平方根与立方根练习题
(完整)平方根立方根练习题
平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7。
12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________. 7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2± D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517。
下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11。
118。
计算3825-的结果是( )。
A.3 B 。
7 C.-3 D.-719。
若a=23-,b=—∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ). A 。
a >b >c B 。
八年级数学下册《第十二章平方根和立方根》练习题-附答案(苏科版)
八年级数学下册《第十二章平方根和立方根》练习题-附答案(苏科版)一、选择题1. 下列式子中,属于最简二次根式的是A. √ 7B. √ 9C. √ 20D. √132. 如果a=1√ 3+2,b=√ 3−2那么a与b的关系是.( )A. a>bB. a=bC. a=1bD. a+b=03. 化去根式1√ 3αb3(a>0,b>0)分母中的根号,分子、分母应同时乘以.( )A. √ 3aB. 1√ 3a C. √ 3ab D. 1√ 3ab4. 计算5√15÷(−√ 5)的结果是( )A. −1B. 1C. −√ 5D. 55. 等式√ a2−a =√ a√ 2−a成立的条件是( )A. a≥0B. 0≤a<2C. a≠2D. a2−a≥0 6. 下列变形正确的是( )A. √ (−4)×(−9)=√ (−4)×√ (−9)B. √ 1614=√ 16×√14=4×12=2C. √ 18a2=√ 9a2×√ 2=3√ 2a(a≥0)D. √ 252−242=25−24=17. 下列四个等式中,不成立的是( )A. 2√ 3−1=√ 3+1 B. √ 2(√ 2+√ 3)=2+√ 6 C. (1−√ 2)2=3−2√ 2 D. √ (√ 3−2)2=√ 3−28. 化简√15+16的结果是( )A. √ 1130B. 30√ 330 C. √ 33030D. 30√ 119. 已知:a=2−√ 3b=2+√ 3则a与b的关系是( )A. 相等B. 互为相反数C. 互为倒数D. 平方相等10. 有依次排列的一列式子:1+√ 2√ 2+√ 3√ 3+22+√ 5√ 5+√ 6√ 6+√ 7小红对式子进行计算得:第1个式子:1+√ 2=√ 2−1(1+√ 2)×(√ 2−1)=√ 2−1;第2个式子:√ 2+√ 3=√ 3−√ 2(√ 2+√ 3)×(√ 3−√ 2)=√ 3−√ 2......根据小红的观察和计算,她得到以下几个结论:①第8个式子为1√ 8+3;②对第n 个式子进行计算的结果为√ n +1−√ n ; ③前100个式子的和为√ 101−1;④将第n 个式子记为a n ,令b n =1a n ,且9an 2+17a n b n +9bn2=575则正整数n =15. 小红得到的结论中正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题11. 将√ 632化为最简二次根式,其结果是______.12. 化简:1√ 2= ______ .13. 写出一个二次根式,使它与√ 2的积是有理数.这个二次根式是______. 14. 若无理数x 与√ 8的积是一个正整数,则x 的最小值是______. 15. 计算√ 3×√ 12的结果是______.16. 等式√ x√ 1−x =√ x 1−x 成立的条件是______.17. √ 3−2的倒数是___.18. 当a <0时,化简a √ −2a ⋅√ −8a 的结果是 .19. 如图,在▱ABCD 中,BE 平分∠ABC 交AD 于点E.若∠D =30∘,AB =√ 6则△ABE 的面积为 .20. 若[x]表示不超过x 的最大整数,A =1−√341+√34+(1−√34)0,则[A]=__________.三、解答题21. 下列等式中,字母应分别符合什么条件?