01集合的概念与集合的运算习题
第1课 集合的概念及运算(经典例题练习、附答案)
第1课 集合的概念及运算◇考纲解读理解集合、子集、补集、交集、交集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.◇知识梳理1.集合的基本概念:(1)一般地,我们把研究对象统称为_________,把一些元素组成的总体叫做________.(2)集合中的元素具有的三个特性是:____________、____________、___________.(3)集合有三种表示方法: 、 、 .还可以用区间来表示集合.(4)集合中元素与集合的关系分为______与______两种,分别用_____和_______来表示.(5)表示实数集的符号是_____;表示正实数集的符号是______;表示有理数集的符号是____; 表示整数集的符号是_____;表示自然数集的符号是_____;表示正整数集的符号是_____.2.集合间的关系:(1)若集合A 中的任何一个元素都是集合B 的元素,则称集合A 是集合B 的__ _,记作_ _.(2)对于两个集合A,B,若___________且___________,则称集合A=B.(3)如果集合A B ⊆,但存在元素x B ∈且x A ∉,我们称集合A 是集合B 的__________,记作___________.(4)___________________叫空集,记作______,并规定:空集是任何集合的_______.3.集合的基本运算:(1)A B =_______________________.(2)A B =_______________________.(3)若已知全集U,集合A U ⊆,则U C A =________________.4.有限集的元素个数若有限集A 有n 个元素,则A 的子集有_____个,真子集有_____,非空子集有_____个, 非空真子集有_____ 个.◇基础训练1. (2008韶关一模)设{}{}(,)46,(,)38A x y y x B x y y x ==-+==-,则AB =( ) {}{}{}{}.(2,1).(2,2).(3,1).(4,2).A BCD ----2. (2007韶关二模)设全集{},,,,,,,7654321=U ,{}16A x x x N *=≤≤∈,,则U C A=( )A .φB .{}7C .{}654321,,,,, D .{}7654321,,,,,, 3.(2007广州一模)如图1所示,U 是全集,A B 、是U 的子集,则阴影部分所表示的集合是( ) A. A B B. )A C (B UC. A BD. )B C (A U4.(2008深圳一模)设全集{0,1,2,3,4}U =,集合{0,1,2}A =,集合{2,3}B =,则()U A B =( )A .∅B .{1,2,3,4}C .{0,1,2,3,4}D .{2,3,4}◇典型例题例1. (2007佛山一模) 设全集为 R ,A =}01|{<xx ,则=A C R ( ). A .}01|{>x x B .{x | x >0} C .{x | x 0≥} D . }01|{≥xx变式:集合{|10}A x ax =-=,{}2|320B x x x =-+=,且A B B =,求实数a 的值.例2.已知{}{}22240,2(1)10A x x x B x x a x a =+==+++-=,其中a R ∈, 如果A ∩B=B ,求实数a 的取值范围。
集合的概念与运算经典例题及习题
第1讲 集合的概念和运算【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________. 答案 1【训练1】 集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N *⎪⎪⎪ 12x ∈Z 中含有的元素个数为( ).A .4B .6C .8D .12答案 B【例2】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.答:m 的取值范围为m ≤4.【训练2】 已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.答案 4【例3】►设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________.答案 1或2【训练3】 (1)(2012·陕西)集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N =( ).A .(1,2)B .[1,2)C .(1,2]D .[1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ).A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}答案 (1)C (2)C【真题探究1】► (2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ).A .(-∞,-1)B.⎩⎨⎧⎭⎬⎫-1,-23C.⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞) [答案] D【试一试1】 已知全集U ={y |y =log 2x ,x >1},集合P =⎩⎨⎧⎭⎬⎫y |y =1x ,x >3,则∁U P =( ).A.⎣⎢⎡⎭⎪⎫13,+∞B.⎝ ⎛⎭⎪⎫0,13 C .(0,+∞) D .(-∞,0)∪⎣⎢⎡⎭⎪⎫13,+∞ 答案 A【真题探究2】► (2012·新课标全国)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( ).A .3B .6C .8D .10[答案] D【试一试2】 定义集合运算:A B ={z |z =xy ,x ∈A ,y ∈B },设A ={-2 014,0,20 14},B ={ln a ,e a },则集合A B 的所有元素之和为( ).A .2 014B .0C .-2 014D .ln 2 014+e 2 014答案 B习题1.(2011·广东)已知集合A ={(x ,y )|x ,y 是实数,且x 2+y 2=1},B ={(x ,y )|x ,y 是实数,且y =x },则A ∩B 的元素个数为( ).A .0B .1C .2D .3 2.(2012·潍坊二模)设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2] B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)} 3.(2012·浙江)设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( ).A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)4.(2012·长春名校联考)若集合A ={x ||x |>1,x ∈R },B ={y |y =2x 2,x ∈R },则(∁R A )∩B = ( ).A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅ 5.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.6.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.7.(13分)(2012·衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.答案 1.C 2.B 3.B 4.C 5. ② 6. 87. 解 (1) (∁I M )∩N ={2}.(2) a 的取值范围是{a |a ≥3}.。
第1讲 集合的概念和运算
第一章集合与常用逻辑用语第1讲集合的概念和运算一、选择题1. 已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1] B.[1,+∞)C.[-1,1] D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C2.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有() A.2个B.4个C.6个D.8个解析因为M={0,1,2,3,4},N={1,3,5},所以P=M∩N={1,3},所以集合P的子集共有∅,{1},{3},{1,3}4个.答案B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5} C.{2,3} D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案 A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是().A.2 B.3 C.4 D.5解析B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.答案 B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解析若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=±2.故“a=1”是“N⊆M”的充分不必要条件.答案 A6.设A、B是两个集合,定义M*N={x|x∈M且x∉N}.若M={y|y=log2(-x2-2x+3)},N={y|y=x,x∈【0,9】},则M*N=()A.(-∞,0】B.(-∞,0)C.【0,2】D.(-∞,0)∪(2,3】解析y=log2(-x2-2x+3)=log2【-(x+1)2+4】∈(-∞,2】,N中,∵x∈【0,9】,∴y =x∈【0,3】.结合定义得:M*N=(-∞,0).答案B二、填空题7.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于________.解析A={x∈R||x-1|<2}={x|-1<x<3}.∴A∩Z={0,1,2},即0+1+2=3.答案38.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.解析若a=4,则a2=16∉(A∪B),所以a=4不符合要求,若a2=4,则a=±2,又-2∉(A ∪B),∴a=2.答案 29.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=________.解析A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.答案{(0,1),(-1,2)}10.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3},B={y|y≥1},则A*B=____________________.解析由题意知,A∪B=[0,+∞),A∩B=[1,3],∴A*B=[0,1)∪(3,+∞).答案[0,1)∪(3,+∞)三、解答题11.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.解∵A=B,∴B={x|x2+ax+b=0}={-1,3}.∴⎩⎨⎧ -a =-1+3=2,b =(-1)×3=-3,∴a =-2,b =-3. 12.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.13.已知集合A ={x|x2-2x -3≤0,x ∈R},B ={x|m -2≤x≤m +2}.(1)若A∩B =[1,3],求实数m 的值;(2)若A ⊆∁RB ,求实数m 的取值范围.解 A ={x|-1≤x≤3},B ={x|m -2≤x≤m +2}.(1)∵A∩B =[1,3],∴⎩⎨⎧ m -2=1,m +2≥3,得m =3. (2)∁RB ={x|x <m -2或x >m +2}.∵A ⊆∁RB ,∴m -2>3或m +2<-1.14.已知集合A ={x ∈R|ax2-3x +2=0,a ∈R}.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;解 集合A 是方程ax2-3x +2=0在实数范围内的解组成的集合.(1)A 是空集,即方程ax2-3x +2=0无解,得⎩⎨⎧ a≠0,Δ=-32-8a<0,∴a>98.即实数a 的取值范围是(98,+∞).(2)当a =0时,方程只有一解,方程的解为x =23;当a≠0且Δ=0,即a =98时,方程有两个相等的实数根,A 中只有一个元素43. ∴当a =0或a =98时,A 中只有一个元素,分别是23和43.。
集合概念和练习题
集合概念及练习题集合的概念必然范围的,确信的,能够区别的事物,看成一个整体来看待,就叫做集合,简称集,其中各事物叫做集合的元素或简称元。
集合的分类:并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集:包括于任何集合,但不能说“空集属于任何集合无穷集:概念:集合里含有无穷个元素的集合叫做无穷集有限集:令N*是正整数的全部,且N_n={1,2,3,……,n},若是存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。
集合元素的性质:1.确信性:每一个对象都能确信是不是某一集合的元素,没有确信性就不能成为集合,例如“个子高的同窗”“很小的数”都不能组成集合。
那个性质要紧用于判定一个集合是不是能形成集合。
2.互异性:集合中任意两个元素都是不同的对象。
如写成{1,1,2},等同于{1,2}。
互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作那个集合的一个元素。
3.无序性:{a,b,c}{c,b,a}是同一个集合。
