漆安慎力学习题解答完整版03
力学第二版漆安慎高等教育出版社第三章答案
3.4.2 质量为m 的质点在oxy 平面内运动, 质点的运动学方程为j t b i t a rωωsin cos +=, ω,,b a 为正常数,证明作用于质点的合力总是指向原点. 解题思路:本题已知质点的运动学方程,要求的是力,可运用第二章的知识,求 得加速度,,再运用牛顿运动定律求力.指向原点的意思是力的方向与矢径方 向相反.3.4.4 桌面上叠放着两块木块,质量各为m 1, m 2 ,如图所示, m 2 和桌面的摩擦系数为2μ, m 1, m 2 间的静摩擦系数为1μ, 问水平方向用多大的力才能把下面的物体抽出来.解题思路:本题应先作出受力分析图,可先按极限情况情况讨论刚好抽出 所需要的力。
3.4.5 质量为m2,的斜面可在光滑的水平面上滑动,斜面倾角为α,质量为m1的运动员与斜面之间亦无摩擦,求运动员相对于斜面的加速度及其对斜面的压力.解题思路:本题可用非惯系的方法求,如图所示,将坐标取在斜面上,设斜面后退的加速度为a0,则m1除了受重力、斜面的支持力作用外,还受到一惯性力作用(水平向左)运动员相对斜面的加速度为ar,则对于斜面3.4.6 两物体的质量分别为m 和M,物体之间及物体与桌面间的摩擦系数都为u。
求在力F 的作用下两物体的加速度及绳的张力。
绳不可伸长解:对每一物体受力分析,由牛顿第二定律列方程,对m、M 水平方向的方程为可解得3.4.9 跳伞运动员初张伞时的速率为00=v ,设所受阻力的大小与其速率的两次方成正比2v α,求)(t v v =的函数(即任一时刻的速度)解题思路:阻力是一变力,应先受力分析,列出运动微分方程,通过解微分方程求解.设阻力的大小可表示成2v f α-=,取向下为正方向。
由牛顿第二定律得 dtdv m v mg =-2α 分离变量,两边积分⎰⎰=-dt v mg dv 2α⎰⎰=-dt v gmdvg211α令 v gmx α=则 dx gmdv α=则⎰⎰=-dt xdxg m 21α 积分,得⎰⎰⎰+-+=+--+=++-=-11211ln 21)]1ln()1[ln(21)1(2)1(21C x xC x x x dx x dx x dx 211ln 21C t mg xx +=-+α113232+-=C eC e x t mg t m g αα所以, 113232+-=C eC egm v tmg t mg ααα带入初始条件 0,00==v t , 得到 13=C1122+-=tmg t mg eegm v ααα3.4.11 棒球的质量为0.14kg.用棒击棒球的力随时间的变化如图所示.设棒球被击前后速度增量大小为70m/s,求力的最大值.打击时,不计重力.解题思路:本题用动量定理,球所受的冲量等于球动量的增量,已知力函数求冲量等于曲线下的面积3.4.18 太空旅馆, 用32m 长的绳联结质量相同的客舱, 如果旅客感到与地面相同的重力作用, 需要绕中点转动的角速度多大? 解: 圆周运动的向心加速度为 g r a ==2ω 所以, s rad rg /78.02328.9===ω3.5.2 升降机A 内有一装置如图示.悬挂的两物体的质量各为1m 和2m ,且21m m ≠.若不计绳及滑轮质量,不计轴承处摩擦,绳不可伸长,求当升降机以加速度A(方向向下)运动时,两物体的加速度各是多少?绳内的张力是多少?解题思路:方法一,用非惯性力学解题。
力学习题解答(漆安慎)
1
力学习题解答
第二章基本知识小结 ⒈基本概念
v v v v dr r = r (t ) v = dt
v v v dv d 2 r a= = dt dt 2
dv r d 2s v2 ˆ + an n ˆ , a = aτ 2 + a n 2 , aτ = τ = 2 , a n = a = aτ τ dt ρ dt
力学习题解答
殷保祥 编写
石河子大学师院物理系
力学习题解答
目 录
第 02 章 第 03 章 第 04 章 第 05 章 第 06 章 第 07 章 第 08 章 第 09 章 第 10 章 第 11 章 质点运动学……………………………01 动量定理及其守恒定律………………11 动能和势能……………………………24 角动量及其规律………………………34 万有引力定律…………………………38 刚体力学………………………………41 弹性体的应力和应变…………………52 振动……………………………………56 波动……………………………………64 流体力学………………………………71
v −2 t ˆ ˆ .⑴求质点轨迹; + e 2t ˆ j + 2k 2.1.2 质点运动学方程为 r = e i
