初中二次函数总复习课件(公开课)
合集下载
中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
二次函数总复习初中数学讲课教案课件
03
二次函数的性质
二次函数的开口方向
二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0
二次函数的开口方向由系数a决定,当a>0时,开口向上;当a<0时,开口向下
二次函数的对称轴为x=-b/2a,当a>0时,对称轴左侧函数值随x的增大而减小;当 a<0时,对称轴左侧函数值随x的增大而增大
抛物线的翻折变换
翻折变换的定义: 将抛物线沿垂直 于对称轴的方向 进行翻折,得到
新的抛物线。
翻折变换的性质: 翻折前后的两个 抛物线关于对称 轴对称,对称轴 为翻折的垂直平
分线。
翻折变换的应用: 通过翻折变换可 以将一些复杂的 二次函数图象转 化为简单的标准 形式,便于分析 函数的性质和解
决相关问题。
时的x值
二次函数的增 减性:在对称 轴两侧,函数 值随着x的增大 而增大或减小
二次函数的图象变
04
换
抛物线的平移变换
向上平移:纵坐标增加
向左平移:横坐标增加
向下平移:纵坐标减少 向右平移:横坐标减少
抛物线的对称变换
横向平移:左右移动抛物线,不改变形状和开口方向 纵向平移:上下移动抛物线,不改变形状和开口方向 旋转:以原点为中心,旋转抛物线,不改变开口方向 翻折:将抛物线沿垂直于对称轴的方向翻折,不改变开口方向
01
添加章节标题
二次函数的基本概
02
念
二次函数的定义
二次函数的一 般形式为
y=ax^2+bx+ c,其中a、b、 c为常数且a≠0
二次函数的图 像是一个抛物 线,其顶点坐 标为(-b/2a, c-b^2/4a)
二次函数的开 口方向由系数a 决定,a>0时
二次函数总复习总结课件PPT
c>0
c=0 c<0
x
(3)a、b确定对称轴
x=-
b 2a
的位置:
ab>0 ab=0 ab<0
(4)Δ确定抛物线与x轴的交点个数:
Δ>0
Δ=0 Δ<0
CHENLI
14
y
•0 (0,0)
(1)a确定抛物线的开口方向:
a>0
a<0
(2)c确定抛物线与y轴的交点位置:
c>0
c=0 c<0
x
(3)a、b确定对称轴
云 影 飘 飘 漾漾 ,滑落 几瓣, 摇曳乞 巧坊。 绿 意 掩 映 的门, 玲珑雕 花的窗 , 朱 红 的 屏 风穿透 古筝悠 扬,高 山流水 韵,又 一曲, 渔舟晚 唱。 芊 芊 玉 指, 脂 粉 的 面 庞 ,颔首 凝神, 眉如黛 ,双眸 似水, 轻捻指 ,飞针 走线, 满目心 事,落 于 绸 缎 间 徜 徉。 十 指 春 风, 七彩的 丝线盘 绕出戏 水的鸳 鸯,牡 丹嫣红 次第开 放 , 红 梅 凌 雪,睡 莲静卧 ,兰花 一枝独 自芬芳 。 蜂 蝶 绕 , 燕呢 喃,凤 飞翱翔 , 四 海 求 凰 。 丽 华 秀 玉 色, 汉女娇 朱颜。 清歌遏 流云, 艳舞有 馀闲。 墨香点 点 , 熏 染 墙 面歌悠 扬,笔 意汩汩 ,飞舞 白宣诗 流淌。 荷 包 绣 不 尽,丝 丝缕缕 遥 远 的 牵 挂 ;锦囊 裹幽香 ,缠缠 绵绵前 世的爱 恋。红 丝带系 牢,思 念挂在 心间。 缀 满 心 事 的 流苏, 飞溅经 年的约 定,一 颗颗无 声的珠 玉滴落 ,都脆 响在七 月带露 的 心 上 。 垂 挂 在 空中 ,风干 的往事 ,独倚 雕栏, 寂静张 望。 蓝 花 布 包裹 的 花 枕 , 香 酥手将 美梦一 一盛放 ,蓝天 白云荞 麦香, 装着故 乡的模 样,花 枕圆、 花 枕 方 , 情 针意线 绣不尽 。鸳鸯 枕边, 绣花的 棱角稳 稳当当 ,层层 叠叠垒 ,砌成 安 静 的 墙 。 雨过后 ,天微 凉,送 你,去 远方, 心随你 走,他 乡是故 乡,牵 着故乡 月 , 让 心 去 流浪, 枕边耳 语在, 无论走 多远, 不被遗 忘。 古 色 古 香韵 悠长,
初中二次函数总复习课件
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
解:(1)根据题意得:y = 1x(40x2 20x(0x 15)
2
B
C
2、在我市开展的创文明小区活动中,某居民小区要在一块一边靠
墙(墙长为15m)的空地上修建一个矩形花园ABCD,花园的一边
靠墙,另三边用总长为40m的栅栏围成(如图所示).若设花园的
③一个1.5m的小朋友跑到离原点6米 y
的地方(如图),他会受到伤害吗?
