届高考数学一轮复习第5章 第5节 数列的综合应用(新人教A版)(山东专用)PPT课件
高考数学(理)一轮复习课件:5-5数列的综合应用(人教A版)
■ ·考点自测· ■
1. [2012·蚌埠二中质检]已知数列{an}的通项公式为 an=6n-4,数列{bn}的通项公式为bn=2n,则在数列{an}
的前100项中与数列{bn}中相同的项有( )
A. 50项
B. 34项
C. 6项
D. 5项
答案:D
解析:a1=2=b1,a2=8=b3,a3=14,a4=20,a5= 26,a6=32=b5,又b10=210=1024>a100,b9=512 ==令=== 6n -4,则n=86,∴a86=b9,b8=256 ==令=== 6n-4无解,b7 =128 ==令=== 6n-4,则n=22,∴a22=b7,b6=64=6n-4 无解,综上知,数列{an}的前100项中与{bn}相同的项有5 项.
∴Tn=π2 [1·2+3·22+…+(2n-3)·2n-1+(2n-1)·2n], 2Tn=π2 [1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1],
两式相减,得
π
-Tn= 2 [1·2+2·22+2·23+…+2·2n-(2n-1)·
2n+1],∴Tn=π[(2n-3)·2n+3].
[规律总结] 本题把数列、导数、解析几何等知识巧 妙地融合在一起,具有较强的综合性,在解决数列知识 与其他章节知识的综合题时,要注意思维角度与解题途 径的选择,提高数字变形转换、推理等综合能力.
3. 数列知识的综合问题 (1)数列本身的综合 数列知识内部综合主要是指以等差数列和等比数列 为中心的综合问题,通常涉及到等差、等比数列的证 明,基本计算、求和等.
(2)数列与其他章节知识的综合 与数列常联系在一起命题的知识主要有函数、不等 式和解析几何,以及三角、复数等.有时带有探索性, 涉及到的方法有转化与化归、放缩、数学归纳法、反证 法、函数思想等.
高考数学总复习 第5章 第5讲 数列的综合应用课件 理 新人教A版
第二十三页,共60页。
解:(1)设数列{an}的公差为 d,由题意知
2a1+2d=8, 2a1+4d=12.
解得 a1=2,d=2.
所以 an=a1+(n-1)d=2+2(n-1)=2n. (2)由(1)可得 Sn=na12+an=n2+2 2n=n(n+1).
[审题视点] (1)在数列中,利用an与Sn的关系求通项公式, 这是最基本的思路;(2)数列是特殊的函数,所以可用函数的思想 解决(jiějué)数列的最值问题.
[解] (1)取 n=1,得 λa21=2S1=2a1,a1(λa1-2)=0. 若 a1=0,则 Sn=0. 当 n≥2 时,an=Sn-Sn-1=0-0=0, 所以 an=0(n≥1). 若 a1≠0,则 a1=2λ.
第5讲 数列的综合应用
第一页,共60页。
不同寻常的一本书,不可不读哟iè)的等差关系或等比关 系,并能用相关知识解决相应的问题.
第三页,共60页。
1个必知应用 生活中涉及到银行利率、产品利润、人口增长、工作效率、 图形面积、曲线长度等实际问题时,常考虑用数列知识(zhī shi)求 解.
第二十一页,共60页。
对等差、等比数列的综合问题的分析,应重点分析等差、等 比数列的通项及前n项和;分析等差、等比数列项之间的关系 (guān xì).往往用到转化与化归的思想方法.
第二十二页,共60页。
[变式探究] [2012·重庆(zhònɡ qìnɡ)高考]已知{an}为等差数 列,且a1+a3=8,a2+a4=12.
第四页,共60页。
2个必会综合 1. 数列知识内部综合问题,通常涉及(shèjí)到等差、等比数 列的证明、基本计算、求和等. 2. 数列知识与其它章节知识的综合问题;有时带有探索性, 涉及(shèjí)到的方法有转化与化归、放缩、函数思想等.
新人教A版高考数学一轮复习第5章数列课件文
2019/7/17
最新中小学教学课件
7
பைடு நூலகம்
thank
you!
2019/7/17
最新中小学教学课件
8
[导学心语] 1.重视等差、等比数列的复习,正确理解等差、等比数列的概念,掌握等 差、等比数列的通项公式、前 n 项和公式,灵活运用公式进行等差、等比数列 基本量的计算. 2.重视 an 与 Sn 关系、递推关系的理解与应用,加强由 Sn 求 an,由递推关 系求通项,由递推关系证明等差、等比数列的练习.
3.数列是特殊的函数,要善于用函数的性质,解决与数列有关的最值问题, 等差(比)数列中共涉及五个量 a1、an、Sn、d(q)、n,“知三求二”,体现了方程 思想的应用.
一般数列求和,首先要考虑是否能转化为等差(比)数列求和,再考虑错位相 减、倒序相加、裂项相消、分组法等求和方法.
重视发散思维、创新思维,有意识地培养创新能力.
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。 • 一、听理科课重在理解基本概念和规律 • 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解,
同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。 • 作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。 • 二、听文科课要注重在理解中记忆 • 文科多以记忆为主,比如政治,要注意哪些是观点,哪些是事例,哪些是用观点解释社会现象。听历史课时,首先要弄清楚本节教材的主要观点,然 后,弄清教材为了说明这一观点引用了哪些史实,这些史料涉及的时间、地点、人物、事件。最后,也是关键的一环,看你是否真正弄懂观点与史料间 的关系。最好还能进一步思索:这些史料能不能充分说明观点?是否还可以补充新的史料?有无相反的史料证明原观点不正确。 • 三、听英语课要注重实践 • 英语课老师往往讲得不太多,在大部分的时间里,进行的师生之间、学生之间的大量语言实践练习。因此,要上好英语课,就应积极参加语言实践活 动,珍惜课堂上的每一个练习机会。
高考数学总复习 第五章第5课时 数列的综合应用课件 新人教版
an=a(1+r)n,属于等比模型.
(3)递推数列模型:如果题目中给出的 前后两项之间的关系不固定,随项的变 化而变化时,应考虑是an与an+1之间的
递推关系,还是前n项和Sn与前n+1项和
Sn+1之间的递推关系.
课前热身
1.(2012· 盘锦调研 ) 已知 {an},{bn} 均为
等差数列 , 且 a2 = 8,a6 = 16,b2 = 4,b6 = a6, 则由 {an},{bn}的公共项组成的新数 列{cn}的通项公式cn=( A.3n+4 ) B.6n+2
低题目的难度,解题时有时还需利用条
件联立方程求解.