⑵求自 t= -1 到 t=1 质点的位移。 解:⑴由运动学方程可知: x = e
−2 t
R θ
, y = e 2t , z = 2, xy = 1 ,所
以,质点是在 z=2 平面内的第一像限的一条双曲线上运动。 ⑵ Δr = r (1) − r ( −1) = (e
2 2
向行驶,求列车的平均加速度。 解: a =
v
v v v v2 − v1 Δv = Δt Δt
《力学》杜婵英 漆安慎课后习题答案大全集
HY 编写
QQ:
704999167
Email: heyang0106@
目录
第 01 章 第 02 章 第 03 章 第 04 章 第 05 章 第 06 章 第 07 章 第 08 章 第 09 章 第 10 章 第 11 章
物理学、力学、数学…………………01 质点运动学……………………………05 动量定理及其守恒定律………………15 动能和势能……………………………28 角动量及其规律………………………38 万有引力定律…………………………42 刚体力学………………………………45 弹性体的应力和应变…………………56 振动……………………………………60 波动……………………………………68 流体力学………………………………75
t t1 t2
第 1 章物理学力学数学 矢量习题解答
3
1.2.3.4.5.6.7.略
8.二矢量如图所示 A=4,B=5,α=25º,β=36.87º,直接根据矢量标积
GG
定义和正交分解法求 A ⋅ B 。
y
解:直接用矢量标积定义:
GG A ⋅ B = AB cos(90° − α + β ) = −4
−π / 2
f (x) = sin x的函数图形上用面积表示这些定积分。
第 1 章物理学力学数学 微积分初步习题解答
π /2
π
∫ 解:
sin
xdx
=
−
cos
x
|2
0
=
1
0
0
π /2
∫ sin xdx = −1 ∫ sin xdx = 0
−π / 2
−π / 2
y
-π/2
力学答案(漆安慎,杜婵英)_详解_1-9章
河的两岸互相平行,一船由A点朝与岸垂直的方向匀速行驶,经10min到达对岸的C点。若船从A点出发仍按第一次渡河速率不变但垂直地到达彼岸B点,需要12.5min。已知BC=120m.求(1)河宽ι,(2)第二次渡河时船的速率u,(3)水流速度v
3.1试表述质量的操作型定义。
解答,
式中(标准物体质量)
:为m与m0碰撞m0的速度改变
:为m与m0碰撞m的速度改变
这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。这样定义的质量为操作型定义。
3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立?
后5s的路程:
质点2的路程:195-62.5+2.5=135(m)
站台上送行的人,在火车开动时站在第一节车厢的最前面。火车开动后经过△t=24s,第一节车厢的末尾从此人的面前通过。问第七节车厢驶过他面前需要多长时间?火车作匀加速运动。
解,
设火车第六节末尾经过此人的时间为t6,
火车第七节末尾经过此人的时间为t7,
第二章质点运动学(习题)
质点的运动学方程为
求质点轨迹并用图表示。
解,①.轨迹方程为y=5
②消去时间参量t得:
质点运动学方程为,(1).求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①消去t得轨迹:xy=1,z=2
②,,
质点运动学方程为,(1).求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,(1),
,命中点,
观测者
抛射体命中点到观察者的距离
(2)
当,飞越观察者的头顶击中目标,即
力学漆安慎习题解答
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-xx x e e y xe y x x x x x x y bx a b a y x x x x y x y ----=+-==++=++=+-=-+-=-=100100)1('cos '1/1cos 2·)1(·)1cos(')/()('sin 8cos 7)2/(1'46'sin 222/12212/12222⑹⑸⑷⑶⑵解:⑴2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少?