4.纯粹性:所谓集合的纯粹性,用个例子来表示。
集合A={x|x<2},集合A 中所有的元素都要符合x<2,这确实是集合纯粹性。
5.完备性:仍用上面的例子,所有符合x<2的数都在集合A中,这确实是集合完备性。
完备性与纯粹性是遥相呼应的。
经常使用数集的符号:(1)全部非负整数的集合通常简称非负整数集(或自然数集),记作N (2)非负整数集内排除0的集,也称正整数集,记作N+(或N*) (3)全部整数的集合通常称作整数集,记作Z(4)全部有理数的集合通常简称有理数集,记作Q(5)全部实数的集合通常简称实数集,记作R(6)复数集合计作C集合的表示方式:经常使用的有列举法和描述法。
集合的概念练习题
第一讲 集合的概念及其运算1、子集的个数例1、(1)若{ 1,2 }A ⊆{ 1,2,3,4 },求满足这个关系式的集合A 的个数(2)已知集合A ={0、2、4},},|{A b a b a x x B ∈⋅==、,则集合B 的子集的个数为 。
(3)从自然数1~20这20个数中,任取两个数相加,得到的和作为集合M 的元素,则M 的真子集共有 个。
☆规律方法总结:(1)子集的个数:一个有n 个元素的集合,其①子集有 个;②真子集有 个;③非空子集有 个;④非空真子集有 个; (2)已知集合M 中有m 个元素,集合N 中有n 个元素,则满足M N P ⊆的集合P 的个数为12--m n2、集合中元素的个数例2、(1)已知集合M,N 分别含有8个、13个元素,若N M 中有6个元素, ①求N M 中的元素个数. ②当N M 含多少个元素时,φ=N M .(2)50名学生参加跳远和铅球两样测试,跳远和铅球测验成绩分别及格40人和31人,两次测验成绩均不及格的有4人,则两项成绩都及格的人数是( )A 、35B 、25C 、28D 、15(3) 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 3、集合间的关系例3、判断下列两集合之间的关系⑴ },14|{},,12|{Z k k x x N Z k k x x M ∈±==∈+== (2)},2|{},,12|{22R b b b x x B R a a a x x A ∈-==∈++== (3) },24|{},,42|{Z k k x x N Z k k x x M ∈+==∈+==ππππ 4、方程、不等式与集合例4、(1) 已知方程0)(,0)(==x g x f 的解集分别为B A ,。
① 写出方程0)()(=⋅x g x f 的解集② 写出方程0)()(22=+x g x f 的解集③ 写出方程0)()(=x g x f 的解集 (2)已知不等式0)()0(>>x g x f ,的解集分别为B A 、, 0)()0(<<x g x f ,的解集分别为N M 、。
集合的概念与运算试题
高一数学同步测试(1)—集合的概念与运算一、选择题:1.集合{}5,4,3,2,1=M 的子集个数是 ( )A .32B .31C .16D .152.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( )A .0B .0 或1C .1D .不能确定 3.设集合{}32|≤=x x M ,a x sin 11+=其中⎪⎭⎫⎝⎛∈2,0πx ,则下列关系中正确的是( )A .a ≠⊂MB .M a ∉C .{}M a ∈D .{}a ≠⊂M4.设集合A={x |1<x <2},B={x |x <a }满足A≠B,则实数a 的取值范围是 ( )A .[)+∞,2B .(]1,∞-C .[)+∞,1D .(]2,∞-5.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是( )A .8B .7C .6D .56.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I = ( )A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}7.集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A∩B={-1},则a 的值是( ) A .-1 B .0 或1 C .2 D .0 8.已知集合M={(x ,y )|4x +y =6},P={(x ,y )|3x +2y =7},则M∩P 等于 ( )A .(1,2)B .{1}∪{2}C .{1,2}D .{(1,2)}9.设集合A={x |x ∈Z 且-10≤x ≤-1},B={x |x ∈Z 且|x |≤5 },则A∪B 中元素的个数为 ( ) A .11B .10C .16D .1510.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则 ( )A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I11.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则 ( )A .M =NB .N M ⊂C .N M ⊃D .M ∩=N12.集合A={x |x =2n +1,n∈Z}, B={y |y =4k ±1,k ∈Z},则A 与B 的关系为( )A .A ≠⊂B B .A ≠⊃B C .A=BD .A≠B二、填空题:13.设集合U ={(x ,y )|y =3x -1},A ={(x ,y )|12--x y =3},则C U A = . 14.集合M={a |a-56∈N,且a ∈Z},用列举法表示集合M=_____ ___. 15.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T/S的值为 .16.设A={x |x 2+x -6=0},B={x |mx +1=0},且A∪B=A,则m 的取值范围是 . 三、解答题:17.已知集合A ={x |-1<x <3},A ∩B =∅,A ∪B =R ,求集合B .18.已知集合A ={x |1≤x <4},B ={x |x <a };若A B ,求实数a 的取值集合.19.已知集合A={-3,4},B={x |x 2-2px +q =0},B≠φ,且B ⊆A ,求实数p ,q 的值.20.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.21.已知集合A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B A,求实数a的取值集合.22.集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}.(1)若A ∩B =A ∪B ,求a 的值; (2)若∅A ∩B ,A ∩C =∅,求a 的值.参考答案一、选择题:ABDAC CDDCC BC二、填空题:13.{(1,2)},14.{}4,3,2,1-,128 ,16.⎭⎬⎫⎩⎨⎧-21,31.三、解答题:17.解析:由A ∩B =∅及A ∪B =R 知全集为R ,C R A =B ,故B =C R A ={x |x ≤-1或x ≥3}.18.解析: 将数集A 表示在数轴上(如图),要满足A B ,表示数a 的点必须在4或4的右边,所求a 的取值集合为{a |a ≥4}.19.解析:若B={}⎩⎨⎧=-=⇒⎩⎨⎧=-=∆=++∴⊆-93044069,32q p q p q p A B 则 若B ⎩⎨⎧==⇒⎩⎨⎧=-=∆=+-∴⊆=1640440816,},4{2q p q p q p A B 则 ,若B={-3,4}则A B ⊆则⎪⎩⎪⎨⎧-==⎩⎨⎧==⎩⎨⎧=-=∴⎪⎩⎪⎨⎧-==⇒⎩⎨⎧=+-=++122116493.12210816069q p q p q p q p q p q p 或或 20.解析:A={0,-4} 又.A B B B A ⊆∴=⋂(1)若B=φ,则0)]1()1[(4:,001)1(22222<--+<∆=-+++a a a x a x 于是的,.1-<∴a(2)若B={0},把x =0代入方程得a =.1±当a =1时,B={}⎩⎨⎧-=∴=-=≠∴≠-==.1},0{,1.1},0{4,0,1a B a a B a 时当时当 (3)若B={-4}时,把x =-4代入得a =1或a =7. 当a =1时,B={0,-4}≠{-4},∴a ≠1.当a =7时,B={-4,-12}≠{-4}, ∴a ≠7.(4)若B={0,-4},则a =1 ,当a =1时,B={0,-4}, ∴a=1综上所述:a .11=-≤a 或 21.解析: A ={-2,4},∵B ⊆A ,∴B =∅,{-2},{4},{-2,4}若B =∅,则a 2-4(a 2-12)<0,a 2>16,a >4或a <-4若B ={-2},则(-2)2-2a +a 2-12=0且Δ=a 2-4(a 2-12)=0,解得a =4.若B ={4},则42+4a +a 2-12=0且Δ=a 2-4(a 2-12)=0,此时a 无解; 若B ={-2,4},则⎩⎨⎧⨯-=--=-4212242a a∴a =-2综上知,所求实数a 的集合为{a |a <-4或a =-2或a ≥4}. 22.解析: 由已知,得B ={2,3},C ={2,-4}.(1)∵A ∩B =A ∪B ,∴A =B于是2,3是一元二次方程x 2-ax +a 2-19=0的两个根,由韦达定理知:⎩⎨⎧-=⨯=+1932322a a解之得a =5. (2)由A ∩B ∅A ⇒∩≠B ,又A ∩C =∅,得3∈A ,2∉A ,-4∉A ,由3∈A ,得32-3a +a 2-19=0,解得a =5或a =-2当a =5时,A ={x |x 2-5x +6=0}={2,3},与2∉A 矛盾;当a =-2时,A ={x |x 2+2x -15=0}={3,-5},符合题意. ∴a =-2.。
高中必修一集合课后练习题及讲解
高中必修一集合课后练习题及讲解### 高中必修一集合课后练习题及讲解#### 练习题一:集合的基本概念1. 判断题:集合A和集合B是相等的,当且仅当它们包含相同的元素。
()2. 选择题:下列哪个选项不是集合的属性?- A. 确定性- B. 互异性- C. 无序性- D. 可数性3. 简答题:请解释什么是子集,并给出一个例子。
#### 练习题二:集合的运算1. 计算题:设集合A={1, 2, 3},集合B={2, 3, 4},求A∪B(A与B 的并集)。
2. 计算题:设集合C={x | x是小于10的正整数},集合D={x | x是偶数},求C∩D(C与D的交集)。
3. 简答题:请解释什么是补集,并给出一个例子。
#### 练习题三:集合的表示方法1. 描述题:用描述法表示集合{所有小于20的质数}。
2. 描述题:用列举法表示集合{所有大于10且小于20的整数}。
3. 转换题:将描述法表示的集合{所有x | x是偶数}转换为列举法。
#### 练习题四:集合的包含关系1. 判断题:如果集合A是集合B的子集,那么集合B也是集合A的子集。
()2. 证明题:证明如果集合A是集合B的子集,且集合B是集合C的子集,那么集合A也是集合C的子集。
3. 简答题:解释什么是幂集,并给出一个例子。
#### 练习题五:集合的相等性1. 判断题:如果集合A中的元素个数多于集合B,那么集合A不可能等于集合B。
()2. 计算题:设集合E={1, 2, 3},集合F={3, 2, 1},判断E和F是否相等,并给出理由。
3. 简答题:解释什么是空集,并说明为什么任何集合都是它自身的子集。
#### 解题讲解:1. 集合的基本概念:- 判断题:正确。
集合的相等性基于元素的完全一致性。
- 选择题:D. 可数性不是集合的基本属性,而是集合的一种特性。
- 简答题:子集是指一个集合的所有元素都是另一个集合的元素,例如集合{1, 2}是集合{1, 2, 3}的子集。
集合的基本概念与运算习题
题型一集合的基本概念【例1】(2009·山东)集合A={0,2,a},B={1,a 2},若A ∪B={0,1,2,4,16},则a 的值为()A.0B.1C.2D.4解∵A={0,2,a},B={1,a 2},A ∪B={0,1,2,4,16},Q a 2=16;a=4∴a=4.知能迁移1设a,b ∈R ,集合{1,a+b,a}=则b-a 等于()A.1B.-1C.2D.-2解析∵a≠0,∴a+b=0又{1,a+b,a}=∴b=1,a=-1.∴b-a=2.题型二集合与集合的基本关系【例2】已知集合A={x|0<ax+1≤5},集合B=(1)若A B ,求实数a 的取值范围;(2)若BA ,求实数a 的取值范围;(3)A 、B 能否相等?若能,求出a 的值;若不能,试说明理由.解{0,,},bb a1.ba \=-1{|2}.2x x -<£ÍÍ{0,,},bb a(1)当a=0时,若A B ,此种情况不存在.当a<0时,若AB ,如图,当a>0时,若A B ,如图,综上知,当AB 时,a<-8或a ≥2.(2)当a=0时,显然B A ;当a<0时,若B A ,如图,当a>0时,若B A ,如图,综上知,当B A 时,(3)当且仅当A 、B 两个集合互相包含时,A=B.由(1)、(2)知,a=2.知能迁移2已知A={x|x2-8x+15=0},B={x|ax-1=0},若B A ,求实数a.解A={3,5},当a=0时,当a ≠0时B=要使B A ,Í4182,,8.1122a a a a aìì<->-ïïï\\<-íí£-ïï-£îïî则Í1122,. 2.422a a a a aì-³-ïì³ïï\\³íí³ïïî£ïî则ÍÍÍ41812,.0;11222a a a a aìì³-£-ïïï\\-<<íí>-ïï->îïî则..,202224211£<\îí죣\ïïîïïíì³-£-a a a aa 则ÍÍ1|22a a ìüïï-<£íýïïîþÍ;B A =ÆÍ1{}.aÍ1135,a a ==则或1111.0.3535a a a ===即或综上或或Í题型三集合的基本运算【例3】已知全集U={1,2,3,4,5},集合A={x|x 2-3x+2=0},B={x|x=2a ,a ∈A},求集合∁U(A ∪B)中元素的个数.解∵A={x|x2-3x+2=0}={1,2},∴B={x|x=2a ,a ∈A}={2,4},∴A ∪B={1,2,4},∴∁U(A ∪B)={3,5},共有两个元素知能迁移3(2009·全国Ⅰ)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A ∪B,则集合∁U(A ∩B)中的元素共有()A.3个 B.4个 C.5个 D.6个解析∵A={4,5,7,9},B={3,4,7,8,9},∴A ∪B={3,4,5,7,8,9},A ∩B={4,7,9},∴∁U(A ∩B)={3,5,8},∴∁U(A ∩B)共有3个元素.强化练习1.(2010陕西文数)1.集合A ={x-1≤x ≤2},B ={xx <1},则A ∩B =[D](A){x x <1}(B){x -1≤x ≤2}(C){x-1≤x ≤1}(D){x-1≤x <1}解析:本题考查集合的基本运算由交集定义得{x-1≤x ≤2}∩{xx <1}={x -1≤x <1}2.(2010辽宁文数)(1)已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U C A =(A){}1,3(B){}3,7,9(C){}3,5,9(D){}3,9解析:选D.在集合U 中,去掉1,5,7,剩下的元素构成.U C A3.(2010辽宁理数)1.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ∁B ∩A={9},则A=(A ){1,3}(B){3,7,9}(C){3,5,9}(D){3,9}【答案】D【命题立意】本题考查了集合之间的关系、集合的交集、补集的运算,考查了同学们借助于Venn 图解决集合问题的能力。