y 0.1(x 3)2 2.5
解:当 x = 6 时,
(0,1.6)
y= - 0.1(6-3)2 + 2.5 = 1.6
1.6>1.5
O
Bx
所以,这个小朋友不会受到伤害.
1.数形结合是本章主要的数学思想,通过画图将二次函 数直观表示出来,根据函数图象,就能知道函数的开口方 向、顶点坐标、对称轴、变化趋势、与坐标轴的交点、函 数的最值等问题。
c<0
交点经过原点
c=0
(3)b的符号: 由对称轴的位置确定
对称轴在y轴左侧
a、b同号 左
对称轴在y轴右侧 对称轴是y轴
a、b异号
同 右
b=0
异
(4)b2-4ac的符号: 由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点
b2-4ac>0 b2-4ac=0 b2-4ac<0
b 2a
直线
, 4ac b2 4a
x b 2a
由a,b和c的符号确定
a>0,开口向上
在对称轴的左侧,y随着x的增大而减小; 在对称轴的右侧, y随着x的增大而增大.
当x b 时, y最小值为 4ac b2
解:(1)根据题意得:y = 1x(40x2 20x(0x 15)
2
B
C
2、在我市开展的创文明小区活动中,某居民小区要在一块一边靠
墙(墙长为15m)的空地上修建一个矩形花园ABCD,花园的一边
靠墙,另三边用总长为40m的栅栏围成(如图所示).若设花园的
③一个1.5m的小朋友跑到离原点6米 y
的地方(如图),他会受到伤害吗?
y 0.1(x 3)2 2.5
解:当 x = 6 时,
(0,1.6)
y= - 0.1(6-3)2 + 2.5 = 1.6
1.6>1.5
O
Bx
所以,这个小朋友不会受到伤害.
1.数形结合是本章主要的数学思想,通过画图将二次函 数直观表示出来,根据函数图象,就能知道函数的开口方 向、顶点坐标、对称轴、变化趋势、与坐标轴的交点、函 数的最值等问题。
c<0
交点经过原点
c=0
(3)b的符号: 由对称轴的位置确定
对称轴在y轴左侧
a、b同号 左
对称轴在y轴右侧 对称轴是y轴
a、b异号
同 右
b=0
异
(4)b2-4ac的符号: 由抛物线与x轴的交点个数确定
与x轴有两个交点 与x轴有一个交点 与x轴无交点
b2-4ac>0 b2-4ac=0 b2-4ac<0
b 2a
直线
, 4ac b2 4a
x b 2a
由a,b和c的符号确定
a>0,开口向上
在对称轴的左侧,y随着x的增大而减小; 在对称轴的右侧, y随着x的增大而增大.
当x b 时, y最小值为 4ac b2
二次函数总复习 [初中数学 讲课教案 ]ppt课件
(1)观察图象,写出A 、B、C三点的坐标,并求出抛物 线解析式,
(2)求此抛物线的顶点坐标和对称轴 (3)观察图象,当x取何值时,y<0?y=0?y>0?
y
5
C
AO
-1
4
B
完整编辑ppt
x
25
课后练习:
8、已知二次函数y=(m2-2)x2-4mx+n的图象关于直线 x=2对称,且它的最高点在直线y=x+1上. (1)求此二次函数的解析式; (2)若此抛物线的开口方向不变,顶点在直线y=x+1上 移动到点M时,图象与x轴交于A 、B两点,且S△ABM=8, 求此时的二次函数的解析式 。
x
Ox
B
y O
x
C
D
完整编辑ppt
19
3、 已知抛物线 y=2x2+2x-4,
x1
则它的对称轴为_________2_,顶点为
( 1 , 9 )
___2___2_,与x轴的两交点坐标为
_(_1,_0_)_,(__2_,_0_),
与y轴的交点坐标为_(__0_,-_4_)__。
完整编辑ppt
20
练习
完整编辑ppt
30
练一练
5、已知二次函数 y=kx2-7x-7的图象与x轴
有交点,则k的取值范围是
( B)
A、k≥ 7 4
B、k≥ 7 且k 0 4
C、k> 7 4
D、k> 7 且k 0 4
完整编辑ppt
31
例题
1、已知抛物线y=x2+ax+a-2.