解:先求出h(x)对x 的一阶导数和二阶导数:42643643647242102106)102102(102102)1051010(22--------⨯-⨯=⨯-⨯=⨯-⨯=⨯+-=x x x x x x x dxd dx h d dxd dxdh令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分⎰⎰++-dx x dxx xx)2()13(23⑵⑴⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰-+-++--+dxxdxdx xe xdx x dxe dxb ax dx dx x x dx e xx x b ax dx x x x xx xxln 222113)12(cos )11(cos sin )sin()cos (sin )2(222⑽⑼⑻⑺⑹⑸⑷⑶解:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+==++=+=+-=--=+==++=++=+-=--=++-=++=++-=-==+--=-=-+++=-+=-+++=+=+++-=+-=+-----+---++-++-c x x xd dx cx x dx x xdx c ex d e dx xe c x x xd xdx x cb ax b ax d b axc ex d e dx e cb ax b ax d b ax dx b axc arctgx x dx dx dx cx x xdx xdx dx x x ce x dx x dx e dx e cx dx x dx dx x cx x x dx xdx dx x dx x x x x x x x aabax dxxx x aax dxx x x x xxx x dxx xx x x x 221ln 4121212212213312222/112212212111111122/3133312ln 22x 222344133)(ln )(ln ln )12(2sin )2cos 1(cos )11()(sin )(sin sin cos sin )()()2()cos()()sin()sin(sin cos cos sin )cos (sin 2ln 323)2(2)2(3)13(22222222⑽⑼⑻⑺⑹⑸⑷⑶⑵⑴4. 求下列定积分πππππππππ412832/02/0212/021011143214/6/4/6/21214/6/221211112211ln 132/12/12/12/111551105514143532421213221212/1212/021114/6/2111ln 12/12/111421)2cos 1(3)sin 3(454/||2sin )2(2cos 2cos 2ln |)ln ()(5.1|)ln 1()ln 1()ln 1(60|arcsin )1(|)1()1()1()1(||)1)sin 3(2cos )()1()1222322+=-+=+︒===-===+-=+=+=+=++=︒===-=-=--=--=-=-=-++--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰++---++--dx x xdx dx x x arctgx dx x x xd xdx e e x e dx e x x d x dx x e e e d e dx e e x x dx dx xdx x dxx x dx xdx dx e dx dx e e dx x x xx x eeexxxdx x x x xxx xxex xxdx xx πππππππ⑻⑺⑹⑸⑷⑶⑵(解:⑴⑻⑺⑹⑸⑷⑶⑵(⑴示这些定积分。
最新《力学》漆安慎(第二版)答案03章
力学(第二版)漆安慎习题解答第三章动量定理及其守恒定律第三章 动量定理及其守恒定律一、基本知识小结1、牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:22dtr d m dt v d m a m F === 分量式:(弧坐标)(直角坐标)ρτττ2,,,v m ma F dt dv m ma F ma F ma F ma F n n z z y y x x =======2、动量定理适用于惯性系、质点、质点系。
导数形式:dtp d F =;微分形式:p d dt F=;积分形式:p dt F I∆==⎰)((注意分量式的运用)3、动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。
即∑==恒矢量。