集合的概念与运算例题及答案
1 集合的概念与运算(一)目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉注意:“∈”的开口方向,不能把a ∈A 颠倒过来写知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗?(1)所有很大的实数 (不确定)(2)好心的人 (不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2b a b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素(2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法思考:何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法 如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈, ⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
重难点01 集合的概念与运算-2023年高考数学(热点 重点 难点)专练(全国通用)(解析版)
重难点01 集合概念与运算1.集合的有关概念(1)集合中元素的三个特性:确定性、互异性、无序性。
(2)集合与元素的关系:若a 属于集合A,记作a∈A;若b不属于集合A,记作b∉A。
(3)集合的表示方法:列举法、描述法、图示法。
(4)五个特定的集合:集合非负整数集(或自然数集) 正整数集整数集有理数集实数集符号N N*或N+Z Q R 2.集合间的基本关系表示关系文字语言记法集合间的基本关系子集集合A中任意一个元素都是集合B中的元素A⊆B或B⊇A 真子集集合A是集合B的子集,并且B中至少有一个元素不属于AA⊂B或B⊃A 相等集合A中的每一个元素都是集合B中的元素,集合B中的每一个元素也都是集合A中的元素A⊆B且B⊆A⇔A=B 空集空集是任何集合的子集∅⊆A空集是任何非空集合的真子集∅⊂B且B≠∅3.集合的三种基本运算符号表示图形表示符号语言集合的并集A∪B A∪B={x|x∈A,或x∈B}集合的交集 A ∩BA ∩B ={x |x ∈A ,且x ∈B }集合的补集若全集为U ,则集合A 的补集为∁U A∁U A ={x |x ∈U ,且x ∉A }4.集合基本运算的性质 (1)A ∩A =A ,A ∩∅=∅。
(2)A ∪A =A ,A ∪∅=A 。
(3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A 。
(4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B ⇔∁U A ⊇∁U B ⇔A ∩(∁U B )=∅。
2023年高考中仍将与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算,依然放在前2题位置,难度为基础题.(建议用时:20分钟)一、单选题1.设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B【解析】由题知,}5,3{=⋂B A ,故选B.2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A =( )A. {}1,6B. {}1,7C. {}6,7D. {}1,6,7【答案】C【解析】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C .3.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合UAB =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8 【答案】A 【解析】{2,5,8}UB =,所以{2,5}UAB =,故选A.4.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A A . [0,2] B .(1,3) C . [1,3) D . (1,4) 【答案】B【解析】∵{}1,2B =-,∴A B ⋂={}2,故选B.5.设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A BA .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 【答案】A 【解析】{|12}A x x ,{|13}B x x ,∴{|13}A B x x .6.设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A.{}2B.{}2,3C.{}1,2,3-D.{}1,2,3,4 【答案】D【解析】由题知,{}1,2A C =,所以{}{}{}{}1,22,3,41,2,3,4A C B ==,故选D.7.设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A = A.3(3,)2-- B.3(3,)2- C.3(1,)2 D.3(,3)2【答案】D【解析】由题知A =(1,3),B=),23(+∞,所以B A =3(,3)2,故选D.8.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为A .3B .6C .8D .10【答案】D.【解析】B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},含10个元素,故选D.9.已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}UA B =,{1,2}B =,则UAB =A .{3}B .{4}C .{3,4}D .∅【答案】A【解析】由题意{}1,2,3AB =,且{1,2}B =,所以A 中必有3,没有4,{}3,4U C B =,故UAB ={}3.10.设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C 【解析】由{}1AB =得1B ∈,所以3m =,{}1,3B =,故选C 。
集合知识点汇总与练习试题
集合知识点汇总与练习试题1.1 集合1.1.1 集合的含义与表⽰⼀集合与元素1.集合是由元素组成的集合通常⽤⼤写字母A、B、C,…表⽰,元素常⽤⼩写字母a、b、c,…表⽰。
2.集合中元素的属性(1)确定性:⼀个元素要么属于这个集合,要么不属于这个集合,绝⽆模棱两可的情况。
(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现⼀次。
(3)⽆序性:集合中的元素在描述时没有固定的先后顺序。
3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a?A,读作“a不属于集合A”。
4.集合相等如果构成两个集合的元素⼀样,就称这两个集合相等,与元素的排列顺序⽆关。
⼆集合的分类1.有限集:集合中元素的个数是可数的,只含有⼀个元素的集合叫单元素集合;2.⽆限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做?.三集合的表⽰⽅法1.常⽤数集(1)⾃然数集:⼜称为⾮负整数集,记做N;(2)正整数集:⾃然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表⽰⽅法(1)⾃然语⾔法:⽤⽂字叙述的形式描述集合。
如⼤于等于2且⼩于等于8的偶数构成的集合。
(2)列举法:把集合的元素⼀⼀列举出来,并⽤花括号“{}”括起来表⽰集合的⽅法,⼀般适⽤于元素个数不多的有限集,简单、明了,能够⼀⽬了然地知道集合中的元素是什么。
注意事项:①元素间⽤逗号隔开;②元素不能重复;③元素之间不⽤考虑先后顺序;④元素较多且有规律的集合的表⽰:{0,1,2,3,…,100}表⽰不⼤于100的⾃然数构成的集合。
(3)描述法:⽤集合所含元素的共同特征表⽰集合的⽅法,⼀般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使⽤“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句⼒求简明、准确。
考点01集合的概念与运算(教师版) 新课标
2013年数学40个考点总动员 考点01 集合的概念与运算(教师版)新课标【高考再现】热点一 集合的概念1 .(2012年高考(新课标))已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈, 则B 中所含元素的个数为( ) A .3 B .6C .8D .103.(2012年高考(广东))设集合{}1,2,3,4,5,6U =,{}1,2,4M =,则U C M =( )A .UB .{}1,3,5C .{}3,5,6D .{}2,4,6热点二 集合间的关系和运算4.(2012年高考(陕西))集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N = ( )A .(1,2)B .[1,2)C .(1,2]D .[1,2]【答案】C【解析】{|lg 0}{|1}M x x x x =>=>,{|22}N x x =-≤≤,{12}M N x x =<≤,故选C.5.(2012年高考(山东))已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B ()为( )A .{}1,2,4B .{}2,3,4C .{}0,2,4D .{}0,2,3,4【答案】C【解析】因}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 6 .(2012年高考(辽宁))已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集 合B={2,4,5,6,8},则)()(B C A C U U 为 ( ) A .{5,8}B .{7,9}C .{0,1,3}D .{2,4,6}热点三 与集合为背景探求参数取值7.(2012年高考(大纲))已知集合{{},1,,A B m A B A ==⋃=,则m = ( )A .0或B .0或3C .1D .1或38.(2012年高考(天津理))已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n - ,则=m _____,=n _______. 【答案】1-,1【解析】∵={||+2|<3}A x R x ∈={||5<<1}x x -,又∵=(1,)A B n - ,画数轴可知=1m -,=1n .9.(2012年高考(上海春))已知集合[1,2,},{2,5}.A k B ==若{1,2,3,5},A B = 则k =______.【考点剖析】 一.明确要求1.了解集合的含义、元素与集合的“属于”关系.2.能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.3.理解集合之间包含与相等的含义,能识别给定集合的子集.4.在具体情境中,了解全集与空集的含义.5.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.6.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.7.能使用韦恩(Venn )图表达集合的关系及运算. 二.命题方向三.规律总结 1.一个性质要注意应用A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性. 2.两种方法韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心. 3.三个防范(1)空集在解题时有特殊地位,它是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.(2)认清集合元素的属性(是点集、数集或其他情形).(3)在解决含参数的集合问题时,要检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致结论错误.【基础练习】1.(教材习题改编)设全集U ={1,2,3,4,5},集合M ={1,4},N ={1,3,5},则N ∩(∁U M )= ( )A .{1,3}B .{1,5}C .{3,5}D .{4,5} 【答案】C【解析】先求出M 的补集∁U M ={2,3,5},N ={1,3,5},则N ∩(∁U M )={1,3,5}∩{2,3,5}={3,5}.2. (教材习题改编)设集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B 等于( ). A .{x |3≤x <4}B .{x |x ≥3}C .{x |x >2}D .{x |x ≥2}4. (人教A 版教材习题改编)已知集合A ={1,3,m },B ={3,4},A ∪B ={1,2,3,4},则m =________. 【答案】2【解析】A ∪B ={1,3,m }∪{3,4}={1,2,3,4},∴2∈{1,3,m },∴m =2.【名校模拟】一.扎实基础1.(湖北省黄冈中学2012届高三五月模拟考试理)设集合}1,0,1{-=M ,},{2a a N =则使M ∩N =N 成立的a 的值是A .1B .0C .-1D .1或-1答案:C解析:由M N N = ,根据集合元素的互异性,则1a =-,故选C 。
