大学物理北邮版
大学物理第六版上册北京邮电大学出版课后答案详解精选全文完整版

可编辑修改精选全文完整版大学物理第六版上册北京邮电大学出版课后答案详解1、行驶的汽车关闭发动机后还能行驶一段距离是因为汽车受到惯性力作用[判断题] *对错(正确答案)答案解析:汽车具有惯性2、用如图所示的装置做“探究小车速度随时间变化的规律”实验:1.小车从靠近定滑轮处释放.[判断题] *对错(正确答案)3、马德堡半球实验测出了大气压,其大小等于760mm高水银柱产生的压强[判断题]对错(正确答案)答案解析:托里拆利实验最早测出了大气压强4、11.小敏学习密度后,了解到人体的密度跟水的密度差不多,从而她估测一个中学生的体积约为()[单选题] *A.50 m3B.50 dm3(正确答案)C.50 cm3D.500 cm35、9.在某原子结构模型示意图中,a、b、c是构成该原子的三种不同粒子,能得出的结()[单选题] *A.a和c数量不相等B.b决定原子种类C.质量集中在c上D.a和c之间存在吸引的力(正确答案)6、4.静止在水平地面上的物体受到向上的弹力是因为地面发生了形变.[判断题] *对(正确答案)错7、下列有关力做功的说法中正确的是()[单选题]A.用水平力推着购物车前进,推车的力做了功(正确答案)B.把水桶从地面上提起来,提水桶的力没有做功C.书静止在水平桌面上,书受到的支持力做了功D.挂钩上的书包静止时,书包受到的拉力做了功8、1.与头发摩擦过的塑料尺能吸引碎纸屑。
下列与此现象所反映的原理相同的是()[单选题] *A.行驶的汽车窗帘被吸出去B.挤压后的吸盘吸在光滑的墙上C.用干燥的双手搓开的塑料袋会吸在手上(正确答案)D.两个表面光滑的铅块挤压后吸在一起9、下列措施中,能使蒸发减慢的是()[单选题]A.把盛有酒精的瓶口盖严(正确答案)B.把湿衣服晾在通风向阳处C.用电吹风给湿头发吹风D.将地面上的积水向周围扫开10、停放在水平地面上的汽车对地面的压力和地面对车的支持力是平衡力[判断题] *对错(正确答案)答案解析:相互作用力11、52.“凿壁偷光”原指凿穿墙壁,让邻舍的烛光透过来,后用来形容家贫而勤奋读书。
大学物理试卷参考答案(对应北京邮电大学版)

物理试卷参考答案1解:理想气体分子的能量RT i E 2υ=平动动能 3=t 5.373930031.823=⨯⨯=t E J 转动动能 2=r249330031.822=⨯⨯=r E内能5=i 5.623230031.825=⨯⨯=i E J 2解: ∵ xv v t x x v t v ad d d d d d d d ===分离变量: x x adx d )62(d 2+==υυ两边积分得c x x v ++=322221 由题知,0=x时,100=v ,∴50=c∴ 13s m 252-⋅++=x x v3.解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++=由题知,0=t,00=v ,∴01=c故 2234t t v +=又因为 2234d d t t t x v +== 分离变量, t t t x d )234(d 2+=积分得 232212c t t x ++=由题知 0=t,50=x ,∴52=c故 521232++=t t x所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v4. )由题知,0=t时,00=φ,t t =时 3,0,20πφ=<+=t v A x 故且 ∴ s 322/3==∆=ππωφt 5)222υυ+=u 52202=+=υυu m/s=4.47υυθ00)90tan(=-2142== 6)由图知,0=t时,0,2<-=P P v A y ,∴34πφ-=P (P 点的位相应落后于0点,故取负值) ∴P 点振动方程为)3410cos(1.0ππ-=t y p∵ πππ34|3)10(100-=+-=t x t ∴解得 67.135==x m Y=-1/2M 7) 解: bt v tsv -==0d dRbt v R v a b tva n 202)(d d -==-==τ则 240222)(R bt v b a a a n-+=+=τ8)又 11x k F A∆= 22x k F B ∆=Mg F F B A ==弹性势能之比为12222211121212k kx k x k E E p p =∆∆=二.填空题答案1)解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgRv +=22)正比3)v v nf d )(:表示分布在速率v 附近、速率区间dv 内的分子数密度 4)⎰21d )(v v v v Nf :表示分布在21~v v 区间内的分子数5) 卡诺热机效率121T T -=η%7010003001=-=η6)W E Q+∆=7) E=1/2KA 2 8)书P144 三.计算题解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l+=将上式对时间t 求导,得tss t l l dd 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ ts v v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船或 sv s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度322d d sv h t v a ==船2)解:由题图(a),∵0=t时,s 2,cm 10,,23,0,0000===∴>=T A v x 又πφ即 1s rad 2-⋅==ππωT故 m )23cos(1.0ππ+=t x a由题4-8图(b)∵0=t 时,35,0,2000πφ=∴>=v A x 01=t 时,22,0,0111ππφ+=∴<=v x又 ππωφ253511=+⨯=∴ πω65=故 m t x b )3565cos(1.0ππ+= 3)解: (1)射入的过程对O 轴的角动量守恒ωθ2000)(sin R m m v m R +=∴ Rm m v m )(sin 000+=θω(2)020*********sin 21])(sin ][)[(210m m m v m R m m v m R m m E E k k +=++=θθ4)解:由abc 过程可求出b 态和a 态的内能之差 W E Q+∆=224126350=-=-=∆W Q E Jabd过程,系统作功42=WJ26642224=+=+∆=W E Q J 系统吸收热量ba 过程,外界对系统作功84-=A J30884224-=--=+∆=W E Q J 系统放热5)解:(1)从图上可得分布函数表达式⎪⎩⎪⎨⎧≥=≤≤=≤≤=)2(0)()2()()0(/)(00000v v v Nf v v v a v Nf v v v av v Nf ⎪⎩⎪⎨⎧≥≤≤≤≤=)2(0)2(/)0(/)(00000v v v v v Na v v Nv av v f )(v f 满足归一化条件,但这里纵坐标是)(v Nf 而不是)(v f 故曲线下的总面积为N,(2)由归一化条件可得⎰⎰==+0002032d d v v v v N a Nv a N v v avN(3)可通过面积计算 N v v a N 31)5.12(00=-=∆(4) N 个粒子平均速率⎰⎰⎰⎰+===∞∞00202d d d )(1d )(v v v v av v v av v v vNf Nv v vf v02020911)2331(1v av av N v =+=(5)05.0v 到01v 区间内粒子平均速率⎰⎰==0005.0115.0d d v v v v NNv N N N Nv v ⎰⎰==00005.05.00211d d )(v v v v v Nv av N N v v vf N N 2471)243(1d 12103003015.002100av N v av v av N v v av N v v v =-==⎰ 05.0v 到01v 区间内粒子数N av v v a a N 4183)5.0)(5.0(210001==-+=9767020v N av v ==6)解: (1)如题5-11图(a),则波动方程为])(cos[0φω+-+=uxu l t A y 如图(b),则波动方程为])(cos[0φω++=uxt A y(2) 如题5-11图(a),则Q 点的振动方程为])(cos[0φω+-=ubt A A Q如题5-11图(b),则Q 点的振动方程为])(cos[0φω++=ubt A A Q。
大学物理学答案北京邮电大学第版赵近芳等编著(一)

