高级中学数学公式定理汇总
完整版)高中数学公式大全完整版
完整版)高中数学公式大全完整版高中数学常用公式及常用结论1.包含关系若集合A包含于集合B,则AB=B;若AB=B,则A为B 的子集;若C为A和B的并集,则B包含于C;若A和B的交集为∅,则AB=∅;若AB=R,则A和B互为补集。
2.集合的子集集合{a1,a2,…,an}的子集个数共有2n个;真子集有2n–1个;非空子集有2n–1个;非空的真子集有2n–2个。
3.充要条件1)充分条件:若p→q,则p是q的充分条件。
2)必要条件:若q→p,则p是q的必要条件。
3)充要条件:若p→q,且q→p,则p是q的充要条件。
注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然。
4.函数的单调性1)设x1≠x2,且x1,x2∈[a,b],则有:f(x1)−f(x2)>0 ⇔ f(x)在[a,b]上是增函数;f(x1)−f(x2)<0 ⇔ f(x)在[a,b]上是减函数。
2)设函数y=f(x)在某个区间内可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数。
5.函数的性质如果函数f(x)和g(x)都是减函数,则在公共定义域内,和函数f(x)+g(x)也是减函数;如果函数y=f(u)和u=g(x)在其对应的定义域上都是减函数,则复合函数y=f[g(x)]是增函数。
6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,则这个函数是奇函数;如果一个函数的图象关于y轴对称,则这个函数是偶函数。
7.函数的对称轴对于函数y=f(x)(x∈R),若f(x+a)=f(b−x)恒成立,则函数f(x)的对称轴是函数x=a+b/2;函数y=f(x+a)与y=f(b−x)的图象关于直线x=a+b/2对称。
8.几个函数方程的周期(约定a>0)1)f(x)=f(x+a),则f(x)的周期T=a;2)f(x+a)=−f(x),或f(x+a)=f(−x)(f(x)≠0),则f(x)的周期T=2a。
高中数学定理归纳总结大全
高中数学定理归纳总结大全数学是一门抽象而又具有严密性的学科,其中包含了许多重要的定理和公式。
在高中数学学习的过程中,这些定理对于我们的理解和运用起着至关重要的作用。
为了能够更好地总结和归纳这些数学定理,本文将对高中数学中一些重要的定理进行了分类整理。
一、代数定理:1. 一元二次方程的解法定理一元二次方程 ax^2 + bx + c = 0 的解法定理可以根据韦达定理和求根公式来进行求解。
韦达定理给出了解的性质,而求根公式则给出了解的具体表达式。
2. 二项式定理二项式定理是代数学中一个重要的定理,它用于展开一个任意幂的二项式。
根据二项式定理,我们可以方便地计算 (a + b)^n 的展开式。
3. 复数的根定理复数的根定理给出了一个 n 次多项式方程在复数域上的根的存在性和个数。
该定理说明了一个 n 次多项式方程在复数域上一定存在 n 个复数根。
二、几何定理:1. 相似三角形的定理相似三角形的定理是几何学中一个重要的定理,它描述了两个三角形之间的一种特殊的关系。
根据相似三角形的定理,我们可以推导出三角形之间的各种性质和关系。
2. 勾股定理勾股定理是数学中一个经典的几何定理,它描述了直角三角形三边之间的关系。
勾股定理可以用于求解各种与直角三角形有关的问题。
3. 平行线定理平行线定理是几何学中一个重要的定理,它描述了平行直线与割线的关系。
根据平行线定理,我们可以推导出平行线之间的各种性质和关系。
三、微积分定理:1. 中值定理中值定理是微积分学中一个重要的定理,它用于描述函数在某个区间内的平均变化率与瞬时变化率之间的关系。
根据中值定理,我们可以推导出函数的各种性质和关系。
2. 泰勒展开泰勒展开是微积分学中一个重要的定理,它可以将一个函数在某个点附近展开成一个无限级数。
通过泰勒展开,我们可以近似计算函数的各种性质和关系。
3. 不定积分与定积分的基本定理不定积分与定积分的基本定理是微积分学中两个重要的定理,它们描述了函数的积分与导数之间的关系。
高中数学所有公式大总结
高中数学所有公式大总结高中数学是一门重要的学科,其中涉及了许多公式和定理。
这些公式和定理帮助学生解决各种数学问题,以及在日常生活中应用数学知识的能力。
一、代数公式:1. 一元二次方程的求根公式:对于一元二次方程ax^2 + bx + c = 0,其求根公式为 x = (-b ±√(b^2 - 4ac)) / (2a)。
2. 因式分解公式:将一个多项式进行因式分解,以简化计算或解决方程的过程。
3. 比例与相似性公式:包括比例的定义、比例的性质以及相似三角形的性质和判定方法。
4. 二项式定理:展开一个二项式的幂,即(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n。
二、几何公式:1. 直角三角形的勾股定理:对于直角三角形,满足a^2 + b^2 = c^2,其中a和b是直角边,c是斜边。
2. 三角函数的基本关系:包括正弦定理、余弦定理和正切定理,用于解决三角形的边长和角度之间的关系。
3. 圆的面积和周长公式:圆的面积公式为A = πr^2,圆的周长公式为C = 2πr,其中r是圆的半径。
4. 三角形的面积公式:三角形的面积公式为A = 1/2 * b * h,其中b是底边长,h是对应的高。
三、微积分与导数:1. 导数的定义与性质:导数表示函数在某一点的变化率,可以用于求函数的极值、曲线的切线等问题。
2. 基本导数公式:例如常数函数的导数为0,幂函数的导数为n * x^(n-1),指数函数的导数为e^x。
3. 导数的四则运算法则:包括求和、差、乘积和商的导数法则,用于求复合函数的导数。
四、概率与统计公式:1. 排列组合公式:包括排列数公式P(n,r) = n! / (n-r)!和组合数公式C(n,r) = n! / (r! * (n-r)!),用于计算事件的可能性。
2. 期望与方差公式:期望表示随机变量的平均值,方差表示随机变量的离散程度,用于描述随机事件的分布情况。
高三数学公式归纳大全
数学考试主要考察大家的公式运用情况,所以要想数学考出好成绩,一定要牢牢记住数学公式。
今天老师就给大家总结了整个高中都会用到的数学公式,一共有五十条,大家一定要熟背哦~1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高中数学必备的289个公式
(2)f(x+a)=-f(x)⇒T=2a;
(3)f(x+a)=±f(x)⇒T=2a
43.对称轴标志:f(x+a)=-f(b-x)⇒对称中心为(a+b,0);
如常见的对称中心有:f(x+a)=-f(a-x)⇒对称中心为(a,0);f(x+1)=-f(1-x)⇒对称 中心为(1,0).
16.不等式相同性:任意x∈D,证明:
f(x)>g(x)⇔h(x)=f(x)-g(x)>0⇔h(x)min>0;
存在x∈D,证明:f(x)≤g(x)⇔h(x)=f(x)-g(x)≤0⇔h(x)min≤0.
