测试七排列组合、二项式定理、概率与统计综合.
排列组合二项式定理概率单元测试卷 人教版
排列组合、二项式定理、概率单元测试卷一、选择题(每题5分,计60分)1.从7人中选派5人到10个不同交通岗的5个中参加交通协管工作,则不同的选派方法有( )A 、5551057A A C 种 B 、5551057P C A 种 C 、57510C C 种 D 、51057A C2.某乒乓球队共有男女队员18人,现从中选出男女队员各一人组成一对双打组合,由于男队员中有两人主攻单打项目,不参与双打组合,这样共有64种组合方式,则此队中男队员的人数有( )A 、10人B 、8人C 、6人D 、12人3.设34)1(6)1(4)1(234-+-+-+-=x x x x S ,则S 等于( )A 、x 4B 、x 4+1C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名),由于时间上的冲突,甲、乙两位同学都不能参加第1期培训,则不同的选派方式有( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个同学在课余时间负责一个计算机房周一至周六的值班工作,每天1人值班,每人值班2天。
如果甲同学不值周一的班,乙同学不值周六的班,则可以排出不同的值班表有( )A 、36种B 、42种C 、50种D 、72种6.现有甲、乙两骰子,从1点到6点出现的概率都是1/6,掷甲、乙两颗骰子,设分别出现的点数为a 、b 时,则满足aa b a 10|2|2<-<的概率为( )A 、181B 、121C 、91D 、617.(1-2x)7展开式中系数最大的项为( )A 、第4项B 、第5项C 、第7项D 、第8项8.在一次足球赛中,某小组共有5个球队进行双循环赛(每两队之间赛两场),已知胜一场得3分,平一场得1分,负一场得0分。
积分多的前两名可出线(积分相等则要比净胜球数或进球总数),赛完后,一个队的积分可出现的不同情况种数为( )A 、22B 、23C 、24D 、259.若n xx )13(3+)(*∈N n 展开式中含有常数项,则n 的最小值是( )A 、4B 、3C 、12D 、1010..n ∈N ,A =(7+2)2n+1,B 为A 的小数部分,则AB 的值应是( ) A.72n+1 B.22n+1 C.32n+1 D.52n+111.若一个m 、n 均为非负整数的有序数对(m ,n ),在做m+n 的加法时,各位均不进位则称(m ,n )为“简单的有序实数对”,m+n 称为有序实数对(m ,n )之值。
高中数学基础知识大筛查(6)-排列组合二项式定理、概率与统计
基础知识大筛查-排列组合二项式定理、概率与统计一、概率与分布列1. 等可能事件的概率:如果一次试验中可能出现的结果有年n 个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是n1,如果某个事件A 包含的结果有m 个,那么事件A 的概率nmP(A)=. 2. ①互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A 、B 互斥,那么事件A+B 发生(即A 、B 中有一个发生)的概率,等于事件A 、B 分别发生的概率和,即P(A+B)=P(A)+P(B),推广:)P(A )P(A )P(A )A A P(A n 21n 21+++=+++ . ②对立事件:两个事件必有一个发生的互斥事件...............叫对立事件. 注意:i.对立事件的概率和等于1:1)P(A P(A)=+=+;ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.③相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件.如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A ·B)=P(A)·P(B). 由此,当两个事件同时发生的概率P (AB )等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.推广:若事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.注意:i. 一般地,如果事件A 与B 相互独立,那么A 与A B ,与B ,A 与B 也都相互独立. ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件. ④独立重复试验:若n 次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n 次试验是独立的. 如果在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:k n k k n n P)(1P C (k)P --=. 3. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.4、离散型随机变量的分布列:设离散型随机变量ξ可能取的值为: ,,,,21i x x x ξ取每一个值),2,1(=i x 的概率p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列. 121i 4. 二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:k n k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0 ] ,随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数互斥对立5. 超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C rm=,则k 的范围可以写为k=0,1,…,n.〕 6.概率公式:⑴互斥事件(有一个发生)概率公式:P(A+B)=P(A)+P(B);⑵古典概型:基本事件的总数包含的基本事件的个数A A P =)(;⑶几何概型:等)区域长度(面积或体积试验的全部结果构成的积等)的区域长度(面积或体构成事件A A P =)( ;(4)n 次独立重复试验中这个事件恰好发生k 次的概率:kn k k n n P)(1P C (k)P --=. (5)事件n 21,A ,,A A 相互独立,则)P(A )P(A )P(A )A A P(A n 21n 21 ⋅=⋅.二、数学期望与方差.n n 2211.数学期望反映了离散型随机变量取值的平均水平.2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)((2)两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1) (3)二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B (P 为发生ξ的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()( ===k p x P k k ξ时,则称+-++-+-=n n p E x p E x p E x D 2222121)()()(ξξξξ为ξ的方差σξξσξ.D =为ξ的标准差ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) (2)两点分布:pq D =ξ 其分布列为:(p + q = 1)(3)二项分布:npq D =ξ三、正态分布.1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =(如图阴影部分)的曲线叫ξ的密度曲线,以其作为图像的函数)(x f 叫做ξ的密度函数,由于“),(+∞-∞∈x ” 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f .(σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . ⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近.⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.四、抽样方法⑴简单随机抽样:一般地,设一个总体的个数为N ,通过逐个不放回的方法从中抽取一个容量为n 的样本,且每个个体被抽到的机会相等,就称这种抽样为简单随机抽样。
高二数学排列组合二项式定理单元测试题(带答案).doc
排列、组合、二项式定理与概率测试题一、选择题 (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的. )1、 如图所示的是 2008 年北京奥运会的会徽,其中的 “中国印 ”的外边是由四个色块构成,可以用线段在不穿越另两个色块的条件下将其中任意两个色块连接起来 (如同架桥 ),如果用三条线段将这四个色块连接起来,不同的连接方法共有 ()A.8种B.12种C. 16种D.20种2、从 6 名志愿者中选出 4 个分别从事翻译、导游、导购、保洁四项不同的工作,其中甲乙两名志愿者不能从事翻译工作,则不同的选排方法共有( ) A .96 种B .180 种C .240 种D .280 种3、五种不同的商品在货架上排成一排,其中 a 、b 两种必须排在一起,而c 、d 两种不能排在一起,则不同的选排方法共有( )A .12 种B .20 种C .24 种D .48 种4、编号为 1、2、 3、4、5 的五个人分别去坐编号为1、2、 3、4、5 的五个座位,其中有且只有两个的编号与座位号一致的坐法是( )A. 10种B. 20 种C. 30 种D . 60 种5、 设 a 、 b 、 m 为整数( m>0),若 a 和 b 被 m 除得的余数相同,则称a 和b 对模 m 同余 .记为 a ≡b(mod m)。
已知12·2+C3 20,则 b 的值可以是( )a=1+C 20 +C 2020 ·22+ +C ·219, b ≡a(mod 10)20.2011 C6、在一次足球预选赛中,某小组共有 5 个球队进行双循环赛 (每两队之间赛两场 ),已知胜一场得 3 分,平一场得1 分,负一场得 0 分.积分多的前两名可出线 (积分相等则要比净胜球数或进球总数).赛完后一个队的积分可出现的不同情况种数为( ) A .22 种B .23 种C .24 种D .25 种n 1n 11、 令 a n 为(1 x) 的展开式中含 x 项的系数,则数列 { } 的前 n 项和为()7a nn(n 3)n(n 1) n 2nA .B .C .D .22n 1n 18、 若 ( x 1)5 a 0 a 1( x 1) a 2 (x 1)2 ... a 5(x 1)5 ,则 a 0 = ()A . 32B .1C . -1D . -32n9、 二项式 3x 22(n N * ) 展开式中含有常数项,则 n 的最小取值是 ()3xA 5B 6C 7D 810、四面体的顶点和各棱中点共 10 个点,在其中取 4 个不共面的点,则不同的取法共有()A .150 种B .147 种C .144 种D . 141 种11、两位到北京旅游的外国游客要与2008 奥运会的吉祥物福娃( 5 个)合影留念,要求排成一排,两位游客相邻且不排在两端,则不同的排法共有 ( )A .1440B . 960C .720D .48012、若 x ∈ A 则 1 ∈ A ,就称 A 是伙伴关系集合,集合 M={ - 1, 0, 1 , 1,1,2,3,4}x3 2的所有非空子集中,具有伙伴关系的集合的个数为()A .15B . 16C . 28D . 25题号 1 23456789101112答案二、填空题 (每小题 5 分,共 20 分,把答案填在题中横线上)13.四封信投入 3 个不同的信箱,其不同的投信方法有_________种.14、在 ( x 2 1)( x 2) 7 的展开式中 x 3 的系数是.15、已知数列 { a n }的通项公式为 a n2n 1 1,则 a 1C n 0 +a 2C 1n + a 3C n 3 + a n 1C n n =16、对于任意正整数,定义“n 的双阶乘n!!如”下:对于n 是偶数时,n!!=n (n ·- 2) (n ·-4)6× ;4×2对于n 是奇数时, n!!=n (n ·- 2) (n ·- 4)5×.3×1现有如下四个命题:① (2005!!) (2006!!)=2006!· ;② 2006!!=2 1003·1003!;③ 2006!! 的个位数是5.正确的命题是 ________.0;④ 2005!! 的个位数是 三、解答题(注意各题要写出简要的解答过程,并要计算出具体的数字,否则不给分)17、某学习小组有 8 个同学,从男生中选2 人,女生中选 1 人参加数学、物理、化学三种竞赛,要求每科均有 1人参加,共有 180 种不同的选法.那么该小组中男、女同学各有多少人18、设 m, n∈ Z+, m、 n≥1,f(x)=(1+x)m+(1+x)n的展开式中, x 的系数为 19.( 1)求 f(x)展开式中 x2的系数的最值;(2)对于使f(x)中x2的系数取最小值时的m、 n 的值,求 x7的系数.19、7 位同学站成一排.问:(1)甲、乙两同学必须相邻的排法共有多少种(2)甲、乙和丙三个同学都相邻的排法共有多少种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起的排法有多少种20、已知( x1) n 的展开式中前三项的系数成等差数列.2 x(Ⅰ )求n 的值;(Ⅱ)求展开式中系数最大的项.21、由0,1,2,3,4,5这六个数字。