则,若外p F0(注意分量式的运用)4、在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:0*a m f-=在转动参考系中:ωω⨯=='2,*2*mv f r m f k c5、质心和质心运动定理⑴∑∑∑===i i c i i c i i c a m a m v m v m r m r m⑵∑=c a m F(注意分量式的运用)二、思考题解答3.1试表述质量的操作型定义。
解答,kgv v m m 00 ∆∆= 式中kg 1m 0=(标准物体质量);0v∆:为m 与m 0碰撞m 0的速度改变;v∆:为m 与m 0碰撞m 的速度改变,这样定义的质量,其大小反映了质点在相互作用的过程中速度改变的难易程度,或者说,其量值反映了质量惯性的大小。
这样定义的质量为操作型定义。
3.2如何从动量守恒得出牛顿第二、第三定律,何种情况下牛顿第三定律不成立? 解答,由动量守恒 )p p (p p ,p p p p 22112121-'-=-'+='+' ,p p 21∆-=∆t p t p 21∆∆-=∆∆,取极限dt p d dt p d 21 -=动量瞬时变化率是两质点间的相互作用力。
力学第二版漆安慎高等教育出版社第三章答案.doc
3.4.2 质量为m 的质点在oxy 平面内运动, 质点的运动学方程为j t b i t a rsin cos , ,,b a 为正常数,证明作用于质点的合力总是指向原点. 解题思路:本题已知质点的运动学方程,要求的是力,可运用第二章的知识,求 得加速度,,再运用牛顿运动定律求力.指向原点的意思是力的方向与矢径方 向相反.3.4.4 桌面上叠放着两块木块,质量各为m 1, m 2 ,如图所示, m 2 和桌面的摩擦系数为2 , m 1, m 2 间的静摩擦系数为1 , 问水平方向用多大的力才能把下面的物体抽出来.解题思路:本题应先作出受力分析图,可先按极限情况情况讨论刚好抽出 所需要的力。
3.4.5 质量为m2,的斜面可在光滑的水平面上滑动,斜面倾角为α,质量为m1的运动员与斜面之间亦无摩擦,求运动员相对于斜面的加速度及其对斜面的压力.解题思路:本题可用非惯系的方法求,如图所示,将坐标取在斜面上,设斜面后退的加速度为a0,则m1除了受重力、斜面的支持力作用外,还受到一惯性力作用(水平向左)运动员相对斜面的加速度为ar,则对于斜面3.4.6 两物体的质量分别为m 和M,物体之间及物体与桌面间的摩擦系数都为u。
求在力F 的作用下两物体的加速度及绳的张力。
绳不可伸长解:对每一物体受力分析,由牛顿第二定律列方程,对m、M 水平方向的方程为可解得3.4.9 跳伞运动员初张伞时的速率为00 v ,设所受阻力的大小与其速率的两次方成正比2v ,求)(t v v 的函数(即任一时刻的速度)解题思路:阻力是一变力,应先受力分析,列出运动微分方程,通过解微分方程求解.设阻力的大小可表示成2v f ,取向下为正方向。
由牛顿第二定律得 dtdv m v mg 2 分离变量,两边积分dt v mg dv 2dt v gmdvg211令 v gmx则 dx gmdv则dt xdxg m 21 积分,得11211ln 21)]1ln()1[ln(21)1(2)1(21C x xC x x x dx x dx x dx 211ln 21C t mg xx113232C eC e x t mg t m g所以, 113232C eC egm v tmg t mg带入初始条件 0,00 v t , 得到 13 C1122tmgtmgeegmv3.4.11 棒球的质量为0.14kg.用棒击棒球的力随时间的变化如图所示.设棒球被击前后速度增量大小为70m/s,求力的最大值.打击时,不计重力.解题思路:本题用动量定理,球所受的冲量等于球动量的增量,已知力函数求冲量等于曲线下的面积3.4.18 太空旅馆, 用32m 长的绳联结质量相同的客舱, 如果旅客感到与地面相同的重力作用, 需要绕中点转动的角速度多大?解: 圆周运动的向心加速度为gra2所以, sradrg/78.02328.93.5.2 升降机A 内有一装置如图示.悬挂的两物体的质量各为1m和2m,且21mm .若不计绳及滑轮质量,不计轴承处摩擦,绳不可伸长,求当升降机以加速度A(方向向下)运动时,两物体的加速度各是多少?绳内的张力是多少?解题思路:方法一,用非惯性力学解题。
力学(漆安慎)习题解答
y R(0,2,-1)
Q(5,10,7)
o x
z P(3,0,8)
=
.
13.化简下面诸式
解:⑴
j
i
k
⑵
⑶
14.计算下面诸式
j
i
k
解:⑴
⑵
15.求证:
证明:
16.
解:
17.已知 .