人教版必修1 集合的概念与运算 知识点 例题 练习试题 及其答案
集合的概念与运算一、知识点:1、集合中元素的三个特征:、、.2、元素与集合的关系: 或 关系;3、集合的表示方法:①描述法;②列举法;③图示法(韦恩图).提示:重点关注描述法:关注描述法中竖线前面的元素是什么,例如,{}R ,x y x x ∈=2,{}R ,x y y x ∈=2,{(x ,y )y=x 2,x R ∈ }均表示不同的集合.4、集合与集合的关系: 或 关系; A=B 表示集合A ,B 中所有元素都相同。
5、①熟记:若集合A 中有n 个元素,则集合A 的子集有 个,集合A 的真子集有 个;②空集是任何集合的子集,空集是任何非空集合的真子集. 6、集合的基本运算①并集:取两个集合的全部元素(不能违背集合中元素的互异性); ②交集:取两个集合的公共元素;③补集:A C U ,取集合A 在全集U 中的剩余元素. 7、集合的重要运算定律:摩根定律①()()()B A B A C C C u u u = ②()()()B A B A C C C u u u =.集合练习(1)一、集合的含义与表示范例精讲例1.2{4,21,}A a a =--,B={5,1,9},a a --且{9}A B ⋂=,则a 的值是( ) A. 3a = B. 3a =- C. 3a =± D. 53a a ==±或例2.在“①高一数学课本中的难题;②所有的正三角形; ③方程220x +=的实数解”中,能够表示成集合的是( )A.②B.③C.②③D.①②③例3.以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φ}0{,其中正确的个数是( )A .1B .2C .3D .4例4.用列举法表示集合{}N y N x y x y x ∈∈=-+,,052|),(= 例5.已知集合A= {y ︱y=x 2+1, x ∈R},B={x ︱y=x 2+1, x ∈R }, 则A B 二、集合的含义与表示练习1.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .},01|{2R x x x x ∈=+-2.现记{|,}A B x x A x B -=∈∉且为集合B 关于集合A 的差集.若集合{1,2,3,4,5}A =,集合{}1,2,3,5,6B =,则集合B 关于集合A 的差集A B -为( ) A .{4} B .{3} C .{2} D .{1} 3.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合MN 为( )A.3,1x y ==-B.(3,1)-C.{3,1}-D.{(3,1)}-4.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为 ( )A.0B. 1C. 0或1D. 1k <5.设集合A ={x |x ∈Z 且-10≤x ≤-1},B ={x |x ∈Z 且|x |≤5},则A ∪B 中元素的个数是( )A .11B .10C .16D .15集合练习(2)一、集合间的基本关系范例精讲例1.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则b a 33+的值为( )A.0B.1C.1-D.1或1-例2.下列几组集合中表示相等的集合有( )组(1){(5,3)},{5,3}A B =-=-;(2){1,3},{3,1}M N =-=-;(3),{0}M N =∅=; (4){},{3.1415}M N π==;(5){|}{|}M x x N x x ==是小数,是实数; (6)22{|320},{|320}M x x x N y y y =-+==-+=,A .1B .2C .3D .4例3.若P 是方程2(1)0x -=的解集,{|||2}Q x x x Z =<∈且,则集合,P Q 的关系为( )A .Q P ⊆B .P Q ∈C .P Q =∅D .{1,1}P Q =- 例4. 已知集合22{31},{31}P x x m m T x x n n ==++==-+,有下列判断:①5{}4P T y y ⋂=≥- ②5{}4P T y y ⋃=≥- ③ P T ⋂=∅ ④P T =其中正确的是例5.已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M 与P 的关系( )A. M=PB. P R ∈ C . M ⊂≠P D. M ⊃≠P例6. 设集合{=M 小于5的质数},则M 的真子集的个数为二、集合间的基本关系练习1.已知集合M ={y |y =ax +b ,a ≠0,x ∈R}和集合P ={(x ,y )|y =ax +b ,a ≠0,x ∈R},下列关于它们的关系结论正确的是( )A .M ⊆PB .P ⊆MC .M =PD .M ∩P =∅ 2. 集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 ( ) A. 9 B. 8 C. 7 D. 6 3. 符号{}a ⊂≠{,,}P a b c ⊆的集合P 的个数是 ( )A. 2B. 3C. 4D. 54.设集合P={立方后等于自身的数},那么集合P 的真子集个数是( ) A .3 B .4 C .7 D .8集合练习(3)一、集合的基本运算 (1)并集例1.若{}{}{}0,1,2,,1,2,3,2,3,4A B C ===,则()()A B B C ⋂⋃⋂= 例2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .—1 C .1或—1 D .1或—1或0练习1.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( )A .{0,1,2,6,8}B .{3,7,8}C .{1,3,7,8}D .{1,3,6,7,8}练习2.设U 为全集,集合A 、B 、C 满足条件A ,B A =⋃A C A =⋂那么下列各式中一定成立的是( )A.A B A C ⋂=⋂B.B C =C.C A B ⊆⊆D. C B A ⊆⊆ (2)交集例1.若集合{}|110,,P x x x N =≤≤∈且 集合{}2|60Q x x x =+-=,则P Q =( )A .{}1,2,3B .{}2,3C .{}1,2D .{}2例2.若集合22{2,}{24,1,2,3}{66}a a a a -=--,则实数a 的值组成的集合为 例3.设集合{}21<≤-=x x M ,{}0≤-=k x x N ,若MN M =,则k 的取值范围( )A.(1,2)-B.[2,)+∞C.(2,)+∞D.]2,1[- 例4.集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=,B B A =⋂, 求m 的值.练习1.如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U)B 等于( )A.{}5B.{}8,7,6,5,4,3,1 C. {}8,2 D. {}7,3,1 练习2.若2{1,4,},{1,}A x B x ==且A B B =,则x 的值为( )A .2,2-或B .0,2-或C .0,2或D .2,2,0-或 (3)补集例1.设集合{|{1,2,3,4}M x x N =≤=,则)(N M C N ⋂的运算结果为( )A .{4}B .{3,4}C .{2,3,4}D .{1,2,3,4}例2. 设{}{}I a A a a =-=-+241222,,,,,若{}1I C A =-,则a=__________练习.已知全集U={}22,3,23a a +-,若A={},2b ,{}5U C A =,求实数的a ,b 值.(4)集合基本运算综合应用题例1.已知集合{1,3,21}A m =--,集合2{3,}B m =,若B A ⊆,则实数m = 例2.若a R ∈,则集合22{|320,}M x x x a x R =--+=∈的子集的个数为 例3.已知,全集U={x |-5≤x ≤3},A={x |-5≤x <-1},B={x |-1≤x <1},求C U A ,C U B , (C U A )∩(C U B ),(C U A )∪(C U B ). 例4.A ={x -2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.例5.设}01)1(2|{},04|{222=-+++==+=a x a x x B x x x A ,若B B A =⋂,求a 的值练习1.设{|||6}A x Z x =∈<,{}{}543321,,,C ,,B ==求: (1)C B ⋂;(2)()A A C B C ⋂⋃.练习2.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是练习3.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 练习4.已知集合A={}37x x ≤≤,B={x|2<x<10},C={x | x<a },全集为实数集R.(1) 求A ∪B ,(C R A)∩B ;(2) 如果A ∩C ≠φ,求a 的取值范围。
2012-2022十年高考真题分类汇编 专题01 集合概念与运算(解析版)
专题01 集合概念与运算十年大数据*全景展示年份题号考点考查内容考点1 集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2B .3C .4D .5【答案】B 【解析】由题意,{5,7,11}A B =,故A B 中元素的个数为3,故选B2.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A .2B .3C .4D .6【答案】C 【解析】由题意,AB 中的元素满足8y x x y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故AB 中元素的个数为4.故选C .3.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为 A .3B .2C .1D .0【答案】B 【解析】由题意可得,圆221x y += 与直线y x = 相交于两点()1,1,()1,1--,则A B 中有两个元素,故选B .4.【2018新课标2,理1】已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5 D .4【答案】A 【解析】∵x 2+y 2≤3,∴x 2≤3,∵x ∈Z ,∴x =−1,0,1,当x =−1时,y =−1,0,1;当x =0时,y =−1,0,1;当x =−1时,y =−1,0,1;所以共有9个,选A .5.【2013山东,理1】已知集合A ={0,1,2},则集合B =中元素的个数是 A .1B .3C .5D .9【答案】C 【解析】0,0,1,2,0,1,2x y x y ==-=--;1,0,1,2,1,0,1x y x y ==-=-;2,0,1,2,2,1,0x y x y ==-=.∴B 中的元素为2,1,0,1,2--共5个,故选C .6.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a = A .4 B .2 C .0D .0或4【答案】A 【解析】当0a =时,10=不合,当0a ≠时,0∆=,则4a =,故选A .7.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为( )A .5B .4C .3D .2【答案】C 【解析】根据题意,容易看出x y +只能取-1,1,3等3个数值.故共有3个元素,故选C . 8.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .1{}|,x y x A y A -∈∈【答案】C 【解析】由2211x y x y ⎧+=⎨+=⎩消去y ,得20x x -=,解得0x =或1x =,这时1y =或0y =,即{(0,1),(1,0)}A B ⋂=,有2个元素.9.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则 A .i ∈S B .2i ∈S C .3i ∈S D .2i∈S 【答案】B 【解析】∵2i =-1∈S ,故选B .10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.