山东省临清市2014-2015学年八年级下学期期末考试 数学试题(图片版)及答案
2024届山东省聊城临清市数学八年级第二学期期末学业水平测试试题含解析
2024届山东省聊城临清市数学八年级第二学期期末学业水平测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .2.等腰三角形的一个内角为80︒,则该三角形其余两个内角的度数分别为( ) A .50︒,50︒B .80︒,20︒C .80︒,50︒D .50︒,50︒或80︒,20︒3.某商务酒店客房有50间供客户居住.当每间房 每天定价为180元时,酒店会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有客户居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,酒店当天的利润为10890元?设房价定为x 元,根据题意,所列方程是( ) A .()18020501089010x x ⎛⎫+--= ⎪⎝⎭B .()1805050201089010x x ⎛⎫+--⨯= ⎪⎝⎭C .1805050201089010x x -⎛⎫--⨯= ⎪⎝⎭D .()18020501089010x x -⎛⎫--= ⎪⎝⎭4.以下各组数中,能作为直角三角形的三边长的是( ) A .6,6,7B .6,7,8C .6,8,10D .6,8,95.某居民今年1至6月份(共6个月)的月平均用水量5t ,其中1至5月份月用水量(单位:t )统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是( )A .4,5B .4.5,6C .5,6D .5.5,66.下列说法:(1)8的立方根是2±.(2) 196的平方根是14±.(3)负数没有立方根. (4)正数有两个平方根,它们互为相反数.其中错误的有( ) A .4个B .3个C .2个D .1个7.某商店销售一种商品,售出部分商品后进行了降价促销,销售金额y (元)与销售量x (件)的函数关系如图所示,则降价后每件商品的销售价格为( )A .12元B .12.5元C .16.25元D .20元8.已知三角形的三边为2、3、4,该三角形的面积为( ) A .5134B .5154C .4135D .31549.如图,平行四边形的对角线交于点,且,的周长为25,则平行四边形的两条对角线的和是( )A .18B .28C .38D .4610.如图,在平面直角坐标系中,点A 、B 的坐标分别是()4,0.()0,3,点O '在直线()20y x x =≥上,将AOB ∆沿射线OO '方向平移后得到A O B '''∆.若点O '的横坐标为2,则点A '的坐标为( )A .()4,4B .()5,4C .()6,4D .()7,4二、填空题(每小题3分,共24分)11.(2016浙江省衢州市)已知直角坐标系内有四个点O (0,0),A (3,0),B (1,1),C (x ,1),若以O ,A ,B ,C 为顶点的四边形是平行四边形,则x =____________.12.为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90分,方差是2;小强五次成绩的平均数也是90分,方差是14.8,则小明和小强的成绩中,__________的成绩更稳定. 13.若1xx -在实数范围内有意义,则x 的取值范围是____________. 14.如图,矩形ABCD 的两条对角线相交于点O ,若∠AOD =60°,AD =2,则AC 的长为_____.15.如图,把矩形ABCD 沿EF 翻转,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是16.正比例函数y =mx 经过点P (m ,9),y 随x 的增大而减小,则m =__. 173x -在实数范围内有意义,则 x 的取值范围是_______ . 18.分解因式:3223363a b a b ab -+=________. 三、解答题(共66分) 19.(10分)计算题:(1)0241116233--⎛⎫⎛⎫⨯÷-÷- ⎪ ⎪⎝⎭⎝⎭;(2)2211322x y xy xy xy ⎛⎫⎛⎫-+÷-⎪ ⎪⎝⎭⎝⎭; (3)2201820202019⨯-; (4)()()2121x y x y --+-.20.(6分)计算:(1)12cos 45tan 60sin 302︒-︒+︒--;(2)先化简,再求值:221311x xx x -+--,其中2x =-21.(6分)在研究反比例函数y =﹣1x的图象时,我们发现有如下性质: (1)y =﹣1x 的图象是中心对称图形,对称中心是原点. (2)y =﹣1x的图象是轴对称图形,对称轴是直线y =x ,y =﹣x .(3)在x <0与x >0两个范围内,y 随x 增大而增大;类似地,我们研究形如:y =﹣12x -+3的函数: (1)函数y =﹣12x -+3图象是由反比例函数y =﹣1x 图象向____平移______个单位,再向_______平移______个单位得到的. (2)y =﹣12x -+3的图象是中心对称图形,对称中心是______. (3)该函数图象是轴对称图形吗?如果是,请求出它的对称轴,如果不是,请说明理由. (4)对于函数y =3224x x ---,x 在哪些范围内,y 随x 的增大而增大?22.(8分)如图,已知AB=CD ,DE ⊥AC ,BF ⊥AC ,垂足分别是点E ,F ,AE=CF . 求证:AB ∥CD .23.(8分)已知一次函数21y x =+. (1)在平面直角坐标系中画出该函数的图象; (2)点(12,5)在该函数图象的上方还是下方?请做出判断并说明理由. 24.(8分)甲、乙两校的学生人数基本相同,为了解这两所学校学生的数学学业水平,在某次测试中,从两校各随机抽取了30名学生的测试成绩进行调查分析,其中甲校已经绘制好了条形统计图,乙校只完成了一部分.(1)请根据乙校的数据补全条形统计图:(2)两组样本数据的平均数.中位数众数如下表所示,写出m、n的值:平均数中位数众数甲校83.48789乙校83.2m n(3)两所学校的同学都想依据抽样的数据说明自己学校学生的数学学业水平更好些,请为他们各写出条可以使用的理由;甲校:____.乙校:________.(4)综合来看,可以推断出________校学生的数学学业水平更好些,理由为________.25.(10分)求证:两组对边分别相等的四边形是平行四边形.(要求:画出图形,写出已知,求证和证明过程)26.(10分)如图,在四边形ABCD中,∠ADC=90°,AB=AC,E,F分别为AC,BC的中点,连接EF,ED,FD.(1)求证:ED=EF;(2)若∠BAD=60°,AC平分∠BAD,AC=6,求DF的长.参考答案一、选择题(每小题3分,共30分)1、A【解题分析】解:B、C、D都是轴对称图形,即对称轴如下红色线;故选A.【题目点拨】此题考查轴对称图形和中心对称图形的概念.2、D【解题分析】已知给出了一个内角是80°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【题目详解】解:分情况讨论:(1)若等腰三角形的顶角为80°时,另外两个内角=(180°-80°)÷2=50°;(2)若等腰三角形的底角为80°时,它的另外一个底角为80°,顶角为180°-80°-80°=20°.故另外两个内角的度数分别为:50°、50°或80°、20°.故选:D.【题目点拨】本题考查等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解题的关键.3、D【解题分析】设房价定为x元,根据利润=房价的净利润×入住的房间数可得.【题目详解】设房价定为x 元,根据题意,得()18020501089010x x -⎛⎫--= ⎪⎝⎭故选:D . 【题目点拨】此题考查了由实际问题抽象出一元二次方程,解题的关键是理解题意找到题目蕴含的相等关系. 4、C 【解题分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形. 【题目详解】解:A 、22266727+=≠,不能构成直角三角形; B 、22267858+=≠,不能构成直角三角形; C 、2226810010+==,能构成直角三角形; D 、222681009+=≠,不能构成直角三角形; 故选C . 【题目点拨】考查了勾股数的判定方法,比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可. 5、D 【解题分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得. 【题目详解】解:根据题意知6月份的用水量为5×6-(3+6+4+5+6)=6(t ), ∴1至6月份用水量从小到大排列为:3、4、5、6、6、6, 则该户今年1至6月份用水量的中位数为562+=5.5、众数为6, 故选D . 【题目点拨】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义. 6、B 【解题分析】(1)(3)根据立方根的定义即可判定;(2)根据算术平方根和平方根的定义即可判定; (4)根据平方根的定义即可判定. 【题目详解】(1)8的立方根是2,原来的说法错误;(2,16的平方根是±4,原来的说法错误; (3)负数有立方根,原来的说法错误;(4)正数有两个平方根,它们互为相反数是正确的. 错误的有3个. 故选B . 【题目点拨】此题考查了相反数,立方根和算术平方根、平方根的性质,要掌握一些特殊数字的特殊性质,如1,-1和1. 相反数的定义:只有符号相反的两个数叫互为相反数;立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,1的立方根是1. 算术平方根是非负数. 7、B 【解题分析】首先根据题意求出降价后的函数关系式,其斜率即为每件商品的销售价格,即可得解. 【题目详解】根据题意,设降价后的函数解析式为y kx b =+由图像可知,该函数过点(40,800)和(80,1300),代入得40800801300k b k b +=⎧⎨+=⎩ 解得12.5300k b =⎧⎨=⎩∴12.5300y x =+故降价后每件商品的销售价格为12.5元, 故答案为B . 【题目点拨】此题主要考查一次函数的实际应用,熟练掌握,即可解题. 8、D【解题分析】如图所示:过点B作BD⊥AC于点D,利用勾股定理得出BD的长,进而利用三角形面积求法得出答案.【题目详解】如图所示:过点B作BD⊥AC于点D,设BD=x,CD=y,则AD=4-y,在Rt△BDC中,x2+y2=32,在Rt△ABD中,x2+(4-y)2=22,故9+16-8y=4,解得:y=218,∴x2+(218)2=9,解得:x=3158故三角形的面积为:1315315 4284⨯⨯=故选:D.【题目点拨】本题考查勾股定理的应用,根据题意得出三角形的高的值是解题关键.9、C【解题分析】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线作为一个整体求出.【题目详解】解:∵四边形ABCD是平行四边形,∴AB=CD=6,∵△OCD的周长为25,∴OD+OC=25−6=19,∵BD=2OD,AC=2OC,∴▱ABCD的两条对角线的和BD+AC=2(OD+OC)=1.故选:C . 【题目点拨】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分. 10、C 【解题分析】由点O '的横坐标为2及点O '在直线()20y x x =≥上,可得点O '(2,4)得出图形平移规律进行计算即可. 【题目详解】解:由点O '的横坐标为2及点O '在直线()20y x x =≥上 当x=2时,y=4 ∴O '(2,4)∴该图形平移规律为沿着x 轴向右平移两个单位,沿着y 轴向上平移4个单位 ∴ A '(6,4) 故答案选: C 【题目点拨】本题考查了由函数图像推出点坐标,图形的平移规律,掌握图形的平移规律与点的平移规律是解决的关键.二、填空题(每小题3分,共24分) 11、4或﹣1. 【解题分析】 根据题意画图如下:以O ,A ,B ,C 为顶点的四边形是平行四边形,则C (4,1)或(﹣1,1),则x =4或﹣1;故答案为4或﹣1. 12、小明 【解题分析】在平均数相等的前提下,方差或标准差越小,说明数据越稳定,结合题意可知,只需比较小明、小强两人成绩的方差即可得出答案.【题目详解】∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8;∴平均成绩一样,小明的方差小,则小明的成绩稳定.故选A.【题目点拨】本题考查方差的实际应用,解题的关键是掌握方差的使用.13、0x ≥且1x ≠.【解题分析】分析:根据分式有意义和二次根式有意义的条件解题. 详解:因为1x x -在实数范围内有意义,所以x ≥0且x -1≠0,则x ≥0且x ≠1. 故答案为x ≥0且x ≠1.点睛:本题考查了分式和二次根式有意义的条件,分式有意义的条件是分母不等于0;二次根式有意义的条件是被开方数是非负数,代数式既有分式又有二次根式时,分式与二次根式都要有意义.14、1【解题分析】利用直角三角形30度角的性质,可得AC=2AD=1.【题目详解】解:在矩形ABCD 中,OC=OD ,∴∠OCD=∠ODC ,∵∠AOD=60°,∴∠OCD=12∠AOD=12×60°=30°, 又∵∠ADC=90°,∴AC=2AD=2×2=1. 故答案为1.【题目点拨】本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键15、.【解题分析】试题分析:【分析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°="60°." ∴∠ABE=30°.∴在Rt△ABE中,AB= 2.∵AE=2,DE=6,∴AD=AE+DE=2+6=8.∴矩形ABCD的面积=AB•AD=2×8=16.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质;3.平行的性质;4.含30度直角三角形的性质.16、-1【解题分析】直接根据正比例函数的性质和待定系数法求解即可.【题目详解】解:把x=m,y=9代入y=mx中,可得:m=±1,因为y的值随x值的增大而减小,所以m=-1,故答案为-1.【题目点拨】本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x的增大而减小.17、x≥1【解题分析】直接利用二次根式的有意义的条件得到关于x的不等式,解不等式即可得答案.【题目详解】由题意可得:x ﹣1≥0,解得:x≥1,故答案为:x≥1.【题目点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式的被开方数是非负数是解题的关键.18、23()ab a b -.【解题分析】首先提取公因式3ab ,再运用完全平方公式继续进行因式分解.【题目详解】解:3223363a b a b ab -+=223(2)ab a ab b -+=23()ab a b -【题目点拨】本题考查了提公因式法,公式法分解因式,有公因式的首先提取公因式.掌握完全平方公式的特点:两个平方项,中间一项是两个底数的积的2倍,难点在于要进行二次因式分解.三、解答题(共66分)19、(1)19;(2)621x y -+-;(3)1-;(4)22214x x y -+- 【解题分析】(1)先计算零指数和负整数指数次幂,再从左至右计算即可;(2)根据多项式除单项式的运算法则计算即可;(3)利用平方差公式进行简便运算即可;(4)利用平方差公式展开,再运用完全平方公式进一步展开即可.【题目详解】(1)0241116233--⎛⎫⎛⎫⨯÷-÷- ⎪ ⎪⎝⎭⎝⎭ 1161916=⨯÷÷ 19=; (2)2211322x y xy xy xy ⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭ 22111132222x y xy xy xy xy xy ⎛⎫⎛⎫⎛⎫=÷--÷-+÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭621x y =-+-;(3)2201820202019⨯-2(20191)(20191)2019=-+-22201912019=--1=-;(4)()()2121x y x y --+-()()1212x y x y =---+22(1)(2)x y =--22214x x y =-+-.【题目点拨】本题考查了有理数的混合运算以及整式的混合运算,熟练掌握平方差公式的结构特征是解题的关键.20、(1(2)3.【解题分析】(1)根据特殊角的三角函数值、绝对值化简可以解答本题;(2)根据异分母分式加减法法则可以化简题目中的式子,然后将x=2代入即可解答.【题目详解】解:(1)12cos45tan60sin302︒-︒+︒--,=11222-,(2)221311x x x x -+--, =2+131111x x x x x x x -+-+-+()()()(), =2(1)11x x x --+()(),=11 xx-+,当x=-2时,原式=2121---+=3.