深圳市高三上学期第一次五校联考(理数)

合集下载

【名师解析】广东省深圳市2015届高三上学期第一次五校联考物理试题 Word版含解析

【名师解析】广东省深圳市2015届高三上学期第一次五校联考物理试题 Word版含解析

2015届高三年级第一次五校联考理科综合试卷【试卷综析】本试卷是高三开学模拟试题,包含了高中物理的全部内容,主要包含受力分析、牛顿运动定律、曲线运动、电场、磁场、恒定电流、电磁感应等内容,在考查问题上以基本定义、基本规律为主,在注重考查核心知识的同时,突出考查考纲要求的基本能力,重视生素养的考查,注重主干知识,兼顾覆盖面。

【题文】13.下列说法符合物理学史的是A.开普勒发现了万有引力定律B.伽利略首创了理想实验的研究方法C.卡文迪许测出了静电力常量D.奥斯特发现了电磁感应定律【知识点】物理学史.P0【答案解析】B 解析:A、牛顿发现了万有引力定律,故A错误B、伽利略首创了理想实验的研究方法,主要是理想斜面实验,故B正确C、库仑测出了静电力常量,故C错误D、法拉第发现了电磁感应定律,故D错误故选B.【思路点拨】本题比较简单考查了学生对物理学史的了解情况,在物理学发展的历史上有很多科学家做出了重要贡献,大家熟悉的牛顿、爱因斯坦、法拉第等,在学习过程中要了解、知道这些著名科学家的重要贡献.本题属于记忆知识,要了解、熟悉物理学史,关键在于平时注意积累和记忆.【题文】14.如图所示为某一质点运动的速度-时间图像,下列说法正确的是A.0~1 s内的平均速度是2m/sB.0~2s内的位移大小是3 mC.0~4s内该质点做匀变速直线运动D.0~1s内的运动方向与2~4s内的运动方向相反【知识点】匀变速直线运动的图像;匀变速直线运动的速度与时间的关系.A2 A5【答案解析】B 解析:A、由面积法求0-1s的位移s=1m,时间t=1s因而v=1m/s,故A 错误;B、由面积法知:0-2s的位移s=3m,故B正确;C、0-4s物体先做加速、然后匀速,最后做减速运动,故C错误;D、0-1s、2-4s两个时间段内速度均为正,表明速度都为正方向,运动方向相同,故D错误;故选:B.【思路点拨】速度时间图线的斜率表示加速度,图线与x轴包围的面积表示位移大小,运动方向看正负.本题关键要明确速度时间图线中斜率、截距、面积等的物理意义,同时要会运用运动学公式进行求解.【题文】15.如右图所示,将条形磁铁插入闭合线圈,第一次用时0.2s,第二次用时0.5s,并且两次磁铁的起始和终止位置相同,则A.第一次线圈中的磁通量变化较大B.第一次电流表○G的最大偏转角较大C.第二次电流表○G的最大偏转角较大D.若断开开关k,电流表○G均不偏转,故两次线圈两端均无感应电动势【知识点】法拉第电磁感应定律;楞次定律.L1 L2【答案解析】B 解析:A、磁通量变化相同.故A 错误.B、感应电动势的大小与磁通量的变化率成正比,磁通量的变化率大,感应电动势大,产生的感应电流大.故B正确,C错误.D、断开电键,电流表不偏转,知感应电流为零,但感应电动势不为零.故D错误.故选B.【思路点拨】两次磁铁的起始和终止位置相同,知磁通量的变化量相同,根据时间长短判断磁通量变化的快慢,感应电动势的大小与磁通量的变化率成正比.【题文】16.一理想变压器原、副线圈匝数比n1∶n2=11∶1,原线圈与正弦交变电源连接,输入电压u随时间t的变化规律如图所示,副线圈仅接入一个R=20 Ω的电阻,则A.流过电阻R的最大电流是1.0 AB.变压器的输入功率是40WC.与电阻R并联的电压表的示数是20 VD.在1秒内电流方向改变50次【知识点】正弦式电流的图象和三角函数表达式;电功、电功率;正弦式电流的最大值和有效值、周期和频率.M1 M3【答案解析】C 解析:A、由图象可知,原线圈中电压的最大值为V,所以电压的有效值为220V,原、副线圈匝数比n1:n2=11:1,根据电压与匝数成正比可知,副线圈的电压有效值为20V,副线圈的电阻为20Ω,所以电流的有效值为I=1A,所以A错误;B、变压器的输入功率等于输出功率,所以变压器的输入功率P=I2R=(1)2×20=20W,所以B错误;C、电阻R并联的电压表的示数即为电阻R上的电压,为20V,所以C正确;D、交变电流的方向每个周期改变2次,1s是50个周期,所以在1s内,交变电流的方向改变100次,所以D错误;故选:C.【思路点拨】由图可知输入电压的峰值,周期,从而知道副线圈两端的电压,电压表显示的是有效值,输入功率等于输出功率.掌握住理想变压器的电压、电流之间的关系,最大值和有效值之间的关系即可解决本题.二、双项选择题:本大题共9小题,每小题6分,共54 分。

深圳市三校联考高考数学一模试卷(理科)含答案解析

深圳市三校联考高考数学一模试卷(理科)含答案解析

广东省深圳市三校联考高考数学一模试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2<4},B={x∈Z|﹣3≤x<1},则A∩B=()A.{﹣2,﹣1,0}B.(﹣1,0) C.{﹣1,0}D.(﹣3,﹣2)2.命题“∃x∈R,sinx>1”的否定是()A.∃x∈R,sinx≤1 B.∀x∈R,sinx>1C.∃x∈R,sinx=1 D.∀x∈R,sinx≤13.函数y=的定义域为()A.(﹣2,1) B.[﹣2,1]C.(0,1)D.(0,1]4.定积分x2dx=()A.0 B.C.1 D.25.函数f(x)=log2x﹣的零点包含于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)6.已知a=0.30.3,b=1.20.3,c=log1.20.3,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.a<c<b7.已知命题p:不等式ax2+ax+1>0的解集为R,则实数a∈(0,4);命题q“x2﹣2x﹣8>0”是“x>5”的必要不充分条件,则下列命题正确的是()A.p∧q B.p∧(¬q) C.(¬p)∧(¬q)D.(¬p)∧q8.已知f(x)=,g(x)=|x﹣2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数 B.h(x)=f(x)•g(x)是奇函数C.h(x)=是偶函数D.h(x)=是奇函数9.函数y=的一段大致图象是()A.B.C.D.10.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f(4)=4,则f()=()A.0 B.﹣4 C.﹣8 D.﹣1611.若函数f(x)=e x(x2+ax+b)有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为()A.0 B.3 C.4 D.512.定义区间[x1,x2]的长度为x2﹣x1(x2>x1)单调递增),函数(a∈R,a≠0)的定义域与值域都是[m,n](n>m),则区间[m,n]取最大长度时实数a的值()A.B.﹣3 C.1 D.3二、填空题(本大题共4小题,每小题5分,满分20分.)13.=.14.设函数f(x)=,则f(f(3))=.15.设函数f(x)=的最大值为M,最小值为m,则M+m=.16.在平面直角坐标系xOy中,直线y=x+b是曲线y=alnx的切线,则当a>0时,实数b的最小值是.二、解答题(解答须写出文字说明、证明过程和演算步骤.)17.(12分)设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若其中a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.18.(12分)已知函数f(x)=()ax,a为常数,且函数的图象过点(﹣1,2).(1)求a的值;(2)若g(x)=4﹣x﹣2,且g(x)=f(x),求满足条件的x的值.19.(12分)已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.(1)求函数f(x)的解析式;(2)设函数g(x)=9x+m﹣1,若函数y=f(x)﹣g(x)在区间[﹣2,1]上有两个零点,求实数m的取值范围.20.(12分)已知函数f(x)满足(其中a>0,a≠1)(Ⅰ)求f(x)的表达式;(Ⅱ)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围;(Ⅲ)当x∈(﹣∞,2)时,f(x)﹣4的值为负数,求a的取值范围.21.(12分)设,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.(1)求a的值;(2)若∀x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.(3)求证:.[选修4-1:几何证明选讲]22.(10分)如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O 于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是圆O的切线;(2)若∠CAB=60°,⊙O的半径为2,EC=1,求DE的值.[选修4-4:坐标系与参数方程]23.在平面直角坐标系中,直线l过点P(2,)且倾斜角为α,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cos (θ﹣),直线l与曲线C相交于A,B两点;(1)求曲线C的直角坐标方程;(2)若,求直线l的倾斜角α的值.[选修4-5:不等式选讲]24.设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.广东省深圳市三校联考高考数学一模试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合A={x|x2<4},B={x∈Z|﹣3≤x<1},则A∩B=()A.{﹣2,﹣1,0}B.(﹣1,0) C.{﹣1,0}D.(﹣3,﹣2)【考点】交集及其运算.【分析】化简集合A,B,运用二次不等式的解法和运用列举法,由交集的定义,即可得到所求值.【解答】解:集合A={x|x2<4}={x|﹣2<x<2},B={x∈Z|﹣3≤x<1}={﹣3,﹣2,﹣1,0},则A∩B={﹣1,0}.故选:C.【点评】本题考查集合的交集的运算,注意运用二次不等式的解法,考查运算能力,属于基础题.2.命题“∃x∈R,sinx>1”的否定是()A.∃x∈R,sinx≤1 B.∀x∈R,sinx>1 C.∃x∈R,sinx=1 D.∀x∈R,sinx≤1【考点】命题的否定.【分析】根据特称命题的否定是全称命题进行求解即可.【解答】解:命题是特称命题,则命题的否定是:∀x>0,sinx≤1,故选:D.【点评】本题主要考查含有量词的命题的否定,比较基础.3.函数y=的定义域为()A.(﹣2,1) B.[﹣2,1]C.(0,1)D.(0,1]【考点】函数的定义域及其求法.【分析】根据二次根式的性质结合对数函数的性质得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:0<x<1,故选:C.【点评】本题考察了求函数的定义域问题,考察二次根式的性质以及对数函数的性质,是一道基础题.4.定积分x2dx=()A.0 B.C.1 D.2【考点】定积分.【分析】根据定积分的计算法则计算即可【解答】解:定积分x2dx=|=(1+1)=,故选:A.【点评】本题考查了定积分的计算,关键是求出原函数,属于基础题.5.函数f(x)=log2x﹣的零点包含于区间()A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)【考点】二分法求方程的近似解.【分析】由题意知函数f(x)=log2x﹣在(0,+∞)上连续,再由函数的零点的判定定理求解.【解答】解:函数f(x)=log2x﹣在(0,+∞)上连续,f(3)=log23﹣<0;f(4)=log24﹣=>0;故函数f(x)=log2x﹣的零点所在的区间是(3,4).故选:C.【点评】本题考查了函数的零点的判定定理的应用,属于基础题.6.已知a=0.30.3,b=1.20.3,c=log1.20.3,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.a<b<c D.a<c<b【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=0.30.3∈(0,1),b=1.20.3>1,c=log1.20.3<0,∴c<a<b,故选:A.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.7.已知命题p:不等式ax2+ax+1>0的解集为R,则实数a∈(0,4);命题q“x2﹣2x﹣8>0”是“x>5”的必要不充分条件,则下列命题正确的是()A.p∧q B.p∧(¬q) C.(¬p)∧(¬q)D.(¬p)∧q【考点】复合命题的真假.【分析】命题p:不等式ax2+ax+1>0的解集为R,a=0时,可得1>0恒成立;a≠0时,可得:,解得a范围,即可判断出p的真假.命题q:x2﹣2x﹣8>0,解得x>4或x<﹣2.可得“x2﹣2x﹣8>0”是“x>5”的必要不充分条件,即可判断出真假.再利用复合命题真假的判定方法即可得出.【解答】解:命题p:不等式ax2+ax+1>0的解集为R,a=0时,可得1>0恒成立;a≠0时,可得:,解得0<a<4,综上可得:实数a∈[0,4),因此p是假命题;命题q:x2﹣2x﹣8>0,解得x>4或x<﹣2.因此“x2﹣2x﹣8>0”是“x>5”的必要不充分条件,是真命题.下列命题正确的是(¬p)∧q.故选:D.【点评】本题考查了不等式的解法、不等式的解集与判别式的关系、复合命题真假的判定方法,考查了推理能力与计算能力,属于中档题.8.已知f(x)=,g(x)=|x﹣2|,则下列结论正确的是()A.h(x)=f(x)+g(x)是偶函数 B.h(x)=f(x)•g(x)是奇函数C.h(x)=是偶函数D.h(x)=是奇函数【考点】函数奇偶性的判断.【分析】利用函数的奇偶性的定义判断即可.【解答】解:f(x)=,g(x)=|x﹣2|,A.h(x)=f(x)+g(x)=+|x﹣2|=+2﹣x,x∈[﹣2,2].h(﹣x)=+2+x,不满足函数的奇偶性的定义,是非奇非偶函数.B.h(x)=f(x)•g(x)=|x﹣2|=(2﹣x),x∈[﹣2,2].h(﹣x)=(2+x),不满足奇偶性的定义.C.h(x)==,x∈[﹣2,2)不满足函数的奇偶性定义.D.h(x)==,x∈[﹣2,0)∪(0,2],函数是奇函数.故选:D.【点评】本题考查函数的奇偶性的判断,函数的定义域的求法,是基础题.9.函数y=的一段大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据函数的奇偶性和特殊值即可判断.【解答】解:f(﹣x)=﹣=﹣f(x),∴y=f(x)为奇函数,∴图象关于原点对称,∴当x=π时,y=﹣<0,故选:A.【点评】本题考查了函数的图象的识别,关键是掌握函数的奇偶性和函数值得特点,属于基础题.10.已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x﹣1)的图象关于点(1,0)对称,且f(4)=4,则f()=()A.0 B.﹣4 C.﹣8 D.﹣16【考点】函数的值.【分析】先利用函数y=f(x﹣1)的图象关于点(1,0)对称,得到函数y=f(x)是奇函数,然后求出f(3)=0,最后利用函数的周期性求f()的值.【解答】解:因为函数y=f(x﹣1)的图象关于点(1,0)对称,所以函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)是奇函数,令x=﹣3得,f(﹣3+6)+f(﹣3)=2f(3),即f(3)﹣f(3)=2f(3),解得f(3)=0.所以f(x+6)+f(x)=2f(3)=0,即f(x+6)=﹣f(x),所以f(x+12)=f(x),即函数的周期是12.所以f()=f(12×168﹣4)=f(﹣4)=﹣f(4)=﹣4.故选:B.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.11.若函数f(x)=e x(x2+ax+b)有极值点x1,x2(x1<x2),且f(x1)=x1,则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为()A.0 B.3 C.4 D.5【考点】利用导数求闭区间上函数的最值;根的存在性及根的个数判断.【分析】求出f(x)的导数,问题转化为方程x2+(2+a)x+a+b=0有两个不相同的实数根,结合二次函数的性质判断即可.【解答】解:函数f(x)有两个不相同的极值点,即f′(x)=e x[x2+(2+a)x+a+b]=0有两个不相同的实数根x1,x2,也就是方程x2+(2+a)x+a+b=0有两个不相同的实数根,所以△=(2+a)2﹣4(a+b)>0;由于方程f2(x)+(2+a)f(x)+a+b=0的判别式△′=△,故此方程的两个解为f(x)=x1或f(x)=x2.由于函数y=f(x)的图象和直线y=x1的交点个数即为方程f(x)=x1的解的个数,函数y=f(x)的图象和直线y=x2的交点个数即为方程f(x)=x2的解的个数.根据函数的单调性以及f(x1)=x1,可知y=f(x)的图象和直线y=x1的交点个数为2,y=f(x)的图象和直线y=x2的交点个数为1.所以f(x)=x1或f(x)=x2共有三个不同的实数根,即关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为3,故选:B.【点评】本题难度中等偏上,是导数单调性、极值点与解一元二次方程的综合题目,求解的关键是判断出函数的单调性,并将方程解的个数问题转化为函数图象的交点个数问题.12.定义区间[x1,x2]的长度为x2﹣x1(x2>x1)单调递增),函数(a∈R,a≠0)的定义域与值域都是[m,n](n>m),则区间[m,n]取最大长度时实数a的值()A.B.﹣3 C.1 D.3【考点】函数的值域.【分析】由题意求出f(x)的定义域并化简解析式,判断出区间的范围和f(x)的单调性,由题意列出方程组,转化为m,n是方程f(x)的同号的相异实数根,利用韦达定理表示出mn和m+n,由判别式大于零求出a 的范围,表示出n﹣m 利用配方法化简后,由二次函数的性质求出最大值和a的值.【解答】解:由题意得,函数f(x)的定义域是{x|x≠0},∵[m,n]是其定义域的子集,∴[m,n]⊆(﹣∞,0)或(0,+∞).∵f(x)=在[m,n]上是增函数,∴由条件得,则m,n是方程f(x)=x的同号相异的实数根,即m,n是方程(ax)2﹣(a2+a)x+1=0同号相异的实数根.∴mn=,m+n==,则△=(a2+a)2﹣4a2>0,解得a>1或a<﹣3.∴n﹣m====,∴n﹣m的最大值为,此时,解得a=3,即在区间[m,n]的最大长度为时,a的值是3.故选D..【点评】本题考查函数与方程的关系及其转化,函数单调性、值域,一元二次函数的性质,以及韦达定理的综合应用,考查化简、变形能力.二、填空题(本大题共4小题,每小题5分,满分20分.)13.=﹣4.【考点】对数的运算性质.【分析】由lg8=3lg2,lg125=3lg5对分子进行化简,再由0.1=,=对分母进行化简,利用lg2+lg5=1进行求值.【解答】解:===﹣4故答案为:﹣4.【点评】本题的考点是对数的运算性质的应用,即化简求值,还考查了根式的分数指数幂的转化,利用“lg2+lg5=1”进行求值.14.设函数f(x)=,则f(f(3))=3.【考点】分段函数的应用;函数的值.【分析】利用分段函数直接求解函数值即可.【解答】解:函数f(x)=,则f(f(3))=f()=f()=1﹣log2(2﹣)=1+2=3.故答案为:3.【点评】本题考查函数值的求法,分段函数的应用,考查计算能力.15.设函数f(x)=的最大值为M,最小值为m,则M+m=2.【考点】函数的最值及其几何意义.【分析】化f(x)为1+,由g(x)=,定义域为R,判断g(x)的奇偶性,由图象性质可得g(x)的最值之和为0,进而得到所求和.【解答】解:函数f(x)===1+,由g(x)=,定义域为R,可得g(﹣x)+g(x)=+=0,可得g(x)为奇函数,由奇函数的图象关于原点对称,可得g(x)的最大值a与最小值b的和为0,则M+m=a+1+b+1=(a+b)+2=2.故答案为:2.【点评】本题考查函数的最值的求法,注意运用转化法,由奇函数的性质:最值之和为0,考查运算能力,属于中档题.16.在平面直角坐标系xOy中,直线y=x+b是曲线y=alnx的切线,则当a>0时,实数b的最小值是﹣1.【考点】利用导数研究曲线上某点切线方程.【分析】设出曲线上的一个切点为(x,y),利用导数的几何意义求切线的坐标,可得b=alna﹣a,再求导,求最值即可.【解答】解:设出曲线上的一个切点为(x,y),由y=alnx,得y′=,∵直线y=x+b是曲线y=alnx的切线,∴y′==1,∴x=a,∴切点为(a,alna),代入y=x+b,可得b=alna﹣a,∴b′=lna+1﹣1=0,可得a=1,∴函数b=alna﹣a在(0,1)上单调递减,在(1,+∞)上单调递增,∴a=1时,b取得最小值﹣1.故答案为:﹣1.【点评】本题主要考查导数的几何意义的应用,利用导数的运算求出切线斜率,根据切线斜率和导数之间的关系建立方程进行求解是解决本题的关键,考查学生的运算能力.二、解答题(解答须写出文字说明、证明过程和演算步骤.)17.(12分)(•深圳一模)设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若其中a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】(1)若a=1,根据p∧q为真,则p,q同时为真,即可求实数x的取值范围;(2)根据¬p是¬q的充分不必要条件,建立条件关系即可求实数a的取值范围.【解答】解:(1)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.由|x﹣3|<1,得﹣1<x﹣3<1,得2<x<4即q为真时实数x的取值范围是2<x<4,若p∧q为真,则p真且q真,∴实数x的取值范围是2<x<3.(2)由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0,若¬p是¬q的充分不必要条件,则¬p⇒¬q,且¬q⇏¬p,设A={x|¬p},B={x|¬q},则A⊊B,又A={x|¬p}={x|x≤a或x≥3a},B={x|¬q}={x|x≥4或x≤2},则0<a≤2,且3a≥4∴实数a的取值范围是.【点评】本题主要考查复合命题的真假关系以及充分条件和必要条件的应用,考查学生的推理能力.18.(12分)(•深圳一模)已知函数f(x)=()ax,a为常数,且函数的图象过点(﹣1,2).(1)求a的值;(2)若g(x)=4﹣x﹣2,且g(x)=f(x),求满足条件的x的值.【考点】指数函数的单调性与特殊点;函数的零点.【分析】(1)代入点的坐标,即得a的值;(2)根据条件得到关于x的方程,解之即可.【解答】解:(1)由已知得()﹣a=2,解得a=1.(2)由(1)知f(x)=()x,又g(x)=f(x),则4﹣x﹣2=()x,即()x﹣()x﹣2=0,即[()x]2﹣()x﹣2=0,令()x=t,则t2﹣t﹣2=0,即(t﹣2)(t+1)=0,又t>0,故t=2,即()x=2,解得x=﹣1,满足条件的x的值为﹣1.【点评】本题考察函数解析式求解、指数型方程,属基础题,(2)中解方程时用换元思想来求解.19.(12分)(•深圳一模)已知三次函数f(x)=x3+bx2+cx+d(a,b,c∈R)过点(3,0),且函数f(x)在点(0,f(0))处的切线恰好是直线y=0.(1)求函数f(x)的解析式;(2)设函数g(x)=9x+m﹣1,若函数y=f(x)﹣g(x)在区间[﹣2,1]上有两个零点,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值.【分析】(1)根据已知条件即可建立关于b,c,d的三个方程,解方程即可求出b,c,d,从而求出f(x)的解析式.(2)由已知条件可得到方程f(x)﹣g(x)=0在区间[﹣2,1]上有两个不同的解,带入f(x),g(x)后得到:方程x3﹣3x2﹣9x﹣m+1=0在区间[﹣2,1]上有两个不同解.因为求m的取值范围,所以把方程变成:m=x3﹣3x2﹣9x+1,求函数x3﹣3x2﹣9x+1在区间[﹣2,1]上的取值范围,要使方程有两个不同的解,从而求出m应满足的范围.这样便求出了m的取值范围.【解答】解:(1)f′(x)=3x2+2bx+c,由已知条件得:,解得b=﹣3,c=d=0;∴f(x)=x3﹣3x2(2)由已知条件得:f(x)﹣g(x)=0在[﹣2,1]上有两个不同的解;即x3﹣3x2﹣9x﹣m+1=0在区间[﹣2,1]有两个不同的解;即m=x3﹣3x2﹣9x+1在[﹣2,1]上有两个不同解.令h(x)=x3﹣3x2﹣9x+1,h′(x)=3x2﹣6x﹣9,x∈[﹣2,1];解3x2﹣6x﹣9>0得:﹣2≤x<﹣1;解3x2﹣6x﹣9<0得:﹣1<x≤1;∴h(x)max=h(﹣1)=6,又f(﹣2)=﹣1,f(1)=﹣10,∴h(x)min=﹣10;m=h(x)在区间[﹣2,1]上有两个不同的解,∴﹣1≤m<6.∴实数m的取值范围是[﹣1,6).【点评】考查函数在切点处的导数与切线斜率的关系,对切线过切点的条件的运用,函数零点和方程实数解的关系,根据函数单调性求函数的最值.20.(12分)(•深圳一模)已知函数f(x)满足(其中a>0,a≠1)(Ⅰ)求f(x)的表达式;(Ⅱ)对于函数f(x),当x∈(﹣1,1)时,f(1﹣m)+f(1﹣m2)<0,求实数m的取值范围;(Ⅲ)当x∈(﹣∞,2)时,f(x)﹣4的值为负数,求a的取值范围.【考点】奇偶性与单调性的综合;函数解析式的求解及常用方法.【分析】(Ⅰ)设log a x=t求出x=a t,代入原函数化简求出f(x)的表达式;(Ⅱ)对a分类讨论,分别由指数函数的单调性判断f(x)的单调性,由函数奇偶性的定义判断f(x)是奇函数,由奇函数的性质等价转化f(1﹣m)+f(1﹣m2)<0,结合x的范围和单调性列出不等式,求出实数m的取值范围;(Ⅲ)根据f(x)的单调性和题意求出f(x)的值域,结合条件列出不等式,化简后由一元二次不等式的解法求出a的取值范围.【解答】解:(Ⅰ)设log a x=t,则x=a t,代入原函数得,则…(2分)(Ⅱ)当a>1时,a x是增函数,a﹣x是减函数且,所以f(x)是定义域R上的增函数,同理,当0<a<1时,f(x)也是R上的增函数,…(4分)又f(﹣x)==﹣f(x),则f(x)为奇函数…由f(1﹣m)+f(1﹣m2)<0得:f(1﹣m)<﹣f(1﹣m2)=f(m2﹣1)…(6分)所以,解得…(8分)则实数m的取值范围是(1,);(Ⅲ)因为f(x)是增函数,所以x∈(﹣∞,2)时,f(x)﹣4∈(﹣∞,f(2)﹣4),又当x∈(﹣∞,2)时,f(x)﹣4的值为负数,所以f(2)﹣4≤0,…(9分)则f(2)﹣4===…(10分)解得且a≠1,所以a的取值范围是{a|且a≠1}.…(12分)【点评】本题考查换元法求函数的解析式,函数奇偶性的定义,复合函数单调性的判断及应用,以及指数函数的单调性,考查分类讨论思想,转化思想,化简、变形能力.21.(12分)(•深圳一模)设,曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直.(1)求a的值;(2)若∀x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求m的范围.(3)求证:.【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(1)求得函数f(x)的导函数,利用曲线y=f(x)在点(1,f(1))处的切线与直线2x+y+1=0垂直,即可求a的值;(2)先将原来的恒成立问题转化为,设,即∀x∈(1,+∞),g(x)≤0.利用导数研究g(x)在(0,+∞)上单调性,求出函数的最大值,即可求得实数m的取值范围.(3)由(2)知,当x>1时,时,成立.不妨令,得出,再分别令k=1,2,…,n.得到n个不等式,最后累加可得.【解答】解:(1)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题设,∴∴1+a=1,∴a=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)(2),∀x∈(1,+∞),f(x)≤m(x﹣1),即设,即∀x∈(1,+∞),g(x)≤0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)①若m≤0,g'(x)>0,g(x)≥g(1)=0,这与题设g(x)≤0矛盾.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)②若m>0方程﹣mx2+x﹣m=0的判别式△=1﹣4m2当△≤0,即时,g'(x)≤0.∴g(x)在(0,+∞)上单调递减,∴g(x)≤g(1)=0,即不等式成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)当时,方程﹣mx2+x﹣m=0,其根,,当x∈(1,x2),g'(x)>0,g(x)单调递增,g(x)>g(1)=0,与题设矛盾.综上所述,.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)(3)由(2)知,当x>1时,时,成立.不妨令所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)累加可得即﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)【点评】本题考查导数知识的运用,考查函数的单调性、导数在最大值、最小值问题中的应用,考查学生的计算能力,属于中档题.[选修4-1:几何证明选讲]22.(10分)(•深圳一模)如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是圆O的切线;(2)若∠CAB=60°,⊙O的半径为2,EC=1,求DE的值.【考点】与圆有关的比例线段.【分析】(1)连接OD,由已知得∠ODA=∠OAD=∠DAC,从而OD∥AE,由此能证明DE是圆O的切线.(2)连结BC,由已知得AC=2,AE=EC+CA=3,由此利用圆的切割线定理能求出DE的值.【解答】(1)证明:连接OD,∵AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,∴∠ODA=∠OAD=∠DAC,∴OD∥AE,…(3分)又AE⊥DE,∴DE⊥OD,又OD为半径,∴DE是圆O的切线.…(2)解:连结BC,在Rt△ABC中,∠CAB=60°,AB=4,∴AC=ABcos60°=2…(7分)又∵EC=1,∴AE=EC+CA=3,由圆的切割线定理得:DE2=CE•EA=3,∴.…(10分)【点评】本题考查圆的切线的证明,考查线段长的求法,是中档题,解题时要认真审题,注意圆的切割线定理的合理运用.[选修4-4:坐标系与参数方程]23.(•深圳一模)在平面直角坐标系中,直线l过点P(2,)且倾斜角为α,以坐标原点为极点,x轴的非负半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=4cos(θ﹣),直线l与曲线C相交于A,B两点;(1)求曲线C的直角坐标方程;(2)若,求直线l的倾斜角α的值.【考点】简单曲线的极坐标方程.【分析】(1)由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出曲线C的直角坐标方程.(2)设出直线方程,求出圆心到直线的距离,由已知求出直线的斜率,由此能求出直线l的倾斜角α的值.【解答】解:(1)∵,∴…(3分)∴,∴,∴曲线C的直角坐标方程为.…(2)当α=900时,直线l:x=2,∴,∴α=900舍…(6分)当α≠900时,设tanα=k,则,∴圆心到直线的距离由,∴,∵α∈(0,π),∴.…(10分)【点评】本题考查曲线的直角坐标的求法,考查直线的倾斜角的求法,是基础题,解题时要注意极坐标方程、直角坐标方程互化公式的合理运用.[选修4-5:不等式选讲]24.(•深圳一模)设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.【考点】绝对值不等式的解法.【分析】(1)问题转化为解不等式组问题,解出取并集即可;(2)先求出g(x)的分段函数,求出g(x)的最小值,从而求出a的范围.【解答】解:(1)由f(x)≤x得|2x﹣7|+1≤x,∴,∴不等式f(x)≤x的解集为;(2)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,则,∴g(x)min=﹣4,∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,∴g(x)min≤a,∴a≥﹣4.【点评】本题考查了绝对值不等式的解法,考查函数的最值问题,是一道基础题.。