【答案】3-【解析】不等式52≤-x ,即525≤-≤-x ,73≤≤-x ,所以集合}73{≤≤-=x x A ,所以最小的整数为3-.考点2 集合间关系【试题分类与归纳】1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则 A .AB B .B AC .A B =D .A B =∅【答案】B 【解析】A=(-1,2),故B ⊂≠A ,故选B .2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( )A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B【答案】B 【解析】A=(-∞,0)∪(2,+∞),∴A ∪B=R ,故选B .3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =B B .A B =∅∩C .AB D .B A【答案】D 【解析】由于2,2,3,3,1,1A B A B A B ∈∈∈∈∈∉,故A 、B 、C 均错,D 是正确的,选D . 4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是( ) A .N M ⊆ B .MN M = C .M N N = D .{2}M N =【答案】D 【解析】由M ={1,2,3,4},N ={-2,2},可知-2∈N ,但是-2∉M ,则N ⊄M ,故A 错误.∵M N ={1,2,3,4,-2}≠M ,故B 错误.M∩N ={2}≠N ,故C 错误,D 正确.故选D5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则( ) A .P Q ⊆ B .Q P ⊆ C .R C P Q ⊆ D .R Q C P ⊆【答案】D 【解析】{|1}P x x =< ∴{|1}R C P x x =≥,又∵{|1}Q x x =>,∴R Q C P ⊆,故选D . 6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P =,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1][1,+∞)【答案】C 【解析】因为PM P =,所以M P ⊆,即a P ∈,得21a ≤,解得11a -≤≤,所以a 的取值范围是[1,1]-.7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则( ) A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B【答案】B 【解析】A=(-,0)∪(2,+),∴A ∪B=R ,故选B .8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D【答案】B 【解析】∵正方形一定是矩形,∴C 是B 的子集,故选B .9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .4【答案】D 【解析】求解一元二次方程,{}2|320,A x x x x =-+=∈R{}1,2=,易知{}{}|05,1,2,3,4=<<∈=N B x x x .因为⊆⊆A C B ,所以根据子集的定义,集合C 必须含有元素1,2,且可能含有元素3,4,原题即求集合{}3,4的子集个数,即有224=个.故选D .考点3 集合间的基本运算【试题分类与归纳】1.【2011课标,文1】 已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有 (A )2个 (B)4个 (C)6个 (D)8个【答案】B 【解析】∵P=M ∩N={1,3}, ∴P 的子集共有22=4,故选B .2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N= A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} 【答案】A 【解析】M=(-1,3),∴M ∩N={0,1,2},故选A .3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N= ( ) (A ){-2,-1,0,1} (B ){-3,-2,-1,0}(C ){-2,-1,0} (D ){-3,-2,-1 }【答案】C 【解析】因为集合M={}|31x x -<<,所以M∩N={0,-1,-2},故选C .4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A ∩B= ( )(A ){1,4}(B ){2,3}(C ){9,16}(D ){1,2}【答案】A ;【解析】依题意,{}1,4,9,16B =,故{}1,4A B =.5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=∞∞A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】A 【解析】∵A=(,1][3,)-∞-⋃+∞,∴A B ⋂=[-2,-1],故选A .6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A .{1} B .{2} C .{0,1} D .{1,2}【答案】D 【解析】∵{}{}2=32012N x x x x x -+≤=≤≤,∴MN ={}1,2,故选D .7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N =( )A. )1,2(- B .)1,1(- C .)3,1( D .)3,2(- 【答案】B 【解析】MB =(-1,1),故选B .8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅ B .{}2 C .{0} D .{2}- 【答案】B 【解析】∵{}1,2B =-,∴AB ={}2.9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则AB =( )A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2 【答案】A 【解析】由题意知,)1,2(-=B ,∴}0,1{-=⋂B A ,故选A .10.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为( )(A ) 5 (B )4 (C )3 (D )2 【答案】D【解析】由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D . 11.【2015新课标2,文1】已知集合,,则( )A .B .C .D . 【答案】A 【解析】由题知,)3,1(-=⋃B A ,故选A .12.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂= (A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D 【解析】由题知A =(1,3),B=),23(+∞,所以B A ⋂=3(,3)2,故选D . 13.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =( )(A ){1} (B ){12}, (C ){0123},,, (D ){10123}-,,,, 【答案】C 【解析】由题知B ={0,1},所以AB ={0,1,2,3},故选C .{}|12A x x =-<<{}|03B x x =<<A B =()1,3-()1,0-()0,2()2,314.【2016新课标3,理1】设集合,则T S ⋂=(A) [2,3] (B)(-,2] [3,+) (C) [3,+) (D)(0,2][3,+)【答案】D 【解析】由题知,),3[]2,(+∞⋃-∞=S ,∴T S ⋂=(0,2][3,+),故选D . 15.【2016新课标2,文1】已知集合,则( )(A ) (B ) (C )(D )【答案】D 【解析】由题知,)3,3(-=B ,∴}2,1{=⋂B A ,故选D . 16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B =( )(A ){1,3}(B ){3,5}(C ){5,7}(D ){1,7} 【答案】B 【解析】由题知,}5,3{=⋂B A ,故选B .17.【2016新课标3,文1】设集合,则=(A ) (B ) (C ) (D ) 【答案】C 【解析】由题知,}10,6,2,0{=B C A ,故选C . 18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅【答案】A 【解析】由题知,)0,(-∞=B ,∴{|0}AB x x =<,故选A .19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则( ) A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1AB =,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C 【解析】由{}1AB =得1B ∈,所以3m =,{}1,3B =,故选C .21.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =( )A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,{}{}|(2)(3)0,|0S x x x T x x =--≥=>∞∞∞∞∞{123}A =,,,2{|9}B x x =<A B ={210123}--,,,,,{21012}--,,,,{123},,{12},{0,2,4,6,8,10},{4,8}A B ==A B {48},{026},,{02610},,,{0246810},,,,,【答案】A 【解析】由题意{1,2,3,4}A B =,故选A .22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为( ) A .1B .2C .3D .4【答案】B 【解析】由题意可得,{}2,4AB =,故选B .23.【2018新课标1,理1】已知集合A ={x |x 2−x −2>0 },则∁R A = A .{x |−1<x <2 } B .{x |−1≤x ≤2 }C .{x|x <−1}∪ {x|x >2}D .{x|x ≤−1}∪ {x|x ≥2}【答案】B 【解析】由题知,A ={x|x <−1或x >2},∴C R A ={x|−1≤x ≤2},故选B . 24.【2018新课标3,理1】已知集合A ={x|x −1≥0},B ={0 , 1 , 2},则A ∩B = A .{0} B .{1} C .{1 , 2} D .{0 , 1 , 2}【答案】C 【解析】由题意知,A={|x x ≥1},所以A ∩B ={1,2},故选C . 25.【2018新课标1,文1】已知集合,,则( )A .B .C .D .【答案】A 【解析】根据集合交集中元素的特征,可以求得,故选A .26.【2018新课标2,文1】已知集合,,则A .B .C .D .【答案】C 【解析】,故选C27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=( )A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<【答案】C 【解析】由题意得,{}{}42,23M x x N x x =-<<=-<<,则{}22M N x x ⋂=-<<.故选C .28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A=( )A .{}1,6B .{}1,7C .{}6,7D .{}1,6,7【答案】C 【解析】由已知得{}1,6,7U C A =,所以U B C A ⋂={6,7},故选C . 29.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)【答案】A 【解析】由题意得,{}{}2,3,1A x x x B x x ==<或,则{}1A B x x ⋂=<.故选A . 30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅【答案】C 【解析】由题知,(1,2)AB =-,故选C .31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】由题意得,{}11B x x =-≤≤,则{}1,0,1A B ⋂=-.故选A . 32.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则UA B =A .{}1-B .{}0,1?C .{}1,2,3-D .{}1,0,1,3-【答案】A 【解析】{1,3}UA =-,{1}UA B =-.故选A .33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A CB =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,4 【答案】D 【解析】由题知,{}1,2AC =,所以{}{}{}{}1,22,3,41,2,3,4A C B ==,故选D .34.