(1)√ a 2=a (2)√ ab =√ a ⋅√ b (3)√ x(x +1)=√ x ⋅√ x +1(4)√ x 2−6x +9=3−x22. (1)写出一个二次根式,使它与√ 2的积是有理数;(2)写出一个含有二次根式的式子,使它与2+√ 3的积不含有二次根式.23. 先化简再求值 (1−1x)÷x2−2x+1x,其中x =√ 2.24. 已知x =2+√ 3y =2−√ 3.(1)求x 2+y 2−xy 的值;(2)若x 的整数部分是a ,y 的小数部分是b ,求5a 2021+(x −b)2−y 的值.25. 若一个三角形的三边长分别为a 、b 、c ,设p =12(a +b +c),则这个三角形的面积S =√ p(p −a)(p −b)(p −c)(海伦−秦九韶公式).当a =4、b =5、c =6时,S 的值.参考答案1、A2、D3、C4、A5、B6、C7、D8、C9、C 10、D 11、3√ 14212、√ 2213、√ 2(答案不唯一) 14、√ 2415、6 16、0≤x <1 17、−2−√ 3 18、−4a 2 19、32 20、−221、解:(1)∵√ a2=a∴a≥0(2)∵√ ab=√ a⋅√ b∴a≥0b≥0(3)∵√ x(x+1)=√ x⋅√ x+1∴x≥0∴x≥0(4)∵√ x2−6x+9=3−x∴3−x≥0∴x≤3.22、解:(1)∵2√ 2×√ 2=4∴这个二次根式可以为:2√ 2(2)∵(2−√ 3)(2+√ 3)=4−3=1∴这个二次根式可以为:2−√ 3.23、解:原式=x−1x×x(x−1)2=1x−1当x=√ 2时,原式=√ 2−1=√ 2+1.24、解:(1)∵x=2+√ 3=√ 3(2+√ 3)(2−√ 3)=2−√ 3y=2−√ 3=√ 3(2−√ 3)(2+√ 3)=2+√ 3∴x2+y2−xy=(x+y)2−3xy=(2−√ 3+2+√ 3)2−3(2−√ 3)(2+√ 3)=16−3=13(2)∵1<√ 3<2∴0<2−√ 3<13<2+√ 3<4∴a=0b=2+√ 3−3=√ 3−1∴5a2021+(x−b)2−y=5×0+(2−√ 3−√ 3+1)2−(2+√ 3)=(3−2√ 3)2−2−√ 3=9−12√ 3−12−2−√ 3=−5−13√ 3.25、解:由题意,得:a=4b=5c=6∴p=12(a+b+c)=152∴S=√ p(p−a)(p−b)(p−c)=√152×(152−4)×(152−5)×(152−6)=√152×72×52×32=154√ 7.故S的值是154√ 7.。
初二上册平方根和立方根的练习题
初二上册平方根和立方根的练习题在初中数学中,平方根和立方根是常见的数学概念。
学好这两个概念,不仅可以提升数学能力,还能应用到实际生活中。
下面是一些平方根和立方根的练习题,帮助大家更好地理解和掌握这两个概念。
练习题一:平方根计算1. 计算√16 + √25 = ?解答:√16 = 4,√25 = 5,所以√16 + √25 = 4 + 5 = 9。
2. 计算√121 - √49 = ?解答:√121 = 11,√49 = 7,所以√121 - √49 = 11 - 7 = 4。
3. 计算√36 × √64 = ?解答:√36 = 6,√64 = 8,所以√36 × √64 = 6 × 8 = 48。
练习题二:立方根计算1. 计算∛8 + ∛27 = ?解答:∛8 = 2,∛27 = 3,所以∛8 + ∛27 = 2 + 3 = 5。
2. 计算∛64 - ∛125 = ?解答:∛64 = 4,∛125 = 5,所以∛64 - ∛125 = 4 - 5 = -1。
3. 计算∛216 ×∛64 = ?解答:∛216 = 6,∛64 = 4,所以∛216 ×∛64 = 6 × 4 = 24。
练习题三:平方根和立方根混合计算1. 计算√36 + ∛27 = ?解答:√36 = 6,∛27 = 3,所以√36 + ∛27 = 6 + 3 = 9。
2. 计算√9 × ∛64 = ?解答:√9 = 3,∛64 = 4,所以√9 × ∛64 = 3 × 4 = 12。
3. 计算√25 ÷ ∛64 = ?解答:√25 = 5,∛64 = 4,所以√25 ÷ ∛64 = 5 ÷ 4 = 1.25。
通过对以上练习题的计算,相信大家对平方根和立方根的计算方法有了更深入的了解。
不过要注意,在实际考试或应用中,可能会出现更复杂的题目,需要进一步掌握计算的技巧和方法。
平方根立方根练习带答案