解:
第二章基本知识小结
⒈基本概念
(向右箭头表示求导运算.向左箭头表示积分运算.积分运算需初始条件: )
3.求下列不定积分
解:
4. 求下列定积分
y
-π/2 +
- 0 π/2 x
解:
6.计算由y=3x和y=x2所围成的平面图形的面积。
y
0 3 x
解:如图所示.令3x=x2,得两
条曲线交点的x坐标:x=0,3. 面积
7.求曲线y=x2+2,y=2x,x=0和x=2诸线所包围的面积。
y
A
0 2 x
解:面积A
2.3.5在水平桌面上放置A、B两物体.用一根不可伸长的绳索按图示的装置把它们连接起来.C点与桌面固定.已知物体A的加速度aA=0.5g.求物体B的加速度。
解:设整个绳长为L.取图示坐标o-x.则3xA+(-4xB) = L
对时间求两次导数.3aA=4aB.所以aB= 3aA/4=3×0.5g/4 = 3g/8
解:以投放点为原点.建立图示坐标o-xy,设炸弹初速度(即轰炸机速度)为v0. 由于炸弹在飞行过程中的加速度 .所以炸弹在x方向做匀速直线运动.在y方向做竖直下抛运动.有
⑴令t=5.0s.y=763m.由④可求得轰炸机的速率:
力学(漆安慎_杜婵英)习题解答
2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=ϖ⑴j t i t r ˆ)14(ˆ)32(-+-=ρ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=-ϖ.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y ex t t,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ϖϖϖ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x r ϖϖϖϖγβα轴夹角与轴夹角与轴夹角与2.1.3质点运动学方程为j t it r ˆ)32(ˆ42++=ϖ. ⑴求质点轨迹;⑵求质点自t=0至t=1的位移. 解:⑴32,42+==t y t x ,消去参数t 得:2)3(-=y x⑵j i j j ir r r ˆ2ˆ4ˆ3ˆ5ˆ4)0()1(+=-+=-=∆ρρρ2.2.1雷达站于某瞬时测得飞机位置为︒==7.33,410011θm R 0.75s 后测得︒==3.29,424022θm R ,R 1,R 2均在铅直面内,求飞机瞬时速率的近似值和飞行方向(α角)解:tRt R R v v ∆∆=∆-=≈ϖϖϖϖϖ12,在图示的矢量三角形中,应用余弦定理,可求得:xx5/1mR R R R R 58.3494.4cos 42004100242404100)cos(22221212221=︒⨯⨯-+=--+=∆θθ s m t R v v /8.46575.0/58.349/≈=∆∆=≈据正弦定理:)180sin(/)sin(/1221αθθθ--︒=-∆R R︒=∴︒≈--︒≈︒=∆-=--︒89.34,41.111180,931.058.349/4.4sin 4240/)sin()180sin(12121ααθθθαθR R2.2.2 一圆柱体沿抛物线轨道运动,抛物线轨道为y=x 2/200(长度:毫米)。
漆安慎力学习题解答完整版03
第三章基本知识小结⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:22dtr d m dt v d m a m F=== 分量式:(弧坐标)(直角坐标)ρτττ2,,,vm ma F dt dv mma F ma F ma F ma F n n z z y y x x =======⒉动量定理适用于惯性系、质点、质点系。
导数形式:dt pd F =微分形式:p d dt F=积分形式:p dt F I∆==⎰)((注意分量式的运用)⒊动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。
即∑==恒矢量。
则,若外p F0 (注意分量式的运用)⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:0*a m f -=在转动参考系中:ωω⨯=='2,*2*mv f r m f k c⒌质心和质心运动定理 ⑴∑∑∑===i i c i i c i i c a m a m v m v m r m r m⑵∑=c a m F(注意分量式的运用)3.4.1 质量为2kg 的质点的运动学方程为j t t i t r ˆ)133(ˆ)16(22+++-= (单位:米,秒), 求证质点受恒力而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22+== , j ia m F ˆ12ˆ24+== 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:'34265.0/︒===arctg F arctgF x y α3.4.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程为:j t b it a r ˆsin ˆcos ωω+= ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b it a dt r d a2222)ˆsin ˆcos (/ωωωω-=+-== r m a m F2ω-==, ∴作用于质点的合力总指向原点。
