D6.A (1,1),(0,1),(1,0)316P =7.A 设4,3,2,,A a d B a d C a d D a d E a =-=-=-=-=则5105327332a d a a d a d -=⎧⇒=⎨-=-⎩8.C9.D 345::3:4:5,,121212A B C A B C πππ=⇒===由正弦定理知,12S S =10.B11.D 由条件:S OAB -为棱长为3O ABC V -=故V = 12.C 作出图像,由数形结合可知:C 满足题意 二、填空题13.5 由条件可知:22z x y =-+过点(1,3)M -时5z =-max 5z = 14.-7 51(1)321x y a a ==⇒+=⇒=,故x 的系数为1313335(1)27C C C +-∙=- 15.133 不妨设点P 在右支上,由条件可知P 点到右焦点距离为9,解出22281133p p x y x y =⇒=⇒+= 16.cos2cos(22)y x y x m =-−−−−→=--右m 个单位关于点(,0)3π对称,设点00(,)P x y 为其上任意一点,关于(,0)3π对称点为002(,)3Q x y π--,004sin(2)23k y x π-=-,展开得:sin 224cos 2212km k n m m ππ⎧==⎧⎪⎪⎪⇒⎨⎨=-⎪⎪=⎩⎪⎩三、解答题17.解:(1)原式转化为:12()4(2)n n n S S S n n -=-=-≥, 即124n n S S n -=-+,所以122[(1)2]n n S n S n --+=--+注意到1124S -+=,所以{}2n S n -+为首项为4,公比为2等比数列. (2)由(1)知:122n n S n +-+=, 所以122n n S n +=+-,于是231(22...2)(12...)2n n T n n +=+++++++-4(12)(1)2122n n n n -+=+--322382n n n ++--=.18.解:(1)100(45,)6170(45,)n n N y n n n N **⎧≤∈=⎨->∈⎩ (2)()1000.21060.31180.41300.1112E X =⨯+⨯+⨯+⨯=(元)‚美团外卖“骑手”日平均送餐单数为:420.2440.4460.2480.1500.145⨯+⨯+⨯+⨯+⨯= 所以美团外卖“骑手”日平均工资为:70451115+⨯=(元)由 知,百度外卖“骑手”日平均工资为112元. 故推荐小明去美团外卖应聘. 19.解:(1)连接,AC BD 交于点O ,连接OP ,则O 为BD 中点, ∴//OP DE ,∴OP ⊥面ABCD .∴POA ∠为AP 余面所成角ABCD ∴60POA ∠=︒.Rt AOP ∆中,1,33AO OP CG CH ====.Rt AHC ∆中, AH ==.梯形OPHC 中,PH =. ∴222AP PH AH +=∴AP PH ⊥,又EH FH PH EF =∴⊥, 又APEF P PH =∴⊥面AEF .(2)∵CG 面ABCD ,ABCD 为正方形, ∴如图所示建立空间直角坐标系.面AEF 的法向量为2HP ⎛= ⎝⎭,面EFG 法向量为3,3,n ⎛= ⎭,故二面角A EF G --的余弦值4-.20.解:(10y m -+=不过原点,所以0m ≠,0y m -+=与22142y x +=联立,消去y 得:22440x m ++-=,因为直线与椭圆有两个不同的公共点,A B ,所以22816(4)0m m ∆=-->,解得m -<< 所以实数m 的范围组成的集合M是()()0,22-;(2)假设存在定点00(,)P x y 使得任意的m M ∈,都有直线,PA PB 的倾斜角互补, 即0PA PB kk +=,令1122(),()A x m B x m ++,所以102010200m y m y x x x x +-+-+=--,整理得:12001200()()2()0x m y x x x y m *+-+-=,由(1)知12,x x 是22440x m ++-=的两个根,所以212124,24m x x x x -+=-=, 代入()*化简得0000()2(02y x m x y -+=,由题意0000020y x x y -=⎨⎪=⎩解得001x y =⎧⎪⎨=⎪⎩001x y =-⎧⎪⎨=⎪⎩所以定点的坐标为(1P 或(1,P -,经检验,满足题意,所以存在定点P 使得任意的m M ∈,都有直线,PAPB 的倾斜角互补, 坐标为(1P 或(1,P -.21.解:(Ⅰ)设曲线()y f x =在11(,)Q x y 点处切线是y x =,则111()1y x f x =⎧⎨'=⎩由于111()x f x e -'=所以111,1x y ==, 由题意知:111x y e a -=-,于是0a =.(Ⅱ)令111()()()ln ,()(0)x x F x f x g x ex F x e x x--'=-=-=->,当(0,1)x ∈时,101x e -<<,所以1101x e x-<<<,即11()0x F x e x -'=-<,当(1,)x ∈+∞时,11x e -<,所以111x e x ->>,即11()0x F x e x-'=->,于是1()()()ln x F x f x g x e x -=-=-在(0,1)单调递减,(1,)+∞单调递增,其最小值是(1)1F =,所以()()()1F x f x g x =-≥,于是原不等式成立. (Ⅲ)令1()ln (0)x G x e x ax a x -=--+>,则函数()f x 与函数()g x 的图像有且仅有一个公共点00(,)P x y 等价于函数()G x 有且只有一个零点0x ,11()x G x e a x-'=--, 注意到11()x G x e a x-'=--为(0,)+∞上的增函数且值域为R , 所以11()x G x ea x-'=--在(0,)+∞上有唯一零点1x , 且()G x '在1(0,)x 上为负,1(,)x +∞上为正,所以1()G x 为极小值, 又函数()G x 有唯一零点0x ,结合()G x 的单调性知10x x =,所以00()0()0G x G x '=⎧⎨=⎩,即001010010ln 0x x e a x e x ax a --⎧--=⎪⎨⎪--+=⎩,即000111000011()ln ()0x x x ee x x e x x ------+-=, 即0100001(2)ln 0x x x ex x ---+-=.令11()(2)ln x x H x x e x x --=-+-, 显然,0x 是()H x 的零点,112211()(1)(1)(0)x x x H x x e x e x x x ---⎡⎤'=-+=-+>⎢⎥⎣⎦, ()H x '在(0,1)上为正,(1,)+∞上为负,于是()H x 在(1,)+∞上单调递减,注意到11(1)10,(2)ln 2(1ln 4)022H H =>=-=-< , 所以()H x 在(1,2)内有一个零点,在[)2,+∞内无零点,所以()H x 的零点一定小于,从而函数()f x 与函数()g x 的图像有且仅有一个公共点00(,)P x y 时一定有02x <.22.解:由条件:2:603y C x x =⇒-=-设点,2sin )P θθ,点P 到2C 之距离,)34d πθ==+-,max 3d =.此时点(P .23.(1)当[0,3]x ∈时[]2222log (25)log (1)42,3x x x ⎡⎤-+=-+∈⎣⎦2213a ≤-≤且3302,|222a a A a a ⎧⎫>⇒≤≤∴=≤≤⎨⎬⎩⎭. (2)由(1)知:322a ≤≤,设2()3g a t a t =∙+-,则3()02(2)913g t g t t ⎧⎧≥≥⎪⎪⇒⎨⎨⎪⎪≥≥≤-⎩⎩或或t ≤t ≤或3t ≥.1.1.B2.C3.C4.A5.D6.A ,,7.A 设则8.C9.D由正弦定理知,10.B11.D12.C 作出图像,由数形结合可知:C满足题意13.5 由条件可知:14.-715.133 不妨设点P在右支上,由条件可知P点到右焦点距离为9,解出16.,17.证明:原式转化为:,即,所以注意到,所以为首项为4,公比为2等比数列. ……6分(2)由(1)知:,所以,于是。

