中南大学信号与系统matlab实验报告

合集下载

信号与系统matlab实验报告

信号与系统matlab实验报告

信号与系统MATLAB实验报告实验目的本实验旨在通过MATLAB软件进行信号与系统的相关实验,探究信号与系统的特性与应用。

实验步骤1. 准备工作在正式进行实验之前,我们需要做一些准备工作。

首先,确保已经安装好MATLAB软件,并且熟悉基本的操作方法。

其次,准备好实验所需的信号与系统数据,可以是已知的标准信号,也可以是自己采集的实际信号。

2. 信号的生成与显示使用MATLAB编写代码,生成不同类型的信号。

例如,可以生成正弦信号、方波信号、三角波信号等。

通过绘制信号波形图,观察不同信号的特点和变化。

t = 0:0.1:10; % 时间范围f = 1; % 信号频率s = sin(2*pi*f*t); % 正弦信号plot(t, s); % 绘制信号波形图3. 系统的建模与分析根据实验需求,建立相应的系统模型。

可以是线性时不变系统,也可以是非线性时变系统。

通过MATLAB进行模型的建立和分析,包括系统的时域特性、频域特性、稳定性等。

sys = tf([1, 2], [1, 3, 2]); % 系统传递函数模型step(sys); % 绘制系统的阶跃响应图4. 信号与系统的运算对于给定的信号和系统,进行信号与系统的运算。

例如,进行信号的卷积运算、系统的响应计算等。

通过MATLAB实现运算,并分析结果的意义与应用。

x = [1, 2, 3]; % 输入信号h = [4, 5, 6]; % 系统响应y = conv(x, h); % 信号的卷积运算plot(y); % 绘制卷积结果的波形图5. 实验结果分析根据实验数据和分析结果,对实验进行结果总结与分析。

可以从信号的特性、系统的特性、运算结果等方面进行综合性的讨论和分析。

实验总结通过本次实验,我们学习了如何在MATLAB中进行信号与系统的实验。

通过生成信号、建立系统模型、进行运算分析等步骤,我们深入理解了信号与系统的基本原理和应用方法。

通过实验数据和结果分析,我们对信号与系统有了更深刻的认识,并掌握了MATLAB在信号与系统实验中的应用技巧。

中南大学Matlab实验报告(优选.)

中南大学Matlab实验报告(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。

Matlab实验报告姓名:班级:班学号:目录实验一熟悉MATLAB环境 (3)实验二数值数组创建、应用及可视化 ................................ 错误!未定义书签。

实验三字符串数组的使用、简单脚本文件和函数的编写错误!未定义书签。

实验四数据可视化方法 .. (22)Matlab实验报告实验室名称:综合实验楼4楼实验日期:2014年12月[实验目的]1 .熟悉 MATLAB 主界面,并学会简单的菜单操作。

2 .学会简单的矩阵输入与信号输入。

3 .掌握部分绘图函数。

[实验原理]MATLAB 是以复杂矩阵作为基本编程单元的一种程序设计语言。

它提供了各种矩阵的运算与操作,并有较强的绘图功能。

用户第一次使用 MATLAB 时,建议首先在屏幕上键入 demo 命令,它将启动 MATLAB 的演试程序,用户可在此演示程序中领略MATLAB 所提供的强大的运算与绘图功能。

也可以键入 help 进行进一步了解。

MATLAB 启动界面如图所示:操作界面主要的介绍如下:指令窗(Command Window ),在该窗可键入各种送给MATLAB 运作的指令、函数、表达式,并显示除图形外的所以运算结果。

历史指令窗( Command History ),该窗记录已经运行过的指令、函数、表达式;允许自己的编写文件。

MATLAB 工作时,基本搜索过程为:首先在工作空间,即MATLAB 内存中进行检查,看输入的指令是不是变量;如不是,则检查输入指令是不是内建函数(比如sin 函数等);如不是,则在当前目录上,检查是否有与输入指令相同的M 文件存在;如还没有,则在 MATLAB 定义的搜索路径其他目录中,检查是否有该 M 文件存在。

信号与系统MATLAB实验报告

信号与系统MATLAB实验报告

实验报告实验课程:信号与系统—Matlab综合实验学生姓名:学号:专业班级:2012年5月20日基本编程与simulink仿真实验1—1编写函数(function)∑=m n k n 1并调用地址求和∑∑∑===++10011-8015012n n n n n n 。

实验程序:Function sum=qiuhe(m,k)Sum=0For i=1:m Sum=sum+i^k End实验结果;qiuhe(50,2)+qiuhe(80,1)+qiuhe(100,-1)ans=4.6170e+004。

1-2试利用两种方式求解微分方程响应(1)用simulink对下列微分方程进行系统仿真并得到输出波形。

(2)编程求解(转移函数tf)利用plot函数画图,比较simulink图和plot图。

)()(4)(6)(5)(d 22t e t e d d t r t r d d t r d tt t +=++在e(t)分别取u(t)、S(t)和sin(20пt)时的情况!试验过程(1)(2)a=[1,5,6]; b=[4,1]; sys=tf(b,a); t=[0:0.1:10]; step(sys)连续时间系统的时域分析3-1、已知某系统的微分方程:)()()()()(d 2t e t e d t r t r d t r tt t +=++分别用两种方法计算其冲激响应和阶跃响应,对比理论结果进行验证。

