遥感植被指数NDVI计算

合集下载

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:∙∙●植被光谱特征∙∙●植被指数∙∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

4 遥感数据处理及分析----NDVI植被指数计算

4 遥感数据处理及分析----NDVI植被指数计算
如:要找出所有负值像元 并用值-999代替, 可以用表达式: (b1 lt 0)*(-999)+(b1 ge 0)* b1
IDL基本语法知识-注意事项
4)运算符操作顺序
在波段运算过程中,是根据数序。
5)注意使用调用整个图像的IDL函数
如同其他所有ENVI程序一样,波段运算处理也是分块进行的。 如果被处理的图像大于在参数设置中被指定的碎片尺寸,图像将 被分解为更小的部分,系统对每一部分进行单独处理,然后再重 新组合起来。
知识介绍--NDVI
常用的植被指数有: 3)差值植被指数
(difference vegetation index, DVI)
公式:DVI = DNNIR-DNR
对土壤背景的变化极为敏感,有利于植被生态 环境的监测。
当植被浓密,如覆盖度大于等于80%时,它对 植被的灵敏度下降,适用于植被发育早、中期 或低、中覆盖度的植被监测。
3)应用函数 如:ratio_rvi函数是对b1和b2进行操作,则在波段运算的表达式输入时, 应该为: ratio_rvi(b1,b2)。如设有关键字check的话,则在表达式输入时, 应输入:bm_ratio(b1,b2,/check)
作业
计算can_tmr.img数据的NDVI:
要求:1)编写计算NDVI的IDL函数(附在报告内) 2)保存函数,并描述编译函数、 波段运算中调用函数的过程。 3)记录(200,150)像素位置的NDVI值。
b1(ptr) = 1.0 rvi = float(b2)/b1 rvi(ptr) = 0.0 endif else begin rvi = float(b2)/b1 endelse end
IDL函数编写和函数在波段运算中的使用

遥感常用ndvimndwi、ndbi等三个指数的计算及landsat应用

遥感常用ndvimndwi、ndbi等三个指数的计算及landsat应用

N D V INDVI,植被覆盖指数。

应用于检测植被生长状态、植被覆盖度和消除部分辐射误差等。

中文名归一化差分植被指数外文名Normalized Difference Vegetation Index简????称NDVI影响因素植物的蒸腾作用、太阳光的截取简介NDVI(Normalized Difference Vegetation Index,归一化差分植被指数,标准差异植被指数),也称为生物量指标变化,可使植被从水和土中分离出来。

表达式:,NIR 和R分别为近红外波段和红波段处的反射率值。

[1]和植物的蒸腾作用、太阳光的截取、光合作用以及地表等密切相关。

特点1、NDVI 能够部分消除与太阳高度角、卫星观测角、地形、云影等与大气条件有关的辐射变化的影响;[1]2、NDVI 结果被限定在[-1,1]之间,避免了数据过大或过小给使用带来的不便;[1]3、NDVI 是植被生长状态及植被覆盖度的最佳指示因子;[1]4、非线性变换,增强了NDVI 低值部分,抑制了高值部分,导致NDVI数值容易饱和,对高植被密度区敏感性降低:表1Landsat7 Landsat8卫星对比NDWINDWI(Normalized Difference Water Index,水指数),用的特定波段进行归一化差值处理,以凸显影像中的水体信息。

目前对于NDWI有S. K. McFEETERS和Bo-cai Gao的两种不同做法,且都于1996年发表在权威国际遥感学术杂志上。

对于NDWI的命名尚有争议。

在1996年提出的差分水体指数(NDWI)[1]其表达式为:NDWI =(p(Green)-p())/(p(Green)+p(NIR))是基于绿波段与波段的归一化比值指数。

该NDWI一般用来提取影像中的水体信息,效果较好。

局限性:用NDWI来提取有较多建筑物背景的水体,如城市中的水体,其效果会较差。

2. Gao于1996年也命名了一个NDWI[2]?,用于研究植被的含水量。

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:植被光谱特征植被指数HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:可见光(Visible):400 nm to 700 nm近红外(Near-infrared——NIR):700 nm to 1300 nm短波红外1(Shortwave infrared 1——SWIR-1):1300 nm to 1900 nm短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