【安徽省马鞍山市】2017届高三第三次模拟数学(文科)试卷-答案

【安徽省马鞍山市】2017届高三第三次模拟数学(文科)试卷-答案
(Ⅱ)由(Ⅰ)知 ………………………………………………(8分)

……………………………………………………(12分)
18.解:(Ⅰ)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为 ,所以喜欢游泳的学生人数为 人.其中女生有20人,则男生有40人,列联表补充如下:
喜欢游泳
不喜欢游泳
合计
男生
40
10
(Ⅱ)∵ ∴ ,
又∵
∴ ∴
, ,
∴ ,∴
…………………………………………………………………(9分)
设 到平面 的距离为
由 得:
∴ 即点 到平面 的距离为
(或由 得点 到平面 的距离等于点 到平面 的距离,过点 作 于点 ,易知 的长度即为所求.)
20.(Ⅰ)由已知,可设 ,
由 得:
∴ ,
∴ ,
∴由 可得: .解得:
14.【命题意图】考查几何概型、正弦定理,中等题。(提示:正弦定理 ).
15.【命题意图】考查三视图,中等题.
16.【命题意图】考查解三角形及三角函数相关知识,较难题。
(提示:由正弦定理 。
由正弦定理: ,

∵ ,∴ ,从而有 。).
三、解答题
17.【命题意图】考查数列的概念,等比数列的基本运算,数列的求和,考查运算能力,简单题.

所以 的直角坐标方程为 .……………………………………………………(5分)
(Ⅱ)由题意可设,与 两点对应的参数分别为 , ,
将 的参数方程代入 的直角坐标方程 ,
化简整理得, ,所以 ,……………………………………(7分)
所以 ,
因为 ,所以 ,
所以 ………………………………………………………………(10分)

江淮十校2017届高三第二次联考数学文科试卷及答案

江淮十校2017届高三第二次联考数学文科试卷及答案

“江淮十校江淮十校””2017届高三第二次联考届高三第二次联考··文数文数参考答案及评分细则参考答案及评分细则 一、选择题选择题:(本大题共12个小题个小题,,每小题5分,共60分.在每小题给出的四个选在每小题给出的四个选 项中项中,,只有一项是符合题目要求的有一项是符合题目要求的).). 题号 12 3 4 5 6 7 8 9 10 11 12 选项 A B D D B C A C B B D C二、填空题填空题((每题5分,满分20分,将答案填在答题纸上将答案填在答题纸上))13. 2,10x R x x ∃∈++≥14. 420 15. na n 2= 16. (21,24)三、解答题 (本大题共6小题小题,,共70分.解答应写出文字说明解答应写出文字说明、、证明过程或演算步骤.)17.解:(Ⅰ)} ≤+=112|x x x B ,11,011112,112≤<−≤+−=−+≤+x x x x x x x }{11|≤<−=x x B {}R x x x C ∈≥−=,914|225,914914,−≤≥−≤−≥−x x x x 或或−≤≥=225|x x x C 或 所以Φ=C B ∩---------------------------5分(Ⅱ)函数a x a x x g +−+−=)1()(2的定义域为集合A,0)1(2≥+−+−a x a x 0)1(2≤−−−a x a x , 0)1)((≤+−x a x . }{11|≤<−=x x BA B ≠∅∩,所以1−>a -----------------10分18.解:(Ⅰ)由已知12n n s a a =−,有()12n n n a s s n −=−≥,即()122n n a a n −=≥,即数列{}n a 是以2为公比的等比数列,又123,1,a a a +成等差数列,即:()13212a a a a +=+,n n a a a a a 2.2),12(241111==+=+故--------------------------6分(Ⅱ)因为2n na =,所以22log 121n nb a n =−=−. 所以()212n n n a b n =−.则()()231123252232212n n n T n n −=×+×+×+⋅⋅⋅+−+−, ①()()23412123252232212n n n T n n +=×+×+×+⋅⋅⋅+−+−. ②①-②得,()2312222222212n n n T n +−=+×+×+⋅⋅⋅+×−−()()()11142221262321212n n n n n ++−=+×−−=−−−−−,所以()16232n n T n +=+−.--------------------------12分19.解:(Ⅰ),)21cos (22a b a A b c −=−由 ,)212(22222a b a bc a c b b c −=−−+ ,222ac b c a =−+ 3),,0(,21cos ππ=∈=B B B ----------------------------------6分 (Ⅱ)222131sin sin sin (1cos 2)(1cos 2)242T A B C A C =++=−++− ()71714π(cos 2cos 2)cos 2cos 242423A C A A − =+=−− +()()71171πcos 22cos 2422423A A A =−−=−+ 因为2π03A <<,所以4π023A <<,故ππ5π2333A <+< 因此()π11cos 232A −+<≤,所以3924T <≤--------------------12分 20.解:(Ⅰ)f (x )= e x +sinx-mx m x e x f x−+=cos )(,因为x =0是f(x )的极值点,所以.2,011)0(,==−+=m m f又当m =2时,若x <0, ,0cos )(,<−+=m x e x f x 若 x >0,0cos )(,>−+=m x e x f x . ∴x =0是f (x )的极小值点, ∴m=2符合题意.,m =2----------------------5分(Ⅱ),1)(0)1(2sin )()(2≥≥−+−−=x g x x m x m x x f x g 时且 x x m e x g x −−=22)( 1)(,−−=mx e x g x1)(−−=mx e x h x 令m e x h x −=)(,)00)(1,≥≥≤x x h m ,(时,当,所以)(x h 在[)0,+∞上递增,)0,0)(0)(,,≥≥=x x g x g (,所以而,所以)(x g 在[)0,+∞上递增,而1)0(=g ,于是当0x ≥时,1)(≥x g .m x m e x h m x ln 0)(1,==−=>,时,当上递减,在(,时,当)ln 0)(0)()ln ,0(,,m x g x h m x <∈而0)0(,=g ,上递减,在(,时,于是)ln 0)(0)()ln ,0(,m x g x g m x <∈ 而1)0(=g ,于是当)ln ,0(m x ∈时,1)(<x g .综上得m 的取值范围为(,1]−∞.-----------------12分(其它方法酌情给分)21.解:(Ⅰ)二次函数41)(2++=bx ax x f 在R 上的最小值为0,且满足(4)(2)f x f x −=− 图像过(-1,0)点,对称轴x=-1 21,41,12,041==−=−=+−b a a b b a 21()(1)4f x x =+.----------------------------------------------------5分 (Ⅱ)[]上单调递增。

2017年安徽省马鞍山市高考数学三模试卷(文科)(解析版)

2017年安徽省马鞍山市高考数学三模试卷(文科)(解析版)