大学物理学答案北京邮电大学第版赵近芳等
编著(一)
大学物理学答案北京邮电大学第三版赵近芳等编著,是一本方便大学
物理学学习者进行自我检验和补充知识的参考书。
本书通过精心编排
的习题和答案,全面而深入地涵盖了大学物理学领域内各个方面的知
识点,使读者能够更好地掌握物理学的基本概念、定理和方法。
首先,本书的编排结构非常合理,根据大学物理学课程的教学内容,
分为力学、热学、电学、光学和现代物理学等五个部分,每个部分都
包含了丰富的习题和详细的解答。
每道习题的难度和类型都有所区分,既有选择题和判断题,也有计算题和解释题,能够满足不同层次学生
的需求。
其次,本书的答案详尽全面,准确无误。
每道习题的答案都有详细的
步骤和思路分析,同时还提供了参考图表和公式,使读者能够更加清
晰地理解和掌握物理学概念及其应用方法。
此外,本书还为部分较为
复杂的习题提供了多种解题方法,使读者能够更加灵活地运用知识。
最后,本书的内容丰富多样,不仅包含了大量的基础知识和应用技巧,还介绍了一些当前热门的前沿课题和研究成果,如量子物理学、相对
论和宇宙学等。
这些现代物理学内容,既能够拓展读者的知识面,又
对创新思维和科学研究能力的培养具有重要作用。
综上所述,大学物理学答案北京邮电大学第三版赵近芳等编著,是一
本非常适合大学物理学学习者使用的参考书,既方便了学习者对自身
学习情况的评估和纠正,又可以帮助学习者掌握物理学基本概念和应
用技巧,是一本值得广大物理学爱好者拥有的好书。
大学物理课后习题答案北京邮电大学出版社

习题十三13-1 衍射的本质是什么?衍射和干涉有什么联系和区别?答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动?答:把单缝沿透镜光轴方向平移时,衍射图样不会跟着移动.单缝沿垂直于光轴方向平移时,衍射图样不会跟着移动.13-3 什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带?答:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第3级明纹和第4级暗纹,单缝处波面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a13-4 在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小?答:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin Λ=+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin n k λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射.解:(1)缝宽变窄,由λϕk a =sin 知,衍射角ϕ变大,条纹变稀;(2)λ变大,保持a ,k 不变,则衍射角ϕ亦变大,条纹变稀;(3)由正入射变为斜入射时,因正入射时λϕk a =sin ;斜入射时,λθϕk a '=-)sin (sin ,保持a ,λ不变,则应有k k >'或k k <'.即原来的k 级条纹现为k '级.13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾?怎样说明?答:不矛盾.单缝衍射暗纹条件为k k a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.13-8 光栅衍射与单缝衍射有何区别?为何光栅衍射的明条纹特别明亮而暗区很宽?答:光栅衍射是多光束干涉和单缝衍射的总效果.其明条纹主要取决于多光束干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.13-9 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明条纹缺级?(1) a+b=2a;(2)a+b=3a;(3)a+b=4a.解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即 可知,当k a b a k '+=时明纹缺级.(1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级;(2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级;(3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.13-10 若以白光垂直入射光栅,不同波长的光将会有不同的衍射角.问(1)零级明条纹能 否分开不同波长的光?(2)在可见光中哪种颜色的光衍射角最大?不同波长的光分开程度与什 么因素有关?解:(1)零级明纹不会分开不同波长的光.因为各种波长的光在零级明纹处均各自相干加强.(2)可见光中红光的衍射角最大,因为由λϕk b a =+sin )(,对同一k 值,衍射角λϕ∞. 13-11 一单色平行光垂直照射一单缝,若其第三级明条纹位置正好与6000οA 的单色平行光的第二级明条纹位置重合,求前一种单色光的波长. 解:单缝衍射的明纹公式为当6000=λoA 时,2=k x λλ=时,3=k重合时ϕ角相同,所以有得 4286600075=⨯=x λoA 13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少?解:中央明纹的宽度为f na x λ2=∆ 半角宽度为na λθ1sin -=(1)空气中,1=n ,所以(2)浸入水中,33.1=n ,所以有13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k 由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ 当 3=k ,得60003=λoA 4=k ,得47004=λoA (2)若60003=λoA ,则P 点是第3级明纹;若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带;当4=k 时,单缝处的波面可分成912=+k 个半波带.13-14 用5900=λoA 的钠黄光垂直入射到每毫米有500条刻痕的光栅上,问最多能看到第几级明条纹? 解:5001=+b a mm 3100.2-⨯=mm 4100.2-⨯=o A由λϕk b a =+sin )(知,最多见到的条纹级数m ax k 对应的2πϕ=, 所以有39.35900100.24max ≈⨯=+=λba k ,即实际见到的最高级次为3max =k .13-15 波长为5000oA 的平行单色光垂直照射到每毫米有200条刻痕的光栅上,光栅后的透镜焦距为60cm . 求:(1)屏幕上中央明条纹与第一级明条纹的间距;(2)当光线与光栅法线成 30°斜入射时,中央明条纹的位移为多少? 解:3100.52001-⨯==+b a mm 6100.5-⨯m(1)由光栅衍射明纹公式λϕk b a =+sin )(,因1=k ,又f x ==ϕϕtan sin所以有λ=+f x b a 1)(即 62101100.51060105000---⨯⨯⨯⨯=+=b a fx λ (2)对应中央明纹,有0=k正入射时,0sin )(=+ϕb a ,所以0sin =≈ϕϕ斜入射时,0)sin )(sin (=±+θϕb a ,即0sin sin =±θϕ因︒=30θ,∴21tan sin ±==≈f x ϕϕ故22103010602121--⨯=⨯⨯==f x m 30=cm这就是中央明条纹的位移值.13-16 波长6000=λo A 的单色光垂直入射到一光栅上,第二、第三级明条纹分别出现在20.0sin =ϕ与30.0sin =ϕ处,第四级缺级.求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)在90°>ϕ>-90°范围内,实际呈现的全部级数.解:(1)由λϕk b a =+sin )(式对应于20.0sin 1=ϕ与30.0sin 2=ϕ处满足:得 6100.6-⨯=+b a m(2)因第四级缺级,故此须同时满足解得 k k b a a '⨯='+=-6105.14取1='k ,得光栅狭缝的最小宽度为6105.1-⨯m (3)由λϕk b a =+sin )( 当2πϕ=,对应max k k =∴ 10106000100.6106max =⨯⨯=+=--λba k因4±,8±缺级,所以在︒︒<<-9090ϕ范围内实际呈现的全部级数为9,7,6,5,3,2,1,0±±±±±±±=k 共15条明条纹(10±=k 在︒±=90k 处看不到).13-17 一双缝,两缝间距为0.1mm ,每缝宽为0.02mm ,用波长为4800oA 的平行单色光垂直入射双缝,双缝后放一焦距为50cm 的透镜.试求:(1)透镜焦平面上单缝衍射中央明条纹的宽度;(2)单缝衍射的中央明条纹包迹内有多少条双缝衍射明条纹?解:(1)中央明纹宽度为(2)由缺级条件知即⋅⋅⋅=,15,10,5k 缺级.中央明纹的边缘对应1='k ,所以单缝衍射的中央明纹包迹内有4,3,2,1,0±±±±=k 共9条双缝衍射明条纹.13-18 在夫琅禾费圆孔衍射中,设圆孔半径为0.10mm ,透镜焦距为50cm ,所用单色光波长为5000oA ,求在透镜焦平面处屏幕上呈现的爱里斑半径. 解:由爱里斑的半角宽度∴ 爱里斑半径5.1105.30500tan 24=⨯⨯=≈=-θθf f d mm 13-19 已知天空中两颗星相对于一望远镜的角距离为4.84×10-6rad ,它们都发出波长为5500oA 的光,试问望远镜的口径至少要多大,才能分辨出这两颗星? 解:由最小分辨角公式∴86.131084.4105.522.122.165=⨯⨯⨯==--θλD cm 13-20 已知入射的X 射线束含有从0.95~1.30oA 范围内的各种波长,晶体的晶格常数为2.75oA ,当X 射线以45°角入射到晶体时,问对哪些波长的X 射线能产生强反射? 解:由布喇格公式 λϕk d =sin 2 得k d ϕλsin 2=时满足干涉相长当1=k 时, 89.345sin 75.22=⨯⨯=︒λoA 2=k 时,91.1245sin 75.22=⨯⨯=︒λo A3=k 时,30.1389.3==λo A4=k 时, 97.0489.3==λo A故只有30.13=λo A 和97.04=λo A 的X 射线能产生强反射.。
《大学物理》习题答案10,匡乐满主编,北京邮电大学出版社PPT文档共23页