例1
已知等差数列 {an}的前四项的和
A4=60,第二项与第四项的和为 34,等比
数列{bn}的前四项的和 B4=120,第二项
与第四项的和为90. (1)求数列{an},{bn}的通项公式; (2) 设 cn = an· bn, 且 {cn} 的前 n 项和为 Sn, 求Sn.
+
① -②得:
- 2Sn = 9· 3 + 4· 32 + 4· 33 +…+ 4· 3n - (4n+ + 5)· 3n 1 3 1-3 = 27+4· 1-3 = 27+2· 3
n+ 1 2 n-1
- (4n+5)· 3n
n+ 1
+1
- 18-(4n+5)· 3
,
1 n+ 1 ∴ Sn= [(4n+ 3)· 3 - 9]. 2
答案:B
4.某种产品三次调价,单价由原来的每克
512 元降到 216 元 , 则这种产品平均每次
降价的百分率为________. 答案:25%
5.(2012· 威海调研 )已知函数 f(x)=a· bx 的图 1 象过点 A(2, ),B(3,1),若记 an= log2f(n)(n∈ 2 N*),Sn 是数列 {an}的前 n 项和 ,则 Sn 的最小 值是________.
2021届新课标数学一轮复习讲义_第五章_第5讲_数列的综合应用
第5讲 数列的综合应用考点一__等差数列与等比数列的综合问题______已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.[解] (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…). (2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n 1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.[规律方法] 解决等差数列与等比数列的综合问题,关键是理清两个数列的关系.如果同一数列中部分项成等差数列,部分项成等比数列,要把成等差数列或等比数列的项抽出来单独研究;如果两个数列通过运算综合在一起,要从分析运算入手,把两个数列分割开弄清两个数列各自的特征,再进行求解.1.已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d ,由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2.故a n =-2n +27. (2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .考点二__数列的实际应用问题__________________某企业在第1年初购买一台价值为120万元的设备M ,M 的价值在使用过程中逐年减少.从第2年到第6年,每年初M 的价值比上年初减少10万元;从第7年开始,每年初M 的价值为上年初的75%.(1)求第n 年初M 的价值a n 的表达式;(2)设S n 表示数列{a n }的前n 项和,求S n (n ≥7).[解] (1)当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,a n =120-10(n -1)=130-10n ; 当n ≥6时,数列{a n }是以a 6为首项,34为公比的等比数列.又a 6=70,所以a n =70×⎝⎛⎭⎫34n -6.因此,第n 年初,M 的价值a n 的表达式为a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×⎝⎛⎭⎫34n -6,n ≥7. (2)由等差及等比数列的求和公式得 当n ≥7时,由于S 6=570,故S n =S 6+(a 7+a 8+…+a n )=570+70×34×4×⎣⎡⎦⎤1-⎝⎛⎭⎫34n -6 =780-210×⎝⎛⎭⎫34n -6.[规律方法] 解答数列实际应用问题的步骤:(1)确定模型类型:理解题意,看是哪类数列模型,一般有等差数列模型、等比数列模型、简单的递推数列模型.基本特征见下表:数列模型 基本特征 等差数列 均匀增加或者减少等比数列 指数增长,常见的是增产率问题、存款复利问题 简单递推数列指数增长的同时又均匀减少.如年收入增长率为20%,每年年底要拿出a (常数)作为下年度的开销,即数列{a n }满足a n +1=1.2a n -a(2)或者不等式(组)等,在解模时要注意运算准确;(3)给出问题的答案:实际应用问题最后要把求解的数学结果化为对实际问题的答案,在解题中不要忽视了这点.2.现有流量均为300 m 3s 的两条河A ,B 汇合于某处后,不断混合,它们的含沙量分别为2 kgm 3和0.2 kgm 3,假设从汇合处开始,沿岸设有若干观测点,两股水流在流经相邻两个观测点的过程中,其混合效果相当于两股水流在1 s 内交换100 m 3的水量,即从A 股流入B 股100 m 3水,经混合后,又从B 股流入A 股100 m 3水并混合,问从第几个观测点开始,两股河水的含沙量之差小于0.01 kgm 3(不考虑沙沉淀). 解:设第n 个观测点处A 股水流含沙量为a n kg m 3,B 股水流含沙量为b n kgm 3,则a 1=2,b 1=0.2,b n =1400(300b n -1+100a n -1)=14(3b n -1+a n -1),a n =1400(300a n -1+100b n -1)=14(3a n -1+b n -1),a n -b n =12(a n -1-b n -1),∴{a n -b n }是以(a 1-b 1)为首项,12为公比的等比数列.∴a n -b n =95×⎝⎛⎭⎫12n -1.解不等式95×⎝⎛⎭⎫12n -1<10-2,得2n -1>180,∴n ≥9.因此,从第9个观测点开始,两股水流的含沙量之差小于0.01 kg m 3.考点三__数列与不等式的综合问题(高频考点)__数列与不等式的综合问题是每年高考的难点,多为解答题,难度偏大. 高考对数列与不等式的综合问题的考查常有以下两个命题角度: (1)以数列为载体,考查不等式的恒成立问题; (2)考查与数列问题有关的不等式的证明问题.等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设数列{a n }的前n 项和为S n ,若不等式S n >ka n -2对一切n ∈N *恒成立,求实数k 的取值范围. [解] (1)设等比数列{a n }的公比为q , ∵a n +1+a n =9·2n -1,n ∈N *, ∴a 2+a 1=9,a 3+a 2=18, ∴q =a 3+a 2a 2+a 1=189=2.∴2a 1+a 1=9,∴a 1=3. ∴a n =3·2n -1,n ∈N *.(2)由(1)知S n =a 1(1-q n )1-q =3(1-2n )1-2=3(2n -1),∴3(2n -1)>k ·3·2n -1-2,∴k <2-13·2n -1对一切n ∈N *恒成立. 令f (n )=2-13·2n -1,则f (n )随n 的增大而增大,∴f (n )min =f (1)=2-13=53,∴k <53.∴实数k 的取值范围为⎝⎛⎭⎫-∞,53. [规律方法] 数列与不等式的综合问题的解题策略(1)数列与不等式的恒成立问题.此类问题常构造函数,通过函数的单调性、最值等解决问题;(2)与数列有关的不等式证明问题.解决此类问题要灵活选择不等式的证明方法,如比较法、综合法、分析法、放缩法等.3.(1)已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.①当n ∈N *时,求f (n )的表达式;②设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2; (2)已知数列{a n }的前n 项和为S n ,且S n =2-⎝⎛⎭⎫2n +1a n (n ∈N *).①求证:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列;②设数列{2n a n }的前n 项和为T n ,A n =1T 1+1T 2+1T 3+…+1T n ,试比较A n 与2na n 的大小.解:(1)①令x =n ,y =1,得f (n +1)=f (n )·f (1)=12f (n ),∴{f (n )}是首项为12,公比为12的等比数列,∴f (n )=⎝⎛⎭⎫12n .