高二数学排列组合、二项式定理、概率测试卷
高二数学抽测(1)---排列组合、二项式定理、概率测试卷一、选择题:(本大题共12小题;每小题5分;共60分. 在每小题给出的四个选项中;只有一项是符合题目要求的.)1.从7人中选派5人到10个不同岗位的5个中参加工作;则不同的选派方法有 ( )A 、5551057A A C 种B 、5551057PC A 种 C 、57510C C 种D 、51057A C2.以1;2;3;…;9这九个数学中任取两个;其中一个作底数;另一个作真数;则可以得到不同的对数值的个数为 ( )A 、64B 、56C 、53D 、513.设34)1(6)1(4)1(234-+-+-+-=x x x x S ;则S 等于 ( )A 、x 4B 、x 4+1 C 、(x-2)4D 、x 4+44.学校要选派4名爱好摄影的同学中的3名参加校外摄影小组的3期培训(每期只派1名);由于时间上的冲突;甲、乙两位同学都不能参加第1期培训;则不同的选派方式有 ( )A 、6种B 、8种C 、10种D 、12种5.甲、乙、丙三个人负责一个计算机房周一至周六的值班工作;每天1人;每人值班2天。
如果甲同学不排周一;乙同学不排值周六;则可以排出不同的值班表有 ( )A 、36种B 、42种C 、50种D 、72种6.从1;2;……;9这九个数中;随机抽取3个不同的数;则这3个数的和为偶数的概率是 ( )A 、95B 、94 C 、2111 D 、2110 7.(1-2x)7展开式中系数最大的项为 ( )A 、第4项B 、第5项C 、第7项D 、第8项8.事件A 与事件B 互斥是事件A 、事件B 对立的 ( )A.充分不必要条件;B.必要不充分条件;9.设有甲、乙两把不相同的锁;甲锁配有2把钥匙;乙锁配有2把钥匙;这4把钥匙与不能开这两把锁的2把钥匙混在一起;从中任取2把钥匙能打开2把锁的概率是 ( )A 、4/15B 、2/5C 、1/3D 、2/3 10.若n xx )13(3+)(*∈N n 展开式中含有常数项;则n 的最小值是 ( )A 、4B 、3C 、12D 、1011.将一颗质地均匀的骰子(它是一种各面上分别标有点数1;2;3;4;5;6的正方体玩具)先后抛掷3次;至少出现一次6点向上的概率是 ( )A 、 错误!B 、 错误!C 、 错误!D 、 错误!12.四面体的顶点和各棱中点共10个点; 在其中取4个不共面的点; 则不同的取法共有 ( )A . 150种B . 147种C . 144种D . 141种 二、填空题:(本大题共4小题;每小题4分;共16分)13.四封信投入3个不同的信箱;其不同的投信方法有 种14.若41313--+=n n n C C C ; 则n 的值为 .15.若以连续投掷两次骰子分别得到的点数m 、n 作为点P 的坐标;则点P 落在直线x +y =5下方的概率 是________16.某城市的交通道路如图;从城市的东南角A 到城市的西北角B ; 不经过十字道路维修处C ;最近的走法种数有_________________。
排列组合二项式定理概率综合训练
题一:144.详解:先将票分为符合条件的4份;由题意,4人分6张票,且每人至少一张,至多两张,则两人一张,2人2张,且分得的票必须是连号,相当于将1、2、3、4、5、6这六个数用3个板子隔开,分为四部分且不存在三连号;易得在5个空位插3个板子,共有3510C=种情况,但其中有四种是1人3张票的,故有10-4=6种情况符合题意,再对应到4个人,有4424A=种情况;则共有6×24=144种情况.题二:96.详解:由题意知本题是一个分步计数问题,先4个人中选2人,这2人每人会拿到2张票有246C=,编号为1~6的电影票按连续编号可以分为:13,24,35,46共4组.被选出的2人分别可以从这4组中人选一组,第1人有4种选法,若第一个人选择13,则第二个人就不能选择35,第2人有2种选法,则有4×2=8,剩余的2人2张票有2种结果,∴总的分法有6×8×2=96种.题三:540.详解:从5个位中任意取2个位,使这两个位上的数字相同(这2个位不能是十位和百位),共有(25C-1)×5=45 种方法,其余的3个位从剩余的4个数种选3个填上,共有34A种方法,恰有2个数位上的数字重复的五位数的个数是45×34A.由于十位上的数字小于百位上的数字的五位数占总数的一半,故满足条件的五位数的个数是(45×34A)÷2=540,故答案为540.题四:36.详解:如图所示:从5、7、9三个奇数中任选一个放在6与8之间, 可用13C 中选法,而6与8可以交换位置有22A 种方法,把6与8及之间的一个奇数看做一个整体与剩下的两个奇数全排列共有33A 种方法,利用乘法原理可得两个偶数数字之间恰有一个奇数数字的五位数的个数是13C •22A •33A =36.题五: 36.详解:把甲、乙两名员工看做一个整体,5个人变成了4个,再把这4个人分成3部分,每部分至少一人,共有24C 种方法,再把这3部分人分到3个为车间,有33A 种方法,根据分步计数原理,不同分法的种数为24C •33A =36.题六:30.详解:由题意知4个小球有2个放在一个盒子里的种数是24C ,把这两个作为一个元素同另外两个元素在三个位置排列,有33A 种结果,而①②好小球放在同一个盒子里有33A =6种结果,∴编号为①②的小球不放到同一个盒子里的种数是24C •33A -6=30.题七:128.详解:由已知条件可得a 5=38C ·(-m )3=-56m 3=56,解得m =-1, 所以(x -m )8=(x +1)8,所以a 0+a 2+a 4+a 6+a 8=27=128.题八:205.详解:以x -1代x 可得(x -1)5+(x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10, 则a 4为左边x 4的系数,左边x 4的系数为16510205C C -+=.题九:2. 详解:552155()r rr r r r r a T x x a xC C --+==,∴5-2r =3,∴r =1,∴15C ·a =10,∴a =2.题十:(1)1;(2)-1632x;(3)1 1206x-.详解:由题意知,第五项系数为44(2)n C -,第三项的系数为22(2)nC -,则有4422(2)10(2)1n n C C -=-, 化简得n 2-5n -24=0,解得n =8或n =-3(舍去). (1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式1k T +=8822()kk k C x-⋅-=8(2)k kC-⋅822kk x--,令8-k 2-2k =32,则k =1, 故展开式中含32x的项为T 2=-1632x.(3)设展开式中的第k 项,第k +1项,第k +2项的系数绝对值分别为1182k k C --⋅,82k k C ⋅,1182k k C ++⋅,若第k +1项的系数绝对值最大,则118811882222k k k k k k k kC C C C --++⎧⋅≤⋅⎪⎨⋅≤⋅⎪⎩解得56k ≤≤. 又T 6的系数为负,∴系数最大的项为T 7=1 79211x-. 由n =8知第5项二项式系数最大,此时T 5=1 1206x -.题十一:C .详解:在这一组数据中10出现次数最多,故众数是10; 这组数据的中位数是(10+10)÷2=10(分);平均数是(3+5+6+7×5+8×4+9×11+10×27)÷50=9(分),这次听力测试成绩的众数、中位数和平均 数的和是10+10+9=29(分);故选C .题十二:73.详解:根据平均数的性质,可将平均数乘以8再减去剩余7名学生的成绩,即可求出x 的值.依题意得:x =77×8-80-82-79-69-74-78-81=73.题十三:100.详解:∵个体的值由小到大依次为4,6,8,9,x ,y ,11,12,14,16,且总体的中位数为10,∴x +y =20, ∴这组数据的平均数是(4+6+8+9+x +y +11+12+14+16)÷10=10,要使总体方差最小, 即(x -10)2+(y -10)2最小.又∵(x -10)2+(y -10)2=(x -10)2 +(20-x -10)2 =2(x -10)2, ∴当x =10时,(x -10)2+(y -10)2取得最小值. 又∵x +y =20,∴x =10,y =10.x y =100, 故答案为:100.. 详解:由题意知(a +1+2+3)÷4=1,解得2a =-,∴样本标准差为S ===.题十五:30.详解:由图知,(0.035+a +0.020+0.010+0.005)×10=1,解得a =0.03, ∴身高在[120,130]内的学生人数在样本的频率为0.03×10=0.3, 故身高在[120,130]内的学生人数为0.3×100=30.题十六:0.1;50.详解:由频率分步直方图知,(0.02+m +0.06+0.02)×5=1,∴m =0.1,∴所抽取的体重在45~50kg 的人数是0.1×5×100=50人, 故答案为:0.1;50.题十七:34.详解:∵f (x )=ax 2-bx +1在 [1,+∞)上递增, ∴--b 2a≤1,即2a ≥ b .由题意得⎩⎪⎨⎪⎧0≤a ≤20≤b ≤2,2a ≥b画出图示得阴影部分面积.∴概率为P =2×2-12×2×12×2 = 34.题十八:1613 . 方法二:不在家看书的概率=1—在家看书的概率=1—2211132416⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=π-ππ.题十九:(Ⅰ)61;(Ⅱ)92. 详解:(Ⅰ)记“3次射击的人依次是甲、甲、乙,且乙射击未击中目标”为事件A . 由题意,得事件A 的概率1231()3346P A =⨯⨯=; (Ⅱ)记“乙至少有1次射击击中目标”为事件B , 事件B 包含以下两个互斥事件:1事件B 1:三次射击的人依次是甲、甲、乙,且乙击中目标, 其概率为11211()33418P B =⨯⨯=; 2事件B 2:三次射击的人依次是甲、乙、乙,其概率为2211()346P B =⨯=.所以事件B 的概率为122()()9P B P B +=. 所以事件“乙至少有1次射击击中目标”的概率为92. 题二十:(1)80243;(2)451024. 详解:(I )设“甲射击5次,有两次未击中目标”为事件A ,则23252180()()()33243P A C ==. 答:甲射击5次,有两次未击中目标的概率为80243. (II )设“乙恰好射击5次后,被终止射击”为事件C ,由于乙恰好射击5次后被终止射击,所以必然是最后两次未击中目标,第一次及第二次至多有一次未击中目标, 则12223313145()[()()()]()444441024P C C =⋅⋅⋅=+.答:乙恰好射击5次后,被终止射击的概率为451024.。
高考数学排列组合二项式定理测试.doc
十、排列、组合、二项式定理考试要求:1、掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2、理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3、理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4、掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
1、高三年级有文科、理科共9个备课组,每个人备课组的人数不少于4人,现从这9个备课组中抽出12人,每个备课组至少1人,组成“年级核心组”商议年级的有关事宜,则不同的抽调方案共有:A .129种B .148种C .165种D .585种2、从4名教师与5名学生中任选3人,其中至少要有教师与学生各1人,则不同的选法共有:A .140种B .80种C .70种D .35种3、 对某种产品的5件不同正品和4件不同次品一一进行检测,直到区分出所有次品为止. 若所有次品恰好经过五次检测被全部发现,则这样的检测方法有:A .20种B .96种C .480种D .600种4、以长方体的8个顶点中的任意3个为顶点的三角形中,锐角三角形的个数是:A .0B .6C .8D .245、4个男生2个女生排成一排,若女生不能排在两端,且又不相邻,则不同的排法数有____________种。
6、假定有一排蜂房,形状如图,一只蜜蜂在左下角,由于受了点 伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻的右蜂房中去,从最初位置爬 到6号蜂房共有 种不同的爬法。