计算植被覆盖度

计算植被覆盖度
植物覆盖度分级计算公式
b1:处理后的植被覆盖度影像,b2:掩膜影像
0-0.1:第一等级
0.1-0.3:第二等级
0.3-0.5:第三等级
0.5-0.7:第四等级
0.7-1:第五等级
植被覆盖率取值为0且位于黄石市边界范围内的像元取值为0。
(b1 ge 0 and b1 le 0.1 and b2 eq 1)*1+(b1 gt 0.1 and b1 le 0.3)*2+(b1 gt 0.3 and b1 le 0.5)*3+(b1 gt 0.5 and b1 le 0.7)*4+(b1 gt 0.7 and b1 le 1)*5+(b2 eq 0)*0
用6S模型来计算植被覆盖度和地表反射率。
计算植被覆盖度
1、数据准备:第3波段和第4波段地表发射率的遥感影像
2、计算NDVI(归一化植被指数)
NDVI=(R4-R3)/(r4+r3) 在ENVI中r为b
3、计算FVC(植物覆盖度)
其中,FVC是植被覆盖度:
FVC=[(NDVI-NDVIs)/(NDVIv-NDVIs)]2
1,数据准备:TM3、TM4地表反射率。
2、计算NDVI(归一化植被指数)
公式:NDVI=(R4-R3)/(r4+r3)
其中r4与r3 是相应波段的地表反射率。
在envi r为b
3、计算植被覆盖度(FVC)。
FVC=[(NDVI-NDVIs)/(NDVIv-NDVIs)]2
NDVIs=0.05 NDVIv=0.07 (注意:在ENVI中NDVI用b1表示)
FVC=[(b1-0.05)/(0.7-0.05)]*[(b1-0.05)/(0.7-0.05)]

arcgis植被覆盖度计算

arcgis植被覆盖度计算

arcgis植被覆盖度计算
在ArcGIS中,可以使用NDVI指数来计算植被覆盖度。

首先,需要获取红外波段和可见光波段的遥感影像数据。

红外波段通常对应于近红外波段(NIR),可见光波段通常对应于红、绿或蓝波段。

1. 打开ArcGIS软件,导入红外波段和可见光波段的遥感影像数据。

确保两个波段的投影系数一致。

2. 在图像解释器中,右键点击图像,选择"Band Arithmetic"选项,进入波段算术工具的对话框。

3. 在波段算术对话框中,输入以下公式来计算归一化植被指数(NDVI):(NIR - Visible) / (NIR + Visible)
其中,NIR表示红外波段,Visible表示可见光波段。

4. 设置输出栅格数据的文件名和路径,然后点击"OK"按钮开始计算。

5. 完成计算后,可以通过计算得到的NDVI图像来计算植被覆盖度。

可以使用栅格计算器工具,设置阈值来确定植被覆盖度的范围。

例如,可以通过设置NDVI值大于0.5的像素作为植被覆盖度的范围。

这样,就可以得到植被覆盖度的计算结果。

请注意,植被覆盖度的计算可以根据具体需求进行调整和改进,上述步骤仅为简单示例。

几种常用植被指数介绍

几种常用植被指数介绍

几种常用植被指数介绍植被指数是通过遥感技术获取的植被信息量化指标,包括植被覆盖度、生长状态、植被类型等信息,广泛应用于土地利用、资源管理、环境监测等领域。

在本文中,将介绍几种常用的植被指数,包括归一化植被指数(NDVI)、广域植被指数(EVI)、归一化差值水体指数(NDWI)、颜色指数(CI)、土地覆盖指数(LCI)等。

1. 归一化植被指数(NDVI)归一化植被指数(Normalized Difference Vegetation Index,NDVI)是最早被广泛应用的植被指数,由罗浮(Rouse)等人于1974年提出。

它以红光波段和近红外波段的反射率之差的比值来度量植被状况,公式为:NDVI = (NIR - RED) / (NIR + RED)其中,NIR为近红外波段的反射率,RED为红光波段的反射率。