广东省深圳市深圳中学2024届高三一月阶段测试数学试题

广东省深圳市深圳中学2024届高三一月阶段测试数学试题

广东省深圳市深圳中学2024届高三一月阶段测试数学试

学校:___________姓名:___________班级:___________考号:___________
二、多选题
9.甲、乙两位射击爱好者,各射击10次,甲的环数从小到大排列为4,5,5,6,6,7,7,8,8,9,乙的环数从小到大排列为
2,5,6,6,7,7,7,8,9,10,则()
A.甲、乙的第70百分位数相等
B.甲的极差比乙的极差小
C.甲的平均数比乙的平均数大
(1)证明:平面EAC ^平面
PBC ;
(2)当2BE EP =uuu r uuu r
时,求二面角P AC E --的余弦值.
20.甲乙两人进行投篮比赛,两人各投一次为一轮比赛,约定如下规则:如果在一轮
比赛中一人投进,另一人没投进,则投进者得1分,没进者得1-分,如果一轮比赛中两人都投进或都没投进,则都得0分,当两人各自累计总分相差4分时比赛结束,得分高者获胜.在每次投球中甲投进的概率为0.5,乙投进的概率为0.6,每次投球都是
相互独立的.在每一轮比赛中,记甲得1分的概率为()P A ,乙得1分的概率为()P B ,
两人都得0分的概率为()P C .(1)求()()(),,P A P B P C 的值;
(2)若两人起始分都为0分,求恰好经过4轮比赛,甲获胜的概率.
答案第231页,共22页。

广东省深圳市高级中学2024-2025学年高一上学期第一次月考试数学试卷

广东省深圳市高级中学2024-2025学年高一上学期第一次月考试数学试卷

广东省深圳市高级中学2024-2025学年高一上学期第一次月考试数学试卷一、单选题 1.命题“210,0x x x∃>-<”的否定为( ) A .210,0x x x ∃>-≥ B .210,0x x x ∃≤-≥ C .210,0x x x∀>-≥ D .210,0x x x∀≤-≥ 2.从甲地到乙地通话m 分钟的电话费由() 1.0612m f m <>⎛⎫=+ ⎪⎝⎭(元)决定,其中0m >,m <>是不小于m 的最小整数(如:33<>=, 3.84<>=, 5.16<>=), 则从甲地到乙地通话时间为7.3分钟的电话费为( ) A .4.24元B .4.77元C .5.30元D .4.93元3.若函数()f x 的定义域为R ,则“(2)(3)f f <”是“()f x 是增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.甲、乙两人解关于x 的不等式20x bx c ++<,甲写错了常数b ,得到的解集为{}6<<1x x -;乙写错了常数c ,得到的解集为{}1<<4x x .那么原不等式的解集为( ) A .{}1<<6x xB .{}1<<4x x -C .{}4<<1x x -D .{}1<<6x x -5.函数[)2235,4,22x y x x +=∈---的值域为( ).A .5317,142⎛⎫ ⎪⎝⎭B .5317,142⎡⎫⎪⎢⎣⎭C .5317,142⎡⎤⎢⎥⎣⎦D .5317,142⎛⎤ ⎥⎝⎦6.已知不等式2320ax x -+>的解集为(,1)(,)b -∞+∞U ,则,a b 的取值分别为( ) A .3,1-B .2,1C .1-,3D .1,27.设()f x 是定义在R 上的奇函数,在(,0)-∞上递减,且(3)0f -=, 则不等式()0xf x <的解集为( )A .{|30x x -<<或3}x >B .{|3x x <-或3}x >C .{|3x x <-或03}x <<D .{|30x x -<<或03}x <<8.对于集合M ,N ,定义{},M N x x M x N -=∈∉且,()()M N M N N M ⊕=--U ,设94A y y ⎧⎫=≥-⎨⎬⎩⎭,{}0B y y =<,则A B ⊕=A .9,04⎛⎤- ⎥⎝⎦B .9,04⎡⎫-⎪⎢⎣⎭C .[)9,0,4⎛⎫-∞-+∞ ⎪⎝⎭UD .()9,0,4⎛⎫-∞-+∞ ⎪⎝⎭U二、多选题9.下表表示y 是x 的函数,则( )A .函数的定义域是(0,20]B .函数的值域是[2,5]C .函数的值域是{}2,3,4,5D .函数是增函数10.已知243fx =-,则下列结论错误的是( )A .()11f =B .2()21f x x =-C .()f x 是偶函数D .()f x 有唯一零点11.给出以下四个命题,其中为真命题的是( )A .函数y yB .若函数(2)f x 的定义域为[0,2],则函数()f x 的定义域为[0,4]C .若函数()y f x =是奇函数,则函数()()y f x f x =--也是奇函数D .函数1y x=-在(,0)(0,)-∞+∞U 上是单调增函数12.下列命题正确的是( )A .若对于1x ∀,2x ∈R ,12x x ≠,都有()()()()11221221x f x x f x x f x x f x +>+,则函数y =f x 在R 上是增函数B .若对于1x ∀,2x ∈R ,12x x ≠,都有()()12121f x f x x x ->--,则函数()y f x x =+在R 上是增函数C .若对于x ∀∈R ,都有()()1f x f x +<成立,则函数y =f x 在R 上是增函数D .若对于x ∀∈R ,都有()f x ,()g x 为增函数,则函数()()y f x g x =⋅在R 上也是增函数三、填空题13.A ={}|03x x << ,{}|24B x x =<<,则A B ⋃=.14.若“2,1000x mx mx ∀∈++>R ”是真命题,则m 的取值范围是. 15.已知函数()()11xf x x x =>-,())2g x x ≥,若存在函数()(),F x G x 满足:()()()()()(),G x F x f x g x g x f x =⋅=,学生甲认为函数()(),F x G x 一定是同一函数,乙认为函数()(),F x G x 一定不是同一函数,丙认为函数()(),F x G x 不一定是同一函数,观点正确的学生是.16.已知函数()2cos ,,22f x x x x ππ⎡⎤=-∈-⎢⎥⎣⎦,则满足()06f x f π⎛⎫> ⎪⎝⎭的0x 的取值范围为.四、解答题17.(1)设0x y <<,试比较22()()x y x y +-与22()()x y x y -+的大小; (2)已知a ,b ,x ,(0,)∈+∞y 且11,x y a b>>,求证:x y x a y b >++.18.求下列不等式的解集. (1)202735x x <---<; (2)1123x x +≤- 19.冰墩墩(BingDwenDwen )、雪容融(ShueyRhonRhon )分别是2022年北京冬奥会、冬残奥会的吉祥物.冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国.小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元.(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶的进货数量不得超过雪容融玩偶进货数量的1.5倍.小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?20.某单位有员工1000名,平均每人每年创造利润10万元,为了增加企业竞争力,决定优化产业结构,调整出()*N x x ∈名员工从事第三产业,调整出的员工平均每人每年创造利润为310500x a ⎛⎫- ⎪⎝⎭万元()0a >,剩余员工平均每人每年创造的利润可以提高0.2%x .(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少? 21.已知函数()2f x x x=+. (1)判断()f x 的奇偶性,并证明你的结论;(2)用函数单调性的定义证明函数()f x 在)+∞上是增函数; (3)当[]1,3x ∈时,求函数()f x 的值域.22.某企业用1960万元购得一块空地,计划在该空地建造一栋8,()x x x N ≥∈层,每层2800平方米的楼房.经测算,该楼房每平方米的平均建筑费用为56570x +(单位:元). (1)当该楼房建多少层时,每平方米的平均综合费用最少?最少为多少元?(2)若该楼房每平方米的平均综合费用不超过2000元,则该楼房最多建多少层?(注:综合费用=建筑费用+购地费用)。

2024年广东省深圳市高三一模数学试题及答案

2024年广东省深圳市高三一模数学试题及答案

2024年深圳市高三年级第一次调研考试数学试题参考答案及评分标准一、选择题:每小题5分,共40分。

二、选择题:每小题6分,共18分。

说明:第9、10题全部选对得6分,选对1个得3分,有选错得0分;第11题全部选对得6分,每选对1个得2分,有选错得0分.三、填空题:每小题5分,共15分。

12.; 13 14.18. 四、解答题:15.(13分)证明:(1)设等差数列{}n S n 的公差为d ,则41341S S d =+,即135S d +=,①………………1分 因为21214S a a S =+=+,所以由2121S S d =+,得124S d +=.②…………………………2分由①、②解得12S =,1d =,所以1n S n n=+,即(1)n S n n =+,……………………………3分当2n …时,1(1)(1)2n n n a S S n n n n n −=−=+−−=,当时,112a S ==,上式也成立,所以*2()n a n n =∈N ,………………………………5分因为当2n …时,12n n a a −−=,所以数列{}n a 是等差数列.…………………………………6分解:(2)由(1)可知+122242n n n n b a n n b a n n +===++,…………………………………………………7分 当2n …时,12112112112=613(1)n n n n n b b b n n b b b b b n n n n −−−−−⋅⋅⋅⋅=⨯⨯⨯⨯=++……, π3−1n =因为16b =满足上式,所以*12()(1)n b n n n =∈+N . ……………………………………………9分 1111111212[(1)()()]12(1)12223111n T n n n n =−+−++−=⨯−=−+++, ……………………11分 因为当*121n ∈+N 时,,,3,5,11,所以{6,8,9,10,11}M =. …………………13分 16.(15分)证明:(1)不妨设3AD AP ==, ∵120PAD ∠=︒,2DM MP =,∴33DP =,23DM =,3PM =, ………………………………………………………1分 由余弦定理得222cos303AM AP MP AP MP =+−⋅︒=,在ADM △中,222AD AM DM +=,∴MA AD ⊥, …………………………………………2分 ∵平面ABCD ⊥平面PAD ,平面ABCD平面PAD AD =,MA ⊂平面PAD , ∴MA ⊥平面ABCD .∵BD ⊂平面ABCD ,∴MA BD ⊥,……………………………………………………………4分 ∵四边形ABCD 是菱形,∴AC BD ⊥,…………………………………………………………5分 又∵AC MA A =,且AC ⊂平面ACM ,MA ⊂平面ACM ,∴BD ⊥平面ACM . ……6分解:(2)在平面ABCD 内,过点B 作AD 的垂线,垂足为N , ∵平面ABCD ⊥平面PAD ,平面ABCD 平面PAD AD =, ∴BN ⊥平面ADP ,…………………………………………7分 又∵四边形ABCD 是菱形,60ADC ∠=︒,∴30BDA ∠=︒, ∴ACD △,ABC △均为等边三角形,………………………8分 以点A 为坐标原点,AD ,AM 及过点A 平行于NB 的直线分别 为x ,y ,z 轴,建立空间直角坐标系(如图),则(0,0,0)A ,333(,0,)22B −,(3,0,0)D ,333(,,0)22P −,……………………………9分 由(1)BD ⊥平面ACM ,∴933(,0,)22BD =−为平面ACM 的一个法向量, …………………………………………10分 设平面ABP 的法向量为(,,)x y z =m ,1n =2x P BCMDzy AN则0,0,AB AP ⎧⋅=⎪⎨⋅=⎪⎩m m即30,230,2x x y ⎧−+=⎪⎪⎨⎪−+=⎪⎩……………………………………………………………11分令x ==m , ………………………………………………………………12分∵|cos ,|BD <>==m …………………………………………………………14分 ∴平面ACM 与平面ABP.……………………………………………15分 17.(15分)解:(1)由题可知332211()(1)3313()24f αααααα=+−=−+=−+, …………………………2分 因为01α<<,所以当12α=时,()f α的最小值为14. ……………………………………4分 (2)由题设知,X 的可能取值为1,2,3,4.………………………………………………5分①当1X =时,相应四次接收到的信号数字依次为0101或1010.因此,212112128(1)3333333381P X ==⨯⨯⨯+⨯⨯⨯=,……………………………………………………6分 ②当2X =时,相应四次接收到的信号数字依次为0010,或0100,或1101,或1011,或1001,或0110,或1100,或0011.因此,222221212112364(2)()2()2()()433333333819P X ==⨯⨯⨯+⨯⨯⨯+⨯⨯==,………………………8分③当3X =时,相应四次接收到的信号数字依次为1110,或0111,或0001,或1000.因此, 33121220(3)()2()2333381P X ==⨯⨯+⨯⨯=,……………………………………………………10分 ④当4X =时,相应四次接收到的信号数字依次为0000,或1111.因此,441217(4)()()3381P X ==+=.……………………………………………………………………12分 所以X 的分布列为…………………………………………………13分因此,X 的数学期望832017208()1234818818181E X =⨯+⨯+⨯+⨯=.…………………………15分 18.(17分) 解:(1)当0a =时,2()2ln f x x x x =−−,则1()2(1ln )22(ln 1)f x x x x x x x'=−⋅+⋅−=−++,……………………………………………1分 令()()g x f x '=,则1()2(1)g x x'=−+, 因为2[e ,1]x −∈,所以()0g x '<.则()g x 在2[e ,1]−上单调递减,……………………………2分 又因为22(e )2(1e )0f −−'=−>,(1)40f '=−<,所以20(e ,1)x −∃∈使得0()0f x '=,()f x 在20(e ,)x −上单调递增,在0(,1)x 上单调递减.因此,()f x 在2[e ,1]−上的最小值是2(e )f −与(1)f 两者中的最小者.…………………………3分 因为22422(e )4e e e (4e )0f −−−−−=−=−>,(1)1f =−,所以函数()f x 在2[e ,1]−上的最小值为1−.………………………………………………………4分(2)111()[1e (1)e ]2(1ln )2x x f x a x x x x x++'=⋅+−−⋅+⋅−1e 2(ln 1)x ax x x +=−++, 由()0f x '=,解得1ln 12(ln 1)2(ln 1)e e x x x x x x x a x +++++++==,…………………………………………6分 易知函数ln 1y x x =++在(0,)+∞上单调递增,且值域为R ,令ln 1x x t ++=,由()0f x '=,解得2et t a =, 设2()et t h t =,则2(1)()e t t h t −'=, 因为当1t <时,()0h t '>,当1t >时,()0h t '<,所以函数()h t在(,1)−∞上单调递增,在(1,)+∞上单调递减.根据2(1)eh =,t →−∞时,()h x →−∞,2lim ()lim 0e t t t h t →+∞→+∞==, 得()h t 的大致图像如图所示. ………………………………………………………………………7分因此有:(ⅰ)当2ea >时,方程()h t a =无解,即()f x '无零点,()f x 没有极值点;………………8分(ⅱ)当2ea =时,ln ()2e 2(ln 1)x x f x x x +'=−++, 利用e 1x x +…,得()2(ln 1)2(ln 1)0f x x x x x '++−++=…,此时()f x 没有极值点; ……9分 (ⅲ)当20ea <<时,方程()h t a =有两个解,即()f x '有两个零点,()f x 有两个极值点; (ⅳ)当0a …时,方程()h t a =有一个解,即()f x '有一个零点,()f x 有一个极值点. 综上,当0a …时,()f x 有一个极值点;当20ea <<时,()f x 有两个极值点;当2e a …时,()f x 没有极值点.……………………………………………………………………………………………11分(3)先证明当π(0,)4x ∈时,sin πx x >. 设sin π()((0,))4x n x x x =∈,则2(cos )sin ()x x x n x x ⋅−'=, 记π()cos sin ((0,))4p x x x x x =−∈,则()1cos (sin )cos sin 0p x x x x x x x '=⋅+⋅−−=−<, ()p x 在π(0,)4上单调递减, ……………………………………………………………………13分 当π(0,)4x ∈时,()(0)0p x p <=,()0n x '<,则()n x 在π(0,)4上单调递减,π()()4n x n >=,即当π(0,)4x ∈时,不等式sin x x > …………………………………………………14分 由(2)知,当函数()f x 无极值点时,2ea ≥,则1e π0244a <≤<,…………………………15分在不等式sin x x >12x a =,则有12sin 2a a >,即不等式1sin 2πa a >……………………………………………………………………17分 19.(17分)解:(1)设点(,)P x y||m n x m =−,……………………………………2分即222()()m x m y x n n−+=−, 经化简,得C 的方程为222221x y n n m +=−,………………………………………………………3分 当m n <时,曲线C 是焦点在x 轴上的椭圆;当m n >时,曲线C 是焦点在x 轴上的双曲线. ………………………………………………4分 (2)设点11(,)M x y ,22(,)N x y ,33(,)M x y ',其中120,0y y >>且3232,x x y y =−=−,(i)由(1)可知C 的方程为221168x y +=,A,(B −, 因为//AM BN===, 因此,M ,A ,M '三点共线,且||||BN AM '==,…………………………………5分(法一)设直线MM '的方程为x ty =+C的方程,得22(2)80t y ++−=,则13y y +=,13282y y t =−+, ………………………………………………………6分 由(1)可知11||4AM x x ==,3||4BN AM x '==,所以11||||||||||||AM BN AM BN AM BN ++=⋅1313(4)(4)(2)(2)++= 13213134(4()2114()2y y y y ty y−⋅+===++(定值).………8分 (法二)设MAx θ∠=,解得AM =,4=,解得AM '=, 所以11111||||||||AM BN AM AM+=+=='(定值).………………8分 由椭圆定义8BQ QM MA ++=,得8QM BQ AM =−−,//AM BN ,∴8||||||||BQ AM AM QM BN BQ BQ −−==,解得(8||)||||||||AM BN BQ AM BN −⋅=+, 同理可得(8||)||||||||BN AM AQ AM BN −⋅=+, ……………………………………………………………10分 所以(8||)||(8||)||8(||||)2||||||||||||||||||||BN AM AM BN AM BN AM BN AQ BQ AM BN AM BN AM BN −⋅−⋅+−⋅+=+=+++2882611||||AM BN =−=−=+.因为AB =ABQ △的周长为6+. …………………………………12分(ii) 当m n >时,曲线C 的方程为222221x y n m n−=−,轨迹为双曲线, 根据(ⅰ)的证明,同理可得M ,A ,M '三点共线,且||||BN AM '=, (法一)设直线MM '的方程为x sy m =+,联立C 的方程,得2222222222[()]2()()0m n s n y sm m n y m n −−+−+−=, ∴221322222()()sm m n y y m n s n −+=−−−,222132222()()m n y y m n s n −=−−,(*) ………………………………13分 因为211||()m n m AM x x n n m n=−=−,3||||m BN AM x n n '==−, 所以1111||||||||||||||||AM AM AM BN AM AM AM AM '++=+=''⋅2222131322221313()()()()()()()()m m sm m n sm m n x n x n y y n n n n n n m m sm m n sm m n x n x n y y n n n n n n−−−+−+++==−−−−++2213222222213132222()()()()()sm m n y y n n m s m n ms m n y y y y n n n −++=−−+++, 将(*)代入上式,化简得22112||||n AM BN m n +=−,…………………………………………15分 (法二)设MAx θ∠=,依条件有2()cos AMm n n m AM m θ=−+,解得22cos m n AM n m θ−=−, 同理由2()cos AM m n n m AM m θ'='−−,解得22cos m n AM n m θ−'=+,所以2222221111cos cos 2||||||||n m n m n AM BN AM AM m n m n m n θθ−++=+=+='−−−.…………………15分 由双曲线的定义2BQ QM MA n +−=,得2QM n AM BQ =+−, 根据||||||||AM QM BN BQ =,解得(2||)||||||||n AM BN BQ AM BN +⋅=+, 同理根据||||||||AM AQ BN QN =,解得(2||)||||||||n BN AM AQ AM BN +⋅=+, 所以(2||)||(2||)||2||||||||2||||||||||||n BN AM n AM BN AM BN AQ BQ n AM BN AM BN AM BN +⋅+⋅⋅+=+=++++222222211||||m n m n n n n n AM BN −+=+=+=+,……………………………16分 由内切圆性质可知,1(||||||)2S AB AQ BQ r =++⋅, 当S r λ=时,2221()(||||||)222m n m n AB AQ BQ m n nλ++=++=+=(常数). 因此,存在常数λ使得S r λ=恒成立,且2()2m n n λ+=.……………………………………17分。