7、某单位有六个科室,现从人才市场招聘来4名新毕业的大学生,要随机地安排到其中的两个科室且每科室2名,则不同的安排方案种数为A.2426C AB. 2426A AC. 262AD. 242621C A 8、中央电视台“正大综艺”节目的现场观众来自四个单位,分别在图中的四个区域内坐定.有四种不同颜色的服装,且相邻两个区域的颜色不同,不相邻区域的观众服装颜色相同与否,不受限制,那么不同的着装方法有:A.36种B.84种C.48种D.24种9、6名运动员站在6条跑道上准备参加比赛,其中甲不能站在第一道也不能站在第二道,乙必须站在第五道或第六道,则不同排法种数共有A. 144B. 96C. 72D. 4810、直线x y m x ==,将圆面422≤+y x 分成若干块. 现在用5种不同的颜色给这若干块涂色,每块只涂一种颜色,且任意两块不同色,若共有120种不同的涂法,则实数m 的取值范围是 .11、用1个1,2个2,3个3这样6个数字可以组成多少个不同的6位数: 0654321蜜蜂A .20B .60C .120D .9012、从-3,-2,-1,1,2,3中任取三个不同的数作为椭圆方程022=++c by ax 中的系数,则确定不同椭圆的个数为 .13、 在765)1()1()1(x x x +++++的展开式中,含4x 项的系数是首项为-2公差为3的等差数列的:A .第13项B .第18项C .第11项D .第20项14、在7)1(+ax 的展开式中,3x 项的系数是2x 的系数与5x 项系数的等比中项,则a 的值是: A. 510 B. 925 C. 35 D. 325 15、若n xx )213(32-的展开式中含有常数项(非零),则正整数n 的可能值是: A .3B .4C .5D .6 16、102)1(x -的展开式中2x 的系数是 ,如果展开式中第r 4项和第2+r 项的二项式系数相等,则r 等于 .17、已知二项式72展开式的第4项与第5项之和为零,那么x 等于:A .1BC .2D .4618、若nx )51(+与n x )57(+的展开式中各项系数之和分别为n a ,n b ,则nn n n n b a b a 432lim +-∞→= . 19、二项式(1+x)n 的展开式中, 存在着系数之比为5: 7的相邻两项, 则指数n (n ∈N*)的最小值为:A. 13B. 12C. 11D. 10十、排列、组合、二项式定理参考答案1、C ;2、C ;3、C ;4、C ;5、144;6、21;7、D ;8、B ;9、A ;10、22<<-m ; 11、B ;12、36;13、D ;14、B ;15、C ;16、-10,2;17、C ;18、21-;19、C。
排列组合、二项式定理和概率练习题
8289P P3、如图,、如图,A A 、B 、C 、D 是海上的四个小岛,要建三座桥,将是海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有这四个岛连接起来,不同的建桥方案共有这四个岛连接起来,不同的建桥方案共有 16 16 16 种种. 4、从6人中选4605040302010321参加人数活动次数排列组合二项式、统计和概率练习题二项式、统计和概率练习题题组1:1、有)(N n n Î件不同的产品排成一排,若其中A 、B 两件产品排在一起的不同排法有48种,则=n _5________. 2、8名学生和2位教师站成一排合影,2位教师不相邻的排法种数为位教师不相邻的排法种数为 人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案人中甲、乙两人不去巴黎游览,则不同的选择方案 240 5、一副、一副扑克牌扑克牌(有四色,同一色有13张不同牌)共52张.现随机抽取3张牌,则抽出的3张牌有且仅有2张花色相同的概率为花色相同的概率为234425(用数值作答). 6、某中学号召学生在暑假期间至少参加一次社会、某中学号召学生在暑假期间至少参加一次社会公益公益活动(以下简活动(以下简 称活动).该校文学社共有100名学生,他们参加活动的次数统计如名学生,他们参加活动的次数统计如 图所示.则从文学社中任意选1名学生,他参加活动次数为3的概率的概率 是310、该文学社学生参加活动的人均次数为、该文学社学生参加活动的人均次数为 2.2 .7、一个不透明的袋中装有5个白球、4个红球(9个球除个球除颜色颜色外其余完全相同),经充分混合后,从袋中随机摸出3球,则摸出的3球中至少有一个是白球的概率为球中至少有一个是白球的概率为 2021.8、古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土,土克水,水克火,火“物质分金、木、水、火、土五种属性,金克木、木克土,土克水,水克火,火 克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率 129、(文科)若以连续掷两次骰子分别得到的点数m ,n 作为点P 的横、纵的横、纵坐标坐标,则点P 在直线x +y=5下方的下方的 概率为概率为16(理科)某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的。
排列组合二项式定理综合测试(含详细解答)
排列、组合和二项式定理单元综合测试一、选择题(每小题5分,共60分)1.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为( )A .18B .24C .30D .362.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为 ( )A .300B .216C .180D .1623.五个人排成一排,甲、乙不相邻,且甲、丙也不相邻的不同排法的种数为 ( )A .60B .48C .36D .244.某小组共有8名同学,其中男生6人,女生2人,现从中按性别分层随机抽取4人参加一项公益活动,则不同的抽取方法有 ( )A .40种B .70种C .80种D .240种5.若能被整除,则的值可能为(122n nn n n C x C x C x +++ 7,x n )A .B .4,3x n ==4,4x n ==C . D .5,4x n ==6,5x n ==6.圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多有( )A .AB .A ·A 412212212C .C ·CD .C 2122124127.用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有 ( )A .288个B .240个C .144个D .126个8.有4个标号为1,2,3,4的红球和4个标号为1,2,3,4的白球,从这8个球中任取4个球排成一排.若取出的4个球的数字之和为10,则不同的排法种数是( )A .384B .396C .432D .4809.在一条南北方向的步行街同侧有8块广告牌,广告牌的底色可选用红、蓝两种颜色,若只要求相邻两块广告牌的底色不都为红色,则不同的配色方案共有 ( )A .55种B .56种C .46种D .45种10.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是 ( )A .18B .26C .29D .5811.若自然数n 使得作竖式加法n +(n +1)+(n +2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.那么,小于1000的“可连数”的个数为 ( )A .27B .36C .39D .4812.为支持地震灾区的灾后重建工作,四川某公司决定分四天每天各运送一批物资到A 、B 、C 、D 、E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B 、C 两地相邻,安排在同一天上、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同运送顺序),且运往这两地的物资算作一批;D 、E 两地可随意安排在其余两天送达.则安排这四天送达五个受灾地点的不同运送顺序的种数为 ( )A .72B .18C .36D .24二、填空题(每小题4分,共16分)13.沿海某市区对口支援贫困山区教育,需从本区3所重点中学抽调5名教师分别到山区5所学校任教,每校1人;每所重点中学至少抽调1人,则共有__________种不同的支教方案.14.一个五位数由数字0,1,1,2,3构成,这样的五位数的个数为__________.15.(4x 2-4x +1)5的展开式中,x 2的系数为__________.(用数字作答)16.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为__.三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.(12分)(1)求值:C +C ;5-n n 9-n n +1(2)解不等式:-<.18.(12分)有5张卡片的正反面分别写有0与1、2与3、4与5、6与7、8与9,将其中任三张并排组成三位数,可组成多少个数字不重复的三位数?19.(12分)若(1+2x )100=a 0+a 1(x -1)+a 2·(x -1)2+…+a 100(x -1)100,求a 1+a 3+a 5+…+a 99.20.(12分)已知(-)n 的展开式的各项系数之和等于(4-)5的展开式中的3a 3b 常数项,求:(1)(-)n 展开式的二项式系数和;3a (2)(-)n 的展开式中a -1项的二项式系数.3a 21.(12分)(1)求证:kC =nC ;k nk -1n (2)等比数列{a n }中,a n >0,化简:A =lg a 1-C lg a 2+C lg a 3-…+(-1)n C lg a n +1.1n 2n n详细解答:1.答案解析:用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序C 24C 有 种,而甲乙被分在同一个班的有种,所以种数是.33A 33A 23343330C A A -=2.答案 解析:分类讨论思想:第一类:从1,2,3,4,5中任取两个奇数和两个偶数,C 组成没有重复数字的四位数的个数为;第二类:取0,此时2和4只能取243472C A =一个,0还有可能排在首位,组成没有重复数字的四位数的个数为.共有180个数.21433243[]108C C A A -=3.解析:五个人排成一排,其中甲、乙不相邻且甲、丙也不相邻的排法可分为两类:一类是甲、乙、丙互不相邻,此类方法有A ·A =12种(先把除甲、乙、丙外的两个人排好,有A 种232方法,再把甲、乙、丙插入其中,有A 种方法,因此此类方法有A ·A =12种);另一类是乙、323丙相邻但不与甲相邻,此类方法有A ·A ·A =24种方法(先把除甲、乙、丙外的两人排好,2322有A 种方法,再从这两人所形成的三个空位中任选2个,作为甲和乙、丙的位置,此类方法2有A ·A ·A =24种).综上所述,满足题意的方法种数共有12+24=36,选C.2322答案:C4.解析:依题意得,所选出的4人必是3名男生、1名女生,因此满足题意的抽取方法共有C C =40种,选A.3612答案:A 5.答案解析:,当时,C 122(1)1nnnn n n C x C x C x x +++=+- 5,4x n ==能被7整除.4(1)1613537n x +-=-=⨯6答案:D解析:圆周上任意四个点连线的交点都在圆内,此四点的选法有C ,则由这四点确定412的圆内的交点个数为1,所以这12个点所确定的弦在圆内交点的个数最多为C .故选D.4127.解析:个位是0的有C ·A =96个;1434个位是2的有C ·A =72个;1334个位是4的有C ·A =72个;1334所以共有96+72+72=240个.答案:B 8答案:C解析:若取出的球的标号为1,2,3,4,则共有C C C C A =384种不同的排法;若取出121212124的球的标号为1,1,4,4,则共有A =24种不同的排法;若取出的球的标号为2,2,3,3,则共有A 4=24种不同的排法;由此可得取出的4个球数字之和为10的不同排法种数是4384+24+24=432,故应选C.9解析:C +C +C +C +C =55.0818273645答案:A10.解析:若把两人都安排在前排,则有A =6种方法,若把两人都安排在后排,则有23A =12种方法,若两人前排一个,后排一个,则有4×5×2=40种方法,因此共有58种方法,24故正确答案是D.答案:D11解析:根据题意,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时:有C =3个;13当“可连数”为两位数时:个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C C =9个;1313当“可连数”为三位数时:有C C C =36个;131413故共有:3+9+36=48个,故选D.答案:D12解析:可分三步完成:第一类是安排送达物资到受灾地点A ,有A 种方法;第二步是12在余下的3天中任选1天,安排送达物资到受灾地点B 、C ,有A A 种方法;第三步是在余132下的2天中安排送达物资到受灾地点D 、E ,有A 种方法.由分步计数原理得不同的运送顺2序共有A ·(A A )·A =24种,故选D.121322答案:D二、填空题(每小题4分,共16分)13.解析:5名重点中学教师到山区5所学校有A 种,而3所重点中学的抽调方法种5数可由列举法一一列出为6种.故共有6A =720种不同的支教方案.5答案:72014.