2017年安徽省马鞍山市高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置将正确结论的代号用2B铅笔涂黑.1.已知集合A={x|(x﹣3)(x+1)≤0},B={x|﹣2<x≤2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2]C.[﹣1,1]D.[1,2]2.设i为虚数单位,则复数的模为()A.1 B.C.D.23.“α=2kπ﹣(k∈Z)”是“cosα=”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知双曲线(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为()A.x±y=0 B.C.D.2x±y=05.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问乙走的步数是()A.B.C.D.6.执行如图的程序框图,若输出的,则输入的整数p的值为()A.6 B.5 C.4 D.37.已知函数f(x)=cos(2x﹣)+sin2x,则f(x)的一个单调递减区间是()A.[﹣,]B.[﹣,]C.[﹣,]D.[,] 8.函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则f(5)=()A.﹣1 B.0 C.1 D.59.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.10.已知实数x,y满足,若z=3x﹣y的最大值为1,则m的值为()A.B.2 C.1 D.11.已知△ABC的顶点都在半径为R的球O的球面上,球心O到平面ABC的距离为,,则球O的体积是()A.B.16πC.D.32π12.已知函数f(x)=,若f(x)﹣f(﹣x)=0有四个不同的根,则m的取值范围是()A.(0,2e)B.(0,e) C.(0,1) D.(0,)二、填空题:本大题共4个小题,每小题5分,共20分.请在答题卡上答题.13.已知向量=(2,1),=(x,﹣1),若∥(﹣),则=.14.如图,扇形AOB的圆心角为90°,点P在弦AB上,且OP=AP,延长OP 交弧AB于点C,现向该扇形内随机投一点,则该点落在扇形AOC内的概率为.15.某几何体的三视图如图所示,则该几何体的体积为16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2,则a2+b2的取值范围是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.请在答题卡上答题.17.已知数列{a n}的前n项和为S n,且2S n=4a n﹣1.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=a n•a n+1﹣2,求数列{b n}的前n项和T n.18.2017年3月27日,一则“清华大学要求从2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.游泳作为一项重要的求生技能和运动项目受到很多人的喜爱.其实,已有不少高校将游泳列为必修内容.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为. (Ⅰ)请将上述列联表补充完整;(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?19.已知几何体ABCDEF 中,AB ∥CD ,AD ⊥DC ,EA ⊥平面ABCD ,FC ∥EA ,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD ⊥平面BCF ; (Ⅱ)求点B 到平面ECD 的距离.20.已知曲线C :y 2=4x ,M :(x ﹣1)2+y 2=4(x ≥1),直线l 与曲线C 相交于A 、B 两点,O 为坐标原点. (Ⅰ)若,求证:直线l 恒过定点,并求出定点坐标;(Ⅱ)若直线l与曲线C1相切,M(1,0),求的取值范围.21.已知函数f(x)=(x﹣1)lnx﹣(x﹣a)2(a∈R).(Ⅰ)若f(x)在(0,+∞)上单调递减,求a的取值范围;(Ⅱ)若f(x)有两个极值点x1,x2,求证:x1+x2>.选修4-4:坐标系与参数方程22.已知曲线C1的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:.(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求的值.选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R).(Ⅰ)试比较f(﹣1)与f(a)的大小;(Ⅱ)当a=﹣5时,求函数f(x)的图象与轴围成的图形面积.2017年安徽省马鞍山市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应位置将正确结论的代号用2B铅笔涂黑.1.已知集合A={x|(x﹣3)(x+1)≤0},B={x|﹣2<x≤2},则A∩B=()A.[﹣2,﹣1]B.[﹣1,2]C.[﹣1,1]D.[1,2]【考点】1E:交集及其运算.【分析】根据题意和交集的运算直接求出A∩B.【解答】解:因为A={x|(x﹣3)(x+1)≤0}=[﹣1,3],B={x|﹣2<x≤2}=(﹣2,2],所以A∩B=[﹣1,2],故选:B.2.设i为虚数单位,则复数的模为()A.1 B.C.D.2【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:复数===﹣i,∴|z|=1.故选:A.3.“α=2kπ﹣(k∈Z)”是“cosα=”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】cosα=⇔α=2kπ±(k∈Z),即可判断出结论.【解答】解:cosα=⇔α=2kπ±(k∈Z),∴“α=2kπ﹣(k∈Z)”是“cosα=”的充分不必要条件.故选:A.4.已知双曲线(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为()A.x±y=0 B.C.D.2x±y=0【考点】KB:双曲线的标准方程.【分析】根据题意,得双曲线的渐近线方程为y=±x.再由双曲线离心率为2,得到c=2a,由定义知b==a,代入即得此双曲线的渐近线方程.【解答】解:∵双曲线的方程是(a>0,b>0),∴双曲线渐近线为y=±x.又∵离心率为e==2,∴c=2a,∴b==a,由此可得双曲线渐近线为y=±x=±x,即:故答案为:.故选:C.5.《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步?”请问乙走的步数是()A.B.C.D.【考点】HU:解三角形的实际应用.【分析】设甲、乙相遇经过的时间为x,由题意画出图形,由勾股定理列出方程求出x,即可求出答案.【解答】解:设甲、乙相遇经过的时间为x,如图:则AC=3x,AB=10,BC=7x﹣10,∵A=90°,∴BC2=AB2+AC2,即(7x﹣10)2=102+(3x)2,解得x=或x=0(舍去),∴AC=3x=,故选:C.6.执行如图的程序框图,若输出的,则输入的整数p的值为()A.6 B.5 C.4 D.3【考点】EF:程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算满足S=+++…+=的整数p的值,并输出,结合等比数列通项公式,可得答案.