NDVI取值范围为-1到1之间,数值越大代表植被覆盖度越高,生长状况越好。

广域植被指数(Enhanced Vegetation Index,EVI)是对NDVI的一种改进,由胡侃(Huete)等人于1994年提出。

EVI在NDVI的基础上增加了大气校正、背景亮度校正等,公式为:其中,NIR、RED和BLUE分别为近红外波段、红光波段和蓝光波段的反射率。

EVI相比NDVI具有更好的大气校正能力和对土壤、雪等因素的较好抵抗能力,能够更准确地反映植被状况。

其中,Green为绿光波段的反射率。

NDWI值越低代表水体覆盖度越高,可以用于监测水体的位置和面积变化,以及水资源的管理和保护。

4. 颜色指数(CI)颜色指数(Color Index,CI)是一种基于色彩特征的植被指数,由Stiles于1954年提出。

它使用波段之间的差值来计算颜色特征,公式为:其中,GREEN、RED和BLUE分别为绿光波段、红光波段和蓝光波段的反射率。

CI能够反映植被的颜色特征,可以用于识别植被类型、估算植被生物量等。

土地覆盖指数(Land Cover Index,LCI)是一种基于土地覆盖类型的指数,由Gao和Ji于2008年提出。

遥感常用ndvimndwindbi等三个指数的计算及landsat8应用

遥感常用ndvimndwindbi等三个指数的计算及landsat8应用

NDVINDVI,植被覆盖指数。

应用于检测植被生长状态、植被覆盖度和消除部分辐射误差等。

中文名归一化差分植被指数外文名Normalized Difference Vegetation Index简称NDVI影响因素植物的蒸腾作用、太阳光的截取简介NDVI(Normalized Difference Vegetation Index,归一化差分植被指数,标准差异植被指数),也称为生物量指标变化,可使植被从水和土中分离出来。

表达式:,NIR 和R分别为近红外波段和红波段处的反射率值。

[1]和植物的蒸腾作用、太阳光的截取、光合作用以及地表净初级生产力等密切相关。

特点1、NDVI 能够部分消除与太阳高度角、卫星观测角、地形、云影等与大气条件有关的辐射变化的影响;[1]2、NDVI 结果被限定在[-1,1]之间,避免了数据过大或过小给使用带来的不便;[1]3、NDVI 是植被生长状态及植被覆盖度的最佳指示因子;[1]4、非线性变换,增强了NDVI 低值部分,抑制了高值部分,导致NDVI数值容易饱和,对高植被密度区敏感性降低:表1Landsat7 Landsat8卫星对比NDWINDWI(Normalized Difference Water Index,归一化水指数),用遥感影像的特定波段进行归一化差值处理,以凸显影像中的水体信息。

目前对于NDWI有S. K. McFEETERS和Bo-cai Gao的两种不同做法,且都于1996年发表在权威国际遥感学术杂志上。

对于NDWI 的命名尚有争议。

1.Mcfeeters在1996年提出的归一化差分水体指数(NDWI)[1]其表达式为:NDWI =(p(Green)-p(NIR))/(p(Green)+p(NIR))是基于绿波段与近红外波段的归一化比值指数。

该NDWI一般用来提取影像中的水体信息,效果较好。

局限性:用NDWI来提取有较多建筑物背景的水体,如城市中的水体,其效果会较差。

绿色植被的归一化差值植被指数

绿色植被的归一化差值植被指数

绿色植被的归一化差值植被指数
绿色植被的归一化差值植被指数(Normalized Difference Vegetation Index, NDVI)是一种用于评估植被覆盖率和生长状况的指数。