②证明:设T n 为{a n }的前n 项和,∵a n =n ·f (n )=n ·⎝⎛⎭⎫12n, ∴T n =12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+n ×⎝⎛⎭⎫12n ,12T n =⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+3×⎝⎛⎭⎫124+…+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1, 两式相减得12T n =12+⎝⎛⎭⎫122+…+⎝⎛⎭⎫12n -n ×⎝⎛⎭⎫12n +1,∴T n =2-⎝⎛⎭⎫12n -1-n ×⎝⎛⎭⎫12n <2.(2)①证明:由a 1=S 1=2-3a 1,得a 1=12,当n ≥2时,由a n =S n -S n -1,得a n n =12×a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是首项和公比均为12的等比数列.②由①得a n n =12n ,于是2n a n =n ,所以T n =1+2+3+…+n =n (n +1)2,则1T n =2⎝⎛⎭⎫1n -1n +1,于是A n =2⎝⎛⎭⎫1-1n +1=2nn +1,而2na n =2n +1n 2,所以问题转化为比较2n n 2与n n +1的大小. 设f (n )=2n n 2,g (n )=n n +1,当n ≥4时,f (n )≥f (4)=1,而g (n )<1,所以f (n )>g (n ). 经验证当n =1,2,3时,仍有f (n )>g (n ). 因此对任意的正整数n ,都有f (n )>g (n ).即A n <2na n.交汇创新——数列与函数的交汇设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n . [解] (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以d =a 2-a 1=1,从而a n =n ,b n =2n . 所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n2n -1.因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n .所以T n =2n +1-n -22n.[名师点评] 数列与函数的交汇创新主要有以下两类:(1)如本例,已知函数关系转化为数列问题,再利用数列的有关知识求解;(2)已知数列,在求解中利用函数的性质、思想方法解答.[提醒] 解题时要注意数列与函数的内在联系,灵活运用函数的思想方法求解,在问题的求解过程中往往会遇到递推数列,因此掌握递推数列的常见解法有助于该类问题的解决,同时要注意n 的范围.已知数列{a n }的前n 项和为S n ,a 1=1且3a n +1+2S n =3(n 为正整数).(1)求{a n }的通项公式;(2)若∀n ∈N *,32k ≤S n 恒成立,求实数k 的最大值.解:(1)当n =1时,a 1=1,3a n +1+2S n =3⇒a 2=13;当n ≥2时,3a n +1+2S n =3⇒3a n +2S n -1=3,得3(a n +1-a n )+2(S n -S n -1)=0,因此3a n +1-a n =0,即a n +1a n =13,因为a 2a 1=13,所以数列{a n }是首项a 1=1,公比q =13的等比数列,所以a n =⎝⎛⎭⎫13n -1.(2)因为∀n ∈N *,32k ≤S n 恒成立,S n =32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,即32k ≤32⎣⎡⎦⎤1-⎝⎛⎭⎫13n ,所以k ≤1-⎝⎛⎭⎫13n .令f (n )=1-⎝⎛⎭⎫13n,n ∈N *,所以f (n )单调递增,k 只需小于等于f (n )的最小值即可, 当n =1时,f (n )取得最小值,所以k ≤f (1)=1-13=23,实数k 的最大值为23.1.设等差数列{a n }和等比数列{b n }首项都是1,公差与公比都是2,则a b 1+a b 2+a b 3+a b 4+a b 5=( )A .54B .56C .58D .57解析:选D.由题意,a n =1+2(n -1)=2n -1,b n =1×2n -1=2n -1, ∴ab 1+…+ab 5=a 1+a 2+a 4+a 8+a 16=1+3+7+15+31=57.2.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为( )A .{4,5}B .{4,32}C .{4,5,32}D .{5,32}解析:选C.a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时,3a n +1,当a n 为奇数时,注意递推的条件是a n (而不是n )为偶数或奇数.由a 6=1一直往前面推导可得a 1=4或5或32.3.设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( )A .d <0B .d >0C .a 1d <0D .a 1d >0解析:选C.设b n =2a 1a n ,则b n +1=2a 1a n +1,由于{2a 1a n }是递减数列,则b n >b n +1,即2a 1a n >2a 1a n +1.∵y =2x 是单调增函数,∴a 1a n >a 1a n +1,∴a 1a n -a 1(a n +d )>0,∴a 1(a n -a n -d )>0,即a 1(-d )>0,∴a 1d <0. 4.在数列{a n }中,若a 1=-2,a n +1=a n +n ·2n ,则a n =( ) A .(n -2)·2n B .1-12n C.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 解析:选A.因为a n +1=a n +n ·2n ,所以a n +1-a n =n ·2n ,所以a n -a 1=(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2).设T n =(n -1)×2n -1+(n -2)×2n -2+…+2×22+1×21(n ≥2),则2T n =(n -1)×2n +(n -2)×2n -1+(n -3)×2n-2+…+2×23+1×22,两式相减得T n =(n -2)·2n +2(n ≥2),所以a n =(n -2)·2n +2+a 1=(n -2)·2n (n ≥2).又n=1时,上式成立,所以选A.5.在等比数列{a n }中,0<a 1<a 4=1,则能使不等式⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0成立的最大正整数n 是( )A .5B .6C .7D .8解析:选C.设等比数列{a n }的公比为q ,则⎩⎨⎧⎭⎬⎫1a n 为等比数列,其公比为1q ,因为0<a 1<a 4=1,所以q >1且a 1=1q 3.又因为⎝⎛⎭⎫a 1-1a 1+⎝⎛⎭⎫a 2-1a 2+…+⎝⎛⎭⎫a n -1a n ≤0,所以a 1+a 2+…+a n ≤1a 1+1a 2+…+1a n , 即a 1(1-q n)1-q≤1a 1⎝⎛⎭⎫1-1q n 1-1q,把a 1=1q 3代入,整理得q n ≤q 7,因为q >1,所以n ≤7,故选C.6.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.解析:每天植树的棵数构成以2为首项,2为公比的等比数列,其前n 项和S n =a 1(1-q n )1-q =2(1-2n )1-2=2n +1-2.由2n +1-2≥100,得2n +1≥102.由于26=64,27=128.则n +1≥7,即n ≥6.答案:67.在等比数列{a n }中,若a n >0,且a 1·a 2·…·a 7·a 8=16,则a 4+a 5的最小值为________. 解析:由等比数列性质得,a 1a 2…a 7a 8=(a 4a 5)4=16,又a n >0,∴a 4a 5=2. 