【题目点拨】本题考查了实数的运算,特殊角的三角函数值以及分式的化简求值,属于基础题,熟记实数混合运算法则即可解题.21、(1)右,2,上,1;(2)(2,1);(1)是轴对称图形,对称轴是:y=x+1和y=﹣x+2;(4)x<2或x>2.【解题分析】(1)根据图象平移的法则即可解答;(2)根据平移的方法,函数y=﹣1x的中心原点平移后的点就是对称中心;(1)图象平移后与原来的直线y=x和y=-x平行,并且经过对称中心,利用待定系数法即可求解;(4)把已知的函数y=3224xx---变形成的形式43x-22--,类比反比例函数性质即可解答.【题目详解】解:(1)函数y=﹣12x-+1图象是由反比例函数y=﹣1x图象向右平移2个单位,再向上平移1个单位得到的.故答案为:右2上1.(2)y=﹣12x-+1的图象是中心对称图形,对称中心是(2,1).故答案为:(2,1).(1)该函数图象是轴对称图形.∵y=﹣1x的图象是轴对称图形,对称轴是直线y=x,y=﹣x.设y=﹣12x-+1对称轴是y=x+b,把(2,1)代入得:1=2+b,∴b=1,∴对称轴是y=x+1;设y=﹣12x-+1对称轴是y=﹣x+c,把(2,1)代入得:1=﹣2+c,∴c=2.∴对称轴是y=﹣x+2.故答案为:y=x+1和y=﹣x+2.(4)对于函数y=3224xx---,变形得:y=3224xx---=3(2)82(2)xx---=43x-22--,则其对称中心是(2,32-). 则当x <2或x >2时y 随x 的增大而增大.故答案为:x <2或x >2【题目点拨】本题考查了反比例函数的图象与性质,以及待定系数法求函数的解析式,正确理解图象平移的方法是关键.22、证明见解析.【解题分析】由全等三角形的对应角相等得到一对内错角相等,利用内错角相等两直线平行即可得证,所以通过证∠A=∠C ,那么就需证明这两个角所在的三角形全等.【题目详解】如图,∵DE ⊥AC ,BF ⊥AC ,∴∠DEC=∠BFA=90°.又∵AE=CF ,∴AE+EF=CF+EF ,即AF=CE ,在△AFB 与△CED 中,{BF DEBFA DEC AF CE=∠=∠=∴△AFB ≌△CED (SAS ).∴∠A=∠C .∴AB ∥CD .【题目点拨】本题考查了全等三角形的判定与性质,熟练掌握性质定理是解题的关键.23、(1)见解析;(2)点1,52⎛⎫⎪⎝⎭在该函数图象的上方,理由见解析. 【解题分析】(1)根据题意代入x=0和12,进行描点,并连接两点即可画出该函数的图象;; (2)根据题意先求出x=12时的y 的值,判断其与5的大小即可解决问题. 【题目详解】解:(1)如图,列表描点如下x 0 12 y1 2函数图象如图2所示.(2)对于21y x =+,当12x =时, 2.y = 因为52>,所以点1,52⎛⎫ ⎪⎝⎭在该函数图象的上方. 【题目点拨】本题考查一次函数图象上的点的坐标特征,解题的关键是熟练掌握列表描点法和待定系数法解决问题.24、(1)见解析;(2)86m =;92n =;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一.【解题分析】(1)根据表格中的数据可以得到乙校70-79的和60-69的各有多少人,从而可以将条形统计图补充完整; (2)根据表格中的数据将乙校的数据按照从小到大排列,即可得到这组数据的中位数和众数;(3)答案不唯一,理由需包含数据提供的信息;(4)答案不唯一,理由需支撑推断结论.【题目详解】解:(1)由表格可得,乙校,70-79的有5人,60-69的有2人,补全条形统计图,如下图各分数段条形统计图(2)乙校数据按照从小到大排列是:57、61、63、71、72、73、76、79、80、83、84、84、84、85、85、87、87、88、89、89、90、90、91、92、92、92、92、92、94、94,∴这组数据的中位数是:8587=862m+=,92n=;(3)甲校:我们学校的平均分高于乙校,所以我们学校的成绩好;乙校:我们学校的众数高于甲校,所以我们学校的成绩好;故答案为我们学校的平均分高于乙校,所以我们学校的成绩好;我们学校的众数高于甲校,所以我们学校的成绩好;(4)综合来看,甲校学生的数学学业水平更好一些,理由:甲校的平均分高于乙校,说明总成绩甲校好于乙校,中位数甲校高于乙校,说明甲校一半以上的学生成绩较好【题目点拨】本题考查条形统计图、中位数、众数、平均数,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25、见解析【解题分析】分析:题设作为已知条件,结论作为求证,画出图形,写出已知,求证,然后证明即可.详解:已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连结AC在ΔABC和ΔCDA中.∵AB=CD,BC=DA,AC=CA,∴ ΔABC≌ΔCDA,∴ ∠BAC=∠DCA,∠ACB=∠CAD,∴ AB//CD,AD//BC,∴四边形ABCD是平行四边形.点睛:本题考查了平行四边形的判定、全等三角形的判定和性质等知识,解题的关键是熟练掌握命题的证明方法,学会写已知求证,属于中考常考题型.26、 (1)见解析;(2)3.【解题分析】(1)根据题意只要证明EF为△ABC的中位线,即可证明DE=EF.(2)只要证明FED∆为直角三角形,根据勾股定理即可计算DF的长【题目详解】(1)证明:∵∠ADC=90°,E为AC的中点,∴DE=AE=12 AC.∵E、F分别为AC、BC的中点,∴EF为△ABC的中位线,∴EF=12 AB.∵AB=AC,∴DE=EF.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=12∠BAD=30°.由(1)可知EF∥AB,AE=DE,∴∠FEC=∠BAC=30°,∠DEC=2∠DAC=60°,∴∠FED=90°.∵AC=6,∴DE=EF=3,∴DF==.【题目点拨】本题主要考查等腰三角形的性质,这是考试的重点知识,应当熟练掌握.。
山东省聊城市临清市八年级数学下学期期中试题(含解析)新人教版
山东省聊城市临清市2015-2016学年八年级数学下学期期中试题一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的)1.在实数、、、()0中,无理数有()个.A.1 B.2 C.3 D.42.下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形 C.平行四边形D.正方形3.下列说法不正确的是()A.﹣的相反数是B.﹣3的绝对值是3﹣C.2是的平方根D.﹣是﹣3的立方根4.下列各式中正确的是()A.若a>b,则a﹣1<b﹣1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若>,则a>b5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.6.下列命题错误的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是菱形7.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.48.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.1259.若=x,则实数x是()A.负实数B.所有正实数C.0或1 D.不存在10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm11.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<112.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.二、填空题(共5小题,每小题3分,满分15分,只要求写出最后结果)13.若a<<b,且a、b是两个连续的整数,则a b= .14.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是.15.已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是6,则a+2b的平方根是.16.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF,若EF=,BD=4,则菱形ABCD的面积为.17.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三、解答题(本大题共8小题,共69分,解答时写出必要的文字说明、证明过程或演算步骤)18.(1)计算:(﹣3)0×6﹣+|π﹣2|(2)解不等式:>1﹣.19.解不等式组,并将解集在数轴上表示出来.20.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.21.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.(1)求证:四边形AEBD是矩形;(2)求四边形AEBD的面积.22.已知,关于x,y的方程组的解满足x>y>0,求a的取值范围.23.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?24.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.25.如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)2015-2016学年山东省聊城市临清市八年级(下)期中数学试卷参考答案与试题解析一、(共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一个是符合题意的)1.在实数、、、()0中,无理数有()个.A.1 B.2 C.3 D.4【考点】无理数;零指数幂.【分析】无理数就是无限不循环小数,根据定义即可作出判断.【解答】解: =3是整数,是有理数;是分数,是有理数;是无理数;()0=1是整数,是有理数.则无理数只有1个.故选A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(2015•株洲)下列几何图形中,既是轴对称图形,又是中心对称图形的是()A.等腰三角形B.正三角形 C.平行四边形D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、既是轴对称图形,又是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列说法不正确的是()A.﹣的相反数是B.﹣3的绝对值是3﹣C.2是的平方根D.﹣是﹣3的立方根【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数;差的绝对值是大数减小数,开方运算,可得答案.【解答】解:A、只有符号不同的两个数互为相反数,故A正确;B、﹣3的绝对值是3﹣,故B正确;C、2是4的平方根,故C错误;D、﹣是﹣3的立方根,故D正确;故选:C.【点评】本题考查了实数的性质,只有符号不同的两个数互为相反数;注意差的绝对值是大数减小数.4.下列各式中正确的是()A.若a>b,则a﹣1<b﹣1 B.若a>b,则a2>b2C.若a>b,且c≠0,则ac>bc D.若>,则a>b【考点】不等式的性质.【分析】根据不等式的性质,可得答案.【解答】解:A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点评】本题考查了不等式的基本性质,“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5.已知点P(3﹣m,m﹣1)在第二象限,则m的取值范围在数轴上表示正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.【专题】数形结合.【分析】根据第二象限内点的坐标特点,可得不等式,根据解不等式,可得答案.【解答】解:已知点P(3﹣m,m﹣1)在第二象限,3﹣m<0且m﹣1>0,解得m>3,m>1,故选:A.【点评】本题考查了在数轴上不等式的解集,先求出不等式的解集,再把不等式的解集表示在数轴上.6.下列命题错误的是()A.矩形的对角线相等B.平行四边形的对角线互相平分C.对角线相等的四边形是矩形D.对角线互相垂直平分的四边形是菱形【考点】命题与定理.【分析】根据矩形的性质对A进行判断;根据平行四边形的性质对B进行判断;根据矩形的判定方法对C 进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、矩形的对角线相等,所以A为真命题;B、平行四边形的对角线互相平分,所以B为真命题;C、对角线相等的平行四边形是矩形,所以C为假命题;D、对角线互相垂直平分的四边形是菱形,所以D为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.7.如图,在▱ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是()A.1 B.2 C.D.4【考点】平行四边形的性质;三角形中位线定理.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OC=OA,又由点E是BC边的中点,根据三角形中位线的性质,即可求得AB的长.【解答】解:∵四边形ABCD是平行四边形,∴OC=OA,∵点E是BC边的中点,即BE=CE,∴OE=AB,∵OE=1,∴AB=2.故选B.【点评】此题考查了平行四边形的性质与三角形中位线的性质.注意平行四边形的对角线互相平分,三角形的中位线平行于三角形的第三边且等于第三边的一半.8.如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75 B.100 C.120 D.125【考点】勾股定理.【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=100.故选B.【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.9.若=x,则实数x是()A.负实数B.所有正实数C.0或1 D.不存在【考点】平方根.【专题】计算题.【分析】由于=x,表示一个数的算术平方根等于它本身,根据算术平方根的定义即可解决问题.【解答】解:∵ =x,∴x=1或0.故选C.【点评】此题主要考查了算术平方根性质,解题注意:0的平方根是0,1的算术平方根也还是它本身.10.平行四边形的一条边长是12cm,那么它的两条对角线的长可能是()A.8cm和16cm B.10cm和16cm C.8cm和14cm D.8cm和12cm【考点】平行四边形的性质;三角形三边关系.【分析】根据平行四边形的性质中,两条对角线的一半和一边构成三角形,利用三角形三边关系判断可知.【解答】解:A、4+8=12,不能构成三角形,不满足条件,故A选项错误;B、5+8>12,能构成三角形,满足条件,故B选项正确.C、4+7<12,不能构成三角形,不满足条件,故C选项错误;D、4+6<12,不能构成三角形,不满足条件,故D选项错误.故选:B.【点评】主要考查了平行四边形中两条对角线的一半和一边构成三角形的性质.并结合三角形的性质解题.11.关于x的不等式组的解集为x>1,则a的取值范围是()A.a≥1 B.a>1 C.a≤1 D.a<1【考点】不等式的解集.【分析】根据题意结合不等式解集的确定方法得出答案.【解答】解:∵关于x的不等式组的解集为x>1,∴a的取值范围是:a≤1.故选:C.【点评】此题主要考查了不等式的解集,正确利用不等式解集确定方法是解题关键.12.如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为()A.2B.3C.D.【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【专题】压轴题.【分析】首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易得△GCF≌△ECF,利用勾股定理可得AE=3,设AF=x,利用GF=EF,解得x,利用勾股定理可得CF.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选:A.【点评】本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是解答此题的关键.二、填空题(共5小题,每小题3分,满分15分,只要求写出最后结果)13.若a<<b,且a、b是两个连续的整数,则a b= 8 .【考点】估算无理数的大小.【分析】先估算出的范围,即可得出a、b的值,代入求出即可.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.