71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
《大学物理》习题答案10,匡乐满主编,北 京邮电大学出版社
31、园日涉以成趣,门虽设而常关。 32、鼓腹无所思。朝起暮归眠。 33、倾壶绝余沥,窥灶不见烟。
34、春秋满四泽,夏云多奇峰,秋月 扬明辉 ,冬岭 秀孤松 。 35、丈
北邮物理面试题库及答案

北邮物理面试题库及答案1. 题目:简述牛顿第三定律。
答案:牛顿第三定律,也称为作用与反作用定律,表述为:当一个物体对另一个物体施加力时,另一个物体也会对第一个物体施加一个大小相等、方向相反的力。
2. 题目:解释什么是光的干涉现象。
答案:光的干涉现象是指两束或多束相干光波在空间相遇时,它们的振幅相加,形成加强或减弱的光强分布的现象。
这种现象可以通过双缝实验、薄膜干涉等实验观察到。
3. 题目:什么是量子力学的不确定性原理?答案:量子力学的不确定性原理,由海森堡提出,指的是在同一时间内,粒子的位置和动量不能同时被精确地测量。
即,测量位置的不确定性与测量动量的不确定性的乘积大于或等于普朗克常数除以4π。
4. 题目:简述相对论中的时间膨胀效应。
答案:相对论中的时间膨胀效应是指在高速运动的参考系中,时间相对于静止参考系会变慢。
这是狭义相对论的直接结果,可以通过洛伦兹变换来描述。
5. 题目:解释什么是电磁波。
答案:电磁波是由变化的电场和磁场相互垂直且相互感应产生的波动。
它们以光速在真空中传播,包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。
6. 题目:什么是热力学第一定律?答案:热力学第一定律,也称为能量守恒定律,表述为:在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转换为另一种形式,或者从一个系统转移到另一个系统。
7. 题目:简述什么是光电效应。
答案:光电效应是指光照射到物质表面时,物质会释放出电子的现象。
这个效应说明了光具有粒子性,电子的释放与光的频率有关,与光的强度无关。
8. 题目:解释什么是半衰期。
答案:半衰期是指放射性物质衰变到其原始数量一半所需的时间。
每种放射性同位素都有其特定的半衰期,这个时间是固定的,不受外界条件的影响。
9. 题目:什么是麦克斯韦方程组?答案:麦克斯韦方程组是描述电磁场如何随时间和空间变化的一组四个基本方程。
包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培定律。
大学物理习题及解答(第三版_北京邮电大学出版社)