力学答案(漆安慎,杜婵英)_详解_1-9章
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x 消去时间参量t 得:05x 4y 3=-+2.1.2质点运动学方程为k ˆ2j ˆe i ˆe r t 2t 2++=- ,(1). 求质点的轨迹;(2).求自t=-1至t=1质点的位移。
解,①⎪⎩⎪⎨⎧===-2z e y ex t 2t2消去t 得轨迹:xy=1,z=2②k ˆ2j ˆe i ˆe r 221++=-- ,k ˆ2j ˆe i ˆe r 221++=-+ ,2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++= ,(1). 求质点的轨迹;(2).求自t=0至t=1质点的位移。
解,①.,3t 2y ,t 4x 2+==消去t 得轨迹方程 ②j ˆ2i ˆ4r r r ,j ˆ5i ˆ4r ,j ˆ3r 0110+=-=∆+== 2.2.1雷达站于某瞬时测得飞机位置为0117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得:利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
求圆柱体瞬时速度的近似值。
解,2.2.3一人在北京音乐厅内听音乐,离演奏者17m 。
另一人在广州听同一演奏的转播,广州离北京2320km ,收听者离收音机2m ,问谁先听到声音?声速为340m/s,电磁波传播的速度为s /m 100.38⨯。
力学 漆安慎习题解答
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少解:先求出h(x)对x 的一阶导数和二阶导数:令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分解:4. 求下列定积分解:1|cos sin 22/0=-=⎰ππx xdx 6.计算由y=3x 和y=x 2所围成的平面图形的面积。
解:如图所示,令3x=x 2,得两条曲线交点的x 坐标:x=0,3. 面积7.求曲线y=x 2+2,y=2x,x=0和x=2诸线所包围的面积。
解:面积A8.一物体沿直线运动的速度为v=v 0+at,v 0和a 为常量,求物体在t 1至t 2时间内的位移。
解:位移S ⎰+=21)(0t t dtat v 1.2.3.4.5.6.7.略8.二矢量如图所示A=4,B=5,α=25o,β义和正交分解法求B A ρρ⋅。
=36.87o,直接根据矢量标积定解:直接用矢量标积定义: 用正交分解法:∵A x =4cosα=3.6A y =4sin α=1.7,B x =5cos(90o+β)= - 5sin β=-3,B y =5sin(90o+β)=5cos β=4∴447.1)3(6.3-=⨯+-⨯=+=⋅y y x x B A B A B A ρρ9.的夹角。
力学 漆安慎习题解答
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y += ⑸x e y sin = ⑹x e y x 100+=-2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少解:先求出h(x)对x 的一阶导数和二阶导数:令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分解:4. 求下列定积分解:1|cos sin 22/0=-=⎰ππx xdx 6.计算由y=3x 和y=x 2所围成的平面图形的面积。
解:如图所示,令3x=x 2,得两条曲线交点的x 坐标:x=0,3. 面积7.求曲线y=x 2+2,y=2x,x=0和x=2诸线所包围的面积。
解:面积A8.一物体沿直线运动的速度为v=v 0+at,v 0和a 为常量,求物体在t 1至t 2时间内的位移。
解:位移S ⎰+=21)(0t t dtat v 1.2.3.4.5.6.7.略8.二矢量如图所示A=4,B=5,α=25o,β义和正交分解法求B A ρρ⋅。
=36.87o,直接根据矢量标积定解:直接用矢量标积定义: 用正交分解法:∵A x =4cosα=3.6A y =4sin α=1.7,B x =5cos(90o+β)= - 5sin β=-3,B y =5sin(90o+β)=5cos β=4∴447.1)3(6.3-=⨯+-⨯=+=⋅y y x x B A B A B A ρρ9.的夹角。
力学参考答案(漆安慎,杜婵英)_详解_1-9章
第二章 质点运动学(习题)2.1.1质点的运动学方程为j ˆ)1t 4(i ˆ)t 32(r ).2(,j ˆ5i ˆ)t 23(r ).1(-+-=++= 求质点轨迹并用图表示。