【例1】(2011晋城)16的算术平方根为( )A、4 B 、4± C、2 D、2±【例2】(2012重庆)下列说法中,正确的个数是( )(1)-64的立方根是-4;(2)49的算术平方根是7±;(3)271的立方根为31;(4)41是161的平方根。
A 、1 B 、2 C 、3 D 、4【例3】(2012临汾)若m是169算术平方根,n 是121的负的平方根,则(m+n)2的平方根为( )A. 2 B . 4 C.±2 D. ±4【例4】(2011许昌)若2m -4与3m -1是同一个数两个平方根,则m为( )A. -3B. 1 C. -3或1 D. -1【例5】(2011周口)若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x≥ 37- C 、x >37 D 、x ≥37 【例6】(2012郑州)下列运算正确的是( ). A .3333--=- B.3333=- C.3333-=- D.3333-=- 【例7】(2011洛阳)若 a a -=2,则a______0。
【例8】(2012漯河)若3+x 是4的平方根,则=x ______,若-8的立方根为1-y ,则y=________.【例9】(2011平顶山)已知某数的平方根为1523-+a a 和,求这个数的是多少?【例10】解方程x 3-8=0。
(2)2523=+x【例11】(2011新密)计算:(1(3)22)74()73(+的算术平方根 +【课堂练习】1、下列说法中,正确的是( )A.+5是25的算术平方根 B.25的平方根是-5C.+8是16的平方根 D .16的平方根是±82、(2011宜阳)下列语句正确的是( )A.如果一个数的立方根是这个数本身,那么这个数一定是0B.一个数的立方根不是正数就是负数C.负数没有立方根D.一个不为零的数的立方根和这个数同号,0的立方根是03、(2012太康)若x ,y都是实数,且42112=+-+-y x x ,则xy的值( )。
平方根立方根练习题及答案
平方根立方根练习题及答案1. 计算下列各数的平方根:- √9- √16- √252. 计算下列各数的立方根:- ∛8- ∛27- ∛643. 判断下列说法是否正确,并给出理由:- √144 = 12- ∛-8 = -24. 计算下列表达式的值:- √(2^2)- ∛(3^3)5. 解下列方程:- √x = 4- ∛y = 56. 一个数的平方根是2,求这个数。
7. 一个数的立方根是3,求这个数。
8. 一个数的平方根是它本身,求这个数。
9. 一个数的立方根是它本身,求这个数。
10. 计算下列表达式的值:- √(√81)- ∛(∛125)答案1. √9 = 3√16 = 4√25 = 52. ∛8 = 2∛27 = 3∛64 = 43. √144 = 12 是错误的,因为√144 = 12 的平方根是√12,而不是 12。
∛-8 = -2 是错误的,因为负数没有实数立方根。
4. √(2^2) = √4 = 2∛(3^3) = ∛27 = 35. √x = 4 时,x = 4^2 = 16∛y = 5 时,y = 5^3 = 1256. 一个数的平方根是2,这个数是 2^2 = 4。
7. 一个数的立方根是3,这个数是 3^3 = 27。
8. 一个数的平方根是它本身,这个数是0或1。
9. 一个数的立方根是它本身,这个数是0,1,或-1。
10. √(√81) = √9 = 3∛(∛125) = ∛ 5 = 5请注意,这些练习题和答案仅供学习和练习之用,实际应用中可能需要更复杂的计算和理解。
初中数学解立方根与平方根练习题及答案
初中数学解立方根与平方根练习题及答案1. 求平方根a) √64 =b) √144 =c) √25 =d) √169 =答案:a) √64 = 8b) √144 = 12c) √25 = 5d) √169 = 132. 求平方根(化简根式)a) √12 =b) √18 =c) √27 =d) √48 =答案:a) √12 = 2√3c) √27 = 3√3d) √48 = 4√33. 求立方根a) ∛8 =b) ∛64 =c) ∛125 =d) ∛729 =答案:a) ∛8 = 2b) ∛64 = 4c) ∛125 = 5d) ∛729 = 94. 求立方根(化简根式)a) ∛27 =b) ∛54 =c) ∛128 =d) ∛216 =答案:b) ∛54 = 3∛2c) ∛128 = 2∛2d) ∛216 = 65. 综合练习:求平方根与立方根a) ∜256 =b) ∛512 =c) 2√3 + 3√2 =d) 4∛3 - ∛48 =答案:a) ∜256 = 4b) ∛512 = 8c) 2√3 + 3√2 = 5√2 + 2√3d) 4∛3 - ∛48 = 3∛2通过以上练习题,我们可以加深对于求平方根和立方根的理解。