它是通过测量植被吸收和反射红外光和可见光波段中的能量来计算的。

在计算过程中,NDVI 会将红外波段和可见光波段的光谱信息进行归一化,然后用红外波段的反射率减去可见光波段的反射率,再除以两者的反射率和得到的商。

这个值范围从-1 到+1,其中负值表示非植被区域,0 表示无植被覆盖,而正值则越高表示植被覆盖率越高。

NDVI 在农业、林业、生态和气象等领域中被广泛应用。

通过对NDVI 值进行分析,可以识别植被覆盖率和类型,监测植被生长状态和变化,评估土地利用和土地覆盖等信息。

此外,NDVI 还可用于估算植被生产力和碳储量等指标。

总之,NDVI 是一种重要的植被指数,它可以为我们提供有关植被覆盖、生长状态和生产力等方面的重要信息。

ndvi归一化植被指数 公式含义

ndvi归一化植被指数 公式含义

NDVI是农业领域常用的一种指数,它可以用来评估植被的生长状况和土壤的湿度情况。

下面将详细介绍NDVI的概念、公式含义以及其在农业生产中的应用。

一、NDVI的概念NDVI即归一化植被指数(Normalized Difference Vegetation Index),是一种通过遥感技术获取的植被信息指数。

它是由美国科学家Rouse等人于1974年提出的,是利用植被红外光和可见光谱反射率之间的比值来反映植被覆盖度和生长状况的指标。

二、NDVI的计算公式NDVI的计算公式如下:\[ NDVI = \frac{NIR - RED}{NIR + RED} \]其中,NIR表示红外波段的反射率,RED表示可见光波段的反射率。

通过计算这两个波段的反射率的差值和比值,可以得到NDVI的数值。

NDVI的数值范围通常在-1到1之间,数值越大代表植被覆盖度越高,生长状况越好。

三、NDVI在农业生产中的应用1. 土壤湿度监测通过监测植被的生长状况,可以间接地推断土壤的湿度情况。

植被生长状况好的地方往往意味着土壤湿度较高,而生长状况差的地方则可能是由于土壤干旱。

农民和农田管理者可以根据NDVI的数值来及时调整灌溉系统,保证农田的水分充足。

2. 病虫害监测有些病虫害对植被的影响会导致植被的生长受到阻碍,从而导致NDVI 数值的下降。

农民可以通过监测NDVI数值的变化来及时发现并采取控制措施,防止病虫害对农作物造成严重损害。

3. 作物产量预测植被的生长状况与作物的产量密切相关。

通过监测植被的生长情况,可以对作物的产量进行预测,帮助农民及时调整农作物的种植结构和管理措施,最大程度地提高作物的产量。

4. 土地利用规划通过对不同地块的NDVI数值进行监测和分析,可以为土地的合理利用提供科学依据。

可以根据NDVI数值的变化来调整种植作物的布局,或者在土地治理和防护工程中进行合理规划。

四、结语NDVI作为一种重要的植被信息指数,对于农业生产和土地资源管理具有重要意义。

遥感数字图像处理代数运算

遥感数字图像处理代数运算

代数运算根据地物在不同波段的灰度差异,通过不同波段的代数运算产生新的“波段”作用:突出特定的地物信息产生新的地物信息代数运算1. 加、减、乘、除法运算2. 归一化指数3. 植被指数RVI, NDVI, DVI, PVI1.加减乘除运算B = B1+B2B = B1-B2B = B1/B2B = B1*B22. 归一化指数B = (B1 – B2)/(B1 + B2)3.植被指数,IR-近红外反射率,R-红色波段反射率RVI = IR/RNDVI = (IR – R)/(IR + R)DVI = IR – RPVI = 1.6225*IR – 2.2978*R + 11.0656or = 0.939*IR – 0.344*R + 0.09设参与运算的波段为B1和B2, 结果为BB1和B2为M*N的矩阵,计算结果B也是M*N的矩阵相同的像元进行计算,以加法运算为例:for(i = 0; i < M-1; i++)for(j = 0; j < N-1; j++)B[i, j] = B1[i, j] + B2[i, j]归一化植被指数和正交植被指数:for(i = 0; i < M-1; i++)for(j = 0; j < N-1; j++)NDVI[i, j] = (IR[i, j] - R[i, j])/(IR[i, j] + R[i, j])PVI[i, j] = 0.039*IR[i, j] - 0.344*R[i, j] + 0.09均值滤波(Mean filtering)均值滤波取每个领域像素值的平均作为该像素的新值。