解,①.,5y ,t 23x =+=轨迹方程为y=5②⎩⎨⎧-=-=1t 4y t 32x ②r ②r 00117.33,m 4100R =θ=,0.75s 后测得21022R ,R ,3.29,m 4240R =θ=均在铅直平面内。
求飞机瞬时速率的近似值和飞行方向(α角)。
解,)cos(R R 2R R R 21212221θ-θ-+=∆ 代入数值得:利用正弦定理可解出089.34-=α2.2.2一小圆柱体沿抛物线轨道运动,抛物线轨道为200/x y 2=(长度mm )。
第一次观察到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处。
求圆柱体瞬时速度的近似值。
747后以70km/h 速率向北偏西030方向行驶。
求列车的平均加速度。
解,2.2.6(1),k ˆt 2j ˆt sin R i ˆt cos R r ++= R 为正常数。
求t=0,π/2时的速度和加速度。
(2),k ˆt 6j ˆt 5.4i ˆt 3r 32+-= 求t=0,1时的速度和加速度(写出正交分解式)。
解:(1) 当t=0时, 当t=π/2时, (2) 当t=0时, 当b c 质点受力mx t cos ma ma F -=-==,是线性恢复力,质点做简谐振动,振幅为a ,运动范围在a x a ≤≤-,速度具有周期性。
2.3.3跳伞运动员的速度为,e 1e 1v qtqt --+-β=v 铅直向下,β、q 为正常量。
求其加速度。
讨论当时间足够长时(即t →∞),速度和加速度的变化趋势。
解,2.3.4直线运动的高速列车在电子计算机控制下减速进站。
列车原行驶速度为h /km 180v 0=,其速度变化规律如图所示。
求列车行驶至x=1.5km 时加速度的大小。
力学漆安慎习题解答
力学1.求下列函数的导数⑴10432+-=x x y ⑵100cos 8sin 7/1-++=x x x y⑶)/()(bx a b ax y ++= ⑷21sin x y +=⑸x ey sin = ⑹x e y x100+=-2.已知某地段地形的海拔高度h 因水平坐标x 而变,h=100-0.0001x 2(1-0.005x 2),度量x 和h 的单位为米。
问何处的高度将取极大值和极小值,在这些地方的高度为多少? 解:先求出h(x)对x 的一阶导数和二阶导数:令dh/dx=0,解得在x=0,10,-10处可能有极值。
∵d 2h/dx 2|x=0<0,∴x=0是极大值点,h(0)=100;∵d 2h/dx 2|x=10>0,∴x=10是极小值点,h(10)=99.0005米;显然,x=-10亦是极小值点,h(-10)=h(10).3.求下列不定积分 解:4. 求下列定积分解:1|cos si n 202/0=-=⎰ππx xdx6.计算由y=3x 和y=x 2所围成的平面图形的面积。
解:如图所示,令3x=x 2,得两 条曲线交点的x 坐标:x=0,3. 面积7.求曲线y=x 2+2,y=2x,x=0和x=2诸线所包围的面积。
解:面积A8.一物体沿直线运动的速度为v=v 0+at,v 0和a 为常量,求物体在t 1至t 2时间内的位移。
解:位移S ⎰+=21)(0t t dtat v1.2.3.4.5.6.7.略 8.二矢量如图所示A=4,B=5,α=25o ,β=36.87o ,直接根据矢量标积定义和正交分解法求B A⋅。
解:直接用矢量标积定义: 用正交分解法:∵A x =4cos α=3.6 A y =4sin α=1.7, B x =5cos(90o +β)= - 5sin β= -3,B y =5sin(90o +β)=5cos β=4 ∴447.1)3(6.3-=⨯+-⨯=+=⋅y y x x B A B A B A9.的夹角。
《力学》答案(漆安慎,杜婵英)
第一章 物理学和力学1.1国际单位制中的基本单位是那些?解答,基本量:长度、质量、时间、电流、温度、物质的量、光强度。
基本单位:米(m )、千克(kg )、时间(s )、安培(A )、温度(k )、摩尔(mol )、坎德拉(cd )。
力学中的基本量:长度、质量、时间。
力学中的基本单位:米(m )、千克(kg )、时间(s )。
1.2中学所学习的匀变速直线运动公式为,at 21t v s 20+= 各量单位为时间:s (秒),长度:m (米),若改为以h (小时)和km (公里)作为时间和长度的单位,上述公式如何?若仅时间单位改为h ,如何?若仅0v 单位改为km/h ,又如何?解答,(1)由量纲1LTvdim -=,2LT a dim -=,h/km 6.3h/km 360010h 36001/km 10s /m 33=⨯==--2223232h /km 36006.3h /km 360010)h 36001/(km 10s /m ⨯=⨯==--改为以h (小时)和km (公里)作为时间和长度的单位时,,at 36006.321t v 6.3s 20⨯⨯+=(速度、加速度仍为SI单位下的量值)验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 36006.321t v 6.3s 20⨯⨯+=计算得 )km (2.25927259202.71436006.321126.3s 2=+=⨯⨯⨯⨯+⨯⨯=(2). 