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I∅,则=N M A .MB .NC .ID .∅【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R A BA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x << 【答案】B 【解析】因为{1}B x x =≥,所以{|1}RB x x =<,因为{02}A x x =<<,所以()=R AB {|01}x x <<,故选B .36.【2017山东,理1】设函数y =的定义域A ,函数ln(1)y x =-的定义域为B ,则A B =( )A .(1,2)B .(1,2]C .(2,1)-D .[2,1)- 【答案】D 【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -<=-<≤≤≤,选D .37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()AB C =A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤ 【答案】B 【解析】(){1246}[15]{124}AB C =-=,,,,,,,选B .38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2) 【答案】A 【解析】由题意可知{|12}PQ x x =-<<,选A .39.【2016年山东,理1】设集合 则=A .B .C .D .【答案】C 【解析】集合A 表示函数2xy =的值域,故(0,)A =+∞.由210x -<,得11x -<<,故(1,1)B =-,所以(1,)A B =-+∞.故选C .40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则AB =A .{1}B .{4}C .{1,3}D .{1,4}【答案】D 【解析】由题意{1,4,7,10}B =,所以{1,4}A B =,故选D .41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =A .[0,1)B .(0,2]C .(1,2)D .[1,2] 【答案】C 【解析】{|02}RP x x ,故(){|1<<2}RP Q =x x ,故选C .42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A BA .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 【答案】A 【解析】{|12}A x x ,{|13}B x x ,∴{|13}A B x x .43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则AB 等于( )A .{}1-B .{}1C .{}1,1-D .∅ 【答案】C 【解析】由已知得,故,故选C .44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则MN =A .{}1,4B .{}1,4--C .{}0D .∅ 【答案】D 【解析】 由(4)(1)0x x 得4x 或1x ,得{1,4}M .由(4)(1)0x x 得4x 或1x ,得{1,4}N .显然=∅MN .45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞【答案】A 【解析】,,所以,故选A .2{|2,},{|10},x A y y x B x x ==∈=-<R AB (1,1)-(0,1)(1,)-+∞(0,)+∞{},1,,1A i i =--AB ={}1,1-{}{}20,1x x x M ==={}{}lg 001x x x x N =≤=<≤[]0,1MN =46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合 {}1,3,4,6,7B =,则集合U A B =A .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,8【答案】A 【解析】{2,5,8}U B =,所以{2,5}U A B =,故选A .47.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B AA .[0,2]B .(1,3)C .[1,3)D .(1,4)【答案】B 【解析】∵{}1,2B =-,∴A B ⋂={}2,故选B .48.【2014浙江,理1】设全集,集合,则 A . B . C . D .【答案】B 【解析】由题意知{|2}U x N x =∈≥,{|Ax N x =∈,所以{|2x N x ∈<≤,选B .49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C AB = A .{|0}x x ≥ B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<【答案】D 【解析】由已知得,{=0A B x x ≤或}1x ≥,故()U C A B ={|01}x x <<,故选D .50.【2013山东,】已知集合均为全集的子集,且,,则 A .{3} B .{4}C .{3,4}D . 【答案】A 【解析】由题意{}1,2,3A B =,且,所以A 中必有3,没有4,{}3,4U C B =,故{}3.51.【2013陕西,理1】设全集为R ,函数的定义域为M ,则为A .[-1,1]B .(-1,1)C .D .【答案】D 【解析】的定义域为M =[-1,1],故R M =,选D .52.【2013湖北,理1】已知全集为,集合,,则( )A .B .{}|24x x ≤≤C .D .{}2|≥∈=x N x U {}5|2≥∈=x N x A =A C U ∅}2{}5{}5,2{=A C U B A 、}4,3,2,1{=U (){4}U A B ={1,2}B =U AB =∅{1,2}B=U A B =()f x =C M R ,1][1,)(∞-⋃+∞-,1)(1,)(∞-⋃+∞-()f x (,1)(1,)-∞-⋃+∞R 112x A x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭{}2|680B x x x =-+≤R A C B ={}|0x x ≤{}|024x x x ≤<>或{}|024x x x <≤≥或【答案】C 【解析】,,.53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N ⋃B .M N ⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂【答案】D 【解析】因为{1,2,3,4}M N =,所以()()n n C M C N ⋂=()U C M N ={5,6}.54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若N =M I ∅,则=N MA .MB .NC .ID .∅ 【答案】A 【解析】根据题意可知,N 是M 的真子集,所以M N M =.55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B =,则实数a 的值为_. 【答案】1【解析】由题意1B ∈,显然1a =,此时234a +=,满足题意,故1a =.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则AB =( ) A .{4,1}- B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选D .57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2 C .2 D .4【答案】B 【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a -=,解得:2a =-.故选B . 58.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2A B =-.故选D .59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B = ( )A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--[)0,A =+∞[]2,4B =[)()0,24,R A C B ∴=+∞【答案】A 【解析】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =-.故选A .60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<< 则PQ = ( ) A .{|12}x x <≤ B .{|23}x x << C .{|23}x x <≤ D .{|14}x x <<【答案】B 【解析】由已知易得{}23P Q x x =<<,故选B .61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则AB = A .{1,0,1}- B .{0,1}C .{1,1,2}-D .{1,2} 【答案】D 【详解】{1,0,1,2}(0,3){1,2}A B =-=,故选D .62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A BA .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x << 【答案】C 【详解】[]()[)1,32,41,4A B ==,故选C .63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}--- 【答案】C 【解析】由题意结合补集的定义可知:{}U 2,1,1B =--,则(){}U 1,1A B =-,故选C .64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则AB = . 【答案】{}2,4【解析】由交集定义可知{}2,4A B =,故答案为:{}2,4.65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则AB = . 【答案】{}0,2【解析】由题知,{}0,2A B =.考点4 与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为( )A .3B .6C .8D .10【答案】D .【解析】B ={(2,1),(3,1),(4,1),(5,1),(3,2),(4,2),(5,2),(4,3),(5,3),(5,4)},含10个元素,故选D .2.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C 【解析】因为集合,所以集合中有9个元素(即9个点),即图中圆中的整点,集合中有25个元素(即25个点):即图中正方形中的整点,集合的元素可看作正方形中的整点(除去四个顶点),即个.3.【2013广东,理8】设整数,集合,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若和都在中,则下列选项正确的是A .,B .,C .,D ., 【答案】B 【解析】特殊值法,不妨令,,则,,故选B .如果利用直接法:因为,,所以…①,…②,…③三个式子中恰有一个成立;…④,…⑤,…⑥三个式子中恰有一个成立.配对后只有四种情况:第一种:①⑤成立,此时,于是,;第二种:①⑥成立,此时,于是,;第三种:②④成立,此时,于是,;第四种:③④成立,此时,于是,.综合上述四种情况,可得,.4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是( )22{(,)1,,}A x y x y x y =+≤∈Z A {(,)||2,||2,,}B x y x y x y =≤≤∈Z ABCD 12121122{(,)(,),(,)}AB x x y y x y A x y B ⊕=++∈∈1111DC B A 45477=-⨯4n ≥{}1,2,3,,X n =(),,x y z (),,z w x S (),,y z w S ∈(),,x y w S ∉(),,y z w S ∈(),,x y w S ∈(),,y z w S ∉(),,x y w S ∈(),,y z w S ∉(),,x y w S ∉2,3,4x y z ===1w =()(),,3,4,1y z w S =∈()(),,2,3,1x y w S =∈(),,x y z S ∈(),,z w x S ∈x y z <<y z x <<z x y <<z w x <<w x z <<x z w <<w x y z <<<(),,y z w S ∈(),,x y w S ∈x y z w <<<(),,y z w S ∈(),,x y w S ∈y z w x <<<(),,y z w S ∈(),,x y w S ∈z w x y <<<(),,y z w S ∈(),,x y w S ∈(),,y z w S ∈(),,x y w S ∈A .1B .2C .3D .4【答案】C 【解析】①2011=2010+1=402×5+1∈[1],正确;由-3=-5+2∈[2]可知②不正确;根据题意信息可知③正确;若整数a ,b 属于同一类,不妨设a ,b ∈[k]={5n k +丨n ∈Z},则a =5n+k ,b =5m+k ,n ,m 为整数,a b -=5(n -m)+0∈[0]正确,故①③④正确,答案应选C .5.