【解答】解:由程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算满足S=+++…+=的整数p的值,∵+++…+=1﹣=,故==,故p=5.故选:B.7.已知函数f(x)=cos(2x﹣)+sin2x,则f(x)的一个单调递减区间是()A.[﹣,]B.[﹣,]C.[﹣,]D.[,]【考点】GI:三角函数的化简求值.【分析】利用两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;可得答案.【解答】解:函数f(x)=cos(2x﹣)+sin2x,化简可得:f(x)=cos2x+sin2x+sin2x=sin(2x+)令2x+,可得:≤x≤,∴f(x)的一个单调递减区间是[,].故选D8.函数f(x)的定义域为R,若f(x+1)与f(x﹣1)都是奇函数,则f(5)=()A.﹣1 B.0 C.1 D.5【考点】3L:函数奇偶性的性质.【分析】可知f(x+1)是R上的奇函数,从而得出f(1)=0,进而得出f(﹣3)=0,从而可得出f(5)=﹣f(﹣3)=0.【解答】解:根据条件,f(x+1)与f(x﹣1)都是R上的奇函数;∴f(0+1)=0;即f(1)=0;x=﹣2时,f(﹣2﹣1)=﹣f(2﹣1);即f(﹣3)=﹣f(1)=0;∴f(5)=f(4+1)=﹣f(﹣4+1)=﹣f(﹣3)=0.故选B.9.已知椭圆E:的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为()A.B.C.D.【考点】K3:椭圆的标准方程.【分析】设A(x1,y1),B(x2,y2),代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得x1+x2=2,y1+y2=﹣2,利用斜率计算公式可得==.于是得到,化为a2=2b2,再利用c=3=,即可解得a2,b2.进而得到椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),代入椭圆方程得,相减得,∴.∵x1+x2=2,y1+y2=﹣2,==.∴,化为a2=2b2,又c=3=,解得a2=18,b2=9.∴椭圆E的方程为.故选D.10.已知实数x,y满足,若z=3x﹣y的最大值为1,则m的值为()A.B.2 C.1 D.【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数求得m的值.【解答】解:由约束条件足,作出可行域如图,联立,解得A(,),化目标函数z=3x﹣y为y=3x﹣z,由图可知,当直线过A时,直线在y轴上的截距最小,z有最大值为﹣=1,解得:m=.故选:A11.已知△ABC的顶点都在半径为R的球O的球面上,球心O到平面ABC的距离为,,则球O的体积是()A.B.16πC.D.32π【考点】LR:球内接多面体.【分析】首先求出底面△ABC所在圆的半径r,结合条件和球的截面的性质和R2=r2+d2,求得R,再由球的体积公式计算即可得到所求值.【解答】解:由题意可得底面△ABC所在圆的半径为r=×=1,球心O到平面ABC的距离为d=R,且R2=r2+d2=1+R2,可得R=2,则球O的体积是πR3=π.故选:C.12.已知函数f(x)=,若f(x)﹣f(﹣x)=0有四个不同的根,则m的取值范围是()A.(0,2e)B.(0,e) C.(0,1) D.(0,)【考点】54:根的存在性及根的个数判断.【分析】由函数图象的对称性可得f(x)﹣f(﹣x)在(0,+∞)上有两解,分离参数得﹣m=xlnx,求出右侧函数的单调性和极值即可得出m的范围.【解答】解:∵f(x)﹣f(﹣x)=0有四个不同的根,且y=f(x)与y=f(﹣x)的图象关于y轴对称,∴f(x)=f(﹣x)在(0,+∞)上有2解,即lnx=﹣有2解,∴﹣m=xlnx有2解,令g(x)=xlnx,则g′(x)=lnx+1,∴当0<x时,g′(x)<0,当x>时,g′(x)>0,∴g(x)在(0,)上单调递减,在(,+∞)上单调递增,当x=时,f(x)取得极小值f()=﹣.作出g(x)的大致函数图象如图所示:∵﹣m=xlnx有两解,∴﹣<﹣m<0,即0<m<.故选D.二、填空题:本大题共4个小题,每小题5分,共20分.请在答题卡上答题.13.已知向量=(2,1),=(x,﹣1),若∥(﹣),则=﹣5.【考点】9R:平面向量数量积的运算.【分析】根据题意,由向量的坐标计算公式可得﹣,再由向量平行的坐标表示方法可得若∥(﹣),则有2×2=(2﹣x)×1,解可得x的值,即可得的坐标,由向量的数量积公式计算可得答案.【解答】解:根据题意,向量=(2,1),=(x,﹣1),则﹣=(2﹣x,2),若∥(﹣),则有2×2=(2﹣x)×1,解可得x=﹣2,即=(﹣2,﹣1),则=2×(﹣2)+1×(﹣1)=﹣5;故答案为:﹣5.14.如图,扇形AOB的圆心角为90°,点P在弦AB上,且OP=AP,延长OP 交弧AB于点C,现向该扇形内随机投一点,则该点落在扇形AOC内的概率为.【考点】CF:几何概型.【分析】求出扇形AOC的面积,扇形AOB的面积,从而得到所求概率.【解答】解:设AP=x,OP=x,由正弦定理可求得,sin∠AOP==,所以∠POA=30°,所以扇形AOC的面积为,扇形AOB的面积为,从而所求概率为.故答案为:.15.某几何体的三视图如图所示,则该几何体的体积为【考点】L!:由三视图求面积、体积.【分析】几何体是直三棱柱消去一个三棱锥,结合直观图分别求出直三棱柱的体积和消去的三棱锥的体积,相减可得几何体的体积【解答】解:由三视图知:几何体是直三棱柱消去一个三棱锥,如图:直三棱柱的体积为×2×2×2=4.消去的三棱锥的体积为××2×1×2=,∴几何体的体积V=4﹣=.故答案为:16.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2,则a2+b2的取值范围是(20,24] .【考点】HP:正弦定理.【分析】由已知利用正弦定理,余弦定理可求C的值,进而由正弦定理可得a=4sinA,b=4sinB,令A=60°+α,B=60°﹣α,(0°≤α<30°),利用三角函数恒等变换的应用化简可得a2+b2=16(1+cos2α)的值,由范围0°≤2α<60°,利用余弦函数的图象和性质可求其取值范围.【解答】解:∵(c+b)(sinC﹣sinB)=a(sinA﹣sinB).若c=2,∴由正弦定理.∴由正弦定理:,令A=60°+α,B=60°﹣α,(0°≤α<30°),∴a2+b2=16(sin2A+sin2B)=16[sin2(60°+α)+sin2(60°﹣α)]=16[(cos)2+(cosα﹣sinα)2]=16(cos2α+sin2α)=16(×+)=16(1+cos2α),∵0°≤2α<60°,∴,∴从而有20<a2+b2≤24.故答案为:(20,24].三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.请在答题卡上答题.17.已知数列{a n}的前n项和为S n,且2S n=4a n﹣1.(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=a n•a n+1﹣2,求数列{b n}的前n项和T n.【考点】8E:数列的求和;8H:数列递推式.【分析】(I)利用递推关系与等比数列的通项公式即可得出.(II0利用等比数列的求和公式即可得出.