优点:对高斯噪声比较有效不足:会造成图像模糊,削弱边缘和细节中值滤波(Median filtering)中值滤波取每个领域像素值的中均作为该像素的新值。

优点:对椒盐噪声比较有效,能保留部分细节信息,减少模糊不足:计算复杂,对随机噪声效果不好图像锐化(Image Sharpening)图像锐化提高边缘与周围像素之间的反差,用于突出图像中的地物边缘、轮廓或线状目标。

植被指数计算方法

植被指数计算方法

2.1 归一化植被指数(NDVI )归一化植被指数(Normalized Difference Vegetation Index ,即NDVI )的计算公式为:NIR RED NIR REDNDVI ρρρρ-=+ 其中:NIR ρ和RED ρ分别代表近红外波段和红光波段的反射率NDVI 的值介于-1和1之间。

2.2 增强型植被指数(EVI )增强型植被指数(Enhanced Vegetation Index ,即EVI )计算公式为:2.5 6.07.51NIR RED NIR RED BLUE EVI ρρρρρ-=⨯+-+ NIR ρ、RED ρ和BLUE ρ分别代表近红外波段、红光波段和蓝光波段的反射率。

2.3 高光谱归一化植被指数(Hyp_NDVI )对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外和红光的谱段进行归一化植被指数计算:_____Hyp NIR Hyp RED Hyp NDVI Hyp NIR Hyp RED-=+ 2.4 其他植被指数(1) 比值植被指数(Ratio Vegetation Index ——RVI )NIR REDRVI ρρ= 该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。

但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。

(2) 差值植被指数(Difference Vegetation Index ——DVI )NIR RED DVI ρρ=-该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因此又被称为环境植被指数(EVI )。

(3) 土壤调整植被指数(Soil-Adjusted Vegetation Index ——SA VI )(1)NIR RED NIR RED SAVI L Lρρρρ-=+++ 其中,L 是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某⼀特性或者细节。

⽬前,在科学⽂献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本⽂总结现有植被指数,根据对植被波谱特征产⽣重要影响的主要化学成份:⾊素(Pigments)、⽔分(Water)、碳(Carbon)、氮(Nitrogen),总结了7⼤类实⽤性较强的植被指数,即:宽带绿度、窄带绿度、光利⽤率、冠层氮、⼲旱或碳衰减、叶⾊素、冠层⽔分含量。

这些植被指数可以简单度量绿⾊植被的数量和⽣长状况、叶绿素含量、叶⼦表⾯冠层、叶聚丛、冠层结构、植被在光合作⽤中对⼊射光的利⽤效率、测量植被冠层中氮的相对含量、估算纤维素和⽊质素⼲燥状态的碳含量、度量植被中与胁迫性相关的⾊素、植被冠层中⽔分含量等。

包括以下内容:●植被光谱特征●植被指数●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸⼟、⽔体等,⽐如植被的“红边”现象,即在<700nm附近强吸收,>700nm⾼反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、⽔分含量、⾊素、养分、碳等。

研究植被的波长范围⼀般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:●可见光(Visible):400 nm to 700 nm●近红外(Near-infrared——NIR):700 nm to 1300 nm●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是⼤⽓⽔的强吸收范围,卫星或者航空传感器⼀般不获取这范围的反射值。

植被覆盖度估算方法(一)

植被覆盖度估算方法(一)