【点评】本题考查了估算无理数的大小的应用,解此题的关键是求出的范围.14.不等式(m﹣2)x>2﹣m的解集为x<﹣1,则m的取值范围是m<2 .【考点】不等式的解集.【分析】根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.【解答】解:不等式(m﹣2)x>2﹣m的解集为x<﹣1,∴m﹣2<0,m<2,故答案为:m<2.【点评】本题考查了不等式的解集,由不等号方向改变,得出未知数的系数小于0.15.已知2a﹣1的立方根是3,3a+b﹣1的算术平方根是6,则a+2b的平方根是±2.【考点】立方根;平方根;算术平方根.【专题】计算题;实数.【分析】利用平方根、立方根定义求出a与b的值,即可确定出a+2b的平方根.【解答】解:根据题意得:2a﹣1=27,3a+b﹣1=36,解得:a=14,b=﹣5,则a+2b=14﹣10=4,4的平方根是±2,故答案为:±2【点评】此题考查了立方根、平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.16.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF,若EF=,BD=4,则菱形ABCD的面积为4.【考点】三角形中位线定理;菱形的性质.【分析】根据EF是△ABC的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【解答】解:∵E、F是AB和BC的中点,即EF是△ABC的中位线,∴AC=2EF=2,则S菱形ABCD=AC•BD=×2×4=4.故答案是:4.【点评】本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.17.如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.【考点】正方形的性质.【专题】压轴题;规律型.【分析】首先在Rt△A1BB1中,由勾股定理可求得正方形A1B1C1D1的面积=,然后再在Rt△A2B1B2中,由勾股定理求得正方形A2B2C2D2的面积=,然后找出其中的规律根据发现的规律即可得出结论.【解答】解:在Rt△A1BB1中,由勾股定理可知;==,即正方形A1B1C1D1的面积=;在Rt△A2B1B2中,由勾股定理可知:==;即正方形A2B2C2D2的面积=…∴正方形A n B n C n D n的面积=.故答案为:.【点评】本题主要考查的是正方形的性质和勾股定理的应用,通过计算发现其中的规律是解题的关键.三、解答题(本大题共8小题,共69分,解答时写出必要的文字说明、证明过程或演算步骤)18.(1)计算:(﹣3)0×6﹣+|π﹣2|(2)解不等式:>1﹣.【考点】解一元一次不等式;实数的运算;零指数幂.【分析】(1)根据零指数幂,二次根式的性质,绝对值分别求出每一部分的值,再代入求出即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)原式=1×6﹣4+π﹣2=π;(2)去分母得:2x>6﹣(x﹣3),去括号得:2x>6﹣x+3,移项得:2x+x>6+3,合并同类项得:3x>9,系数化成1得:x>3.【点评】本题考查了解一元一次不等式,零指数幂,二次根式的性质,绝对值的应用,能熟记知识点是解此题的关键.19.解不等式组,并将解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:,由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:【点评】本题考查的是解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.20.如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【考点】勾股定理;三角形的面积;勾股定理的逆定理.【专题】计算题.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC=,S△DAC=,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四边形ABCD=S△ABC+S△DAC,∴S四边形ABCD=2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD是直角三角形是解题的关键.21.如图,在△ABC中,AB=AC=5,BC=6,AD为BC边上的高,过点A作AE∥BC,过点D作DE∥AC,AE与DE交于点E,AB与DE交于点F,连结BE.(1)求证:四边形AEBD是矩形;(2)求四边形AEBD的面积.【考点】矩形的判定.【分析】(1)利用平行四边形的性质和矩形的判定定理推知平行四边形AEBD是矩形.(2)在Rt△ADC中,由勾股定理可以求得AD的长度,由等腰三角形的性质求得BD的长度,则矩形的面积=长×宽=AD•BD,即可得出结果.【解答】(1)证明:∵AE∥BC,BE∥AC,∴四边形AEDC是平行四边形.∴AE=CD.在△ABC中,AB=AC,AD为BC边上的高,∴∠ADB=90°,BD=CD.∴BD=AE.∴四边形AEBD是矩形.(2)解:在Rt△ADC中,∠ADB=90°,AC=5,BD=CD=BC=3,∴AD==4.∴四边形AEBD的面积=BD•AD═3×4=12.【点评】本题考查了矩形的判定与性质和勾股定理,根据“等腰三角形的性质和有一内角为直角的平行四边形为矩形”推知平行四边形AEBD是矩形是解题的难点.22.已知,关于x,y的方程组的解满足x>y>0,求a的取值范围.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】把a看做已知数表示出方程组的解,代入已知不等式求出a的范围即可.【解答】解:,①+②得:3x=6a+3,即x=2a+1,把x=2a+1代入①得:y=a﹣2,代入不等式得:2a+1>a﹣2>0,解得:a>2.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.23.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?【考点】一元一次不等式的应用.【分析】设购买球拍x个,根据乒乓球每个1.5元,球拍每个22元,购买的金额不超过200元,列出不等式,求解即可.【解答】解:设购买球拍x个,依题意得:1.5×20+22x≤200,解之得:x≤7,由于x取整数,故x的最大值为7,答:孔明应该买7个球拍.【点评】此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意列出不等式进行求解.24.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.【考点】菱形的性质;平行四边形的判定.【专题】证明题.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.【解答】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴A C=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°﹣∠CAE=90°﹣60°=30°.【点评】本题考查了菱形的性质,平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,以及直角三角形两锐角互余的性质,熟记各性质与判定方法是解题的关键.25.如图,在△ABC中,D是BC边上一点,E是AD的中点,过A作BC的平行线交CE的延长线F,且AF=BD,连结BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论;(3)当△ABC满足什么条件时,四边形AFBD为正方形?(写出条件即可,不要求证明)【考点】正方形的判定;全等三角形的判定与性质;矩形的判定.【分析】(1)证明△AEF≌△DEC可得AF=DC,再根据条件AF=BD可利用等量代换可得BD=CD;(2)首先判定四边形AFBD为平行四边形,再根据等腰三角形三线合一的性质可得AD⊥BC,进而可得四边形AFBD为矩形;(3)当AB=AC,且∠BAC=90°时,四边形AFBD为正方形,首先证明∠ABC=45°,∠BAD=45°,可得AD=BD,进而可得四边形AFBD为正方形.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠ECD.∵E是AD的中点,∴DE=AE,在△AEF与△DEC中,,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD;(2)答:四边形AFBD为矩形;解:∵AF=BD,AF∥BD,∴四边形AFBD为平行四边形,∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDA=90°,∴四边形AFBD为矩形;(3)AB=AC,且∠BAC=90°;∵AB=AC,且∠BAC=90°,∴∠ABC=45°,∵AD⊥BC,∴∠BAD=45°,∴AD=DB,∴四边形AFBD为正方形.【点评】此题主要考查了正方形的判定,矩形的判定,以及全等三角形的判定与性质,关键是掌握邻边相等的矩形是正方形.。
2014-2015年山东省聊城市临清市八年级上学期数学期中试卷与答案
赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P 2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。
DBC2014-2015学年山东省聊城市临清市八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,在每小题给出的选项中,只有一项符合题目要求)1.(3分)如下图是用纸折叠成的图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°3.(3分)如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB4.(3分)若分式的值为零,则x的值是()A.3 B.﹣3 C.±3 D.05.(3分)下列约分正确的是()A.=x2B.=0C.D.6.(3分)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点7.(3分)要使分式有意义,则x应满足的条件是()A.x≠1 B.x≠﹣1 C.x≠0 D.x>18.(3分)如图,△ABC中,AB=AC,BD=CD,下列说法不正确的是()A.∠BAD=∠BAC B.AD=BC C.∠B=∠C D.AD⊥BC9.(3分)如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠410.(3分)在、、、、x+中分式的个数有()A.2个 B.3个 C.4个 D.5个11.(3分)已知等腰三角形的一边长为3,另一边长为8,则它的周长是()A.14 B.19 C.11 D.14或1912.(3分)已知等腰△ABC腰AB上的高CD与另一腰AC的夹角为30°,则其顶角的度数为()A.60°B.120°C.60或150°D.60°或120°二、填空题(本题共5各小题,每小题3分,共15分,只要求写出最后的结果)13.(3分)等腰三角形的一个内角是100°,那么另外两个内角的度数分别为.14.(3分)=.15.(3分)△ABC≌△DEF,且△ABC的周长为18,若AB=5,AC=6,则EF=.16.(3分)如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为.17.(3分)直线l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有处.三、解答题(本大题共8个小题,共69分,解答要写出必要的文字说明、证明过程或演算步骤.)18.(12分)计算(1)•(2)+(3)÷﹣(4)﹣÷.19.(6分)尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)20.(6分)如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)△A1B1C1的面积为.21.(7分)如图,点C,E,B,F在同一条直线上,AC∥DF,AC=DF,CE=BF,求证:△ACB≌△DFE.22.(8分)△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.23.(8分)如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.24.(10分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.25.(12分)如图:(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB 于点Q,交CA的延长线于点R.请观察AR与AQ,它们有何关系?并证明你的猜想.(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.2014-2015学年山东省聊城市临清市八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,在每小题给出的选项中,只有一项符合题目要求)1.(3分)如下图是用纸折叠成的图案,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个【解答】解:信封是轴对称图形;飞机是轴对称图形;裤子是轴对称图形;褂子不是轴对称图形;综上可得轴对称图形共3个.故选:C.2.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.3.(3分)如图,AC=AD,BC=BD,则有()A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB【解答】解:∵AC=AD,BC=BD,∴点A在CD的垂直平分线上,点B在CD的垂直平分线上,∴AB垂直平分CD.故选:A.4.(3分)若分式的值为零,则x的值是()A.3 B.﹣3 C.±3 D.0【解答】解:由分子x﹣3=0解得:x=3,而当x=3时,分母x+3=3+3=6≠0,故x=3.故选:A.5.(3分)下列约分正确的是()A.=x2B.=0C.D.【解答】解:A、=x4,故A选项错误;B、=1,故B选项错误;C、=,故C选项正确;D、=,故D选项错误;故选:C.6.(3分)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点 B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点【解答】解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.7.(3分)要使分式有意义,则x应满足的条件是()A.x≠1 B.x≠﹣1 C.x≠0 D.x>1【解答】解:∵x+1≠0,∴x≠﹣1.故选:B.8.(3分)如图,△ABC中,AB=AC,BD=CD,下列说法不正确的是()A.∠BAD=∠BAC B.AD=BC C.∠B=∠C D.AD⊥BC【解答】解:A、∵AB=AC,BD=CD,∴∠BAD=∠BAC,故本选项错误;B、AD、BC的大小关系无法确定,故本选项正确;C、∵AB=AC,∴∠B=∠C,故本选项错误;D、∵AB=AC,BD=CD,∴AD⊥BC,故本选项错误.故选:B.9.(3分)如图,要用“SAS”证△ABC≌△ADE,若已知AB=AD,AC=AE,则还需条件()A.∠B=∠D B.∠C=∠E C.∠1=∠2 D.∠3=∠4【解答】解:还需条件∠1=∠2,∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即:∠BAC=∠DAE,在△ABC和△ADE中:,∴△ABC≌△ADE(SAS).故选:C.10.(3分)在、、、、x+中分式的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:、、中的分母中均不含有字母,因此它们是整式,而不是分式.、x+的分母中含有字母,因此是分式.故选:A.11.(3分)已知等腰三角形的一边长为3,另一边长为8,则它的周长是()A.14 B.19 C.11 D.14或19【解答】解:①当3为底时,其它两边都为8,3、8、8可以构成三角形,周长为19;②当4为腰时,其它两边为3和8,∵3+3<8,∴不能构成三角形,故舍去,∴答案只有19.故选:B.12.(3分)已知等腰△ABC腰AB上的高CD与另一腰AC的夹角为30°,则其顶角的度数为()A.60°B.120°C.60或150°D.60°或120°【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故选:D.