【解答】解:(Ⅰ)∵2S n=4a n﹣1∴n=1时,2S1=4a1﹣1,即2a1=4a1﹣1,解得;n≥2时,2S n=4a n﹣1…①2S n﹣1=4a n﹣1﹣1…②由①﹣②得,所以a n=2a n﹣1∴数列{a n}是首项为,公比为2的等比数列,即…6分(Ⅱ)由(Ⅰ)知…8分∴==…12分.18.2017年3月27日,一则“清华大学要求从2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.游泳作为一项重要的求生技能和运动项目受到很多人的喜爱.其实,已有不少高校将游泳列为必修内容.某中学为了解2017届高三学生的性别和喜爱游泳是否有关,对100名高三学生进行了问卷调查,得到如下列联表:已知在这100人中随机抽取1人,抽到喜欢游泳的学生的概率为. (Ⅰ)请将上述列联表补充完整;(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?【考点】BO :独立性检验的应用.【分析】(Ⅰ)根据题意计算喜欢游泳的学生人数,求出女生、男生有多少人,补充列联表即可;(Ⅱ)计算观测值K 2,对照临界值表即可得出结论.【解答】解:(Ⅰ)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为,所以喜欢游泳的学生人数为人;其中女生有20人,男生有40人,列联表补充如下:…5分(Ⅱ)因为K 2=≈16.67>10.828;所以有99.9%的把握认为喜欢游泳与性别有关.…12分.19.已知几何体ABCDEF中,AB∥CD,AD⊥DC,EA⊥平面ABCD,FC∥EA,AB=AD=EA=1,CD=CF=2.(Ⅰ)求证:平面EBD⊥平面BCF;(Ⅱ)求点B到平面ECD的距离.【考点】MK:点、线、面间的距离计算;LY:平面与平面垂直的判定.【分析】(I)先计算BD,BC,利用勾股定理的逆定理证明BD⊥BC,再利用EA ⊥平面ABCD得出AE⊥BD,从而有CF⊥BD,故而推出BD⊥平面FBC,于是平面EBD⊥平面BCF;(II)证明AB∥平面CDE,于是B到平面CDE的距离等于A到平面CDE的距离,过A作AM⊥DE,证明AM⊥平面CDE,于是AM的长即为B到平面CDE的距离.【解答】(I)证明:∵AB∥CD,AD⊥DC,AB=AD=1,CD=2,∴BD=BC=,∴BD2+BC2=CD2,∴BD⊥BC,∵EA⊥平面ABCD,BD⊂平面ABCD,∴EA⊥BD,∵EA∥FC,∴FC⊥BD,又BC⊂平面BCF,FC⊂平面BCF,BC∩CF=C,∴BD⊥平面FBC,又BD⊂平面BDE,∴平面BDE⊥平面BCF.(II)解:过A作AM⊥DE,垂足为M,∵EA⊥平面ABCD,CD⊂平面ABCD,∴EA⊥CD,又CD⊥AD,EA∩AD=A,∴CD⊥平面EAD,又AM⊂平面EAD,∴AM⊥CD,又AM⊥DE,DE∩CD=D,∴AM⊥平面CDE,∵AD=AE=1,EA⊥AD,∴AM=,即A到平面CDE的距离为,∵AB∥CD,CD⊂平面CDE,AB⊄平面CDE,∴AB∥平面CDE,∴B到平面CDE的距离为.20.已知曲线C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.(Ⅰ)若,求证:直线l恒过定点,并求出定点坐标;(Ⅱ)若直线l与曲线C1相切,M(1,0),求的取值范围.【考点】KN:直线与抛物线的位置关系.【分析】(Ⅰ)设A(x1,y1),B(x2,y2)代入到,求得x1x2+y1y2=﹣4,即n2﹣4n=﹣4,由此求得n=2.根据点A表示出AB的直线方程整理可知过定点(2,0),综合结论可得.(Ⅱ)由直线与圆相切的性质可得,变形可得4m2=n2﹣2n﹣3,结合(1)的方程可得,由根与系数的关系分析可得答案.【解答】解:(Ⅰ)由已知,可设l:x=my+n,A(x1,y1)¡¢,B(x2,y2)由得:y2﹣4my﹣4n=0,∴y1+y2=4m,y1•y2=﹣4n.∴.∴由可得:.解得:n=2.∴l:x=my+2,∴直线l恒过定点(2,0).(Ⅱ)∵直线l与曲线C1相切,M(1,0),显然n≥3,∴,整理得:4m2=n2﹣2n﹣3.①由(Ⅰ)及①可得:∴,即的取值范围是(﹣∞,﹣8].21.已知函数f(x)=(x﹣1)lnx﹣(x﹣a)2(a∈R).(Ⅰ)若f(x)在(0,+∞)上单调递减,求a的取值范围;(Ⅱ)若f(x)有两个极值点x1,x2,求证:x1+x2>.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,得到f′(x)≤0恒成立,令,求出函数的导数,根据函数的单调性得到g(x)max≤0,求出a的范围即可;(Ⅱ)根据f′(x1)=lnx1﹣﹣2x1+1+2a①,f′(x2)=lnx2﹣﹣2x2+1+2a②,得到:x1+x2的解析式,从而证明结论即可.【解答】解:(Ⅰ)由已知,恒成立令,则,﹣(2x+1)<0,令g′(x)>0,解得:0<x<1,令g′(x)<0,解得:x>1,故g(x)在(0,1)递增,在(1,+∞)递减,∴g(x)max=g(1)=2a﹣2∴由f'(x)≤0恒成立可得a≤1.即当f(x)在(0,+∞)上单调递减时,a的取值范围是(﹣∞,1].(Ⅱ)若f(x)有两个极值点x1,x2,不妨设0<x1<x2.由(Ⅰ)可知a>1,且f′(x1)=lnx1﹣﹣2x1+1+2a①,f′(x2)=lnx2﹣﹣2x2+1+2a ②,由①﹣②得:∴∴,即,由①+②得:,∴.选修4-4:坐标系与参数方程22.已知曲线C1的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2:.(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;(Ⅱ)若C1与C2相交于A、B两点,设点F(1,0),求的值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(I)曲线C1的参数方程消去参数能求出曲线C1的普通方程;由曲线C2极坐标方程,能求出C2的直角坐标方程.(Ⅱ)由题意可设,与A、B两点对应的参数分别为t1,t2,将C1的参数方程代入C2的直角坐标方程,得:5t2+4t﹣12=0,由此能求出【解答】解:(I)∵曲线C1的参数方程为(为参数),∴,∴,∴曲线C1的普通方程为.…2分∵曲线C2:,∴3ρ2+ρ2sin2θ=12,∴3(x2+y2)+y2=12,∴3x2+4y2=12,∴C2的直角坐标方程为.…5分(Ⅱ)由题意可设,与A、B两点对应的参数分别为t1,t2,将C1的参数方程代入C2的直角坐标方程,化简整理得,5t2+4t﹣12=0,∴,…7分∴,∵,∴,∴…10分.选修4-5:不等式选讲23.设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R).(Ⅰ)试比较f(﹣1)与f(a)的大小;(Ⅱ)当a=﹣5时,求函数f(x)的图象与轴围成的图形面积.【考点】57:函数与方程的综合运用.【分析】(Ⅰ)f(﹣1)与f(a)作差化简表达式推出结果.(Ⅱ)去掉绝对值,通过三角形的坐标,推出面积,得到结果.【解答】解:(I)因为f(a)﹣f(﹣1)=|2a+2|﹣5﹣(|a+1|﹣5)=|a+1|≥0,于是f(a)≥f(﹣1).当且仅当a=﹣1时等号成立;…5分(Ⅱ)当a=﹣5时,,可知函数f(x)的图象和轴围成的图形是一个三角形,其中与轴的两个交点分别为A(﹣2,0),,三角形另一顶点坐标为C(﹣1,﹣1),从而△ABC面积为.…10分注:以上各题,其他解法请酌情给分.2017年6月3日。