求平方根就是找到一个数,它的平方等于被开方的数;而求立方根则是找到一个数,它的立方等于被开方的数。
在解决这些问题时,我们需要掌握一些基本的化简根式的方法。
例如,当根号下的数可以被平方数整除时,我们可以将其化简为一个整数乘以根号下的平方数。
希望通过这些练习题和答案的提供,能够帮助同学们更好地理解和掌握求解平方根和立方根的方法,提高数学解题的能力。
九年级数学下册平方根与立方根练习题
九年级数学下册平方根与立方根练习题1. 计算下列各式中的平方根:a) √64b) √169c) √225d) √441e) √9612. 计算下列各式中的立方根:a) ³√8b) ³√27c) ³√64d) ³√125e) ³√2163. 将下列各式的真数部分化简为最简形式,即去掉根号:a) √144b) √196c) √256d) √324e) √4004. 将下列各式的真数部分化简为最简形式:a) ³√729b) ³√1000c) ³√1331d) ³√1728e) ³√21975. 求下列各式的值:a) √36 × √64b) √144 ÷ √16c) √25 × √125d) √196 ÷ √14e) √441 × √216. 化简下列各式:a) √7 × √14b) √20 ÷ √5c) √18 × √27d) √28 ÷ √7e) √56 × √87. 用整数填空:a) 若a > 0,则2a²的平方根是_________。
b) 若b > 0,则b³的立方根是_________。
c) 若c < 0,则c²的平方根是_________。
d) 若d < 0,则d³的立方根是_________。
e) 若e > 0,则(2e)²的平方根是_________。
8. 用整数填空:a) 若x > 0,则x⁶的立方根是_________。
b) 若y > 0,则y⁹的立方根是_________。
c) 若z < 0,则z⁸的平方根是_________。
d) 若w < 0,则(2w)⁵的立方根是_________。
平方根及立方根基础练习题
一、填空题:1、216 的算术平方根是, 16的平方根是;2、327=,64 的立方根是;3、7 的平方根为,=;4、一个数的平方是 9,则这个数是,一个数的立方根是1,则这个数是;5、平方数是它自己的数是;平方数是它的相反数的数是;6、当 x=时,3x 1存心义;当 x=时,3 5x2 存心义;7、若x416 ,则x=;若 3n81,则n=;8、若x3x ,则x=;若x 2x ,则 x;9、若x1| y 2 |0,则 x+y=;10、计算:1252271238 =;39364二、选择题11、若x2 a ,则()A 、x>0B、x≥ 0C、a>0D、a≥012、一个数如有两个不一样的平方根,则这两个平方根的和为()A、大于0B、等于 0C、小于0D、不可以确立13、一个正方形的边长为a,面积为 b,则()A 、a 是 b 的平方根B、 a 是 b 的的算术平方根 C 、a b D、 ba14、若 a≥0,则4a 2的算术平方根是()A 、2a B、± 2a C、2a D、| 2a |15、若正数 a 的算术平方根比它自己大,则()A 、0<a<1B、a>0C、 a<1D、 a>116、若 n 为正整数,则2 n11 等于()A 、-1B、1C、± 1D、2n+117、若 a<0,则a2等于()2aA 、1B、1C、±1D、 0 22218、若 x-5 能开偶次方,则x 的取值范围是()A 、x≥0B、x>5C、x≥5D、x≤5三、计算题19、822220、 100321、324 45 20014422、3( 10)2212 389四、解答题23、解方程:( x1)2324 024、解方程:( 2x3)225 12x25、若32a1和313b 互为相反数,求a的值。
b。
(完整版)平方根、算术平方根、立方根练习题
1、121的平方根是_________,算术平方根_________.
2、 4.9×10³的算术平方根是_________.
3、(-2)²的平方根是_________,算术平方根是_________.
4、0的算术平方根是_________,立方根是_________.
5、-√3是_________的平方根.
6、64的平方根的立方根是_________.