二、填空题(本题共5各小题,每小题3分,共15分,只要求写出最后的结果)13.(3分)等腰三角形的一个内角是100°,那么另外两个内角的度数分别为40°,40°.【解答】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且他们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.14.(3分)=a﹣3.【解答】解:=.故答案为a﹣3.15.(3分)△ABC≌△DEF,且△ABC的周长为18,若AB=5,AC=6,则EF=7.【解答】解:∵△ABC的周长为18,AB=5,AC=6,∴BC=18﹣5﹣6=7,∵△ABC≌△DEF,∴EF=BC=7,故答案为:7.16.(3分)如图,已知△ABC,BC=10,BC边的垂直平分线交AB,BC于点E、D.若△ACE的周长为12,则△ABC的周长为22.【解答】解:∵BC边的垂直平分线交AB,∴BE=CE,∵△ACE的周长为12,∴AC+AE+CE=AC+AE+BE=AC+AB=12,∵BC=10,∴△ABC的周长为:AB+AC+BC=22.故答案为:22.17.(3分)直线l1、l2、l3表示三条两两相互交叉的公路,现在拟建一个货物中转站,要求它到三条公路的距离都相等,则可供选择的地址有4处.【解答】解:∵中转站要到三条公路的距离都相等,∴货物中转站必须是三条相交直线所组成的三角形的内角或外角平分线的交点,而外角平分线有3个交点,内角平分线有一个交点,∴货物中转站可以供选择的地址有4个.故答案为:4.三、解答题(本大题共8个小题,共69分,解答要写出必要的文字说明、证明过程或演算步骤.)18.(12分)计算(1)•(2)+(3)÷﹣(4)﹣÷.【解答】解:(1)原式=a;(2)原式==;(3)原式=•﹣=1﹣=;(4)原式=﹣•=﹣=0.19.(6分)尺规作图如图,已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.(不写画图过程,保留作图痕迹)【解答】解:如图所示:P点或P′点即为所求.20.(6分)如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)△A1B1C1的面积为 4.5.【解答】解:(1)如图所示:△A1B1C1即为所求;=S矩形EFGH﹣S△A1EB1﹣S△B1FC1﹣S△A1HC1(2)S△A1B1C1=3×5﹣×1×2﹣×2×5﹣×3×3=15﹣1﹣5﹣=4.5.故答案为:4.5.21.(7分)如图,点C,E,B,F在同一条直线上,AC∥DF,AC=DF,CE=BF,求证:△ACB≌△DFE.【解答】解:∵AC∥DF∴∠ACB=∠DFE∵CE=BF,∴BC=EF,在△ACB和△DFE中,,∴△ACB≌△DFE(SAS).22.(8分)△ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE=DF.【解答】证明:∵AB=AC,D是BC中点,∴∠ABC=∠ACB,BD=DC.∵DE⊥AB于E,DF⊥AC于F,∴∠DEB=∠DFC=90°在△DEB和△DFC中,,∴△DEB≌△DFC(AAS),∴DE=DF.23.(8分)如图,已知BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,若AB=AC.求证:AD平分∠BAC.【解答】解:方法一:连接BC,∵BE⊥AC于E,CF⊥AB于F,∴∠CFB=∠BEC=90°,∵AB=AC,∴∠ABC=∠ACB,在△BCF和△CBE中∵∴△BCF≌△CBE(AAS),∴BF=CE,在△BFD和△CED中∵,∴△BFD≌△CED(AAS),∴DF=DE,∴AD平分∠BAC.方法二:先证△AFC≌△AEB,得到AE=AF,再用(HL)证△AFD≌△三AED,得到∠FAD=∠EAD,所以AD平分∠BAC.24.(10分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.25.(12分)如图:(1)P是等腰三角形ABC底边BC上的一个动点,过点P作BC的垂线,交AB 于点Q,交CA的延长线于点R.请观察AR与AQ,它们有何关系?并证明你的猜想.(2)如果点P沿着底边BC所在的直线,按由C向B的方向运动到CB的延长线上时,(1)中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.【解答】解:(1)AR=AQ,理由如下:∵AB=AC,∴∠B=∠C.∵RP⊥BC,∴∠B+∠BQP=∠C+∠PRC=90°,∴∠BQP=∠PRC.∵∠BQP=∠AQR,∴∠PRC=∠AQR,∴AR=AQ;(2)猜想仍然成立.证明如下:∵AB=AC,∴∠ABC=∠C.∵∠ABC=∠PBQ,∴∠PBQ=∠C,∵RP⊥BC,∴∠PBQ+∠BQP=∠C+∠PRC=90°,∴∠BQP=∠PRC,∴AR=AQ.第21页(共21页)。
2014-2015年山东省聊城市临清市初三上学期期末数学试卷及参考答案
2014-2015学年山东省聊城市临清市初三上学期期末数学试卷一、选择题(共12题,每小题3分,共36分)1.(3分)如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2B.1:4C.1:D.2:12.(3分)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°3.(3分)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.40°D.20°4.(3分)将二次函数化成y=a(x+m)2+n的形式是()A.B.C.D.5.(3分)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限6.(3分)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球7.(3分)一个矩形宽为1(宽<长),剪去一个以宽为边长的正方形后,所剩下的矩形与原矩形相似,则原矩形的长是()A.B.C.D.8.(3分)函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.9.(3分)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A.2:1B.4:1C.3:1D.5:310.(3分)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°11.(3分)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.12.(3分)若一元二次方程x2﹣2x﹣k=0无实数根,则二次函数y=x2+(k+1)x+k的图象的顶点在()A.第四象限B.第三象限C.第二象限D.第一象限二、填空题(每小题3分,共15分)13.(3分)将抛物线向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为.14.(3分)如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)15.(3分)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.(3分)如图,在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC.在AB上取一点E得△ADE.若图中两个三角形相似,则DE的长是.17.(3分)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S=2,则k2﹣k1的值△AOB为.三、解答题(本题共8小题,共69分)18.(8分)解方程:(1)x2﹣12x﹣4=0(2)2(x+2)2=x2﹣4.19.(5分)已知二次函数的图象顶点是(2,﹣1),且经过(0,1),求这个二次函数的解析式.20.(8分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B 级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下表:1110615916131208 2810176137573 1210711368141512(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.21.(8分)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.22.(8分)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C 在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:≈1.7)23.(10分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数.24.(10分)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线.25.(12分)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为.2014-2015学年山东省聊城市临清市初三上学期期末数学试卷参考答案与试题解析一、选择题(共12题,每小题3分,共36分)1.(3分)如果两个相似三角形的相似比是1:2,那么它们的面积比是()A.1:2B.1:4C.1:D.2:1【解答】解:∵两个相似三角形的相似比是1:2,∴(1:2)2=1:4.故选B.2.(3分)在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°C.3tan40°D.3tan50°【解答】解:∠B=90°﹣∠A=90°﹣40°=50°,又∵tanB=,∴AC=BC•tanB=3tan50°.故选:D.3.(3分)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.40°D.20°【解答】解:∵⊙O的直径CD过弦EF的中点G,∴(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.故选:D.4.(3分)将二次函数化成y=a(x+m)2+n的形式是()A.B.C.D.【解答】解:原式=(x2+4x﹣4)=(x2+4x+4﹣8)=(x+2)2﹣2故选:A.5.(3分)若反比例函数的图象经过点(m,3m),其中m≠0,则此反比例函数图象经过()A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限【解答】解:∵反比例函数的图象经过点(m,3m),m≠0,∴将x=m,y=3m代入反比例解析式得:3m=,∴k=3m2>0,则反比例y=图象过第一、三象限.故选:A.6.(3分)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球【解答】解:A、是必然事件;B、是随机事件,选项错误;C 、是随机事件,选项错误;D 、是随机事件,选项错误. 故选:A .7.(3分)一个矩形宽为1(宽<长),剪去一个以宽为边长的正方形后,所剩下的矩形与原矩形相似,则原矩形的长是( ) A .B .C .D .【解答】解:设原矩形的长为x ,则剩下矩形的宽(x ﹣1), ∵剩下的矩形与原矩形相似, ∴=,整理得,x 2﹣x ﹣1=0,解得x 1=,x 2=(舍去), 所以,原矩形的长是.故选:D .8.(3分)函数y=ax +b 和y=ax 2+bx +c 在同一直角坐标系内的图象大致是( )A .B .C .D .【解答】解:当a >0时,二次函数的图象开口向上, 一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.9.(3分)如图所示的向日葵图案是用等分圆周画出的,则⊙O与半圆P的半径的比为()A.2:1B.4:1C.3:1D.5:3【解答】解:连接OA、OP、OB;∵向日葵图案是用等分圆周画出的,∴此圆内接多边形是正六边形,∴∠AOB=60°;∵△AOB是等腰三角形,P为AB边的中点,∴∠AOP=∠AOB=30°,△AOP是直角三角形,∴AP=OA,即⊙O与半圆P的半径的比为2:1.故选:A.10.(3分)如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=25°,则∠D等于()A.20°B.30°C.40°D.50°【解答】解:如右图所示,连接BC,∵AB 是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°﹣25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA﹣∠BCD=65°﹣25°=40°.故选:C.11.(3分)一个圆锥的侧面展开图是半径为R的半圆,则该圆锥的高是()A.R B.C.D.【解答】解:圆锥的底面周长是:πR;设圆锥的底面半径是r,则2πr=πR.解得:r=R.由勾股定理得到圆锥的高为=,故选:D.12.(3分)若一元二次方程x2﹣2x﹣k=0无实数根,则二次函数y=x2+(k+1)x+k 的图象的顶点在()A.第四象限B.第三象限C.第二象限D.第一象限【解答】解:∵一元二次方程x2﹣2x﹣k=0无实数根,∴△=4+4k<0,即k<﹣1,则二次函数y=x2+(k+1)x+k的图象与x轴没有交点,对称轴的横坐标x=﹣=﹣>0,与y轴交点为(0,k),故函数图象的顶点第四象限.故选:A.二、填空题(每小题3分,共15分)13.(3分)将抛物线向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为.【解答】解:抛物线向左平移5个单位,得:y=﹣(x﹣5+5)2+3=﹣x2+3;再向上平移3个单位,得:y=﹣x2+3+3=﹣x2+6.14.(3分)如图,在Rt△ABC中,∠C=90°,CA=CB=2.分别以A、B、C为圆心,以AC为半径画弧,三条弧与边AB所围成的阴影部分的面积是.(保留π)【解答】解:2×2÷2﹣﹣=2﹣.15.(3分)抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.16.(3分)如图,在△ABC中,AB=9,AC=12,BC=18,D为AC上一点,DC=AC.在AB上取一点E得△ADE.若图中两个三角形相似,则DE的长是6或8.【解答】解:∵AC=12,DC=AC;∴AD=4.若AD与AC对应成比例,则DE=BC=6;若AD与AB对应成比例,则DE=×BC=×18=8.所以DE的长为6或8.17.(3分)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直=2,则k2﹣k1的值为线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB4.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,=2,∵S△AOB∴cd﹣ab=2,∴cd﹣ab=4,∴k2﹣k1=4,故答案为:4.三、解答题(本题共8小题,共69分)18.(8分)解方程:(1)x2﹣12x﹣4=0(2)2(x+2)2=x2﹣4.【解答】解:(1)x2﹣12x﹣4=0,x2﹣12x=4,x2﹣12x+62=4+62,(x﹣6)2=40,x﹣6=,x1=6+2,x2=6﹣2;(2)2(x+2)2=x2﹣4,2(x+2)2﹣(x+2)(x﹣2)=0,(x+2)[2(x+2)﹣(x﹣2)]=0,x+2=0,2(x+2)﹣(x﹣2)=0,x1=﹣2,x2=﹣6.19.(5分)已知二次函数的图象顶点是(2,﹣1),且经过(0,1),求这个二次函数的解析式.【解答】解:设二次函数的解析式是y=a(x﹣2)2﹣1,把(0,1)代入,得4a=2,即a=,∴该二次函数的解析式是y=(x﹣2)2﹣1.20.(8分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B 级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下表:1110615916131208 2810176137573 1210711368141512(1)求样本数据中为A级的频率;(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.【解答】解:(1)∵抽取30个符合年龄条件的青年人中A级的有15人,∴样本数据中为A级的频率为:=;(2)1000个18~35岁的青年人中“日均发微博条数”为A级的人数为:1000×=500;(3)C级的有:0,2,3,3四人,画树状图得:∵共有12种等可能的结果,抽得2个人的“日均发微博条数”都是3的有2种情况,∴抽得2个人的“日均发微博条数”都是3的概率为:=.21.