安徽省马鞍山市2017届高三第三次模拟数学试卷(文)含答案

安徽省马鞍山市2017届高三第三次模拟数学试卷(文)含答案

2017年马鞍山市高中毕业班第三次教学质量检测高三文科数学试题本试卷分第I卷(选择题)和第II卷(非选择题)两部分,全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的学校、姓名、班级、座号、准考证号.2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效....、.............,在试题卷草稿纸上答题无效.........A B=(▲1,1](C)充要条件(D)既不充分也不必要条件±=20x y【答案】C【命题意图】考查双曲线的性质,简单题.(5)《九章算术》“勾股”章有一题:“今有二人同立.甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“已知甲、乙二人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.甲、乙各走了多少步? ” 请问乙.走的步数是(▲ )(A )92(B )152(C )212(D )492(A )4(B )5 (C )6 (D )7,则()f x 的一个单调递减区间是( ▲ )(A )[,]36- (B )[,]33π- (C )5[,]66ππ- (D)2[,]63ππ 【答案】D【命题意图】考查三角函数的性质,中等题.(8)函数()f x 的定义域为R ,若(1)f x +与(1)f x -都是奇函数,则(5)f =( ▲ )(C )1 (D )5 (3,0)F ,过点F 的直线交E 于A B 、两E 的方程为( ▲ ) (A )2214536x y += (B )2213627x y += (C )2212718x y += (D )221189x y += 【答案】D【命题意图】本题考查中点弦问题,中等题.(10)已知实数,x y 满足约束条件10220x y mx y x y +≥⎧⎪-≤⎨⎪-+≥⎩,若3z x y =-的最大值为1,则实数m 的值为( ▲ )(A )23(B )1 (C )83(D )3【答案】C【命题意图】 考查线性规划,中等题.(11)已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距(A )16π (B )16π (C )323π(D )32π有四个不同的根,则m 的取值范围(A )(0,2)e(B )(0,)e(C )(0,1)(D )1(0,)二、填空题:本大题共4个小题,每小题5分,共20分.请在答题卡上答题.)已知向量(2,1)a =,(,1)b x =-,若a ∥()a b -,则a b ⋅= ▲ 【命题意图】考查平面向量基本运算,简单题.22222216(sin sin )16[sin (60)sin (60)]16(1cos 2)a b A B ααα+=+=︒++︒-=+在答题卡上答题. (17)(本小题满分12分)已知数列{}n a 的前n 项和为.n S ,且241n n S a =-. (Ⅰ)求{}n a 的通项公式;(Ⅱ)设12n n n b a a +=⋅-,求数列{}n b 的前n 项和n T .【命题意图】考查数列的概念,等比数列的基本运算,数列的求和,考查运算能力,简单题.(18)(本小题满分12分)2017年3月27日,一则“清华大学要求从2017级学生开始,游泳达到一定标准才能毕业”的消息在体育界和教育界引起了巨大反响.游泳作为一项重要的求生技能和运动项目受到很多人的喜爱.其实,已有不少高校将游泳列为必修内容.某中学为了解2017届高三学已知在这100人中随机抽取1(Ⅰ)请将上述列联表补充完整;(Ⅱ)判断是否有99.9%的把握认为喜欢游泳与性别有关?附:22()()()()()n ad bc K a b c d a c b d -=++++【解析】(Ⅰ)因为在100人中随机抽取1人抽到喜欢游泳的学生的概率为35,所以喜欢游泳的学生人数为3100605⨯=人.其中女生有20人,则男生有40人,列联表补充如下: (5)分(Ⅱ)因为()221004030201016.6710.82860405050K ⨯-⨯=≈>⨯⨯⨯.所以有99.9%的把握认为喜欢游泳与性别有关. …………………12分19. 已知几何体ABCDEF 中, AB ∥CD ,AD DC ⊥,EA ⊥平面ABCD ,FC ∥EA ,1AB AD EA ===,2CD CF ==. (Ⅰ)求证:平面EBD ⊥平面BCF ; (Ⅱ)求点B 到平面ECD 的距离.【命题意图】考查空间线面关系、几何体体积的计算,空间想象能力,中等题.()()222246,BC CD BD BC EA ABCD BD ABCDEA BDEA FCFC BD BD BC FC BD BD BC B BD BCF BD EBD EBD BCF EA ABCDEA CD EA ADAD CDCD EA I ∴+=∴⊥⊥⊂∴⊥∴⊥⊥⊥=⊥⊂∴⊥II ⊥∴⊥⊥⊥∴⊥Q L L L Q Q P L L L L L L L L L L L L L L L L L L I Q L L L L L L L Q Q 解:由题意可知:CD=2BD 分平面平面分由,及得平面,面,平面平面分平面又平面1,1211921133212.CDE BCD BCD B CDE E BCD CDE BCD CDE DCD ED EAD EA AD EA AD ED S CD ED S CD AD B CDE d S EA V V S d S EA d S B CDE ∆∆∆--∆∆∆∴⊥∆⊥==∴=∴=⋅⋅==⋅=⋅=⋅=⋅∴===L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L 中,分设到平面的距离为由得:即点到平面分(或由AB ∥CD 得点B 到平面CDE 的距离等于点A 到平面CDE 的距离,过点A 作AO ⊥DE 于点O,易知AO 的长度即为所求. )(20)(本小题满分12分)已知曲线2:4C y x =,22:(1)4(1)M x y x -+=≥,直线l 与曲线C 相交于A B 、两点,O 为坐标原点.(Ⅰ)若4OA OB ⋅=-u u r u u u r,求证:直线l 恒过定点,并求出定点坐标;(Ⅱ)若直线l 与曲线M 相切,求MA MB ⋅u u u r u u u r的取值范围. 【命题意图】考查抛物线、圆的方程、直线和圆锥曲线的位置关系,考查运算能力,中等题. 【解析】(Ⅰ)由已知,可设:,l x my n =+1122(,(,A x y B x y )、)ABCDEF由24x my n y x=+⎧⎨=⎩ 得:2440,y my n --= 12124,4.y y m y y n ∴+=⋅=-22121242,.x x m n x x n ∴+=+⋅=∴由4OA OB ⋅=-u u r u u u r可得:212124 4.x x y y n n ⋅+⋅=-=-解得: 2.n = :2,l x my ∴=+∴直线l 恒过定点(2,0). …………………………(5分)(Ⅱ)Q 直线l 与曲线M 相切,M (1,0),显然3n ≥∴2=,整理得:2242 3.m n n =--①由(Ⅰ)及①可得: 112212*********222(1,)(1,)(1)(1)()1421446144MA MB x y x y x x y y x x x x y y n m n n n m n n⋅=-⋅-=-⋅-+⋅=⋅-+++⋅=--+-=--+=-uuu r uuu r8MA MB ∴⋅≤-uuu r uuu r,即MA MB ⋅u u u r u u u r 的取值范围是(,8].-∞- …………………………(12分)(21)(本小题满分12分)已知函数2()(1)ln ()()f x x x x a a R =---∈.(Ⅰ)若()f x 在(0,)+∞上单调递减,求a 的取值范围;(Ⅱ)若()f x 有两个极值点12,x x ,求证:1254x x +>.【命题意图】本题考查导数的综合运用,考查学生应用知识解决问题的能力,较难题.【解析】(Ⅰ)由已知,11()ln 2()ln 2120x f x x x a x x a x x-'=+--=--++≤恒成立令1()ln 212g x x x a x=--++,则22221121(21)(1)()2(0)x x x x g x x x x x x -++-+-'=+-==>01x ∴<<当时,()0g x '<,()0,1g x 在()上单调递减, 1x >当时,()0g x '>,()1,g x +∞在()上单调递增, min ()(1)22g x g a ∴==-∴由()0f x '≤恒成立可得 1.a ≤即当()f x 在(0,)+∞上单调递减时,a 的取值范围是(,1].-∞ …………………………(5分)(Ⅱ)若()f x 有两个极值点12,x x ,不妨设120x x <<. 由(Ⅰ)可知 1.a >且11111()ln 2120.................f x x x a x '=--++=①22221()ln 2120.................f x x x a x '=--++=②由①-②得:11212212ln2()0x x x x x x x x -+--= 1121221()(2)ln 0x x x x x x ∴--=->1212x x ∴< 即 12112x x e>> 由①+②得:12121212ln()22()40x xx x x x a x x ++--++=121212ln()241245.12242x x a x x x x ++-++∴+=>=++ …………………………(12分)请考生在第(22)和第(23)题中任选一题作答,如果多做,则按所做的第一题计分. (22)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为112x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,曲线2C :22123sin ρθ=+.(Ⅰ)求曲线1C 的普通方程和2C 的直角坐标方程;(Ⅱ)若1C 与2C 相交于A B 、两点,设点(1,0)F ,求11||||FA FB +的值. 【命题意图】本题考查参数方程、极坐标方程与直角坐标方程的互化方法,直线与椭圆的位置关系,中等题.