解析:分两类:(1)万位取1,其余不同的四个数放在不同的四个位置上时有A 个:4(2)万位取2或3,在余下的四个不同的位置中选两个位置放数字0与3或2时有2A 个,故24总共有A +2A =48.424答案:4815.答案:18016.解析:令x =1,(1+m )6=a 0+a 1+…+a 6 ①,令x =0,1=a 0 ②,①-②,得:a 1+…+a 6=(1+m )6-1∴(1+m )6-1=63 ∴(1+m )6=64∴1+m =±2 ∴m =1或m =-3.答案:1或-3三、解答题(本大题共6个小题,共计74分,写出必要的文字说明、计算步骤,只写最后结果不得分)17.解:利用组合数定义与公式求解.(1)由组合数定义知:解得4≤n ≤5.∵n ∈N *,∴n =4或5.当n =4时,原式=C +C =5;145当n =5时,原式=C +C =16.0546(2)由组合数公式,原不等式可化为-<,3!(n -3)!n !4!(n -4)!n !2×5!(n -5)!n !不等式两边约去,得(n -3)(n -4)-4(n -4)<2×5×4,即n 2-11n -12<0,解3!(n -5)!n !得-1<n <12.又∵n ∈N *,且n ≥5,∴n =5,6,7,8,9,10,11.18.解:解法1:(直接法)由于三位数的百位数字不能为0,所以分两种情况:当百位数字为1时,不同的三位数有A ·A =48个;当百位数为2、3、4、5、6、7、8、9中的任意一个时,1816不同的三位数有A A A =8×8×6=384个.综上,共可组成不重复的三位数48+384=432181816个.解法2:(间接法)任取3张卡片共有C ·C ·C ·C ·A 种排法,其中0在百位不能构成三351212123位数,这样的排法有C ·C ·C ·A 种,故符合条件的三位数共有C ·C ·C ·C ·A -C ·C ·C 24121223512121232412·A =432个.12219.解:令x -1=t ,则x =t +1,于是已知恒等式可变为(2t +3)100=a 0+a 1t +a 2t 2+…+a 100t100,又令f (t )=(2t +3)100,则a 1+a 3+a 5+…+a 99=[f (1)-f (-1)]12=[(2+3)100-(-2+3)100]=(5100-1).121220.解:依题意,令a =1,得(-)n 展开式中各项系数和为(3-1)n =2n ,(4-3a 3b )5展开式中的通项为T r +1=C (4)5-r (-)r =(-1)r C 45-r 5-b .r 53b r 5r 210-5r6若T r +1为常数项,则=0,即r =2,10-5r6故常数项为T 3=(-1)2C ·43·5-1=27,25于是有2n =27,得n =7.(1)(-)n 展开式的二项式系数和为3a 2n =27=128.(2)(-)7的通项为3a T ′r +1=C ()7-r ·(-)r =C (-1)r ·37-r ·a ,r 73a r 75r -216令=-1,得r =3,5r -216∴所求a -1项的二项式系数为C =35.3721.解:(1)∵左式=k ·=n !k !(n -k )!n ·(n -1)!(k -1)!(n -k )!=n ·=nC =右式,(n -1)!(k -1)![(n -1)-(k -1)]!k -1n∴kC =nC .k nk -1n (2)由已知:a n =a 1q n -1,∴A =lg a 1-C (lg a 1+lg q )+C (lg a 1+2lg q )-C (lg a 1+3lg q )+…+(-1)n C (lg a 1+n lg q )1n 2n 3n n =lg a 1[1-C +C -…+(-1)n C ]-lg q [C -2C +3C -…+(-1)n -1C ·n ]1n 2n n 1n 2n 3n n =lg a 1·(1-1)n -lg q [nC -nC +nC -…+(-1)n -1·nC ]0n -11n -12n -1n -1=0-n lg q [C -C +C -…+(-1)n -1·C ]0n -11n -12n -1n -1=-n lg q (1-1)n -1=0.22.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同.所以S (3)=3×2=6(种)……………3分如图2,S (4)=3×2×2×2-S (3)=18(种) ……………………………6分 (2)如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i=2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色. ………………………………8分于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为种.另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样)3)((≥n n S 的种法相当于对n -1部分符合要求的种法,记为.)1(-n S 共有3×2n -1种种法. ………………………………10分这样就有.即,123)1()(-⨯=-+n n S n S ]2)1([2)(1----=-n nn S n S 则数列是首项为公比为-1的等比数列.)3}(2)({≥-n n S n32)3(-S 则).3()1](2)3([2)(33≥--=--n S n S n n由⑴知:,∴.6)3(=S 3()2(68)(1)nn S n --=--∴.………………………………13分3()22(1)nn S n -=-⋅-答:符合要求的不同种法有…………………14分).3()1(223≥-⋅--n n n种。
高二数学排列组合二项式定理统计概率测试卷
育才学社培训学校:精品班型--7.1.3战队(选用题)排列组合、二项式定理、概率及统计二、典例剖析题型一:排列组合应用题解决此类问题的方法是:直接法,先考虑特殊元素(或特殊位置),再考虑其他元素(或位置);间接法,所有排法中减去不合要求的排法数;对于复杂的应用题,要合理设计解题步骤,一般是先分组,后分步,要求不重不漏,符合条件.例1、(08安徽理12)12名同学合影,站成了前排4人后排8人.现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是()A.B.C.D.解:从后排8人中选2人共种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,故为;综上知选C.例2、(08湖北理6)将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540B.300C.180D.150解:将5分成满足题意的3份有1,1,3与2,2,1两种,所以共有种方案,故D正确.例3、四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96B.48C.24D.0解:由题意分析,如图,先把标号为1,2,3,4号化工产品分别放入①②③④4个仓库内共有种放法;再把标号为5,6,7,8号化工产品对应按要求安全存放:7放入①,8放入②,5放入③,6放入④;或者6放入①,7放入②,8放入③,5放入④;两种放法.综上所述:共有种放法.故选B.例4、在正方体中,过任意两个顶点的直线中成异面直线的有____________对.解法一:连成两条异面直线需要4个点,因此在正方体8个顶点中任取4个点有种取法.每4个点可分共面和不共面两种情况,共面的不符合条件得去掉.因为在6个表面和6个体对角面中都有四点共面,故有种.但不共面的4点可构成四面体,而每个四面体有3对异面直线,故共有对.解法二:一个正方体共有12条棱、12条面对角线、4条体对角线,计28条,任取两条有种情况,除去其中共面的情况:(1)6个表面,每个面上有6条线共面,共有条;(2)6个体对角面,每个面上也有6条线共面,共有条;(3)从同一顶点出发有3条面对角线,任意两条线都共面,共有,故共有异面直线---=174对.题型二:求展开式中的系数例5、(08广东理10)已知(是正整数)的展开式中,的系数小于120,则__________.解:按二项式定理展开的通项为,我们知道的系数为,即,也即,而是正整数,故只能取1.等于()例6、若多项式,则a9 A.9B.10C.-9D.-10解:=∴.例7、展开式中第6项与第7项的系数的绝对值相等,求展开式中系数最大的项和系数绝对值最大的项.解:,依题意有,∴n=8.则展开式中二项式系数最大的项为.设第r+1项系数的绝对值最大,则有.则系数绝对值最大项为.例8、求证:.证:(法一)倒序相加:设①又∵②∵,∴,由①+②得:,∴,即.(法二):左边各组合数的通项为,∴.(法三):题型三:求复杂事件的概率例9、(08福建理5)某一批花生种子,如果每1粒发芽的概率为,那么播下4粒种子恰有2粒发芽的概率是()A.B.C.D.解:由.例10、甲、乙两个围棋队各5名队员按事先排好的顺序进行擂台赛,双方1号队员先赛,负者被淘汰,然后负方的队员2号再与对方的获胜队员再赛,负者又被淘汰,一直这样进行下去,直到有一方队员全被淘汰时,另一方获胜,假设每个队员的实力相当,则甲方有4名队员被淘汰,且最后战胜乙方的概率是多少?解:根据比赛规则可知,一共比赛了9场,并且最后一场是甲方的5号队员战胜乙方的5号队员,而甲方的前4名队员在前8场比赛中被淘汰,也就是在8次独立重复试验中该事件恰好发生4次的概率,可得,又第9场甲方的5号队员战胜乙方的5号队员的概率为,所以所求的概率为.题型四:求离散型随机变量的分布列、期望和方差例11、某先生居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD 发生堵车事件的概率为(1)请你为其选择一条由A到B的路线,使得途中发生堵车事件的概率最小;(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望解:(1)记路段MN发生堵车事件为MN.因为各路段发生堵车事件都是独立的,且在同一路段发生堵车事件最多只有一次,所以路线A→C→D→B中遇到堵车的概率P1为=1-[1-P(AC)][1-P(CD)][1-P(DB)]=1-;同理:路线A→C→F→B中遇到堵车的概率P为1-P((小于).2路线A→E→F→B中遇到堵车的概率P为1-P((小于).3显然要使得由A到B的路线途中发生堵车事件的概率最小.只可能在以上三条路线中选择.因此选择路线A→C→F→B,可使得途中发生堵车事件的概率最小.(2)路线A→C→F→B中遇到堵车次数可取值为0,1,2,3.答:路线A→C→F→B中遇到堵车次数的数学期望为例12、如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的点和点,每只小蚂蚁都可以从每一个顶点处等可能地沿各条棱向各个方向移动,但不能按原线路返回.比如,甲在处时可以沿、、三个方向移动,概率都是;到达点时,可能沿、两个方向移动,概率都是,已知小蚂蚁每秒钟移动的距离为1个单位.(Ⅰ)若甲、乙两只小蚂蚁都移动1秒钟,则它们所走的路线是异面直线的概率是多少?它们之间的距离为的概率是多少?(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒钟后,甲、乙两只小蚂蚁之间的距离的期望值是多少?解:(Ⅰ)甲蚂蚁移动1秒可以有三种的走法:即沿、、三个方向,当沿C方向走,概率为方向时,要使所走的路线成异面直线,乙蚂蚁只能沿、C1,同理当甲蚂蚁沿方向走时,乙蚂蚁走、CC,概率为,甲蚂蚁沿1时,乙蚂蚁走、,概率为,因此他们所走路线为异面直线的概率为;甲蚂蚁移动1秒可以有三种走法:即沿、、三个方向,当甲沿方向时,要使他们之间的距离为,则乙应走,此时的概率为,同理,甲蚂蚁沿方向走时、甲蚂蚁沿方向走时,概率都为,所以距离为的概率为.(Ⅱ)若乙蚂蚁不动,甲蚂蚁移动3秒后,甲乙两个蚂蚁之间距离的取值有且只有两个:和,当时,甲是按以下路线中的一个走的:、、、、、,所以其概率为,当时,甲是按以下路线中的一个走的:、、、、、、所以其概率为,所以三秒后距离期望值为.例13、(08湖北理17)袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n个(n=1,2,3,4).现从袋中任取一球.ξ表示所取球的标号.(Ⅰ)求ξ的分布列,期望和方差;(Ⅱ)若η=aξ-b,Eη=1,Dη=11,试求a,b的值.解:(1)的分布列为:所以.(2)由,得,即,又,所以当时,由,得;当时,由,得.,或,即为所求.题型五:统计知识例14、(08广东)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A .24B .18C .16D .12解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为,故在分层抽样中应在三年级抽取的学生人数为.答案:C例15、在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似服从正态分布.已知成绩在90分以上(含90分)的学生有12名.(Ⅰ)试问此次参赛学生总数约为多少人?(Ⅱ)若该校计划奖励竞赛成绩排在前50名的学生,试问设奖的分数线约为多少分?可共查阅的(部分)标准正态分布表.