7、如果丨x丨=9,那么x=________;如果x²=9,那么________
8、一个正数的两个平方根的和是_____.一个正数的两个平方根的商是________.
9、算术平方根等于它本身的数有____,立方根等于本身的数有_____.
10、若一个实数的算术平方根等于它的立方根,则这个数是________;
11、√81的平方根是_______,√4的算术平方根是_________,
10-²的算术平方根是_______;
12、若一个数的平方根是±10,则这个数的立方根是_________;
13、当m_______时,有意义;
当m_______时,有意义;
14、若一个正数的平方根是2a-1和-a+2,则a=_______,
这个正数是_______;
15、√a+1+2的最小值是________,此时a的取值是________.
16、2x+1的算术平方根是2,则x=________.。
平方根与立方根的练习题及解析
平方根与立方根的练习题及解析一、平方根的练习题1. 求以下数的平方根:a) 16b) 25c) 36d) 49e) 64解析:a) 16的平方根是4,因为4 × 4 = 16b) 25的平方根是5,因为5 × 5 = 25c) 36的平方根是6,因为6 × 6 = 36d) 49的平方根是7,因为7 × 7 = 49e) 64的平方根是8,因为8 × 8 = 642. 求以下数的平方根:a) 100b) 144c) 121d) 256e) 169解析:a) 100的平方根是10,因为10 × 10 = 100b) 144的平方根是12,因为12 × 12 = 144c) 121的平方根是11,因为11 × 11 = 121d) 256的平方根是16,因为16 × 16 = 256e) 169的平方根是13,因为13 × 13 = 169二、立方根的练习题1. 求以下数的立方根:a) 8b) 27c) 64d) 125e) 216解析:a) 8的立方根是2,因为2 × 2 × 2 = 8b) 27的立方根是3,因为3 × 3 × 3 = 27c) 64的立方根是4,因为4 × 4 × 4 = 64d) 125的立方根是5,因为5 × 5 × 5 = 125e) 216的立方根是6,因为6 × 6 × 6 = 2162. 求以下数的立方根:a) 1000b) 1728c) 1331d) 4096e) 6859解析:a) 1000的立方根是10,因为10 × 10 × 10 = 1000b) 1728的立方根是12,因为12 × 12 × 12 = 1728c) 1331的立方根是11,因为11 × 11 × 11 = 1331d) 4096的立方根是16,因为16 × 16 × 16 = 4096e) 6859的立方根是19,因为19 × 19 × 19 = 6859综上所述,我们通过练习题计算了一些数的平方根和立方根。
平方根立方根练习题
平方根立方根练习题1. 计算下列各数的平方根:- 4- 9- 16- 25- 362. 找出下列数的平方根:- 64- 81- 100- 144- 1693. 计算下列各数的立方根:- 8- 27- 64- 125- 2164. 确定下列数的立方根:- 512- 729- 1000- 1728- 21975. 判断下列说法是否正确,正确的打“√”,错误的打“×”: - √8的平方根是2。
- ×9的平方根是3。
- √64的平方根是8。
- ×√49的立方根是7。
- √√125的立方根是5。
6. 填空题:- √64的值是______。
- √144的值是______。
- 立方根27的值是______。
- 立方根64的值是______。
- √225的值是______。
7. 解释下列各数的平方根和立方根:- √36- √49- 立方根8- 立方根27- √1218. 计算下列各数的平方根和立方根:- √289- √484- 立方根343- 立方根512- √10249. 用适当的数字填空:- √______ = 6- ______的立方根 = 3- √______ = 7- ______的立方根 = 4- √______ = 810. 根据题目要求,写出下列数的平方根和立方根: - √121- √196- 立方根343- 立方根512- √625。
数学综合算式练习题平方根与立方根运算
数学综合算式练习题平方根与立方根运算在数学学习中,算式练习题是提高数学综合能力的重要方法之一。
本文将针对平方根与立方根的运算,提供一些综合算式练习题,帮助读者巩固相关概念并提升运算能力。