(1)证明:此抛物线与x轴总有两个不同的交点;
A .y=x2+2x-2 B. y=x2+2x+1
(2)求此抛物线的顶点坐标和对称轴 (3)观察图象,当x取何值时,y<0?y=0?y>0?
y
5
C
AO
-1
4
B
完整编辑ppt
x
25
课后练习:
8、已知二次函数y=(m2-2)x2-4mx+n的图象关于直线 x=2对称,且它的最高点在直线y=x+1上. (1)求此二次函数的解析式; (2)若此抛物线的开口方向不变,顶点在直线y=x+1上 移动到点M时,图象与x轴交于A 、B两点,且S△ABM=8, 求此时的二次函数的解析式 。
x
Ox
B
y O
x
C
D
完整编辑ppt
19
3、 已知抛物线 y=2x2+2x-4,
x1
则它的对称轴为_________2_,顶点为
( 1 , 9 )
___2___2_,与x轴的两交点坐标为
_(_1,_0_)_,(__2_,_0_),
与y轴的交点坐标为_(__0_,-_4_)__。
完整编辑ppt
20
练习
完整编辑ppt
30
练一练
5、已知二次函数 y=kx2-7x-7的图象与x轴
有交点,则k的取值范围是
( B)
A、k≥ 7 4
B、k≥ 7 且k 0 4
C、k> 7 4
D、k> 7 且k 0 4
完整编辑ppt
31
例题
1、已知抛物线y=x2+ax+a-2.
(1)证明:此抛物线与x轴总有两个不同的交点;
A .y=x2+2x-2 B. y=x2+2x+1
初三数学中考复习:二次函数的应用 复习课 课件(共32张PPT)
二次函数的应用
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。
知识总览 主要知识内容回顾 典型例题分析 小结
二次函数
一、 知识总览
二次函数
概念 图像性质 用函数观点看方程与不等式
应用
一1.从、二二次次函函数数角与度方看程二次、方不程等、式不等式
(形)
(数)
解法一:观察图像, 解法二:解方程,
(形)
(数)
解法一:观察图像,
一、二次函数与方程、不等式
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
某商店经营一种水产品,成本为每千克40元的水产品,据市场分析,若按每千克50 元销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种 水产品的销售情况,销售单价定为多少元时,获得的利润最多?
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
解决最值类的主要步骤:
第三步:确定自变量取值范围。(与自变量相关的量) 第四步:利用二次函数性质解决最值等问题。(顶点、图像) 第五步:回归实际题。
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
例2:
分析:
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
优秀ppt公开课ppt免费课件下载免费 课件20 20届 初三数 学中考 复习: 二次函 数的应 用 复习课 课件(共32张PPT)
➢ 构造函数解方程,利用两个函数图象交点确定解。 ➢ 可对方程进行同解变形,再构造函数。
(完整版)(公开课一等奖)二次函数复习课教案ppt
二次函数的定义
定义:一般地,形如y=ax²+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数。
分类:二次函数分为整式和分式两种形式。
表达式:二次函数的表达式为y=ax²+bx+c(a、b、c是常数,a≠0),其中a为二 次项系数,b为一次项系数,c为常数项。
图像:二次函数的图像是一条抛物线,开口向上或向下,对称轴为x=-b/2a。
总结解题方法和思路
回顾知识点,梳理知识体系 总结解题方法,强调易错点 针对不同题型,给出解题思路 结合实际案例,加深理解和记忆
强调重点和难点,提醒注意事项
重点:回顾和强 化二次函数的基 本概念和公式
难点:掌握二次函 数的图像和性质, 以及与一元二次方 程的关系
注意事项:注意图像 的开口方向、顶点坐 标和对称轴,以及函 数的最值情况
二次函数的图像和性质
图像:抛物线形 状,开口方向, 顶点,对称轴
性质:最值,单 调性,奇偶性
表达式:一般式, 顶点式,交点式
图像变换:平移, 伸缩,对称
抛物线的对称性及其应用
抛物线的对称性:定义、性质、几何意义
对称性在解题中的应用难点:掌握抛物线的对称性及其应用方法
抛物线顶点坐标的应 用
攻克重难点:掌握抛物 线顶点坐标的计算方法, 理解其几何意义,能够 利用顶点坐标解决相关 问题。
结合实际生活,进行案例分析
案例一:投资理财,以二次函数的最值问题为例,如何选择最佳的投资方案。 案例二:交通运输,以最短路径问题为例,如何设计最佳的运输路线。 案例三:商业促销,以最大利润问题为例,如何制定最优的促销策略。 案例四:城市规划,以最省土地问题为例,如何设计最佳的居民区规划方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由a,b和c的符号确定