大学物理习题及解答(第三版 北京邮电大学出版社)习题二2-1 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a '下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计).解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ',故2m 对地加速度,由图(b)可知,为a a a '-=12 ①又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,有111a m T g m =-② 222a m g m T =-③联立①、②、③式,得2121211212212211)2()()(m m a g m m T f m m a m g m m a m m a m g m m a +'-==+'--=+'+-=讨论 (1)若0='a ,则21a a =表示柱体与绳之间无相对滑动.(2)若g a 2=',则0==f T ,表示柱体与绳之间无任何作用力,此时1m , 2m 均作自由落体运动.题2-1图2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v2sin 21t g y α= 由①、②式消去t ,得 220sin 21x g v y ⋅=α2-3 质量为16 kg 的质点在xOy 平面内运动,受一恒力作用,力的分量为x f =6 N ,y f =-7 N ,当t =0时,==y x 0,x v =-2 m ·s -1,y v =0.求当t =2 s 时质点的 (1)位矢;(2)速度.解: 2s m 83166-⋅===m f a x x2s m 167-⋅-==m f a y y(1)⎰⎰--⋅-=⨯-=+=⋅-=⨯+-=+=20101200s m 872167s m 452832dt a v v dt a v v y y y x x x于是质点在s 2时的速度1s m 8745-⋅--=j i v ϖϖϖ(2)m 874134)167(21)4832122(21)21(220j i j i j t a i t a t v r y x ϖϖϖϖϖϖϖ--=⨯-+⨯⨯+⨯-=++=2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk e v )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m k e )(-];(3)停止运动前经过的距离为)(0k m v ;(4)证明当k m t =时速度减至0v 的e 1,式中m 为质点的质量. 答: (1)∵ t v m kv a d d =-= 分离变量,得m t k v v d d -=即 ⎰⎰-=v v t m t k vv 00d d mkt e v v -=ln ln 0∴ tm k e v v -=0(2) ⎰⎰---===t t t m k m k e k mv t e v t v x 000)1(d d(3)质点停止运动时速度为零,即t →∞,故有⎰∞-=='000d k mv t e v x t m k (4)当t=k m时,其速度为 e v e v ev v k m m k 0100===-⋅-即速度减至0v 的e 1. 2-5 升降机内有两物体,质量分别为1m ,2m ,且2m =21m .用细绳连接,跨过滑轮,绳子不可伸长,滑轮质量及一切摩擦都忽略不计,当升降机以匀加速a =21g 上升时,求:(1) 1m 和2m 相对升降机的加速度.(2)在地面上观察1m ,2m 的加速度各为多少?解: 分别以1m ,2m 为研究对象,其受力图如图(b)所示.(1)设2m 相对滑轮(即升降机)的加速度为a ',则2m 对地加速度a a a -'=2;因绳不可伸长,故1m 对滑轮的加速度亦为a ',又1m 在水平方向上没有受牵连运动的影响,所以1m 在水平方向对地加速度亦为a ',由牛顿定律,有)(22a a m T g m -'=-a m T '=1题2-5图联立,解得g a ='方向向下(2) 2m 对地加速度为 22g a a a =-'= 方向向上 1m 在水面方向有相对加速度,竖直方向有牵连加速度,即牵相绝a a a ϖϖϖ+='∴g g g a a a 25422221=+=+'= a a '=arctan θo6.2621arctan ==,左偏上. 2-6一质量为m 的质点以与地的仰角θ=30°的初速0v ϖ从地面抛出,若忽略空气阻力,求质点落地时相对抛射时的动量的增量.解: 依题意作出示意图如题2-6图题2-6图在忽略空气阻力情况下,抛体落地瞬时的末速度大小与初速度大小相同,与轨道相切斜向下,而抛物线具有对y 轴对称性,故末速度与x 轴夹角亦为o 30,则动量的增量为 0v m v m p ϖϖϖ-=∆ 由矢量图知,动量增量大小为0v m ϖ,方向竖直向下.2-7 一质量为m 的小球从某一高度处水平抛出,落在水平桌面上发生弹性碰撞.并在抛出1 s ,跳回到原高度,速度仍是水平方向,速度大小也与抛出时相等.求小球与桌面碰撞过程中,桌面给予小球的冲量的大小和方向.并回答在碰撞过程中,小球的动量是否守恒?解: 由题知,小球落地时间为s 5.0.因小球为平抛运动,故小球落地的瞬时向下的速度大小为g gt v 5.01==,小球上跳速度的大小亦为g v 5.02=.设向上为y 轴正向,则动量的增量 12v m v m p ϖϖϖ-=∆方向竖直向上, 大小mg mv mv p =--=∆)(12ϖ碰撞过程中动量不守恒.这是因为在碰撞过程中,小球受到地面给予的冲力作用.另外,碰撞前初动量方向斜向下,碰后末动量方向斜向上,这也说明动量不守恒. 2-8 作用在质量为10 kg 的物体上的力为i t F ϖ)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化,以及力给予物体的冲量.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j ϖ6-m ·s -1的物体,回答这两个问题. 解: (1)若物体原来静止,则i t i t t F p t ϖϖϖϖ10401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向, i p I i m p v ϖϖϖϖϖϖ111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆若物体原来具有6-1s m -⋅初速,则 ⎰⎰+-=+-=-=t t t F v m t m F v m p v m p 000000d )d (,ϖϖϖϖϖϖϖ于是⎰∆==-=∆t p t F p p p 0102d ϖϖϖϖϖ, 同理, 12v v ϖϖ∆=∆,12I I ϖϖ= 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理.(2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t解得s 10=t ,(s 20='t 舍去) 2-9 一质量为m 的质点在xOy 平面上运动,其位置矢量为 j t b i t a r ϖϖϖωωsin cos += 求质点的动量及t =0 到ωπ2=t 时间内质点所受的合力的冲量和质点动量的改变量.解: 质点的动量为 )cos sin (j t b i t a m v m p ϖϖϖϖωωω+-== 将0=t 和ωπ2=t 分别代入上式,得 j b m p ϖϖω=1,i a m p ϖϖω-=2,则动量的增量亦即质点所受外力的冲量为 )(12j b i a m p p p I ϖϖϖϖϖϖ+-=-=∆=ω2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量.解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得b a t = (2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将b a t =代入,得 b a I 22=(3)由动量定理可求得子弹的质量0202bv a v I m ==2-11 一炮弹质量为m ,以速率v 飞行,其内部炸药使此炮弹分裂为两块,爆炸后由于炸药使弹片增加的动能为T ,且一块的质量为另一块质量的k 倍,如两者仍沿原方向飞行,试证其速率分别为v +m kT 2, v -km T2证明: 设一块为1m ,则另一块为2m ,21km m =及m m m =+21于是得1,121+=+=k m m k km m ①又设1m 的速度为1v , 2m 的速度为2v ,则有2222211212121mv v m v m T -+=②2211v m v m mv +=③联立①、③解得 12)1(kv v k v -+=④将④代入②,并整理得21)(2v v km T -=于是有km T v v 21±= 将其代入④式,有m kT v v 22±=又,题述爆炸后,两弹片仍沿原方向飞行,故只能取 km T v v m kT v v 2,221-=+=证毕. 2-12 设N 67j i F ϖϖϖ-=合.(1) 当一质点从原点运动到m 1643k j i r ϖϖϖϖ++-=时,求F ϖ所作的功.(2)如果质点到r 处时需0.6s ,试求平均功率.(3)如果质点的质量为1kg ,试求动能的变化. 解: (1)由题知,合F ϖ为恒力, ∴ )1643()67(k j i j i r F A ϖϖϖϖϖϖϖ++-⋅-=⋅=合 J 452421-=--=(2) w 756.045==∆=t A P(3)由动能定理,J 45-==∆A E k2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=s s k y ky y f y f A 1012d d d ①式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y k ky y ky A ②由题意,有2)21(212k mv A A =∆== ③即 222122k k ky =-所以,22=y 于是钉子第二次能进入的深度为 cm 414.01212=-=-=∆y y y2-14 设已知一质点(质量为m )在其保守力场中位矢为r 点的势能为n P r k r E /)(=, 试求质点所受保守力的大小和方向.解: 1d )(d )(+-==n r nk r r E r F 方向与位矢r ϖ的方向相反,即指向力心.2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆弹性势能之比为12222211121212k k x k x k E E p p =∆∆= 2-16 (1)试计算月球和地球对m 物体的引力相抵消的一点P ,距月球表面的距离是多少?地球质量5.98×1024kg ,地球中心到月球中心的距离3.84×108m ,月球质量7.35×1022kg ,月球半径1.74×106m .(2)如果一个1kg 的物体在距月球和地球均为无限远处的势能为零,那么它在P 点的势能为多少?解: (1)设在距月球中心为r 处地引月引F F =,由万有引力定律,有()22r R mM G r mM G -=地月经整理,得R M M M r 月地月+==2224221035.71098.51035.7⨯+⨯⨯81048.3⨯⨯m 1032.386⨯= 则P 点处至月球表面的距离为m 1066.310)74.132.38(76⨯=⨯-=-=月r r h(2)质量为kg 1的物体在P 点的引力势能为()r R M Gr M G E P ---=地月()72411722111083.34.381098.51067.61083.31035.71067.6⨯-⨯⨯⨯-⨯⨯⨯⨯-=- J 1028.16⨯=2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m kh gh m m v +-+-=μ题2-17图2-18 如题2-18图所示,一物体质量为2kg ,以初速度0v =3m ·s -1从斜面A 点处下滑,它与斜面的摩擦力为8N ,到达B 点后压缩弹簧20cm 后停止,然后又被弹回,求弹簧的劲度系数和物体最后能回到的高度.解: 取木块压缩弹簧至最短处的位置为重力势能零点,弹簧原长处为弹性势能零点。
大学物理学_上册_第三版_北京邮电大学出版社[1]-推荐下载
![大学物理学_上册_第三版_北京邮电大学出版社[1]-推荐下载](https://img.taocdn.com/s3/m/47364d6d0740be1e650e9aa3.png)
j
1
m
∴
v
dr
3i
(t
t 3) j
4 m s1
0
4
(4) 则 (5)∵
dt
v0
v4
3i
3i 3
7j j , v4
m 3i
s 1 7
j
a
v
v4
v0
4
1j
m s2
t
4
a
4
dv
l2 h2 s2 将上式对时间 t 求导,得
2l dl 2s ds dt dt
根据速度的定义,并注意到 l , s 是随 t 减少的,
∴
即
或
将 v船 再对 t 求导,即得船的加速度
v船
v船
v绳
ds dt
lv0 s
a
dl dt
l s
dl dt
(h2
dv船 dt
(s
v0 , v船
dr dr
大学物理习题及解答
1-1 | r |与 r 有无不同? d t 和 d t 有无不同? d t 和 d t 有无不同?其不同在哪里?试举例说明.
解:(1) r
dr
是位移的模, r 是位矢的模的增量,即 r
(2) d t 是速度的模,即 d t v dt .
dr
dt 只是速度在径向上的分量.
故它们的模即为
d2 dt
a
x
2
2
d
大学物理(第三版)北京邮电大学 教学PPT 绪论与第一章-质点运动学

消去t,得轨道方程
x 2 y 2 R2
22
二、位移r
1、定义 :由起始位臵指向终了位臵的有向线段;△t时间 内位臵矢量的增量
Z
S
A
A
B
r
r1
X
r
r2
r1
Y
r1
B
r2
r r2 r2 r1
r r2 r1 r | r2 | | r1 | 直角坐标系中 r xi yj zk
vA
v
o
vB
v a t
2 v dv d r a lim 2 t 0 t dt dt
28
2、加速度在直角坐标系中
dv dv x dv y dvz a i j k dt dt dt dt
d 2 x d 2 y d 2z 2 i 2 j 2 k dt dt dt
5
绪
论
物理学是关于自然界最基本形态的科学。它研究物质的结 构,相互作用以及物质的运动。
一、物理学的研究对象
1、研究物质的两种形态
实物和场是物质的两种基本形态 ▲关于实物物质结构
实物包括微观粒子和宏观物体,它的范围是从基本粒子的亚 核世界到整个宇宙。
▲关于场物质结构 例如:电磁场、引力场、各种介子场。
7
三、物理学的发展历程
经典物理、近代物理、现代物理
四、物理学的意义
1、物理学是一切自然科学的基础; 2、物理学推动技术革命和社会文明。
8
大学物理
第一篇 第二篇 第三篇 第四篇 第五篇 力学基础 热 学 电 磁 学 波动光学 量子物理
9
大学物理学(北京邮电大学出版)第一到五章答案