(8分)某商场今年2月份的营业额为400万元,3月份的营业额比2月份增加10%,5月份的营业额达到633.6万元.求3月份到5月份营业额的月平均增长率.【解答】解:设3月份到5月份营业额的月平均增长率为x,根据题意得,400×(1+10%)(1+x)2=633.6,解得,x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:3月份到5月份营业额的月平均增长率为20%.22.(8分)“马航事件”的发生引起了我国政府的高度重视,迅速派出了舰船和飞机到相关海域进行搜寻.如图,在一次空中搜寻中,水平飞行的飞机观测得在点A俯角为30°方向的F点处有疑似飞机残骸的物体(该物体视为静止).为了便于观察,飞机继续向前飞行了800米到达B点,此时测得点F在点B俯角为45°的方向上,请你计算当飞机飞临F点的正上方点C时(点A、B、C 在同一直线上),竖直高度CF约为多少米?(结果保留整数,参考数值:≈1.7)【解答】解:∵∠BCF=90°,∠CBF=45°,∴BC=CF,∵∠CAF=30°,∴tan30°====,解得:CF=≈≈1046(米).答:竖直高度CF约为1046米.23.(10分)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数.【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y═k1x+b1,由图象可得,解得,∴y=2x+140,当58<x≤71时,设y与x的函数解析式为y═k2x+b2,由图象可得,解得,∴y=﹣x+82,综上所述:y=,(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得:a=3.答:该店员工的人数是3.24.(10分)如图,已知在等腰△ABC中,∠A=∠B=30°,过点C作CD⊥AC交AB于点D.(1)尺规作图:过A,D,C三点作⊙O(只要求作出图形,保留痕迹,不要求写作法);(2)求证:BC是过A,D,C三点的圆的切线.【解答】解:(1)作出圆心O,以点O为圆心,OA长为半径作圆;(2)证明:∵CD⊥AC,∴∠ACD=90°.∴AD是⊙O的直径连接OC,∵∠A=∠B=30°,∴∠ACB=120°,又∵OA=OC,∴∠ACO=∠A=30°,∴∠BCO=∠ACB﹣∠ACO=120°﹣30°=90°.∴BC⊥OC,∴BC是⊙O的切线.25.(12分)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为(2,﹣1).【解答】解:(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,得1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.由(1)知抛物线的函数表达式为y=x2﹣4x+3,A(1,0),B(3,0),∴C(0,3),∴BC==3,AC==.∵点A、B关于对称轴x=2对称,∴PA=PB,∴PA+PC=PB+PC.此时,PB+PC=BC.∴点P在对称轴上运动时,(PA+PC)的最小值等于BC.∴△APC的周长的最小值=AC+AP+PC=AC+BC=3+;(3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D是抛物线y=x2﹣4x+3的顶点坐标,即(2,﹣1),当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,故点D的坐标为:(2,﹣1).故答案是:(2,﹣1).。
14-15第二学期期末八年级数学答案
2014—2015学年第二学期期末考试八年级数学试题参考答案及评分标准15题:解:∵O1为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=×1=,∵平行四边形AO1C2B的对角线交于点O2,∴平行四边形AOC2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形ABC3O2的面积=××1=,依此类推,平行四边形ABC2014O2015的面积=cm2.二、填空题(每小题2分,共10分)16.甲17.58xy=-⎧⎨=-⎩18.619.10 20.(31,16)20题:解:∵点B1的坐标为(1,1),点B2的坐标为(3,2),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n﹣1,纵坐标是:2n﹣1.则B n的坐标是(2n﹣1,2n﹣1).∴B5的坐标是(25﹣1,24).即:B5的坐标是(31,16).三、解答题(本大题共6个小题;共60分)21.(本题满分8分)解:∵CD⊥AC,∴∠ACD=90°,∵∠ABD=135°,∴∠DBC=45°,∴∠D=45°,∴CB=CD,-----------------------------3分在Rt△DCB中:CD2+BC2=BD2,2CD2=(100)2,CD=100(米),答:在直线L上距离D点100米的C处开挖.-----------------------------8分(第21题图)2014-2015学年第二学期期末八年级数学答案第1页(共3页)2014-2015学年第二学期期末八年级数学答案 第2页(共3页)22.(本题满分10分) 解:(1)设直线OA 的解析式为y=kx , 把A (3,4)代入得4=3k ,解得k=, 所以直线OA 的解析式为y=x ;------------2分 ∵A 点坐标为(3,4), ∴OA==5,∴OB=OA=5,∴B 点坐标为(0,﹣5), -----------------4分 设直线AB 的解析式为y=ax+b , 把A (3,4)、B (0,﹣5)代入得,解得,∴直线AB 的解析式为y=3x ﹣5;----------------------------------------------------8分 (2)△AOB 的面积S=×5×3=.-------------------------------------------------10分23. (本题满分10分) 证明:∵DE ∥AC ,∴∠DEC=∠ACB ,∠EDC=∠DCA , ∵四边形ABCD 是平行四边形, ∴∠CAB=∠DCA , ∴∠EDC=∠CAB , 又∵AB=CD ,∴△EDC ≌△CAB ,∴CE=CB , ----------------------------------7分 所以在Rt △BEF 中,FC 为其中线,所以FC=BC , ----------------------9分 即FC=AD .-------------------------------------10分24、(本小题满分10分)解:(1)a =1﹣(40%+20%+25%+5%)=1﹣90%=10%, 被抽查的学生人数:240÷40%=600, 8天的人数:600×10%=60人,补全统计图如图所示:------------------ 4分(2)参加社会实践活动5天的最多, 所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;--------------------8分(3)1000×(25%+10%+5%)=1000×40%=400所以,填400人.----------------------------10分(第22题图)(第23题图)FED CBA25.(本题满分10分)(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;---------------------------------------5分(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF即CE=CF,在△COE和△COF中,,(第25题图)∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形∵AE=AF,∴平行四边形AEMF是菱形.--------------------------------------------------------------10分26.(本题满分12分)解:(1)∵8x+6y+5(20﹣x﹣y)=120,∴y=20﹣3x.∴y与x之间的函数关系式为y=20﹣3x.----------------------------------------4分(2)由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5,又∵x为正整数,∴x=3,4,5.故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.--------------------------------------------8分(3)W=8x•12+6(20﹣3x)•16+5[20﹣x﹣(20﹣3x)]•10=﹣92x+1920.∵W随x的增大而减小,又x=3,4,5∴当x=3时,W最大=1644(百元)=16.44万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.--------------------------------------------------------------------12分2014-2015学年第二学期期末八年级数学答案第3页(共3页)。
青岛版2014—2015年第二学期八年级数学期末测试题及答案
2014~2015学年度第二学期期末学业水平测试八年级数学试题时间:100分钟,满分:120分注意事项:请将所有答案写在答案纸上一、选择题:请将答案填在答题栏中,每小题3分,共30分.1.如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是()A.16B.14C.20D. 242.用不等式表示“x的2倍与3的差不大于8”为()A. 2x-3<8B. 2x-3>8C. 2x-3≥8D. 2x-3≤83.x的取值范围是()A.x≥-12B.x≥12C.x>12D.x>-124.正比例函数y=-3x的大致图象是()5.-8的立方根是()A.-2B.±2C.2D.126. 已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是( )A. a≤bB. a<bC. a≥bD. a>b7.如图,函数y=3x与y=kx+b的图象交于点A(2,6),不等式3x<kx+b的解集为()A. x<4B. x<2C. x>2D. x>48.如图,观察图形,找出规律,确定第四个图形是(第1题图EDCBA第7题图DCBA(4)(3)(2)(1)9.下列图形既是轴对称图形,又是中心对称图形的是()A B C D10.将图a绕中心按顺时针方向旋转60°后可得到的图形是()二、填空题:请将答案填在答题纸的横线上,每小题3分,共24分.11.直角三角形的两直角边长分别是3cm和4cm,则连接两直角边的中点的线段长是;的相反数是;13.不等式x+1<2x-4的解集是;14.的结果是;15.已知∆ABC∽∆A1B1C1,AB:A1B1=2:3,若S∆则111A B CS∆= ;16.直线y=kx+3与y=-x+3的图象如图所示,则方程组y x3y x3k=+⎧⎨=-+⎩的解集为 .17.点P(-2,3)关于原点的对称点的坐标是18.如图,有两棵树,一棵高10m,另一棵高4m,两树相距8m .一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行 m . 三、解答题:(共66分) 19.(8分)计算(1)122432+-- (2) 2)21(27486-+÷20.(12分)解下列不等式(组):(1)解不等式13x -≤5-x ; (2)解不等式组:31,2(1)1,x x x +>⎧⎨+-≤⎩①②. 21. (6分)已知(x+1)2-4(x+1)+4 22.(8分)作图题:(1)把△ABC 向右平移5个方格; (2)绕点B 的对应点顺时针方向旋转90°23.(10分)如图,直线y =kx +b 经过A(2,1),B(-1,-2)两点,(1)求直线y =kx +b 的表达式; (2)求不等式12x >kx +b >-2的解集.24. (10分) 如图,已知△ABC 中,AB=AC=BC =6,点M 为AB 的中点,在线段AC 上取点N ,使△AMN 与△ABC 相似,求MN 的长.25.(12分)某蔬菜培育中心决定向某灾区配送无辐射蔬菜和水果共3200箱,其中水果比蔬菜多800箱.C BA C BA(1)求水果和蔬菜各有多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批水果和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装水果400箱和蔬菜100箱,每辆乙种货车最多可装水果和蔬菜各200箱,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费4000元,乙种货车每辆需付运费3600元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?数学答案纸姓名考号班级一、选择题答题栏(30分):11. ;12. ;13. ;14. ;15. ;16. ;17. ;18. ;三、解答题:19.(8分)(1)(2)20. (12分)(1)(2)21. (6分)22.作图题(8分):(1)把△ABC 向右平移5个方格; (2)把△ABC 绕点B 点顺时针方向旋转90°23.(10分)C BA C BA24.(10分)25.(12分)八年级参考答案一、二、⎩17.(2,-3) ;18. 10米三、19.(1(2) 20.(1) x≤4;(2)-2<x≤1.21. 5 22.略 23.(1)y=x-1;(2)-1<x <224.解:①图1,当△AMN ∽△ABC 时,有AM MNAB BC=,∵M 为AB 中点,,AB =∴AM ∵BC =6∴MN =3;图1 图2○2图2,当△ANM ∽△ABC 时,有AM MNAC BC=,∵M 为AB 中点,,AB =∴AM ,∵BC =6,AC =MN =32∴MN 的长为3或32.25. (1)水果和蔬菜分别为2000箱和1200箱.(2)设租用甲种货车a 辆,则租用乙种货车(8-a)辆.根据题意,得400200(8)2000,100200(8)1200.a a a a +-≥⎧⎨+-≥⎩解得2≤a≤4. 因为a 为整数,所以a =2或3或4,安排甲、乙两种货车时有3种方案. 设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆; (3)3种方案的运费分别为:①2×4000+6×3600=29600元;②3×4 000+5×3600=30000元; ③4×4000+4×3600=30400元.故方案①的运费最少,最少运费是29600元.所以,运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是29600元.。
聊城市临清县第二学期初二期末考试
聊城市临清县第二学期期末考试初二数学试卷一、选择题:下列各题都给出了四个选项,其中只有一个选项是正确的。
请把正确选项的序 号涂在答题卡上。
每小题4分,共48分。
1.下列等式中,不成立的是A .y x x y xy x y -=-22B .y x yx y xy x -=-+-222 C .yx y xy x xy -=-2 D .y x y x y x -=--22 2.生物具有遗传多样性,遗传信息大多储存在DNA 分子上,一个DNA 分子的直径约为0.0000002cm ,这个数用科学记数法表示为A .0.2×10-6cmB .2×10-6cmC .0.2×10-7cmD .2×10-7cm3.如图1,点A 是图象xy 4=上的一点,AB ⊥y 轴于点B ,则△AOB 的面积为 A .1 B .2 C .3 D .44.若函数b kx y +=(k 、b 为常数)的图象如图2所示,那么,y>0时,x 的取值范围是A .x>1B .x<2C .x<1D .x>25.正比例函数kx y 2=与反比例函数xk y 1-=在同一直角坐标系中的图象不可能是6.如图3,在△ABC 中,∠A=36°,∠C=72°,∠ABC 的平分线交AC 于点D ,则图3中共有等腰三角形A .3个B .2个C .1个D .O 个7.如图4,△ABC 是不等边三角形,DE=BC ,以D 、E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形可以画出( )A .2个B .4个C .6个D .8个8.如果kb<0,且不等式kx+b>0的解集为kb x ->,则函数y=kx+b 的图象仅可能是9.如图5所示,是一个正在绘制的扇形统计图,整个圆表示某班参加体育活动的总人数,那么表示参加立定跳远训练的人数占总人数的35%的扇形是A .PB .QC .MD .N10.为了了解汽车司机遵守交通法规的意识,小明及学习小组成员协助交通警察在某路口统计的某个时段来往汽车的车速(单位:千米/小时)情况如图6所示。