由a,b和c的符号确定
a>0,开口向上
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
a<0,开口向下
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
b 4ac b 2 当x 时, y最小值为 2a 4a
二次函数复习课
一、二次函数的定义
• 定义: y=ax² + bx + c ( a 、 b 、 c 是常数, a≠0) • 定义要点:①a ≠ 0 ②最高次数为2 • ③代数式一定是整式 • 练习:1、y=-x² ,y=2x² -2/x,y=100-5 x² , • y=3 x² -2x³ +5,其中是二次函数的有____个。 2.当m_______时,函数y=(m+1)χ 是二次函数?
五、抛物线的平移
练习 ⑴二次函数y=2x2的图象向下 平移 3 个单位可得 到y=2x2-3的图象; 二次函数y=2x2的图象向右 平移 3 个单位可得到 y=2(x-3)2的图象。 ⑵二次函数y=2x2的图象先向左 平移1 个单位, 再向 上 平移 2 个单位可得到函数y=2(x+1)2+2的 图象。
y
o
x
5.抛物线y=ax2+bx+c(a≠0)的图象经过原点, 且它的顶点在第三象限,则a、b、c满足 的条件是:a > 0,b = 0,c 0. >
o
x
6.二次函数y=ax2+bx+c中,如果a>0,b<0,c<0, 那么这个二次函数图象的顶点必在第 四 象限 y 先根据题目的要求画出函数的草图,再根据 图象以及性质确定结果(数形结合的思想) x
2 、 如图 X2 - 3 ,已知二次函数 y = ax2 - 4x + c 的图象与坐 标轴交于点A(-1,0)和点B(0,-5).
(1)求该二次函数的表达式; (2)已知该函数图象的对称轴上存在一点 P,使得△ABP的周 长最小.请求出点P的坐标.
练习:根据下列条件,求二次函数的解析式。 (1)、图象经过(0,0), (1,-2) , (2,3) 三点; (2)、图象的顶点(2,3), 且经过点(3,1) ; (3)、图象经过(0,0), (12,0) ,且最高点 的纵坐标是3 。
例2、已知二次函数y=ax2+bx+c的最 大值是2,图象顶点在直线y=x+1上,并 且图象经过点(3,-6)。求a、b、c。yB来自co·
y
x
A
o
x
A、a>0,b=0,c>0,△>0 C、a>0,b=0,c<0,△>0
C B、a<0,b>0,c<0, =0
△
y
D、a<0,b=0,c<0,△<0
o
x
y
4.抛物线y=ax2+bx+c(a≠0)的图象经过原点和 二、三、四象限,判断a、b、c的符号情况: a < 0,b 0,c 0. < =
(4) 由图象可知:
当-3 < x < 1时,y < 0 当x< -3或x>1时,y > 0 y
•
(-3,0)
(1,0) x 0
•
• • • (-1,-2)
3 (0,-– 2)
三、求抛物线解析式的三种方法
1、一般式:已知抛物线上的三点,通常设解 y=ax2+bx+c(a≠0) 析式为________________ 2、顶点式:已知抛物线顶点坐标(h, k), y=a(x-h)2+k(a≠0) 通常设抛物线解析式为_______________ 3、交点式:已知抛物线与x 轴的两个交点 (x1,0)、 (x2,0),通常设解析式为 y=a(x-x1)(x-x2) (a≠0) _____________
图象
一元二次方程 ax2+bx+c=0 (a≠0)的根
有两个不同的 解x=x1,x=x2
与x轴有两个不 b2-4ac>0 同的交点 (x1 ,0) (x2 ,0)
y
O
x y
O
b2-4ac=0
与x轴有唯一个 交点 ( b ,0)
2a
x y
O
有两个相等的 解 b x1=x2=
2a
b2-4ac<0
四、a,b,c符号的确定
抛物线y=ax2+bx+c的符号问题: (1)a的符号: 由抛物线的开口方向确定 开口向上 开口向下 a>0 a<0
(2)C的符号: 由抛物线与y轴的交点位置确定. 交点在x轴上方 交点在x轴下方 经过坐标原点
c>0
c<0 c=0
(3)b的符号: 由对称轴的位置确定 对称轴在y轴左侧 对称轴在y轴右侧 对称轴是y轴
二次函数y=ax2+bx+c的图象和x轴交点有三种情况: b2 – 4ac > 0 (1)有两个交点 b2 – 4ac= 0 (2)有一个交点 (3)没有交点 b2 – 4ac< 0
若抛物线y=ax2+bx+c与x轴有交点,则
b2 – 4ac ≥0
判别式: b2-4ac
二次函数 y=ax2+bx+c (a≠0)
引申:y=2(x+3)2-4
y=2(x+1)2+2
练习:
(3)由二次函数y=x2的图象经过如何平移可以 得到函数y=x2-5x+6的图象.