植被覆盖度估算方法(一)植被覆盖度估算引言植被覆盖度是评估一个区域内植被覆盖程度的重要指标。

它能够帮助我们理解地表的植被分布情况,为生态环境和资源管理提供依据。

本文将介绍几种常见的植被覆盖度估算方法。

光谱指数法光谱指数是通过遥感数据中植物的光谱反射信息计算得出的。

常见的光谱指数有归一化植被指数(NDVI)、差值植被指数(DVI)等。

这些指数通过计算不同波段之间的差异性,反映了植被覆盖的程度。

光谱指数法适用于大面积、连续性的植被覆盖度估算。

•归一化植被指数(NDVI)•差值植被指数(DVI)•…人工采样法人工采样法是通过在实地进行植物测量和采样,来获取植被覆盖度信息的一种方法。

该方法适用于小面积、复杂地形的植被覆盖度估算。

•样点测量法•样线测量法•…监测与遥感技术相结合监测与遥感技术相结合的方法能够在大范围内进行植被覆盖度估算,并结合地表特征和遥感数据进行分析。

•基于遥感图像分类的方法•基于监测站点数据分析的方法•…基于机器学习的方法近年来,随着机器学习技术的快速发展,基于机器学习的植被覆盖度估算方法也逐渐被应用。

通过训练模型,使用大量的遥感数据进行植被覆盖度的预测和估算。

•支持向量机(SVM)•随机森林(Random Forest)•…结论植被覆盖度的估算方法多种多样,可以根据具体的研究对象和研究目的选择合适的方法。

光谱指数法适用于大面积的植被覆盖度估算,人工采样法适用于小面积的植被覆盖度估算,监测与遥感技术相结合的方法能够在大范围内进行植被覆盖度估算,基于机器学习的方法在精确度和效率上都有较好的表现。

不同的方法相互补充,可以为我们提供全面和准确的植被覆盖度估算结果。

光谱指数法归一化植被指数(NDVI)归一化植被指数(NDVI)是通过计算近红外和可见光波段的反射率之差除以两者之和得出的。

NDVI的取值范围在-1到1之间,数值越高表示植被覆盖度越高。

差值植被指数(DVI)差值植被指数(DVI)是通过计算不同波段之间的反射率差异得出的。

植被指数(NDVI)理论知识

植被指数(NDVI)理论知识

植被指数(NDVI)理论知识
<基于植被指数NDVI 的遥感信息提取>----------------马春林
植被红光波段0.55- 0.68µm 有⼀个强烈的吸收带,它与叶绿素密度成反⽐; ⽽近红外波段0.725- 1.1µm 有⼀个较⾼的反射峰
绿⾊植物在红光波段强吸收,⽽在近红外⾼反射和⾼透射特性
1 植被指数提取⽅法
植被指数提取的⽅法很多, 最为常⽤的⼀种⽅法是通过遥感影像处理软件对遥感影像不同波段进⾏处理,从⽽得到各类植被指数。

本⽂研究选取的Landsat/TM 遥感影像, 共有7个波段, 其中TM3(波长0.63~0.69gm)为红外波谱段, 为叶绿素主要吸收波段; TM4(波长0.76~O.90gm)为近红外波谱段, 对绿⾊植被的差异敏感,为植被通⽤波段。

归⼀化植被指数NDVI 的定义是:
NDVI=(NIR- R)/(NIR+R) (其中NIR 代表近红外波段, R 代表红波段)要计算NDVI, 就是在遥感处理软件中, 计算近红外波段与红波段之差, 再除以两个波段之和。

利⽤遥感影像处理软件提取植被指数流程⼀般为:
(1)使⽤遥感处理软件打开遥感图像。

(2)依据植被指数公式, 对图像不同波段进⾏波段计算。

(3)⽣成植被指数影像⽂件。

植被指数计算方法

植被指数计算方法

2.1 归一化植被指数(NDVI )归一化植被指数(Normalized Difference Vegetation Index ,即N D V I )的计算公式为:NIR RED NIR REDNDVI ρρρρ-=+ 其中:NIR ρ和RED ρ分别代表近红外波段和红光波段的反射率NDVI 的值介于-1和1之间。

2.2 增强型植被指数(EVI )增强型植被指数(Enhanced Vegetation Index ,即EVI )计算公式为:2.5 6.07.51NIR RED NIR RED BLUE EVI ρρρρρ-=⨯+-+ NIR ρ、RED ρ和BLUE ρ分别代表近红外波段、红光波段和蓝光波段的反射率。

2.3 高光谱归一化植被指数(Hyp_NDVI )对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外和红光的谱段进行归一化植被指数计算:_____Hyp NIR Hyp RED Hyp NDVI Hyp NIR Hyp RED-=+ 2.4 其他植被指数(1) 比值植被指数(Ratio Vegetation Index ——RVI )NIR REDRVI ρρ= 该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。

但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。

(2) 差值植被指数(Difference Vegetation Index ——DVI )NIR RED DVI ρρ=-该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因此又被称为环境植被指数(EVI )。