【解】(I )112,x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)⇒22t x t=-⎧⎪⎨=⎪⎩⇒0y-,所以曲线1C 的普通方程为1)y x -. ………………………………………2分2222222222123sin 123()1234123sin x y y x y ρρρθθ=⇒+=⇒++=⇒+=+, 所以2C 的直角坐标方程为22143x y +=. ………………………………………5分(Ⅱ)由题意可设,与A B 、两点对应的参数分别为12,t t , 将1C 的参数方程代入2C 的直角坐标方程22143x y +=, 化简整理得,254120t t +-=,所以121245125t t t t ⎧+=-⎪⎪⎨⎪⋅=-⎪⎩, ………………………………………7分 所以121211FA FB t t FA FB FA FB t t +++==⋅⋅, 因为121205t t ⋅=-<,所以1212165t t t t +=-,所以1611451235FA FB +== ……………………………………10分 (23)(本小题满分10分)选修4-5:不等式选讲设函数()225f x x a x =-++-(a R ∈). (Ⅰ)试比较(1)f -与()f a 的大小;(Ⅱ)当5a =-时,求函数()f x 的图象和x 轴围成的图形面积.【命题意图】本题考查含绝对值代数式大小比较,绝对值函数图象特征等基础知识,以及分类讨论思想和运算求解能力,中等题.【解】(I )因为()()(1)2251510f a f a a a --=+--+-=+≥,于是()(1)f a f ≥-. 当且仅当1a =-时等号成立 ………………………………………5分(Ⅱ)当5a =-时, 32,1,()52252,51,312,5,x x f x x x x x x x +≥-⎧⎪=+++-=---≤<-⎨⎪--<-⎩可知函数()f x 的图象和x 轴围成的图形是一个三角形,其中与x 轴的两个交点分别为(2,0)A -,2(,0)3B -,三角形另一顶点坐标为(1,1)C --,从而ABC ∆面积为122(2)1233S =⨯-⨯=.………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年安徽省江淮十校高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=cos 3+isin 3(i为虚数单位),则|z|为()A.1 B.2 C.3 D.42.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)已知等差数列{a n}中,a2,a2016是方程x2﹣2x﹣2=0的两根,则S2017=()A.﹣2017 B.﹣1008 C.1008 D.20174.(5分)若向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或﹣5.(5分)|x|•(1﹣2x)>0的解集为()A.(﹣∞,0)∪(0,)B.(﹣∞,) C.(,+∞)D.(0,)6.(5分)执行如图所示的程序框图,若输入的n的值为5,则输出的S的值为()A.17 B.36 C.52 D.727.(5分)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1与e2满足的关系是()A.+=2 B.﹣=2 C.e1+e2=2 D.e2﹣e1=28.(5分)一光源P在桌面A的正上方,半径为2的球与桌面相切,且PA与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△PAB,其中PA=6,则该椭圆的长轴长为()A.6 B.8 C.D.39.(5分)如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为()A.B.C.D.10.(5分)函数f(x)=x2﹣bx+c满足f(1+x)=f(1﹣x)且f(0)=3,则f(b x)和f(c x)的大小关系是()A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同11.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y ﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)12.(5分)若函数f(x)=﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a 的取值范围是()A.1<a≤2 B.a≥4 C.a≤2 D.0<a≤3二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)一支田径队员有男运动员56人,女运动员42人,若采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为.14.(5分)设有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是.15.(1+2x2)(x﹣)8的展开式中常数项为.16.(5分)如果x、y满足不等式组,那么目标函数z=x﹣y的最小值是.17.(5分)如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中:①|BM|是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.其中正确的命题是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.(12分)某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(Ⅰ)求这次铅球测试成绩合格的人数;(Ⅱ)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知学生a、b的成绩均为优秀,求两人a、b至少有1人入选的概率.19.(12分)已知向量=(sinx,﹣1),向量=(cosx,﹣),函数f(x)=(+)•.(1)求f(x)的最小正周期T;(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且f(A)恰是f(x)在[0,]上的最大值,求A和b.20.(12分)四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.(1)求证:QP⊥AC;(2)当面PAC⊥面QAC时,求三棱锥Q﹣ACP的体积.21.(12分)已知函数f(x)=xlnx(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.22.(12分)已知抛物线C:y2=2px(p>0)的焦点F与椭圆C':=1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若,|BM|2+|BN|2=40,求实数λ的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)23.(10分)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是(t为参数),曲线C的极坐标方程为ρ=sin().(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于M、N两点,求M、N两点间的距离.[选修4-5:不等式选讲](共1小题,满分0分)24.已知函数f(x)=|x+4|﹣|x﹣1|.(1)解不等式f(x)>3;(2)若不等式f(x)+1≤4a﹣5×2a有解,求实数a的取值范围.2017年安徽省江淮十校高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数z=cos 3+isin 3(i为虚数单位),则|z|为()A.1 B.2 C.3 D.4【解答】解:|z|==1.故选:A.2.(5分)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β“是“α∥β”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:m⊂α,m∥β得不到α∥β,因为α,β可能相交,只要m和α,β的交线平行即可得到m∥β;α∥β,m⊂α,∴m和β没有公共点,∴m∥β,即α∥β能得到m∥β;∴“m∥β”是“α∥β”的必要不充分条件.故选B.3.(5分)已知等差数列{a n}中,a2,a2016是方程x2﹣2x﹣2=0的两根,则S2017=()A.﹣2017 B.﹣1008 C.1008 D.2017【解答】解:等差数列{a n}中,a2,a2016是方程x2﹣2x﹣2=0的两根,可得a2+a2016=2.S2017===2017.故选:D.4.(5分)若向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,则λ等于()A.2 B.﹣2 C.﹣2或D.2或﹣【解答】解:由题意向量=(1,λ,2),=(2,﹣1,2),且与的夹角余弦值为,故有cos<,>===,解得:λ=﹣2或.故应选C.5.(5分)|x|•(1﹣2x)>0的解集为()A.(﹣∞,0)∪(0,)B.(﹣∞,) C.(,+∞)D.(0,)【解答】解:由不等式|x|(1﹣2x)>0可得x≠0,且1﹣2x>0,求得x<,且x≠0,故选:A6.(5分)执行如图所示的程序框图,若输入的n的值为5,则输出的S的值为()A.17 B.36 C.52 D.72【解答】解:根据程序框图可知k=1,S=0,进入循环体后,循环次数、S的值、k的值的变化情况为:所以输出的S的值为72.故选:D.7.(5分)已知中心在原点的椭圆与双曲线有公共焦点,左右焦点分别为F1,F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=10,椭圆与双曲线的离心率分别为e1,e2,则e1与e2满足的关系是()A.+=2 B.﹣=2 C.e1+e2=2 D.e2﹣e1=2【解答】解:如图,设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,即有m=10,n=2c,由椭圆的定义可得10+n=2a1,由双曲线的定义可得10﹣n=2a2,则n=a1﹣a2,∵,,∴.故选:B.8.(5分)一光源P在桌面A的正上方,半径为2的球与桌面相切,且PA与球相切,小球在光源P的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是Rt△PAB,其中PA=6,则该椭圆的长轴长为()A.6 B.8 C.D.3【解答】解:以A为原点,以AB,AP为坐标轴建立平面直角坐标系,则球在平面xoy上的截面圆方程为(x﹣2)2+(y﹣2)2=4,P(0,6),设直线PB的方程为y=kx+6,则圆心(2,2)到直线PB的距离d==2,解得k=﹣.∴PB的方程为y=﹣+6,令y=0得x=8,即AB=8.故选B.9.(5分)如图,半径为5cm的圆形纸板内有一个相同圆心的半径为1cm的小圆,现将半径为1cm的一枚硬币抛到此纸板上,使整块硬币完全随机落在纸板内,则硬币与小圆无公共点的概率为()A.B.C.D.