实验程序:a=[1,1,1];b=[1,1];sys=tf(b,a);t=[0:0.01:10];figure;subplot(2,2,1);step(sys);subplot(2,2,2);x_step=zeros(size(t));x_step(t>0)=1;x_step(t==0)=1/2;lsim(sys,x_step,t);subplot(2,2,3);impulse(sys,t);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');subplot(2,2,4);x_delta=zeros(size(t));x_delta(t==0)=100;[y1,t]=lsim(sys,x_delta,t);y2=y1;plot(t,y2);title('Impulse Response');xlabel('Time(sec)');ylabel('Amplitude');运行结果如下:3-2;请编写一个自定义函数[F,tF}=intl(f,tf,a)实现数值积分,其中f和tf分别用列矢量表示待积函数的抽样值和抽样时间,a表示积分的起始时间,F和tF分别表示积分结果的抽样值和抽样时间。

MATLAB信号与系统实验报告

MATLAB信号与系统实验报告

信号与系统实验报告(5)MATLAB 综合实验项目二 连续系统的频域分析目的:周期信号输入连续系统的响应可用傅里叶级数分析。

由于计算过程烦琐,最适合用MATLAB 计算。

通过编程实现对输入信号、输出信号的频谱和时域响应的计算,认识计算机在系统分析中的作用。

任务:线性连续系统的系统函数为11)(+=ωωj j H ,输入信号为周期矩形波如图1所示,用MATLAB 分析系统的输入频谱、输出频谱以及系统的时域响应。

图1方法:1、确定周期信号f(t)的频谱nF 。

基波频率Ω。

2、确定系统函数)(Ωjn H 。

3、计算输出信号的频谱nn F jn H Y )(Ω= 4、系统的时域响应∑∞-∞=Ω=n tjn neY t y )(MATLAB 计算为y=Y_n*exp(j*w0*n'*t);要求(画出3幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。

用两个子图画出。

2、画出系统函数的幅度频谱|H(jω)|。

3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。

用两个子图画出。

解:(1)分析计算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/=π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)程序:t=linspace(-3,3,300);tau_T=1/4; %n0=-20;n1=20;n=n0:n1; %计算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,'linewidth',2); %输入信号的波形axis([-3,3,-0.1,2.1]);grid onxlabel('Time(sec)','fontsize',8),title('输入信号','fontweight','bold') %设定字体大小,文本字符的粗细text(-0.4,0.8,'f(t)')subplot(2,1,2),stem(n,abs(F_n),'.'); %输入信号的幅度频谱xlabel('n','fontsize',8),title('输入信号的幅度频谱','fontweight','bold')text(-4.0,0.2,'|Fn|')H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),'.'); %系统函数的幅度频谱xlabel('n','fontsize',8),title('系统函数的幅度频谱','fontweight','bold')text(-2.5,0.5,'|Hn|')Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n'*t);figure(3),subplot(2,1,1),line(t,y,'linewidth',2); %输出信号的波形axis([-3,3,0,0.5]);grid onxlabel('Time(sec)','fontsize',8),title('输出信号','fontweight','bold')text(-0.4,0.3,'y(t)')subplot(2,1,2),stem(n,abs(Y_n),'.'); %输出信号的幅度频谱xlabel('n','fontsize',8),title('输出信号的幅度频谱','fontweight','bold')text(-4.0,0.2,'|Yn|')(3)波形:-3-2-1012300.511.52Time(sec)输入信号n输入信号的幅度频谱-20-15-10-55101520n系统函数的幅度频谱-3-2-112300.10.20.30.4Time(sec)输出信号n输出信号的幅度频谱项目三 连续系统的复频域分析目的:周期信号输入连续系统的响应也可用拉氏变换分析。

信号与系统MATLAB实验全

信号与系统MATLAB实验全

实验篇 信号与系统实验指导实验一、MATLAB 编程基础及典型实例一、实验目的(1) 熟悉MATLAB 软件平台的使用; (2) 熟悉MATLAB 编程方法及常用语句; (3) 掌握MATLAB 的可视化绘图技术;(4) 结合《信号与系统》的特点,编程实现常用信号及其运算。

二、实验原理连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点以外,信号都有确定的值与之对应。

严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。

当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。

矩阵是MATLAB 进行数据处理的基本单元,矩阵运算是MATLAB 最重要的运算。

通常意义上的数量(也称为标量)在MATLAB 系统中是作为1×1的矩阵来处理的,而向量实际上是仅有一行或者一列的矩阵。

通常用向量表示信号的时间取值范围,如n = -5:5,但信号x(n)、向量n 本身的下标都是从1开始的,因此必须用一个与向量x 等长的定位时间变量n ,以及向量x ,才能完整地表示序列x(n)。

这一点详情可参考预备篇示例7的程序说明。

三、实验内容与步骤(1) 新建一个文件夹,以自己的汉语名字命名,以后就用该文件夹专门存放自己所编制的M 文件和产生的图形;将该文件夹设置成当前工作目录。

(2) 绘制信号t)32sin(e x(t)t 2-=的曲线,t 的范围在0 ~ 30s ,取样时间间隔为0.1s.(3) 在n = [-10:10] 范围产生离散序列:⎩⎨⎧≤≤-=其余n0,3n 32n,x(n) ,并绘图。

四、实验报告要求整理并给出“实验内容与步骤”(2)、(3)的程序代码与产生的图形;并回答下面的问题。

(1) 在调用某一函数文件时,该文件中除了输入、输出变量外的其它变量在调用函数结束后是否还存在?这些变量是全局还是局部变量?(2) 设n = -10:0.2:20,你可以通过哪些方法查看向量n 的维数?经过关系运算y = (n >= 3)以后,y 的维数是多少?y 又等于什么?(3) 通过MATLAB 的帮助系统,学习fliplr 函数的功能和使用方法。