(3) 土壤调整植被指数(Soil-Adjusted Vegetation Index ——SA VI )(1)NIR RED NIR RED SAVI L Lρρρρ-=+++ 其中,L 是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。

landsat 5 ndvi 指数

landsat 5 ndvi 指数

landsat 5 ndvi 指数什么是Landsat 5 NDVI指数?Landsat 5 NDVI指数是一种衡量植被健康程度的遥感指标。

NDVI代表归一化植被指数(Normalized Difference Vegetation Index),是由美国航空航天局(NASA)开发的一种植被指标。

Landsat 5是1972年至2013年期间运行的一颗美国卫星,它搭载了太阳能辐射计和多光谱扫描仪,可以收集和记录地球表面不同波段的图像数据。

为什么要使用Landsat 5 NDVI指数?通过使用Landsat 5 NDVI指数,科学家们可以更好地了解地球上植被的分布、类型和健康状况。

植被是地球生态系统的关键组成部分,它们对碳循环、气候调节和土壤保持起着重要作用。

通过监测和评估植被健康状况,我们可以更好地了解气候变化和土地利用变化的影响,并为农业生产、森林管理和自然灾害预警等提供重要的依据。

如何计算Landsat 5 NDVI指数?为了计算Landsat 5 NDVI指数,首先需要收集来自Landsat 5卫星的多光谱图像数据。

多光谱图像数据包含不同波段的图像,其中包括红光波段(通常为TM3波段)和近红外波段(通常为TM4波段)。

接下来,使用以下公式计算NDVI指数:NDVI = (TM4 - TM3) / (TM4 + TM3)其中,TM4代表近红外波段的反射值,TM3代表红光波段的反射值。

通过计算后,NDVI的取值范围通常在-1到1之间。

数值接近1表示植被健康状况好,数值接近-1表示植被健康状况差,而数值接近0表示地表无植被。

如何解读Landsat 5 NDVI指数结果?Landsat 5 NDVI指数的结果可以提供有关植被健康状况的有用信息。

首先,根据NDVI数值的范围,可以进行植被分类。

通常,数值大于0.2的地区被认为是森林、草原或农田,数值大于0.5的地区被认为是热带或亚热带地区的繁茂植被。

ndvi和ndwi的计算公式

ndvi和ndwi的计算公式

ndvi和ndwi的计算公式NDVI和NDWI的计算公式植被指数是遥感图像处理中常用的指标之一,主要用于衡量植被的生长状况和覆盖程度。

其中,NDVI(Normalized Difference Vegetation Index)和NDWI(Normalized Difference Water Index)是常见的植被指数。