【解答】解:记“硬币落下后与小圆无公共点”为事件A,硬币要落在纸板内,硬币圆心距离纸板圆心的距离应该小于4,其面积为16π,无公共点也就意味着,硬币的圆心与纸板的圆心相距超过2cm,以纸板的圆心为圆心,作一个半径2cm的圆,硬币的圆心在此圆外面,则硬币与半径为1cm的小圆无公共交点.所以有公共点的概率为,无公共点的概率为P(A)=1﹣=,故选:D.10.(5分)函数f(x)=x2﹣bx+c满足f(1+x)=f(1﹣x)且f(0)=3,则f(b x)和f(c x)的大小关系是()A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同【解答】解:∵f(1+x)=f(1﹣x),∴f(x)图象的对称轴为直线x=1,由此得b=2.又f(0)=3,∴c=3.∴f(x)在(﹣∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).故选A.11.(5分)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y ﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选D12.(5分)若函数f(x)=﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a 的取值范围是()A.1<a≤2 B.a≥4 C.a≤2 D.0<a≤3【解答】解:∵,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)一支田径队员有男运动员56人,女运动员42人,若采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为16.【解答】解:一支田径队员有男运动员56人,女运动员42人,采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为:=16.故答案为:16.14.(5分)设有两个命题,p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0};q:函数y=lg(ax2﹣x+a)的定义域为R.如果p∨q为真命题,p∧q为假命题,则实数a的取值范围是或a≥1.【解答】解:p:关于x的不等式a x>1(a>0,且a≠1)的解集是{x|x<0},则0<a<1;q:函数y=lg(ax2﹣x+a)的定义域为R,a=0时不成立,a≠0时,则,解得.如果p∨q为真命题,p∧q为假命题,则命题p与q必然一真一假.∴,或,解得则实数a的取值范围是.故答案为:或a≥1.15.(1+2x2)(x﹣)8的展开式中常数项为﹣42.【解答】解:先求的展开式中常数项以及含x﹣2的项;由8﹣2r=0得r=4,由8﹣2r=﹣2得r=5;即的展开式中常数项为C84,含x﹣2的项为C85(﹣1)5x﹣2∴的展开式中常数项为C84﹣2C85=﹣42故答案为﹣4216.(5分)如果x、y满足不等式组,那么目标函数z=x﹣y的最小值是﹣9.【解答】解:作出不等式组对应的平面区域如图:由目标函数z=x﹣y得y=x﹣z,平移直线y=x﹣z,由图象可知当直线经过点A时,直线的截距最大,此时z最小,由,解得A(﹣2,7),此时z min=x﹣y=﹣2﹣7=﹣9,故答案为:﹣9.17.(5分)如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻折过程中:①|BM|是定值;②点M在某个球面上运动;③存在某个位置,使DE⊥A1C;④存在某个位置,使MB∥平面A1DE.其中正确的命题是①②④.【解答】解:取A1D的中点N,连结MN,EN,则MN为△A1CD的中位线,∴MN CD,∵E是矩形ABCD的边AB的中点,∴BE CD,∴MN BE,∴四边形MNEB是平行四边形,∴BM EN,∴BM为定值,M在以B为球心,以BM为半径的球面上,故①正确,②正确;又NE⊂平面A1DE,BM⊄平面A1DE,∴BM∥平面A1DE,故④正确;由勾股定理可得DE=CE=2,∴DE2+CE2=CD2,∴DE⊥CE,若DE⊥A1C,又A1C∩CE=C,∴DE⊥平面A1CE,又A1E⊂平面A1CE,∴DE⊥A1E,而这与∠AED=45°矛盾.故③错误.故答案为:①②④.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)18.(12分)某市为了了解今年高中毕业生的体能状况,从某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.数据分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.(Ⅰ)求这次铅球测试成绩合格的人数;(Ⅱ)若参加测试的学生中9人成绩优秀,现要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知学生a、b的成绩均为优秀,求两人a、b至少有1人入选的概率.【解答】解:(Ⅰ)第6小组的频率为1﹣(0.04+0.10+0.14+0.28+0.30)=0.14,∴此次测试总人数为(人).∴第4、5、6组成绩均合格,人数为(0.28+0.30+0.14)×50=36(人).(Ⅱ)设成绩优秀的9人分别为a,b,c,d,e,f,g,h,k,则选出的2人所有可能的情况为:ab,ac,ad,ae,af,ag,ah,ak;bc,bd,be,bf,bg,bh,bk;cd,ce,cf,cg,ch,ck;de,df,dg,dh,dk;ef,eg,eh,ek;fg,fh,fk;gh,gk;hk.共36种,其中a、b到少有1人入选的情况有15种,∴a、b两人至少有1人入选的概率为.19.(12分)已知向量=(sinx,﹣1),向量=(cosx,﹣),函数f(x)=(+)•.(1)求f(x)的最小正周期T;(2)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且f(A)恰是f(x)在[0,]上的最大值,求A和b.【解答】解:(1)∵向量=(sinx,﹣1),向量=(cosx,﹣),∴f(x)=(+)•=sin2x+1+sinxcosx+=+1+sin2x+=sin2x﹣cos2x+2=sin(2x﹣)+2,∵ω=2,∴函数f(x)的最小正周期T==π;(2)由(1)知:f(x)=sin(2x﹣)+2,∵x∈[0,],∴﹣≤2x﹣≤,∴当2x﹣=时,f(x)取得最大值3,此时x=,∴由f(A)=3得:A=,由余弦定理,得a2=b2+c2﹣2bccosA,∴12=b2+16﹣4b,即(b﹣2)2=0,∴b=2.20.(12分)四棱锥P﹣ABCD中,PD⊥面ABCD,底面ABCD是菱形,且PD=DA=2,∠CDA=60°,过点B作直线l∥PD,Q为直线l上一动点.(1)求证:QP⊥AC;(2)当面PAC⊥面QAC时,求三棱锥Q﹣ACP的体积.【解答】证明:(1)由题意知直线QP在面ABCD上的射影为DB,又菱形ABCD中DB⊥AC,由三垂线定理知QP⊥AC.解:(2)△PAC和△QAC都是以AC为底的等腰三角形,设AC和BD的交点为O,连接OP、OQ,则OP⊥AC,OQ⊥AC,∴AC⊥面POQ.面PAC⊥面QAC知:OP ⊥OQ.在Rt△POD中,,设QB=x,则Rt△OBQ中,,在直角梯形PDBQ中,,在△POQ中,,故,解得,即.同时,,∴三棱锥Q﹣ACP的体积.21.(12分)已知函数f(x)=xlnx(x>0).(1)求f(x)的单调区间和极值;(2)若对任意x∈(0,+∞),f(x)≥恒成立,求实数m的最大值.【解答】解析:(1)f'(x)=lnx+1,f′(x)>0⇒x>,f′(x)<0⇒0<x<∴f(x)的单调增区间是,单调减区间是.∴f(x)在处取得极小值,极小值为.(2)由变形,得恒成立,令,,由g'(x)>0⇒x>1,g'(x)<0⇒0<x<1.所以,g(x)在(0,1)上是减函数,在(1,+∞)上是增函数.所以,g(x)min=g(1)=4,即m≤4,所以m的最大值是4.22.(12分)已知抛物线C:y2=2px(p>0)的焦点F与椭圆C':=1的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M、N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若,|BM|2+|BN|2=40,求实数λ的值.【解答】解:(1)依题意,椭圆中,a2=6,b2=5,故c2=a2﹣b2=1,故,则2p=4,可得抛物线C的方程为y2=4x.将A(x0,2)代入y2=4x,解得x0=1,故.(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),联立方程,消去x,得y2﹣4my﹣4=0.所以,①且,又,则(1﹣x1,﹣y1)=λ(x2﹣1,y2),即y1=﹣λy2,代入①得,消去y2得,易得B(﹣1,0),则,则===(m2+1)(16m2+8)+4m•4m+8=16m4+40m2+16,当16m4+40m2+16=40,解得,故.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](共1小题,满分10分)23.(10分)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.直线l的参数方程是(t为参数),曲线C的极坐标方程为ρ=sin().(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于M、N两点,求M、N两点间的距离.【解答】解:(1)将曲线C的极坐标方程化为ρ=sin()=cosθ+sinθ两边都乘以ρ,得ρ2=ρcosθ+ρsinθ因为x=ρcosθ,y=ρsinθ,ρ2=x2+y 2代入上式,得方求曲线C的直角坐标方程为:x2+y2﹣x﹣y=0(2)直线l的参数方程是(t为参数),消去参数t得普通方程:4x﹣3y+1=0,将圆C的极坐标方程化为普通方程为:x2+y2﹣x﹣y=0,所以()为圆心,半径等于所以,圆心C到直线l的距离d=所以直线l被圆C截得的弦长为:|MN|=2 =.即M、N两点间的距离为.[选修4-5:不等式选讲](共1小题,满分0分)24.已知函数f(x)=|x+4|﹣|x﹣1|.(1)解不等式f(x)>3;(2)若不等式f(x)+1≤4a﹣5×2a有解,求实数a的取值范围.【解答】解:(1)由题意可得,则当x≤﹣4时,不成立;当﹣4<x<1时,2x+3>3,解得0<x<1;当x≥1时,5>3成立,故原不等式的解集为{x|x>0}.(2)根据题意可得的最小值为﹣5,由即f(x)≤4a﹣5×2a﹣1有解,∴4a﹣5×2a﹣1≥﹣5,即4a﹣5×2a+4≥0,即2a≥4或2a≤1,∴a≥2或a≤0,故实数a的取值范围是(﹣∞,0]∪[2,+∞).。

相关文档
最新文档