17.不等式相异性:任意x1、x2∈D,证明:f(x1)<g(x2)⇔x∈D,f(x)max<g(x)min;存在x1、x2∈D,证明:f(x1)>g(x2)⇔x∈D,f(x)max>g(x)min.
第2章函数
31.几个近似值:2≈1.414,3≈1.732,5≈2.236,
π≈3.142,e≈2.718,e2≈7.389,
ln3≈1.0986,ln2≈0.693.32.指数公式:(1)am=man;(2)nan={|a|,n为偶数.
33.对数公式:
(1)ax=N⇔x=logaN;(2)alogaN=N;
x1+y1x2+y2≥x1x2+y1y2.
(1+x)n≥xn+nx;n≥1(1+x)n≤1+nx;0≤n≤1
86.洛必达法则:limf(x)=limf'(x)(当f(x)→0或∞时使用).
87.恒成立问题:(1)a≥f(x)⇔a≥f(x)max;(2)a<f(x)⇔a<f(x)min.
高中数学定理公式大全
高中数学定理公式大全高中数学是数学学科的一部分,主要包括数学分析和数学推理两个方面。
数学分析是研究数学对象和数学对象之间的关系、性质和变化规律的学科,而数学推理是运用数学知识进行问题求解和推理的学科。
高中数学的学习过程中有许多重要的定理和公式,下面是一些高中数学常见的定理和公式的介绍。
1.二项式定理:对于任意实数a,b和正整数n,成立(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n,其中C(n,k)表示组合数,即从n个不同元素中取出k个元素的方法的数量。
2. 一次函数的斜率公式:对于一次函数y = mx + c,其中m表示斜率,c表示截距,斜率m可以通过任意两个点(x1, y1)和(x2, y2)来求得,m = (y2 - y1) / (x2 - x1)。
3. 三角函数的基本关系式:sin^2θ + cos^2θ = 1,1 + tan^2θ= sec^2θ,1 + cot^2θ = csc^2θ。
4.三角函数的和差公式:sin(A ± B) = sin(A) * cos(B) ± cos(A) * sin(B)cos(A ± B) = cos(A) * cos(B) ∓ sin(A) * sin(B)tan(A ± B) = (tan(A) ± tan(B)) / (1 ∓ tan(A) * tan(B))5. 余弦定理:对于任意三角形ABC,设a、b、c分别表示边BC、AC、AB的长度,A、B、C分别表示∠BAC、∠ABC、∠BCA的大小,则有c^2 =a^2 + b^2 - 2ab * cos(C)。
6. 正弦定理:对于任意三角形ABC,设a、b、c分别表示边BC、AC、AB的长度,A、B、C分别表示∠BAC、∠ABC、∠BCA的大小,则有a /sin(A) = b / sin(B) = c / sin(C)。
高中数学公式大全(完整版)
1. 集合与常用逻辑用语
2. 复数
3. 平面向量
4. 算法、推理与证明
5.不等式、线性规划
6. 计数原理与二项式定理
7. 函数、基本初等函数的图像与性质
8. 函数与方程、函数模型及其应用
9.导数及其应用
10.三角函数的图形与性质
11.三角恒等变化与解三角形
12.等差数列、等比数列
13.数列求和及数列的简单应用
14.空间几何体
15.空间点、直线、平面位置关系
16.空间向量与立体几何
17.直线与圆的方程
18.圆锥曲线的定义、方程与性质
19.圆锥曲线的热点问题
20.概率
21.离散型随机变量及其分布
22.统计与统计案例
23.函数与方程思想,数学结合思想
24.分类与整合思想,化归与转化思想
25.几何证明选讲
26.坐标系与参数方程。
高中数学必备公式定理大全
(高考必备!)高中数学常用公式及结论1 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉.A A ∅⇔≠∅2 集合12{,,,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有22n -个.3 二次函数的解析式的三种形式:(1) 一般式2()(0)f x ax bx c a =++≠;(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,设为此式)(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。
(当已知抛物线与直线y kx d =+相切且切点的横坐标为0x 时,设为此式)4 真值表: 同真且真,同假或假 56 )充要条件: (1)、p q ⇒,则P 是q 的充分条件,反之,q 是p 的必要条件;(2)、p q ⇒,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ⇒,则P 是q 的必要不充分条件;4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。
7 函数单调性:增函数:(1)、文字描述是:y 随x 的增大而增大。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x <成立,则就叫f (x )在x ∈D 上是增函数。
D 则就是f (x )的递增区间。
减函数:(1)、文字描述是:y 随x 的增大而减小。
(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x >成立,则就叫f (x )在x ∈D 上是减函数。
高级中学数学公式定理全集(完整编辑版)
高中数学常用公式及常用结论1.包含关系A B A A B B =⇔=I U U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦI U C A B R ⇔=U2.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.3.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.6.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2ba x +=;两个函数)(a x f y +=与)(xb f y -= 的图象关于直线2ba x +=对称. 8.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1)(≠=+x f x f a x f ,或1()()f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂(1)mna=(0,,a m n N *>∈,且1n >).(2)1mnm naa-=(0,,a m n N *>∈,且1n >).10.根式的性质(1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.11.有理指数幂的运算性质 (1) (0,,)rsr sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r ab a b a b r Q =>>∈.12.指数式与对数式的互化式 log b a N b a N =⇔=(0,1,0)a a N >≠>.①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a ,④.积的对数:N M MN a a a log log )(log +=,商的对数:N M NMa a alog log log -=,幂的对数:M n M a na log log =;b mnb a n a m log log =13.对数的换底公式 log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 15.11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++L ).16.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+211()22d n a d n =+-. 17.等比数列的通项公式1*11()n n n a a a q q n N q-==⋅∈;其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.18.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin 19正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩20和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=m ;tan tan tan()1tan tan αβαβαβ±±=m .sin cos a b αα+)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan baϕ=). 21、二倍角的正弦、余弦和正切公式: ⑴sin 22sin cos ααα=. ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-(21cos 2cos 2αα+=,21cos 2sin 2αα-=).⑶22tan tan 21tan ααα=-. 22.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Z ππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 23.正弦定理2sin sin sin a b cR A B C===. 24.余弦定理2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.25.面积定理111sin sin sin 222S ab C bc A ca B ===(2).26.