Matlab实验报告

Matlab实验报告

Matlab实验报告院系名称:信息科学与工程学院专业班级:通信工程1303指导老师:陈科文,支国明,张金焕,周扬学生姓名:学号:目录实验一熟悉MATLAB环境 (3)实验二数值数组创建、应用及可视化 (7)实验三字符串数组的使用、简单脚本文件和函数的编写 (12)实验四数据可视化方法 (22)实验一一、实验目的1 .熟悉MATLAB 主界面,并学会简单的菜单操作;2 .学会简单的矩阵输入与信号输入;3 .掌握部分绘图函数。

二、实验内容及要求1.用户工作目录和当前目录的建立和设置;2.熟悉简单的矩阵输入;3.常用基本命令的使用;4.基本序列运算;三、实验步骤及结果测试1.用户工作目录和当前目录的建立和设置2.熟悉简单的矩阵输入四、实验体会及心得这是我第一次做Matlab实验,一打开页面就有很多地方都不明白,因为页面大部分是英文,由于上课时对Matlab操作页面还有一些记忆,感觉还可以:本次试验是我对Matlab这门课有了一定的了解,对矩阵在Matlab中的运用也有了初步的认识。

实验二一、 实验目的1 .掌握二维数组的创建、寻访,区分数组运算与矩阵运算的区别;2 .掌握标准数组生成函数和数组构造技法;3 .进一步熟悉 M 脚本文件编写的方法和技巧。

二、实验内容及要求1.数组的创建和寻访 ;2.编写如图所示波形的 MATLAB 脚本文件,图中虚线为正弦波,要求它分别在21 及22处削顶。

三、实验步骤及结果测试仿照问题 1 中方法找出数组⎥⎦⎤⎢⎣⎡----=5311342024A 中所有绝对值大于 3 的元素。

程序如下图:运行指令 rand(‘state ’,11),A=rand(3,10000);B=(A>0.5);C=2*B -1;首先预测( C*C’)/100 的运行结果,然后再在机器上验证。

(本方法提供了产生通信等仿真中常需若干独立的双随机码的方法原型。

)A :B :C :编写如图所示波形的 MATLAB 脚本文件,图中虚线为正弦波,要求它分别在21 及22处削顶。

信号与系统Matlab实验报告

信号与系统Matlab实验报告

实验一MATLAB 程序入门和基础应用一、实验名称MATLAB 程序入门和基础应用二、实验目的1.学习Matlab软件的基本使用方法;2.了解Matlab的数值计算,符号运算,可视化功能;3. Matlab程序设计入门四、实验设备计算机MATLAB软件六、实验内容及具体步骤1、打开MATLAB的系统界面,对其功能做一个大致了解;2、学习变量的描述方法,掌握几个固定变量:I,j,pi,inf的使用。

注意,变量描述以字母开头,可以由字母、数字和下划线混合组成,区分字母大,小写字符长度不超过31个。

3、学习数值,矩阵,运算符,向量的矩阵运算,数组运算的描述方法。

(1)用一个简单命令求解线性系统3x1+ x2 - x3 =3.6x1+2x2+4x3 = 2.1-x1+4x2+5x3 = -1.4A=[3 1 -1;1 2 4;-1 4 5];b=[3.6;2.1;-1.4];x=A\b结果:x = 1.4818 -0.4606 0.3848(2)用简短命令计算并绘制在0≤x≤6范围内的sin(2x)、sinx2、sin2x。

x=linspace(0,6)y1=sin(2*x),y2=sin(x.^2),y3=(sin(x)).^2;plot(x,y1,x, y2,x, y3)4、Matlab符号运算功能(1)符号运算的过程在符号运算的整个过程中,所有的运算均是以符号进行的,即使以数字形式出现的量也是字符量。

做一个对sin(x/2)求导的过程。

在命令窗口中输入如下符号表达式按回车:f='sin(x/2)';dfdx=diff(f)显示结果如下:dfdx = 1/2*cos(1/2*x)整个求导的过程都是由符号变量和符号表达式完成,没有涉及到具体的数值运算,其中1/2也被当作是字符量。

注意:符号变量前先要进行定义,定义语句是:sym 或syms 变量名列表。

前者定义一个单一的符号变量,后者可以一次定义多个符号变量。

信号与系统 matlab实验报告

信号与系统 matlab实验报告

信号与系统 matlab实验报告信号与系统 Matlab 实验报告引言:信号与系统是电子信息类专业中的一门重要课程,它研究了信号的产生、传输和处理过程,以及系统对信号的响应和影响。