再由基本不等式,得a 4+a 5≥2a 4a 5=2 2.∴a 4+a 5的最小值为2 2. 答案:2 28.设S n 是数列{a n }的前n 项和,若S 2nS n(n ∈N *)是非零常数,则称数列{a n }为“和等比数列”.若数列{2b n }是首项为2,公比为4的等比数列,则数列{b n }__________(填“是”或“不是”)“和等比数列”.解析:数列{2b n }是首项为2,公比为4的等比数列,所以2b n =2·4n -1=22n -1,b n =2n -1.设数列{b n }的前n项和为T n ,则T n =n 2,T 2n =4n 2,所以T 2nT n=4,因此数列{b n }是“和等比数列”.答案:是9.在等比数列{a n }(n ∈N *)中,a 1>1,公比q >0,设b n =log 2a n ,且b 1+b 3+b 5=6,b 1b 3b 5=0. (1)求证:数列{b n }是等差数列;(2)求{b n }的前n 项和S n 及{a n }的通项公式a n . 解:(1)证明:∵b n =log 2a n , ∴b n +1-b n =log 2a n +1a n =log 2q 为常数,∴数列{b n }为等差数列且公差d =log 2q .(2)设数列{b n }的公差为d ,∵b 1+b 3+b 5=6,∴b 3=2. ∵a 1>1,∴b 1=log 2a 1>0. ∵b 1b 3b 5=0,∴b 5=0.∴⎩⎪⎨⎪⎧b 1+2d =2,b 1+4d =0,解得⎩⎪⎨⎪⎧b 1=4,d =-1. ∴S n =4n +n (n -1)2×(-1)=9n -n 22.∵⎩⎪⎨⎪⎧log 2q =-1,log 2a 1=4,∴⎩⎪⎨⎪⎧q =12,a 1=16.∴a n =25-n (n ∈N *).10.已知数列{a n }和{b n }满足a 1a 2a 3…·a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .解:(1)由题意知a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项公式为a n =2n (n ∈N *), 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n+1).故数列{b n }的通项公式为b n =n (n +1)(n ∈N *).(2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0,当n ≥5时,c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n -1, 而n (n +1)2n-(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0,得n (n +1)2n ≤5×(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.1.已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0. (1)令c n =a nb n ,求数列{c n }的通项公式;(2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *), 所以a n +1b n +1-a nb n=2,即c n +1-c n =2,所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1. (2)由b n =3n-1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1, 3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n , 所以S n =(n -1)3n +1.2.为了加强环保建设,提高社会效益和经济效益,北京市计划用若干时间更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型和混合动力型车.今年初投入了电力型公交车128辆,混合动力型公交车400辆;计划以后电力型车每年的投入量比上一年增加50%,混合动力型每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数S (n ); (2)若该市计划7年内完成全部更换,求a 的最小值.解:(1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量.依题意,得{a n }是首项为128,公比为1+50%=32的等比数列,{b n }是首项为400,公差为a 的等差数列.所以{a n }的前n 项和S n =128×⎣⎡⎦⎤1-⎝⎛⎭⎫32n1-32=256⎣⎡⎦⎤⎝⎛⎭⎫32n-1,{b n }的前n 项和T n =400n +n (n -1)2a . 所以经过n 年,该市被更换的公交车总数为S (n )=S n +T n =256⎣⎡⎦⎤⎝⎛⎭⎫32n-1+400n +n (n -1)2a .(2)若计划7年内完成全部更换,则S (7)≥10 000,所以256⎣⎡⎦⎤⎝⎛⎭⎫327-1+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥1461621.又a ∈N *,所以a 的最小值为147.3.已知点⎝⎛⎭⎫1,13是函数f (x )=a x (a >0且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2,n ∈N *).(1)求数列{a n }和{b n }的通项公式;(2)若数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和为T n .问T n >1 0002 015的最小正整数n 是多少?解:(1)∵f (1)=a =13,∴f (x )=⎝⎛⎭⎫13x,a 1=f (1)-c =13-c , a 2=[f (2)-c ]-[f (1)-c ]=-29,当一个人先从自己的内心开始奋斗,他就是个有价值的人。
高三数学 一轮复习 第5知识块第5讲 数列的综合应用课件 文 新人教A版
同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长
模型.如分期付款问题,树木的生长与砍伐问题等. (5)递推模型:如果容易找到该数列任意一项an与它的前一项an-1(或前
几项)间的递推关系式,那么我们可以用递推关系的知识求解问题.
2.数列与其他分支的知识的综合应用 (1)主要为数列与函数、方程、不等式、三角、解析几何、极限等知识的 综合. (2)解此类综合题,首先要认真审题,弄清题意,分析出涉及哪些数学分支 内容,在每个分支中各是什么问题;其次,要精心分解,把整个大题分 解成若干个小题或“步骤”,使它们成为在各自分支中的基本问题;最 后,分别求解这些小题或步骤,从而得到整个问题的结论.
答案:B
2.(2009· 江西卷)公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比
中项,S8=32,则S10等于( A.18 解析:由题意可知 B.24 ) C.60 D.90
S10=10×(-3)+ 答案:C
×2=60.
3.黑白两种颜色的正六边形地面砖按如下图的规律拼成若干个图案,则 第n个图案中有白色地面砖的块数是( )
第5讲
【考纲下载】
数列差关系或等比关系,
并能用相关知识解决相应的问题.
1.数列应用问题的常见模型 (1)等差模型:一般地,如果增加(或减少)的量有一个固定的具体量时,该模 型是等差模型,增加(或减少)的量就是公差,其一般形式是:an+1-an=d(常数). (2)等比模型:一般地,如果增加(或减少)的百分比是一个固定的数时,该模型是 等比模型. (3)混合模型:在一个问题中,同时涉及到等差数列和等比数列的模型. (4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应
(新课标)2020年高考数学一轮总复习第五章数列5_5数列的综合应用课件文新人教A版
3.掌握数列与函数、不等 查求通项,第二问考查求和,并与不等
式的综合问题.
式、函数、最值等问题综合.