新人教版2014-2015学年下学期八年级期末考试数学试题及答案
新人教版2014-2015学年八年级(下)期末数学试卷A卷(100分)一、选择题(本题共30分,每小题3分)1.(2015春•西城区期末)下列图案中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(2015春•西城区期末)下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.2,2,3 B. 3,4,5 C. 5,12,13 D. 1,,3.(2013•黔西南州)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B. 160°C. 80°D. 60°4.(2015春•西城区期末)如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4 B.C. 3 D. 54题图5题图6题图5.(2012•铜仁地区)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C. 4 D.﹣46.(2015春•西城区期末)某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如右面的条形图所示.这15名同学进球数的众数和中位数分别是()A.10,7 B. 7,7 C. 9,9 D. 9,7 7.(2014•绵阳)下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形8.(2015春•西城区期末)某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米.若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是()A.2000(1+x)2=2880 B. 2000(1﹣x)2=2880C.2000(1+2x)=2880 D. 2000x2=28809.(2015春•西城区期末)若一直角三角形的两边长分别是6,8,则第三边长为()A.10 B.C. 10或D.14 10.(2015春•西城区期末)如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中∠ACB=90°.连接CD,当CD的长度最大时,此时∠CAB的大小是()A.75°B.45°C.30°D. 15°10题图12题图15题图二、填空题(本题共24分,每小题3分)11.(2015春•西城区期末)若x=2是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为.12.(2014•成都)如图,为估计池塘岸边A,B两点间的距离,在池塘的一侧选取点O,分别取OA,OB的中点M,N,测得MN=32m,则A,B两点间的距离是m.13.(2015春•西城区期末)2015年8月22日,世界田径锦标赛将在北京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.6秒,甲、乙、丙、丁的成绩的方差分别是0.07,0.03,0.05,0.02.则当天这四位运动员中“110米跨栏”的训练成绩最稳定运动员的是.14.(2015春•西城区期末)双曲线y=经过点A(2,y1)和点B(3,y2),则y1y2.(填“>”、“<”或“=”)15.(2015春•绿园区期末)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD= .16.(2015春•西城区期末)将一元二次方程x2+8x+3=0化成(x+a)2=b的形式,则a+b的值为.17.(2015春•西城区期末)如图,将▱ABCD绕点A逆时针旋转30°得到▱AB′C′D′,点B′恰好落在BC边上,则∠DAB′= °.17题图18题图18.(2015春•西城区期末)如图,在平面直角坐标系xOy中,菱形OABC的顶点B在x轴上,OA=1,∠AOC=60°.当菱形OABC开始以每秒转动60度的速度绕点O逆时针旋转时,动点P同时从点O出収,以每秒1个单位的速度沿菱形OABC的边逆时针运动.当运动时间为1秒时,点P的坐标是;当运动时间为2015秒时,点P的坐标是.三、解答题(本题共20分,第19题10分,其余每小题10分)19.(10分)(2015春•西城区期末)解方程:(1)(x﹣5)2﹣9=0;(2)x2+2x﹣6=0.20.(5分)(2015春•西城区期末)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F.(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.21.(5分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣2,﹣1),B(﹣4,1),C(﹣3,3).△ABC关于原点O对称的图形是△A1B1C1.(1)画出△A1B1C1;(2)BC与B1C1的位置关系是平行,AA1的长为2;(3)若点P(a,b)是△ABC 一边上的任意一点,则点P经过上述变换后的对应点P1的坐标可表示为.四、解答题(本题共12分,每小题6分)22.(6分)(2015春•西城区期末)“中国汉字听写大会”是由中央电视台和国家语言文字工作委员会联合主办的节目,希望通过节目的播出,能吸引更多的人关注对汉字文化的学习.某校也开展了一次“汉字听写”比赛,每位参赛学生听写40个汉字.比赛结束后随机抽取部分学生的听写结果,按听写正确的汉字个数x绘制成了以下不完整的统计图.根据以上信息回答下列问题:(1)本次共随机抽取了50 名学生进行调查,听写正确的汉字个数x在21≤x<31 范围的人数最多;(2)补全频数分布直方图;(3)各组的组中值如下表所示.若用各组的组中值代表各组每位学生听写正确的汉字个数,求被调查学生听写正确的汉字个数的平均数;听写正确的汉字个数x 组中值1≤x<11 611≤x<21 1621≤x<31 2631≤x<41 36(4)该校共有1350名学生,如果听写正确的汉字个数不少于21个定为良好,请你估计该校本次“汉字听写”比赛达到良好的学生人数.23.(6分)(2015春•西城区期末)已知关于x的一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.五、解答题(本题共14分,每小题7分)24.(7分)(2015春•西城区期末)如图,在平面直角坐标系xOy中,点A(a,﹣)在直线y=﹣上,AB∥y轴,且点B的纵坐标为1,双曲线y=经过点B.(1)求a的值及双曲线y=的解析式;(2)经过点B的直线与双曲线y=的另一个交点为点C,且△ABC的面积为.①求直线BC的解析式;②过点B作BD∥x轴交直线y=﹣于点D,点P是直线BC上的一个动点.若将△BDP以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,直接写出所有满足条件的点P的坐标.25.(7分)(2015春•西城区期末)已知:在矩形ABCD和△BEF中,∠DBC=∠EBF=30°,∠BEF=90°.(1)如图1,当点E在对角线BD上,点F在BC边上时,连接DF,取DF的中点M,连接ME,MC,则ME与MC的数量关系是,∠EMC= °;(2)如图2,将图1中的△BEF绕点B旋转,使点E在CB的延长线上,(1)中的其他条件不变.①(1)中ME与MC的数量关系仍然成立吗?请证明你的结论;②求∠EMC的度数.B卷(50分)一、填空题(本题6分)26.(6分)(2015春•西城区期末)若一个三角形的三条边满足:一边等于其他两边的平均数,我们称这个三角形为“平均数三角形”.(1)下列各组数分别是三角形的三条边长:①5,7,5;②3,3,3;③6,8,4;④1,,2.其中能构成“平均数三角形”的是;(填写序号)(2)已知△ABC的三条边长分别为a,b,c,且a<b<c.若△ABC既是“平均数三角形”,又是直角三角形,则的值为.二、解答题(本题共14分,每小题7分)27.(7分)(2015春•西城区期末)阅读下列材料:某同学遇到这样一个问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点A(1,t)在反比例函数(x>0)的图象上,求点A到直线l的距离.如图1,他过点A作AB⊥l于点B,AD∥y轴分别交x轴于点C,交直线l于点D.他发现OC=CD,∠ADB=45°,可求出AD的长,再利用Rt△ABD求出AB的长,即为点A到直线l的距离.请回答:图1中,AD= ,点A到直线l的距离= .参考该同学思考问题的方法,解决下列问题:在平面直角坐标系xOy中,已知直线l:y=﹣x,点M(a,b)是反比例函数(x>0)的图象上的一个动点,且点M在第一象限,设点M到直线l的距离为d.(1)如图2,若a=1,d=,则k= ;(2)如图3,当k=8时,①若d=,则a= ;②在点M运动的过程中,d的最小值为.28.(7分)(2015春•西城区期末)已知:四边形ABCD是正方形,E是AB边上一点,连接DE,过点D作DF⊥DE交BC的延长线于点F,连接EF.(1)如图1,求证:DE=DF;(2)若点D关于直线EF的对称点为H,连接CH,过点H作PH⊥CH交直线AB于点P.①在图2中依题意补全图形;②求证:E为AP的中点;(3)如图3,连接AC交EF于点M,求的值.答案:一、选择题1.故选B.2.故选:A.3.故选C.4.故选:A.5.故选D.6.故选D.7.故选:C.8.故选A.9.故选C.10.故选:B.二、填空题(本题共24分,每小题3分)11.故答案是:﹣11.12.故答案为:64.13.故答案为:丁.14.故答案为:>.15.故答案为:10.16.故答案为:17.17.故答案为:75.18.故答案为:(0,﹣1);(0,0)三、解答题(本题共20分,第19题10分,其余每小题10分)19.解答:解:(1)方程整理得:(x﹣5)2=9,开方得:x﹣5=±3,即x﹣5=3,或x﹣5=﹣3,解得:x1=8,x2=2;(2)这里a=1,b=2,c=﹣6,∵△=b2﹣4ac=22﹣4×1×(﹣6)=28>0,∴方程有两个不相等的实数根,则x=﹣1±.20.解答:证明:(1)如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.21.解答:解:(1)根据题意画出△A1B1C1,如图所示;(2)由题意得:BC∥B1C1,AA1==2;(3)利用中心对称图形性质得:点P经过上述变换后的对应点P1的坐标为(﹣a,﹣b).故答案为:(2)平行,2;(2)(﹣a,﹣b)四、解答题(本题共12分,每小题6分)22.解答:解:(1)抽取的学生总数是10÷20%=50(人),听写正确的汉字个数21≤x<31范围内的人数最多,故答案是:50,21≤x<31;(2)11≤x<21一组的人数是:50×30%=15(人),21≤x<31一组的人数是:50﹣5﹣15﹣10=20.;(3)=23(个).答:被调查学生听写正确的汉字个数的平均数是23个.(4)(人).答:估计该校本次“汉字听写”比赛达到良好的学生人数约为810人.23.解答:解:(1)∵一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根,∴△=b2﹣4ac=(2m+2)2﹣4×1×(m2﹣4)=8m+20>0,∴;(2)∵m为负整数,∴m=﹣1或﹣2,当m=﹣1时,方程x2﹣3=0的根为:,(不是整数,不符合题意,舍去),当m=﹣2时,方程x2﹣2x=0的根为x1=0,x2=2都是整数,符合题意.综上所述m=﹣2.五、解答题(本题共14分,每小题7分)24解答:解:(1)∵点A(a,)在直线y=﹣上,∴﹣a﹣=,解得a=2,则A(2,﹣),∵AB∥y轴,且点B的纵坐标为1,∴点B的坐标为(2,1).∵双曲线y=经过点B(2,1),∴m=2×1=2,∴反比例函数的解析式为y=;(2)①设C(t,),∵A(2,﹣),B(2,1),∴×(2﹣t)×(1+)=,解得t=﹣1,∴点C的坐标为(﹣1,﹣2),设直线BC的解析式为y=kx+b,把B(2,1),C(﹣1,﹣2)代入得,解得,∴直线BC的解析式为y=x﹣1;②当y=1时,﹣=1,解得x=﹣1,则D(﹣1,1),∵直线BCy=x﹣1为直线y=x向下平移1个单位得到,∴直线BC与x轴的夹角为45°,而BD∥x轴,∴∠DBC=45°,当△PBD为等腰直角三角形时,以它的一边为对称轴进行翻折,翻折前后的两个三角形所组成的四边形为正方形,若∠BPD=90°,则点P在BD的垂直平分线上,P点的横坐标为,当x=时,y=x﹣1=﹣,此时P(,﹣),若∠BDP=90°,则PD∥y轴,P点的横坐标为﹣1,当x=﹣1时,y=x﹣1=﹣2,此时P(﹣1,﹣2),综上所述,满足条件的P点坐标为(﹣1,﹣2)或(,).25答:解:(1)如图1,,∵∠BEF=90°,∴∠DEF=90°,∵点M是DF的中点,∴ME=MD,∵∠BCD=90°,点M是DF的中点,∴MC=MD,∴ME=MC;∵ME=MD,∴∠MDE=∠MED,∴∠EMF=∠MDE+∠MED=2∠MDE,∵MC=MD,∴∠MDC=∠MCD,∴∠CMF=∠MDC+∠MCD=2∠MDC,∴∠EMC=∠EMF+∠CMF=2(∠MDE+∠MDC)=2∠BDC,又∵∠DBC=30°,∴∠BDC=90°﹣30°=60°,∴∠EMC=2∠BDC=2×60°=120°.(2)①ME=MC仍然成立.证明:如图2,分别延长EM,CD交于点G,,∵四边形ABCD是矩形,∴∠DCB=90°.∵∠BEF=90°,∴∠FEB+∠DCB=180°.∵点E在CB的延长线上,∴FE∥DC.∴∠1=∠G.∵M是DF的中点,∴FM=DM.在△FEM和△DGM中,,∴△FEM≌△DGM,∴ME=GM,∴在Rt△GEC中,MC=EG=ME,∴ME=MC.②如图3,分别延长FE,DB交于点H,,∵∠4=∠5,∠4=∠6,∴∠5=∠6.∵点E在直线FH上,∠FEB=90°,∴∠HEB=∠FEB=90°.在△FEB和△HEB中,,∴△FEB≌△HEB.∴FE=HE.∵FM=MD,∴EM∥HD,∴∠7=∠4=30°,∵ME=MC,∴∠7=∠8=30°,∴∠EMC=180°﹣∠7﹣∠8=180°﹣30°﹣30°=120°.故答案为:ME=MC,120.一、填空题(本题6分)26.是②③;(填写序号)(2).二、解答题(本题共14分,每小题7分)27解答:解:图1中,把x=1代入反比例解析式得:t=3,即A(1,3),即AC=3,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴AD=AC+CD=3+1=4,点A到直线l的距离AB=×4=2;(1)由题意得:△MBD为等腰直角三角形,∴MB=BD=MD=5,即MD=10,把x=1代入y=﹣x得:y=﹣1,即CD=1,∴MC=9,则k=1×9=9;(2)①由k=8,得到ab=8(i),如图2所示,得到BM=BD=AD=3,即AD=6,把x=a代入y=﹣x得:b=﹣a,即MD=MC+CD=b+a=6(ii),联立(i)(ii)得:a=2,b=4或a=4,b=2,则a=2或4;②由题意得:ab=8,∵a+b≥2=4,∴MD的最小值为4,则BM的最小值为4,即d的最小值为4.故答案为:4;2;(1)9;(2)①2或4;②428.解答:解:(1)∵四边形ABCD是正方形,∴DA=DC,∠DAE=∠ADC=∠DCB=90°.∴∠DCF=180°﹣90°=90°.∴∠DAE=∠DCF.∵DF⊥DE,∴∠EDF=90°.∵∠ADE+∠CDE=90°,∠CDE+∠CDF=90°,∴∠ADE=∠CDF.在△DAE和△DCF中,∴△DAE≌△DCF.∴DE=DF.(2)①所画图形如图2所示.②连接HE,HF,如图3.∵点H与点D关于直线EF对称,∴EH=ED,FH=FD.∵DE=DF,∴EH=FH=ED=FD.∴四边形DEHF是菱形.∵∠EDF=90°,∴四边形DEHF是正方形.∴∠DEH=∠EHF=∠HFD=90°.∴∠AED+∠PEH=90°,∠HFC+∠DFC=90°.∵△DAE≌△DCF,∴∠AED=∠DFC,AE=CF.∴∠PEH=∠HFC.∵PH⊥CH,∴∠PHC=90°.∵∠PHE+∠EHC=90°,∠EHC+∠FHC=90°,∴∠PHE=∠PHC.在△HPE和△HCF中,,∴△HPE≌△HCF.∴PE=CF.∴AE=PE.∴点E是AP的中点.(3)过点F作GF⊥CF交AC的延长线于点G,如图4.则∠GFC=90°.∵正方形ABCD中,∠B=90°,∴∠GFC=∠B.∴AB∥GF.∴∠BAC=∠G.∵四边形ABCD是正方形,∴AB=BC,∴∠BAC=∠BCA=90°=45°.∴∠BAC=∠BCA=∠FCG=∠G=45°.∴FC=FG.∵△DAE≌△DCF,∴AE=CF.∴AE=FG.在△AEM和△GFM中,,∴△AEM≌△GFM.∴AM=GM.∴AG=2AM,在Rt△ABC中,.同理,在Rt△CFG中,.∴.∴.∴.。
2016-2017学年山东省聊城市临清市八年级(下)期末数学试卷(解析版)