通过实验,我们可以更直观地理解信号与系统的基本概念和原理,并掌握使用 Matlab 进行信号与系统分析和处理的方法。

实验一:信号的产生与显示在信号与系统课程中,我们首先需要了解不同类型的信号,以及如何产生和显示这些信号。

在 Matlab 中,我们可以使用一些函数来生成常见的信号波形,如正弦波、方波、三角波等。

通过编写简单的 Matlab 程序,我们可以实现信号的产生和显示。

实验二:信号的采样与重构在实际应用中,信号通常以连续时间的形式存在,但在数字系统中需要将其转换为离散时间的信号进行处理。

这就需要进行信号的采样和重构。

在 Matlab 中,我们可以使用采样函数和重构函数来模拟这一过程,并观察采样率对信号重构质量的影响。

实验三:信号的滤波与频谱分析信号滤波是信号处理中的重要环节,它可以去除信号中的噪声和干扰,提高信号质量。

在 Matlab 中,我们可以使用滤波函数来实现不同类型的滤波器,并观察滤波对信号频谱的影响。

此外,我们还可以使用频谱分析函数来研究信号的频谱特性,如频谱密度、功率谱等。

实验四:系统的时域与频域分析系统是信号处理中的重要概念,它描述了信号在系统中的传输和变换过程。

在Matlab 中,我们可以使用系统函数来模拟不同类型的系统,并观察系统对信号的时域和频域响应。

通过实验,我们可以深入理解系统的时域特性和频域特性,如冲击响应、频率响应等。

实验五:信号的调制与解调信号调制是将信息信号转换为调制信号的过程,而解调则是将调制信号恢复为原始信号的过程。

在 Matlab 中,我们可以使用调制函数和解调函数来模拟不同类型的调制和解调方式,如调幅、调频、调相等。

通过实验,我们可以了解不同调制方式的原理和特点,并观察调制和解调对信号的影响。

信号与系统MATLAB实验(word文档良心出品)

信号与系统MATLAB实验(word文档良心出品)

2016-2017学年第一学期信号与系统实验报告班级:姓名:学号:成绩:指导教师:实验一 常见信号的MATLAB 表示及运算一.实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二.实验原理信号一般是随时间而变化的某些物理量。

按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。

若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。

MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。

根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。

在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。

下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。

1.连续时间信号所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。

从严格意义上讲,MATLAB 并不能处理连续信号。

在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。

在MATLAB 中连续信号可用向量或符号运算功能来表示。

⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。

向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。

信号与系统matlab仿真实验报告

信号与系统matlab仿真实验报告

题号
1、对于一般的正弦信号、复指数信号、指数信号能够画出其波形图,分析其有
无周期,有周期的给出周期值;
2、能够画出任意输入信号的时域波形图;
注:请区别CT和DT信号。

3、能够画出信号的频谱图,包括幅度谱和相位谱;
4、能够实现信号卷积,并画出卷积后信号的波形图;
1.我把前四个要求集成在了一个主面板里,通过面板platform调用四个不同的功能。

2.第一个分界面general_signal用于实现题目1,由用户选择信号类型并输入信号相关参数。

3.第二个分界面any_signal用于实现题目1、2,同时显示出信号的时域波形以及频谱图、相位图。

4.第三、四个界面signal_ct_conv、signal_dt_conv分别用于实现连续和离散的卷积,对应题目4。

信号与系统MATLAB实验报告

信号与系统MATLAB实验报告

一、实验名称MATLAB对连续信号与系统的时域分析、频域分析和s域分析;MATLAB对离散信号与系统的时域分析。

二、实验目的1.学习用MATLAB描述常用信号的方法。

2.掌握连续时间信号和离散时间信号的描述。

3.利用MATLAB计算信号卷积。

4.掌握信号频谱的定义,理解非周期信号频谱密度的概念。

5.掌握用MATLAB分析并绘制连续系统零极点图以判断因果系统稳定的方法。

三、实验原理1.连续系统的冲击响应和阶跃响应(1)连续系统的冲击响应在MATLAB中,利用函数impulse可求解系统冲击响应,其调y=impulse(sys,t)式中:sys表示LTI系统模型,用来表示微分方程、差分方程、状态方程。

利用函数tf获得微分方程的LTI系统模型,其调用形式为:sys=tf(b,a)式中:b和a分别为微分方程右端和左端的各项系数向量。

2.常用连续信号的傅里叶变换在MTLAB中,利用函数fourier实现信号f(t)的傅里叶变换,其调用形式是:F=fourier(f)(1)矩形脉冲矩形脉冲函数可以表示为:f(t)=AGr(t)=A, |t||<τ/2;f(t)=0, |t|>τ/2其傅里叶变换为F(jw)=Aτsa(wτ/2)式中:sa(·)表示采样函数。

3.连续系统函数H(s)的零极点分布和稳定性MATLAB信号处理工具箱提供的zplane函数可以直接求解H(s)的零极点分布,其调用形式为:zplane(b,a)式中:b和a分别为系统函数H(s)的分子多项式和分母多项式的系数向量,该函数的作用是在平面上画出单位圆及系统的零点和极点。

MATLAB信号处理工具箱提供的roots函数可求解多项式的根,其调用形式为:poles=roots(a)4.常用离散信号的MATLAB表示(1)正弦序列离散正弦信号与连续正弦信号类似,就是连续信号的离散型式。

正弦序列的一般序列为:f(k)=Acos(Ωk+φ)式中:A、Ω、φ分别为正弦序列的振幅、数字角频率和初相位。

信号与系统实验实验报告1

信号与系统实验实验报告1

信号与系统实验报告实验一利用MATLAB进行信号的表示及运算实验目的:掌握利用MATLAB语言产生常用基本信号、相关函数的调用和图形显示等方法;用所产生的信号波形验证书本内容,加深对所学知识的理解。

实验设备:p4电脑一台(Win2000以上操作系统、MATLAB6.5软件)。

实验原理:对于常用基本信号的产生,先在某一时间范围内均匀产生一定数量的时间点,再调用基本信号函数计算这些时间点的函数值,最后用绘图函数画出这些坐标点所对应的波形即可。