考点一|等差、等比数列的综合问题 (方法突破) 【例 1】 (2016·高考北京卷)已知{an}是等差数列,{bn}是等比数列,且 b2=3,b3 =9,a1=b1,a14=b4. (1)求{an}的通项公式; (2)设 cn=an+bn,求数列{cn}的前 n 项和.
=34-12n+1 1+n+1 2. ∵Tn+1-Tn=n+11n+3>0, ∴数列{Tn}单调递增, ∴{Tn}中的最小项为 T1=13.
考点三|数列与不等式综合问题 (能力突破) 【例 3】 等差数列{an}的前 n 项和为 Sn,且满足 a1+a7=-9,S9=-929. (1)求数列{an}的通项公式; (2)设 bn=21Sn,数列{bn}的前 n 项和为 Tn,求证:Tn>-34.
[解析] (1)设数列{an}的公差为 d, 2a1+6d=-9,
考点二|数列的实际应用 (思维突破) 【例 2】 为了加强环保建设,提高社会效益和经济效益,长沙市计划用若干时间 更换一万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,替换车为电力型 和混合动力型车.今年初投入了电力型公交车 128 辆,混合动力型公交车 400 辆; 计划以后电力型车每年的投入量比上一年增加 50%,混合动力型车每年比上一年 多投入 a 辆. (1)求经过 n 年,该市被更换的公交车总数 S(n); (2)若该市计划 7 年内完成全部更换,求 a 的最小值.
跟踪训练 (1)已知等差数列{an}的前 n 项和为 Sn,a3=5,S8=64. ①求数列{an}的通项公式; ②证明:Sn1-1+Sn1+1>S2n(n≥2,n∈N*). 解析:①设等差数列{an}的首项为 a1,公差为 d, 则aS38= =a81a+1+2d28=d5=,64, 解得 a1=1,d=2. 故数列{an}的通项公式为 an=2n-1.
高考数学第一轮复习 第五篇 第5讲 数列的综合应用课件 理 新人教A版
审审题题路路线线 (1)求 f′(x) ⇒由 f′π2=0 得 an、an+1、an+2 的关系式
⇒可推出数列{an}为等差数列 ⇒根据条件求公差 d ⇒得出通项 an
解(1)由题设可得,对任意 n∈N*,f′(x)= an-an+1+an+2-an+1sin x-an+2cos x.
f′π2=an-an+1+an+2-an+1=0, 即 an+1-an=an+2-an+1,故{an}为等差数列. 由 a1=2,a2+a4=8,解得 d=1,所以 an=2+1·(n-1)=n+1.
3n1-2,
∴an= 3n-2. 答案 an= 3n-2
第十一页,共18页。
数列(shùliè)与函数、不等式的综合
考
应用
点
【例 3】设数列{an}满足 a1=2,a2+a4=8,且对任意 n∈N*,函数 f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x
满足 f′π2=0.(1)求数列{an}的通项公式;(2)见下一页
等差、等比数列(děnɡ bǐ shù liè)的综合问题
考 点
【训练 1】(2014·昆明模拟)已知数列{an}是公差为 2 的等差数列, 它的前 n 项和为 Sn,且 a1+1,a3+1,a7+1 成等比数列.
(1)求{an}的通项公式; (2)求数列S1n的前 n 项和 Tn.
解(1)
(2) 由(1)知 an=2n+1,则 Sn=n(n+2),
解(2) 因为ana1n+1=2n-112n+1 =122n1-1-2n1+1,
所以,Tn=121-13+13-15 +…+2n1-1-2n1+1
=121-2n1+1. ∴Tn<12,要使不等式 4Tn<a2-a 恒成立,
高考数学第一轮复习强化训练 5.5《数列的综合应用》新人教版必修5
5.5数列的综合应用【考纲要求】1.探索并掌握一些基本的数列求前n 项和的方法;2.能在具体的问题情境中,发现数列的数列的通项和递推关系,并能用有关等差、等比数列知识解决相应的实际问题。
【基础知识】一、数列的应用主要是从实际生活中抽象出一个等差、等比的数列问题解答,如果不是等差等比数列的,要转化成等差等比数列的问题来解决。
二、方法总结1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。
2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。
3、单利问题:设本金为p ,期利率为r ,则n 期后本利和)1(nr p S n +=;复利问题:设本金为p ,期利率为r ,则n 期后本利和n n r p S )1(+=。
【例题精讲】例1 某企业进行技术改造,有两种方案,甲方案:一次性贷款10万元,第一年便可获利1万元,以后每年比前一年增加30%的利润;乙方案:每年贷款1万元,第一年可获利1万元,以后每年比前一年增加5千元;两种方案的使用期都是10年,到期一次性归还本息. 若银行两种形式的贷款都按年息5%的复利计算,试比较两种方案中,哪种获利更多?(取665.575.1,786.133.1,629.105.1101010===)解析:甲方案是等比数列,乙方案是等差数列, ①甲方案获利:63.423.013.1%)301(%)301(%)301(11092≈-=+++++++Λ(万元), 银行贷款本息:29.16%)51(1010≈+(万元),故甲方案纯利:34.2629.1663.42=-(万元), ②乙方案获利:5.02910110)5.091()5.021()5.01(1⨯⨯+⨯=⨯+++⨯++++Λ 50.32=(万元);银行本息和:]%)51(%)51(%)51(1[05.192+++++++⨯Λ 21.1305.0105.105.110≈-⨯=(万元) 故乙方案纯利:29.1921.1350.32=-(万元);综上可知,甲方案更好。
高三数学人教A数学(理)高考一轮复习课件:第五章 第五节 数列的综合应用
第十二章
选考部分
考点一
1 . (2016· 贵州七校联考 ) 已
典题悟法
试题
(2)若 an<an+1, 由(1)知 an=2n-1, 1 1 1 ∴ = = anan+1 2n-12n+1 2
a11-qn 21-2n n 项和 Sn= = 1- q 1- 2 棵数是前一天的 2 倍,则
植 2 棵,以后每天植树的
n 1 n 1 = 2 - 2. 由 2 -2≥100,得 需要的最少天数 n(n∈N )
*
+ +
6 . 等于________
2
n+1
≥102. 由 于 2 = 64,2 =
演练冲关
1,且 b3S3=36,b2S2=8(n∈N*). (1)求 an 和 bn;
1 (2)若 an<an+1, 求数列a a 的前 n n+1
2 d=- , 3 或 q=6, 或
an=2n-1, ∴ n-1 b = 2 , n
n 项和 Tn.