(深圳一模选填题解析)2024年深圳市高三年级第一次调考数学试题答案

(深圳一模选填题解析)2024年深圳市高三年级第一次调考数学试题答案

2024年深圳市高三年级第一次调研考试数学本试卷共4页,19小题,满分150分.考试用时120分钟.注意事项:1.答题前,考生请务必用黑色字迹钢笔或签字笔将自己的姓名、准考证号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若角α的终边过点)3,4(,则=+2sin(παA.54 B.54-C.53 D.53-1.【答案】A【解析】由已知,可得54434cos 22=+==r x α,则54cos )2sin(==+απα,故选A.2.已知i 为虚数单位,若iiz +=12,则=⋅z z A.2 B.2C.i2- D.i22.【答案】B【解析一】由已知,可得i i i i i i i i z +=+=-+-=+=1222)1)(1()1(212,即i z -=1,则2)1)(1(=-+=⋅i i z z ,故选B.【解析二】由已知,可得22412122222==+=+==⋅ii i i z z z ,故选B.【解析三】由已知,i i z +=12,即i i z --=12,则224)12(122=-=--⋅+=⋅i i i i i z z ,故选B.3.已知函数)(x f 是定义域为R 的偶函数,在区间),0(+∞上单调递增,且对任意1x ,2x ,均有)()()(2121x f x f x x f =成立,则下列函数中符合条件的是A.x y ln = B.3xy = C.xy 2= D.xy =3.【答案】D【解析一】对于选项A ,显然0≠x ,与题设)(x f 的定义域为R 相矛盾,故A 错误;对于选项B ,显然3x y =是奇函数,故B 错误;对于选项C ,由于⎪⎩⎪⎨⎧<≥==-0,20,22x x y x x x ,显然122222)(022==⋅≠==⋅---x x x x x x f ,故C 错误;对于选项D ,符合题意;故选D.【解析二】采用特殊值法,也可快速排除错误选项,确定选项D 正确.4.已知a ,b 是夹角为︒120的两个单位向量,若向量b a λ+在向量a 上的投影向量为a 2,则=λA.2- B.2C.332-D.3324.【答案】A【解析一】由已知,可得a ab a a a a b a a )120cos 1()(22︒+===λ,即λ2112-=,则2-=λ,故选A.【解析二】如图所示,a OA =,b OB =,结合已知条件,显然2-=λ,故选A.【解析三】逐项代入检验,结合运算或图象,亦可快速判定A 选项正确.a ab bλOB A DCE︒60bλ5.由0,2,4组成可重复数字的自然数,按从小到大的顺序排成的数列记为{}n a ,即01=a ,22=a ,43=a ,…,若2024=n a ,则=n A.34B.33C.32D.305.【答案】B【解析一】由已知条件,结合分类、分步计数原理,可得①1位数:有3个,即0,2,4;②2位数:可先排首位,可选择2或4,由于可重复,个位数可选择0或2或4,故满足条件的2位数共有61312=⋅C C 个;③3位数:同上,共有18131312=⋅⋅C C C 个;以上一共有27个数,满足条件的4位数按从小到大的顺序排列分别为:200028=a ,200229=a ,200430=a ,202031=a ,202232=a ,202433=a ,故选B.6.已知某圆台的上、下底面半径分别为1r ,2r ,且122r r =,若半径为2的球与圆台的上、下底面及侧面均相切,则该圆台的体积为A.328πB.340π C.356π D.3112π6.【答案】C【解析一】如图所示,要使球与圆台的上、下底面及侧面均相切,即球是圆台的内切球,易得内切球的半径22121===r r r R ,则21=r ,222=r ,又圆台的高为42==R h ,则圆台的体积为3564)482(31)(31(31212221πππ=⋅++=⋅++=++=h r r r r h S S S S V 下上下上,故选C.∙∙∙1O A B CDE F l l O2O 1r 2r R∙∙∙1O A B CDE F ll O2O 1r 2r RGh7.已知数列{}n a 满足121==a a ,)(,2,12,2*2N k k n a k n a a nn n ∈⎩⎨⎧=--=+=+,若n S 为数列{}n a 的前n 项和,则=50S A.624 B.625C.626D.6507.【答案】C【解析一】由已知,当12-=k n 时,有22=-+n n a a ,即数列{}n a 的奇数项是以1为首项,2为公差的等差数列;当k n 2=时,有12-=+nn a a ,即数列{}n a 的偶数项是以1为首项,1-为公比的等比数列(也可看成02=++n n a a ,偶数项和为0);则626)1(1])1(1[1)222425125()()(255042493150=----⨯+⨯⨯+⨯=+++++++=a a a a a a S 故选C.【解析二】(逐项列举求和法)由已知,11=a ,12=a ,33=a ,14-=a ,55=a ,16=a ,77=a ,18-=a ,依此类推,可得到数列{}n a 的奇数项是以1为首项,2为公差的等差数列,偶数项是由1和1-组成的摆动数列,则62610122)491(2550=+⨯++⨯=S ,故选C.8.已知双曲线)0,0(1:2222>>=-b a by a x E 的左、右焦点分别为1F ,2F ,过点2F 的直线与双曲线E 的右支交于A ,B 两点,若1AF AB =,且双曲线E 的离心率为2,则=∠1cos BAF A.873-B.43-C.81 D.81-8.【答案】D【解析一】由已知,双曲线E 为等轴双曲线,即b a =,为了方便讨论,不妨设1==b a ,则双曲线E 的方程可简化为122=-y x ,且2=c ,2221=F F ,由于221BF AF AB AF +==,则22212==-=a AF AF BF ,4221=+=a BF BF ,故43422)22(242cos 22221221222121=⋅⋅-+=⋅⋅-+=∠BF BF F F BF BF BF F ,8116921)1cos 2(2cos )2cos(cos 21221211-=⋅-=-∠-=∠-=∠-=∠BF F BF F BF F BAF π故选D.xyO2F 1F AB二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.9.“体育强则中国强,国运兴则体育兴”,为备战2024年巴黎奥运会,已知运动员特训的成绩分别为:9,12,8,16,16,18,20,16,12,13,则这组数据的A.众数为12 B.平均数为14C.中位数为14.5D.第85百分位数为169.【答案】BC【解析一】由已知,将所给10个数据按从小到大的顺序排列,得到8,9,12,12,13,16,16,16,18,20,对于选项A ,众数显然是16(出现了3次),故A 错误;对于选项B ,由于14101401020183161321298==++⨯++⨯++,故B 正确;对于选项C ,由于第5个数为13,第6个数为16,则中位数为5.1421613=+,故C 正确;对于选项D ,由于5.885.010=⨯,则第85百分位数为第9个数,即18,故D 错误;综上所述,故选BC.10.设1>a ,0>b ,且b a -=2ln ,则下列关系式可能成立的是A.b a = B.ea b =- C.ba 2024= D.eab >10.【答案】AC【解析一】由已知,1>a ,0>b ,则2ln 20<-=<a b ,22ln 1ln 0<-=<=b a ,1ln >+a a ,对于选项A ,若b a =,则a a -=2ln ,即2ln =+a a ,显然等式有可能成立,故A 正确;对于选项B ,若e a b =-,则)(2ln e a a +-=,即e a a -=+2ln ,显然等式不成立,故B 错误;对于选项C ,若b a 2024=,则20242ln a a -=,即22024ln =+aa ,显然等式有可能成立,故C 正确;对于选项D ,由于a a a a a ab ln 2)ln 2(-=-=,记1,ln 2)(>-=x x x x x f ,则x x x f ln 1)1(ln 2)(-=+-=',易得当e x =时,)(x f 有极大值为e e e e e f =-=ln 2)(,则当1>x 时,e x f ≤)(,即当1>a 时,e a a a a f ab ≤-==ln 2)(,故D 错误;综上所述,故选AC.【解析二】(图象法)对于选项A ,若b a =,则a a -=2ln ,可看作2ln +-=x x ,1>x ,分别作出对应函数图象,显然函数x y ln =与2+-=x y 的图象在1>x 处有交点,即零点存在,故A 正确;对于选项B ,若e a b =-,则)(2ln e a a +-=,可看作e x x -+-=2ln ,1>x ,分别作出对应函数图象,显然函数x y ln =与e x y -+-=2的图象在1>x 处无交点,即此时零点在存在,故B 错误;对于选项C ,若b a 2024=,则20242ln a a -=,可看作220241ln +-=x x ,1>x ,分别作出对应函数图象,显然函数x y ln =与220241+-=x y 的图象在1>x 处有交点,即此时零点存在,故C 正确;xy2+-=x y xy ln =122Oxyex y -+-=2xy ln =O1y220241+-=x y xy ln =O1对于选项D ,由于a a a a a ab ln 2)ln 2(-=-=,记1,ln 2)(>-=x x x x x f ,则x x x f ln 1)1(ln 2)(-=+-=',易得当e x =时,)(x f 有极大值为e e e e e f =-=ln 2)(,则当1>x 时,e x f ≤)(,即当1>a 时,e a a a a f ab ≤-==ln 2)(,故D 错误;综上所述,故选AC.11.如图,八面体Ω的每一个面都是边长为4的正三角形,且顶点B ,C ,D ,E 在同一个平面内,若点M 在四边形BCDE 内(包含边界)运动,N 为AE 的中点,则A.当M 为DE 的中点时,异面直线MN 与CF 所成角为3πB.当//MN 平面ACD 时,点M 的轨迹长度为22C.当ME MA ⊥时,点M 到BC 的距离可能为3D.存在一个体积为310π的圆柱体可整体放入Ω内11.【答案】ACD【解析一】对于选项A ,当M 为DE 的中点时,易知BF AD MN ////,则异面直线MN 与CF 所成角即为3π=∠BFC ,故A 正确;xyxx x y ln 2-=OeeFBCDMENA∙∙(第11题图)FBCDMENA∙∙对于选项B ,取BC 的中点为P ,DE 的中点为Q ,显然有//NQ 平面ACD ,当点M 与点Q 重合时,有//MN 平面ACD ;易得平面//NPQ 平面ACD ,由面面平行的性质可知,只要点M 在PQ 上移动时,都能保证//MN 平面ACD ,即此时点M 的轨迹长度为4=PQ ,故B 错误;对于选项C ,当ME MA ⊥时,有2π=∠AME ,即点M 在以N 为球心,AE 为直径的球面上(类似圆的直径所对圆周角为直角),又点M 在四边形BCDE 内(包含边界)运动,则点M 在平面BCDE 与球N 的交面上运动,如图所示,记点A 、点N 在平面BCDE 内的投影分别为1O ,O ,则它们均落在CE 上,显然点M 的运动轨迹在以O 为圆心,1OO 为半径的圆弧21M M 上,又222111===CE E O CO ,则圆O 的半径为2411==CE OO ,又3431==BE OD ,2211==BE B M ,422==BE D M ,233113-=-=OM OD D M ,则点M 到BC 的距离的取值范围为]4,23[-,又]4,23[3-∈,故C 正确;FBCDQENA∙∙∙P ∙MBCDEN A∙∙∙1O O ACE1O NOBCDE O1M 2M 1D 2D 3M 1O对于选项D ,由对称性可考虑在上半部分正四棱锥中放入一个内接最大圆柱即可,设此时圆柱的底面半径为r ,高为h ,作圆柱的平行于CD 边的轴截面APQ ,易得221==CD PO ,32=AP ,则在AOP Rt ∆中,有2222=-=OP AP AO ,又F AO Rt 1∆~AOP Rt ∆,则OP FO AO AO 11=,即r r AO 22221==,则)2(222211r r AO AO OO h -=-=-==,20<<r ,则此时圆柱的体积为27232)3222(2422)2(24)2(2322πππππ=++-⋅≤⋅⋅-=-==r r r rr r r r h r V ,当且仅当22r r =-,即34=r 时,等式成立,即该八面体能放入的圆柱的体积为310272642ππ>=V ,故D 正确;综上所述,故选ACD.CEA QPO1O r h F三、填空题:本大题共3小题,每小题5分,共15分.12.若函数)2,0)(sin()(πϕωϕω<>+=x x f 的最小正周期为π,其图象关于点)0,32(π中心对称,则=ϕ____________.12.【答案】3π-【解析一】由已知,函数)sin()(ϕω+=x x f 的最小正周期为π,则22==ππω,又其图象关于点)0,32(π中心对称,则0)322sin()32(=+⋅=ϕππf ,即πϕπk =+34,Z k ∈,解得ππϕk +-=34,Z k ∈,又2πϕ<,即22πϕπ<<-,取1=k ,则此时3πϕ-=,显然符合题意,故填3π-.13.设点)0,2(-A ,)0,21(-B ,)1,0(C ,若动点P 满足PB P A 2=,且AC AB AP μλ+=,则μλ2+的最大值为____________.13.【答案】3422+【解析一】(三角换元)由已知,动点P 满足PB P A 2=,即动点P 到定点A 与它到定点B 的距离之比为常数(阿氏圆),设),(y x P ,则由PB P A 2=,可得2222)21(2)2(y x y x ++=++,即122=+y x ,即动点P 在单位圆上运动,故可设)sin ,(cos θθP ,则)sin ,2(cos θθ+=AP ,)0,23(=AB ,)1,2(=AC ,又AC AB AP μλ+=,则),223(),2()0,23()sin ,2(cos μμλμμλθθ+=+=+,即⎪⎩⎪⎨⎧=+=+μθμλθsin 2232cos ,则)sin 22(cos 32θθλ-+=,故34)4sin(32234sin 32cos 32sin 2)sin 22(cos 322++=++=+-+=+πθθθθθθμλ,即34222+≤+μλ,当4πθ=时等式成立,故μλ2+的最大值为3422+.【解析二】(平面向量等和线)由已知,动点P 满足PB P A 2=,即动点P 到定点A 与它到定点B 的距离之比为常数(阿氏圆),设),(y x P ,则由PB P A 2=,可得2222)21(2)2(y x y x ++=++,即122=+y x ,即动点P 在单位圆上运动,又)0,2(-A ,)0,21(-B ,)1,0(C ,取AC 的中点为D ,则21,1(-D ,又AC AB AP μλ+=,则AD AB AP μλ2+=,若P 为BD 与圆的交点,则此时B ,D ,P 三点共线,即12=+μλ显然不是最大值;平移BD 与圆相切时得到切线EF ,记切点为F ,显然当点P 与F 重合时,μλ2+取得最大值;又121(1021-=----=BD k ,则1-=EF k ,即直线EF 的倾斜角为︒135,则在OFE Rt ∆中,有1==EF OF ,2=OE ,则22+=+=OE AO AE ,又23=AB ,则32242322)2(max +=+==+AB AE μλ(平面向量等和线性质),故μλ2+的最大值为3422+.∙∙A B1-2-Cyx O DE F14.已知函数)0)()()(()(321>---=a x x x x x x a x f ,设曲线)(x f y =在点))(,(i i x f x 处切线的斜率为)3,2,1(=i k i ,若1x ,2x ,3x 均不相等,且22-=k ,则314k k +的最小值为_________.14.【答案】18【解析一】由已知,0>a ,0)(=x f 有三个不等实根,即曲线)(x f y =与x 轴有三个交点,且其图象为“N ”型;又)])(())(())([()(213132x x x x x x x x x x x x a x f --+--+--='为了方便讨论,不妨设321x x x <<,令m x x =-23,n x x =-12,则n m x x x x x x +=-+-=-)()(122313,故)())(())(()(1312312111n m an x x x x a x x x x a x f k +=--=--='=,02))(()(321222<-=--='=x x x x a x f k ,即2))((2312=--x x x x a ,则2=amn ,m n m a x x x x a x f k )())(()(231333+=--='=,则184104210)4(5)(4)(4222231=+=⋅+≥++=+++=+amn m n a m n a amn m n m a n m an k k 当且仅当m n 2=,即)(42312x x x x -=-时等式成立,故314k k +的最小值为18.【解析二】由已知,0>a ,0)(=x f 有三个不等实根,即曲线)(x f y =与x 轴有三个交点,且其图象为“N ”型,为了方便讨论,不妨设321x x x <<,又)])(())(())([()(213132x x x x x x x x x x x a x f --+--+--=',则))(()(312111x x x x a x f k --='=,2))(()(321222-=--='=x x x x a x f k ,))(()(231333x x x x a x f k --='=,故323132123121121))(())((2x x x x x x x x x x x x k k k ---=----=-=,即32311)(2x x x x k --=,121332122313323))(())((2x x x x x x x x x x x x k k k ---=----=-=,即213112133)(2)(2x x x x x x x x k --=--=,显然,31321211x x x x k --⋅=,31213211x x x x k --⋅=,则211131=+k k ,即1)11(231=+k k ,则18)425(2)441(211)(4(2413311331313131=⋅+≥+++=++=+k k k k k k k k k k k k k k ,当且仅当23214k k =时,等式成立,故故314k k +的最小值为18.。