仅时间单位改为h由量纲1LTv dim -=,2LTadim -=得h /m 3600h/m 3600h 36001/m s /m ===222222h /m 3600h /m 3600)h 36001/(m s /m ===若仅时间单位改为h ,得:,at 360021t v 3600s 220⨯+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20==== 利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 360021t v 3600s 220⨯+=计算得: )m (2592720025920000720014360021123600s 22=+=⨯⨯⨯+⨯⨯= (3). 若仅0v 单位改为km/h由量纲1LTv dim -=,得s/m 6.31h /km ,h /km 6.3)h 36001/(km 10s /m 3===-仅0v 单位改为km/h ,因长度和时间的单位不变,将km/h 换成m/s得,at 21t v 6.31s 20+=验证一下:1.0h 3600s t ,4.0m/s a ,s /m 0.2v 20====利用,at 21t v s 20+=计算得:)m (2592720025920000720036004236002s 2=+=⨯⨯+⨯=利用,at 21t v 6.31s 20+=计算得: )m (25927200259200007200360042136003600/11026.31s 23=+=⨯⨯+⨯⨯⨯=-1.3设汽车行驶时所受阻力f 与汽车的横截面积S 成正比,且与速率v 之平方成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章基本知识小结
⒈牛顿运动定律适用于惯性系、质点,牛顿第二定律是核心。
矢量式:22dt
r d m dt v d m a m F
分量式:
(弧坐标)(直角坐标)
2
,,,v
m ma F dt dv m
ma F ma F ma F ma F n n z z y y x x
⒉动量定理适用于惯性系、质点、质点系。
导数形式:dt p
d F
微分形式:p d dt F
积分形式:p dt F I
)(
(注意分量式的运用)
⒊动量守恒定律适用于惯性系、质点、质点系。
若作用于质点或质点系的外力的矢量和始终为零,则质点或质点系的动量保持不变。
即
恒矢量。
则,若外p F
0 (注意分量式的运用)
⒋在非惯性系中,考虑相应的惯性力,也可应用以上规律解题。
在直线加速参考系中:0*a m f
在转动参考系中:
'2,
*2*
mv f r m f k c
⒌质心和质心运动定理 ⑴
i i c i i c i i c a m a m v m v m r m r m
⑵ c a m F
(注意分量式的运用)
3.4.1 质量为2kg 的质点的运动学方程为
j t t i t r ˆ)133(ˆ)16(22 (单位:米,秒), 求证质点受恒力
而运动,并求力的方向大小。
解:∵j i dt r d a ˆ6ˆ12/22 , j i
a m F ˆ12ˆ24 为一与时间无关的恒矢量,∴质点受恒力而运动。
F=(242+122)1/2=125N ,力与x 轴之间夹角为:
'34265.0/ arctg F arctgF x y
3.4.2 质量为m 的质点在o-xy 平面内运动,质点的运动学方程
为:j t b i
t a r ˆsin ˆcos ,a,b,ω为正常数,证明作用于质点的合力总指向原点。
证明:∵r j t b i
t a dt r d a
2222)ˆsin ˆcos (/ r m a m F
2 , ∴作用于质点的合力总指向原点。
3.4.3 在脱粒机中往往装有振动鱼鳞筛,一方面由筛孔漏出谷粒,一方面逐出秸杆,筛面微微倾斜,是为了从较低的一边将秸杆逐出,因角度很小,可近似看作水平,筛面与谷粒发生相对运动才可能将谷粒筛出,若谷粒与筛面静摩擦系数为0.4,问筛沿水平方向的加速度至少多大才能使谷物和筛面发生相对运动?
解:以地为参考系,设谷物的质量为m ,所受到的最大静摩擦力为 mg f o
,谷物能获得的最大加速度为
2
/92.38.94.0/s m g m f a o ∴筛面水平方向的加速
度至少等于3.92米/秒2,才能使谷物与筛面发生相对运动。
3.4.3 题图 3.4.4题图
3.4.4 桌面上叠放着两块木板,质量各为m 1 ,m 2,如图所示,m 2
和桌面间的摩擦系数为μ2,m 1和m 2间的摩擦系数为μ1,问沿水平方向用多大的力才能把下面的木板抽出来。
解:以地为参考系,隔离m 1、m 2,其受力与运动情况如图所示,
其中,N 1'=N 1,f 1'=f 1=μ1N 1,f 2=μ2N 2,选图示坐标系o-xy ,对m 1,m 2
分别应用牛顿二定律,有
02122
22211111
111 g m N N a m N N F g m N a m N 解方程
组,得 2221211211/m g m g m g m F a g
a
要把木板从下面抽出来,必须满足12a a ,即
g m g m g m g m F 12221211 g m m F 212
1
m 1g
f 1 N 1 a 1 a 2
x y。