解:(Ⅰ)设参赛学生的分数为,因为~N(70,100),由条件知,P(≥90)=1-P(<90)=1-F(90)=1-=1-(2)=1-0.9772=0.0228.这说明成绩在90分以上(含90分)的学生人数约占全体参赛人数的2.28%,因此,参赛总人数约为≈526(人).(Ⅱ)假定设奖的分数线为x分,则P(≥x)=1-P(<x)=1-F(90)=1-==0.0951,即=0.9049,查表得≈1.31,解得x=83.1.故设奖的分数线约为83.1分.冲刺练习一、选择题1、在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有()A.36个B.24个C.18个D.6个2、从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有()A.108种B.186种C.216种D.270种3、某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A.16种B.36种C.42种D.60种4、的展开式中含x的正整数指数幂的项数是()A.0B.2C.4D.65、已知的展开式中第三项与第五项的系数之比为-,其中=-1,则展开式中常数项是()A.-45i B.45iC.-45D.456、高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800B.3600C.4320D.50407、袋中有40个小球,其中红色球16个、蓝色球12个,白色球8个,黄色球4个,从中随机抽取10个球作为一个样本,则这个样本恰好是按分层抽样方法得到的概率为()A.B.C.D.8、在正方体上任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为()A.B.C.D.9、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在的学生人数是()A.20B.30C.40D.5010、下图中有一个信号源和五个接收器.接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是()A.B.C.D.[提示]二、填空题11、某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是__________分.12、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种.(用数字作答)13、展开式中的系数为___________(用数字作答).14、电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有__________种不同的播放方式(结果用数值表示).15、若的展开式中的系数是-80,则实数的值是__________.16、设离散型随机变量可能取的值为1,2,3,4.(1,2,3,4).又的数学期望,则___________.[答案]三、解答题17、某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例;(Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数.[答案]18、在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.用表示所选用的两种不同的添加剂的芳香度之和.(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)(Ⅱ)求的数学期望.(要求写出计算过程或说明道理)[答案]19、每次抛掷一枚骰子(六个面上分别标以数字(I)连续抛掷2次,求向上的数不同的概率;(II)连续抛掷2次,求向上的数之和为6的概率.[答案]20、某运动员射击一次所得环数的分布如下:现进行两次射击,以该运动员两次射击中最高环数作为他的成绩,记为.(I)求该运动员两次都命中7环的概率;(II)求的分布列;(Ⅲ)求的数学期望.[答案]1-5BBDBD 6-10 BACCD提示:1、依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有种方法(2)3个数字中有一个是奇数,有种方法,故共有+=24种方法,故选B.2、从全部方案中减去只选派男生的方案数,合理的选派方案共有=186种,选B.3、有两种情况,一是在两个城市分别投资1个项目、2个项目,此时有种方案,二是在三个城市各投资1个项目,有种方案,共计有60种方案,选D.4、的展开式通项为,因此含x的正整数次幂的项共有2项,选B.5、第三项的系数为-,第五项的系数为,由第三项与第五项的系数之比为-可得n=10,则=,令40-5r=0,解得r =8,故所求的常数项为=45,选D.6、不同排法的种数为=3600,故选B.7、依题意,各层次数量之比为4∶3∶2∶1,即红球抽4个,蓝球抽3个,白球抽2个,黄球抽一个,故选A.8、在正方体上任选3个顶点连成三角形可得=56个三角形,要得等腰直角三角形共有6×4=24个(每个面内有4个等腰直角三角形),得,所以选C.9、根据该图可知,组距为2,得这100名学生中体重在的学生人数所占的频率为(0.03+0.05+0.05+0.07)×2=0.4,所以该段学生的人数是40,选C.10、将六个接线点随机地平均分成三组,共有种结果,五个接收器能同时接收到信号必须全部在同一个串联线路中,有种结果,这五个接收器能同时接收到信号的概率是,选D.答案:11、85 12、2400 13、-96014、48 15、-2 16、提示:11、某高校有甲、乙两个数学建模兴趣班. 其中甲班有40人,乙班50人. 现分析两个班的一次考试成绩,算得甲班的平均成绩是90分,乙班的平均成绩是81分,则该校数学建模兴趣班的平均成绩是分.12、先安排甲、乙两人在后5天值班,有=20种排法,其余5人再进行排列,有=120种排法,所以共有20×120=2400种安排方法.13、展开式中的项为,的系数为-960.14、分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而共有种,从而应填48.15、的展开式中的系数=x3,则实数a的值是-2.16、设离散性随机变量可能取的值为,所以,即,又的数学期望,则,即,,∴.17、解:(Ⅰ)设登山组人数为,游泳组中,青年人、中年人、老年人各占比例分别为a、b、c,则有,解得b=50%,c=10%.故a=100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%.(Ⅱ)游泳组中,抽取的青年人数为(人);抽取的中年人数为50%=75(人);抽取的老年人数为10%=15(人).18、解:(Ⅰ)(Ⅱ).19、解:(I)设A表示事件“抛掷2次,向上的数不同”,则答:抛掷2次,向上的数不同的概率为(II)设B表示事件“抛掷2次,向上的数之和为6”.向上的数之和为6的结果有、、、、5种,答:抛掷2次,向上的数之和为6的概率为20、解:(Ⅰ)该运动员两次都命中7环的概率为;(Ⅱ)的可能取值为7、8、9、10分布列为(Ⅲ) 的数学期望为.。
排列组合二项式定理与概率统计(知识点例题练习课后作业)
排列组合二项式定理与概率统计[含知识点、例题、习题、测试题])(=B P AP B+=)()在一次试验中发生的概率是p,则它在p)+p]n的展开式的第)n,,.此时称随机变量、解排列组合题的基本思路:8 8,a x+则8,a中奇数的个数为(A .2B .3C .4D .5例5、组合数C rn (n >r ≥1,n 、r ∈Z )恒等于( )A .r +1n +1C r -1n -1B .(n +1)(r +1)C r -1n -1 C .nr C r -1n -1 D .n r C r -1n -1.例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274例7、若(x +12x)n的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6(B)7(C)8(D)9考点三:概率【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。
掌握古典概型和几何概型的概率求法。
【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。
(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。
这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。
例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率为 。
例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为(A)184(B)121(C)25(D)35例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为(A )511 (B )681 (C )3061 (D )4081)5)(4)(3)(2)(1(-----x x x x x 4x。
高中数学排列组合二项式定理与概率检测试题及答案.doc.docx
排列组合二项式定理与概率训练题一、选择题 ( 本大题共 12 小题,每小题 5 分,共 60 分)1.3 名老师随机从 3 男 3 女共 6 人中各带 2 名学生进行实验,其中每名老师各带 1 名男生和 1 名女生的概率为()2349A. B. C. D.555102.某人射击 5 枪,命中3 枪, 3 枪中恰有 2 枪连中的概率为()2311A. B. C. D.5510203.一批产品中,有 n 件正品和 m 件次品,对产品逐个进行检测,如果已检测到前 k( k< n )次均为正品,则第k+1 次检测的产品仍为正品的概率是()A.n k k 1C.n k 1D.k1 n m kB.n m k 1n m kn m4.有一人在打靶中,连续射击 2 次,事件“至少有 1 次中靶”的对立事件是()A. 至多有 1 次中靶B.2 次都中靶C.2 次都不中靶D.只有 1 次中靶5.在一块并排 10 垄的土地上,选择 2 垄分别种植A、 B 两种植物,每种植物种植 1 垄,为有利于植物生长,则A、B 两种植物的间隔不小于 6 垄的概率为()A.142D.1 30B. C.3015156.某机械零件加工由 2 道工序组成,第一道工序的废品率为a,第二道工序的废品率为 b,假定这 2 道工序出废品是彼此无关的,那么产品的合格率是()A. ab- a-b+1B.1- a- bC.1- abD.1 - 2ab7.有 n 个相同的电子元件并联在电路中,每个电子元件能正常工作的概率为 0.5,要使整个线路正常工作的概率不小于0.95, n 至少为()A.3B.4C.5D.68.一射手对同一目标独立地进行 4 次射击,已知至少命中一次的概率为80 ,81则此射手的命中率是()1212A. B. C. D.33459. (| x |13)5的展开式中的x 2的系数是()| x |A.275B.270C.540D.54510.有一道,甲解出它的概率1,乙解出它的概率1,丙解出它23的概率1,甲、乙、丙三人独立解答此,只有 1 人解出此的概率是()4A.111C.17D.1B.24242411.事件 A 与事件 B 互斥是事件 A、事件 B 立的()A. 充分不必要条件;B. 必要不充分条件;C.充分必要条件;D. 既不充分也不必要条件12.若 P( AB)=0,事件 A 与事件 B 的关系是()A. 互斥事件;B.A、B 中至少有一个是不可能事件;C.互斥事件或至少有一个是不可能事件;D.以上都不二、填空题(每小题 4 分,共 16 分)13.四封信投入 3 个不同的信箱,其不同的投信方法有种14.如,一个地区分 5 个行政区域,地着色,要求相区域不得2使用同一色,有 4 种色可315供,不同的着色方法共有4种15.若以投两次骰子分得到的点数m、n 作点 P 的坐,点 P落在直 x+y=5 下方的概率是 ________16.在号 1, 2,3,⋯, n 的 n 卷中,采取不放回方式抽,若1号号,在第k次(1≤ k≤ n)抽抽到 1 号卷的概率________三、解答(本大共 6 小,共 74 分解答写出文字明、明程或演算步)17.(本小分12 分)m,n∈ Z +,m、n≥ 1,f( x)=( 1+x)m+(1+x )n的展开式中, x 的系数 19( 1)求 f( x)展开式中x2的系数的最大、小;( 2)于使f( x)中 x2的系数取最小的m、 n 的,求x7的系数18.(本小题满分12 分)从5 双不同的鞋中任意取出4 只,求下列事件的概率:(1)所取的 4 只鞋中恰好有 2 只是成双的;(2)所取的 4 只鞋中至少有 2 只是成双的19.(本小题满分12 分)有8 位游客乘坐一辆旅游车随机到 3 个景点中的一个景点参观,如果某景点无人下车,该车就不停车,求恰好有 2 次停车的概率本小题满分12 分)已知(3x x 2 ) 2n的展开式的系数和比 (3x1) n的展开式的系数和大1)2 n的展开式中 : ①二项式系数最大的项; ②系数的绝992, 求( 2xx对值最大的项21.