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A Bπ+⇔=-222()C A B π⇔=-+. 27.实数与向量的积的运算律设λ、μ为实数,那么(1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa;(3)第二分配律:λ(a +b )=λa +λb . 28.向量的数量积的运算律:(1) a ·b= b ·a (交换律);(2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb );(3)(a +b )·c= a ·c +b ·c. 30.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a P b(b ≠0)12210x y x y ⇔-=. 31. a 与b 的数量积(或内积)a ·b =|a ||b |cos θ.32.数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.33.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++.(2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --.(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +.34.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).35.平面两点间的距离公式 ,A B d =||AB ==11(,)x y ,B 22(,)x y ).36.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=. a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=.37.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==u u u r u u u r u u u r .(2)O 为ABC ∆的重心0OA OB OC ⇔++=u u u r u u u r u u u r r.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r. 38.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)b a b a b a +≤+≤-.39已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2;(2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 40.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.41.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ).42.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).43.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1与l 2的夹角是2π. 45.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).46. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0). 47.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.48.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .49.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;50.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.51.椭圆22221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(22x ca e PF -=. 52.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x y a b a b +=>>的外部2200221x y a b⇔+>.53.双曲线22221(0,0)x y a b a b -=>>的焦半径公式21|()|a PF e x c =+,22|()|a PF e x c=-.54.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x aby ±=.(2)若渐近线方程为x aby ±=⇔0=±b y a x ⇒双曲线可设为λ=-2222b y a x .(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上).55. 抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.过焦点弦长p x x px p x CD ++=+++=212122.56.直线与圆锥曲线相交的弦长公式AB =1212|||AB x x y y ==-=-(弦端点A ),(),,(2211y x B y x ,由方程⎩⎨⎧=+=0)y ,x (F b kx y 消去y 得到02=++c bx ax ,0∆>,α为直线AB 的倾斜角,k 为直线的斜率).57(1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ).(3)数乘分配律:λ(a +b )=λa +λb . 59共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =u u u r u u u r ⇔(1)OP t OA tOB =-+u u u r u u u r u u u r.60.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则(1)a +b =112233(,,)a b a b a b +++;(2)a -b =112233(,,)a b a b a b ---;(3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 61.设A 111(,,)x y z ,B 222(,,)x y z ,则AB OB OA =-u u u r u u u r u u u r= 212121(,,)x x y y z z ---. 62.空间的线线平行或垂直 设111(,,)a x y z =r ,222(,,)b x y z =r,则a b ⊥r r ⇔0a b ⋅=r r ⇔1212120x x y y z z ++=.63.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则cos 〈a ,b 〉.64.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤o o)为异面直线a b ,所成角,,a b r r 分别表示异面直线a b ,的方向向量) 65.直线AB 与平面所成角,.sin ||||AB m arc AB m β⋅=u u u r u ru u u r u r (m ur 为平面α的法向量). 66.二面角l αβ--的平面角cos ||||m n arc m n θ⋅=u r r u r r 或cos ||||m narc m n π⋅-u r ru r r (m u r ,n r 为平面α,β的法向量). 134.空间两点间的距离公式若A 111(,,)x y z ,B 222(,,)x y z ,则 ,A B d=||AB =u u u r=.67.球的半径是R ,则 其体积343V R π=,其表面积24S R π=. (3) 球与正四面体的组合体:棱长为a的正四面体的内切球的半径为12a ,外接球的半径为4a . 6813V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).69.分类计数原理(加法原理)12n N m m m =+++L .70.排列数公式 mn A =)1()1(+--m n n n Λ=!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.71.组合数公式 m nC =m n m mA A =m m n n n ⨯⨯⨯+--ΛΛ21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤).72.组合数的两个性质(1)m n C =m n n C - ;(2) m n C +1-m n C =m n C 1+.注:规定10=n C .155.组合恒等式(1)11m m nn n m C C m --+=;(2)1m m n n n C C n m -=-;(3)11m m n n n C C m --=; (4)∑=nr r n C 0=n2; 73.排列数与组合数的关系m mn n A mC =⋅! . 74.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列.(1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh hh A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.75.