对于信号的基本运算,一般可先作相应的运算后,再画出其信号波形。

实验步骤:1、运行MATLAB程序;2、打开MATLAB编辑器;3、将实验指导书上的程序输入编辑窗口;4、在编辑器窗口中执行“Debug│Save and Run”命令。

实验结果(分析)讨论:(1)指数信号A=1;a=-0.4;t=0:0.001:10;ft=A*exp(a*t);plot(t,ft)(2)正弦信号A=1;w0=2*pi;phi=pi/6;t=0:0.001:8;ft=A*sin(w0*t+phi);plot(t,ft)axis([0,2,-1.2,1.2]);(3)抽样信号t=-3*pi:pi/100:3*pi;ft=sinc(t/pi);plot(t,ft);axis([-10,10,-0.5,1.2]);(4)矩形脉冲信号t=0:0.001:4;T=1;ft=rectpuls(t-2*T,T);plot(t,ft);axis([0,4,0,1.5])(5)三角波脉冲信号t=-3:0.001:3;ft=tripuls(t,4,0.5); plot(t,ft);2、离散信号的MATLAB表示(1)指数序列k=0:10;A=1;a=-0.6;fk=A*a.^k;stem(k,fk,['.']);axis([-1,11,-1,1.2]);(2)正弦序列k=0:39;fk=sin(pi/6*k);stem(k,fk,'.');axis([-1,40,-1.5,1.5])(3)单位阶跃序列k=-50:50;uk=[zeros(1,50),ones(1,51)];stem(k,uk,'.');axis([-60,60,0,1.5])3、信号基本运算的MATLAB实现(1)信号的尺度变换、翻转、平移t=-3:0.001:3;ft=tripuls(t,4,0.5);subplot(3,1,1);plot(t,ft);title('f(t)');ft1=tripuls(2*t,4,0.5);subplot(3,1,2);plot(t,ft1);title('f(2t)');ft2=tripuls(2-2*t,4,0.5);subplot(3,1,3);plot(t,ft2);title('f(2-2t)')(2)离散序列的差分与求和例1-1 用MATLAB 计算指数信号][)6.0(k u k-(100≤≤k )的能量。

信号与系统matlab实验报告

信号与系统matlab实验报告

信号与系统matlab实验报告信号与系统MATLAB实验报告引言信号与系统是电子工程、通信工程和控制工程等领域中的重要基础课程。

通过实验,我们可以更好地理解信号与系统的概念和基本原理,并掌握使用MATLAB进行信号与系统分析的方法。

本报告将介绍我们在信号与系统实验中的实验过程、结果和分析。

实验一:连续时间信号的采样与重构在这个实验中,我们研究了连续时间信号的采样与重构。

首先,我们通过MATLAB生成了一个连续时间信号,并使用采样定理确定了采样频率。

然后,我们对连续时间信号进行采样,并通过重构方法将采样信号还原为连续时间信号。

最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果。

实验二:线性时不变系统的频率响应在这个实验中,我们研究了线性时不变系统的频率响应。

首先,我们通过MATLAB生成了一个输入信号,并设计了一个线性时不变系统。

然后,我们通过将输入信号输入到系统中,并记录输出信号的幅度和相位,从而得到系统的频率响应。

最后,我们绘制了系统的幅频特性和相频特性曲线,并对其进行了分析和讨论。

实验三:离散时间信号的采样与重构在这个实验中,我们研究了离散时间信号的采样与重构。

首先,我们通过MATLAB生成了一个离散时间信号,并使用采样定理确定了采样周期。

然后,我们对离散时间信号进行采样,并通过重构方法将采样信号还原为离散时间信号。

最后,我们通过观察重构信号与原始信号的相似性来评估重构的效果,并讨论了离散时间信号的采样与重构的特点。

实验四:离散时间系统的差分方程在这个实验中,我们研究了离散时间系统的差分方程。

首先,我们通过MATLAB生成了一个输入信号,并设计了一个离散时间系统。

然后,我们通过将输入信号输入到系统中,并根据系统的差分方程计算输出信号。

最后,我们对输入信号和输出信号进行了分析和比较,并讨论了离散时间系统的差分方程的特点和应用。

实验五:连续时间信号的傅里叶变换在这个实验中,我们研究了连续时间信号的傅里叶变换。

中南大学信号与系统matlab实验报告.pdf

中南大学信号与系统matlab实验报告.pdf

MATLAB实现方
法;改变有关参数,进一步观察信号波形的变化。
⑵ 在 k [ 10:10] 范围内产生并画出以下信号:
a) f1[k] [k] ; b) f 2[k] [k+2] ; c) f 3[k] [k-4] ;
d) f 4[k] 2 [k+2] [k-4] 。
源程序: k=-10:10; f1k=[zeros(1,10),1,zeros(1,10)]; subplot(2,2,1) stem(k,f1k) title('f1[k]') f2k=[zeros(1,8),1,zeros(1,12)]; subplot(2,2,2) stem(k,f2k) title('f2[k]') f3k=[zeros(1,14),1,zeros(1,6)]; subplot(2,2,3) stem(k,f3k) title('f3[k]') f4k=2*f2k-f3k; subplot(2,2,4) stem(k,f4k) title('f4[k]')
⑷ 已知滤波器的传递函数:
输入信号为 f (t ) 2sin(0.05 t ) (t ),
(t )为随机信号。试绘出滤波器的输出信号
波形。(取 t [0:100] )
源程序: R=101; d=rand(1,R)-0.5; t=0:100; s=2*sin(0.05*pi*t); f=s+d;
subplot(2,1,1); plot(t,d,'g-.',t,s,'b--',t,f,'r-'); xlabel('Time index t'); legend('d[t]','s[t]','f[t]'); title(' 处理前的波形 ') b=[0.22 0];a=[1 -0.8]; y=filter(b,a,f); subplot(2,1,2); plot(t,s,'b--',t,y,'r-'); xlabel('Time index t'); legend('s[t]','y[t]'); title(' 滤波器输出波形 ')