2016-2017学年山东省聊城市临清市八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)下列实数中,为有理数的是()A.B.πC.D.12.(3分)下列图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)函数y=中,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.4.(3分)如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是()A.B.2C.2D.45.(3分)使代数式﹣有意义的整数x有()A.5个B.4个C.3个D.2个6.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1B.x>1C.x>﹣2D.x>27.(3分)如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC8.(3分)若+=,x≥1,则﹣=()A.±2B.﹣C.D.9.(3分)已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12B.15C.17D.2010.(3分)如图,正方形ABCD的边长为,连接AC,AE平分∠CAD,交BC的延长线于点E,F A⊥AE,交CB的延长线于点F,则EF的长为()A.2B.4C.2D.411.(3分)某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件12.(3分)如图,已知直线l:,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,128)B.(0,256)C.(0,512)D.(0,1024)二、填空题(每小题3分,共24分)13.(3分)6的平方根为.14.(3分)实数a在数轴上的位置如图,则|a﹣|=.15.(3分)如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x 的不等式﹣x+5>kx+b的解集为.16.(3分)如图,菱形ABCD中,AC交BD于O,DE⊥BC于E,连接OE,若∠ABC=140°,则∠OED=.17.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.18.(3分)已知a=,b=,则=.19.(3分)如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为.20.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置,…,则正方形铁片连续旋转2018次后,点P的坐标为.三、解答题(共60分21.(6分)一个正数的两个平方根分别是2a﹣5与1﹣a,b﹣7的立方根是﹣2.求:(1)a,b的值;(2)a+b的算术平方根.22.(6分)计算:(1)2×(1﹣)+;(2)+(﹣1)2﹣9﹣2+()﹣123.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上.将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1.(1)在网格中画出△A1B1C1;(2)计算线段AC在变换到A1C1的过程中扫过区域的面积.(重叠部分不重复计算)24.(10分)(1)解不等式﹣≥﹣1,并把它的解集在数轴上表示出来.(2)求不等式组的整数解.25.(10分)如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1)求证:四边形ABCD是平行四边形;(2)若AC⊥BD,求▱ABCD的面积.26.(10分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.27.(10分)在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A′BO′,点O,A旋转后的对应点为O′,A′,记旋转角为β.(1)如图1,若β=90°,求AA′的长;(2)如图2,若β=120°,求点O′的坐标.2016-2017学年山东省聊城市临清市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.【解答】解:,π,是无理数,1是有理数,故选:D.2.【解答】解:A、是轴对称图形,也是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,也是中心对称图形,故本选项错误;D、是轴对称图形,但不是中心对称图形,故本选项正确.故选:D.3.【解答】解:由题意得,x﹣5≥0,解得x≥5.在数轴上表示如下:故选:B.4.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=2,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=2,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==2;故选:C.5.【解答】解:由题意,得x+3>0且4﹣3x≥0,解得﹣3<x≤,整数有﹣2,﹣1,0,1,故选:B.6.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选:A.7.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,∴∠ABD=∠CBE=60°,AB=BD,∴△ABD是等边三角形,∴∠DAB=60°,∴∠DAB=∠CBE,∴AD∥BC,故选:C.8.【解答】解:∵+=,∴(+)2=6,即x++2=6,∴x+=4,∴(﹣)2=x+﹣2=4﹣2=2,又∵x≥1,∴﹣≥0,∴﹣=.故选:C.9.【解答】解:∵且|a﹣c|+=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7﹣3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选:C.10.【解答】解:∵四边形ABCD为正方形,且边长为,∴AC=AB=2,∵AE平分∠CAD,∴∠CAE=∠DAE,∵AD∥CE,∴∠DAE=∠E,∴∠CAE=∠E,∴CE=CA=2,∵F A⊥AE,∴∠F AC+∠CAE=90°,∠F+∠E=90°,∴∠F AC=∠F,∴CF=AC=2,∴EF=CF+CE=2+2=4,故选:B.11.【解答】解:设可以购买x(x为整数)件这样的商品.3×5+(x﹣5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选:C.12.【解答】解:∵直线l的解析式为;y=x,∴l与x轴的夹角为30°,∵AB∥x轴,∴∠ABO=30°,∵OA=1,∴OB=2,∴AB=,∵A1B⊥l,∴∠ABA1=60°,∴A1O=4,∴A1(0,4),同理可得A2(0,16),…∴A4纵坐标为44=256,∴A4(0,256).故选:B.二、填空题(每小题3分,共24分)13.【解答】解:∵()2=6∴6的平方根为,故答案为:.14.【解答】解:∵a<0,∴a﹣<0,则原式=﹣a,故答案为:﹣a15.【解答】解:当x<2时,直线y=﹣x+5在直线y=kx+b的上方,所以不等式﹣x+5>kx+b的解集为x<2.故答案为:x<2.16.【解答】解:∵四边形ABCD是菱形,∴DO=OB,∵DE⊥BC于E,∴OE为直角三角形BED斜边上的中线,∴OE=BD,∴OB=OE,∴∠OBE=∠OEB,∵∠ABC=140°,∴∠OBE=70°,∴∠OED=90°﹣70°=20°,故答案为:20°.17.【解答】解:,由①得,x>a;由②得,x<1,∵此不等式组的解集是空集,∴a≥1.故答案为:≥1.18.【解答】解:原式==,a==﹣1,b==﹣1﹣,∴原式==19.【解答】解:由旋转的性质可知:AF=AG,∠DAF=∠BAG.∵四边形ABCD为正方形,∴∠BAD=90°.又∵∠EAF=45°,∴∠BAE+∠DAF=45°.∴∠BAG+∠BAE=45°.∴∠GAE=∠F AE.在△GAE和△F AE中,∴△GAE≌△F AE.∵AB⊥GE,AH⊥EF,∴AB=AH,GE=EF=5.设正方形的边长为x,则EC=x﹣2,FC=x﹣3.在Rt△EFC中,由勾股定理得:EF2=FC2+EC2,即(x﹣2)2+(x﹣3)2=25.解得:x=6.∴AB=6.∴AH=6.故答案为:6.20.【解答】解:第一次P1(5,2),第二次P2(8,1),第三次P3(10,1),第四次P4(13,2),第五次P5(17,2),…发现点P的位置4次一个循环,∵2018÷4=504余2,P2018的纵坐标与P2相同为1,横坐标为8+12×504=6056,∴P2018(6056,1),故答案为(6056,1).三、解答题(共60分21.【解答】解:(1)由题意可知:(2a﹣5)+(1﹣a)=0,b﹣7=(﹣2)3=﹣8∴a=4,b=﹣1(2)∵a+b=3∴3的算术平方根是22.【解答】解:(1)原式=2﹣2+2=2;(2)原式=3+3﹣2﹣+2=+.23.【解答】解:(1)△A1B1C1如图所示;(2)线段AC在变换到A1C1的过程中扫过区域的面积为:4×2+3×2=8+6=14.答:线段AC在变换到A1C1的过程中扫过区域的面积是14.24.【解答】解:(1)去分母,得:2(2x+1)﹣3(5x﹣1)≥﹣6,去括号,得:4x+2﹣15x+3≥﹣6,移项、合并,得:﹣11x≥﹣11,系数化为1,得:x≤1.不等式的解集在数轴上表示如下:(2)解不等式①得:x≤,解不等式②得:x≥﹣,∴不等式组的解集为:﹣≤x≤,∴不等式组的整数解为:0、1、2.25.【解答】解:(1)∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO,在△AOD和△COB中,,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形;(2)∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴▱ABCD的面积=AC•BD=24.26.【解答】解:设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=6,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<6.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).27.【解答】解:(1)∵β=90°,∴∠A′BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB===10,由旋转的性质得,A′B=AB=10,在Rt△A′BA中,根据勾股定理得,AA′===10;(2)如图,过点O′作O′C⊥y轴于C,由旋转的性质得,O′B=OB=6,∵β=120°,∴∠OBO′=120°,∴∠O′BC=180°﹣120°=60°,∴BC=O′B=×6=3,CO′===3,∴OC=OB+BC=6+3=9,∴点O′的坐标为(3,9).。
【解析版】聊城市临清市2014-2015学年八年级上期末数学试卷
2014-2015学年山东省聊城市临清市八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个2.下列语句中,属于命题的是()A.作线段的垂直平分线B.等角的补角相等吗C.三角形是轴对称图形D.用三条线段去拼成一个三角形3.已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.284.在四边形ABCD中,O是对角线AC、BD的交点,能判定这个四边形为正方形的是()A.AD∥BC,∠B=∠D B.AC=BD,AB=CD,AD=BCC.OA=OC,OB=OD,AB=BC D.OA=OB=OC=OD,AC⊥BD5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD6.若样本x1,x2,x3,…x n的平均数是10,方差是2,则对于样本(x1+1),(x2+1),(x3+1),…,(x n+1),下列结论中正确的是()A.平均数为10,方差是2 B.平均数是11,方差为3C.平均数为11,方差为2 D.平均数为12,方差为47.A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种8.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°9.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点E,交AC于点D,则△BDC的周长为()A.13 B.14 C.15 D.1210.如图所示,已知∠C=∠D=90°,AB=AE,增加下列一个条件(1)AC=AD,(2)BC=ED,(3)∠B=∠E,(4)∠1=∠2,其中能使△ABC≌△AED成立的条件有()A.4个B.3个C.2个D.1个11.如果关于x的方程无解,则m的值等于()A.﹣3 B.﹣2 C.﹣1 D.312.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B 的面积为()A.cm2 B.cm2 C.cm2D.cm2二、填空题(每小题3分,共15分)13.若分式的值为0,则x的值等于.14.若,则= .15.如图所示,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为度.16.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为.17.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.三、解答题(本题共8小题,共69分)18.先化简代数式,求:当 a=2时代数式值.19.解方程:(1)+3=(2)﹣=1.20.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.21.张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成利用表中提供的数据,解答下列问题:(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差=33.2,请你帮助张老师计算张成10次测验成绩的方差.22.已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.23.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.24.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.25.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.2014-2015学年山东省聊城市临清市八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.如图案是轴对称图形的有()A.1个B.2个C.3个D.4个考点:轴对称图形.专题:常规题型.分析:根据轴对称图形的概念对各图形分析判断后即可得解.解答:解:第一个图形是轴对称图形;第二个图形不是轴对称图形;第三个图形不是轴对称图形;第四个图形是轴对称图形.所以轴对称图形有第一个与第四个共2个图形.故选B.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列语句中,属于命题的是()A.作线段的垂直平分线B.等角的补角相等吗C.三角形是轴对称图形D.用三条线段去拼成一个三角形考点:命题与定理.分析:分析是否是命题,需要分别分析各选项事是否是用语言、符号或式子表达的,可以判断真假的陈述句.解答:解:C是用语言可以判断真假的陈述句,是命题,A、B、D均不是可以判断真假的陈述句,都不是命题.故选:C.点评:本题考查了命题的定义:一般的,在数学中我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.3.已知▱ABCD的周长为32,AB=4,则BC=()A.4 B.12 C.24 D.28考点:平行四边形的性质.专题:计算题.分析:根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.点评:本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.4.在四边形ABCD中,O是对角线AC、BD的交点,能判定这个四边形为正方形的是()A.AD∥BC,∠B=∠D B.AC=BD,AB=CD,AD=BCC.OA=OC,OB=OD,AB=BC D.OA=OB=OC=OD,AC⊥BD考点:正方形的判定.