深圳宝安区2025届高三上学期第一次调研测试数学试卷+答案

深圳宝安区2025届高三上学期第一次调研测试数学试卷+答案

宝安区2024-2025学年第一学期调研测试卷高三数学2024.101.样本数据1,6,7,8,8,9,10,11,12,13的第30注意事项:1.答题前,请将姓名、班级和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并正确粘贴条形码.2.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔把答案写在答题卡指定区域内,写在本试卷或草稿纸上,其答案一律无效.3.本试卷19小题,满分150分.考试时间120分钟.4.考试结束后,请将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.百分位数为( ) A .7B .7.5C .8D .8.52.已知集合{}25Ax x=<{}12B x x =∈−<Z,则A B = ( )A .{}1,0,1,2−B .{}1,2C .{}0,1,2D .{}1,0,1,2,3−3.若11i z z+=−,则z =( ) A .1i −− B .I C .1i −D .-i4.已知向量()2,a x = ,(),2b x = ,若()a b a ⊥−,则x =( )A .2B .0C .1D .-25.已知()sin m αβ−=,tan 2tan αβ=,则()sin αβ+=( )A .mB .m −C .3mD .4m6.一个正四面体边长为3,则一个与该正四面体体积相等、高也相等的正三棱柱的侧面积为( ) A.B.C.D.7.已知函数为()()311,1e ln 2,1x x ax x f x x x + ++<− = ++≥− ,在R 上单调递增,则a 的取值范围是( )A .[]3,1−−B .(],3−∞−C .[)3,−+∞D .[)1,−+∞8.函数()cos 2f x x x =在13π0,6上的零点个数为( ) A .3B .4C .5D .6二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多个选项符合题目要求.全部选对得6分,部分选对的得部分分,有选错的得0分.9.已知随机变量X 服从正态分布()2~0,X N σ,当σ变大时,则( ) A .1122P X −<< 变大B .1122P X −<< 变小C .正态分布曲线的最高点上移D .正态分布曲线的最高点下移10.对于正数a ,b ,[)00,x ∃∈+∞,使()00e 1x bx a ++⋅≤,则( )A .e 1b a >B .1eab ≤C .224eab ≤D .1a b +≤11.已知函数()f x 的定义域为R ,若()()()11f x y f x f y ++=+−,且()02f =,则( )A .()11f −=−B .()f x 无最小值C .()401900i f i ==∑D .()f x 的图象关于点()2,0−中心对称三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()2f x x m =−与函数()ln f x x x =+在公共点处的切线相同,则实数m 的值为______.13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,且π4B =,b =,1a =,M 为AB 的中点,则线段CM 的长为______.14.为了回馈长期以来的顾客群体,某健身房在五周年庆活动期间设计出了一种游戏活动,顾客需投掷一枚骰子两次,若两次投掷的数字都是偶数,则该顾客获得该健身房的免费团操券5张,且有2次终极抽奖机会(2次抽奖结果互不影响);若两次投掷的数字之和是5或9,则该顾客获得该健身房的免费团操券5张,且有1次终极抽奖机会;其余情况顾客均获得该健身房的免费团操券3张,不具有终极抽奖机会.已知每次在终极抽奖活动中的奖品和对应的概率如下表所示.则一位参加游戏活动的顾客获得蛋白粉的概率为______.三、解答题15.(本题13分)如图,在直角POA △中,PO AO ⊥,24PO AO ==,将POA △绕边PO 旋转到POB△的位置,使2π3AOB ∠=,得到圆锥的一部分,点C 为 AB 上的点,且 14AC AB =. (1)求点O 到平面P AB 的距离;(2)设直线OC 与平面P AB 所成的角为θ,求sin θ的值.16.(本题15分)已知椭圆C :22221x y a b +=,()0a b >>,离心率e =,且点()2,1A −在椭圆上.(1)求该椭圆的方程;(2)直线l 交椭圆C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0,且π2PAQ ∠=,求PAQ △的面积. 17.(本题15分)函数()ln f x x =,()22g x x x m =−−+.(1)若e m =,求函数()()()F x f x g x =−的最大值;(2)若()()()22e xf xg x x x +≤−−在(]0,2x ∈上恒成立,求实数m 的取值范围.18.(本题17分)甲乙两人参加知识竞赛活动,比赛规则如下:两人轮流随机抽题作答,答对积1分且对方不得分,答错不得分且对方积1分;然后换对方抽题作答,直到有领先2分者晋级,比赛结束.已知甲答对题目的概率为45,乙答对题目的概率为p ,答对与否相互独立,抽签决定首次答题方,已知两次答题后甲乙两人各积1分的概率为25.记甲乙两人的答题总次数为()2n n ≥.(1)求p ;(2)当2n =时,求甲得分X 的分布列及数学期望;(3)若答题的总次数为n 时,甲晋级的概率为()n P A ,证明:()()()2388159n P A P A P A ≤++⋅⋅⋅+<. 19.(本题17分)定义:任取数列{}n a 中相邻的两项,若这两项之差的绝对值为3,则称数列{}n a 具有“性质3”.已知项数为n 的数列{}n a 的所有项的和为n M ,且数列{}n a 具有“性质3”. (1)若4n =,且10a =,43a =,写出所有可能的n M 的值;(2)若12024a =,2023n =,证明:“20234042a =−”是“()11,2,,2022k k a a k +>=⋅⋅⋅”的充要条件; (3)若10a =,2n ≥,0n M =,证明:4n m =或41n m =+,(*m ∈N ).宝安区2025届高三毕业班第一次调研考试数学参考答案一、单项选择题题号 1 2 3 4 5 6 7 8 答案BCBACADC二、多项选择题题号 9 10 11 答案BDBCBCD三、填空题:12.0 13.95576四、解答题:15.【解答】(1)证明:由题意知:PO OA ⊥,PO OB ⊥,OA OB O = ,OA ⊂平面AOB ,OB ⊂平面AOB∴PO ⊥平面AOB ,又24POOA ==,所PA PB ==,AB =所以12PABS =×△设点O 到平面P AB 的距离为d ,由O PAB P OAB V V −−=得1112π422sin3323d ×=×××××,解得d =; (2)以O 为原点,OC ,OB ,OP 的方向分别为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由题意知π6AOC ∠=,则)1,0A−,则()2,0,0C ,()0,2,0B ,()0,0,4P ,所以()AB =,()4AP =,()2,0,0OC =.设平面P AB 的法向量为(),,n a b c = ,则3040n AB b n AP b c ⋅+= ⋅=++=,不妨取平面P AB的一个法向量为12n =,所以sin cos ,n OC n OC n OCθ⋅===. (利用几何解法相对简单,酌情给分)16.【解答】(1)解:由题22411a b = +=解得:a b = = 故椭圆C :22182x y += (2)设直线AP 的倾斜角为α,由π2PAQ ∠=,2πPAQ α+∠=,得π4α=,1AP k =,1AQ k =− (或0111AP AQ AP AQ AP AQ k k k k k k +== ⇒=−⋅=−) 即AP :3y x =−,AQ :1y x =−+联立3y x =−,及22182x y +=得1145x =,22x =(舍),故141,55P− , 联立1y x =−+,及22182x y +=得125x =−,22x =(舍),故27,55Q−, 故12125x x +=,122825x x =−2−,2AQ =−,故()121214824225PAQ S AP AQ x x x x ==−++=△. 17.【解答】(1)因为()2ln e 2F x x x x =−++−, 可知()F x 的定义域为()0,+∞,且()()()211121x x F x x xx+−′=−+=−,由()0F x ′>,解得01x <<;由()0F x ′<,解得1x >. 可知()F x 在()0,1内单调递增,在()1,+∞内单调递减,所以函数()()()F x f x g x =−的最大值为()1e 2F =−.(2)因为()()()22e xf xg x x x +≤−−在(]0,2x ∈恒成立, 等价于()2e ln 2xm x x x ≥−+−+在(]0,2x ∈恒成立.设()()2e ln 2x h x x x x =−+−+,(]0,2x ∈,则()()()111e 11e x x h x x x xx ′−+−−−,当1x >时,则10x −>,且e e x >,11x <,可得1e e 10x x−>−>,所以()0h x ′>; 当01x <<时,则10x −<,设()1e x u x x=−,01x <<,则()21e 0x u x x ′=+>,可知()u x 在()0,1递增,且1202u=−<,()1e 10u =−>.则01,12x∃∈,使得()00u x =.当()00,x x ∈时,()0u x <;当()0,1x x ∈时,()0u x >. 当()00,x x ∈时,()0h x ′>;当()0,1x x ∈时,()0h x ′<. 可知函数()h x 在()00,x 递增,在()0,1x 递减,在()1,2递增. 由()0001e 0xu x x =−=,得001e x x =,且00ln x x =−.可得()()()0000000000112e ln 222232x h x x x x x x x x x=−+−+=−−+=−+, 且01,12x∈,则()00h x <,又因为()2ln 20h =>,可知当(]0,2x ∈时,()()max 2ln 2h x h ==,所以m 的取值范围是[)ln 2,+∞.18.【解答】(1)记i A =“第i 次答题时为甲”,B =“甲积1分”, 则()112P A =,()4|5i P B A =,()41|155i P B A =−=,()|1i P B A p =−,()|i P B A p =, ()()2141114115255255p p p p=+−+−⋅+⋅, 则23155p +=,解得13p =; (2)由题意可知当2n =时,X 可能的取值为0,1,2,则由(1)可知 ()215P X ==,()11111102533515P X ==×+×= ,()14224822533515P X ==×+×= ,随机变量X 的数学期望为()128220121551515E X =×+×+×=. (3)由答题总次数为n 时甲晋级,不妨设此时甲的积分为x 甲,乙的积分为x 乙, 则2x x −=甲乙,且x x n +=甲乙,所以甲晋级时n 必为偶数,令2n m =,*m ∈N 当n 为奇数时,()0n P A =,则()()()()()()2324n n P A P A P A P A P A P A ++⋅⋅⋅+=++⋅⋅⋅+ 012128282828515515515515m −=⋅+⋅+⋅+⋅⋅⋅+⋅012121158222288212155555159515m m m − − =+++⋅⋅⋅+==−− −又∵1m ≥时,()()()23n P A P A P A ++⋅⋅⋅+随着m 的增大而增大, ∴()()()2388159n P A P A P A ≤++⋅⋅⋅+< 19.【解答】(1)解:依题意, 若n a :0,3,0,3,此时6n M = 若n a :0,-3,0,3,此时0n M = 若n a :0,3,6,3,此时12n M =(2)证明:必要性:因为()11,2,,2022k k a a k +>=⋅⋅⋅, 故数列{}()1,2,3,2023n a n =⋅⋅⋅为等差数列,所以13k k a a +−=−,()1,2,,2022k =⋅⋅⋅,公差为-3, 所以()()()2023202420231340421,2,,2022a k =+−×−=−=⋅⋅⋅,必要性得证 充分性:由于202320223a a −≥−,202220213a a −≥−,…,213a a −≥−, 累加可得,202316066a a −≥−,即2023160664042a a ≥−=−, 因为20234042a =−,故上述不等式的每个等号都取到,所以13k k a a +−=−,()1,2,,2022k =⋅⋅⋅,所以1k k a a +<,()1,2,,2022k =⋅⋅⋅,充分性得证综上所述,“20234042a =−”是“1k k a a +<,()1,2,,2022k =⋅⋅⋅”的充要条件; (3)证明:令()11,2,,1k k k c a a k n +=−=⋅⋅⋅−,依题意,3k c =±, 因为211a a c =+,3112a a c c =++,…,1121n n a a c c c −=+++⋅⋅⋅+, 所以()()()11231123n n M na n c n c n c c −=+−+−+−+⋅⋅⋅+()()()()()()()12112111121n n n c n c n c −=−+−+⋅⋅⋅+−−−−−−−⋅⋅⋅−− ()()()()()()1211111212n n n c n c n c −−−−−+−−+⋅⋅⋅+− , 因为3k c =±,所以1k c −为偶数()1,2,,1k n =⋅⋅⋅−, 所以()()()()()12111121n c n c n c −−−+−−+⋅⋅⋅+−为偶数; 所以要使0n M =,必须使()12n n −为偶数,即4整除()1n n −, 亦即4n m =或()*41n m m =+∈N , 当()*4nm m ∈N 时,比如,41430k k a a −−==,423k a −=−,43k a =()1,2,,k m =⋅⋅⋅ 或41430k k a a −−==,423k a −=,43k a =−()1,2,,k m =⋅⋅⋅时,有10a =,0n M =; 当()*41n m m =+∈N 时,比如41430k k a a −−==,423k a −=−,43k a =,410k a +=()1,2,,k m =⋅⋅⋅, 或41430k k a a −−==,423k a −=,43k a =−,410k a +=()1,2,,k m =⋅⋅⋅,有10a =,0n M =; 当42n m =+或()43n m m =+∈N 时,()1n n −不能被4整除,0n M ≠.。

2020届广东省茂名市五校高三上学期第一次(10月)联考数学(理)试题(解析版)

2020届广东省茂名市五校高三上学期第一次(10月)联考数学(理)试题(解析版)

2020届广东省茂名市五校高三上学期第一次(10月)联考数学(理)试题一、单选题1.已知集合{}2430x x x A -+≥=,{}22x x B =-≤≤,则A B =I ( ). A .[2,3] B .[2,1]-C .[1,2]D .[2,3]-【答案】B【解析】先求集合A ,再求A B I . 【详解】{|3A x x =…或1}x „,[]2,1A B =-I ∴.故选:B. 【点睛】本题考查集合的运算,属于简单题型.2.已知复数Z 满足()12Z i i +=+(i 为虚数单位),则复数Z 的虚部为( ). A .12-B .12C .12i -D .12i 【答案】A 【解析】首先21iZ i+=+,然后化简求虚部. 【详解】231122i i i Z +=-+=,虚部为12-.故选A. 【点睛】本题考查复数的除法运算,以及复数的相关概念,属于简单题型. 3.设实数3log 5a =,151log 3b =,22cos 4xc dx ππ-=⎰,则( )A .b c a >>B .a c b >>C .a b c >>D .b a c >>【答案】C【解析】利用定积分运算法则求c ,再利用对数函数的单调性比较大小,即可得到答案. 【详解】由题意得:33log 5log 31a =>=,实数1551log 33b log ==,∴112b <<, 2222cos sin 111|()44442x x c dx ππππ--===--=⎰,a b c >>Q ,故选:C . 【点睛】本题考查定积分运算、对数函数的单调性,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力. 4.给出以下几个结论:①命题:p x R ∀∈,211x -≤,则0:p x R ⌝∃∈,2011x -≤②命题“若(1)10x x e -+=,则0x =”的逆否命题为:“若0x ≠,则(1)10x x e -+≠” ③“命题p q ∧为真”是“命题p q ∨为真”的充分不必要条件 ④若02x π<<,则4sin sin x x+的最小值为4 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【答案】B【解析】利用命题的否定判断①的正误;运用逆命题的关系判断②的正误;充要条件判断③的正误;函数的最小值判断④的正误. 【详解】对①,命题:p x R ∀∈,211x -≤,则200:,11P x R x ⌝∃∈->,不满足命题的否定形式,故①错误;对②,命题“若(1)10xx e -+=,则0x =”的逆否命题为:“若0x ≠,则(1)10x x e -+≠”,满足逆否命题的定义,故②正确;③“命题p q ∧为真”可知“命题p q ∨为真”反之不成立,所以“命题p q ∧为真”是“命题p q ∨为真”的充分不必要条件,故③正确;④若02x π<<,则4133sin sin 5sin sin sin 1x x x x x +=++≥=,当且仅当sin 1x =时,表达式取得最小值为5;因为sin 1x <,所以表达式没有最小值,故④错误;∴②③结论正确,故选:B . 【点睛】本题考查命题的真假的判断与应用,涉及命题的否定,复合命题的真假以及函数的最值的求解.5.中国古代数学著作《算法统宗》中记载了这样的一个问题“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”,其大意为:有一个人走了378里路,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,问此人前三天共走了( ). A .48里 B .189里C .288里D .336里【答案】D【解析】记每天走的路程里数为{}n a ,{}n a 是等比数列,根据等比数列公式求解 【详解】记每天走的路程里数为{}n a ,{}n a 是等比数列,设第一天行走里程数是1a ,12q = ,166112378112a s ⎛⎫- ⎪⎝⎭==-,1192a =,33119212336112s ⎛⎫- ⎪⎝⎭==-∴,故选:D. 【点睛】本题考查数学文化问题,意在考查抽象,概括和计算求解能力,属于基础题型. 6.某几何体的三视图如图:其中俯视图是等边三角形,正视图是直角三角形,则这个几何体的体积等于( ).A .33B .23C .3D .3 【答案】C【解析】根据三视图的三个图都是三角形,可知几何体是三棱锥,底面是如俯视图的底面,三棱锥的高是正视图的高,13V Sh =. 【详解】由三视图可知几何体是三棱雉,底边是边长为2的等边三角形,12332S =⨯⨯=,高为3, 13333V =⨯⨯=, 故选:C . 【点睛】本题考查根据三视图,求几何体的体积,意在考查空间想象和计算能力,属于基础题型. 7.函数3sin 2xy x =的图象可能是( ).A .B .C .D .【答案】D【解析】首先判断函数的奇偶性,排除选项,再根据特殊区间,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <判断选项. 【详解】3xy =是偶函数,sin 2y x =是奇函数,()3sin 2xf x x =是奇函数,函数图象关于原点对称,故排除A,B02f ⎛⎫= ⎪⎝⎭π ,当(,)2x ππ∈时,30x y =>,sin 20y x =<3sin 20xy x ∴=<,排除C.故选D . 【点睛】本题考查根据函数解析式判断函数图象,一般从函数的定义域确定函数的位置,从函数的值域确定图象的上下位置,也可判断函数的奇偶性,排除图象,或是根据函数的单调性,特征值,以及函数值的正负,是否有极值点等函数性质判断选项. 8.已知函数()()2cos 23042x f x x πωωω⎛⎫=-->⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,则ω的最大值为( ).A .1B .65C .43D .32【答案】C【解析】首先化简函数()2cos 3f x x πω⎛⎫=+⎪⎝⎭,需满足22T π≥,根据函数在区间0,2π⎡⎤⎢⎥⎣⎦单调递减,所以求3x πω+的范围,且是[]0,π的子集,最后求ω的范围.【详解】()cos 1cos 2f x x x πωω⎫⎛⎫=+- ⎪⎪⎝⎭⎭cos x x ωω=-2cos 3x πω⎛⎫=+ ⎪⎝⎭()f x Q 在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,22T π∴≥ ,即2ππω≥ 02ω∴<≤ ,当[0,]2x π∈时,[,]3323x ππωπωπ+∈+, ∴ [,][0,]323πωπππ+⊆ ∴23ωπππ+≤,403ω∴<≤ ,综上可知403ω<≤.故选C 【点睛】本题考查三角函数的恒等变形,以及根据区间的单调性求参数的取值范围,属于中档题型,利用三角函数的奇偶性,周期性,对称性求解参数的值或范围是一个重点题型,首先将三角函数写成形如()sin y A x b ωϕ=++,或()cos y A x b ωϕ=++,()tan y A x b ωϕ=++的形式,然后利用三角函数的性质,借助公式,区间范围关系等将参数表示出来,得到函数参数的等式或不等式,求解. 9.若正数,a b 满足211a b +=,则4821a b +--的最小值为( )A .4B .8C .D .16【答案】B 【解析】把已知211a b +=变形后代入4821a b +--化简后,再利用基本不等式求得最小值. 【详解】 ∵211a b+=,0,0a b >>,∴2,1a b >>,2a b ab +=, ∴484(1)8(2)8420421021(2)(1)22b a a b a b a b a b ab a b -+-+-+===+-------+=212(2)()10a b a b ++-222(5)102(5108a b b a =++-≥+-=,当且仅当22a b b a =,即3a b ==时,等号成立, ∴4821a b +--的最小值是8. 故选:B . 【点睛】本题考查用基本不等式求最值.解题关键是把待求化简变形,然后凑配出可用基本不等式的形式,即定值,然后用基本不等式求得最值.这时用到了“1”的代换.10.已知函数()()()24sin 21f x x x x x =--++在[]1,5-上的最大值为M ,最小值为m ,则 M m +=( ) A .0 B .2 C .4 D .6【答案】D【解析】()()()()()2242124sin 223f x x x sin x x x x x ⎡⎤=--++=---+-+⎣⎦Q令()()()224sin 22g x x x x ⎡⎤=---+-⎣⎦而()()()()()2424sin 2sin 22g x x x x x ⎡⎤-=-----+-⎣⎦ ()()40g x g x ∴-+=则()g x 关于()20,中心对称,则()f x 在[]15-,上关于()23,中心对称, 6M m ∴+=故答案选D点睛:对函数的解析式进行化简,构造出新函数()()()224sin 22g x x x x ⎡⎤=---+-⎣⎦,求得该函数关于点对称,从而计算出最大值与最小值的和.11.在等腰直角三角形ABC 中,,2C CA π∠==,D 为AB 的中点,将它沿CD翻折,使点A 与点B 间的距离为此时四面体ABCD 的外接球的表面积为( ).A .5πB .3C .12πD .20π【答案】D【解析】如图,将四面体ABCD 放到直三棱柱中,求四面体的外接球的半径转化为求三棱柱外接球的半径,然后确定球心在上下底面外接圆圆心连线中点,这样根据几何关系,求外接球的半径. 【详解】ABC ∆中,易知4AB =,2CD AD BD ===翻折后AB =(222221cos 2222ADB +-∴∠==-⨯⨯ ,120ADB ∴∠=o ,设ADB ∆外接圆的半径为r ,24r == ,2r ∴= , 如图:易得CD ⊥平面ABD ,将四面体ABCD 放到直三棱柱中,则球心在上下底面外接圆圆心连线中点,设几何体外接球的半径为R ,222221215R r =+=+= ,∴ 四面体ABCD 的外接球的表面积为2420S R ππ==.故选:D【点睛】本题考查几何体的外接球的表面积,意在考查空间想象能力,和计算能力,属于中档题型,求几何体的外接球的半径时,一般可以用补形法,因正方体,长方体的外接球半径 容易求,可以将一些特殊的几何体补形为正方体或长方体,比如三条侧棱两两垂直的三棱锥,或是构造直角三角形法,确定球心的位置,构造关于外接球半径的方程求解. 12.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是( )A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞ 【答案】A【解析】由已知可知,32()20f x x ex ax lnx '=-+-≥在(0,)+∞上恒成立,分离系数可知,22lnxa ex x x≥+-在(0,)+∞上恒成立,构造函数即可求解. 【详解】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x -+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A . 【点睛】本题主要考查导数法研究函数的单调性,基本思路:当函数是增函数时,导数大于等于零恒成立,当函数是减函数时,导数小于等于零恒成立,然后转化为求相应函数的最值问题.二、填空题13.已知两个向量a r ,b r 满足1a =r,2a b -=r r ,且a r 与b r 的夹角为3π,则b =r_________.【答案】3【解析】根据平面向量的数量积与模长公式,列方程求出||b r的值. 【详解】由||1a =r,|2|a b -=r r a r 与b r 的夹角为3π,∴222(2)447a b a a b b -=-+=r r r r r r g ,24141||cos ||73b b π⨯-⨯⨯⨯+=r r ,∴2||2||30b b --=r r ,解得||3b =r 或||1b =-r(不合题意,舍去).∴||3b =r.故答案为:3. 【点睛】本题考查平面向量的数量积与模长公式的计算问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.14.已知动点(),P x y 满足20030x y y x y -⎧⎪⎨⎪+-⎩……„,则12y x ++的取值范围是___________.【答案】1[,1]5【解析】首先做出可行域,12y x ++表示(),P x y 与()21--,连线的斜率k ,根据数形结合求k 的范围. 【详解】 作出可行域如图,12y x ++表示(),P x y 与()21--,连线的斜率k ,当直线过点()1,2时,k 最大,此时()()21112k --==--,当直线过点()3,0时,k 最小,此时()()011325k --==-- k 的最小值为15, 故答案为:1[,1]5.【点睛】本题考查线性规划,根据目标函数的几何意义求最值,属于基础题型.15.设正项等差数列{}n a 的前n 项和为n S ,2a 和1n a -是函数21()ln 42f x x x nx =+-的极值点,则数列{}(1)n n S -的前2n 项和为___________.【答案】242n n +【解析】首先求函数的导数,得到2410x nx -+=,所以214n a a n -+=,根据等差数列的性质和求和公式得到22n S n =,再代入()1nn S -,利用并项求和. 【详解】1'()40f x x n x=+-=, 2410x nx -+=∴.214n a a n -+=∴,14n a a n +=∴,22n S n =∴,数列{}(1)n n S -的前2n 项和为 222222222[12345(21)(2)]n S n n =-+-+-+--+L22[37(41)]42n n n =+++-=+L .【点睛】本题考查函数极值点和数列求和的综合应用,重点考查数列求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.并项求和法,比如本题;6.倒序相加法求和.16.已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '>且(1)y f x =+是偶函数,2(0)2f e =,则不等式()2x f x e <的解集为_________.【答案】(,2)-∞【解析】设()()x f x g x e=,结合已知可判断()g x 在R 上单调递增,然后由(1)y f x =+是偶函数,及(0)f 可求(2)f ,进而可求(2)g ,即可求解.【详解】 设()()x f x g x e =,()()()0xf x f x x e '-'=>g ∴, ()g x ∴在R 上单调递增,(1)y f x =+Q 是偶函数,()y f x ∴=图象关于1x =对称,2(2)(0)2f f e ∴==,2(2)(2)2f g e ∴==, ()()22x x f x f x e e<⇔<,即()(2)g x g <, 2x ∴<.故答案为:(,2)-∞.【点睛】本题考查函数的导数应用,函数的单调性以及转化思想的应用,考查计算能力.三、解答题17.已知向量(cos ,sin ),(cos )m x x n x x ==u r r ,函数1()2f x m n =⋅-u r r . (1)求函数()f x 的最小正周期;(2)若3,()625f ππαα∈=(,),求cos2α的值; 【答案】(1)π;(2【解析】(1)首先利用向量数量积得到21()cos cos 2f x x x x =+-,利用三角函数恒等变形得到()sin 26f x x π⎛⎫+ ⎝=⎪⎭ ,然后利用周期公式2T ωπ=求周期;(2)由(1)可知3sin 265πα⎛⎫+= ⎪⎝⎭,求cos 26πα⎛⎫+ ⎪⎝⎭的值,然后利用cos 2cos 266ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦求解. 【详解】(1)21()cos cos 2f x x x x =-,1cos 21222x x +=+-12cos 22x x =+ sin(2)6x π=+ ∴函数()f x 的最小正周期22T ππ==. (2)3()sin(2)65f παα=+=, ,62ππα⎛⎫∈ ⎪⎝⎭Q ,72,626ππαπ⎛⎫∴+∈ ⎪⎝⎭ 4cos(2)65πα+=-∴, cos 2cos 266ππαα⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦, =cos(2)cos sin(2)sin 6666ππππαα+++4313==525210--⨯+⨯【点睛】本题考查三角函数的恒等变形和三角函数的性质,意在考查变形与转化,以及计算求解能力,属于基础题型.18.在数列{}n a 中,n S 为{}n a 的前n 项和,223()n nS n a n N *+=∈.(1)求数列{}n a 的通项公式;(2)设11n n n n a b a a ++=⋅,数列{}n b 的前n 项和为n T ,证明14n T <. 【答案】(1)31n n a =-;(2)证明见解析;【解析】(1)首先根据已知得到()112213n n S n a ++++=,然后两式相减得到132n n a a +=+,构造{}1n a +是公比为3的等比数列,求通项公式;(2)根据(1)113111()(31)(31)23131n n n n n n b ++==-----,再利用裂项相消法求和,证明14n T <. 【详解】(1)223n n S n a +=Q ,1122(1)3n n S n a ++∴++=,两式相减得132n n a a +=+ ,113(1)n n a a ++=+∴ ,又111223,2S a a +==∴,∴数列{}1n a +是以3为首项, 3为公比的等比数列,13,31n n n n a a +==-∴∴(2)113111()(31)(31)23131n n n n n n b ++==----- 22311111111........2313131313131n n n T +⎛⎫=-+-++- ⎪------⎝⎭∴ 1111142314n +=-⋅<- 【点睛】本题重点考查了由递推公式求通项,以及裂项相消法求和,一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.19.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos 2c A b a =-.(1)求角C ;(2)若D 是边BC 的中点,11cos 14B =,21AD =ABC V 的面积S . 【答案】(1)3π.(2)3【解析】(1)直接利用正弦定理和三角函数关系式的恒等变换求出C 的值.(2)利用正弦定理和余弦定理及三角函数关系式的变换的应用,进一步利用三角形的面积公式的应用求出结果.【详解】(1)2cos 2c A b a =-Q ,∴由正弦定理得2sin cos 2sin sin C A B A =-,2sin cos 2sin()sin C A A C A ∴=+-,2sin cos 2sin cos 2cos sin sin C A A C A C A =+-∴,2sin cos sin A C A ∴=,Q sin 0A ≠,1cos 2C ∴=, (0,)C π∈Q ,3C π∴∠=. (2)Q 11cos 14B =,(0,)B π∈,53sin B ∴=, sin sin()sin cos cos sin A B C B C B C =+=+53111343214=+=, 43533::sin :sin :sin 8:5:7a b c A B C ∴===, 设8a x =,5b x =,7c x =, 在ACD V 中,2222cos AD AC CD AC CD C =+-⋅⋅, 22221251620x x x ∴=+-,1x ∴=,8a ∴=,5b =,7c =,1sin 1032ABC S ab C ∴==V【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力.20.在多面体ABCDPE 中,四边形ABCD 是直角梯形,//AD BC ,AD AB ⊥,平面PAD ⊥平面ABCD ,//PE CD ,2AB BC ==,4=AD ,25PD =,PDA ∠的余弦值为25,1=2PE CD ,F 为BE 中点,G 为PD 中点.(1)求证://FG 平面ABCD ;(2)求平面BCE 与平面ADE 所成角(锐角)的余弦值.【答案】(1)答案见解析.(2)35【解析】(1)取EC 的中点H ,连结FH ,GH ,证明//FH BC ,//FH 平面ABCD ,//HG CD ,//HG 平面ABCD ,然后证明平面//FHG 平面ABCD ,推出//FG 平面ABCD ;(2)在PAD ∆中,求出2PA =,说明PA AD ⊥,以AD 所在直线为x 轴,BA 所在直线为y 轴,AP 为z 轴,建立空间直角坐标系.求出平面BCE 的一个法向量,利用空间向量的数量积求解平面BCE 与平面ADE 所成角的余弦值即可.【详解】(1)取EC 得中点H ,连结FH ,GHF Q 为BE 中点,//FH BC ∴,FH ⊄Q 平面ABCD .BC ⊂平面ABCD ,//FH ∴平面ABCDG Q 为PD 中点,//EP CD//HG CD ∴HG ⊄Q 平面ABCD .CD ⊂平面ABCD//HG ∴平面ABCD=FH HG H ⋂Q ∴平面//FHG 平面ABCDFG ⊂Q 平面FHG //FG ∴平面ABCD(2)在PAD △中,222=2cos PA PD AD PD AD PDA +-⋅⋅∠25201622544=+-⨯=, 2PA ∴=,222PA AD PD ∴+=,PA AD ∴⊥,又∴平面PAD ⊥平面ABCD ,平面PAD I 平面ABCD AD =,PA ∴⊥平面ABCD ,以AD 所在直线为x 轴,BA 所在直线为y 轴,A 为原点建立空间直角坐标系. (0,0,0),(0,2,0),(2,2,0),(4,0,0),(0,0,2)A B C D P --, 设11(,,),2,2E x y z PE CD EP CD =∴=u u u r u u u r Q , ∴1(,,2)(2,2,0)2x y z ---=,1x ∴=-,1y =-,2z =, ∴点E 的坐标为(1,1,2)--,设平面ADE 的一个法向量:1111(,,)n x y z =u r ,(4,0,0)(1,1,2)AD AE ==--u u u r u u u r , ∴11114020x x y z =⎧⎨--+=⎩,令1112,z y =∴=, ∴1(0,2,1)n =u r ,设平面BCE 的一个法向量2222(,,)n x y z =u u r ,22,n BC n BE⊥⊥u u r u u u r u u r u u u r Q ,∴(2,0,0),(1,1,2)BC BE ==-u u u r u u u r , ∴22222020x x y z =⎧⎨-++=⎩令2212,z y =∴=-,∴2(0,2,1)n =-u u r ,∴123cos ,5n n <>==-u r u u r ∴平面BCE 与平面ADE 所成角(锐角)的余弦值为35. 【点睛】本题考查二面角的平面角的余弦函数值的求法,直线与平面平行的判断定理的应用,考查空间想象能力以及逻辑推理能力计算能力,是中档题.21.已知函数2()ln (2)f x x ax a x =-+-,a R ∈.(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)答案见解析.(2)(0,1)【解析】(1)先求()f x 的定义域,然后进行求导,然后结合a 的范围判断导数的正负即可判断,(2)构造函数()0f x =,分离22lnx x a x x +=+,构造函数22()lnx x g x x x+=+,然后结合导数与函数的关系进行判断即可.【详解】(1)Q ()f x 的定义域为(0,)+∞, 1(21)(1)()2(2)x ax f x ax a x x+-'=-+-=, ①当0a ≤时,()0f x '>在(0,)+∞上恒成立,()f x ∴在(0,)+∞上单调递增,②当0a >时,令()0f x '>得10ax ->,1x a ∴<, ()f x ∴在1(0,)a 上单调递增,在1(,)a+∞上单调递减. (2)令2()ln (2)0f x x ax a x =-+-=得2ln 2x x a x x+=+, 设2ln 2()x x g x x x+=+,22(21)(1ln )()()x x x g x x x +--'∴=+, 令()1ln p x x x =--,1()10p x x'=--<在(0,)+∞上恒成立, ()p x ∴在(0,)+∞上单调递减,又(1)0p =Q ,∴当(0,1)x ∈时()0p x >,即()0g x '>;当(1,)x ∈+∞时()0p x <,即()0g x '<;()g x ∴在(0,1)上单调递增,(1,)+∞上单调递减,当0x +→时,()g x →-∞,(1)1g =;当x →+∞时,()0g x →作出()g x 的图象如图:a ∴的取值范围为(0,1).【点睛】本题考查函数的导数应用,函数的单调性以及分类讨论思想的应用,考查计算能力. 22.已知函数()sin sin f x x x a x b =++,()cos 2x x g x e x e =,曲线()f x 在点(0,(0))f 处的切线方程为y x =.(1)求实数a ,b 的值;(2)当0x >,证明:()()g x f x >.【答案】(1)1a =,0b =.(2)答案见解析【解析】(1)求出导函数,求出切线的斜率,求出切点,代入切线方程,求出b 即可.(2)要证()()g x f x >,即证(cos (1)sin x e x x x +>+,等价于证明:1x e x >+()(0)1xe p x x x =>+,利用函数的导数,判断函数的单调性求解函数的最值,证明即可.【详解】(1)()sin cos cos f x x x x a x '=++Q ,曲线()f x 在点(0,(0))f 处的切线方程为y x =,(0)1f a '∴==,又(0)f b =,切点(0,)b 在切线y x =上,0b ∴=.(2)由(1)可知()(1)sin f x x x =+,要证()()g x f x >,即证(cos (1)sin x e x x x >+0x Q >,10x +>,cos 0x >∴等价于证明:1x e x >+ 设()(0)1xe p x x x =>+,2()0(1)x xe p x x '=>+在(0,)+∞上恒成立, ()p x ∴在(0,)+∞上单调递增,()(0)1p x p ∴>=,设()y h x ==,cos sin y x x ∴=,sin cos x y x ∴-=,)x ϕ+=,sin()x ϕ∴+=,1≤,解得11y -≤≤,即()1()h x p x ≤<,()()g x f x ∴>.【点睛】本题考查函数的导数的应用,切线方程的求法,构造法的应用以及函数的最值证明不等式,考查转化思想以及计算能力,是难题.。