1 an= 5-2n, 3 n-1 b = 6 . n
n
演练冲关
an (1)求证:数列3n-1是等差数列;
(2)求数列{an}的前 n 项和 Sn.
an ∴数列3n-1 是等差数列.
栏目 导引
第十二章
选考部分
考点一
在数列{an}
典题悟法
试题
解析
an (2)由(1)知数列3n-1 是等差数列,
第十二章
选考部分
知识点
具体解题步骤用框图表示如下:
知识点
栏目 导引
第十二章
选考部分
知识点
届高考数学一轮总复习 第5章 数列 第五节 数列的综合应用课件 文 新人教A版
(2)bn=log2a1+log2a2+…+log2an=1+2+…+n=nn2+1. 要使(n-8)bn≥nk 对任意 n∈N*恒成立, 即实数n-82n+1≥k 对任意 n∈N*恒成立. 设 cn=12(n-8)(n+1),则当 n=3 或 4 时,cn 取得最小值,为 -10,所以 k≤-10. 即实数 k 的取值范围为(-∞,-10].
[即时应用] (2016·南昌三校联考)已知公比不为 1 的等比数列{an}的首 项 a1=12,前 n 项和为 Sn,且 a4+S4,a5+S5,a6+S6 成等 差数列. (1)求等比数列{an}的通项公式; (2)对 n∈N*,在 an 与 an+1 之间插入 3n 个数,使这 3n+2 个数成等差数列,记插入的这 3n 个数的和为 bn,求数列{bn} 的前 n 项和 Tn.
解:(1)证明:由已知,bn=2an>0. 当 n≥1 时,bbn+n 1=2an+1-an=2d. 所以,数列{bn}是首项为 2a1,公比为 2d 的等比数列. (2)函数 f(x)=2x 在(a2,b2)处的切线方程为 y-2a2=(2a2ln 2)(x-a2), 它在 x 轴上的截距为 a2-ln12. 由题意,a2-ln12=2-ln12,
第五节
数列的综合应用
考点一 等差数列与等比数列的综合问题 重点保分型考点——师生共研
[典例引领]
在等差数列{an}中,a10=30,a20=50. (1)求数列{an}的通项公式; (2)令 bn=2an-10,证明:数列{bn}为等比数列; (3)求数列{nbn}的前 n 项和 Tn.
解:(1)设数列{an}的公差为 d,则 an=a1+(n-1)d, 由 a10=30,a20=50,得方程组aa11++91d9=d=305,0, 解得ad1==21.2, 所以 an=12+(n-1)·2=2n+10. (2)由(1),得 bn=2an-10=22n+10-10=22n=4n, 所以bbn+n 1=44n+n 1=4. 所以{bn}是首项为 4,公比为 4 的等比数列.
高中一轮数学练习 第五章 第5节 数列的综合应用
第五章第五节数列的综合应用题组一等差、等比数列的综合问题1.已知a,b,c成等比数列,a,m,b和b,n,c分别成两个等差数列,则am+cn等于() A.4B.3 C.2 D.1解析:由题意得b2=ac,2m=a+b,2n=b+c,则am+cn=an+cmmn=a·b+c2+c·a+b2a+b2·b+c2=ab+ac+ac+bcab+ac+b2+bc2=2.答案:C2.数列{a n}是各项均为正数的等比数列,{b n}是等差数列,且a6=b7,则有() A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10的大小不确定解析:∵a3+a9≥2a3a9=2a26=2a6=2b7=b4+b10,当且仅当a3=a9时,不等式取等号.答案:B3.(文)已知等差数列{a n}的前n项和为S n且满足a2=3,S6=36.(1)求数列{a n}的通项公式;(2)若数列{b n}是等比数列且满足b1+b2=3,b4+b5=24.设数列{a n·b n}的前n项和为T n,求T n.解:(1)∵数列{a n}是等差数列,∴S6=3(a1+a6)=3(a2+a5)=36.∵a2=3,∴a5=9,∴3d=a5-a2=6,∴d=2,又∵a1=a2-d=1,∴a n=2n-1.(2)由等比数列{b n}满足b1+b2=3,b4+b5=24,得b 4+b 5b 1+b 2=q 3=8,∴q =2, ∵b 1+b 2=3,∴b 1+b 1q =3,∴b 1=1,b n =2n -1, ∴a n ·b n =(2n -1)·2n -1.∴T n =1×1+3×2+5×22+…+(2n -3)·2n -2+(2n -1)·2n -1, 则2T n =1×2+3×22+5×23+…+(2n -3)·2n -1+(2n -1)·2n ,两式相减得(1-2)T n =1×1+2×2+2×22+…+2·2n -2+2·2n -1-(2n -1)·2n ,即 -T n =1+2(21+22+…+2n -1)-(2n -1)·2n =1+2(2n -2)-(2n -1)·2n =(3-2n )·2n -3, ∴T n =(2n -3)·2n +3.(理)已知数列{a n }的前n 项和为S n ,a 1=1,数列{a n +S n }是公差为2的等差数列. (1)求a 2,a 3;(2)证明:数列{a n -2}为等比数列; (3)求数列{na n }的前n 项和T n .解:(1)∵数列{a n +S n }是公差为2的等差数列, ∴(a n +1+S n +1)-(a n +S n )=2,即a n +1=a n +22.∵a 1=1,∴a 2=32,a 3=74.(2)证明:由题意得a 1-2=-1, 又∵a n +1-2a n -2=a n +22-2a n -2=12,∴{a n -2}是首项为-1,公比为12的等比数列.(3)由(2)得a n -2=-(12)n -1,∴na n =2n -n ·(12)n -1,∴T n =(2-1)+(4-2·12)+[6-3·(12)2]+…+[2n -n ·(12)n -1],=(2+4+6+…+2n )-[1+2·12+3·(12)2+…+n ·(12)n -1],设A n=1+2·12+3·(12)2+…+n ·(12)n-1,①∴12A n =12+2·(12)2+3·(12)3+…+n ·(12)n , ② ①-②得12A n =1+12+(12)2+…+(12)n -1-n ·(12)n ,∴12A n =1-(12)n1-12-n ·(12)n , ∴A n =4-(n +2)·(12)n -1,∴T n =n (2+2n )2+(n +2)·(12)n -1-4=(n +2)·(12)n -1+n (n +1)-4.4.气象学院用3.2用,第n 天的维修保养费为n +4910元(n ∈N +),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均耗资最少)为止,一共使用了 ( ) A .600天 B .800天 C .1 000天 D .1 200天解析:由第n 天的维修保养费为n +4910元(n ∈N +),可以得出观测仪的整个耗资费用,由平均费用最少而求得最小值成立时相应n 的值. 设一共使用了n 天,则使用n 天的平均耗资为3.2×104+(5+n +4910)n2n =3.2×104n +n 20+4.95,当且仅当3.2×104n =n20时,取得最小值,此时n =800. 答案:B5.(2010·邯郸模拟)若数列{a n }满足1a n +1-1a n=d (n ∈N *,d 为常数),则称数列{a n }为调和数列.