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=--Λ. (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--.(3)(非平均分组有归属问题)将相异的)L 12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n n n n p n p n n n m p m C C C N mm=⋅⋅=-.76.二项式定理 nn n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+---ΛΛ222110)( ; 二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,Λ=.77.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k k n k n n P k C P P -=-78.离散型随机变量的分布列的两个性质(1)0(1,2,)i P i ≥=L ;(2)121P P ++=L . 79.数学期望1122n n E x P x P x P ξ=++++L L80..数学期望的性质(1)()()E a b aE b ξξ+=+.(2)若ξ~(,)B n p ,则E np ξ=. 81.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+L L 标准差σξ=ξD . 82.方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-. 83..)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim limx x y f x x f x x x∆→∆→∆+∆-==∆∆. 84.. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.85..几种常见函数的导数(1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.(4) x x sin )(cos -=' (5) x x 1)(ln =';ax a xln 1)(log ='(6) x x e e =')(; a a a x x ln )(='. 86..导数的运算法则(1)'''()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 87..复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.89.复数的相等,a bi c di a c b d +=+⇔==.(,,,a b c d R ∈)90.复数z a bi =+的模(或绝对值)||z =||a bi +91.复数的四则运算法(1)()()()()a bi c di a c b d i +++=+++(2)()()()()a bi c di a c b d i +-+=-+-;(3)()()()()a bi c di ac bd bc ad i ++=-++;(4)2222()()(0)ac bd bc ada bi c di i c di +-+÷+=++≠.sin y x = cos y x = tan y x =图象定义域 R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=- ()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性2π 2π π奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦ ()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+ ⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z对称中心(),02k k ππ⎛⎫+∈Z ⎪⎝⎭ 对称轴()x k k π=∈Z 对称中心(),02k k π⎛⎫∈Z ⎪⎝⎭ 无对称轴函 数 性质。
高中数学会考必备的39个公式
高中数学会考必备的39个公式1、勾股定理:三条直线上两个点之间的距离关系,即a2 + b2 = c2。
2、余弦定理:两条相交直线所成的两个直角三角形,c2=a2+b2-2ab×cosC 。
3、正弦定理:两条相交的直线所组成的两个直角三角形, sinA / a = sinB / b = sinC / c 。
4、梯形公式:面积之和,即(a+b)h / 2。
5、圆面积公式:πr2 。
6、三角形面积公式:S=1/2×a×b×sinC 。
7、抛物线面积公式:S=1/3×a×h2 。
8、割线法则:1/y=1/a+1/b 。
9、勾股变形定理:ac=a2+b2−2ab cosC 。
10、余切定理:tanA/a=tanB/b=tanC/c 。
11、海伦公式:三角形内角a+b+c=180°,a2=b2+c2−2bc cosA。
12、同余三角形定理:三角形内角A/a=B/b=C/c 。
13、梯形公式:周长之和,即a+b+(c+d) 。
14、圆周长公式:2πr15、平行线定理:平行线成立的条件为同时垂直于两个垂线。
16、外接圆定理:四边形的外接圆的半径等于对角的中点的距离的一半。
17、锐角定理:三角形内角a+b>c18、直角定理:三角形内角a+b=c19、正方形面积公式:a220、平行四边形面积公式:ab21、直角三角形面积公式:1/2ah22、圆心角公式:mθ=2πr23、梯形周长公式:a+b+c+d24、圆周弧长公式:λ=θr25、余子式:对于系数矩阵A=[aij]n×n,各阶行列式的余子式定义为Ai,…,Ak 。
26、拉格朗日和弦定理:如果一个四边形的角都是锐角,那么它的两个对角线的乘积等于它的四条边的乘积。
27、反余弦定理:ac=a2+b2−2ab×cosC 。
28、反正弦定理: sinA / a = sinB / b = sinC / c 。
高中必背88个数学公式
高中必背88个数学公式数学公式是数学知识的重要组成部分,对于高中学生来说,掌握数学公式是提高数学能力和应对考试的重要手段。
下面是88个高中必背的数学公式,帮助学生系统地了解并掌握数学知识。
1.两点之间的距离公式:d=√((x2-x1)²+(y2-y1)²)2.两点之间的中点公式:((x1+x2)/2,(y1+y2)/2)3. 一元二次方程的根公式:x = (-b±√(b²-4ac))/2a4.直线的斜率公式:m=(y2-y1)/(x2-x1)5.直线的点斜式公式:y-y1=m(x-x1)6.直线的一般式公式:Ax+By+C=07. 平面直角坐标系中两直线的夹角公式:tanθ = ,(m1-m2)/(1+m1m2)8.点到直线的距离公式:d=,Ax+By+C,/√(A²+B²)9. 解三角形的余弦定理:c² = a² + b² - 2abcosC10. 解三角形的正弦定理:a/sinA = b/sinB = c/sinC11.正弦函数的周期:T=2π/ω12. 船头相对于岸的速度:v = vw + vb13.波速公式:v=λf14.频率公式:f=1/T15. 倍角公式:si n2θ = 2sinθcosθ16.三角形内角和公式:A+B+C=180°17.弧长公式:s=rθ18.扇形面积公式:A=1/2r²θ19.圆柱体积公式:V=πr²h20. 圆柱体表面积公式:S = 2πr² + 2πrh21.球体积公式:V=4/3πr³22.球体表面积公式:S=4πr²23.二次函数的顶点公式:(h,k)24.两个集合的交集公式:A∩B25.两个集合的并集公式:A∪B26.两个集合的补集公式:A'=U-A27.两个集合的差集公式:A-B=A∩B'28.同位角公式:∠a°=∠b°29.异位角公式:∠a°+∠b°=180°30.子午线长度公式:s=2πR31.等周角公式:∠A°=∠B°=∠C°=∠D°32.相邻角公式:∠a°+∠b°=180°33.平行线之间的角公式:∠1=∠234.对顶角公式:∠1=∠335.余角公式:∠a°=90°-∠b°36.同行角公式:∠a=∠b37.一个点关于原点的对称点公式:(-x,-y)38. 两圆相交面积公式:A = r²arccos((d²+r²-R²)/(2dr)) +R²arccos((d²+R²-r²)/(2dR)) - √(s(s-d)(s-r)(s-R))39.在方程中求极值的一般方法40.二项式展开公式:(a+b)ⁿ=Cⁿ₀aⁿb⁰+Cⁿ₁aⁿ⁻¹b¹+Cⁿ₂aⁿ⁻²b²+...+Cⁿⁿa⁰bⁿ41. 对数运算公式:(a^x)^y = a^(xy)42. 对数运算公式:log(a^m) = mloga43.指数函数的斜率公式:y=a^x44.速度的平均值公式:v=Δx/Δt45.加速度的平均值公式:a=Δv/Δt46. 速度的瞬时值公式:v = ds/dt47. 加速度的瞬时值公式:a = dv/dt48. 速度的平均值与瞬时值之间的关系:v = lim(Δt→0) Δs/Δt49. 加速度的平均值与瞬时值之间的关系:a = lim(Δt→0)Δv/Δt50. 一维随机运动的位移公式:x = v₀t + 1/2at²51. 一维随机运动的速度公式:v = v₀ + at52. 一维随机运动的加速度公式:v² = v₀² + 2ax53. 二维随机运动的位移公式:x = v₀xt + 1/2at²54. 二维随机运动的速度公式:v = v₀ + at55. 二维随机运动的加速度公式:v² = v₀² + 2ax56.匀速圆周运动的角度公式:θ=ωt57.匀速圆周运动的角速度公式:ω=Δθ/Δt58.匀速圆周运动的线速度公式:v=ωr59.匀速圆周运动的加速度公式:a=v²/r60.匀速圆周运动的周期公式:T=2π/ω61. 平抛运动的位移公式:x = v₀xt62. 平抛运动的速度公式:v = v₀ + gt63. 平抛运动的加速度公式:v² = v₀² + 2gx64.平抛运动的竖直上升时间公式:t=v₀/g65. 