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,k i i i a a a },定义X 的“特征数列”为12100,,,x x x ,其中 121k i i i x x x ====,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1) 子集{135,,a a a }的“特征数列”的前三项和等于 ;(2) 若E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99; E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.【解析】 (1) 子集{135,,a a a }的特征数列为:1,0,1,0,1,0,0,0……0.所以前3项和等于1+0+1=2.(2)∵E 的子集P 的“特征数列” 12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;∴P 的“特征数列”:1,0,1,0 … 1,0. 所以P = },,{99531a a a a .∵E 的子集Q 的“特征数列” 12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,,可知:j =1时,123q q q ++=1,∵11q =,∴2q =3q =0;同理4q =1=7a =…=32n q -.Q 的“特征数列”:1,0,0,1,0,0 …1,0,0,1.所以Q = },,,{10097741a a a a a .∴ {=⋂Q P },,971371a a a a ,∵97=1+(17-1)×6,∴共有17个相同的元素.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈=.对于集合A 中的任意元素12(,,,)n x x x α=和12(,,,)n y y y β=,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++--.(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.【解析】(1)因为(1,1,0)α=,(0,1,1)β=,所以1(,)[(11|11|)(11|11|)(00)|00|)]22M αα=+--++--++--=,1(,)[(10|10|)(11|11|)(01|01|)]12M αβ=+--++--++--=. (2)设1234(,,,)x x x x B α=∈,则1234(,)M x x x x αα=+++.由题意知1x ,2x ,3x ,4x ∈{0,1},且(,)M αα为奇数,所以1x ,2x ,3x ,4x 中1的个数为1或3.所以B ⊆{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,1,1,1),(1,0,1,1),(1,1,0,1),(1,1,1,0)}.将上述集合中的元素分成如下四组:(1,0,0,0),(1,1,1,0);(0,1,0,0),(1,1,0,1);(0,0,1,0),(1,0,1,1);(0,0,0,1),(0,1,1,1).经验证,对于每组中两个元素α,β,均有(,)1M αβ=.所以每组中的两个元素不可能同时是集合B 的元素.所以集合B 中元素的个数不超过4.又集合{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}满足条件,所以集合B 中元素个数的最大值为4.(3)设1212121{(,,,)|(,,,),1,0}k n n k k S x x x x x x A x x x x -=⋅⋅⋅⋅⋅⋅∈===⋅⋅⋅==(1,2,,)k n =⋅⋅⋅, 11212{(,,,)|0}n n n S x x x x x x +=⋅⋅⋅==⋅⋅⋅==,则121n A S S S +=⋅⋅⋅.对于k S (1,2,,1k n =⋅⋅⋅-)中的不同元素α,β,经验证,(,)1M αβ≥.所以k S (1,2,,1k n =⋅⋅⋅-)中的两个元素不可能同时是集合B 的元素.所以B 中元素的个数不超过1n +.取12(,,,)k n k e x x x S =⋅⋅⋅∈且10k n x x +=⋅⋅⋅==(1,2,,1k n =⋅⋅⋅-).令1211(,,,)n n n B e e e S S -+=⋅⋅⋅,则集合B 的元素个数为1n +,且满足条件.故B 是一个满足条件且元素个数最多的集合.。
1_1集合的概念和运算试题
第一章集合与常用逻辑用语1.1 集合的概念及运算五年高考考点一集合及其关系1.(2022全国乙理,1,5分,基础性)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则( )A.2∈MB.3∈MC.4∉MD.5∉M答案 A2.(2020课标Ⅲ,1,5分,基础性)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为( )A.2B.3C.4D.5答案 B3.(2018北京,8,5分,创新性)设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则( )A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉A时,(2,1)∉AD.当且仅当a≤32答案 D4.(2013江西,2,5分,基础性)若集合A={x∈R|ax2+ax+1=0}中只有一个元素,则a=( )A.4B.2C.0D.0或4答案 A5.(2012湖北,1,5分,综合性)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )A.1B.2C.3D.4答案 D考点二集合的基本运算1.(2022全国甲,1,5分,基础性)设集合A={-2,-1,0,1,2},B={x|0≤x<5},则A∩B=( )2A.{0,1,2}B.{-2,-1,0}C.{0,1}D.{1,2}答案 A2.(2022全国乙,1,5分,基础性)集合M={2,4,6,8,10},N={x|-1<x<6},则M∩N=( )A.{2,4}B.{2,4,6}C.{2,4,6,8}D.{2,4,6,8,10}答案 A3.(2022北京,1,4分,基础性)已知全集U={x|-3<x<3},集合A={x|-2<x≤1},则∁U A=( )A.(-2,1]B.(-3,-2)∪[1,3)C.[-2,1)D.(-3,-2]∪(1,3)答案 D4.(2022新高考Ⅰ,1,5分,基础性)若集合M={x|√x<4},N={x|3x≥1},则M∩N=( )A.{x|0≤x<2}B.{x|1≤x<2}3C.{x|3≤x<16}D.{x|1≤x<16}3答案 D5.(2022新高考Ⅱ,1,5分,基础性)已知集合A={-1,1,2,4},B={x||x-1|≤1},则A∩B=( )A.{-1,2}B.{1,2}C.{1,4}D.{-1,4}答案 B6.(2022浙江,1,4分,基础性)设集合A={1,2},B={2,4,6},则A∪B=( )A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案 D7.(2021全国乙,1,5分,基础性)已知全集U={1,2,3,4,5},集合M={1,2},N={3,4},则∁U(M∪N)=( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}答案 A8.(2021全国甲,1,5分,基础性)设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=( )A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}答案 B9.(2021浙江,1,4分,基础性)设集合A={x|x≥1},B={x|-1<x<2},则A∩B=( )A.{x|x>-1}B.{x|x≥1}C.{x|-1<x<1}D.{x|1≤x<2}答案 D10.(2020新高考Ⅰ,1,5分,基础性)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}答案 C11.(2020课标Ⅰ,1,5分,基础性)已知集合A={x|x2-3x-4<0},B={-4,1,3,5},则A∩B=( )A.{-4,1}B.{1,5}C.{3,5}D.{1,3}答案 D12.(2020课标Ⅱ,1,5分,基础性)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=( )A.⌀B.{-3,-2,2,3}C.{-2,0,2}D.{-2,2}答案 D三年模拟A组考点基础题组考点一集合及其关系1.(2022新疆喀什一模,1)设集合A={x|x2-x-2<0,x∈Z},则集合A∩N*的元素个数为( )A.0B.1C.2D.3答案 B2.(2022黑龙江齐齐哈尔二模,2)设集合M={x∈Z||2-x|<2},则集合M的子集个数为( )A.16B.15C.8D.7答案 C3.(2022陕西宝鸡渭滨二模,1)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则( )A.B⊆AB.A⊆BC.A=BD.A∩B=⌀答案 A4.(2021四川一模,1)已知集合A={(x,y)|y≤√3-x2,x,y∈N},则集合A中元素的个数为( )A.3B.4C.5D.6答案 B5.(2020南昌一模,1)已知集合A={0,1,2},B={x∈N|√2x∈A},则B=( )A.{0}B.{0,2}C.{0,1,2} D.{0,2,4}2答案 B6.(2021内蒙古赤峰二中三模,1)已知集合Q={x|2x2-7x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是( )A.8B.9C.15D.16答案 D考点二集合的基本运算1.(2022哈尔滨九中二模,1)已知集合A={x|x=2n+1,n∈Z},B={x|√x-1<3},则A∩B=( )A.{1,3}B.{1,3,5,7,9}C.{3,5,7}D.{1,3,5,7}答案 B2.(2022河南濮阳一模,1)若全集U={x|1≤x≤4},集合A={x|3≤3x≤27},则∁U A=( )A.[1,3]B.(3,4]C.[3,4]D.(3,4)3.(2022江西上饶六校二模,2)已知集合A={x|x2≤4},B={y|y=x2,x∈R},则A∩B=( )A.[0,2]B.[0,4]C.[-2,2]D.⌀答案 A4.(2021四川南充二模,1)已知集合A={x|x2-x-2≤0},则∁R A=( )A.(-∞,-1)∪(2,+∞)B.(-∞,-1]∪[2,+∞)C.[-1,2]D.(1,2)答案 A5.(2021陕西榆林一模,2)集合A={3,log2a},B={a,b},若A∩B={0},则A∪B=( )A.{0,3}B.{0,1}C.{0,2,3}D.{0,1,3}答案 D6.(2021河南焦作三模,2)已知集合A={1,a2},B={-1,0,1},若A∪B=B,则A中元素的和为( )A.0B.1C.2D.-1答案 BB组综合应用题组时间:20分钟分值:50分一、选择题(每小题5分,共45分)1.(2022银川一中一模,1)设不等式x2-x≤0的解集为M,函数f(x)=ln(1-x)的定义域为N,则M∩N=( )A.[0,1)B.(0,1)C.[0,1]D.(-1,0]2.(2022重庆西南大学附中模拟,1)已知集合A={x|ax-1=0},B={x ∈N *|1≤x<4},且A ∪B=B,则实数a 的所有值构成的集合是( )A.{1,12}B.{12,13}C.{1,12,13}D.{0,1,12,13}答案 D3.(2022陕西省西安中学二模,2)已知全集U=R,集合A={x|0≤x ≤2},B={x|x 2-x>0},则图中的阴影部分表示的集合为( )A.{x|x ≤1或x>2}B.{x|x<0或1<x<2}C.{x|1≤x<2}D.{x|1<x ≤2}答案 A4.(2022江西赣州一模,2)设集合A={-1,0,n},B={x|x=a ·b,a ∈A,b ∈A}.若A ∩B=A,则实数n 的值为( )A.-1B.0C.1D.2答案 C5.(2022贵州名校联盟3月大联考,2)定义集合A-B={x|x ∈A 且x ∉B}.已知集合A={0,2,4,5},B={-1,0,3},则A-B=( )A.{0}B.{-1,3}C.{2,4,5}D.{-1,0,2,3,4,5}答案 C6.(2020黑龙江省实验中学期末,1)若集合A={1,3},B={0,-2},则集合{z|z=x+y,x∈A,y∈B}中的元素的个数为( )A.5B.4C.3D.2答案 C7.(2021陕西省西安中学二模,1)若集合M=x x=k·π2−π4,k∈Z,N=x x=k·π4+π2,k∈Z,则( )A.M=NB.M⊆NC.N⊆MD.M∩N=⌀答案 B8.(2021八省联考,1)已知M,N均为R的子集,且∁R M⊆N,则M∪(∁R N)=( )A.⌀B.MC.ND.R答案 B9.(2021西安经开第一中学模拟,3)集合A={x|x<-1或x≥3},B={x|ax+1≤0}.若B⊆A,则实数a的取值范围是( )A.[-13,1) B.[-13,1]C.(-∞,-1)∪[0,+∞)D.[-13,0)∪(0,1)答案 A二、填空题(共5分)10.(2022甘肃二模,14)建党百年之际,影片《1921》《长津湖》《革命者》都已陆续上映,截至2021年10月底,《长津湖》票房收入已超56亿元,某市文化调查机构,在至少观看了这三部影片中的其中一部影片的市民中随机抽取了100人进行调查,得知其中观看了《1921》的有51人,观看了《长津湖》的有60人,观看了《革命者》的有50人,数据如图,则图中a= ,b= ,c= .答案9;8;10。
总复习《第01讲 集合的概念与运算》
设A={1,2},B={0,2},则 A B 的 所有元素之和为 .