已知数列{1x n}为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=________.解析:由题意,若{a n }为调和数列,则{1a n}为等差数列,所以{1x n}为调和数列,则可得数列{x n }为等差数列,由等差数列的性质可知,x 5+x 16=x 1+x 20=x 2+x 19=…=20010=20. 答案:206.数列{a n }中,a 1=6,且a n -a n -1=a n -1n +n +1(n ∈N *,n ≥2),则这个数列的通项a n=________.解析:由已知等式得na n =(n +1)a n -1+n (n +1)(n ∈N *,n ≥2),则a nn +1-a n -1n =1,所以数列{a n n +1}是以a 12=3为首项,1为公差的等差数列,即a nn +1=n +2,则a n =(n+1)(n +2).n =1时,此式也成立. 答案:(n +1)(n +2)7.2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要( ) A .6秒钟 B .7秒钟 C .8秒钟 D .9秒钟 解析:设至少需要n 秒钟,则1+21+22+…+2n -1≥100, ∴1-2n1-2≥100,∴n ≥7. 答案:B8.某科研单位欲拿出一定的经费奖励科研人员,第1名得全部资金的一半多一万元,第二名得剩下的一半多一万元,以名次类推都得到剩下的一半多一万元,到第10名恰好资金分完,则此科研单位共拿出__________万元资金进行奖励.解析:设第10名到第1名得的奖金数分别是a 1,a 2,…,a 10,则a n =12S n +1,则a 1=2,a n -a n -1=12a n ,即a n =2a n -1,因此每人得的奖金额组成以2为首项,以2为公比的等比数列,所以S 10=2(1-210)1-2=2046.答案:20469.在如图所示的表格中,如果每格填上一个数后,每一行成等差数列,每一列成等比数列,那么 x +y +z 的值为 ( ) A .1 B .2 C .3 D .4解析:由题知表格中第三列成首项为4,公比为12的等比数列,故有x =1.根据每行成等差数列得第四列前两个数字依次为5,52,故其公比为12,所以y =5×(12)3=58,同理z =6×(12)4=38,故x +y +z =2.答案:B10.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,若1<S k <9(k ∈N *),则k 的值为________.解析:∵S n =23a n -13,∴S 1=23a 1-13=a 1,a 1=-1.a n =S n -S n -1(n >1),即a n =(23a n -13)-(23a n -1-13)=23a n -23a n -1,整理得:a n a n -1=-2,∴{a n }是首项为-1,公比为-2的等比数列,S k =a 1(1-q k )1-q =(-2)k -13,∵1<S k <9,∴1<(-2)k -13<9,即4<(-2)k <28,仅当k =4时不等式成立. 答案:411.(文)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2,n ∈N).(1)试判断数列{1a n}是否为等差数列;(2)设{b n }满足b n =1a n,求数列{b n }的前n 项为S n ;(3)若λa n +1a n +1≥λ,对任意n ≥2的整数恒成立,求实数λ的取值范围. 解:(1)∵a 1≠0,∴a n ≠0,∴由已知可得1a n -1a n -1=3(n ≥2),故数列{1a n}是等差数列.(2)由(1)的结论可得b n =1+(n -1)×3,所以b n =3n -2, ∴S n =n (1+3n -2)2=n (3n -1)2.(3)将a n =1b n =13n -2代入λa n +1a n +1≥λ并整理得λ(1-13n -2)≤3n +1,∴λ≤(3n +1)(3n -2)3n -3,原命题等价于该式对任意n ≥2的整数恒成立.设C n =(3n +1)(3n -2)3n -3,则C n +1-C n =(3n +1)(3n -4)3n (n -1)>0,故C n +1>C n ,∴C n 的最小值为C 2=283,∴λ的取值范围是(-∞,283].(理)已知数列{a n }的前n 项和为S n ,点(n ,S n n )在直线y =12x +112上.数列{b n }满足b n+2-2b n +1+b n =0(n ∈N *),b 3=11,且其前9项和为153.(1)求数列{a n },{b n }的通项公式; (2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项和为T n ,求使不等式T n >k 57对一切n ∈N *都成立的最大正整数k 的值. 解:(1)由已知得S n n =12n +112,∴S n =12n 2+112n .当n ≥2时, a n =S n -S n -1=12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式. ∴a n =n +5.由b n +2-2b n +1+b n =0(n ∈N *)知{b n }是等差数列, 由{b n }的前9项和为153,可得9(b 1+b 9)2=9b 5=153,得b 5=17,又b 3=11,∴{b n }的公差d =b 5-b 32=3,b 3=b 1+2d ,∴b 1=5,∴b n =3n +2. (2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1),∴T n =12(1-13+13-15+…+12n -1-12n +1)=12(1-12n +1). ∵n 增大,T n 增大, ∴{T n }是递增数列. ∴T n ≥T 1=13.T n >k 57对一切n ∈N *都成立,只要T 1=13>k 57,∴k <19,则k max =18.。
高考数学一轮总复习 5.5 数列的综合应用课件(含高考真题)文 新人教版
所以 5a1+10>12 +8a1,即12 +3a1-10<0,解得-5<a1<2.
第十四页,共37页。
)一
探究(tànjiū)
突破
考点(kǎo diǎn)二
数列与函数的综合应用
【例 2】已知函数 f(x)=log2x-logx2(0<x<1),数列{an}满足
关闭
19(19+1)
正整数
x,应为 19.∴200B
2
=10.
答案
解析
答案
(jiě xī) (dá àn)
解析
第八页,共37页。
梳理(shūlǐ)
自测
9
4.在数列{an}中,对任意自然数 n∈N*恒有 a1+a2+…+an=2n-1,则 a1+22 +
33 +…+ =
.
∵a1+a2+…+an=2n-1,当 n≥2 时,a1+a2+…+an-1=2(n-1)-1,两式作差得
探究(tànjiū)
突破
1
2
(2)解:f(x1)=f
f(xn+1)=f
2
1+2
=-1,
=f
+
1+
=f(xn)+f(xn)=2f(xn),
1
2
y2-x2=1 上,数列{bn}中,点(bn,Tn)在直线 y=- x+1 上,其中 Tn 是数列{bn}的前
n 项和.