信号与系统 matlab实验报告

信号与系统 matlab实验报告

信号与系统 matlab实验报告《信号与系统 Matlab实验报告》摘要:本实验报告通过使用 Matlab 软件进行信号与系统实验,探讨了信号与系统在数字领域的应用。

实验结果表明,Matlab 软件具有强大的信号处理和系统分析功能,能够有效地进行信号与系统的模拟和分析。

引言:信号与系统是电子工程领域中的重要基础课程,它研究了信号的产生、传输和处理,以及系统对信号的响应和影响。

在数字领域,信号与系统的理论和方法也得到了广泛的应用。

Matlab 软件作为一种强大的数学计算工具,为信号与系统的模拟和分析提供了便利和高效的途径。

实验一:信号的生成与显示在本实验中,我们首先使用 Matlab 软件生成了几种常见的信号,包括正弦信号、方波信号和三角波信号。

通过调整信号的频率、幅度和相位等参数,我们观察了信号的变化,并利用 Matlab 的绘图功能将信号图形显示出来。

实验结果表明,Matlab 软件能够方便地生成各种类型的信号,并能够直观地显示信号的波形和特性。

实验二:信号的采样与重构在本实验中,我们使用 Matlab 软件对信号进行了采样和重构。

我们首先对一个连续信号进行了离散采样,然后利用 Matlab 的插值函数对采样信号进行了重构。

实验结果表明,采样和重构过程中存在信号失真和频率混叠等问题,但通过适当的采样和重构方法,我们能够有效地还原原始信号。

实验三:系统的响应与分析在本实验中,我们使用 Matlab 软件对系统的响应进行了分析。

我们构建了几种常见的系统模型,包括线性时不变系统和滤波器系统,然后利用 Matlab 的系统分析工具对系统的频率响应、相位响应和单位脉冲响应等进行了分析。

实验结果表明,Matlab 软件能够有效地进行系统的模拟和分析,为系统设计和优化提供了有力的支持。

结论:通过本实验,我们深入了解了信号与系统在数字领域的应用,并掌握了使用 Matlab 软件进行信号与系统模拟和分析的方法。

MATLAB信号与系统实验报告

MATLAB信号与系统实验报告

信号与系统实验报告(3)连续系统的零极点分析实验目的1、学习用Matlab 绘制连续系统零极点分布图、冲激响应波形、频率响应曲线图。

2、通过运行系统零极点分布与冲激响应的关系的演示程序,加深系统零极点分布对时域响应的影响。

从而建立系统稳定性的概念。

3、研究系统零极点分布与频率响应的关系,学习用Matlab 研究频率响应的方法。

实验内容1、用“拉普拉斯变换和系统函数的曲面图演示”程序,观察零极点三维图,加深对系统零极点的理解。

考虑以下系统函数:(a) )4)(2(1)(++=s s s H ;(b) )4)(2()(++=s s s s H ;(c) )3)(2()4)(1()(++++=s s s s s s H解:(1)程序 a1=-5:0.15:-1; b1=-2:0.15:2;[x,y]=meshgrid(a1,b1); s=x+j*y;fs=abs((1./((s+2).*(s+4)))); figure(1),mesh(x,y,fs); surf(x,y,fs); colormap(hsv); a2=-6:0.18:2; b2=-6:0.18:2;[x,y]=meshgrid(a2,b2); s=x+j*y;fs=abs(s./((s+2).*(s+4))); figure(2),mesh(x,y,fs); surf(x,y,fs); colormap(hsv);a3=-6:0.18:2; b3=-6:0.18:2;[x,y]=meshgrid(a3,b3);s=x+j*y;c=(s+1).*(s+4);d=s.*(s+3).*(s+2);fs=abs(c./d);figure(3),mesh(x,y,fs); surf(x,y,fs); colormap(hsv); (2)曲面图2、用“连续系统零极点和冲激响应的关系”程序,观察零极点对冲激响应的影响,加深对系统稳定性的理解。

画出下列系统的零极点分布图和冲激响应,确定系统的稳定性。

信号与系统matalab设计实验总结报告

信号与系统matalab设计实验总结报告

一.实验目的
1.掌握傅立叶变换的基本理论。

2.掌握软件MATLAB的使用。

3.熟悉对连续时间信号及其抽样信号进行傅立叶分析的方法。

二.实验过程
实验要求:
1、运用软件MATLAB软件,选择方波、衰减指数、三角波等一个连续时间
信号,绘制其时域图和频域图。

2、编程体现并观察傅立叶变换的性质:尺度变换、时移特性、频移特
性、时域卷积,时域微分以及它的对称性等(任选其中三个性质),可能使用的命令和函数:
syms(); sin(); subplot(); ezplot(); title(); exp(); fou
rier();
三.实验结果及分析
1、本次实验选择衰减信号y=e(-t^2),验证了它的时移特性、展缩
特性、微分特性。