习题1(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为(A)dt dr (B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx +[答案:D](2) 一质点作直线运动,某时刻的瞬时速度s m v /2=,瞬时加速度2/2s m a -=,则一秒钟后质点的速度(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。
[答案:D](3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为(A)t R t R ππ2,2 (B) tRπ2,0 (C) 0,0 (D) 0,2tRπ[答案:B](1) 一质点,以1-⋅s m π的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。
[答案: 10m ; 5πm](2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。
[答案: 23m·s -1 ](3) 轮船在水上以相对于水的速度1V 航行,水流速度为2V ,一人相对于甲板以速度3V行走。
如人相对于岸静止,则1V 、2V 和3V的关系是 。
[答案: 0321=++V V V]1.3 一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定:(1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。
解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。
1.4 下面几个质点运动学方程,哪个是匀变速直线运动?〔1〕x=4t-3;〔2〕x=-4t 3+3t 2+6;〔3〕x=-2t 2+8t+4;〔4〕x=2/t 2-4/t 。
给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。
大学物理课后习题答案(第四章) 北京邮电大学出版社

又
k 0.2 2 5,即T 1.26s 3 m 8 10
2 A x0 (
v0
)2
2 2
5.0 10 2 2 (1.0 10 ) ( ) 5 2 10 2 m v 5.0 10 2 5 tan 0 0 1, 即 0 2 x 0 1.0 10 5 4 5 x 2 10 2 cos(5t )m 4 ∴
A 3.2 10 3 rad l
∴ 故其角振幅
2 A x0 (
小球的振动方程为
4-11 有两个同方向、同频率的简谐振动,其合成振动的振幅为 0.20m ,位相与第一振动的
给小球一水平向右的冲量 Ft 1.0 10 kg m s ,取打击时刻为计时起点 (t 0) ,求 振动的初位相和角振幅,并写出小球的振动方程. 解:由动量定理,有
4 1
v0 x 0
F t mv 0
∴
v
F t 1.0 10 0.01 m 1.0 10 3
A mg 2 m 2 2 gh 2 x ( ) ( ) ( ) k (m M )
2 0 2
v0
mg 2kh 1 k (m M ) g
2kh ( M m) g (第三象限),所以振动方程为 (3) mg 2kh k 2kh x 1 cos t arctan k (m M ) g ( M m) g mM 3 4-10 有一单摆,摆长 l 1.0m ,摆球质量 m 10 10 kg ,当摆球处在平衡位置时,若 tan 0
(2)
当
Ek E p
时,有
E 2E p
大学物理北邮电版第1章 运动的描述

两个特例
1、匀速圆周运动(是恒量)
d dt
d dt
d dt
0
t
0
0 t
2、匀角加速圆周运动(是恒量)
d d 2 dt dt2
0 t
1 2 0 0 t t 2
2 2 0 2 ( 0 )
无论选择何种坐标系,物体的运动性质不会改变
z (x,y,z)
k i
r
j
e
x
0
y
er
x
z (x,y,z)
k
0
P r
极坐标系
A
j
A
r
0
y
0 s<0
nA
B B nB
s>0
x
直角坐标系
自然坐标系
四、物理模型
定义:对真实的物理过程和对象,根据所讨论的问题的基本 要求对其进行理想化的简化,抽象为可以用数学方法描述的 理想模型。 质点模型:只有质量,可忽略体积和形状的物体 物体自身线度与所研究的物体运动的空间范围r比可忽略 时,如物体作平动时(具有相对性)。
r
0
r
z (x,y,z)
k
r xi yj zk
r r x2 y2 z2
x y z cos α , cos β , cos γ r r r
cos2 α cos2 β cos2 γ 1
r
j
0
y
x
两个概念
1、质点的运动学方程: 定义:描述质点的位矢随时间变化的方程称为质点的
大学物理学 (第版.修订版) 北京邮电大学出版社 上册 第七章习题7 答案

习 题 7选择题(1) 容器中贮有一定量的理想气体,气体分子的质量为m ,当温度为T 时,根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值是:(A)2x υ=.(B) 2x υ= [ ](C) 23x kT m υ= . (D) 2x kT mυ=. [答案:D 。
2222x y z υυυυ=++, 222213xy z υυυυ===,23kT mυ=。
] (2) 一瓶氦气和一瓶氮气的密度相同,分子平均平动动能相同,而且都处于平衡状态,则它们[ ](A) 温度相同、压强相同. (B) 温度、压强都不相同. (C) 温度相同,但氦气的压强大于氮气的压强. (D) 温度相同,但氦气的压强小于氮气的压强.[答案:C 。
由32w kT =,w w =氦氮,得T 氦=T 氮 ; 由molpM RTρ=,ρρ=氦氮,T 氦=T 氮 ,而M M <mol 氦mol 氮,故p p >氦氮。
] (3) 在标准状态下,氧气和氦气体积比为V 1 /V 2=1/2,都视为刚性分子理想气体,则其内能之比E 1 / E 2为: [ ](A) 3 / 10. (B) 1 / 2. (C) 5 / 6. (D) 5 / 3.[答案:C 。
由2mol M i E RT M =2ipV =,得111112222256E i pV i V E i pV i V ==⋅=。
](4) 一定质量的理想气体的内能E 随体积V 的变化关系为一直线,其延长线过E ~V 图的原点,题图所示,则此直线表示的过程为: [ ](A) 等温过程. (B) 等压过程. (C) 等体过程. (D) 绝热过程.[答案:B 。
由图得E =kV , 而2i E pV =,i 不变,2ik p =为一常数。
] (5) 在恒定不变的压强下,气体分子的平均碰撞频率Z 与气体的热力学温度T 的关系为[ ](A) Z 与T 无关. (B).Z 与T 成正比 . (C) Z 与T 成反比. (D) Z 与T 成正比.题图[答案:C 。
《大学物理》北邮大学出版社

2、载流导线L在磁场中受到安培力:
dF
Id l B ........( 9 . 25 )
I Id l dF
1
B
L
注意:
(1)B
是 dl 所处位置的磁感应强度 大小: dF Idl . B sin .....( 9 . 23 )
方向: l B Id
§ 9-3.磁场对载流导线的作用
一. 安培定律 1、安培定律:
电流元Idl在磁场中所受的力dF,其大小与电流元Idl成正比,与
电流元所在处的磁感应强度B成正比,与电流元Idl和B的夹角的 正弦成正比,即 电流元Idl所受的安培力:
dF Idl B
安培定律:
F
d F Id l B .........( 9 . 24 )
(2)安培力d F 的
——电流元 Id l 与 B 磁感应强度的正向夹角
(3)特例:
F IB sin
B
B
I )
均匀, 且L为直线时
dl IBl sin ........( 9 . 26 )
l
0
2
例9.3,P66): 载有电流I1的长直导线旁边有一与长直 导线垂直的共面导线,载有电流I2.其长度为l,近端与 长直导线的距离为d,如图9.25所示.求I1作用在l上的力. 解:在l2上取dl,它与长直导线距离为r,电流I1在此 处产生的磁场方向垂直向内、大小为 B 0 I 1
图9.30
8
• 作业:
• 1、阅读:P64—P68
。
• 3、ex:P93
• 9-19、9-20、
9
大学物理(北邮大)答案解析习题