(本小题满分12 分)有 6 个房间安排 4 个旅游者住宿,每人可以随意进哪一间,而且一个房间也可以住几个人求下列事件的概率:(1)事件A:指定的 4 个房间中各有 1 人;( 2)事件B:恰有 4 个房间中各有 1 人;(3)事件 C:指定的某个房间中有两人;(4)事件D:第 1 号房间有 1 人,第 2 号房间有 3人22.(本小题满分14 分)已知 { a n } (n是正整数)是首项是a1,公比是q 的等比数列( 1)求和: a1C 20a2C 21a3C 22 , a1C30a2 C31a3C 32a4C 33;( 2)由( 1)的结果归纳概括出关于正整数n 的一个结论,并加以证明;( 3)设 q1, S n是等比数列的前 n 项的和,求S1 C n0S2 C n1S3 C n2S4 C n3( 1)n S n 1C n n排列组合二项式定理与概率参考答案:1.A2.B3.A4. C5.C6.A7.C8.B9.C10.B11. B12. C13.3414. 7215.116.16n17.设 m, n∈ Z+, m、 n≥ 1,f ( x) =( 1+x)m+( 1+x)n的展开式中, x 的系数为 19( 1)求 f( x)展开式中 x2的系数的最大、小值;( 2)对于使 f( x)中 x2的系数取最小值时的m、 n 的值,求 x7的系数解: C m1 C n119,即 m n 19m19n( 1)设 x2的系数为T= C m2C n2n219n171(n19 )217119 224∵n∈Z +, n≥1,∴当 n 1或 n 18时 ,T max 153, 当 n 9或 10时 ,T min 81 ( 2)对于使 f ( x)中 x2的系数取最小值时的 m、 n 的值,即f ( x) (1 x)9(1x)10从而 x7的系数为 C 97C10715618.从5 双不同的鞋中任意取出 4 只,求下列事件的概率:(1)所取的 4 只鞋中恰好有 2 只是成双的;(2)所取的 4 只鞋中至少有 2 只是成双的解:基本事件总数是C104=210( 1)恰有两只成双的取法是C15C 24 C12 C12=1C15C42 C12C121204∴所取的 4 只鞋中恰好有 2 只是成双的概率为C1042107(2)事件“ 4 只鞋中至少有 2 只是成双”包含的事件是“恰有 2 只成双”和“ 4 只恰成两双” ,恰有两只成双的取法是C15C42C12C12 =1 只恰成两双的取法是C 52=10∴所取的 4 只鞋中至少有 2 只是成双的概率C 15C 42 C 12C 12 C 52130 13 C 104210 2119.有 8 位游客乘坐一 旅游 随机到3 个景点中的一个景点参 ,如果某景点无人下 , 就不停 ,求恰好有2 次停 的概率解: 8 位游客在 3 个景点随机下 的基本事件 数有38=6561 种有两个景点停 ,且停 点至少有1 人下 的事件数有C 32 ( C 18 + C 28 +⋯+ C 78 + C 88 )=3(28-1) =381 种∴恰好有 2 次停 的概率381 12765612187知 ( 3 xx 2 ) 2 n 的展开式的系数和比( 3x 1) n的展开式的系数和大992, 求12n的展开式中 : ①二 式系数最大的; ②系数的 最大的( 2x)x解:由 意 2 2n 2n 992 , 解得 n 5① (2x1)10 的展开式中第 6 的二 式系数最大 ,x即 T 6 T 51C 105( 2x) 5 ( 1 )58064x② 第 r 1 的系数的 最大,T1C r ( 2x)10 r ( 1 ) r( 1) r C r210 r x 10 2rr10 x10∴C10r210 rC10r 1210 r 1 ,得C10r2C 10r 1 , 即 11 r 2rC 10r210 r C 10r 1 210 r12C 10r C 10r 12( r1) 10 r∴8r 11 , ∴ r 3 , 故系数的 最大的是第4 即33T 4 C 103 (2x) 7 ( 1 ) 315360 x 4x21.有 6 个房 安排4 个旅游者住宿,每人可以随意 哪一 ,而且一个房也可以住几个人 求下列事件的概率:(1)事件 A :指定的 4 个房 中各有 1人;( 2)事件 :恰有 4 个房 中各有1 人; ( 3)事件:指定的某个房BC中有两人;( 4)事件 D :第 1 号房 有 1 人,第2号房 有 3人解: 4 个人住 6 个房 ,所有可能的住房 果 数 :(种)( 1)指定的 4 个房间每间 1 人共有A44种不同住法P( A)A44 / 641/ 54( 2)恰有4 个房间每间 1 人共有A64种不同住法P(B)A64 / 64 5 /18( 3)指定的某个房间两个人的不同的住法总数为:C425 5 (种),P(C) C 4252 /6425 / 216( 4)第一号房间1 人,第二号房间 3 人的不同住法总数为:134C 4 C3(种),(D )4/641/ 32422.已知 { a n } (n是正整数)是首项是a1,公比是q的等比数列⑴求和: a1C 20a2 C21a3C 22 ,a1C 30a2C 31a3C 32a4C 33;⑵由( 1)的结果归纳概括出关于正整数n 的一个结论,并加以证明;⑶设 q1, S n是等比数列的前n 项的和,求S C0S C 1S C 2S4C3( 1)n S C n1n 2 n 3 n n n 1n解:(1)a1C20a2 C 21a3C 22a12a1q a1q 2a1 (1q) 2;a1 C30a2 C31a3 C 32a4 C 33a13a1 q 3a1q 2a1 q3a1 (1 q)3( 2)归纳概括出关于正整数n 的一个结论是:已知{ a n } (n是正整数)是首项是 a1,公比是q的等比数列,则a C 0 a C1a3C2a4C3( 1) n an 1C n a1(1 q) n1 n2n n n n证明如下:a1 C n0a2 C n1a3 C n2a4 C n3( 1)n a n 1 C n n= a C0a1qC 1 a q2 C 2 a q3C 3( 1) n a q n C n1n n1n1n1na [C0C1 q C 2 q 2 C 3q 3 C n( q)n ] a (1 q) n1n n n n n1( 3)因为S n a1 (1qn),所以 S k1C n k a1 (1q n ) C n k1q1qS C0S C 1S C 2S4C3( 1)n S C n1n 2 n 3 n n n 1n=a1 [ C n0 C n1Cn2 C n3( 1)n C n n ]a1q[C n0qC n1q2 C n2C n n ( q)n ] 1q 1 q=-a1q(1 q) n 1 q。
排列组合二项式定理概率统计测试题
排列组合二项式定理概率统计测试题(时间:90分钟,满分100分)班别: 姓名: 学号:一.选择题: (每小题5分,共计65分)1.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95B .94C .2111D .2110 2.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513B .12516C .12518 D .12519 3.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A .56个B .57个C .58个D .60个4.一台X 型号的自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则一小时内至多有2台机床需要工人照看的概率是( )(A)0.1536 (B)0.1808 (C)0.5632(D)0.97285.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为( )(A)0.6小时 (B)0.9小时 (C)1.0小时(D)1.5小时6.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上和概率是 ( )(A)5216(B)25216(C)31216(D)912167.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180 个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销焦点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是()(A)分层抽样,系统抽样法(B)分层抽样法,简单随机抽样法(C)系统抽样法,分层抽样法(D)简随机抽样法,分层抽样法8. 将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子里,每个盒内放一个球,恰好3个球的标号与其在盒子的标号不.一致的放入方法种数为()A.120 B.240 C.360 D.7209. 已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为()A.2140B.1740C.310D.712010. 某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:()A.110 B.120 C.140D.1120 11. 甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是了( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p ---12. 有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是( ) A .234 B .346 C .350 D .36313. 从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种二.填空题: (每小题5分,共计20分)14. 某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n= .15. 某班委由4名男生和3名女生组成,现从中选出2人担任正副班长。
数学质量检测7排列组合、项式定理、统计、概率
质量检测(七)测试内容:排列组合、二项式定理、统计、概率(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某小区有125户高收入家庭、280户中等收入家庭、95户低收入家庭.现采用分层抽样的方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收入家庭中应抽选出的户数为A.70户B.17户C.56户D.25户解析:总体容量为125+280+95=500,样本容量为100,则中等收入家庭中应抽选出的户数为280×错误!=56户.故选C。
答案:C2.(2013年青岛质检)错误!6的展开式中x2的系数为(A.-240 B.240C.-60 D.60解析:由二项式定理通项公式,得T r+1=C错误!(-1)r26-r·x6-2r,所以r=2,系数为C2624×(-1)2=240。
答案:B3.(2012年西安模拟)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A。
错误!B。
错误!C.错误!D。
错误!解析:甲、乙参加兴趣小组各有3种选择,故共有C13·C1,3=9种,而参加同一兴趣小组有3种选择,故概率为错误!=错误!,选A。
答案:A4.(2012年武汉调研)天气预报说,在今后的三天中,每一天下雨的概率均为40%。
现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为A.0。
专题7:排列、组合、二项式定理、概率与统计
专题7:排列、组合、⼆项式定理、概率与统计专题七排列、组合、⼆项式定理、概率与统计的题型与⽅法【考点审视】1.突出运算能⼒的考查。
⾼考中⽆论是排列、组合、⼆项式定理和概率题⽬,均是⽤数值给出的选择⽀或要求⽤数值作答,这就要求平时要重视⽤有关公式进⾏具体的计算。
2.有关排列、组合的综合应⽤问题。
这种问题重点考查逻辑思维能⼒,它⼀般有⼀⾄两个附加条件,此附加条件有鲜明的特⾊,是解题的关键所在;⽽且此类问题⼀般都有多种解法,平时注意训练⼀题多解;它⼀般以⼀道选择题或填空题的形式出现,属于中等偏难(理科)的题⽬。
3.有关⼆项式定理的通项式和⼆项式系数性质的问题。
这种问题重点考查运算能⼒,特别是有关指数运算法则的运⽤,同时还要注意理解其基本概念,它⼀般以⼀道选择题或填空题的形式出现,属于基础题。
4.有关概率的实际应⽤问题。
这种问题既考察逻辑思维能⼒,⼜考查运算能⼒;它要求对四个概率公式的实质深刻理解并准确运⽤;⽂科仅要求计算概率,理科则要求计算分布列和期望;它⼀般以⼀⼩⼀⼤(既⼀道选择题或填空题、⼀道解答题)的形式出现,属于中等偏难的题⽬。
5.有关统计的实际应⽤问题。
这种问题主要考查对⼀些基本概念、基本⽅法的理解和掌握,它⼀般以⼀道选择题或填空题的形式出现,属于基础题。
【疑难点拨】1.知识体系:2.知识重点:(1)分类计数原理与分步计数原理。
它是本章知识的灵魂和核⼼,贯穿于本章的始终。
(2)排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。