2、信号各个特性的matalab仿真结果如下图所示,依次是原先信
号、时移信号、展缩变换、微分变换及下面对应的频域变换。

3、信号对应的理论分析:
四.意见与建议
1、建议在实验前先花时间去学习MATLAB这个软件。

2、要选定信号,然后去了解学习要用到哪些函数,在写程序时也要细心耐心,
力求把错误降到最低,这样才可以提高效率。

3、建议老师可以多提供一些资料给学生学习及应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 基本信号的生成1.实验目的● 学会使用MATLAB 产生各种常见的连续时间信号与离散时间信号;● 通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用信号的理解;● 熟悉MATLAB 的基本操作,以及一些基本函数的使用,为以后的实验奠定基础。

2.实验内容⑴ 运行以上九个例子程序,掌握一些常用基本信号的特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形的变化。

⑵ 在 k [10:10]=- 范围内产生并画出以下信号:a) 1f [k][k]δ=;b) 2f [k][k+2]δ=;c) 3f [k][k-4]δ=;d) 4f [k]2[k+2][k-4]δδ=-。

源程序:k=-10:10;f1k=[zeros(1,10),1,zeros(1,10)];subplot(2,2,1)stem(k,f1k)title('f1[k]')f2k=[zeros(1,8),1,zeros(1,12)];subplot(2,2,2)stem(k,f2k)title('f2[k]')f3k=[zeros(1,14),1,zeros(1,6)];subplot(2,2,3)stem(k,f3k)title('f3[k]')f4k=2*f2k-f3k;subplot(2,2,4)stem(k,f4k)title('f4[k]')⑶ 在 k [0:31]=范围内产生并画出以下信号:a) ()()k k 144f [k]sin cos ππ=;b) ()2k 24f [k]cos π=;c) ()()k k 348f [k]sin cos ππ=。

请问这三个信号的基波周期分别是多少?源程序:k=0:31;f1k=sin(pi/4*k).*cos(pi/4*k);subplot(3,1,1)stem(k,f1k)title('f1[k]')f2k=(cos(pi/4*k)).^2;subplot(3,1,2)stem(k,f2k)title('f2[k]')f3k=sin(pi/4*k).*cos(pi/8*k);subplot(3,1,3)stem(k,f3k)title('f3[k]')其中f1[k]的基波周期是4, f2[k]的基波周期是4, f3[k]的基波周期是16。

实验二 信号的基本运算1.实验目的● 学会使用MATLAB 完成信号的一些基本运算;● 了解复杂信号由基本信号通过尺度变换、翻转、平移、相加、相乘、差分、求和、微分及积分等运算来表达的方法;● 进一步熟悉MATLAB 的基本操作与编程,掌握其在信号分析中的运用特点与使用方式。

2.实验内容⑴ 运行以上三个例题程序,掌握信号基本运算的MATLAB 实现方法;改变有关参数,考察相应信号运算结果的变化特点与规律。

⑵ 已知信号()f t 如下图所示:a) 用MATLAB 编程复现上图;%作业题2 a :t=-6:0.001:6;ft1=tripuls(t,6,0.5);subplot(2,1,1)plot(t,ft1)title('f(t)')b) 画出(22)f t -的波形;%bt=-6:0.001:6;ft1=tripuls(2*(1-t),6,0.5);%subplot(1,1,1)plot(t,ft1)title('f(2*(1-t)')c) 画出df(t)dt 的波形;%ch=0.001;t=-6:h:6;yt=tripuls(t,6,0.5);y1=diff(yt)*1/h;plot(t(1:length(t)-1),y1)title('df(t)/dt')d) 画出tf ()d ττ-∞⎰的波形。

%dt=-6:0.1:6;for x=1:length(t)y2(x)=quad('tripuls(t,6,0.5)',-3,t(x));endplot(t,y2)title('integral of f(t)')实验三 系统的时域分析1.实验目的学习并掌握连续时间系统的零状态响应、冲激响应和阶跃响应的MATLAB 求解方法;● 学习并掌握离散时间系统的零状态响应、冲激响应和阶跃响应的MATLAB 求解方法;● 进一步深刻理解连续时间系统和离散时间系统的系统函数零极点对系统特性的影响;学习并掌握卷积的MATLAB 计算方法。

2.实验内容⑴ 运行以上五个例题程序,掌握求解系统响应的MATLAB 分析方法;改变模型参数,考察系统响应的变化特点与规律。

⑵ 设离散系统可由下列差分方程表示:计算[20:100]k =-时的系统冲激响应。

源程序:k=-20:100;a=[1 -1 0.9];b=[1];h=impz(b,a,k);stem(k,h);xlabel('Time(sec)')ylabel('y(t)')⑶ 设[](0.9)()k h k u k =,输入[][][10]f k u k u k =--,求系统输出[][][]y k f k h k =*。

(取[10:50]k =-)源程序:k=-10:50;uk=[zeros(1,10),ones(1,51)];u1k=[zeros(1,20),ones(1,41)];hk=0.9.^k.*uk;fk=uk-u1k;yk=conv(hk,fk);stem(0:length(yk)-1,yk);⑷ 已知滤波器的传递函数:输入信号为()2sin(0.05)(),()f t t t t πωω=+为随机信号。