习题十10-1 一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率tr d d =80cm ·s -1收缩时,求回路中感应电动势的大小. 解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m Φε V 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α 当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题10-2图则 αΦcos 2π21B R m =同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j夹角相等,∴ ︒=45α则 αΦcos π2R B m =221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相同,即异时针方向.题10-3图*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场中.B与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势.解: 计算抛物线与CD 组成的面积内的磁通量⎰⎰=-==ay m y B x x y B S B 0232322d )(2d 2ααΦ∴ v y B t y y B t m 21212d d d d ααε-=-=Φ-=∵ ay v 22= ∴ 212y a v =则 ααεaByy a yBi 8222121-=-= i ε实际方向沿ODC .题10-4图10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v方向运动时0d =m Φ ∴ 0=MeNM ε 即 MN MeN εε=又∵ ⎰+-<+-==ba ba MN ba ba Iv l vB 0ln 2d cos 0πμπε 所以MeN ε沿NeM 方向,大小为ba b a Iv -+ln20πμ M 点电势高于N 点电势,即ba ba Iv U U N M -+=-ln20πμ 题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以tId d 的变化率增大,求:(1)(2)解: 以向外磁通为正则 (1) ]ln [lnπ2d π2d π2000dad b a b Ilr l r Ir l r I ab b ad d m +-+=-=⎰⎰++μμμΦ (2) tIb a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02ϕωΦ+=⋅=t r B S B m ∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε∴ RBf r R I m22π==ε 10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1d =0.05m 时线圈中感应电动势的大小和方向.解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=A D Ivb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常数).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴ klvt tm-=-=d d Φε 即沿abcd 方向顺时针方向.10-9 一矩形导线框以恒定的速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0). 解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt,0>ε; 题10-9图(a)题10-9图(b)在磁场中时0d d =tΦ,0=ε; 出场时0d d >tΦ,0<ε,故t I -曲线如题10-9图(b)所示. 题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则 ⎰==320292d l Ob l B r rB ωωε 同理 ⎰==302181d l Oa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+= (2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向.解:在金属杆上取r d 距左边直导线为r ,则 b a b a Iv r r a r Iv l B v b a b a BA AB-+-=-+-=⋅⨯=⎰⎰+-lnd )211(2d )(00πμπμε∵ 0<AB ε ∴实际上感应电动势方向从A B →,即从图中从右向左, ∴ ba ba Iv U AB -+=ln0πμ10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当tBd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵ bc ab ac εεε+=tBR B R t t ab d d 43]43[d d d d 21=--=-=Φε=-=tabd d 2Φεt BR B R t d d 12π]12π[d d 22=--∴ tB R R acd d ]12π43[22+=ε∵0d d >tB∴ 0>ac ε即ε从c a →10-13 半径为R 的直螺线管中,有dtdB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴ tB R R i d d )436π(22--=ε ∵0d d >tB∴0<i ε,即感应电动势沿acba ,逆时针方向.10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示(1)ab(2)cd解: 由⎰⎰⋅-=⋅l S t B l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >题10-15图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴ 2ln π2012aIM μΦ==10-16 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为lπμl L 0=Inaad -. 解: 如图所示,取r l S d d = 则 ⎰⎰-----=--=-+=ad aad aad da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦ aad Il-=lnπ0μ ∴ aad lIL -==lnπ0μΦ10-17 两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++= 反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H10-18图10-18 一矩形截面的螺绕环如题10-19图所示,共有N(1) (2)若导线内通有电流I ,环内磁能为多少? 解:如题10-18图示 (1)通过横截面的磁通为 ⎰==baab NIhr h r NIlnπ2d π200μμΦ 磁链 ab IhN N lnπ220μΦψ== ∴ ab hN IL lnπ220μψ==(2)∵ 221LI W m = ∴ ab hI N W m ln π4220μ=10-19 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能. 解:在R r <时 20π2R I B rμ=∴ 4222002π82R r I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ⎰⎰===RRm I R rr I r r w W 0204320π16π4d d 2μμπ。
大学物理第8章学习题答案 北京邮电大学出版社

习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量. 解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r→0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,S q E 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么?f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r与l的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin rp πεθ证: 如题8-5所示,将p 分解为与r 平行的分量θsin p 和垂直于r的分量θsin p .∵ l r >>∴ 场点P 在r 方向场强分量30π2cos rp E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强.解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qy λε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d 4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan=α) 解: (1)由高斯定理d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等∴ 各面电通量6εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量6εq e=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εqe =Φ,如果它包含q 所在顶点则0=Φe .如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图 (3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s,02π4ε∑=q r E当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅q S E s取同轴圆柱形高斯面,侧面积rl S π2= 则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320OO r E ερ=∴ O 点电场'd33030OO r E ερ= ;(2) ρ+在O '产生电场'd π4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r',相对O 点位矢为r (如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E中受力矩E p M ⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功? 解:⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题8-16图示π41ε=O U 0)(=-RqR q 0π41ε=Uc )3(R q R q -R q 0π6ε-=∴Rqq U U q A o C O00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势. 解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r rq r r U E ε=∂∂-= 0r为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4r ql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=2220π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F r qr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q . ∴ 小球1、2间的作用力00294π432322F r qq F ==ε*8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势. 解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持UU AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 S qd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rr Q E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内解: 如题8-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求:(1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量;(2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求: (1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41rq q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U . 解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿.8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q 解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4r rQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F。
《大学物理》北邮大学出版社

a
b——静电势能的零势能位置。
选b为∞处,W∞
0,
得q0在a处的静电势能:
Wa
q0
E dl .........(
场点a
8.23)
3
注意:
(1)静电势能是相对的。
不同零势能点b场中同一点有不同的 Wa ;但场中两点 的电势能差与零点无关。
(2)对有限分布的电荷系统, 常常取 W 0
(3)对无限大区域的电荷分布, 取有限远b点处W b 0
q内 / 0
E
q内
4 0r 2
......(A)
r RA : q内 0
E1 0
q
RB
RA
q
RA r RB : q内 q
E2
q
4 0r 2
….(1)
r RB : q内 0 E3 4 0r 2 0
13
(2)、 A,B两球面的电势差:
U
ABRBEU.dAlU
B RB
1
注意
(1)表征静电场的性质有两个方程:
qi
E dS i ——说明:静电场是有源场!
S
0
E dl 0 ——说明:静电场是保守场!
l
静电场是无旋场!
(3)适用条件:只对静电场适用!
2
三. 静电势能
电势能Wa:电荷在电场中某一位置a具有的势能。
1、静电势能: 电场力作功在量值上等于系统的相应
子的电矩p=ql.
解 如图8.14,取 U= 0,则对任一场点P,其电势
U q q q r r
40r 40r 40 rr
r l
所以
r
r
l 2
cos,r
r
大学物理第二版答案(北京邮电大学出版社)