广东省五校协作体高三第一次联考试卷(1月)数学(理)Word版含答案

广东省五校协作体高三第一次联考试卷(1月)数学(理)Word版含答案

广东省五校协作体2018届高三第一次联考试卷理科数学本试卷共5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡的相应位置填涂考生号。

2.作答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

写在本试卷上无效。

3.第Ⅱ卷必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U=N*,集合A={1,2,3,5},B={2,4,6},则图中的阴影部分表示的集合为()A.{2} B.{4,6} C.{1,3,5} D.{2,4,6}2.已知i是虚数单位,复数z满足(i﹣1)z=i,则z的虚部是()A.B.C.D.3. 已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,若|MF|=p,K是抛物线C的准线与x轴的交点,则∠MKF=()A.45° B.30° C.15° D.60°4.在区间上任选两个数x和y,则y<sinx的概率为()A. B.C. D.5.已知,函数y=f(x+φ)的图象关于直线x=0对称,则φ的值可以是()A.B.C.D.6.一块硬质材料的三视图如图所示,正视图和俯视图都是边长为10cm的正方形,将该木料切削、打磨,加工成球,则能得到的最大球的半径最接近()A.3cm B.4cm C.5cm D.6cm7.执行如图所示的程序框图,若输入x=20,则输出的y的值为()A .2B .﹣1C .﹣D .﹣8.若平面α截三棱锥所得截面为平行四边形,则该三棱锥与平面α平行的棱有( )A .0条B .1条C .2条D .1条或2条 9.已知实数x ,y 满足,则z=2|x ﹣2|+|y|的最小值是( ) A .6B .5C .4D .310.已知双曲线﹣=1(a >0,b >0),过其左焦点F 作x 轴的垂线,交双曲线于A ,B两点,若双曲线的右顶点在以AB 为直径的圆外,则双曲线离心率的取值范围是( ) A .(1,) B .(1,2) C .(,+∞)D .(2,+∞)11.关于曲线C :142=+y x 给出下列四个命题: (1)曲线C 有两条对称轴,一个对称中心 (2)曲线C 上的点到原点距离的最小值为1 (3)曲线C 的长度l 满足24>l(4)曲线C 所围成图形的面积S 满足4<<S π 上述命题正确的个数是A .1 B. 2 C. 3 D. 412.定义在R 上的函数f (x )满足f (x+2)=f (x ),当x∈[0,2]时,f (x )=,函数g (x )=x 3+3x 2+m .若对任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f (s )﹣g (t )≥0成立,则实数m 的取值范围是( ) A .(﹣∞, 12] B .(﹣∞,-14] C .(﹣∞,8]D .(﹣∞,]二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 在二项式nxx )1(-的展开式中恰好第5项的二项式系数最大,则展开式中含x 2项的系数是 . 14.已知=(,),||=1,|+2|=2,则在方向上的投影为 .15.两所学校分别有2名,3名学生获奖,这5名学生要排成一排合影,则存在同校学生排在一起的概率为 .16.已知数列{}n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+为奇数,为偶数n nnnn a a a a a 13,21,如果1a =1,则 2018321....a a a a ++++= .三、解答题:共70分.解答应写出文字说明、证明过程和演算步骤.第17~21题为必考题,每个试题考生都必须做答.第22、23题为选考题,考生根据要求做答.(一)必考题:共60分.17.在△ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若a =10,cos B =255,D 为AC 的中点,求BD 的长.18.如图,在四棱锥E ﹣ABCD 中,△ABD 是正三角形,△BCD 是等腰三角形,∠BCD=120°,EC ⊥BD .(1)求证:BE=DE ;(2)若AB=2,AE=3,平面EBD ⊥平面ABCD ,直线AE 与平面ABD 所成的角为45°,求二面角B ﹣AE ﹣D 的余弦值.19.据某市地产数据研究院的数据显示,2016年该市新建住宅销售均价走势如图所示,为抑制房价过快上涨,政府从8月份采取宏观调控措施,10月份开始房价得到很好的抑制. (1)地产数据研究院研究发现,3月至7月的各月均价y (万元/平方米)与月份x 之间具有较强的线性相关关系,试建立y 关于x 的回归方程(系数精确到0.01),政府若不调控,依次相关关系预测第12月份该市新建住宅销售均价;(2)地产数据研究院在2016年的12个月份中,随机抽取三个月份的数据作样本分析,若关注所抽三个月份的所属季度,记不同季度的个数为X ,求X 的分布列和数学期望. 参考数据:=25,=5.36,=0.64(说明:以上数据ii y x ,为3月至7月的数据)回归方程=x+中斜率和截距的最小二乘估计公式分别为:=, =﹣.20.已知椭圆E: +=1(a>b>0)的左焦点F1与抛物线y2=﹣4x的焦点重合,椭圆E 的离心率为,过点M (m,0)(m>)作斜率不为0的直线l,交椭圆E于A,B两点,点P(,0),且•为定值.(1)求椭圆E的方程;(2)求△OAB面积的最大值.21.已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.(1)当a=﹣1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为﹣3,求a的值;(3)设g(x)=xf(x),若a>0,对于任意的两个正实数x1,x2(x1≠x2),证明:2g()<g(x1)+g(x2).(二)选考题:共10分.请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.在直角坐标系xOy中,直线l的参数方程为(t为参数),在以原点O为极点,x轴正半轴为极轴的极坐标系中,圆C的方程为ρ=6sinθ.(1)写出直线l的普通方程和圆C的直角坐标方程;(2)设点P(3,4),直线l与圆C相交于A,B两点,求+的值.23.已知函数f(x)=|x﹣2|+|2x+1|.(1)解不等式f(x)>5;(2)若关于x的方程=a的解集为空集,求实数a的取值范围.广东省五校协作体2018届高三第一次联考理科数学参考答案及评分细则一、选择题:本大题共12个小题,每小题5分,共60分.二、填空题:每题5分,满分20分. 13. 56- 14. 41-15. 10916. 4709三、解答题:满分70分.17.(1)因为2a sin A =(2b -c )sin B +(2c -b )·sin C ,由正弦定理得2a 2=(2b -c )b +(2c -b )c , ………(1分) 整理得2a 2=2b 2+2c 2-2bc , ……………(2分)由余弦定理得cos A =b 2+c 2-a 22bc =2bc 2bc =22, ……………(4分)因为A ∈(0,π),所以A =π4. ……………(5分) (2)由cos B =255,得sin B =1-cos 2B =1-45=55, ……………(6分) 所以cos C =cos[π-(A +B )]=-cos(A +B )=-⎝⎛⎭⎪⎫22×255-22×55=-1010,……8分 由正弦定理得b =a sin Bsin A=10×5522=2, ………(9分)所以CD =12AC =1, ………………………(10分)在△BCD 中,由余弦定理得BD 2=(10)2+12-2×1×10×⎝ ⎛⎭⎪⎫-1010=13,…(11分)所以BD =13. ………(12分) 18.证明:(Ⅰ)取BD 中点O ,连结CO ,EO ,∵△BCD 是等腰三角形,∠BCD=120°,∴CB=CD ,∴CO ⊥BD ,………………………(2分) 又∵EC ⊥BD ,EC ∩CO=C ,∴BD ⊥平面EOC ,∴EO ⊥BD , ………………………(4分) 在△BDE 中,∵O 为BD 的中点,∴BE=DE . ………(5分) (Ⅱ)∵平面EBD ⊥平面ABCD ,平面EBD ∩平面ABCD=BD ,EO ⊥BD ,∴EO ⊥平面ABCD , ……… (6分) 又∵CO ⊥BD ,AO ⊥BD ,∴A,O,C三点共线,AC⊥BD,以O为原点,OA为x轴,OB为y轴,OE为z轴,建立空间直角坐标系,在正△ABCD中,AB=2,∴AO=3,BO=DO=,………(7分)∵直线AE与平面ABD所成角为45°,∴EO=AO=3,………(8分)A(3,0,0),B(0,,0),D(0,﹣,0),E(0,0,3),=(﹣3,,0),=(﹣3,﹣,0),=(﹣3,0,3),………(9分)设平面ABE的法向量=(a,b,c),则,取a=1,得=(1,,1),………(10分)设平面ADE的法向量=(x,y,z),则,取x=1,得=(1,﹣,1),………(11分)设二面角B﹣AE﹣D为θ,则cosθ===.∴二面角B﹣AE﹣D的余弦值为.………(12分)19.解:(Ⅰ)由题意=5, =1.072,………(1分)=10,………(2分)∴==0.064,………(3分)=﹣=0.752,………(4分)∴从3月到6月,y关于x的回归方程为y=0.06x+0.75,………(5分)x=12时,y=1.47.即可预测第12月份该市新建住宅销售均价为1.47万元/平方米;(6分)(Ⅱ)X的取值为1,2,3,………(7分)P(X=1)==,P(X=3)==,P(X=2)=1﹣P(X=1)﹣P(X=3)=,………(10分)X的分布列为………(11分)E(X)=1×+2×+3×=.………(12分)20.解:(Ⅰ)设F1(﹣c,0),∵抛物线y2=﹣4x的焦点坐标为(﹣1,0),且椭圆E的左焦点F与抛物线y2=﹣4x的焦点重合,∴c=1,………(1分)又椭圆E的离心率为,得a=,………(2分)于是有b2=a2﹣c2=1.故椭圆Γ的标准方程为:.………(3分)(Ⅱ)设A(x1,y1),B(x2,y2),直线l的方程为:x=ty+m,由整理得(t2+2)y2+2tmy+m2﹣2=0 ………(4分),………(5分),==(t2+1)y1y2+(tm﹣t)(y1+y2)+m2﹣=.………(7分)要使•为定值,则,解得m=1或m=(舍)………(8分)当m=1时,|AB|=|y1﹣y2|=,………(9分)点O到直线AB的距离d=,………(10分)△OAB面积s==.………(11分)∴当t=0,△OAB面积的最大值为,………(12分)21.解:(1)易知f(x)定义域为(0,+∞),当a=﹣1时,f(x)=﹣x+lnx,,………(1分)令f′(x)=0,得x=1.当0<x<1时,f′(x)>0;当x>1时,f′(x)<0,∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.………(2分)f(x)max=f(1)=﹣1.∴函数f(x)在(0,+∞)上的最大值为﹣1,………(3分)(2)∵.………(4分)①若,则f′(x)≥0,从而f(x)在(0,e]上是增函数,∴f(x)max=f(e)=ae+1≥0,不合题意,………(5分)②若,则由,即由,即,从而f(x)在(0,﹣)上增函数,在(﹣,e]为减函数………(6分)∴令,则,∴a=﹣e2,………(7分)(3)证明:∵g(x)=xf(x)=ax2+xlnx,x>0∴,………(8分)∴g′(x)为增函数,不妨令x2>x1令,………(9分)∴,∵,∴………(10分)而h(x1)=0,知x>x1时,h(x)>0故h(x2)>0,即………(12分)[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)由直线l的参数方程为(t为参数),得直线l的普通方程为x+y﹣7=0.(2分)又由ρ=6sinθ得圆C的直角坐标方程为x2+(y﹣3)2=9;………(5分)(Ⅱ)把直线l的参数方程(t为参数),代入圆C的直角坐标方程,-+=,设t1、t2是上述方程的两实数根,………(7分)得2t10所以t1+t2=2,t1t2=1,………(8分)>0,t2>0,所以+ = . ………(10分)∴t[选修4-5:不等式选讲]23.解:(Ⅰ)解不等式|x﹣2|+|2x+1|>5,………(1分)x≥2时,x﹣2+2x+1>5,解得:x>2;………(2分)﹣<x<2时,2﹣x+2x+1>5,无解,………(3分)x≤﹣时,2﹣x﹣2x﹣1>5,解得:x<﹣,………(4分)故不等式的解集是(﹣∞,﹣)∪(2,+∞);………(5分)(Ⅱ)f(x)=|x﹣2|+|2x+1|=,………(7分)故f(x)的最小值是,所以函数f(x)的值域为[,+∞),………(8分)从而f(x)﹣4的取值范围是[﹣,+∞),进而的取值范围是(﹣∞,﹣]∪(0,+∞).………(9分)根据已知关于x的方程=a的解集为空集,所以实数a的取值范围是(﹣,0].………(10分)。

2023届高三五校联考(理综)

2023届高三五校联考(理综)

东北师大附中长春十一高中2023届高三联合模拟考试吉林一中四平一中理科综合科试题松原实验中学考试时间150分钟,本卷满分300分。

可能用到的相对原子质量:H 1 Li 7 C 12 O 16 Si 28 Ca 40 Fe 56 Cu 63.5第I卷一、选择题:本题共13小题,每小题6分,共78分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 下列关于细胞结构和功能的叙述,正确的是A.动物细胞没有原生质层,不能发生渗透作用B.动物细胞有丝分裂过程中由中心体合成星射线形成纺锤体C.蓝细菌和硝化细菌都能进行有氧呼吸,都没有线粒体D.细胞间的信息交流必须依赖于细胞膜表面的受体2. 下列关于遗传信息的传递过程,说法正确的是A.DNA分子部分碱基发生甲基化修饰后,遗传信息不能传递给子代B.翻译过程中mRNA上相邻的每三个碱基都决定一个氨基酸C.转录和翻译过程都以核酸作为模板,都形成氢键,都需要运载工具D.转录过程发生的碱基配对方式有A—U、T—A、G—C和C—G3. 下列叙述中与染色体变异无关的是A.环境中致畸物质导致胎儿唐氏综合征的发病率提高B.同源染色体非姐妹染色单体片段交换增加配子种类C.利用植物体细胞杂交技术,获得白菜-甘蓝D.通过单倍体育种技术迅速获得纯合二倍体植株4. 可卡因通过与多巴胺转运蛋白和囊泡单胺转运体结合,干扰相应神经元对多巴胺(DA)的再摄取和包装系统,使间隙中DA水平上升,从而产生奖赏和依赖效应。

产前摄入可卡因可导致胎儿糖代谢紊乱,实验发现,经鼻腔给予大鼠胰岛素,可降低可卡因所致的奖赏和依赖效应,说明糖代谢紊乱与可卡因成瘾密切相关。

下列相关分析错误的是A.胰岛素通过与可卡因竞争多巴胺转运蛋白,有望成为治疗可卡因成瘾的药物B.可卡因能干扰神经系统的作用,可能会影响心脏功能,甚至抑制免疫系统功能C.可卡因等毒品、兴奋剂对神经系统的影响大多是通过突触来起作用的D.对可卡因产生依赖效应的原因可能是突触后膜上的多巴胺受体减少5. 某冬泳爱好者在进行冬泳训练过程中感觉呼吸急促、心跳加快,训练结束后感觉饥饿。