平抛运动的竖直上升高度公式:h = v₀t - 1/2gt²66. 平抛运动的最大高度公式:h_max = v₀²/2g67. 圆锥曲线的焦距公式:f = ae68.圆锥曲线的离心率公式:e=c/a69.圆锥曲线的短轴长度公式:b=a√(1-e²)70. 均匀变速运动的位移公式:s = v₀t + 1/2at²71. 均匀变速运动的速度公式:v = v₀ + at72. 均匀变速运动的加速度公式:v² = v₀² + 2as73.均匀变速运动的时间公式:t=(v-v₀)/a74. 斜抛运动的水平位移公式:x = v₀xt75.斜抛运动的水平速度公式:v_x=v₀x76. 斜抛运动的竖直位移公式:y = v₀yt - 1/2gt²77. 斜抛运动的竖直速度公式:v_y = v₀t - gt78. 斜抛运动的参数方程:x = v₀xt, y = v₀yt - 1/2gt²79. 阻力的特征速度公式:v = mg/k80. 阻力的质量与时间的关系:m = (v₀/g)(k - kv₀/g)81. 阻尼振动的运动方程公式:mx'' + bx' + kx = 082.声音强度的公式:I=P/A83. 声音强度的分贝公式:L = 10log(I/I₀)84. 牛顿第二定律公式:F = ma85.牛顿万有引力公式:F=G(m₁m₂/r²)86.功的计算公式:W=Fs87.功的机械功率公式:P=W/t88.功的势能转换公式:W=ΔPE+ΔKE以上是88个高中必背的数学公式,学生们可以通过反复背诵和练习,掌握这些公式,并应用于解题中,提高数学能力。
高考数学必背公式整理(衡水中学高中数学组)
高考数学必背公式整理一、平面几何公式1. 直线方程- 一般式:Ax + By + C = 0- 斜截式:y = kx + b- 截距式:x/a + y/b = 1- 两点式:(y-y₁)/(x-x₁) = (y₂-y₁)/(x₂-x₁)2. 圆的方程- 标准方程:(x-a)² + (y-b)² = r²- 一般方程:x² + y² + Dx + Ey + F = 0 - 中心半径方程:(x-h)² + (y-k)² = r²3. 直角三角形- 勾股定理:a² + b² = c²- 正弦定理:a/sinA = b/sinB = c/sinC - 余弦定理:c² = a² + b² - 2abcosC- 正切定理:tanA = b/a4. 圆锥曲线- 椭圆:x²/a² + y²/b² = 1- 双曲线:x²/a² - y²/b² = 1- 抛物线:y² = 2px二、空间几何公式1. 空间中的直线- 参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct - 对称式:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n2. 空间中的平面- 一般方程:Ax + By + Cz + D = 0- 点法式:A(x-x₁) + B(y-y₁) + C(z-z₁) = 0- 三点式:[ABCD] = 03. 空间中的球面- 标准方程:(x-a)² + (y-b)² + (z-c)² = r²- 一般方程:x² + y² + z² + Dx + Ey + Fz + G = 0 - 中心半径方程:(x-h)² + (y-k)² + (z-l)² = r²4. 空间向量- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn- 混合积:[a,b,c] = a·(b×c)三、解析几何公式1. 直线和平面- 平面方程:Ax + By + Cz + D = 0- 直线方程:(x-x₁)/l = (y-y₁)/m = (z-z₁)/n- 点到直线距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²) - 点到平面距离:d = |Ax₀ + By₀ + Cz₀ + D|/√(A² + B² + C²)2. 点、向量和运算- 点积:a·b = |a| |b| cosθ- 叉积:a×b = |a| |b| sinθn3. 曲线和曲面- 曲线斜率:y‘ = f'(x) = dy/dx- 曲面切面:z = f(x, y)- 曲线弧长:L = ∫√(1 + (dy/dx)²)dx四、数列与级数公式1. 数列- 等差数列通项公式:aₙ = a₁ + (n-1)d- 等比数列通项公式:aₙ = a₁qⁿ⁻¹- 通项公式求和:Sₙ = (a₁+aₙ)n/22. 级数- 等差级数求和:Sₙ = n(a₁+aₙ)/2- 等比级数求和:Sₙ = a₁(1-qⁿ)/(1-q)3. 数学归纳法- 数学归纳法证明- 数学归纳法应用五、概率统计公式1. 概率- 事件概率:P(A) = n(A)/n(Ω)- 加法公式:P(A∪B) = P(A) + P(B) - 条件概率:P(A|B) = P(A∩B)/P(B)2. 统计- 样本均值:μ = Σxᵢ/n- 样本方差:σ²= Σ(xᵢ-μ)²/n- 标准差:σ = √σ²3. 随机变量- 期望:E(X) = ΣxᵢP(X=xᵢ)- 方差:Var(X) = E(X²) - [E(X)]²- 协方差:Cov(X,Y) = E((X-E(X))(Y-E(Y)))六、函数与导数公式1. 基本函数- 幂函数:f(x) = xⁿ- 指数函数:f(x) = aⁿ- 对数函数:f(x) = logₐx- 三角函数:f(x) = sinx, cosx, tanx2. 函数性质- 奇函数和偶函数- 单调性和极值- 函数图像和性态3. 导数与微分- 导数定义:f'(x) = lim(h→0)(f(x+h)-f(x))/h - 函数求导:(xⁿ)’ = nxⁿ⁻¹- 链式法则:(f(g(x)))’ = f’(g(x))·g’(x)- 微分运算:dy = f’(x)dx七、积分公式1. 不定积分- 基本积分公式 - 定积分计算 - 变限积分求导2. 定积分- 定积分性质 - 定积分应用 - 变限积分求导3. 微分方程- 微分方程定解 - 微分方程解法 - 微分方程应用八、高等代数公式1. 行列式- 二阶行列式 - 三阶行列式 - 克拉默法则2. 矩阵运算- 矩阵相加- 矩阵相乘- 矩阵转置3. 线性方程组- 高斯消元法- 矩阵法解方程组- 克拉默法则以上是高考数学必背公式的整理,希望同学们能够认真学习并灵活运用这些公式,提高数学应用能力,取得优异的成绩。
高中数学公式及知识点总结大全
高中数学公式及知识点总结大全高中数学是一门基础性强的科目,学好高中数学对于通识科学和深入学习其他专业课程都有很大帮助。
下面将为大家总结高中数学中的常用公式和知识点。
一、函数1、基本函数公式:①y=kx:直线函数,其中k为斜率,x为自变量,y为因变量。
②y=x²:二次函数,开口朝上,开口为a。
③y=-x²:二次函数,开口朝下,开口为-a。
④y=√x:开口朝上的平方根函数,变化率最大的点为(0,0)。
⑤y=-√x:开口朝下的平方根函数,没有定义域对应值为负数。
⑥y=a⁽ˣ⁾:指数函数,a>0且a≠1,a>1开口朝上,0<a<1开口朝下,变化率最大的点为(0,1)。
⑦y=logₐx:对数函数,a>0且a≠1,其中a称为底数,x称为实参,y称为虚参,定义域为x>0,变化速率最大的点为(1,0)。
2、函数的性质:①奇偶性:对于函数f(x),若f(-x)=f(x),则称f(x)为偶函数;若f(-x)=-f(x),则称f(x)为奇函数。
二次函数和正弦、余弦函数平移后仍为自身即线对称的,即偶函数。
②单调性:单调递增指自变量增大时,因变量也增大,反之为单调递减。
③最值点:函数图像上最高点和最低点,即最大值和最小值,由函数的导数为0时得到。
④零点:函数值为0的点。
⑤导数:函数在一点的切线斜率,表示为y=Δy/Δx,y'=f⁽x⁾表示x变化一单位,函数值变化的速率。
二、三角函数1、基本定义:弧度制:弧长等于半径的一部分。
三角函数:正弦、余弦、正切、余切、正割、余割2、基本公式:①正弦函数:y=Asin(Bx+C)+D②余弦函数:y=Acos(Bx+C)+D③正切函数:y=Atan(Bx+C)+D3、三角函数的运算:①和差化积公式:sin(a±b)=sinacosb±cosasinb,cos(a±b)=cosacosb-正bsinasinb②积化和差公式:sinacosb=1/2[cos(a-b)+cos(a+b)],sinasinb=1/2[cos(a-b)-cos(a+b)],cosacosb=1/2[cos(a+b)+cos(a-b)],sinacosb=1/2[sin(a+b)+sin(a-b)]4、三角函数的图像:正弦函数的图像为一条周期为$2π$的连续的曲线,最大值为1,最小值为-1;余弦函数也是周期为$2π$的连续曲线,最大值为1,最小值为-1;正切函数为无界函数,当$x=kπ-1/2π(k∈Z)$时,函数值不存在。
高中数学必背公式大全高考必考数学公式
高中数学必背公式大全高考必考数学公式1.二次方程的根与系数之间的关系:设二次方程 ax^2 + bx + c = 0(a ≠ 0)的根为 x1 和 x2,那么有以下关系式:x1+x2=-b/ax1*x2=c/a2.一元二次不等式的求解:设二次不等式 ax^2 + bx + c > 0(a ≠ 0)的解集为 S,那么有以下关系式:a>0时,S={x,x<x1或x>x2}a<0时,S={x,x1<x<x2}3.二次函数的顶点坐标:设二次函数 y = ax^2 + bx + c 的顶点坐标为 (h, k)那么有 h = -b/2a,k = f(h) = (4ac - b^2)/4a4.一次函数的斜率与函数图像的关系:设一次函数 y = mx + c 的斜率为 m,那么有以下关系式:m>0时,函数图像上升;m<0时,函数图像下降;m=0时,函数图像水平。
5.三角函数和三角公式:sin(A + B) = sinA * cosB + cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)sin^2A + cos^2A = 1sin²θ + cos²θ = 16.幂函数的性质:若 a > 0 且a ≠ 1,则函数 y = ax^n (n 是整数)的性质如下:n>0时,函数图像单调递增;n<0时,函数图像单调递减;n为偶数时,函数图像关于y轴对称;n为奇数时,函数图像关于原点对称。