高中数学总复习
第1讲 集合的概念与运算
浙江省嵊州长乐中学
一.概念的理解
集合符号
A x p ( x)
yx
. .
的理解.
研究对象
对象满足的条件
例题1.已知A={y| 则A∩B= 变式1.若A={(x,y)| 则A∩B= 变式2.若A={ y| y 则A∩B=
}, B={y| y
x
},
y x }, B={(x,y)| y x }, x
二.重视空集的“参与”.
例题3. 作业第10题(2)和第7题.
A= 3,5
B x ax 1 0
问题1. 集合B有几个元素?
问题2. 满足
B A 的集合B有几种情况?
三.集合创新题.
例题4. 定义集合运算:
A B z z xy, x A, y B
}, B={ x| 合符号
A x p ( x)
x y
的理解.
研究对象
对象满足的条件
例题2. 讲义P2例1(2).
x
y
0
1 1
2 2 1
0
0
1 2
1 0
2 1 0
一.概念的理解
2. 子集、真子集和空集.
(1) A中有n个元素: A的子集有 2n 个; A的真子集有 2n-1 个; A的非空真子集有 2n-2 个; (2) 空集是任何集合的子集. 空集是任何非空集合的真子集.
集合练习题含答案
集合练习题含答案1. 定义题:什么是集合?请给出集合的三个基本性质。
- 答案:集合是由一些确定的、不同的元素所组成的整体。
集合的三个基本性质包括:确定性(集合中的元素是明确的)、互异性(集合中不会有重复的元素)、无序性(元素的排列顺序不影响集合的确定性)。
2. 列举题:列举出集合{1, 2, 3, 4, 5}的所有子集。
- 答案:集合{1, 2, 3, 4, 5}的所有子集包括空集∅和所有可能的元素组合,共32个子集。
3. 运算题:设集合A={1, 2, 3},B={2, 3, 4},求A∪B和A∩B。
- 答案:A∪B={1, 2, 3, 4},表示A和B中所有元素的集合。
A∩B={2, 3},表示A和B中共有的元素集合。
4. 关系题:如果集合C={x | x是偶数},D={x | x是小于10的正整数},判断C和D的关系。
- 答案:C是D的子集,因为C中的所有元素都是偶数,而D包含了所有小于10的正整数,包括了C中的所有元素。
5. 证明题:证明对于任意集合A,A⊆A。
- 答案:根据子集的定义,如果集合A中的每一个元素都是集合A的元素,则A是A的子集。
因为集合A中的元素自然属于A本身,所以A⊆A。
6. 应用题:某班级有30名学生,其中15名喜欢数学,12名喜欢物理,8名既喜欢数学又喜欢物理。
求至少喜欢一门科目的学生人数。
- 答案:设喜欢数学的学生集合为M,喜欢物理的学生集合为P。
根据集合的并集公式,至少喜欢一门科目的学生人数为|M∪P| = |M|+ |P| - |M∩P| = 15 + 12 - 8 = 19。
7. 推理题:如果A={x | x是大于10的整数},B={x | x是小于20的整数},C={x | x是奇数},判断A∩(B∪C)是否为空集。
- 答案:A∩(B∪C)不为空集。
因为B∪C包含了所有小于20的整数,而A包含了所有大于10的整数,所以它们有交集,即11, 13, 15, 17, 19。
(1)集合的概念与运算
集合的概念与运算【知识梳理】一、集合的概念1、集合是一个不能定义的原始概念,描述性定义为:______________________________,简称_______。
集合中的每一个对象叫做这个集合的____________。
2、集合中元素的属性具有:(1)确定性;(2)__________;(3)__________。
3、集合的表示方法常用的有_______________、_______________和文氏图法三种,有限集常用__________,无限集常用__________,图示法常用于表示集合间的相互关系。
二、元素与集合的关系4、若a是集合A的元素,记作__________,若a不是集合B的元素,记作__________。
但是要注意元素与集合是相对而言的。
三、集合与集合的关系5、集合与集合的关系用符号_______________表示。
6、子集:若集合A中_______________都是集合B的元素,就说集合A包含于集合B(或集合B包含集合A),记作_____________。
7、相等:若集合A中__________都是集合B的元素,同时集合B中__________都是集合A 的元素,就说集合A等于集合B,记作__________。
8、真子集:如果_______________就说集合A是集合B的真子集,记作__________。
9、若集合A含有n个元素,则集合A的子集有__________个,真子集有__________个,非空子集有________个,非空真子集有__________个。
10、空集 是一个特殊而又重要的集合,它不含任何元素,空集是任何集合的___________,是任何非空集合的__________,解题时不可忽视空集。
四、集合的运算11、交集:由_______________的元素组成的集合,叫做集合A与集合B的交集,记作__________,用描述法来表示这个集合是_________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
B.
19、下列各式:①
;②
A.②
B.①②
20、已知集合
,
A.
B.
.若
,则实
,
,若
, 39、满足条件
的集合 的个数是__________.
40、已知
,
,若
C.
D.
值范围是__________.
;③
;④
,其中正确的有( )
C.①②③
D.①③④
三、解答题(每小题 15 分,共 10 小题 150 分)
36、已知集合
C.
D.
,若
,则实数 的取值集合为 37、集合
,若集合 是空集,实数 的范围__________ ,且 中至少含有一个奇数,则这样的集合 有__________个.
,集合 的非空真子集
1、已知集合 A. 或
, B. 或
,若 C.
,则 等于( ) D.
()
A.
B.
C.
D.
有__________个. 38、若
,则
D. ,集合
,集合
D.5 ,若
,则 ( )
__________.
25、设 , 是两个非空集合,定义 与 的差集为
,则
__________.
26、已知集合
,
,若
,则
,且 __________.
27、设
,集合
,则
__________.
42、设集合
数,
,当
,
时,求 、 的值和
.
,其中 、 为常
A.
B.
45、已知集合
,
.
(1)若
,求实数 的取值范围;
48、已知集合
,
.
(2)若
,求实数 的取值范围;
(1)求集合 ;
(3)若
,求实数 的取值范围.
(2)若
,求实数 的取值范围.
34、已知全集
,
,
01 集合的概念与集合间的关系和运算
15、已知 , 为实数,集合
,
,若
,则
等于( )
则 的值是__________.
姓名:
班级:
一、选择题(每小题 5 分,共 20 小题 100 分)
A. 16、设集合 A. 17、 集合
B.
B. ,
C.
D.
35、已知集合
,若
,则实数 取值的集合是( )
C.
D.
12、设集合
,
,则实数 的取值范围是( )
A.
C.
或
B.
或
D.
13、满足
的所有集合 的个数是( )
A.
B.
C.
D.
14、已知集合
,
,则
A.
C.
B.
或
D.
.若 ()
28、若集合
为空集,则 __________.
29、设
,若
围为__________. 30、设集合 为__________. 31、设全集
,则满足条件的集合 有__________个.
2、已知集合 A. 3、已知集合 A. 4、设集合
A.
,
B.
C.
,集合
B.
C.
,
B.
C.Leabharlann 5、已知集合数 的取值范围为( )
A.
B.
, C.
.若
,则 的值为( ) 18、设集合
D. ,则
D.
()
,则集合 与集合 的关系是( )
D.
则实数 的取值范围为( )
,则集合
子集的个数为( )
C.
D.
41、已知集合
,
,
.
(1)若
,求实数 的值;
D.
或
二、填空题(每小题 5 分,共 20 小题 100 分)
(2)
,
,求实数 的值.
,则 的取
6、若集合
,则( )
21、已知全集
,
,
,则
A.
B.
C.
D.
__________.
7、设集合
,
,则
( ) 22、已知集合
A.
B.
C.
8、 已知集合
()
A.
B.
9、 已知集合
,则实数
A.
B.
,
C. 或 ,
的取值范围是( ) C.
10、已知全集
,集合
A.2 11、设集合
,则 等于( )
B.3
C.4
,
D. ,若
,则实数
D. 或 或
_________. 23、设集合 则集合 与 的关系为__________.
,若 24、已知
, ,
,_ ,
,且
,
,
,则
__________.
32、集合
,集合
,实数 的取值范围是__________.
,则实数 的取值范 ,则实数 的值
,且满足
33、已知集合
,
,且
,则 __________.
43、已知集合
,
(1)若 (2)若
,求
;
且
,求实数 的取值集合.
.
46、已知集合
(1)求集合
.
(2)若
,求实数 的取值范围.
(3)若
,求实数 的取值范围.
49、已知集合
,
,
(1)求集合 ,
(2)若
,求实数 的值.
44、设全集
,
,
若
,求实数 的取值范围.
47、设集合 ,
(1)若 (2)若
,求实数 的取值范围; ,求实数 的取值范围.
50、已知全集
,集合
,
,
(1)若 (2)若 (3)若
,求 , 的值;
,求
;
,且
,求实数 的取值范围.