(1)求数列{an}的通项公式;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴a=1,m=2,
∴f(x)=x(x+1),
f1n=nn1+1=n1-n+1 1,
用裂项法求和得 Sn=n+n 1.
【答案】
n n+1
5.(2012·湖北高考)定义在(-∞,0)∪(0,+∞)上的函数 f(x),
如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称 f(x) 为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如
故数列lg
a1n的前 6 项的和最大.
规律方法 1 1.1本题的切入点是求 a1,从而得 an 与 Sn 的关 系,转化成等比数列求通项公式;2递减的等差数列的前 n 项和 有最大值,运用函数思想求解.
2.等差数列与等比数列的联系: 1若数列{an}是等差数列,则数列{aan}是等比数列,公比为 ad,其中 a 是常数,d 是{an}的公差.a>0 且 a≠1. 2若数列{an}是等比数列,且 an>0,则数列{logaan}是等差数 列,公差为 logaq,其中 a 是常数且 a>0,a≠1,q 是{an}的公比.
【解析】 每天植树的棵树构成以 2 为首项,2 为公比的 等比数列,其前 n 项和 Sn=a111--qqn=211--22n=2n+1-2.由 2n+1-2≥100,得 2n+1≥102. 由于 26=64,27=128,则 n+1≥7, 即 n≥6. 【答案】 6
考向一 [096] 等差数列与等比数列的综合应用
(2)当 λ=100 时,令 bn=lg a1n, 由(1)知,bn=lg 120n0=2-nlg 2,
于是数列{bn}是公差为-lg 2 的递减数列.
b1>b2>…>b6=lg
12060=lg
100 64 >lg
1=0,
当 n≥7 时,bn≤b7=lg
12070=lg
100 128<lg
1=0.
成等差数列,则 S4=( ) A.7
B.8
ቤተ መጻሕፍቲ ባይዱ
C.15
D.16
【解析】 设数列{an}的公比为 q,则 4a2=4a1+a3, ∴4a1q=4a1+a1q2,即 q2-4q+4=0,∴q=2. ∴S4=11--224=15. 【答案】 C
2.有一种细菌和一种病毒,每个细菌在每秒钟杀死一个病毒
的同时将自身分裂为 2 个,现在有一个这样的细菌和 100 个这样
抓
住
挖
2
掘
个
1
基
大
础
技
知 识
第五节 数列的综合应用
法
点
掌
握
课
3
堂
个
限
核
时
心
检
考
测
向
[考情展望] 1.结合函数、不等式、方程、几何等知识,综合 考查数列的相关性质,如最值、不等关系的证明等.2.在具体情景中, 借助等差或等比数列的有关知识解决实际问题.
一、数列应用题常见模型 1.等差模型:如果增加(或减少)的量是一个固定量时,该模 型是等差模型,增加(或减少)的量就是公差. 2.等比模型:如果后一个量与前一个量的比是一个固定的数 时,该模型是等比模型,这个固定的数就是公比. 3.递推数列模型:如果题目中给出的前后两项之间的关系不 固定,随项的变化而变化时,应考虑是 an 与 an+1 的递推关系,还 是前 n 项和 Sn 与 Sn+1 之间的递推关系.
的病毒,问细菌将病毒全部杀死至少需要( )
A.6 秒钟
B.7 秒钟
C.8 秒钟
D.9 秒钟
【解析】 设至少需要 n 秒钟,则 1+21+22+…+2n-1≥100,
∴11--22n≥100,∴n≥7.
【答案】 B
3.已知数列{an}为等差数列,且a1+a7+a13=4π,则 tan(a2+a12)的值为________.
【解析】 ∵{an}是等差数列,且 a1+a7+a13=4π, ∴a1+a13=a2+a12=2a7. 又 3a7=4π,故 2a7=83π. ∴tan(a2+a12)=tan83π=tan23π=- 3.
【答案】 - 3
4.设函数 f(x)=xm+ax 的导函数 f′(x)=2x+1,则数列f1n (n∈N*)的前 n 项和是________.
(2012·四川高考改编)已知数列{an}的前 n 项和为 Sn, 常数 λ>0,a1≠0,且 λa1an=S1+Sn 对一切正整数 n 都成立.
(1)求数列{an}的通项公式;
(2)设 λ=100,当 n 为何值时,数列lg
a1n的前 n 项和最大?
【思路点拨】 (1)由 an 与 Sn 的关系,得 an 与 an-1 的递推公
②中,ffaan+n1=22aan+n 1=2an+1-an=2(q-1)an 不满足定义.
对于③,fan+1= fan
aan+n 1= |q|满足定义.
对于④,取 an=2n,则 f(an)=ln|2n|=n·ln 2 不是等比数列.
综上知,①、③是“保等比数列”函数.
【答案】 C
6.(2013·江西高考)某住宅小区计划植树不少于 100 棵,若第 一天植 2 棵,以后每天植树的棵数是前一天的 2 倍,则需要的最 少天数 n(n∈N*)等于________.
二、解答数列应用题的步骤 1.审题——仔细阅读材料,认真理解题意. 2.建模——将已知条件翻译成数学(数列)语言,将实际问题 转化成数学问题,弄清该数列的结构和特征. 3.求解——求出该问题的数学解. 4.还原——将所求结果还原到原实际问题中.
1.等比数列{an}的前 n 项和为 Sn,若 a1=1,且 4a1,2a2,a3
式,利用等比数列的定义求 an;(2)根据等差(比)数列的性质,求
lg
a1n前 n 项和的最值.
【尝试解答】 (1)当 n=1 时,λa21=2S1=2a1, ∵a1≠0,∴a1=2λ, 从而 2an=2λ+Sn,① 当 n≥2 时,2an-1=2λ+Sn-1,② 由①-②,得 2an-2an-1=an, ∴an=2an-1(n≥2), 故数列{an}是公比为 2,首项 a1=2λ的等比数列, 因此 an=2λ·2n-1=2λn.
下函数:
①f(x)=x2;②f(x)=2x;③f(x)= |x|;
④f(x)=ln|x|.
则其中是“保等比数列函数”的 f(x)的序号为( )
A.①②
B.③④
C.①③
D.②④
【解析】 设等比数列{an}的公比为 q,则aan+n 1=q, ①中,ffaan+n1=aa2n+2n 1=q2,∴①满足定义,