排列数公式的推导过程就是位置分析法的应⽤,⽽组合数公式的推导过程则对应着先选(元素)后排(顺序)这⼀通法。
(3)⼆项式定理及其推导过程、⼆项展开式系数的性质及其推导过程。
⼆项式定理的推导过程体现了⼆项式定理的实质,反映了两个基本计数原理及组合思想的具体应⽤,⼆项展开式系数性质的推导过程就对应着解决此类问题的通法——赋值法(令1±=x )的应⽤。
(4)等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独⽴事件的定义及其概率的乘法公式,独⽴重复试验的定义及其概率公式。
高考数学专题七概率与统计专题跟踪训练28排列与组合二项式定理
高考数学专题七概率与统计专题跟踪训练28排列与组合、二项式定理专题跟踪训练(二十八) 排列与组合、二项式定理一、选择题1.(2021・惠州市二调)旅游体验师小李受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为( )A.24 B.18 C.16 D.10[解析] 分两种情况,第一种:若最后去甲景区,则有A3种可选的路线;第二种:若不在最后去甲景区,则有C2・A2种可选的路线.所以小李可选的旅游路线数为A3+C2・A2=10.故选D.[答案] D2.(2021・开封市定位考试)某地实行高考改革,考生除参加语文、数学、英语统一考试外,还需从物理、化学、生物、政治、历史、地理六科中选考三科.学生甲要想报考某高校的法学专业,就必须要从物理、政治、历史三科中至少选考一科,则学生甲的选考方法种数为( )A.6 B.12 C.18 D.19[解析] 解法一:在物理、政治、历史中选一科的选法有C3C3=9(种);在物理、政治、历史中选两科的选法有C3C3=9(种);物理、政治、历史三科都选的选法有1种,所以学生甲的选考方法共有9+9+1=19(种),故选D.解法二:从六科中选考三科的选法只有C6种,其中包括了没选物理、政治、历史中任意一科,这种选法只有1种,因此学生甲的选考方法共有C6-1=19(种),故选D.[答案] D33211223123?22?63.(2021・广西贵港市联考)在?x-?的展开式中,常数项为( )?x?A.-240 B.-60 C.60 D.2402?r?22?6r26-r?rr12-3r[解析] ?x-?的展开式中,通项公式为Tr+1=C6(x)?-?=(-2)C6x,令12xx????-3r=0,得r=4,故常数项为T5=(-2)C6=240,故选D.[答案] D4.(2021・长郡中学实验班选拔考试)若二项式?x+?的展开式中的各项系数之和为-1,则含x的项的系数为( )A.560 B.-560 C.280 D.-280[解析] 取x=1,得二项式?x+?的展开式中的各项系数之和为(1+a),即(1+a)x244??2a?7x?2a?777??22?7?2?rrr27-r=-1,解得a=-2.二项式?x-?的展开式的通项为Tr+1=C7・(x)・?-?=C7・(-?x??x?2)・x4r14-3r?22?724.令14-3r=2,得r=4.因此,二项式?x-?的展开式中含x项的系数为C7・(-?x?2)=560,故选A.[答案] A5.将5位同学分别保送到北京大学、上海交通大学、中山大学这3所大学就读,每所大学至少保送1人,则不同的保送方法共有( )A.150种 B.180种 C.240种 D.540种C4×C2[解析] 先将5人分成三组,3,1,1或2,2,1,共有C+C×=25(种)分法;再将2!3522三组学生分到3所学校有A3=6(种)分法,故共有25×6=150(种)不同的保送方法.故选A.[答案] A3?21?66.(2021・广州一模)(x+1)?2x-?的展开式的常数项为( )?x?A.54 B.56 C.58 D.60?21?6?21?6-1[解析] (x+1)?2x-?的展开式的常数项就是?2x-?的展开式的常数项与x项的?x??x?1?r?21?6r26-r?r6-rr12-3r系数之和.?2x-?的展开式的通项Tr+1=C6(2x)?-?=(-1)・2C6x,令12-3r?x??x?13424=0得r=4,所以常数项是(-1)×2×C6=60,令12-3r=-1得r=,不符合题意,所3?21?6-1以?2x-?的展开式的x项是不存在的,故选D. ?x?7.(2021・广东肇庆三模)(x+2y)的展开式中,系数最大的项是( ) A.68y C.672xy[解析] 设第r+1项的系数最大,2577B.112xy D.1344xy2534又∵r∈Z,∴r=5.∴系数最大的项为T6=C7x・2y=672xy.故选C. [答案] C8.(2021・衡水一模)已知身穿红、黄两种颜色衣服的各有两人,身穿蓝色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法种数为( )A.24 B.28 C.36 D.48[解析] 按红红之间有蓝、无蓝这两类来分情况研究.(1)当红红之间有蓝时,则有A2A4=24种情况;(2)当红红之间无蓝时,则有C2A2C2C3=24种情况.因此这五个人排成一行,穿相同颜色衣服的人不能相邻,共有24+24=48种排法.故选D.[答案] D9.(2021・广东珠海模拟)将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有( )A.480种 B.360种 C.240种 D.120种[解析] 根据题意,将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则必须有2个小球放入1个盒子,其余的小球各单独放入一个盒子,分2步进行分析:①先将5个小球分成4组,有C5=10种分法;②将分好的4组全排列,放入4个盒子,有A4=24种情况,则不同放法有10×24=240种.故选C.10.(2021・甘肃二诊)某微信群中有甲、乙、丙、丁、戊五个人玩抢红包游戏,现有4个红包,每人最多抢一个,且红包被全部抢完,4个红包中有2个6元,1个8元,1个10元(红包中金额相同视为相同红包),则甲、乙都抢到红包的情况有( )A.18种 B.24种 C.36种 D.48种[解析] 若甲、乙抢到的是一个6元和一个8元的红包,剩下2个红包,被剩下的324121122525525人中的2个人抢走,有A2A3=12(种);若甲、乙抢到的是一个6元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A2A3=12(种);若甲、乙抢到的是一个8元和一个10元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A2C3=6(种);若甲、乙抢到的是两个6元的红包,剩下2个红包,被剩下的3人中的2个人抢走,有A3=6(种),根据分类加法计数原理可得,共有36种情况,故选C.[答案] C11.(2021・合肥市三模)某社区新建了一个休闲小公园,几条小径将公园分成5块区域,如图所示.社区准备从4种颜色不同的花卉中选择若干种种植在各块区域,要求每个区域种植一种颜色的花卉,且相邻区域(有公共边的)所选花卉颜色不能相同,则不同种植方法的种数为( )2222222A.96 B.114 C.168 D.240[解析] 首先在a中种植,有4种不同方法,其次在b中种植,有3种不同方法,再次在c中种植,若c与b同色,则d有3种不同方法,若c与b不同色,c有2种不同方法,d有2种不同方法,最后在e中种植,有2种不同方法,所以不同的种植方法共有4×3×1×3×2+4×3×2×2×2=168(种),故选C.[答案] C12.(2021・郑州市第二次质量预测)将数字“124467\\”重新排列后得到不同的偶数的个数为( )A.72 B.120 C.192 D.240[解析] 若将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,①若末5×4×3×2×1位数字为2,因为含有2个4,所以偶数有=60(个);②若末位数字为6,同25×4×3×2×1理偶数有=60(个);③若末位数字为4,因为有两个相同数字4,所以偶数有25×4×3×2×1=120(个).综上可知,不同的偶数共有60+60+120=240(个).[答案] D 二、填空题13.(2021・海南省五校二模)从数字0,1,2,3,4中任意取出3个不重复的数字组成三位数,则组成的三位数中是3的倍数的有________个.[解析] 若取出的3个数字中包含0,则由数字0,1,2或0,2,4组成的三位数满足题意,共组成8个三位数;若取出的3个数字中不包含0,则由数字1,2,3或2,3,4组成的三位数满足题意,组成的三位数共有2A3=12(个).综上可知,共有20个三位数满足题意.[答案] 2014.(2021・东北三省四市二模)现将5张连号的电影票分给甲、乙等5个人,每人一张,若甲、乙分得的电影票连号,则共有________种不同的分法.(用数字作答)[解析] 电影票号码相邻只有4种情况,则甲、乙2人在这4种情况中选一种,共C4种选法,将2张连号的票分给甲、乙,共有A2种分法;其余3张票分给其他3个人,共有A3种分法,根据分步乘法计数原理,可得共有C4A2A3=48(种)分法.[答案] 4815.(2021・湖北黄冈期末)设(1-ax)20211232313=a0+a1x+a2x+…+a2021x22021,若a1+2a2+3a3+…+2021a2021=2021a(a≠0),则实数a=________.[解析] 已知(1-ax)得2021(1-ax)20212021=a0+a1x+a2x+…+a2021x222021,两边同时对x求导,2021(-a)=a1+2a2x+3a3x+…+2021a2021x2021,令x=1得,-2021a(1-a)又a≠0,所以(1-a)[答案] 22021=a1+2a2+3a3+…+2021a2021=2021a,=-1,即1-a=-1,故a=2.16.设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动,质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有________种(用数字作答).[解析] 解法一:在x轴上,标出A(1,0),B(2,0),C(3,0),D(4,0),E(-1,0),依题意知,跳动4次后,只有在B点或D点可跳到C点,画出树状图,可得结果为5.解法二:将向右跳一次记为+1,向左跳一次记为-1,需要其和为+3,那么应为4个+1,1个-1,∴质点不同的运动方法共有C5=5种.[答案] 51感谢您的阅读,祝您生活愉快。
高三数学总复习 高效测评卷(十) 排列、组合和二项式定理 概率 概率与统计 理
高三总复习—数学(理)高效测评卷(十)排列、组合和二项式定理概率概率与统计本栏目内容,在学生用书中以活页形式分册装订!一、选择题本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.对总体数为N的一批零件抽取一个容量为20的样本,若每个零件被抽取的概率为0.2,则N等于A.150 B.200C.120 D.100解析:由=0.2,得N=100.答案: D答案: A3.如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据可知,样本数据落在[15,20]内的频数为A.20 B.30C.40 D.50解析:由频率分布直方图可知,样本数据落在[15,20]内的频率为0.3,故样本数据落在[15,20]内的频数为100×0.3=30.答案: B答案: B5.某学校在校学生2 000人,为了迎接“2010年广州亚运会”,学校举行了“迎亚运”跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:高一年级高二年级高三年级跑步人数 a b c登山人数x y z其中a∶b∶c=2∶5∶3.全校参加登山的人数占总人数的.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取A.15人 B.30人C.40人 D.45人故选D.答案: D6.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为A.18 B.24C.30 D.36答案: C7.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是答案: C8.若n∈N*,且2-x n=a0+a1x+a2x2+…+a n x n,则a0-a1+a2-…+-1n a n等于A.81 B.27C.243 D.729解析:由得n=4,取x=-1得a0-a1+a2-…+-1n a n=34=81答案: A9.2010·江西南昌调研某单位1 000名青年职员的体重x kg服从正态分布Nμ,22,且正态分布的密度曲线如图所示,若体重在58.5~62.5 kg之间属于正常情况,则这1 000名青年职员中体重属于正常情况的人数约是其中Φ1≈0.841A.682 B.841C.341 D.667解析:依题意,这1 000名青年职员中体重属于正常情况的人数约是1 000×2[Φ-0.5]≈682.答案: A10.设随机变量的概率分布为:则ξ的数学期望的最小值是A. B.0C.2 D.随p的变化而变化答案:A11.