分析:根据正方形的判定对各个选项进行分析.解答:解:因为对角线相等,且互相垂直平分的四边形是正方形,故选D.点评:此题主要考查正方形的判定:对角线相等的菱形是正方形.5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD考点:等腰三角形的性质.专题:几何图形问题.分析:此题需对每一个选项进行验证从而求解.解答:解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.点评:此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质6.若样本x1,x2,x3,…x n的平均数是10,方差是2,则对于样本(x1+1),(x2+1),(x3+1),…,(x n+1),下列结论中正确的是()A.平均数为10,方差是2 B.平均数是11,方差为3C.平均数为11,方差为2 D.平均数为12,方差为4考点:方差;算术平均数.分析:利用平均数与方差的性质分别分析得出即可.解答:解:∵样本x1,x2,…,x n的平均数为10,方差为2,∴x1+1,x2+1,…,x n+1的平均数为10+1=11,方差不变为2.故选:C.点评:本题考查了方差与平均数的定义,熟练掌握方差的意义是解题关键.7.A,B,C,D在同一平面内,从①AB∥CD,②AB=CD,③BC∥AD,④BC=AD这四个中任选两个作为条件,能使四边形ABCD为平行四边形的选法有()A.6种B.5种C.4种D.3种考点:平行四边形的判定.分析:平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据判定方法依次组合即可.解答:解:根据平行四边形的判定,可以有四种:①与②,③与④,①与③,②与④都能判定四边形是平行四边形,故选C.点评:本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形共有五种判定方法,记忆时要注意技巧;这五种方法中,一种与对角线有关,一种与对角有关,其他三种与边有关.8.如图,l∥m,∠1=115°,∠2=95°,则∠3=()A.120°B.130°C.140°D.150°考点:三角形的外角性质;平行线的性质.专题:计算题.分析:先根据两直线平行,同旁内角互补,求出∠4,再求出∠2的邻补角∠5,然后利用三角形外角性质即可求出∠3.解答:解:∵l∥m,∠1=115°,∴∠4=180°﹣∠1=180°﹣115°=65°,又∠5=180°﹣∠2=180°﹣95°=85°,∴∠3=∠4+∠5=65°+85°=150°.故选D.点评:本题利用平行线的性质和三角形外角的性质求解.9.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点E,交AC于点D,则△BDC的周长为()A.13 B.14 C.15 D.12考点:线段垂直平分线的性质;等腰三角形的性质.分析:先根据等腰△ABC的周长为21,底边BC=5得出其腰长,再根据线段垂直平分线的性质即可得出结论.解答:解:∵等腰△ABC的周长为21,底边BC=5,∴AB=AC==8.∵AB的垂直平分线DE交AB于点E,∴AD=BD,即AD+CD=BD+CD=AC,∴△BDC的周长=BC+(AD+CD)=BC+AC=5+5=13.故选A.点评:本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.10.如图所示,已知∠C=∠D=90°,AB=AE,增加下列一个条件(1)AC=AD,(2)BC=ED,(3)∠B=∠E,(4)∠1=∠2,其中能使△ABC≌△AED成立的条件有()A.4个B.3个C.2个D.1个考点:全等三角形的判定.分析:分别根据“HL”和“AAS”对所添加的条件进行判断.解答:解:∵∠C=∠D=90°,AB=AE,∴当AC=AD时,可根据“HL”判断△ABC≌△AED;当BC=ED时,可根据“HL”判断△ABC≌△AED;当∠B=∠C时,可根据“AAS”判断△ABC≌△AED;当∠1=∠2时,则∠BAC=∠EAD,可根据“AAS”判断△ABC≌△AED.故选A.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.11.如果关于x的方程无解,则m的值等于()A.﹣3 B.﹣2 C.﹣1 D.3考点:分式方程的解.专题:计算题.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得,2=x﹣3﹣m解得,x=5+m当分母x﹣3=0即x=3时方程无解也就是5+m=3时方程无解则m=﹣2故选B.点评:本题考查了分式方程无解的条件,是需要识记的内容.并且在解方程去分母的过程中,一定要注意分数线起到括号的作用,并且要注意没有分母的项不要漏乘.12.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B 的面积为()A.cm2 B.cm2 C.cm2D.cm2考点:矩形的性质;平行四边形的性质.专题:规律型.分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可.解答:解:设矩形ABCD的面积为S=20cm2,∵O为矩形ABCD的对角线的交点,∴平行四边形AOC1B底边AB上的高等于BC的,∴平行四边形AOC1B的面积=S,∵平行四边形AOC1B的对角线交于点O1,∴平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,∴平行四边形AO1C2B的面积=×S=,…,依此类推,平行四边形AO4C5B的面积===(cm2).故选:B.点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键.二、填空题(每小题3分,共15分)13.若分式的值为0,则x的值等于 1 .考点:分式的值为零的条件.专题:计算题.分析:根据分式的值为零的条件可以求出x的值.解答:解:由分式的值为零的条件得x2﹣1=0,x+1≠0,由x2﹣1=0,得x=﹣1或x=1,由x+1≠0,得x≠﹣1,∴x=1,故答案为1.点评:若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.14.若,则= .考点:分式的基本性质.专题:计算题.分析:首先设恒等式等于一个常数,从而得出a、b、c与这一常数的关系,进而求出分式的值.解答:解:设=k,则a=2k,b=3k,c=4k.∴===.故答案为.点评:设恒等式等于一个常数,从而得出a、b、c与这一常数的关系,是解答本题的关键.15.如图所示,△ABC中,∠A=50°,点D,E分别在AB,AC上,则∠1+∠2的大小为230 度.考点:多边形内角与外角;三角形内角和定理.分析:本题考查的是三角形内角和定理以及四边形内角和定理.解答:解:∵∠A=50°⇒∠C+∠B=180°﹣∠A=130°.又∵四边形ECBD内角和为360°,∴∠1+∠2=360°﹣(∠C+∠B)=230°,∴∠1+∠2=230°.故填230.点评:本题先利用三角形内角和定理求出∠C,∠B的度数,再利用四边形内角和求出∠1,∠2即可.16.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为44厘米.考点:菱形的性质.分析:首先根据题意画出图形,然后由菱形的一个内角为120°,可得△ABC是等边三角形,继而求得边长,则可求得答案.解答:解:如图,∵四边形ABCD是菱形,∴AB=BC,∵∠BAD=120°,AC平分∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∴AB=BC=AC=11厘米,∴菱形的周长为:44厘米.故答案为:44厘米.点评:此题考查了菱形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.17.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为4或12 cm2.考点:矩形的性质.专题:分类讨论.分析:利用角平分线得易得∠DAE=∠AED,可得到AD=DE.那么根据DE的不同情况得到矩形各边长,进而求得面积.解答:解:本题有两种情况,(1)DE=1cm,EC=3cm.因为AE平分∠DAB,故∠DAE=45°,△ADE中,AD=DE=1,矩形面积为1×(1+3)=4cm2.(2)DE=3cm,EC=1cm.因为AE平分∠DAB,故∠DAE=45°,△ADE中,AD=DE=3,矩形面积为3×(1+3)=12cm2.故答案为4或12.点评:需画出图形,根据图形解答.本题主要运用了矩形性质和等角对等边知识,正确地进行分情况讨论是解题的关键.三、解答题(本题共8小题,共69分)18.先化简代数式,求:当 a=2时代数式值.考点:分式的化简求值.分析:首先对括号内的分式进行通分.相减,把除法转化为乘法、计算乘法即可化简,然后把a的值代入即可求解.解答:解:原式=•=•=,当a=2时,原式=2.点评:本题综合考查了分式的化简,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.19.解方程:(1)+3=(2)﹣=1.考点:解分式方程.专题:计算题.分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)去分母得:1+3x﹣6=x﹣1,移项合并得:2x=4,解得:x=2,经检验x=2是增根,分式方程无解;(2)去分母得:(x﹣2)2﹣12=x2﹣4,整理得:x2﹣4x+4﹣12=x2﹣4,移项合并得:﹣4x=4,解得:x=﹣1,经检验x=﹣1是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.已知:如图AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD,求证:BE⊥AC.考点:全等三角形的判定与性质.专题:证明题.分析:由题中条件可得Rt△BDF≌Rt△ADC,得出对应角相等,再通过角之间的转化,进而可得出结论.解答:证明:∵BF=AC,FD=CD,AD⊥BC,∴Rt△BDF≌Rt△ADC(HL)∴∠C=∠BFD,∵∠DBF+∠BFD=90°,∴∠C+∠DBF=90°,∵∠C+∠DBF+∠BEC=180°∴∠BEC=90°,即BE⊥AC.点评:本题主要考查了全等三角形的判定及性质,能够熟练运用其性质求解一些简单的计算、证明问题.21.张老师为了从平时在班级里数学比较优秀的王军、张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,并在辅导期间进行了10次测验,两位同学测验成绩记录如下表:利用表中提供的数据,解答下列问题:(1)填写完成下表:(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差=33.2,请你帮助张老师计算张成10次测验成绩的方差.考点:方差;算术平均数;中位数;众数.专题:计算题.分析:(1)根据众数的定义找出王军的成绩中出现次数最多的数据即可;根据中位数的定义,把张成的成绩按照从小到大的顺序排列,然后找出第5、6两个,再求平均数即可;(2)根据方差的求解公式S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],列式进行计算即可得解.解答:解:(1)王军的成绩中78分出现的次数最多,是2次,所以,众数是78;张成的成绩按照从小到大排列如下:75、75、77、79、80、80、80、83、85、86,所以,中位数=(80+80)=80;故答案为:78,80;(2)=[(86﹣80)2+(80﹣80)2+(75﹣80)2+(83﹣80)2+(85﹣80)2+(77﹣80)2+(79﹣80)2+(80﹣80)2+(80﹣80)2+(75﹣80)2],=(36+0+25+9+25+9+1+0+0+25),=×130,=13.点评:本题考查方差的定义与意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.考点:平行四边形的性质;全等三角形的判定;作图-轴对称变换;翻折变换(折叠问题).分析:(1)首先作∠A′BD=∠ABD,然后以B为圆心,AB长为半径画弧,交BA′于点A′,连接BA′,DA′,即可作出△A′BD.(2)由四边形ABCD是平行四边形与折叠的性质,易证得:∠BA′D=∠C,A′B=CD,然后由AAS即可判定:△BA′E≌△DCE.解答:解:(1)如图:①作∠A′BD=∠ABD,②以B为圆心,AB长为半径画弧,交BA′于点A′,③连接BA′,DA′,则△A′BD即为所求;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠C,由折叠的性质可得:∠BA′D=∠BAD,A′B=AB,∴∠BA′D=∠C,A′B=CD,在△BA′E和△DCE中,,∴△BA′E≌△DCE(AAS).点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意掌握数形结合思想的应用.23.如图,△ABC中BA=BC,点D是AB延长线上一点,DF⊥AC于F交BC于E,求证:△DBE是等腰三角形.考点:等腰三角形的判定与性质.专题:证明题.分析:首先根据等腰三角形的两个底角相等得到∠A=∠C,再根据等角的余角相等得∠FEC=∠D,同时结合对顶角相等即可证明△DBE是等腰三角形.解答:证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.点评:此题主要考查等腰三角形的基本性质及综合运用等腰三角形的性质来判定三角形是否为等腰三角形.24.列方程解应用题:A、B两地的距离是80公里,一辆公共汽车从A地驶出3小时后,一辆小汽车也从A地出发,它的速度是公共汽车的3倍,已知小汽车比公共汽车迟20分钟到达B地,求两车的速度.考点:分式方程的应用.专题:行程问题.分析:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.根据题意,知小汽车所用的时间比公共汽车所用的时间少3小时﹣20分=小时,列方程求解.解答:解:设公共汽车的速度为x公里/小时,则小汽车的速度是3x公里/小时.依题意,得,解,得x=20.经检验x=20是原方程的根,且符合题意.∴3x=60.答:公共汽车和小汽车的速度分别是20公里/时,60公里/时.点评:找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.此题中关键是弄清两车的时间关系.25.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.考点:正方形的判定;矩形的判定.分析:(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据AO=CO,EO=FO可得四边形AECF平行四边形,再证明∠ECF=90°利用矩形的判定得出即可;(3)利用正方形的性质得出AC⊥EN,再利用平行线的性质得出∠BCA=90°,即可得出答案.解答:证明:(1)∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.(3)△ABC是直角三角形,理由:∵四边形AECF是正方形,∴AC⊥EN,故∠AOM=90°,∵MN∥BC,∴∠BCA=∠AOM,∴∠BCA=90°,∴△ABC是直角三角形.点评:此题主要考查了矩形和正方形的性质,关键是掌握矩形的定义:有一个角是直角的平行四边形是矩形.。
【解析版】聊城市临清市2014-2015学年八年级上期中数学试卷
A.20° B.30° C.35° D.40° 3.如图,AC=AD,BA=BD,则有( )
A.AB垂直平分 CD B.CD垂直平分 AB C.AB与 CD互相垂直平分 D.CD平分∠ACB
4.若分式 的值为零,则 x 的值是( ) A.3 B.﹣3 C.±3 D.0 5.下列约分正确的是( ) A. =x2 B. =0
C.
D.
24.如图,在等边△ABC中,点 D,E 分别在边 BC,AB上,且 BD=AE,AD与 CE交于点 F. (1)求证:AD=CE; (2)求∠DFC的度数.
25.如图: (1)P 是等腰三角形 ABC底边 BC上的一个动点,过点 P 作 BC的垂线,交 AB于点 Q,交 CA的延长线于点 R.请观察 AR与 AQ,它们有何关系?并证明你的猜想. (2)如果点 P 沿着底边 BC所在的直线,按由 C 向 B 的方向运动到 CB的延长线上时,(1) 中所得的结论还成立吗?请你在图(2)中完成图形,并给予证明.
2014-2015 学年山东共 12 小题,每小题 3 分,在每小题给出的选项中,只有一项符合题目要 求) 1.如下图是用纸折叠成的图案,其中是轴对称图形的有( )
A.1 个 B.2 个 C.3 个 D.4 个 2.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为( )