5 1 2 y=x2-5x+6 ( x ) 2 4
y=x2
5 2 1 y (x ) 2 4
六、二次函数与一元二次方程
二次函数y=ax² +bx+c的图象和x轴交点的横坐标,便是对 应的一元二次方程ax² +bx+c=0的解。
b 4ac b 2 当x 时, y最大值为 2a 4a
1 2 3 例 1: 已知二次函数 y x x 2 2
(1)求抛物线开口方向,对称轴和顶点M的坐标。 (2)设抛物线与y轴交于C点,与x轴交于A、B两 点,求C,A,B的坐标。 (3)x为何值时,y随的增大而减少,x为何值时, y有最大(小)值,这个最大(小)值是多少? (4)x为何值时,y<0?x为何值时,y>0?
解:∵二次函数的最大值是2 ∴抛物线的顶点纵坐标为2 又∵抛物线的顶点在直线y=x+1上 ∴当y=2时,x=1 ∴顶点坐标为( 1 , 2) ∴设二次函数的解析式为y=a(x-1)2+2 又∵图象经过点(3,-6) ∴-6=a (3-1)2+2 ∴a=-2 ∴二次函数的解析式为y=-2(x-1)2+2 即: y=-2x2+4x
与x轴没有 交点
没有实数根 x
例3:(1)如果关于x的一元二次方程 x2-2x+m=0有两个相 2-2x+m与x轴有 等的实数根,则m= _, 此时抛物线 y=x 1 1 . 个交点
(2)已知抛物线 y=x2–8x+c的顶点在 x轴上, 则c=__16 .
(3)一元二次方程 3x2+x-10=0的两个根是 x1= -2 ,x2=5/3, 那么二次函数y= 3x2+x-10 ( 与x轴的交点坐标是__ . -2、0)(5/3、0)
(4)b2-4ac的符号: 由抛物线与x轴的交点个数确定 与x轴有两个交点 与x轴有一个交点 与x轴无交点 b2-4ac>0 b2-4ac=0 b2-4ac<0 a、b同号 a、b异号 b=0
练习: 1、二次函数y=ax2+bx+c(a≠0)的图象如图 所示,则a、b、c的符号为( ) A、a<0,b>0,c>0 B、a<0,b>0,c<0 C、a<0,b<0,c>0 D、a<0,b<0,c<0 2、二次函数y=ax2+bx+c(a≠0)的图象 如图所示,则a、b、c的符号为( ) A、a>0,b>0,c=0 B、a<0,b>0,c=0 C、a<0,b<0,c<0 D、a>0,b<0,c=0 3、二次函数y=ax2+bx+c(a≠0)的图象如图 所示,则a、b、c 、 △的符号为( )
m2 m
- 2χ+1
二、二次函数的图像及性质
y 0 x y 0 x
抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值
y=ax2+bx+c(a>0)
b 4ac b 2 2a , 4a b 直线 x 2a
y=ax2+bx+c(a<0)
b 4ac b 2 2a , 4a b 直线 x 2a
七、二次函数的综合运用
1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的距 离为5,请写出满足此条件的抛物线的解析式. 解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5) 所以其解析式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5