广东省深圳市2024届高三第一次调研考试数学试卷

广东省深圳市2024届高三第一次调研考试数学试卷

一、单选题1.与曲线和都相切的直线与直线垂直,则=( )A .-8B .-3C .4D .62. 函数的部分图象大致为( )A.B.C.D.3.已知三棱锥的各顶点都在同一球面上,且平面,若该棱锥的体积为,,,,则此球的表面积等于( )A.B.C.D.4.已知双曲线的顶点为椭圆的两个焦点,双曲线的右焦点与椭圆短轴的两个顶点构成正三角形,则双曲线的离心率为( )A.B.C.D .25.已知椭圆的焦距为2,离心率,则椭圆的标准方程为( )A.B.C.D.6.已知在菱形中,,把沿折起到位置,若二面角大小为,则四面体的外接球体积是( )A.B.C.D.7. 为了解大学生对体育锻炼的兴趣,某高校从4万多名在校大学生中抽取了男、女生各200名进行了调查,得到如下统计图:对比两图中信息并进行分析,下列说法正确的是( )A .大量出汗并感到很疲乏的男生人数是女生人数的2倍B .男生中运动时间超过1小时的超过广东省深圳市2024届高三第一次调研考试数学试卷二、多选题三、填空题C .女生的平均运动强度高于男生的平均运动强度D .运动时间在小时内的男生人数与运动时间在小时内的女生人数相同8.在中,点在边上,且,设,,则A.B.C.D.9. 已知正三棱锥,点P ,A ,B ,C 都在半径为的球面上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为A.B.C.D.10. 已知集合,则( )A.B.C.D.11. 已知,且,则下列结论正确的是( )A.的最大值为B .的最大值为C.的最小值为D.的最大值为12.已知函数的定义域为R,为奇函数,且对,恒成立,则( )A .为奇函数B.C.D.13. 2020年上半年受疫情影响,我国居民人均消费支出情况也受到了影响,现统计出2015-2020年上半年我国居民人均消费支出情况如图所示,则下列说法正确的是()A .从2015年到2019年我国居民人均消费支出逐年减少B .若2020年下半年居民消费水平与上半年相当,则全年消费与2018年基本一致C .若2020年下半年居民消费水平比上半年提高20%,则全年消费支出将超过2019年D .随着疫情的有效控制,2020年下半年居民消费水平比上半年有所提高,居民人均消费支出较2019年减少不会超过10%14. 质点A 和B 在以坐标原点O 为圆心,半径为1的圆O 上逆时针做匀速圆周运动,同时出发,A 的起点在射线和圆O 的交点处,A 的角速度为,B 的起点为圆O 与x 轴正半轴的交点,B 的角速度为,则下列说法正确的是( )A .在1s 末时,点A的坐标为B .在2s 末时,点B的坐标为C .在2s 末时,劣弧的长为D .当A 与B 重合时,点A的坐标可以为四、填空题五、解答题六、解答题15.已知等差数列的前5项和,则____________.16. 等腰△ABC 中,AB =AC ,BD 为AC 边上的中线,且BD =3,则△ABC 的面积最大值为_____.17. 如图,在三棱锥中,平面ABC ,,,若三棱锥的外接球体积为,则的面积为__________.18.知数列,,,,,则该数列的第3项是______,是它的第______项.19. 已知抛物线:的焦点为,过点的直线与交于,两点,若恰好为的中点,则_____;直线的斜率为______.20.在数列中,,且.(1)求的通项公式;(2)若,数列的前项和为,求21. (1)求曲线和曲线围成图形的面积;(2)化简求值:.22. 已知函数.(1)求函数的单调区间和极值;(2)画出函数的大致图象,并说明理由;(3)求函数的零点的个数.23. 党的十八大以来,习近平总书记多次对职业病防治工作作出重要指示,并在全国卫生与健康大会上强调,推进职业病危害源头治理.东部沿海某蚕桑种植场现共有工作人员110人,其中有22人从事采桑工作,另外88人没有从事采桑工作.(1)为了解职工患皮炎是否与采桑有关,现采用分层随机抽样的办法从全体工作人员中抽取25人进行调查,得到以下数据:采桑不采桑合计患皮炎4未患皮炎18合计25①请完成上表;②依据小概率值的独立性检验,分析患皮炎是否与采桑有关?(2)为了进一步了解职工职业病的情况,需要在上表患皮炎的工作人员中抽取4人做进一步调查,将其中采桑的人数记作,求的分布列和七、解答题八、解答题九、解答题期望.附:,其中,0.150.100.050.0250.0100.0052.0722.7063.8415.0246.6357.87924. 已知函数.(1)讨论的单调性;(2)证明:方程在上有且只有一个解;(3)设点,,,若对任意,,都有经过,的直线斜率大于,求实数的取值范围.25. 某市为创建全国文明城市,市文明办举办了一次文明知识网络竞赛,全市市民均有且只有一次参赛机会,满分为100分,得分大于等于80分的为优秀.竞赛结束后,随机抽取了参赛中100人的得分为样本,统计得到样本平均数为71,方差为81.假设该市有10万人参加了该竞赛活动,得分Z服从正态分布.(1)估计该市这次竞赛活动得分优秀者的人数是多少万人?(2)该市文明办为调动市民参加竞赛的积极性,制定了如下奖励方案:所有参加竞赛活动者,均可参加“抽奖赢电话费”活动,竞赛得分优秀者可抽奖两次,其余参加者抽奖一次.抽奖者点击抽奖按钮,即随机产生一个两位数(10,11,,99),若产生的两位数的数字相同,则可奖励40元电话费,否则奖励10元电话费.假设参加竞赛活动的所有人均参加了抽奖活动,估计这次活动奖励的电话费总额为多少万元?参考数据:若,则.26.已知两定点,动点满足,由点向轴作垂线段,垂足为,点满足,点的轨迹为.(1)求曲线的方程;(2)过点作直线与曲线交于两点,点满足(为原点),求四边形面积的最大值,并求此时直线的方程.。

广东深圳高级中学2025届高三上学期第一次诊断测试数学试题+答案

广东深圳高级中学2025届高三上学期第一次诊断测试数学试题+答案

(本试卷共3页,19小题,满分150分。

考试用时120分钟。

) 2024.深圳市高级中学2025届高三第一次诊断考试数学10一、单项选择题:本题共8小题,每小题5分,共40分。

1.已知集合{}2,1,0,1,2,3U =−−,{}1,2A =,{}1,0,1B −,则()U A B = ( )A .{}2,3−B .{}2,2,3−C .{}2,1,0,3−−D .{}2,1,0,2,3−−2.1e ,2e是平面内不共线两向量,已知12AB e ke =− ,122CB e e =+ ,123CDe e =− ,若A ,B ,D 三点共线,则k 的值是( ) A .2−B .2C .3−D .33.若α是第三象限角,且()()5sin cos cos sin 13αββαββ+−+=−,则tan 2α的值为( )A .5−B .5C .513−D .5134.已知函数()f x 的定义域为[]2,2−,则函数()()1f x F x x+=的定义域为( )A .[]1,3−B .[]3,1−C .[)(]1,00,3−D .[)(]3,00,1−5.已知函数()()22ln 3f x x ax a =−−在[)1,+∞上单调递增,则a 的取值范围是( ) A .(],1−∞−B .(),1−∞−C .(],2−∞D .()2,+∞6.已知平面向量1e 和2e 满足2122e e == ,2e 在1e 上的投影向量为1e − ,则1e 在2e 上的投影向量为( )A .212e −B .12−C .214e −D .2e −7.已知关于x 不等式()()20x ax b x c−+≥−的解集为(](],21,2−∞− ,则( )A .2c =B .点(),a b 在第二象限C .22y ax bx a =+−的最大值为3aD .关于x 的不等式20ax ax b +−≥的解集为[]2,1−8.已知0a >,1x ,2x 分别是函数()e xf x x a =−与()ln xg x a x=−−的零点,则1212e a x x x −的最大值为( )A .2B .22e C .24e D .28e二、多项选择题:本题共3小题,每小题6分,共18分。

广东省2024-2025学年高三上学期第一次调研考试 数学 Word版含答案

广东省2024-2025学年高三上学期第一次调研考试 数学 Word版含答案

★启用前注意保密广东省2025届普通高中毕业班第一次调研考试数 学本试卷共4页,考试用时120分钟,满分150分.注意事项:1.答卷前,考生务必将自己所在的市(县、区)、学校、班级、姓名、考场号和座位号填写在答题卡上,将条形码横贴在每张答题卡左上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上将对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先画掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保证答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}22,22A x x B x x =-<<=-<,则A B =( )A .()2,2-B .()0,4C .()0,2D .()2,4-2.已知复数z 满足1i z z +=+,则z =( )A .12B C .1D3.已知函数()f x 满足()111f x f x x ⎫⎛+=+⎪-⎝⎭,则()2f =( ) A .34-B .34 C .32D .944的正四面体的体积为( )A B .24 C .32D .5.设点P 为圆22(3)1x y -+=上的一动点,点Q 为抛物线24y x =上的一动点,则PQ 的最小值为( )A .1-B .1C D 26.已知()()2lg 21f x ax ax =++的值域为R ,则实数a 的取值范围为( ) A .()0,1B .(]0,1C .[)1,+∞D .()(),01,-∞+∞7.设,αβ为锐角,且()cos cos cos ααββ-=,则α与β的大小关系为( ) A .αβ=B .αβ>C .αβ<D .不确定8.若0a b >>,且3322a b a b -=-,则11a b+的取值范围是( ) A .41,3⎫⎛ ⎪⎝⎭B .4,3⎫⎛+∞⎪⎝⎭C .()1,3D .()3,+∞二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.变量,x y 之间的相关数据如下表所示,其经验回归直线ˆˆˆybx a =+经过点()10,m ,且相对于点()11,5的残差为0.2,则A .8m =B . 2.8b =-C .36a =D .残差和为010.已知函数()()2cos cos2f x x x x =-∈R ,则( ) A .()f x 的值域是[]3,3- B .()f x 的最小正周期是2π C .()f x 关于()πx k k =∈Z 对称D .()f x 在π,π3⎡⎤⎢⎥⎣⎦上单调递减11.甲、乙、丙、丁四人共同参加4项体育比赛,每项比赛的第一名到第四名的得分依次为5分,3分,2分,1分.比赛结束甲获得16分为第一名,乙获得14分为第二名,且没有同分的情况.则( ) A .第三名可能获得10分 B .第四名可能获得6分C .第三名可能获得某一项比赛的第一名D .第四名可能在某一项比赛中拿到3分三、填空题:本题共3小题,每小题5分,共15分.12.已知函数()e ,0,ln ,0,x x f x x x ⎧≤=⎨>⎩过原点()0,0O 作曲线()y f x =的切线,其切线方程为_____________.13.如图是一个33⨯的九宫格,小方格内的坐标表示向量,现不改变这些向量坐标,重新调整位置,使得每行、每列各三个向量的和为零向量,则不同的填法种数为_____________.14.已知数列{}n a 满足11,3,,3,3n n n nn a a a a a ++<⎧⎪=⎨≥⎪⎩记{}n a 的前n 项和为n S ,若11a =,则50S =_____________;若*12,3a k =∈N ,则31k S +=_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)ABC △中,,,A B C 所对的边分别为,,a b c ,已知b 是a 与c 的等比中项,且sin A 是()sin B A -与sin C 的等差中项. (1)证明:cos aA b=; (2)求cos B 的值.16.(15分)如图,四边形ABCD是圆柱OE 的轴截面,点F 在底面圆O 上,OA BF AD ===3,点G是线段BF 的中点,点H 是BF 的中点.(1)证明:EG ∥平面DAF ; (2)求点H 到平面DAF 的距离.17.(15分)某学校有,A B 两家餐厅,王同学每天中午会在两家餐厅中选择一家用餐,如果前一天选择了A 餐厅则后一天继续选择A 餐厅的概率为14,前一天选择B 餐厅则后一天选择A 餐厅的概率为p ,如此往复.已知他第1天选择A 餐厅的概率为23,第2天选择A 餐厅的概率为13.(1)求王同学第13~天恰好有两天在A 餐厅用餐的概率; (2)求王同学第()*n n ∈N 天选择A 餐厅用餐的概率n P .18.(17分)设直线12:,:l y l y ==.点A 和点B 分别在直线1l 和2l 上运动,点M 为AB 的中点,点O 为坐标原点,且1OA OB ⋅=-. (1)求点M 的轨迹方程Γ;(2)设()00,M x y ,求当0x 取得最小值时直线AB 的方程;(3)设点()P 关于直线AB 的对称点为Q ,证明:直线MQ 过定点.19.(17分)函数()f x 的定义域为R ,若()f x 满足对任意12,x x ∈R ,当12x x M -∈时,都有()()12f x f x M -∈,则称()f x 是M 连续的.(1)请写出一个函数()f x 是{}1连续的,并判断()f x 是否是{}n 连续的()*n ∈N ,说明理由; (2)证明:若()f x 是[]2,3连续的,则()f x 是{}2连续且是{}3连续的;(3)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,()3112f x ax bx =++(其中,a b ∈Z ),且()f x 是[]2,3连续的,求,a b 的值.广东省2025届普通高中毕业班第一次调研考试数学参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.三、填空题:本题共3小题,每小题5分,共15分.12.e 0x y -= 13.72 14.111199633k k --+(前空2分,后空3分) 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.解:(1)由题,得()sin sinBcos cosBsin B A A A -=-,()()()sin sin πsin sinBcos cosBsin C A B B A A A =-+=+=+,因为sin A 是()sin B A -与sin C 的等差中项,所以()2sin sin sin 2sinBcos A B A C A =-+=,则sin cos sin AA B=, 在ABC 中,由正弦定理sin sin a b A B =,得sin sin A a B b=, 因此cos aA b=. (2)在ABC △中,由余弦定理得222cos 2b c a A bc+-=,由(1)知cos a A b=,则2222b c a abc b +-=,即2222b c a ac +-=. 因为b 是a 与c 的等比中项,所以2b ac =,从而222ac c a ac +-=,即220a ac c +-=,从而210a ac c⎫⎛+-= ⎪⎝⎭,解得a c =或0a c =<(舍去)在ABC △中,由余弦定理得()222222222cos 222a c c a a c b a a B ac ac ac c +--+-=====因此1cos 2B =. 16.(1)证明:取AF 的中点为M ,连接MD MG ,.因为点,M G 分别是FA 和FB 的中点,所以MG AO ∥,且12MG AB AO ==. 在圆柱OE 的轴截面四边形ABCD 中,,AO DE AO DE =∥. 所以,MG DE MG DE =∥,因此四边形DEGM 是平行四边形.所以EG DM ∥,又EG ⊄平面,DAF DM ⊂平面DAF ,所以EG ∥平面DAF .(2)解:由圆的性质可知,连接OG 延长必与圆O 交于点H ,连接,OE EH ,因为,OG AF OG ⊂∥平面,OEH AF ⊂平面DAF ,所以OG ∥面DAF ,又因为已证EG ∥平面DAF ,且EG OG G =,所以平面DAF ∥平面OEH .从而点H 到平面DAF 的距离即为点E 到平面DAF 的距离.以O 为坐标原点,AB 的中垂线为x 轴,OB 为y 轴,OE 为z 轴建立空间直角坐标系,如图所示.则()()()30,0,3,0,,0,,2E A D ⎫⎛⎪ ⎝⎭ 所以()()0,3,3,0,0,3AE AD ==,32AF ⎫⎛=⎪ ⎝⎭设(),,n x y z =为平面DAF 的法向量,则由30,30,2n AD z n AF x y ⎧⋅==⎪⎨⋅=+=⎪⎩可取()3,1,0n =-因此点E 到平面DAF 的距离323AE n d n⋅===+,即点H 到平面DAF17.(15分)解:(1)设i A =“王同学第i 天选择A 餐厅”()1,2,3i =.()()()()()()1212212121121,;,;,33334P A P A P A P A P A A P A A p ======.由全概率公式,得()()()()()112121*********P A P A P A A P P A A p A =+=⨯+⨯=,解得12p =.设B =“王同学第13~天恰好有两天在A 餐厅用餐”,则312122313B A A A A A A A A A =++, 因此()()()()312122313213111231534432434212P B P A A A P A A P A A A A =++=⨯⨯+⨯⨯+⨯⨯=. (2)设n A =“王同学第n 天选择A 餐厅”()*n ∈N ,则()(),1n n n n P P A P P A ==-, 由题与(1)可得()()1111,42n n n n A P A A P A ++==. 由全概率公式,得()()()()()()1111111114242n n n n n n n n n n n P P A P A P A A P A P A A P P P ++++==+=+-=-+.则1212545n n P P +⎫⎛-=-- ⎪⎝⎭,又因为1240515P -=≠, 所以25n P ⎧⎫-⎨⎬⎩⎭是以首项为415,公比为14-的等比数列. 因此12415154n n P -⎫⎛-=⨯- ⎪⎝⎭,即12415154n n P -⎫⎛=+⨯- ⎪⎝⎭.18.解:(1)设()()()1122,,,,,A x y B x y M x y,则1122,y y ==,所以)121212,2,22x x x x x y y y +⎧=⎪⎪⎨-+⎪==⎪⎩从而122,2x x x ⎧=⎪⎪⎨-⎪=⎪⎩ 因为1OA OB ⋅=-,所以121212121221x x y y x x x x x x +=-=-=-,即121x x =.1=,化简得2212y x -=. 所以点M 的轨迹方程为2212y x -=. (2)由(1)得220112y x =+≥,则0x 的最小值为1,此时01x =或01x =-, 即()1,0M 或()1,0M -.当()1,0M 时,可得121,1x x ==,从而直线AB 的方程为1x =;当()1,0M -时,同理可得直线AB 的方程为1x =-. (3)设()00,M x y ,由(2)知,当()1,0M 时,直线:1AB x =,得()2Q +,直线:0MQ y =; 当()1,0M -时,直线:1AB x =-,得()2Q -+,直线:0MQ y =. 当()00,M x y 是其他点时,直线AB的斜率存在,且)12012121202AB x x x y y k x x x x y +-====--,则直线AB 的方程为()00002x y y x x y -=-,注意到220012y x -=,化简得00:220AB x x y y --=.设(),Q x y '',则由00021,0220,22x y x y x y ⨯=-'+⎪⨯--='⨯⎪⎩解得Q ⎫, 又()00,M x y,所以00012MQ y y k-+==)00:MQ yy x x -=-,令x =,得0y =,因此直线MQ 过定点)T.19.解:(1)()f x x =是{}1连续的,也是{}n 连续的.理由如下: 由121x x -=,有()()12121f x f x x x -=-=, 同理当12x x n -=,有()()1212f x f x x x n -=-=, 所以()f x x =是{}1连续的,也是{}n 连续的.(2)因为()f x 是[]2,3连续的,由定义可得当1223x x ≤-≤时,有()()1223f x f x ≤-≤, 所以()()()()()()()()6644226f x f x f x f x f x f x f x f x +-=+-+++-+++-≥, 同理()()()()()()66336f x f x f x f x f x f x +-=+-+++-≤,所以()()66f x f x +-=, 所以()()()()()()644222f x f x f x f x f x f x +-+=+-+=+-=,即()f x 是{}2连续的, 同理可得()()33f x f x +-=,即()f x 是{}3连续的.(3)由(2)可得()()()()22,33f x f x f x f x +-=+-=,两式相减可得()()321f x f x +-+=即()()()11,f x f x f x +-=是{}1连续的,进一步有()()f x n f x n +-=.当1201x x ≤-≤时,有12223x x ≤+-≤,因为()f x 是[]2,3连续的,所以()()12223f x f x ≤+-≤, 又()()1122f x f x +=+,所以()()12223f x f x ≤+-≤,所以()()1201f x f x ≤-≤,故()f x 是[]0,1连续的.由上述分析可知()111,220,f f f x ⎧⎫⎫⎛⎛-+=⎪ ⎪ ⎪⎝⎝≥'⎭⎭⎨⎪⎩即21,42130,2a b ax b ⎧+=⎪⎪⎨⎪+≥⎪⎩ 所以211310,422a ax x ⎡⎤-+≥∈-⎢⎥⎣⎦,恒成立. 当0a =时,2b =;当0a >时,由23104a ax -+≥,得104a-+≥,即4a ≤.此时4,0;2,1a b a b ====;满足题意. 当0a <时,由23104aax -+≥,得2a ≥-.此时2,3a b =-=,满足题意.综上所述,0,2;4,0;2,1;2,3a b a b a b a b =======-=.。

广东省深圳市2015届高三上学期第一次五校联考数学(理)试卷及答案

广东省深圳市2015届高三上学期第一次五校联考数学(理)试卷及答案

2015届高三年级第一次五校联考理科数学试卷本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1. 已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i +2. 设集合{} 12A x R x =∈-<,{}2,xB y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1, B .()1 2, C .()2 3, D .()3 4, 4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 76. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。

广东省深圳市2015届高三上学期第一次五校联考理综试题 Word版含答案

广东省深圳市2015届高三上学期第一次五校联考理综试题 Word版含答案

2015届高三年级第一次五校联考理科综合试卷本试卷共10页,36小题,满分300分.考试用时150分钟注意事项:1.答卷前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡上。

用2B铅笔将考生号填涂在答题卡相应的位置上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

一、单项选择题:本大题包括16 小题,每小题4 分,共64 分。

在每小题给出的四个选中,只有一个选项符合题目要求,选对的得4 分,选错或不答的得0 分。

1.19世纪德国M.J.Schleiden和T.Schwann等科学家提出了细胞学说,下列对“细胞学说”理解合理的是①一切生物都是由细胞和细胞产物构成的②细胞是一个相对独立的有机体③提出了细胞膜结构的流动镶嵌模型④揭示细胞的统一性和生物体结构的统一性⑤认识到细胞的多样性⑥标志着生物学研究进入细胞水平A.①②⑤⑥B.①②③④C.③⑤D.②④⑥2.如图甲是有活性的细胞中元素含量的柱形图,图乙是细胞中化合物含量的扇形图,下列说法正确的是A.若图甲表示组成人体细胞的元素含量,则a、b、c依次是O、H、CB.若图乙表示细胞干重,则A化合物是蛋白质C.若图乙表示细胞鲜重,则A化合物在细胞内主要存在于细胞液中D.地壳与活细胞中含量最多的元素都是a,因此说明生物界与非生物界具有统一性3.如图表示细胞某些结构的组成成分,图中字母是元素符号,甲、乙、丙表示物质。

下列有关叙述错误的是A.图示细胞是真核细胞,图中的化学元素都属于组成细胞的大量元素B.鉴定甲、乙、丙三种物质所用的试剂分别是苏丹Ⅲ染液、双缩脲试剂和二苯胺试剂C.乙和丙是生物大分子,细胞内合成乙的场所是核糖体,合成丙的原料是脱氧核苷酸D.Ⅰ功能的复杂性主要取决于乙的种类,Ⅱ是丙的主要载体,在有丝分裂过程中其形态会发生周期性变化4.下列有关物质跨膜运输的叙述正确的是A.葡萄糖进入红细胞不消耗能量B.协助扩散和自由扩散都不需要膜上载体蛋白的协助C.相对分子质量小的物质或离子都可以通过自由扩散进入细胞D.温度不会影响物质跨膜运输的速率5.下列关于实验的叙述中正确的是A.用人口腔上皮细胞做“观察DNA和RNA在细胞中的分布”实验时,需先对细胞进行盐酸水解,然后用甲基绿、吡罗红染色剂分别给涂片进行染色B.选用洋葱根尖伸长区细胞较易观察到细胞有丝分裂图像C.显微镜下观察正在发生质壁分离的紫色洋葱表皮细胞,可见液泡的颜色逐渐加深D.在“探究细胞大小与物质运输的关系”实验中,计算紫红色区域的体积与整个琼脂块的体积之比,能反应NaOH进入琼脂快的速率。

2021-2022学年广东省深圳市六校高三(上)第一次联考数学试卷

2021-2022学年广东省深圳市六校高三(上)第一次联考数学试卷

2021-2022学年广东省深圳市六校高三(上)第一次联考数学试卷一、单选题(共8题,每小题5分,共40分。

)1.(5分)已知集合A={x|x2﹣3x<0},B={x|lgx>0},则A∩B=()A.{x|0<x<1}B.{x|x>0}C.{x|1<x<3}D.{x|0<x<3} 2.(5分)复数在复平面内对应点的坐标为()A.B.C.D.3.(5分)若定义在R上的函数f(x)不是偶函数,则下列命题正确的是()A.∀x∈R,f(x)+f(﹣x)=0B.∃x∈R,f(x)+f(﹣x)=0C.∃x∈R,f(x)≠f(﹣x)D.∀x∈R,f(x)≠f(﹣x)4.(5分)抛物线y=4x2的焦点坐标是()A.(1,0)B.(0,1)C.()D.()5.(5分)已知数列{a n}的通项公式a n=3n(2n﹣13),则数列前n项和S n取最小值时,n 的值是()A.6B.7C.8D.56.(5分)已知两条不同的直线l,m和两个不同的平面α,β,则:(1)若m∥β,β⊥α,则m⊥α;(2)空间中,三点确定一个平面;(3)若l,m⊂β,l∥α,则α∥β;(4)若α∩β=m,l∥α且l∥β,则l∥m.以上假命题的个数为()A.1B.2C.3D.47.(5分)一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,当水面下降1米后,水面宽度最接近()A.13.1米B.13.7米C.13.2米D.13.6米8.(5分)已知x1是lnx+x=5的根,x2是ln(4﹣x)﹣x=1的根,则()A.x1+x2=4B.x1+x2∈(5,6)C.x1+x2∈(4,5)D.x1+x2=5二、多选题(共4题,每小题5分。