一、平方根的运算练习题1. 计算下列各式的平方根:(1) √9(2) √16(3) √25(4) √36(5) √492. 求下列各式的平方根,并化简结果:(1) √18(2) √32(3) √50(4) √72(5) √983. 根据给定条件,计算下列各式的平方根:(1) 若x² = 121,则√x = ?(2) 若y² = 169,则√y = ?(3) 若a² = 144,则√a = ?(4) 若b² = 196,则√b = ?(5) 若c² = 225,则√c = ?4. 计算下列各式,并化简结果:(1) √(9 + 16)(2) √(25 - 9)(3) √(16 × 4)(4) √(36 ÷ 6)(5) √((18 + 15) ÷ 7)二、立方根的运算练习题1. 计算下列各式的立方根:(1) ³√8(2) ³√27(3) ³√64(4) ³√125(5) ³√2162. 求下列各式的立方根,并化简结果:(1) ³√16(2) ³√32(3) ³√48(4) ³√72(5) ³√1003. 根据给定条件,计算下列各式的立方根:(1) 若x³ = 64,则³√x = ?(2) 若y³ = 125,则³√y = ?(3) 若a³ = 216,则³√a = ?(4) 若b³ = 343,则³√b = ?(5) 若c³ = 512,则³√c = ?4. 计算下列各式,并化简结果:(1) ³√(27 - 8)(2) ³√(64 + 8)(3) ³√(125 × 4)(4) ³√(216 ÷ 6)(5) ³√((100 - 64) ÷ 9)三、综合运算练习题1. 计算下列各式的值:(1) √4 + ³√8(2) √9 + ³√27(3) √16 - ³√64(4) √25 × ³√125(5) √36 ÷ ³√2162. 求解下列等式:(1) √(x + 4) = 5(2) √(2y + 1) = 3(3) √(3z - 5) = 2(4) √(4w + 9) = 7(5) √(5t - 16) = 43. 根据给定条件,求解下列等式:(1) (√x)² + 5 = 14(2) 2(√y)² - 4 = 12(3) (√z)² - 7 = 18(4) 3(√w)² + 2 = 35(5) 4(√t)² - 6 = 58通过以上综合算式练习题的训练,相信读者对平方根与立方根的运算能力会得到有效提升。
初二数学下册平方根与立方根计算练习题
初二数学下册平方根与立方根计算练习题1. 计算平方根:(1)√16 = ____(2)√25 = ____(3)√64 = ____(4)√100 = ____(5)√144 = ____2. 计算立方根:(1)³√8 = ____(2)³√27 = ____(3)³√64 = ____(4)³√125 = ____(5)³√216 = ____3. 混合计算:(1)√36 + ³√8 = ____(2)√49 - ³√27 = ____(3)√100 × ³√64 = ____(4)√121 ÷ ³√125 = ____(5)√144 + ³√216 = ____ 4. 简化根式:(1)√12 = ____(2)√20 = ____(3)√27 = ____(4)√48 = ____(5)√75 = ____5. 分数与根式转换:(1)2√8 = ____(2)3√18 = ____(3)4√32 = ____(4)5√50 = ____(5)6√72 = ____6. 求平方根的值:(1)(√2)² = ____(2)(√3)² = ____(3)(√5)² = ____(4)(√6)² = ____(5)(√10)² = ____7. 求立方根的值:(1)(³√2)³ = ____(2)(³√3)³ = ____(3)(³√5)³ = ____(4)(³√6)³ = ____(5)(³√10)³ = ____8. 完全立方数计算:(1)√64 = ____(2)³√216 = ____(3)√729 = ____(4)³√1000 = ____(5)√4096 = ____9. 应用题:小明购买一块正方形农田,其边长为a米。
(完整版)平方根与立方根练习题
平方根立方根练习题一、填空题1.如果9=x ,那么x =________;如果92=x ,那么=x ________2.如果x 的一个平方根是7.12,那么另一个平方根是________.3.2-的相反数是 , 13-的相反数是 ;4.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.5.若一个实数的算术平方根等于它的立方根,则这个数是_________;6.算术平方根等于它本身的数有________,立方根等于本身的数有________.7.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;8.若一个数的平方根是8±,则这个数的立方根是 ;9.当______m 时,m -3有意义;当______m 时,33-m 有意义;10.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;11.已知0)3(122=++-b a ,则=332ab ; 12.21++a 的最小值是________,此时a 的取值是________.13.12+x 的算术平方根是2,则x =________.二、选择题14.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、81-的平方根是9± 15.2)3(-的值是( ).A .3-B .3C .9-D .916.