大学物理第二版答案(北京邮电大学出版社)习题解答第一章质点运动学1-1(1)质点t时刻位矢为:r(3t5)i12t23t4j(m)(2)第一秒内位移r1(某1某0)i(y1y0)j3(10)i12(10)23(110)j3i3.5j(m)(3)前4秒内平均速度Vr1t4(12i20j)3i5j(m1)(4)速度Vdr3i(t3)j(m1dt)∴V43i(43)j3i7j(m1)A;/。
(5)前4秒平均加速度aVV4V0734jj(m2t40)(6)加速度adVdtj(m2)a4j(m2)1-2vd某dtt33t22某d某vdtc14t4t32tc当t=2时某=4代入求证c=-12即某14t4t32t12vt33t22adv3t2dt6t将t=3代入证某41134(m)v356(m1)a345(m2)1-3(1)由运动方程某4t22t消去t得轨迹方程y3某(y3)20(2)1秒时间坐标和位矢方向为某14m[4,5]m:tgy某1.25,51.3(3)第1秒内的位移和平均速度分别为y15mr1(40)i(53)j4i2j(m)r1V4i2j(m1)t(4)质点的速度与加速度分别为drV8i2j,dtdVa8idt故t=1时的速度和加速度分别为V18i2jm1,a18im21-4该星云飞行时间为9.4610152.741096.5910172.091010a73.9310即该星云是2.091010年前和我们银河系分离的.1-5实验车的加速度为v1600103a2.47102m/225(g)t36001.80基本上未超过25g.1.80内实验车跑的距离为v1600103t1.80400(m)2236001-6(1)设第一块石头扔出后t秒未被第二块击中,则hv0t12gt2代入已知数得11115t9.8t22解此方程,可得二解为t11.84,t11.22第一块石头上升到顶点所用的时间为tmv10/g15/9.81.53由于t1tm,这对应于第一块石头回落时与第二块相碰;又由于t1tm这对应于第一块石头上升时被第二块赶上击中.以v20和v20分别对应于在t1和t1时刻两石块相碰时第二石块的初速度,则由于hv20(t1t1)1g(t1t1)22所以hv2011g(t1t1)2119.8(1.841)222t1t11.84117.2m/同理.2v20h11g(t1t1)2119.8(1.221)2221.221t1t151.1(m/)(2)由于t21.3t1,所以第二石块不可能在第一块上升时与第一块相碰.对应于t1时刻相碰,第二块的初速度为h12g(t)21119.8(1.841.3)2v201t2tt2121.841.323.0(m/)1-7以l表示从船到定滑轮的绳长,则v0dl/dt.由图可知l2h2于是得船的速度为vdldl2h2dtl2h2dtv0习题1-7图负号表示船在水面上向岸靠近.船的加速度为advdldtvdlh2v20dll2h20dt3负号表示a的方向指向岸边,因而船向岸边加速运动.1-8所求位数为2r42n2r42(6104)2gg0.16029.841051-9物体A下降的加速度(如图所示)为a2h20.40.2m/2t222此加速度也等于轮缘上一点在t3时的切向加速度,即at0.2(m/2)在t3时的法向加速度为av2(att)2R(0.23)2n1.00.36(m/2R)习题1-9图习题1-10图1-10a1.2m/2,t00.5,h01.5m.如图所示,相对南面,小球开始下落时,它和电梯的速度为3v0at01.20.50.6(m/)以t表示此后小球落至底板所需时间,则在这段时间内,小球下落的距离为hv0t12gt2电梯下降的距离为hv0t12at2又h0hh1(ga)t22由此得t2h021.50.59ga9.81.2而小球相对地面下落的距离为hv0t12gt20.60.599.80.5922.06m1-11v风地v风人v人地2v0人地,速度矢量合成如图(b)两图中v风地应是同一矢量.可知(a)v风人画出速度矢量合成图(a)又v风地12图必是底角为45的等腰直角三角形,所以,风向应为西北风,风速为v风地4.23(m1)v0人地co452v0人地1-12(1)t(2)2L2LvvLL2vLtt1t22vuvuvu222Lu1vv1习题1-11图(3)u由东习题1-12图tt1t2LL,如图所示风速vv向西,由速度合成可得飞机对地速度vuv,则Vv2u2.t2L2L22vvu2Luv1v2证毕1-13(1)设船相对岸的速度为V(如图所示),由速度合成得VuVV的大小由图1.7示可得VVcouco习题1-13图4即VcoVuco323332而Vinuin21船达到B点所需时间tAB两点之距SDctgOBDD1000()VVincoin12D将式(1)、(2)代入可得SD(33)1268(m)(2)由D1103tVinuin船到对岸所需最短时间由极值条件决定dt1du1in2co0即co0,/2故船头应与岸垂直,航时最短.将值代入(3)式得最短航时为3t110minuin/2110320.5103500()(3)设OBl,则lDVDDu2V22inuVcoVinuin欲使l最短,应满足极值条件.dlDu2V22uVcoduacoainuVin2ain2au2V22uVco0简化后可得2u2V2coauVco10即co2a136co10解此方程得co23co12348.2故船头与岸成48.2,则航距最短.将值代入(4)式得最小航程为2lu2v22uvco10002232223minDu1co23221231.5103m1.5(km)AB两点最短距离为52SminlminD21.511.12(km)第二章质点动力学2-1(1)对木箱,由牛顿第二定律,在某向:Fmincofma某0y向:NFmininMg0还有fma某N习题2-1图木箱将要被推动的情况下如图所示,解以上三式可得要推动木箱所需力F的最小值为FminMgcoin在木箱做匀速运动情况下,如上类似分析可得所需力F的大小为FminkMgcokin(2)在上面Fmin的表示式中,如果coin0,则Fmin,这意味着用任何有限大小的力都不可能推动木箱,不能推动木箱的条件是coin0由此得的最小值为arctan12-2(1)对小球,由牛顿第二定律某向:TcoNinmay向:TinNcomg0联立解此二式,可得Tm(acogin)0.5(2co309.8in30)3.32(N)Nm(gcoain)0.5(9.8co302in30 )3.74(N)由牛顿第三定律,小球对斜面的压力NN3.74(N)(2)小球刚要脱离斜面时N=0,习题2-2图则上面牛顿第二定律方程为Tcoma,Tinmg由此二式可解得ag/tan9.8/tan3017.0m/22-3要使物体A与小车间无相对滑动,三物体必有同一加速度a,且挂吊B的绳应向后倾斜。
北邮物理面试题库及答案