不选、错选得0分;少选得2分;全对得5分,共20分。

)9.(5分)设a,b∈R且ab>0,则下列不等式正确的是()A.a2+b2≥2ab B.C.D.10.(5分)水车在古代是进行灌溉引水的工具,是人类的一项古老发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车出发,沿圆周按逆时针方向匀速旋转,水斗旋转到P点,设点P的坐标为(x,y),则下列结论正确的是()A.B.当t∈[0,2]时,函数y=f(t)单调递增.C.当t∈[3,5]时,函数最小值为﹣2D.当t=9时,|P A|=411.(5分)在△ABC中,下列说法正确的是()A.若A>B,则|cos B|>|cos A|B.若a2+b2>c2,则△ABC为锐角三角形.C.等式a=b cos C+c cos B恒成立.D.若A:B:C=1:1:4,则a:b:c=1:1:12.(5分)已知△ABC的两个顶点A,B的坐标分别是(﹣5,0),(5,0),且AC(m≠0)且斜率之差等于n,则正确的是()A.当m>0时,点C的轨迹是双曲线B.当m=﹣1时,点C在圆x2+y2=25上运动C.当m<﹣1时,点C所在的椭圆的离心率随着m的增大而增大D.无论n如何变化,点C的运动轨迹是轴对称图形三、填空题(共4题,每题5分,共20分)13.(5分)一部纪录片在4个不同的场地轮映,每个场地放映一次,则有种轮映次序.14.(5分)某工厂有四条流水线生产同一种产品,这四条流水线的产量分别占总产量的0.20,0.25,0.25,这四条流水线的合格率依次为0.95,0.97,0.98,则恰好抽到不合格的概率是.15.(5分)已知向量满足,且,则的值为.16.(5分)已知三棱锥P﹣ABC的顶点P在底面的射影O为△ABC的垂心,若S△ABC•S△OBC,且三棱锥P﹣ABC的外接球半径为4,则S△P AB+S△PBC+S△P AC的最大值为.四、解答题(共6题,17题10分,18~22题每题12分,共70分。

广东省五粤名校联盟2024届高三第一次联考数学试题(解析版)

广东省五粤名校联盟2024届高三第一次联考数学试题(解析版)

五粤名校联盟2024届高三第一次联考数学本试卷分选择题和非选择题两部分.第I 卷(选择题)第1页,第Ⅱ卷(非选择题)第2页,共2页.满分150分,考试用时120分钟.注意事项:1.答题前,务必将自己的姓名、考籍号填在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号.3.答非选择题时,必须使用钢笔或黑色墨迹签字笔作答,将答案书写在答题卡规定的位置上,答题卡上不得使用铅笔或涂改液.4.所有题目必须在答题卡上作答,在试题卷上答题无效.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复数范围内,方程232i z =+的解有()A .0个B.1个C.2个D.无数个【答案】C 【解析】【分析】设i z a b =+(),R a b ∈,根据复数相等得到方程组,消元求出a 的值,即可判断.【详解】设i z a b =+(),R a b ∈,则()2222i 2i z a b a b ab =+=-+,又232i z =+,所以22322a b ab ⎧-=⎨=⎩,消元整理得42310a a --=,解得23132a =或231302a =<(舍去)所以a =故在复数范围内,方程232i z =+有两个解.故选:C2.二项式9112x ⎛⎫- ⎪⎝⎭的各项系数之和为()A.512B.1512C.2D.12【答案】B 【解析】【分析】令1x =进而求解即得.【详解】令1x =,则二项式9112x ⎛⎫- ⎪⎝⎭的各项系数之和为9112512⎛⎫= ⎪⎝⎭,故选:B3.抛物线24y x =的焦点为F ,过F 的直线交抛物线于A ,B 两点.则4AF BF +的最小值为()A.6B.7C.8D.9【答案】D 【解析】【分析】利用抛物线的焦点弦性质结合基本不等式计算即可.【详解】由题意可知()1,0F ,设:AB l 1x ky =+,()()1122,,,A x y B x y ,联立直线AB 与抛物线方程2212444041y xy ky y y x ky ⎧=⇒--=⇒=-⎨=+⎩,所以221212144y y x x =⋅=,而()121241414559AF BF x x x x +=+++=++≥=.当且仅当1212,2x x ==时取得等号.故选:D4.现有随机事件件A ,B ,其中()()()111,,536P A P B P AB ===,则下列说法不正确的是()A.事件A ,B 不相互独立B.()12P A B =C.()P B A 可能等于()P B D.()1130P A B +=【答案】C 【解析】【分析】利用独立事件的乘法公式、条件概率公式、和事件的概率公式计算即可.【详解】易知()()()1153P A P B P AB ⋅=⨯≠,所以事件A ,B 不相互独立,即A 正确;由条件概率公式可知()()()116123P AB P A B P B ===,()()()156165P AB P B A P A ===,故B 正确,C 错误;由和事件的概率公式可知()()()()1111153630P A B P A P B P AB +=+-=+-=,故D 正确;故选:C5.将边长为2的正三角形沿某条线折叠,使得折叠后的立体图形有外接球,则当此立体图形体积最大时,其外接球表面积为()A.4πB.68π9- C.11π2D.52π9-【答案】B 【解析】【分析】首先分类讨论得出,满足题意的直线为23:13EF y x =-+⎭,且此时)3112a d BG -===,进一步求出底面四边形外接圆圆心1O 坐标、半径,从而得1O 到直线EF 的距离4d ,设出外接球球心到底面的距离1h ,结合OA OB R ==可得()222221314R r h d h d =+=-+,由此可得外接球半径R ,进而即可求解.【详解】若将边长为2的正三角形沿某条线折叠,且这条线过三角形的某个顶点且不垂直于三角形的边,由题意以D 为原点,以边长为2的等边三角形的AB 边为x 轴,AB 边上的高CD 为y 轴建立如图所示的平面直角坐标系:由题意()()(1,0,1,0,A B C -,不失一般性,设(:CD y kx k =+>(也就是设点D 在不包含端点的线段OA 上),在(:CD y kx k =+>中,令0y =得3x k=-,所以BCD △的面积为113331222BCD k S BD CO k k ⎛⎫+=⋅=+=⋅ ⎪ ⎪⎝⎭,而点()1,0A -到直线(:CD y kx k =+>的距离为1d =,此时三棱锥A BCD -体积的最大值为2111336BCD V S d =⋅= ACD ⊥面BCD ),所以()()2221222231103412121121133k V k k k k -<==<⎛⎫⎛⎫+++ ⎪⎪--⎝⎭⎝⎭,所以1306V <<;若将边长为2的正三角形沿某条线折叠,且这条线过三角形的某个顶点且垂直于三角形的边,此时上述情况中的点D 于原点O 重合,此时三棱锥A BCD -体积的最大值为2211111311332326BCO V S d BO OC AO ⎛⎫=⋅=⋅⋅⋅=⨯⨯⨯=⎪⎝⎭(此时面ACO ⊥面BCO ),其中2d 为点A 到OC 的距离,即AO 的长度;将边长为2的正三角形沿某条线折叠,且这条线不过三角形的任何顶点,如图所示:不失一般性,设该直线分别与,AB BC 交于点,E F ,折叠后的立体图形有外接球,则,,,A E F G 四点共圆,从而πCFE CAE ∠+∠=,又因为ππ,33CFE FEB FBE FEB CAE ∠=∠+∠=∠+∠=,所以π3FEB CAB ∠==∠,所以~FEB CAB ,由题意()()(1,0,1,0,A B C -,设)():,11EF y x a a =--<<,所以)()2213111122122224ABC AEFCa a a a S S ⎡⎤⎤+---⎛⎫⎛⎫=-=⨯⨯⨯-=⎢⎥⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦四边形,过点B 向EF 引垂线,垂足为G,则)312a d BG -==,所以四棱锥B AEFC -体积的最大值为()()()()()()()232331131111333,113888AEFC a a a V S d a a a a a a +--=⋅==--=--+-<<四边形(此时四边形AEFC 与三角形BEF 垂直),从而()()2313618V a a a '=--,()()231233610183V a a a a '=--=⇒=-或2313a =+,当113a -<<-时,()30V a '>,()3V a 单调递增,当23113a -<<时,()30V a '<,()3V a 单调递减,所以当且仅当2313a =-时,有()233max231232323311113383396V V ⎡⎤⎡⎤⎛⎫⎛⎛⎢⎥=-=⨯--⨯--=⎢⎥ ⎪ ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,综上所述,满足题意的直线为23:13EF y x =-+⎭,且此时)3112a d BG -===,此时我们首先来求四边形AEFC 外接圆圆心1O ,因为AB 中点坐标为13,22⎛⎫- ⎪ ⎪⎝⎭,AB所以AB 的垂直平分线方程为331232y x ⎛⎫-=-+ ⎪⎝⎭,而AE中垂直线方程为2311323x ⎛-+- ⎝⎭==-,从而解得11,33O ⎛⎫+- ⎪ ⎪⎝⎭,所以四边形AEFC外接圆半径为1r O A ===而1O到直线23:13EF y x ⎫=-+⎪⎪⎭的距离为413d -=,又满足题意的四棱锥B AEFC -的高为)3112a d BG -===,设满足题意的四棱锥B AEFC -的外接球球心为O ,设球心到平面AEFC 的距离为1h ,则由OA OB R ==可得,()222221314R r h d h d =+=-+,即1164313431299h --=-+,解得211164311743,3999h R --==+=,从而满足题意的外接球表面积为68163π9-.故选:B.【点睛】关键点点睛:关键是得出满足题意的直线为:13EF y x ⎫=-+⎪⎪⎭,且此时)3112a d BG -===,由此即可顺利得解.6.令()sin 0.5cos1cos 2cos ,N n a n n ︒︒︒︒+=+++∈ .则n a 的最大值在如下哪个区间中()A.(0.49,0.495)B.(0.495,0.5)C.(0.5,0.505)D.(0.505,0.51)【答案】B 【解析】【分析】先通过()()1sin sin 0.5cos 0.50.5sin 2n n n ︒︒︒︒︒︒⎡⎤=+--⎣⎦,利用裂项相消法求出n a ,观察得其最大值可取90a ,然后计算其范围即可.【详解】由于()()1sin sin 0.5cos 0.50.5sin 2n n n ︒︒︒︒︒︒⎡⎤=+--⎣⎦()sin 0.5cos1cos 2cos n a n ︒︒︒︒=+++ sin 0.5cos1sin 0.5cos 2sin 0.5cos3sin 0.5cos n ︒︒︒︒︒︒︒︒=++++ ()().50.5.5.5.1sin1sin sin 2sin1sin 3sin 2sin 5.50.50.5sin 2n n ︒︒︒︒︒︒︒︒︒︒⎡⎤=-+-+-+++--⎣⎦ ()0.50.51sin sin 2n ︒︒︒⎡⎤=+-⎣⎦根据三角函数的性质可知,当90360,Z n k k =+⋅∈或89360,Z n k k =+⋅∈时,().in 05s n ︒︒+取最大值,不妨取90n =,则()()0.50.5cos 0.50111sin 90sin sin 44.5452222.52︒︒︒︒︒︒︒⎡⎤+-=-=<=⎣⎦,又())11sin sin 22cos 0.50.50.5︒︒︒-=,因为当π0,2x ⎡⎤∈⎢⎣⎦时,sin x x≤ππ0.5si 36n 0s 3in 60︒->-=π360与0.495的大小,即比较2π1360⎛⎫- ⎪⎝⎭与299π200360⎛⎫+ ⎪⎝⎭的大小,222299π9999π122003602003ππ13660000063⎛⎫⎛⎫--- ⎪ ⎛⎫⎛⎫+=-- ⎪ ⎪⎪⎝⎭⎝⎝⎝⎭⎭⎭22222222π100100π32ππ324439210360200360004360360436036049090⨯⎛⎫>---=->---> ⎪⨯⎝⎭π360.9045>-.所以()0.50.110.495sin 90225sin ︒︒︒⎡⎤<+-<⎣⎦.故选:B.证明:当π0,2x ⎡⎤∈⎢⎥⎣⎦时,sin x x≤设()sin f x x x =-,π0,2x ⎡⎤∈⎢⎥⎣⎦,则()cos 10f x x '=-≤,所以()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递减,所以()()00f x f ≤=,即当π0,2x ⎡⎤∈⎢⎥⎣⎦时,sin x x ≤.【点睛】关键点点睛:本题的关键是利用sin x x ≤对式子进行放缩,可以将三角运算转化为非三角运算.7.若在长方体1111ABCD A B C D -中,13,1,4AB BC AA ===.则四面体11ABB C 与四面体11A C BD 公共部分的体积为()A.23B.313C.1039D.726【答案】A 【解析】【分析】设11AB A B O ⋂=,1AC ⋂平面1A BD G =,可知四面体11ABB C 与四面体11A C BD 公共部分为四面体1GEBC ,建系,利用空间向量分析可知G 为1A BD 的重心,进而根据体积关系运算求解.【详解】设11AB A B O ⋂=,1AC ⋂平面1A BD G =,可知四面体11ABB C 与四面体11A C BD 公共部分为四面体1GEBC ,以D 为坐标原点,1,,DC DA DD分别为,,x y z轴正方向,建立空间直角坐标系,则()()()()()1131,0,0,1,3,0,0,0,0,1,,2,1,0,4,0,3,42A B D E A C ⎛⎫⎪⎝⎭,可得()()()1131,0,4,1,3,0,1,,2,1,3,42DA DB DE AC ⎛⎫====- ⎪⎝⎭,设平面1A BD 的法向量为(),,n x y z = ,则14030n DA x z n DB x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令12x =,则4,3y z =-=-,可得()12,4,3n =--,设()1,3,4AG AC λλλλ==-,则()1,3,4DG DA AG λλλ=+=-,因为DG n ⊥uuu r r,则()12112120λλλ---=,解得13λ=,可得24,1,33DG ⎛⎫= ⎪⎝⎭,即23DG DE =uuu r uuu r ,在1A BD 中,结合E 为1A B 的中点,可知G 为1A BD 的重心,则116BEG A BD S S =△△,所以四面体1GEBC 的体积11111111112314618183GEBC A C BD ABCD A B C D V V V -===⨯⨯⨯=.故选:A.【点睛】关键点点睛:根据题意分析可知公共部分,利用空间向量的相关知识确定点G 的位置,即可得结果.8.设有正数列{}n a ,其前k 项和为k S .则下列哪一个()0f n ≥能使对任意的n +∈N 都有11()2n nk k n k kf n k S S a ==+≤∑∑成立()A.()2f n n =B.2()2n f n =C.()ln f n n =D.1()f n n=【答案】BCD 【解析】【分析】首先当1n =时,要满足()11f ≤,故可排除A ,先证明两个引理,借助引理说明B 选项符合题意;对于CD 而言只需分别证明221ln ,22n n n n ≤≤即可说明CD 符合题意.【详解】首先取1n =,则有()111112f a a a +≤成立,其中10a >(因为数列{}n a 是正数列),从而需要满足()11f ≤,对比选项可知A 不符合题意,接下来我们证明如下引理1:()()()222111,2121ni kn k k ii n =+≤≥++∑,证明:首先当n k =时,左边等于()()()()()()()2222222222111212121212121k k k k k k k k k k k k k k ++++==≤=+++++,其次假设结论已对n 成立,即()()2221112121ni kk i i n =+≤++∑(*),由于()()()()()()()()2222222112322212121212n n n n n n n n n n ++-=≥=++++++++,从而()()()()222111122221n n n n +≤++++(**),(*)与(**)相加有()()12221112122n i kk ii n +=+≤++∑,故结论对1n +也成立,综上所述,引理1成立,我们继续来证明引理2:()()()221212121412,,,,0n n n n a a a n a a a a a a ⎛⎫++++++≥+++> ⎪⎝⎭ ,证明:当1n =时,左边211111a a =⋅=≥=右边,即此时引理1成立,设结论已经对n 成立,即()()2212121412n n n a a a n a a a ⎛⎫++++++≥+++ ⎪⎝⎭ ,记2121214,n nn a a a p q a a a +++=++= ,显然,0p q >,从而()()22121121114n n n n n n a a a a a a a a ++⎛⎫+++++++++⎪ ⎪⎝⎭()()()()2221111111n n n n n n p a q pq pqa n a a ++++⎛⎫++=++=++++ ⎪ ⎪⎝⎭(()2211pq n n ≥+++)()221121n n n =+=+++++⎡⎤⎣⎦ ,故结论对1n +也成立,综上,引理2成立,现在我们回到原题,对于B ,也就是2()2n f n =,则()111212()n n k k n kn k f n f n k kS S a a a a a a ==+=+++++++∑∑ ()()()22221121214141212nk n k f n n kk a a a a a a n k =⎛⎫⎛⎫≤+++++++ ⎪ ⎪++++++⎝⎭⎝⎭∑()()()2222122112141441141k n nk f n k n a a a n k k a a a n =⎛⎫⎛⎫+++++++ ⎪ ⎪=+⎝⎭⎝+⎭∑ ()()()()()2222222111114411121nn n n k i k k i k k kf n k k a a i i n n i i n ====⎡⎤⎡⎤=+=+⎢⎥⎢⎥++++⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑22111242nn k k k kk a k a ==≤⋅=∑∑,故B 符合题意,对于C ,当1n =时,()1ln101f ==≤满足题意,当*2,N n n ≥∈时,我们来比较2ln ,2n n 的大小,令()2ln ,22x g x x x =-≥,从而()10g x x x '=->,即()g x 单调递增从而()()22ln 20g x g ≥=->,也就是当*2,N n n ≥∈时,2ln 2n n <,结合B 选项分析可知C 选项也符合题意;对于D ,当1n =时,()11111f ==≤满足题意,当*2,N n n ≥∈时,我们来比较21,2n n 的大小,显然此时22112222n n ≤=≤,结合B 选项分析可知D 选项也符合题意.故选;BCD.【点睛】关键点点睛:关键是先证明上述两个引理,从而当2()2n f n =时,有11()2n nk k n k kf n k S S a ==+≤∑∑成立,由此即可顺利得解.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得2分,有选错的得0分.9.设01p ≤≤,随机变量X 的分布列如下图所示,则下列说法正确的有()X 012P1412p -14p +A.()E X 恒为1B.()E X 随p 增大而增大C.()D X 恒为12D.()D X 最小值为0【答案】AC 【解析】【分析】由概率之和为1求出0p =,再由数学期望和方差的公式求解即可.【详解】因为111+1424p p -++=,解得:0p =,所以随机变量X 的分布列如下图,X 012P141214因为()1110121424E X =⨯+⨯+⨯=,()E X 恒为1,故A 正确;B 错误;()()()()222111111011121424442D X =-⨯+-⨯+-⨯=+=,故C 正确,D 错误.故选:AC .10.关于函数的周期性,下列说法正确的有()A.2sin xB.sin(cos sin )x x +是周期函数,最小正周期为4πC.cos cos 2cos3x x x 是周期函数,最小正周期为πD.sin3(cos 2)x x 是周期函数,最小正周期为2π【答案】CD 【解析】【分析】根据给定条件,利用周期函数的定义,结合正余弦函数的最小正周期逐项判断即得.【详解】对于A ,假设2sin x 是周期函数,则对任意实数x ,存在非零常数T ,使得22si s n(in )x x T =+,即222)s n sin(i 2x Tx T x =++,显然222π,Z Tx T k k +=∈对任意实数x 不恒成立,因此2sin x 不是周期函数,A 错误;对于B ,任意实数x ,sin[cos(2π)sin(2π)]sin(cos sin )x x x x +++=+成立,因此sin(cos sin )x x +是周期函数,2π是其周期,B 错误;对于C ,函数cos ,cos 2,cos3y x y x y x ===的最小正周期依次为2π2π,π,3,显然cos(cos 2(cos 2π2π2πc ))333(os cos 2co 3s3x x x x x x ++≠+,如0x =,左边为14,而右边为1,而cos(cos 2(cos3(cos cos 2(cos3)cos cos )2co ππ)3)s πx x x x x x x x x +==-++-恒成立,因此cos cos 2cos3x x x 是周期函数,最小正周期为π,C 正确;对于D ,函数cos 2,sin 3y x y x ==的最小正周期依次为2ππ,3,显然π)sin3sin3sin3([o cos 2(s 2)xx x xx x +-=+≠,而πsin3(2)sin3π)](cos 2)[cos 2(2x x x x +=+恒成立,因此sin3(cos 2)x x 是周期函数,最小正周期为2π,D 正确.故选:CD11.设有数列{}*,N n a n ∈,记110()nn n n n f x a x a xa --=+++ ,其中0n a ≠.则下列说法正确的有()A.()n f x 有零点对任意奇数n 成立B.若n 为偶数且00a <,则()n f x 至少有两个零点C.对任意*N n ∈与0M >,一定存在X 使当x X >时,()n f x M >恒成立D.若{}n a 恒为1,则对任意*N ,()2n n f x ∈=都有唯一正零点,且一定大于12【答案】ACD 【解析】【分析】根据题意,化简得到01211()1n n n n n n f x a a a a x x x x ----=+++⋅+ ,根据绝对值不等式得到当0n a x >时,1()0n n f x x ->;当0na x <时,1()0n n f x x -<,据此可判断AC 的正误.结合零点存在定理和导数可判断D 的正误,利用反例可判断B 的正误.【详解】对于A ,若n 为奇数,不失一般性,设0n a >,由110()nn n n n f x a x a x a --=+++ ,其中0n a ≠,可得01211()1n n n n n n f x a a a a x x x x ----=+++⋅+ ,因为00221111n n n n a a a a x x x x ----⋅++≤⋅++ ,取1M =202max 1,n n a a a -⎧⎫+++⎪⎪⎨⎬⎪⎪⎩⎭ ,则当1x M >时,0022201111n n n n n a a a a a a x x x x -----⋅++≤⋅++≤++ ,所以当1x M >时,()20201()n n n n n f x a a a x a a x ----++≤-≤++ ,即201()n n n n f x a x a a x --≤+++ 且()201()n n n n f x a x a a x --≥-++ ,故当1x M <-时,1()20n n f x x -≤-<且1x M >时,1()20n n f x x-≥>,而n 1-为偶数,故x M <-时,()0n f x <且x M >时,()0n f x >,故()n f x 有零点对任意奇数n 成立,故A 成立.对于B 中,例如:函数22()1f x x =--,此时函数2()f x 无零点,所以B 不正确;对于C 中,对任意的0M >,由A 中分析可取X =202max 1,n n a a M a -⎧⎫++++⎪⎪⎨⎬⎪⎪⎩⎭ ,则当x X >时,有01211()12n n n n n n f x a a x a a M x x x ----⎛⎫≥-+⋅++>+ ⎪⎝⎭ ,故1()2n n f x M xM -≥+>,故C 成立.对于D 中,若1()1nn n f x x x -=+++ ,可得12()(1)1n n n f x nx n x --'=+-++ ,当0x >时,()0n f x '>,()n f x 在(0,)+∞上单调递增;由(0)12n f =<且(1)12n f n =+≥,所以()n f x 有唯一的正零点,又由11111()((11()22222nn n n f -=+++=-< ,所以函数的零点大于12,所以D 正确.故选:ACD.【点睛】方法技巧:已知函数零点(方程根)的个数,求参数的取值范围问题的三种常用方法:1、直接法,直接根据题设条件构建关于参数的不等式(组),再通过解不等式(组)确定参数的取值范围2、分离参数法,先分离参数,将问题转化成求函数值域问题加以解决;3、数形结合法,先对解析式变形,在同一平面直角坐标系中作出函数的图象,然后数形结合求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.若3xy =,则+=______.【答案】±【解析】【分析】分0,0x y >>和0,0x y <<两种情况分类计算.【详解】当0,0x y >>时,+==,当0,0x y <<时,+==-故答案为:±13.()cos cos 2f x x x =在[]0,πx ∈的极值点个数为______个.【答案】2【解析】【分析】利用导数研究函数的单调性与极值,结合三角函数的性质计算即可判定.【详解】由()3cos cos 22cos cos f x x x x x ==-⇒()()2326sin cos sin 6sin 5sin sin 6sin 5f x x x x x x x x =-+=-=-',令()0f x '=,则sin 0x =或sin x =,显然当[]0,πx ∈时,sin 0x ≥,则sin 0x =或sin x =,满足sin 0x =的根为0x =或πx =,端点值不能做为极值点,舍去;满足sin x =的根有两个12,x x ,根据正弦函数的性质可知()()120,,πx x x ∈⋃时,()0f x '<,()12,x x x ∈时,()0f x '>,即()f x 在()()120,,,πx x 上单调递减,在()12,x x 上单调递增,所以()cos cos 2f x x x =在[]0,πx ∈的极值点个数为2个.故答案为:214.已知O 为ABC 的外接圆圆心,且1,1AO BC BC ⋅== .设实数,λμ满足AO AB λ=AC μ+ ,则221λμ-的取值范围为______.【答案】()3,1--【解析】【分析】以BC 中垂线为y 轴,BC 为x 轴建立直角坐标系,设出圆心坐标及半径,写出外接圆的方程,再分别写出,,A B C 坐标,将题干条件带入,即可得到等式,根据等式得出,λμ的关系及范围,再将关系带入221λμ-中,根据范围即可求得结果。