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、517.下列各数没有平方根的是( ).A .-﹙-2﹚B .3)3(-C .2)1(-D .11.118.计算3825-的结果是( ).A.3B.7C.-3D.-7 19.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a20.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .321.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )A 、32210+B 、3425+C 、32210+或3425+D 、无法确定三、解方程22.0252=-x 23. 8)12(3-=-x 24.4(x+1)2=8 (2x-5)3=-27四、计算25.914414449⋅ 26.494 27.41613+-平方根与立方根能力提升一、选择题1. 若5x -能开偶次方,则x 的取值范围是( )A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤2. 若n 为正整数,则2 )A .-1 B.1 C.±1 D.21n +3. 若正数a 的算术平方根比它本身大,则( )A.01a <<B.0a >C. 1a <D. 1a >四、解答题1.已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值2.已知:33-+-x x +5=y,求x+y的立方根.3.已知:(x-1)2+z y x y ++++3=0,求x+y2-z的立方根.4.若x2=(-3)2,y3=(-2)3,求x+y的所有可能值.5.(1)如果3x+12的立方根是3,求2x+6的平方根;(2)已知一个正数的平方根是2a -1与-a +2.求a 2009的值.6.在解答“判断由线段长分别为65,2,85组成的三角形是不是直角三角形”一题中,小明是这样做的:因为2263610013625252525⎛⎫+=+= ⎪⎝⎭,而222286468252555⎛⎫⎛⎫⎛⎫=+≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以这个三角形不是直角三角形.小明的做法对吗?为什么?7.一辆卡车装满货物后,高4m ,宽3m ,这辆卡车能通过横截面如图(上方为半圆)的隧道吗?为什么?19.已知5+7的小数部分是a,5一7的小数部分是6,求(a+b)2008的值.20.已知2a一1的平方根是±3,3a+b一1的算术平方根是4,求a+2b的平方根.21.如图,在∆ABC中,∠C=90o,M是BC上的一点,MD⊥AB,垂足为点D,且AD2=AC2+BD2.试说明CM=MB.22.如图,铁路上A、B两站相距25 km,在铁显各附近有C、D两村,DA⊥AB于点A,CB⊥AB于点B.已知DA=15 km,CB=10 km,现要在铁路上建设一个土特产收购站E,要使得C、D两村到E站的距离相等,则E站应建在距A站多远处?23.如图,在正方形ABCD中,E是AD的中点,点F在DC上,且DF=14DC,试判断BE与EF的位置关系,并说明理由.。
平方根与立方根练习题
平方根、立方根练习题一、填空题:1、144的算术平方根是 ,16的平方根是 ;2、327= , 64-的立方根是 ;3、7的平方根为 ,21.1= ;4、一个数的平方是9,则这个数是 ,一个数的立方根是1,则这个数是 ;5、平方数是它本身的数是 ;平方数是它的相反数的数是 ;6、当x= 时,13-x 有意义;当x= 时,325+x 有意义;7、若164=x ,则x= ;若813=n ,则n= ;8、若3x x =,则x= ;若x x -=2,则x ; 9、若0|2|1=-++y x ,则x+y= ;10、计算:381264273292531+-+= ;11、若m 的平方根是51a +和19a -,则m = . 12、0。
25的平方根是 ;125的立方根是 ; 13、计算:412=___;3833-=___; 14、若x 的算术平方根是4,则x=___;若3x =1,则x=___; 15、若2)1(+x -9=0,则x=___;若273x +125=0,则x=___; 16、当x ___时,代数式2x+6的值没有平方根;17、如果x 、y 满足|2|+++x y x =0,则x= ,y=___;18、如果a 的算术平方根和算术立方根相等,则a 等于 ;二、选择题1、若a x =2,则( )A 、x 〉0 B 、x ≥0 C 、a>0 D 、a ≥02、一个数若有两个不同的平方根,则这两个平方根的和为( ) A 、大于0 B 、等于0 C 、小于0 D 、不能确定3、一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =4、若a ≥0,则24a 的算术平方根是( )A 、2aB 、±2aC 、a 2D 、| 2a |5、若正数a 的算术平方根比它本身大,则( )A 、0<a<1 B 、a>0 C 、a<1 D 、a>16、若n 为正整数,则121+-n 等于( )A 、—1 B 、1 C 、±1 D 、2n+17、若a<0,则a a 22等于( ) A 、21 B 、21- C 、±21 D 、8、若x-5能开偶次方,则x 的取值范围是( )A 、x ≥0 B 、x>5 C 、x ≥5 D 、x ≤5 9、(08长春中考试题)化简错误! 的结果是( )A.3 B.-3 C 。