7.对数函数的性质:若 a > 0 且a ≠ 1,则函数 y = log_a(x) 的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(1,0),且以x轴为渐近线;log_a(a^b) = b8.指数函数的性质:若a>0且a≠1,则函数y=a^x的性质如下:a>1时,函数图像单调递增;0<a<1时,函数图像单调递减;函数图像过点(0,1),且a^0=1a^m*a^n=a^(m+n)9.排列组合公式:将n个物体排成一列,有以下公式:排列公式:从n个物体中任选m个物体的排列数为A(n,m)=n!/(n-m)!组合公式:从n个物体中任选m个物体的组合数为C(n,m)=n!/(m!*(n-m)!)10.三角函数的和差化积:sin(A + B) = sinA * cosB + cosA * sinBsin(A - B) = sinA * cosB - cosA * sinBcos(A + B) = cosA * cosB - sinA * sinBcos(A - B) = cosA * cosB + sinA * sinBtan(A + B) = (tanA + tanB) / (1 - tanA * tanB)tan(A - B) = (tanA - tanB) / (1 + tanA * tanB)这些公式是高中数学中的常用公式,掌握并熟练运用它们对于高考数学考试非常重要。
146条中学数学公式和定理
中学数学常见定理和公式1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理:经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12 两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理:三角形两边的和大于第三边16 推论:三角形两边的差小于第三边17 三角形内角和定理:三角形三个内角的和等于180°18 推论1:直角三角形的两个锐角互余19 推论2:三角形的一个外角等于和它不相邻的两个内角的和20 推论3:三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理:有两边和它们的夹角对应相等的两个三角形全等23 角边角公理:有两角和它们的夹边对应相等的两个三角形全等24 推论:有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理:有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1:在角的平分线上的点到这个角的两边的距离相等28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理:等腰三角形的两个底角相等31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3:等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1:三个角都相等的三角形是等边三角形36 推论2:有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1:关于某条直线对称的两个图形是全等形43 定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47 勾股定理的逆定理:如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论:任意多边的外角和等于360°52 平行四边形性质定理1:平行四边形的对角相等53 平行四边形性质定理2:平行四边形的对边相等54 推论:夹在两条平行线间的平行线段相等55 平行四边形性质定理3:平行四边形的对角线互相平分56 平行四边形判定定理1:两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2:两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3:对角线互相平分的四边形是平行四边形59 平行四边形判定定理4:一组对边平行相等的四边形是平行四边形60 矩形性质定理1:矩形的四个角都是直角61 矩形性质定理2:矩形的对角线相等62 矩形判定定理1:有三个角是直角的四边形是矩形63 矩形判定定理2:对角线相等的平行四边形是矩形64 菱形性质定理1:菱形的四条边都相等65 菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1:四边都相等的四边形是菱形68 菱形判定定理2:对角线互相垂直的平行四边形是菱形69 正方形性质定理1:正方形的四个角都是直角,四条边都相等70 正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1:关于中心对称的两个图形是全等的72 定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 等腰梯形性质定理:等腰梯形在同一底上的两个角相等75 等腰梯形的两条对角线相等101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理:不在同一直线上的三个点确定一条直线110 垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧111 推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112 推论2:圆的两条平行弦所夹的弧相等113 圆是以圆心为对称中心的中心对称图形114 定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115 推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116 定理:一条弧所对的圆周角等于它所对的圆心角的一半117 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118 推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119 推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120 定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121 ①直线L和⊙O相交d﹤r;②直线L和⊙O相切d=r122 切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123 切线的性质定理:圆的切线垂直于经过切点的半径124 推论1:经过圆心且垂直于切线的直线必经过切点125 推论2:经过切点且垂直于切线的直线必经过圆心126 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127 圆的外切四边形的两组对边的和相等128 弦切角定理:弦切角等于它所夹的弧对的圆周角129 推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133 推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134 如果两个圆相切,那么切点一定在连心线上135 ①两圆外离d﹥R+r;②两圆外切d=R+r;③两圆相交R-r﹤d﹤R+r (R﹥r);④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136 定理:相交两圆的连心线垂直平分两圆的公共弦137 定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138 定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139 正n边形的每个内角都等于(n-2)×180°/n140 定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141 正n边形的面积Sn=pnrn/2p表示正n边形的周长142 正三角形面积√3a/4a表示边长143 如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144 弧长计算公式:L=n∏R/180145 扇形面积公式:S扇形=n∏R/360=LR/2146 内公切线长=d-(R-r)外公切线长=d-(R+r)。
高级中学数学公式定理全集(全面,最详细)
高中数学公式大全(最全面,最详细)高中数学公式大全抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca > 0时开口向上a < 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(一)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。
(二)椭圆面积计算公式椭圆面积公式:S=πab椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。
以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。
常数为体,公式为用。
椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高三角函数:两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍角公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍角公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10) ·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB 注:角B是边a和边c的夹角乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有两个不相等的个实根b2-4ac<0 注:方程有共轭复数根公式分类公式表达式圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长面积体积公式长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积已知三角形底a,高h,则S=ah/2已知三角形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三角形两边a,b,这两边夹角C,则S=absinC/2设三角形三边分别为a、b、c,内切圆半径为r则三角形面积=(a+b+c)r/2设三角形三边分别为a、b、c,外接圆半径为r则三角形面积=abc/4r已知三角形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里ABC| e f 1 |选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】秦九韶三角形中线面积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三角形的中线长.平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积=(长×宽+长×高+宽×高)×2长方体的体积=长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形名称符号周长C和面积S正方形a—边长C=4aS=a2长方形a和b-边长C=2(a+b)S=ab三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等24 推论(aas) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(sss) 有三边对应相等的两个三角形全等26 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半l=(a+b)÷2 s=l×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(asa)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas)94 判定定理3 三边对应成比例,两三角形相似(sss)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高中数学公式定理核心公式与定理的汇总
高中数学公式定理核心公式与定理的汇总高中数学涵盖了众多的公式和定理,它们是解决数学问题的关键工具。
以下为大家汇总了一些核心的公式与定理,希望能帮助同学们更好地理解和掌握高中数学知识。
一、函数部分1、函数的定义设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的单调性对于给定区间 D 上的函数 f(x),如果对于任意 x₁,x₂∈D,当x₁<x₂时,都有 f(x₁)<f(x₂)(或 f(x₁)>f(x₂)),则称函数 f(x)在区间 D 上是增函数(或减函数)。
3、函数的奇偶性若对于定义域内任意 x,都有 f(x)=f(x),则函数 f(x)为偶函数;若对于定义域内任意 x,都有 f(x)=f(x),则函数 f(x)为奇函数。
4、一次函数一般形式为 y=kx+b(k,b 为常数,k≠0)。
5、二次函数一般形式为y=ax²+bx+c(a≠0),其图像是一条抛物线。
当a>0 时,抛物线开口向上;当 a<0 时,抛物线开口向下。
对称轴为 x=b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
二、三角函数部分1、同角三角函数的基本关系sin²α +cos²α = 1,tanα =sinα/cosα。
2、诱导公式例如:sin(π +α) =sinα,cos(π +α) =cosα,tan(π +α) =tanα 等。
3、和角公式sin(α +β) =sinαcosβ +cosαsinβ,cos(α +β) =cosαcosβ sinαsinβ,tan(α +β) =(tanα +tanβ)/(1 tanαtanβ)。
4、倍角公式sin2α =2sinαcosα,cos2α =cos²α sin²α =2cos²α 1 =1 2sin²α,tan2α =2tanα/(1 tan²α)。
中学数学定理公式大全
中学数学定理公式大全中学数学中的定理和公式有很多,以下是一些常见的中学数学定理和公式:1.过两点有且只有一条直线。
2.两点之间线段最短。
3.同角或等角的补角相等。
4.同角或等角的余角相等。
5.过一点有且只有一条直线和已知直线垂直。
6.直线外一点与直线上各点连接的所有线段中,垂线段最短。
7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
8.如果两条直线都和第三条直线平行,这两条直线也互相平行。
9.同位角相等,两直线平行。
10.内错角相等,两直线平行。
11.同旁内角互补,两直线平行。
12.两直线平行,同位角相等。
13.两直线平行,内错角相等。
14.两直线平行,同旁内角互补。
15.三角形两边的和大于第三边。
16.三角形两边的差小于第三边。
17.三角形内角和等于180度。
18.黄金分割:把一条线段分成两部分,使其中较大的线段是原线段与较小线段的比例中项。
19.笛沙格(Desargues)定理:已知在△ABC与△A'B'C'中,AA'、BB'、CC'三线相交于点O,BC与B'C'、CA与C'A'、AB与A'B'分别相交于点X、Y、Z,则X、Y、Z三点共线。
20.摩莱(Morley)三角形:在已知△ABC三内角的三等分线中,分别与BC、CA、AB相邻的每两线相交于点D、E、F,则三角形DDE 是正三角形,这个正三角形称为摩莱三角形。
21.帕斯卡(Paskal)定理:已知圆内接六边形ABCDEF的边AB、DE延长线交于点G,边BC、EF延长线交于点H,边CD、FA延长线交于点K,则H、G、K三点共线。
22.托勒密(Ptolemy)定理:在圆内接四边形中,AB? CD+AD? BC=EF? AG(AG为圆直径)。
数学高级公式定理
数学高级公式定理1. 费马大定理:对于大于2的自然数n,关于x,y,z的方程xn+yn=zn没有正整数解(x,y,z)。
2. 帕斯卡定理:在正整数域上,对于任意的自然数n和非负整数k,成立以下等式:(n,k)+(n,k-1)=(n+1,k)。
3. 斯特林公式:斯特林公式分为两种,第一种是第一类斯特林数,表示将n个物品划分成k个非空集合的方案数,记为S(n,k);第二种是第二类斯特林数,表示将n个物品划分成k个非空无序集合的方案数,记为S(n,k),其中n>=k。
第一类斯特林数的递推公式为:S(n,k)=S(n-1,k-1)-(n-1)*S(n-1,k);第二类斯特林数的递推公式为:S(n,k)=S(n-1,k-1)+k*S(n-1,k)。
4. 柯西-斯瓦茨不等式:对于实数a1,a2,...,an和b1,b2,...,bn,有以下不等式成立:(a1^2+a2^2+...+an^2)(b1^2+b2^2+...+bn^2)>=(a1b1+a2b2+...+anbn)^2。
5. 拉格朗日中值定理:对于连续函数f(x),在区间[a,b]上存在一个点c,使得f(b)-f(a)=f'(c)(b-a)。
6. 泰勒公式:若函数f(x)在x=x0处具有n阶导数,则函数f(x)在x=x0处的n阶泰勒公式为:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)/2!(x-x0)^2+...+f^(n)(x0)/n!(x-x0)^n+Rn(x),其中Rn(x)为余项。
7. 欧拉公式:对于多面体(如立方体、正四面体等),有以下等式成立:V-E+F=2,其中V表示顶点数,E表示边数,F表示面数。
8. 矩阵行列式定理:对于n阶矩阵A,其行列式可以展开为:det(A)=a1j1*a2j2*...*anjn,其中aj1,aj2,...,ajn是{1,2,...,n}的全排列,aij表示矩阵A的第i行第j列元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学公式结论大全1. ,.2..3.4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有个.5.二次函数的解析式的三种形式(1)一般式;(2)顶点式;当已知抛物线的顶点坐标时,设为此式(3)零点式;当已知抛物线与轴的交点坐标为时,设为此式4切线式:。
当已知抛物线与直线相切且切点的横坐标为时,设为此式6.解连不等式常有以下转化形式.7.方程在内有且只有一个实根,等价于或。
8.闭区间上的二次函数的最值二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,若,则;,,.(2)当a<0时,若,则,若,则,.9.一元二次方程=0的实根分布1方程在区间内有根的充要条件为或;2方程在区间内有根的充要条件为或或;3方程在区间内有根的充要条件为或 .10.定区间上含参数的不等式恒成立(或有解)的条件依据(1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。