北邮物理面试题库及答案一、简答题1. 请简述牛顿第三定律的内容及其在日常生活中的应用。
答案:牛顿第三定律指出,对于两个相互作用的物体,它们之间的作用力和反作用力大小相等、方向相反。
在日常生活中,例如推门时,门对人的反作用力与推力相等,方向相反。
2. 描述一下什么是光的折射现象,并举例说明。
答案:光的折射现象是指光从一种介质进入另一种介质时,其传播方向发生改变的现象。
例如,当光从空气进入水中时,光线会向水的法线方向弯曲,这就是折射现象。
二、计算题1. 一个质量为2kg的物体,受到一个大小为10N的恒定力作用,求物体的加速度。
答案:根据牛顿第二定律,\( F = ma \),其中\( F \)是作用力,\( m \)是物体的质量,\( a \)是加速度。
将已知数值代入公式,\( a = \frac{F}{m} = \frac{10N}{2kg} = 5m/s^2 \)。
2. 一个物体从静止开始,以加速度2m/s²做匀加速直线运动,求物体在第3秒末的速度。
答案:根据匀加速直线运动的速度公式 \( v = u + at \),其中\( v \) 是最终速度,\( u \) 是初始速度,\( a \) 是加速度,\( t \) 是时间。
代入数值,\( v = 0 + 2m/s^2 \times 3s = 6m/s \)。
三、实验题1. 描述如何使用米尺测量一张纸的厚度。
答案:首先,将多张纸叠加在一起,使用米尺测量叠加后的总厚度,然后除以纸张的数量,得到单张纸的厚度。
2. 简述如何使用弹簧秤测量物体的重力。
答案:将物体挂在弹簧秤的钩上,使弹簧秤保持垂直状态,此时弹簧秤的读数即为物体的重力。
四、论述题1. 论述牛顿运动定律在现代科技中的应用。
答案:牛顿运动定律在现代科技中有着广泛的应用,例如在汽车的防抱死制动系统(ABS)、航天器的轨道设计、机器人的运动控制等领域,牛顿定律都是基础理论。
2. 讨论相对论对现代物理学的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v = 2 x 3 + x + 25 m ⋅ s −1
1.10 已知一质点作直线运动, 其加速度为 a =4+3 t m ⋅ s , 开始运动时,x =5 m,v =0, 求该质点在 t =10s 时的速度和位置. 解:∵ 分离变量,得 积分,得 由题知, t = 0 , v0 = 0 ,∴ c1 = 0 故 又因为 分离变量, 积分得
2πR t 2πR (D) ,0 t
(1) 一质点,以 πm ⋅ s 的匀速率作半径为 5m 的圆周运动,则该质点在 5s 内,位移的大小
−1
是
;经过的路程是 [答案: 10m; 5πm]
。
(2) 一质点沿 x 方向运动,其加速度随时间的变化关系为 a=3+2t (SI),如果初始时刻质点的 速度 v0 为 5m·s-1,则当 t 为 3s 时,质点的速度 v= 。 -1 [答案: 23m·s ]
(2)将 t = 1 , t = 2 代入上式即有
v 1 v v r = (3t + 5)i + ( t 2 + 3t − 4) j m 2
v v v r1 = 8i − 0.5 j m
v v v r2 = 11i + 4 j m v v v v v ∆r = r2 − r1 = 3i + 4.5 j m
(ห้องสมุดไป่ตู้)∵
v v v v v v r0 = 5i − 4 j , r4 = 17i + 16 j
v v v v v v v v ∆r r4 − r0 12i + 20 j v= = = = 3i + 5 j m ⋅ s −1 ∆t 4−0 4
∴
(4) 则 (5)∵
v v v v dr v= = 3i + (t + 3) j m ⋅ s −1 dt v v v v 4 = 3i + 7 j m ⋅ s −1 v v v v v v v0 = 3i + 3 j , v 4 = 3i + 7 j
v v v v v v ∆v v4 − v0 4 j a= = = =1j m ⋅ s −2 ∆t 4 4 v v v dv (6) a= = 1 j m ⋅ s −2 dt 这说明该点只有 y 方向的加速度,且为恒量。
1.9 质点沿 x 轴运动,其加速度和位置的关系为 a =2+6 x , a 的单位为 m ⋅ s , x 的单位
1.12 质点沿半径为 R 的圆周按 s = v0 t −
弧长, v 0 , b 都是常量,求:(1) t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等 于b . 解: (1)
v=
ds = v0 − bt dt
dv = −b dt v 2 (v0 − bt ) 2 = an = R R aτ =
(3) 轮船在水上以相对于水的速度 V1 航行, 水流速度为 V2 , 一人相对于甲板以速度 V3 行走。 如人相对于岸静止,则 V1 、 V2 和 V3 的关系是 [答案: V1 + V2 + V3 = 0 ]
r
r
r
r
r
r
。
r
r
r
1.3
一个物体能否被看作质点,你认为主要由以下三个因素中哪个因素决定: (1) 物体的大小和形状; (2) 物体的内部结构; (3) 所研究问题的性质。 解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研 究问题的性质决定。 下面几个质点运动学方程,哪个是匀变速直线运动? (1)x=4t-3; (2)x=-4t3+3t2+6; (3)x=-2t2+8t+4; (4)x=2/t2-4/t。 给出这个匀变速直线运动在 t=3s 时的速度和加速度,并说明该时刻运动是加速的还 是减速的。 (x 单位为 m,t 单位为 s) 解:匀变速直线运动即加速度为不等于零的常数时的运动。加速度又是位移对时间 的两阶导数。于是可得(3)为匀变速直线运动。 其速度和加速度表达式分别为
计,求:(1) t =2 s时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时, 其角位移是多少?
解: (1) t = 2 s 时,
ω=
dθ dω = 9t 2 , β = = 18t dt dt
aτ = Rβ = 1×18 × 2 = 36 m ⋅ s −2 a n = Rω 2 = 1 × (9 × 2 2 ) 2 = 1296 m ⋅ s −2
速度的贡献。
1.8
一质点在 xOy 平面上运动,运动方程为
x =3 t +5, y =
1 2 t +3 t -4. 2
式中 t 以 s计, x , y 以m计.(1)以时间 t 为变量,写出质点位置矢量的表示式;(2)求出 t =1 s 时刻和 t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算 t =0 s时刻到 t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算 t =4 s 时质点的速度;(5)计算 t = 0s 到 t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算 t =4s 时质点 的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成 直角坐标系中的矢量式). 解: (1)
∴当 t =
1.13 飞轮半径为0.4 m,自静止启动,其角加速度为 β=ٛ0.2 rad・ s ,求 t =2s时边缘 上各点的速度、法向加速度、切向加速度和合加速度. 解:当 t = 2 s 时, ω = βt = 0.2 × 2 = 0.4 rad ⋅ s 则 v = Rω = 0.4 × 0.4 = 0.16 m ⋅ s
你认为两种方法哪一种
解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有 r = xi + yj ,
v
v
v
v v dr dx v dy v = i+ j ∴v = dt dt dt v v d2r d2 x v d2 y v a= 2 = 2 i+ 2 j dt dt dt
故它们的模即为
v=
dr dt
a=
d2r dt 2
其二,可能是将
dr d 2 r dr 与 2 误作速度与加速度的模。在 1.6 题中已说明 不是速度的模, dt dt dt d2r 也不是加速度的模,它只是加速度在径向分量中 dt 2
而只是速度在径向上的分量,同样,
2 d2r v dθ 或者概括性地说, 前一种方法只考虑了位矢 r 在径向 (即 的一部分 a径 = 2 − r 。 d t t d v v 量值)方面随时间的变化率,而没有考虑位矢 r 及速度 v 的方向随时间的变化率对速度、加
dr 只是速度在径向上的分量. dt
ˆ (式中 r ˆ 叫做单位矢) ∵有 r = r r ,则
式中
ˆ dr d r dr ˆ +r = r dt dt dt
dr 就是速度在径向上的分量, dt
∴
dr d r 与 不同如题 1.6 图所示. dt dt
题 1.6 图
(3)
v dv dv v dv 表示加速度的模,即 a = , 是加速度 a 在切向上的分量. dt dt dt
−2
a=
dv = 4 + 3t dt
dv = (4 + 3t )dt
3 v = 4t + t 2 + c1 2
3 v = 4t + t 2 2 dx 3 v= = 4t + t 2 dt 2 3 dx = (4t + t 2 )dt 2 1 x = 2t 2 + t 3 + c 2 2
由题知 t = 0 , x0 = 5 ,∴ c 2 = 5
2 2
dr d 2r 及 a = 2 而求得结果;又有人先计算速度和加速度的 dt dt
2
2 2
分量,再合成求得结果,即
dx dy v= + ,a= dt dt
正确?为什么?两者差别何在?
2
d2 x d2 y dt 2 + 2 dt
2
−2
为 m. 质点在 x =0处,速度为10 m ⋅ s ,试求质点在任何坐标处的速度值. 解: ∵
−1
a=
dv dv dx dv = =v dt dx dt dx
分离变量: 两边积分得
vdv = adx = (2 + 6 x 2 )dx
1 2 v = 2x + 2x3 + c 2
由题知, x = 0 时, v0 = 10 ,∴ c = 50 ∴
(2)当加速度方向与半径成 45 角时,有
ο
tan 45° =
即 亦即 则解得 于是角位移为
aτ =1 an
Rω 2 = Rβ (9t 2 ) 2 = 18t t3 = 2 9 2 9
θ = 2 + 3t 3 = 2 + 3 × = 2.67rad
1 2 bt 的规律运动,式中 s 为质点离圆周上某点的 2
,所以 ∵有 v = v τ (τ 表轨道节线方向单位矢)
v v
v v dv dv v dτ = τ +v dt dt dt
式中
dv 就是加速度的切向分量. dt v v ˆ dτ ˆ dr (Q 的运算较复杂,超出教材规定,故不予讨论) 与 dt dt
1.7 设质点的运动方程为 x = x ( t ), y = y ( t ),在计算质点的速度和加速度时,有人先求 出r= x + y ,然后根据 v =
1.6 | ∆r |与 ∆r 有无不同? 试举例说明.