平方根与立方根的运算练习初二数学下册综合算式专项练习题
平方根与立方根的运算练习初二数学下册综合算式专项练习题一、平方根的运算练习1. 求下列数的平方根:a) 4b) 9c) 16d) 25e) 362. 求下列数的算式的平方根:a) √(9 × 16)b) √(25 + 16)c) √(9 - 4)d) √(36 ÷ 4)3. 计算并化简下列算式:a) 5 + √9b) 7 - √16c) 2 × √254. 求下列算式的平方根:a) 25 + 16 - 9b) 16 × (4 + 1)c) (36 + 4) ÷ 2d) 64 ÷ 8 × 2二、立方根的运算练习1. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 2162. 求下列数的算式的立方根:a) ³√(8 × 27)b) ³√(27 + 64)c) ³√(64 - 8)d) ³√(125 ÷ 5)3. 计算并化简下列算式:b) 7 - ³√64c) 2 × ³√125d) 4 ÷ ³√2164. 求下列算式的立方根:a) 64 + 27 - 8b) 27 × (8 + 1)c) (125 + 64) ÷ 3d) 216 ÷ 6 × 2三、平方根与立方根混合运算练习1. 计算下列算式并化简:a) 2 × √9 - √16b) √25 + 3 × ³√27c) (√16 × √(9 + 16)) ÷ ³√64d) (√36 - √25) + ³√(125 ÷ 5)2. 求下列算式的结果并化简:a) (√(9 + 16) + √(9 - 4)) × (√4 + ³√8)b) (√(25 + 36) - √(25 - 4)) ÷ (√16 + ³√64)3. 求下列算式的结果并化简:a) (√(16 + 9) × √(16 - 9)) ÷ (√25 + ³√125)b) (√(25 + 8) + √(25 - 8)) ÷ (√16 + ³√27)4. 计算下列算式并化简:a) (4 × √9 + ³√8)× √(16 ÷ 4)b) (³√(27 + 8) - √(16 - 9))÷ √(25 ÷5)总结:通过以上的练习,我们对平方根与立方根的运算有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平方根与立方根练习题
班级 姓名 时间
一、填空题
1.如果9=x ,那么x =________;如果92=x ,那么=x ________;
2.若一个实数的算术平方根等于它的立方根,则这个数是_________;
3.算术平方根等于它本身的数有________,立方根等于本身的数有________.
4. x =则 ,若,x x =-=则 。
5.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;
6.当______m 时,m -3有意义;当______m 时,33-m 有意义;
7.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;
8.21++a 的最小值是________,此时a 的取值是________.
二、选择题
9. 若2x a =,则( )
A.0x >
B. 0x ≥
C. 0a >
D. 0a ≥ 10.2)3(-的值是( ).
A .3-
B .3
C .9-
D .9
11.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )
A 、1
B 、9
C 、4
D 、5
12.如果53-x 有意义,则x 可以取的最小整数为( ).
A .0
B .1
C .2
D .3
13.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( )
A 、32210+
B 、3425+
C 、32210+或3425+
D 、无法确定
14. 若5x -能开偶次方,则x 的取值范围是( )
A .0x ≥ B.5x > C. 5x ≥ D. 5x ≤
15. 若n 为正整数,则2 )
A .-1 B.1 C.±1 D.21n +
16. 若正数a 的算术平方根比它本身大,则( )
A.01a <<
B.0a >
C. 1a <
D. 1a >
三、解方程
1. 8)12(3-=-x 2.4(x+1)2=8
3. 2(23)2512x x -=-
4. (2x-5)3=-27
四、解答题
已知: 实数a 、b 满足条件0)2(12=-+-ab a 试求: )2004)(2004(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值。