2024届广东省五粤名校联盟高三第一次联考数学试卷

2024届广东省五粤名校联盟高三第一次联考数学试卷

2024届广东省五粤名校联盟高三第一次联考数学试卷一、单选题1. 在复数范围内,方程的解有()A.个B.个C.个D.无数个2. 二项式的各项系数之和为()A.512B.C.2D.3. 抛物线的焦点为,过的直线交抛物线于A,B两点.则的最小值为()A.6B.7C.8D.94. 现有随机事件件A,B,其中,则下列说法不正确的是()A.事件A,B不相互独立B.C.可能等于D.5. 将边长为2的正三角形沿某条线折叠,使得折叠后的立体图形有外接球,则当此立体图形体积最大时,其外接球表面积为()A.B.C.D.6. 令.则的最大值在如下哪个区间中()A.B.C.D.7. 若在长方体中,.则四面体与四面体公共部分的体积为()A.B.C.D.二、多选题8. 设有正数列,其前项和为.则下列哪一个能使对任意的都有成立()A.B.C.D.9. 设,随机变量的分布列如下图所示,则下列说法正确的有()A.恒为1B.随增大而增大C.恒为D.最小值为010. 关于函数的周期性,下列说法正确的有()A.是周期函数,最小正周期为B.是周期函数,最小正周期为C.是周期函数,最小正周期为D.是周期函数,最小正周期为11. 设有数列,记,其中.则下列说法正确的有()A.有零点对任意奇数成立B.若为偶数且,则至少有两个零点C.对任意与,一定存在使当时,恒成立D.若恒为1,则对任意都有唯一正零点,且一定大于三、填空题12. 若,则 ______ .13. 在的极值点个数为 ______ 个.14. 已知为的外接圆圆心,且.设实数满足,则的取值范围为 ______ .四、解答题15. 已知数列与为等差数列,,,前项和为.(1)求出与的通项公式;(2)是否存在每一项都是整数的等差数列,使得对于任意,都能满足.若存在,求出所有上述的;若不存在,请说明理由.16. 现有一“v”型的挡板如图所示,一椭圆形物件的短轴顶点被固定在A点.物件可绕A点在平面内旋转.AP间距离可调节且与两侧挡板的角度固定为60°.已知椭圆长轴长为4,短轴长为2.(1)在某个角度固定椭圆,则当椭圆不超过挡板时AP间距离最短为多少;(2)为了使椭圆物件能自由绕A点自由转动,AP间距离最短为多少.求出最短距离并证明其可行性.17. 已知.(1)讨论的单调性;(2)若存在两个零点,证明:存在三个零点,且(3)在(2)的条件下,证明:.18. 在组合恒等式的证明中,构造一个具体的计数模型从而证明组合恒等式的方法叫做组合分析法,该方法体现了数学的简洁美,我们将通过如下的例子感受其妙处所在.(1)对于元一次方程,试求其正整数解的个数;(2)对于元一次方程组,试求其非负整数解的个数;(3)证明:(可不使用组合分析法证明).注:与可视为二元一次方程的两组不同解.19. 设X,Y为任意集合,映射.定义:对任意,若,则,此时的为单射.(1)试在上给出一个非单射的映射;(2)证明:是单射的充分必要条件是:给定任意其他集合与映射,若对任意,有,则;(3)证明:是单射的充分必要条件是:存在映射,使对任意,有.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳市2015届高三上学期第一次五校联考数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1. 已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i +2. 设集合{} 12A x R x =∈-<,{}2,x B y R y x R =∈=∈,则A B I =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1, B .()1 2, C .()2 3, D .()3 4, 4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件 5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 7 6. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。

则不同的搜寻方案有( )(第5题图)A .40种B .70种C .80种D .100种7. 已知数列{}n a 的首项为11a =,且满足对任意的*n N ∈,都有12nn n a a +-≤,232n n n a a +-≥⨯成立,则2014a =( )A .201421-B .20142+1C .201521-D .201521+ 8. 已知函数()3sin f x x x x =--+,当02πθ⎛⎫∈ ⎪⎝⎭,时,恒有()()2cos 2sin 220f m f m θθ++-->成立,则实数m 的取值范围( )A .1,2⎛⎫-∞ ⎪⎝⎭ B .1,2⎛⎤-∞ ⎥⎝⎦ C .1,2⎛⎫-+∞ ⎪⎝⎭ D .1,2⎡⎫-+∞⎪⎢⎣⎭二、填空题(本大题共7小题,其中第9~第13题为必做题,第14~第15题为选做题,考生从中任选一题作答,两题均选按第14题给分,每小题5分,总分30分) 9. 右图是一个算法的程序框图,若输出的结果是31,则判断框中的正整数...M 的值是___________.10. 若二项式()*1(2)n x n N x+∈的展开式中的第5项是常数项, 则n =___________.11. 若实数x y 、满足约束条件⎪⎩⎪⎨⎧≥++≥+-≤022022y x y x x ,则目标函数y x z +=2的最大值为___________.12. 已知m 、n 是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题,其中所有正确命题的序号是___________.①若m ∥β,n ∥β,m 、n ⊂α,则α∥β .②若α⊥γ,β⊥γ,α∩β=m ,n ⊂γ,则m ⊥n . ③若m ⊥α,α⊥β,m ∥n ,则n ∥β .④若n ∥α,n ∥β,α∩β=m ,那么m ∥n .13. 若不等式21x x a <-+的解集是区间()33-,的子集,则实数a 的范围为__________.14.(参数方程与极坐标)已知在直角坐标系中曲线1C 的参数方程为2211x t t y t t ⎧=+⎪⎪⎨⎪=+⎪⎩(t 为参数且0t ≠),在以原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中曲线2C 的极坐标方程为()4R πθρ=∈,则曲线1C 与2C 交点的直角坐标为__________.(第9题图)开始 结束n=1,S =1S =S +2n n =n + 1输出S 否是 n ≤M15.(几何证明选讲)如图,PT 切圆O 于点T ,PA 交圆O 于A B 、两点,且与直径CT 交于点D ,若236CD AD BD ===,,,则PB =___________.(第15题图)三、解答题(本大题共6小题,满分80分,解答过程须写出必要的文字说明、证明过程或演算步骤) 16. (本小题满分12分) 已知()()()233sin sin cos 02f x x x x ππωωωω⎛⎫=+--> ⎪⎝⎭的最小正周期为T π=.(1)求23f π⎛⎫⎪⎝⎭的值; (2)在ABC ∆中,角A B C 、、所对应的边分别为a b c 、、,若有()2cos cos a c B b C -=,则求角B 的大小以及()f A 的取值范围.17. (本小题满分12分)已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球.(1)若每次取球后都放回..袋中,求事件“连续取球四次,至少取得两次白球”的概率; (2)若每次取球后都不放回...袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望18. (本小题满分14分)如图,三棱柱111C B A ABC -侧棱与底面垂直,且所有棱长都为4,D 为CC 1中点. (1)求证:BD A AB 11平面⊥; (2)求二面角B D A A --1的余弦值.(第18题图)19. (本小题满分14分) 已知数列{}n a 满足13=2a ,()11=22n n a n a --≥,n S 是数列{}nb 的前n 项和,且有1=12n n S n b n-+. (1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列{}n b 的通项公式; (3)设nn na cb =,记数列{}n c 的前n 项和n T ,求证:1n T <.20. (本小题满分14分)已知双曲线()2222:10,0x y C a b a b-=>>, 12F F ,分别是它的左、右焦点,A ()1,0-是其左顶点,且双曲线的离心率为2e =. 设过右焦点2F 的直线l 与双曲线C 的右支交于P Q 、两点,其中点P 位于第一象限内.(1)求双曲线的方程;(2)若直线AP AQ 、分别与直线12=x 交于M N 、两点,求证:22MF NF ⊥; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由.(第20题图)21. (本小题满分14分)已知函数()()2ln 0f x x a x x a =--≠.(1)求函数()f x 的单调区间;(2)若0a >,设()11A x y ,,()22B x y ,是函数()f x 图像上的任意两点(12x x <),记直线AB 的斜率为k ,求证:'1223x x f k +⎛⎫>⎪⎝⎭.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 答案DCCBAAAD9、 4 10、 6 11、 8 12、 ②④ 13、 (]5-∞, 14、 (2,2) 15、 15 三、解答题:16. (本小题满分12分) 已知()()()233sin sin cos 02f x x x x ππωωωω⎛⎫=+--> ⎪⎝⎭的最小正周期为T π=.(1)求23f π⎛⎫⎪⎝⎭的值; (2)在ABC ∆中,角A B C 、、所对应的边分别为a b c 、、,若有()2cos cos a c B b C -=,则求角B 的大小以及()f A 的取值范围. 解:(1)()23sin cos cosf x x x x ωωω=- ……1分3112cos 2222x x ωω=-- ……2分 1sin 262x πω⎛⎫=-- ⎪⎝⎭ ……3分()y f x =Q 的最小正周期为T π= ,即:212ππωω=⇒= ……4分 ()1sin 262f x x π⎛⎫∴=-- ⎪⎝⎭ ……5分22171sin 2sin 1336262f ππππ⎛⎫⎛⎫∴=⨯--=-=-⎪ ⎪⎝⎭⎝⎭ ……6分 (2)()2cos cos a c B b C -=Q∴由正弦定理可得:()2sin sin cos sin cos A C B B C -= ……7分()()2sin cos sin cos cos sin sin sin sin A B B C B C B C A A π⇒=+=+=-= ……8分1sin 0 cos 2A B >∴=Q ()0 3B B ππ∈∴=Q , ……9分22 033A C B A πππ⎛⎫+=-=∴∈ ⎪⎝⎭Q , ……10分72666A πππ⎛⎫∴-∈- ⎪⎝⎭, 1sin 2,162A π⎛⎫⎛⎤∴-∈- ⎪ ⎥⎝⎭⎝⎦ ……11分 ()11sin 21,622f A A π⎛⎫⎛⎤∴=--∈- ⎪ ⎥⎝⎭⎝⎦ ……12分17. (本小题满分12分)已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4个. 现从中随机取球,每次只取一球.(1)若每次取球后都放回..袋中,求事件“连续取球四次,至少取得两次白球”的概率; (2)若每次取球后都不放回...袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X 次,求随机变量X 的分布列与期望.解:(1)记事件i A 表示“第i 次取到白球”(*i N ∈),事件B 表示“连续取球四次,至少取得两次白球”,则:12341234123412341234=++++B A A A A A A A A A A A A A A A A A A A A . ……2分()()()()()()12341234123412341234P B P A A A A P A A A A P A A A A P A A A A P A A A A =++++4342416466627⎛⎫⎛⎫=+⨯⨯=⎪ ⎪⎝⎭⎝⎭……4分 ()()11127P B P B ∴=-=……5分 或者:记随机变量ξ表示连续取球四次,取得白球的次数. 易知1~4,3B ξ⎛⎫ ⎪⎝⎭……2分则()()()0413014412121121011333327P P P C C ξξξ⎛⎫⎛⎫⎛⎫⎛⎫≥=-=-==--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭……5分(2)易知:随机变量X 的取值分别为2,3,4,5 ……6分()22261215C P X C ∴===, ()112426123415C C P X C ==⨯=()12243611435C C P X C ==⨯=, ()121351151555P X ==---= ……10分∴随机变量X 的分布列为:X 2345P115 215 15 25……11分 ∴随机变量X 的期望为:12121023451515553EX =⨯+⨯+⨯+⨯= ……12分 18. (本小题满分14分)如图,三棱柱111C B A ABC -侧棱与底面垂直,且所有棱长都为4,D 为CC 1中点. (1)证明:BD A AB 11平面⊥; (2)求二面角B D A A --1的余弦值.解法一:(向量法)(1)取BC 中点O ,连结AO .取11C B 中点1O ,AO BC AB AC =∴⊥Q 11 OO AO OO ABC ⊥∴⊥Q 面111 AO OO BC O BCC B =∴⊥Q I 面 故:以O 为原点,以1,,OB OO OA 分别为,,x y z 轴,建立如图所示的空间直角坐标系xyz O -. ……2分则:()()()()()0,4,2,32,0,0,32,4,0,0,2,2,0,0,211B A A D B - ……3分()()()32,4,2,0,2,4,32,4,211-=-=-=∴BA BD AB ……4分 0,0111=⋅=⋅BA AB BD AB Θ,111,BA AB BD AB ⊥⊥∴. ……6分1BD BA B =Q I ⊥∴1AB 平面1A BD . ……7分(2)设平面AD A 1的法向量为()z y x n ,,=.()()12,2,230,4,0AD AA =--=u u u r u u u r,. ,,1AA n AD n ⊥⊥Θ ⎩⎨⎧==-+-∴0403222y z y x 令1=z 得()1,0,3-=n 为平面AD A 1的一个法向量. ……10分 由(1)可知:()32,4,21-=AB 为平面1A BD 的法向量. ……11分1116cos ,=n AB n AB n AB ⋅∴<>=-⋅r u u u rr u u u r r u u u r . ……13分Q 二面角B D A A --1是锐角 ∴二面角B D A A --1的余弦值为为64.……14分 解法二:(传统几何法)(1)取BC 中点O ,连结AO 和O B 1,AO BC AB AC =∴⊥Q 11 CC AO CC ABC ⊥∴⊥Q 面111 AO CC BC C BCC B =∴⊥Q I 面 ……2分AO BD ∴⊥ ……3分在正方形11BCC B 中,O D ,分别为1BC CC ,的中点, 由正方形性质知:BD O B ⊥1, ……4分111 BD AOB AO B O O AB BD=∴⊥∴⊥Q I 面………5分又在正方形11ABB A 中,11AB A B ⊥, ………6分1A B BD B =Q I ⊥∴1AB 平面1A BD . ……7分(2)设AB 1与A 1B 交于点G ,在平面A 1BD 中,作D A GF 1⊥于F ,连结AF , 由(1)得BD A AB 11平面⊥. 11AB A D ∴⊥11 AB GF G A D AGF ⊥=∴⊥Q 面 D A AF 1⊥∴AFG ∠∴为二面角B D A A --1的平面角. ………10分在1AA D △中,由等面积法可求得558=AF , ………12分 又22211==AB AG Θ , 22230GF AF AG ∴=-= ………13分 6cos 4GF AFG AF ∴∠==. 所以二面角B D A A --1的余弦值为64. ……14分19. (本小题满分14分)已知数列{}n a 满足13=2a ,()11=22n n a n a --≥,n S 是数列{}nb 的前n 项和,且有()21=2n n n S b n-+. (1)证明:数列11n a ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列{}n b 的通项公式; (3)设nn na cb =,记数列{}n c 的前n 项和n T ,求证:1n T <. (1)证明:()1121=2n n n a a n a ---≥Q 111121111n n n n n a a a a a ------∴-=-= ……1分 ()()111111111121111n n n n n n a a n a a a a ------+∴===+≥---- 即: ()1111211n n n a a -∴-=≥-- ……3分 ∴数列11n a ⎧⎫⎨⎬-⎩⎭是以1121a =-为首项,1为公差的等差数列. ……4分 (2)解:当2n ≥时,112224221n n n n n n n b S S b b n n ----⎛⎫⎛⎫=-=+-+ ⎪ ⎪-⎝⎭⎝⎭……5分 112224211n n n n n b n n b b b b n n n n ----=-⇒=--, 即:()1221n n b n n b n -=≥- ……6分1324123112223242......21231n n n n b b b b b nn b b b b n b --⨯⨯⨯⨯∴⨯⨯⨯⨯=⨯⨯⨯⨯⇒=⋅- ……8分 当1n =时,112b S == ∴2nn b n =⋅ ……9分(3)由(1)知:()121111n n n a =+-⨯=+-1+21 11n n n a a n n ∴-=∴=++ ……10分 ()()121112212n n n n n n a n c b n n n n -+∴===-+⋅⋅+ ……12分()()112111111111 (112222322)1212nn i n n n i T c n n n -=⎛⎫⎛⎫⎛⎫∴==-+-++-=-< ⎪ ⎪ ⎪ ⎪⨯⨯⨯⋅+⋅+⋅⎝⎭⎝⎭⎝⎭∑...14分20. (本小题满分14分)已知双曲线()2222100:,x y C a b a b-=>>, 12F F ,分别是它的左、右焦点,A ()1,0-是其左顶点,且双曲线的离心率为2e =. 过右焦点2F 的直线l 与双曲线C 的右支交于、P Q 两点,设点P 位于第一象限内.(1)求双曲线的方程;(2)若直线、AP AQ 分别与直线12=x 交于、M N 两点,求证:22⊥MF NF ; (3)是否存在常数λ,使得22PF A PAF λ∠=∠恒成立?若存在,求出λ的值,若不存在,请说明理由.解:(1)由题可知:1a = ……1分2 2ce c a==∴=Q ……2分 2223a b c b +=∴=Q ∴双曲线C 的方程为:2213y x -= ……3分(2)设直线l 的方程为:2=+x ty ,另设:()()1122,,、P x y Q x y()2222131129032⎧-=⎪⇒-++=⎨⎪=+⎩y x t y ty x ty ……4分 1212221293131-∴+==--,t y y y y t t ……5分 又直线AP 的方程为()1111=++y y x x ,代入12=x ()1131221⎛⎫⇒ ⎪ ⎪+⎝⎭,y M x ……6分 同理,直线AQ 的方程为()2211=++y y x x ,代入12=x ()2231221⎛⎫⇒ ⎪ ⎪+⎝⎭,y N x ……7分 ()()1222123333 221221⎛⎫⎛⎫∴== ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭u u u u u r u u u u r ,-,,-y y MF NF x x()()()()()12121222212121212999999441144334439∴⋅=+=+=+++++⎡⎤+++⎣⎦u u u u u r u u u u r y y y y y y MF NF x x ty ty t y y t y y 2222999993109124444393131⨯-=+=-=-⎛⎫⨯+⨯+ ⎪--⎝⎭t t t t t t22∴⊥MF NF ……9分(3)当直线l 的方程为2=x 时,解得()23,P . 易知此时2∆AF P 为等腰直角三角形,其中2224ππ∠=∠=,AF P PAF ,即222∠=∠AF P PAF ,也即:=2λ. ……10分下证:222∠=∠AF P PAF 对直线l 存在斜率的情形也成立.()()1112122222221111221221211111⨯+∠+∠====-∠-+-⎛⎫- ⎪+⎝⎭tan tan tan PAPAy y x PAF k x PAF PAF k x yy x ……11分()222211111 313-=⇒=-Q y x y x()()()()()()1111122211111212122122131++∴∠===--+--+--tan y x y x y PAF x x x x x ……12分 2122122∴∠=-=-=∠-tan tan PF y AF P k PAF x ……13分 ∴结合正切函数在022πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,U 上的图像可知,222∠=∠AF P PAF ……14分21. 已知函数()()2ln 0f x x a x x a =--≠.(1)求函数()f x 的单调区间;(2)若0a >,设()11A x y ,,()22B x y ,是函数()f x 图像上的任意两点(12x x <),记直线AB 的斜率为k ,求证:'1223x x f k +⎛⎫>⎪⎝⎭.(1)解:()()2'2210a x x af x x x x x--=--=> ……1分(i )当18a ≤-时,220x x a --≥ 恒成立,即()'0f x ≥恒成立,故函数()f x 的单增区间为()0+∞,,无单减区间. ……2分 (ii )当108a -<<时,()'2020f x x x a >⇒-->, 解得:11811844a ax x ++-+><或 ∵0x >,∴函数()f x 的单增区间为11804a ⎛⎫-+ ⎪ ⎪⎝⎭,,118+4a ⎛⎫++∞ ⎪ ⎪⎝⎭,, 单减区间为11811844a a ⎛⎫-+++⎪ ⎪⎝⎭,. ……4分 (iii )当0a >时,由()'0fx >解得:11811844a ax x ++-+><或. ∵0x >,而此时11804a-+≤,∴函数()f x 的单增区间为118+a ⎛⎫++∞ ⎪ ⎪⎝⎭,, 单减区间为1180a ⎛⎫++ ⎪ ⎪⎝⎭,. ……6分 综上所述:(i )当18a ≤-时,()f x 的单增区间为()0+∞,,无单减区间.(ii )当108a -<<时,()f x 的单增区间为11804a ⎛⎫-+ ⎪ ⎪⎝⎭,,118+4a ⎛⎫++∞ ⎪ ⎪⎝⎭,, 单减区间为11811844a a ⎛⎫-+++⎪ ⎪⎝⎭,. (iii )当0a >时,()f x 的单增区间为118+a ⎛⎫++∞⎪ ⎪⎝⎭,,单减区间为1180a ⎛⎫++ ⎪ ⎪⎝⎭,. ……7分(2)证明:()'21a f x x x =--Q ()12'12122+2+23133+2x x x x a f x x ⎛⎫∴=-- ⎪⎝⎭由题,()()()()12212121212212121212lnln ln 1x a x x a x x x x y y x k x x x x x x x x ------===+-----则:()()112'122121212ln2+2+23+33+2x a x x x x x a f k x x x x x x ⎛⎫-=--+ ⎪-⎝⎭ 12121212ln33+2x a x x x ax x x x -=-+- ……9分 注意到2103x x ->,故欲证'1223x x f k +⎛⎫> ⎪⎝⎭,只须证明:121212ln3+2x a x a x x x x >-. ……10分 因为0a >,故即证:()11122211112122122231ln33ln ln +2+2+2x x x x x x x x x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>⇔<⇔<-……11分 令()120,1x t x =∈,()()31ln +2t g t t t -=- ……12分 则:()()()()()'2214190+2+2t t g t tt t t --=-=> 故()g t 在()0,1上单调递增.所以:()()10g t g <= ……13分即:()31ln +2t t t -<,即:12112231ln +2x x x x x x ⎛⎫- ⎪⎝⎭<所以:'12+23x x f k ⎛⎫> ⎪⎝⎭. ……14分。

相关文档
最新文档