试绘出滤波器的输出信号波形。

(取[0:100]t =)源程序:R=101;d=rand(1,R)-0.5;t=0:100;s=2*sin(0.05*pi*t);f=s+d;subplot(2,1,1);plot(t,d,'g-.',t,s,'b--',t,f,'r-');xlabel('Time index t');legend('d[t]','s[t]','f[t]');title('处理前的波形')b=[0.22 0];a=[1 -0.8];y=filter(b,a,f);subplot(2,1,2);plot(t,s,'b--',t,y,'r-');xlabel('Time index t');legend('s[t]','y[t]');title('滤波器输出波形')实验四 周期信号的频域分析1.实验目的● 掌握周期信号傅立叶级数分解与合成的计算公式● 掌握利用MATLAB 实现周期信号傅立叶级数分解与综合方法● 理解并掌握周期信号频谱特点2.实验内容1、仿照例程,实现下述周期信号的傅立叶级数分解与合成:( ((a 可以展开成傅立叶级数。

(1)三角形式傅立叶级数(2)指数形式傅立叶级数(b )求解0a ,n a ,n b 及合成信号波形所用程序:function [A_sym,B_sym]=CTFShchsym% 采用符号计算求一个周期内连续时间函数f 的三角级数展开系数,再用这些% 展开系数合成连续时间函数f.傅立叶级数%函数的输入输出都是数值量 % Nf=6谐波的阶数 %Nn 输出数据的准确位数 %A_sym 第1元素是直流项,其后元素依次是1,2,3...次谐波cos 项展开系数 % B_sym 第2,3,4,...元素依次是1,2,3...次谐波sin 项展开系数 % tao=1 tao/T=0.2T=4;tao=T/4;a=-1.5;if nargin<4Nf=10;endif nargin<5Nn=32;endx=time_fun_x(t);A0=int(x,t,a,T+a)/T; %求出三角函数展开系数A0As=2/T*int(x*cos(2*pi*n*t/T),t,a,T+a); %求出三角函数展开系数AsBs=2/T*int(x*sin(2*pi*n*t/T),t,a,T+a); %求出三角函数展开系数BsA_sym(1)=double(vpa(A0,Nn)); %获取串数组A0所对应的ASC2码数值数组for k=1:NfA_sym(k+1)=double(vpa(subs(As,n,k),Nn)); %获取串数组A所对应的ASC2码数值数组B_sym(k+1)=double(vpa(subs(Bs,n,k),Nn)); %获取串数组B所对应的ASC2码数值数组end ;if nargout==0c=A_sym;disp(c); %输出c为三角级数展开系数:第1元素是直流项,其后元素依次是1,2,3...次谐波cos项展开系数d=B_sym;disp(d); %输出d为三角级数展开系数: 第2,3,4,...元素依次是1,2,3...次谐波sin项展开系数t=-3*T:0.01:3*T;f0=c(1); %直流f1=c(2).*cos(2*pi*1*t/T)+d(2).*sin(2*pi*1*t/T); % 基波f2=c(3).*cos(2*pi*2*t/T)+d(3).*sin(2*pi*2*t/T); % 2次谐波f3=c(4).*cos(2*pi*3*t/T)+d(4).*sin(2*pi*3*t/T); % 3次谐波f4=c(5).*cos(2*pi*4*t/T)+d(5).*sin(2*pi*4*t/T); % 4次谐波f5=c(6).*cos(2*pi*5*t/T)+d(6).*sin(2*pi*5*t/T); % 5次谐波f6=c(7).*cos(2*pi*6*t/T)+d(7).*sin(2*pi*6*t/T); % 6次谐波f7=c(8).*cos(2*pi*7*t/T)+d(8).*sin(2*pi*7*t/T); % 7次谐波f8=c(9).*cos(2*pi*8*t/T)+d(9).*sin(2*pi*8*t/T); % 8次谐波f9=c(10).*cos(2*pi*9*t/T)+d(10).*sin(2*pi*9*t/T); % 9次谐波f10=c(11).*cos(2*pi*10*t/T)+d(11).*sin(2*pi*10*t/T); % 10次谐波f11=f0+f1+f2; % 直流+基波+2次谐波f12=f11+f3; % 直流+基波+2次谐波+3次谐波f13=f12+f4+f5+f6; % 直流+基波+2次谐波+3次谐波+4次谐波+5次谐波+6次谐波f14=f13+f7+f8+f9+f10; %0~10次subplot(2,2,1)plot(t,f0+f1),hold ony=time_fun_e(t); %调用连续时间函数-周期矩形脉冲plot(t,y,'r:')title('直流+基波')axis([-8,8,-0.5,1.5])plot(t,f12),hold ony=time_fun_e(t);plot(t,y,'r:')title('1-3次谐波+直流')axis([-8,8,-0.5,1.5])subplot(2,2,3)plot(t,f13),hold ony=time_fun_e(t);plot(t,y,'r:')title('1-6次谐波+直流')axis([-8,8,-0.5,1.5])subplot(2,2,4)plot(t,f14),hold ony=time_fun_e(t);plot(t,y,'r:')title('1-10次谐波+直流')axis([-8,8,-0.5,1.5])hold offendfunction y=time_fun_e(t)% 该函数是CTFShchsym.m的子函它由符号函数和表达式写成a=1.5;T=4;h=1;tao=T/4;t=-3*T:0.01:3*T;e1=1/2+1/2.*sign(t-0.5+tao/2);e2=1/2+1/2.*sign(t-0.5-tao/2);y=h.*(e1-e2); %连续时间函数-周期矩形脉冲function x=time_fun_x(t)% 该函数是CTFShchsym.m的子函数。

相关文档
最新文档