本文将介绍它们的计算公式和相关应用。

一、NDVI的计算公式NDVI是通过计算可见光波段和近红外波段的反射率差异来衡量植被状况的指数。

其计算公式如下:NDVI = (NIR - Red) / (NIR + Red)其中,NIR表示近红外波段的反射率,Red表示红光波段的反射率。

计算结果的取值范围在-1到1之间,数值越高表示植被覆盖度越高,数值越低表示植被覆盖度越低。

二、NDWI的计算公式NDWI是通过计算绿光波段和近红外波段的反射率差异来衡量水体分布的指数。

其计算公式如下:NDWI = (Green - NIR) / (Green + NIR)其中,Green表示绿光波段的反射率,NIR表示近红外波段的反射率。

计算结果的取值范围也在-1到1之间,数值越高表示水体分布越广泛,数值越低表示水体分布越有限。

三、NDVI与NDWI的应用1. 植被监测与评估NDVI可以用于植被监测和评估,例如农作物生长状况的监测、森林覆盖度的评估等。

通过分析NDVI的数值变化,可以及时发现植被健康状况的变化,为农业生产和生态环境保护提供科学依据。

2. 水资源管理NDWI可以用于水资源的监测与管理,例如湖泊水质的评估、河流洪水的监测等。

通过分析NDWI的数值,可以判断水体分布的情况,及时发现水资源的变化和异常,为水资源的合理利用和保护提供决策支持。

3. 土地利用规划NDVI和NDWI可以用于土地利用规划,例如城市绿化评估、湿地保护定级等。

通过分析NDVI和NDWI的空间分布,可以了解地表覆盖的情况,为土地利用规划和生态环境保护提供参考。

ndvi归一化植被指数范围

ndvi归一化植被指数范围

ndvi归一化植被指数范围
NDVI(NormalizedDifferenceVegetationIndex)是利用光谱反射率信息来评估植被生长状况的指数。

NDVI的计算方法是通过比较近红外波段和红色波段的反射率,从而反映出植被的光合活动和覆盖范围。

在NDVI中,数值越高表示植被覆盖范围越大,植被生长状况越好。

NDVI的范围是从-1到1,其中-1代表没有任何植被(如沙漠或裸露的岩石),0代表没有植被或具有相等的反射率,1代表最浓密的植被。

在实际应用中,NDVI通常会进行归一化处理,将其范围缩小到0到1之间,方便进行分析和比较。

归一化的NDVI范围可以用以下公式表示:
NDVI = (NIR-Red) / (NIR+Red)
其中,NIR代表近红外波段的反射率,Red代表红色波段的反射率。

在实际应用中,NDVI可以用于农业、林业、草原、土地利用等领域的植被监测和生态环境评估。

同时,NDVI也是遥感技术应用中的重要指标之一,能够为研究者和决策者提供宝贵的信息和参考。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科学生综合性、设计性
实验报告
姓名宋国俊学号*********
专业地理信息系统班级
实验课程名称遥感地学分析
实验名称NDVI计算
开课学期2011 至2012 学年下学期
云南师范大学旅游与地理科学学院编印
一、实验准备
1、实验目的和要求:
利用TM卫星数据,应用ENVI软件进行归一化植被指数的计算,及在此基础对研究
区进行植被覆盖率的提取,根据植被覆盖率进行一些应用分析。

2、实验材料及相关设备:
昆明影像数据(path/row:129/43(2002.02.09))ENVI及ArcGIS软件。

3、实验方法步骤及注意事项:
实验方法:利用ENVI及ArcGIS图像处理软件,参考软件的处理操作步骤,对图像进行处理。

注意事项:下载数据时应该严格遵照行列号来下载,下载的数据要包括完整的影像数据信息以便数据的预处理。

二、实验内容、步骤和结果(详细写清楚本次实验的完成的主要内容、具体
实施步骤和实验结果。


1、实验内容
利用下载的昆明影像数据用ENVI进行NDVI计算,计算公式如下:
NDVI=(NIR-R)/(NIR+R)(NIR为近红外波段,R为红光波段)
2、实验步骤
(1)对昆明影像数据进行辐射定标:
Ⅰ、启动ENVI File→Open External File→Landsat→Geo TIFF with metadata→Enter Landsat MetaData Filenames(输入元数据)
Ⅱ、Spectral→Preprocessing→Calibration utilities→Landsatcalibration→Landsat calibration input file→输
入第一步的元数据
Ⅲ、将辐射定标后的数据转化为BIL格式:
在ENVI主菜单 Basic Tools→Convert Data(BSQ、BIL、BIP)→convert File input File→convert File parameter
(2)大气校正:Spectral→FLAASH
其中进行大气校正所需要的参数包含在元数据中,元数据可以从“国际
科学数据服务平台”上查找到,如下所示
(3)归一化植被指数(NDVI)计算Transform → NDVI
(4)以下是原始数据、辐射定标、大气校正的同一地点的光谱特征原始数据
辐射定标
大气校正
3、实验结果:
NDVI计算结果:
NDVI的应用:
1、NDVI的应用:检测植被生长状态、植被覆盖度和消除部分辐射误差
等;
2、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;
0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;
3、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率
的对比度。

对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;
4、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、学、枯叶、
粗超度等,且与植被覆盖有关
三、实验小结
在NDVI计算的时候,要对数据进行预处理,通过辐射定标消除传感器本身产生的误差、大气校正将辐射亮度或者表观反射率转换为地表实际反射率,消除大气散射、吸收、反射引起的误差。

在此当中,大气校正的过程中要注意各种参数的设定。

在做了NDVI计算之后,可以让我们对实验区进行植被覆盖度、植被生长状态等的分析。

相关文档
最新文档