(2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是。
(3)在给定区间的子区间上含参数的不等式(为参数)的有解充要条件是。
(4) 在给定区间的子区间上含参数的不等式(为参数)有解的充要条件是。
对于参数及函数.若恒成立,则;若恒成立,则;若有解,则;若有解,则;若有解,则.若函数无最大值或最小值的情况,可以仿此推出相应结论11.真值表12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个至多有个 小于不小于至多有个 至少有个对所有,成立 存在某,不成立 或 且 对任何,不成立存在某,成立且或p q 非p p或q p且q 真 真 假 真 真真 假 假 真 假假 真 真 真 假 假 假真假假13.四种命题的相互关系(右图):14.充要条件记表示条件,表示结论1充分条件:若,则是充分条件.2必要条件:若,则是必要条件.3充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.15.函数的单调性的等价关系(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.16.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和都是增函数,则在公共定义域内,和函数也是增函数; 如果函数和在其对应的定义域上都是减函数,则复合函数是增函数;如果函数和在其对应的定义域上都是增函数,则复合函数是增函数;如果函数和在其对应的定义域上一个是减函数而另一个是增函数,则复合函数是减函数. 17.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.18.常见函数的图像:19.对于函数(),恒成立,则函数的对称轴是;两个函数与的图象关于直线对称.20.若,则函数的图象关于点对称;若,则函数为周期为的周期函数.21.多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.22.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.23.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.24.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.25.几个常见的函数方程(1)正比例函数.(2)指数函数.(3)对数函数.(4)幂函数.(5)余弦函数,正弦函数,,.26.几个函数方程的周期(约定a>0)1,则的周期T=a;2,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;27.分数指数幂(1),且.(2),且.28.根式的性质1.2当为奇数时,;当为偶数时,.29.有理指数幂的运算性质(1) .(2) .(3).注:若a>0,p是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.30.指数式与对数式的互化式:.31.对数的换底公式 : (,且,,且,).对数恒等式:(,且,).推论(,且,).32.对数的四则运算法则:若a>0,a≠1,M>0,N>0,则(1); (2) ;(3); (4) 。
33.设函数,记.若的定义域为,则且;若的值域为,则,且。
34.对数换底不等式及其推广:设,,,且,则1. 2.35.平均增长率的问题负增长时如果原来产值的基础数为N,平均增长率为,则对于时间的总产值,有.36.数列的通项公式与前n项的和的关系:( 数列的前n项的和为).37.等差数列的通项公式:;其前n项和公式为:.38.等比数列的通项公式:;其前n项的和公式为或.39.等比差数列:的通项公式为;其前n项和公式为:.40.分期付款(按揭贷款) :每次还款元(贷款元,次还清,每期利率为). 41.常见三角不等式1若,则.(2) 若,则.(3) .42.同角三角函数的基本关系式:,=,.43.正弦、余弦的诱导公式奇变偶不变,符号看象限,44.和角与差角公式;;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).45.二倍角公式及降幂公式...46.三角函数的周期公式函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0)的周期;函数,(A,ω,为常数,且A≠0)的周期.三角函数的图像:五点法作图列表:0 π/2π3π/22π47.正弦定理:R为外接圆的半径.48.余弦定理;;.53.面积定理1分别表示a、b、c边上的高.2.3.49.三角形内角和定理在△A BC中,有.50.简单的三角方程的通解...特别地,有...51.最简单的三角不等式及其解集......52.实数与向量的积的运算律:设λ、μ为实数,那么(1) 结合律:λ(μ)=(λμ) ;(2)第一分配律:(λ+μ) =λ+μ;(3)第二分配律:λ(+)=λ+λ.53.向量的数量积的运算律:(1)·= ·交换律;(2)·= ·=·=·;(3)+·=· +·.54.平面向量基本定理如果、是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得=λ1+λ2.不共线的向量、叫做表示这一平面内所有向量的一组基底.三点A、B、C共线的充要条件:(M为任意点)55.向量平行的坐标表示设=,=,且,则 ().56. 与的数量积(或内积):·=||||。
57.·的几何意义:数量积·等于的长度||与在的方向上的投影||的乘积.向量在向量上的投影:||=.58.平面向量的坐标运算(1)设=,=,则+=.(2)设=,=,则-=.(3)设A,B,则.(4)设=,则=.(5)设=,=,则·=.59.两向量的夹角公式(=,=).60.平面两点间的距离公式=(A,B).61.向量的平行与垂直:设=,=,且,则||=λ.()·=0.62.线段的定比分公式:设,,是线段的分点,是实数,且,则.63.三角形的重心坐标公式△ABC三个顶点的坐标分别为、、,则△ABC的重心的坐标是.64.点的平移公式.注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.65.“按向量平移”的几个结论1点按向量=平移后得到点.(2) 函数的图象按向量=平移后得到图象,则的函数解析式为.(3) 图象按向量=平移后得到图象,若的解析式,则的函数解析式为.(4)曲线:按向量=平移后得到图象,则的方程为.(5) 向量=按向量=平移后得到的向量仍然为=.66.三角形五“心”向量形式的充要条件设为所在平面上一点,角所对边长分别为,则1为的外心.2为的重心.3为的垂心.4为的内心.5为的的旁心.67.常用不等式:1(当且仅当a=b时取“=”号).2(当且仅当a=b时取“=”号).345.6(当且仅当a=b时取“=”号)。
68.最值定理:已知都是正数,则有1若积是定值,则当时和有最小值;2若和是定值,则当时积有最大值.3已知,若则有。
4已知,若则有69.一元二次不等式,如果与同号,则其解集在两根之外;如果与异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.;.70.含有绝对值的不等式:当a> 0时,有.或.71.无理不等式1 .2.3.72.指数不等式与对数不等式(1)当时,; .(2)当时,;73.斜率公式、.74.直线的五种方程1点斜式(直线过点,且斜率为).2斜截式(b为直线在y轴上的截距).3两点式()(、 ()). 两点式的推广:无任何限制条件!(4)截距式(分别为直线的横、纵截距,)5一般式(其中A、B不同时为0).直线的法向量:,方向向量:75.两条直线的平行和垂直(1)若,①;②.(2)若,,且A1、A2、B1、B2都不为零,①;②;,,,此时直线76.四种常用直线系方程及直线系与给定的线段相交:(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数.(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中λ是待定的系数.(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程.与直线平行的直线系方程是(),λ是参变量.(4)垂直直线系方程:与直线(A≠0,B≠0)垂直的直线系方程是,λ是参变量.(5)直线系与线段相交。
77.点到直线的距离:(点,直线:).78. 或所表示的平面区域设直线,则或所表示的平面区域是:若,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.若,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左。
79. 或所表示的平面区域或所表示的平面区域是两直线和所成的对顶角区域上下或左右两部分。
80. 圆的四种方程1圆的标准方程.2圆的一般方程(>0).3圆的参数方程.4圆的直径式方程(圆的直径的端点是、).81. 圆系方程(1)过点,的圆系方程是,其中是直线的方程,λ是待定的系数.(2)过直线:与圆:的交点的圆系方程是,λ是待定的系数.(3) 过圆:与圆:的交点的圆系方程是,λ是待定的系数.特别地,当时,就是表示:①当两圆相交时,为公共弦所在的直线方程;②向两圆所引切线长相等的点的轨迹直线方程82.点与圆的位置关系:点与圆的位置关系有三种若,则点在圆外;点在圆上;点在圆内.83.直线与圆的位置关系直线与圆的位置关系有三种():.* ;;.84.两圆位置关系的判定方法:设两圆圆心分别为O1,O2,半径分别为r1,r2,;;;;.85.圆的切线方程及切线长公式(1)已知圆.①若已知切点在圆上,则切线只有一条,其方程是.当圆外时, 表示过两个切点的切点弦方程.求切点弦方程,还可以通过连心线为直径的圆与原圆的公共弦确定。