某地举行一次民歌大奖赛,六个省各有一对歌手参加决赛,现要选出4名优胜者,则选出的4名选手中恰有且只有两个人是同一省份的歌手的概率为答案: A12.形如45132的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为A.20 B.18C.16 D.11答案: C二、填空题本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上13.2013·湖北荆州质检Ⅱ某工厂经过技术改造后,生产某种产品的产量吨与相应的生产能耗吨标准煤有如下几组样本数据:x 3 4 5 6y 2.5 3 4 4.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得回归直线的斜率为0.7,那么这组数据的回归直线方程是________.答案: 115.在一次试验中随机事件A发生的概率为P,设在k次独立重复试验中事件A发生k 次的概率为P k,那么P1+P2+…+P n=________.16.将某城市分为四个区如右图所示,现有5种不同颜色,图①②③④每区只涂一色,且相邻两区必须涂不同的颜色不相邻两区所涂颜色不限,则②区被涂成红色的概率是________.三、解答题本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤17.12分已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止如:前5次检验到的产品均不为次品,则次品也被确认.求:1检验次数为3的概率;2检验次数为5的概率.解析:1记“在3次检验中,前2次检验中有1次得到次品,第3次检验得到次品”为事件A,则检验次数为3的概率P3=P A=.2记“在5次检验中,前4次检验中有1次得到次品,第5次检验得到次品”为事件B,记“在5次检验中,没有得到次品”为事件C,则检验次数为5的概率P5=P B+P C=.18.12分袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n 个n=1,2,3,4,现从袋中任取一球,ξ表示所取球的标号.1求ξ的分布列、期望与方差;2若η=aξ+b,Eη=1,Dη=11,试求a,b的值.解析:1ξ的可能取值为0,1,2,3,4.ξ的分布列为2由Dη=a2Dξ,得a2×2.75=11,即a=±2.又Eη=aEξ+b,∴当a=2时,由1=2×1.5+b,得b=-2,∴当a=-2时,由1=-2×1.5+b,得b=4.19.12分袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为.现甲、乙两人从袋中轮流取球,甲先取,乙后取,然后甲再取,……,每次取1个球,取出的球不放回,直到其中有一人取到白球时终止.用ξ表示取球终止时取球的总次数.1求袋中原有白球的个数;2求随机变量ξ的分布列及数学期望Eξ.解得n=6或n=-5舍去.故袋中原有白球的个数为6.2由题意,ξ的可能取值为1,2,3,4..所以ξ的分布列为.20.12分甲、乙两人进行某种比赛,各局胜负相互独立.约定每局胜者得1分,负者得0分,无平局,比赛进行到有一人比对方多2分时结束,已知甲在每局中获胜的概率均为p其中p> ,赛完两局比赛结束的概率为.1求p;2求赛完四局比赛结束且乙比甲多2分的概率.解析:设事件A i表示“甲第i局获胜”,事件B i表示“乙第i局获胜”,i=1,2,3….则P A i=p,P B i=1-p.1设“赛完两局比赛结束”为事件C,则C=A1·A2+B1·B2.则P C=.即P A1·A2+B1·B2=P A1·A2+P B1·B2=,P A1P A2+P B1P B2=.因为P A i=p,P B i=1-p,所以p2+1-p2=..2设“赛完四局比赛结束且乙比甲多2分”为事件D,则D=B1·A2·B3·B4+A1·B2·B3·B4,即P D =P B 1·A 2·B 3·B 4+A 1·B 2·B 3·B 4 =PB 1·P A 2·P B 3·P B 4+P A 1·P B 2·P B 3·P B 421.12分甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:甲运动员 乙运动员 射击环数频数 频率 7 10 0.1 8 10 0.1 9 x 0.45 10 35 y 合计 1001若将频率视为概率,回答下列问题: 1求甲运动员击中10环的概率;2求甲运动员在3次射击中至少有一次击中9环以上含9环的概率. 3若甲运动员射击2次,乙运动员射击1次,ξ表示这3次射击中击中9环以上含9环的次数,求ξ的分布列及Eξ.解析: 由题意可得x =100-10+10+35=45,y =1-0.1+0.1+0.45=0.35,因为乙运动员的射击环数为9时的频率为1-0.1+0.15+0.35=0.4,所以z =0.4×=32,由上可得表中x 处填45,y 处填0.35,z 处填32.1设“甲运动员击中10环”为事件A ,则P A =0.35,即甲运动员击中10环的概率为0.35.2设甲运动员击中9环为事件A 1,击中10环为事件A 2,则甲运动员在一次射击中击中9环以上含9环的概率为P A 1+A 2=PA 1+P A 2=0.45+0.35=0.8,射击环数频数 频率 7 8 0.1 8 12 0.15 9 z 10 0.35 合计801故甲运动员在3次射击中至少有一次击中9环以上含9环的概率P=1-[1-P A1+A2]3=1-0.23=0.992.3ξ的可能取值是0,1,2,3,则Pξ=0=0.22×0.25=0.01,Pξ=3=0.82×0.75=0.48.所以ξ的分布列是ξ0 1 2 3P 0.01 0.11 0.4 0.48Eξ=0×0.01+1×0.11+2×0.4+3×0.48=2.35.22.14分甲、乙、丙三台机床各自独立地加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍.1从甲、乙、丙三台机床加工的零件中各取一件检验,求至少有一件一等品的概率;2将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,求它是一等品的概率;3将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取4件检验,其中一等品的个数记为ξ,求Eξ.解析:1设从甲、乙、丙三台机床加工的零件中任取一件是一等品分别为事件A,B,C.则P A=0.7,P B=0.6,P C=0.8.所以从甲、乙、丙加工的零件中各取一件检验,至少有一件一等品的概率为P1=1-=1-0.3×0.4×0.2=0.976.2将甲、乙、丙三台机床加工的零件混合到一起,从中任意地抽取一件检验,它是一等品的概率为P2==0.7.3依题意抽取的4件样品中一等品的个数ξ的可能取值为0、1、2、3、4,则=0.411 6,∴ξ的分布列为:ξ 4 3 2 1 0P 0.240 1 0.411 6 0.264 6 0.075 6 0.008 1 易知ξ~B4,0.7,所以Eξ=4×0.7=2.8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间(小时)测试七 排列组合、二项式定理、概率与统计综合一、选择题:本大题共16小题,每小题5分,共80分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.将4名教师分配到3种中学任教,每所中学至少1名教师,则不同的分配方案共有( )(A )12种 (B )24种 (C )36种 (D )48种2.若m 个数的平均数是x ,n 个数的平均数是y ,则这m +n 个数的平均数是( )(A )x+y 2 (B )x+y m+n (C )mx+ny m+n (D )mx+ny x+y3.已知集合A ={1,2,3},B ={4,5,6},从A 到B 的映射f (x ),B 中有且仅有2个元素有原象,则这样的映射个数为 ( )(A )8 (B )9 (C )24 (D )274.两个同学同时做一道题,他们做对的概率分别为P (A )=0.8,P (B )=0.9,则该题至少被一个同学做对的概率为 ( )(A )1.7 (B )1 (C )0.72 (D )0.985.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ( )(A )140种 (B )120种 (C )35种 (D )34种6.对一组数据x i (i =1,2,…,n ),如将它们改为x i - m ( i = 1,2,…,n ),其中m ≠0.则下面结论正确的是 ( )(A )平均数与方差都不变 (B )平均数与方差都变了(C )平均数不变,方差变了 (D )平均数变了,方差不变7.将1-9这9个不同的数字分别填入3×3的方格中,要求每行自左至右数字从小到大排,每列自上到下数字也从小到大排,并且5排在正中的方格,则不同的填法共有( )(A )197 (B )198 (C )199 (D )2008.在261()x x +的展开式中,x 3的系数和常数项依次是 ( )(A )20,20 (B )15,20 (C )20,15 (D )15,159. 4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0,则这4位同学不同得分情况的种数是 ( )(A )48 (B )36 (C )24 (D )1810.同时掷两颗骰子,则下列命题中正确的是 ( )(A )“两颗点数都是5”的概率比“两颗点数都是6”的概率小(B )“两颗点数相同”的概率是16(C )“两颗点数之和为奇数”的概率小于“两颗点数之和为偶数”的概率(D )“两颗点数之和为6”的概率不大于“两颗点数之和为5”的概率 11.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )(A )0.6小时 (B )0.9小时(C )1.0小时 (D )1.5小时12.从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 ( )(A )8种 (B )12种 (C )16种 (D )20种13.某机械零件加工由2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品的工序彼此无关的,那么产品的合格率是( )(A )ab-a-b +1 (B )1-a-b (C )1-ab (D )1-2ab14.由等式43243212341234(1)(1)(1)(1),x a x a x a x a x b x b x b x b ++++=++++++++定义映射12341234:(,,,)(,,,),f a a a a b b b b →则f (4,3,2,1)等于 ( )(A )(1,2,3,4) (B )(0,3,4,0)(C )(-1,0,2,-2) (D )(0,-3,4,-1)15.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有 ( )(A )90种 (B )180种 (C )270种 (D )540种16.对于二项式(x1+x 3)n (n ∈N *),四位同学作出了四种判断: ①存在n ∈N *,展开式中有常数项;②对任意n ∈N *,展开式中没有常数项;③对任意n ∈N *,展开式中没有x 的一次项;④存在n ∈N *,展开式中有x 的一次项.上述判断中正确的是 ( )(A )①③ (B )②③ (C )②④ (D )①④二、填空题:本大题共7小题,每小题5分,共35分.把答案填在横线上.17.若41313--+=n n n C C C ,则n 的值为 _____ .18.一个公司有N 个员工,下设一些部门,现采用分层抽样方法从全体员工中抽取一个容量为n (N 是n 的倍数),已知某部门被抽取了m 个员工.那么这一部门的员工是 .19.将标号为1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内, 每个盒子内放一个球,则恰好有3个球的标号与其所在盒子的标号不.一致的放入方法共有 (以数字作答)20.若在二项式(x +1)10的展开式中任取一项,则该项的系数为奇数的概率是 .(结果用分数表示).21.设4821201212(1)(4)(3)(3)(3)x x a a x a x a x ++=+++++++ ,则2412a a a +++ =_______________.22.某中学的一个研究性学习小组共有10名同学,其中男生x 名(3≤x ≤9),现在从中选出3人参加一次调查活动,若至少有1名女生去参加的概率为p ,则p 的最大值为____________.23.甲、乙、丙三位学生展开学习竞赛,每天上课后独立完成6道自我检测题,如果甲及格的概率为45,乙及格的概率为35,丙及格的概率为710,则三人中有且只有一人及格的概率为.三、解答题:本大题共4小题,共35分.解答应写出文字说明,证明过程或演算步骤.24.(本小题满分7分)某医院门诊部关于病人等待挂号的时间记录如下:等待时间(min)[0,5) [5,10) [10,15) [15,20) [20,25) 频数 4 8 5 2 1试用上述分组资料求出病人平均等待时间的估计值-x及平均等待时间标准差的估计值s.25.(本题满分9分)在袋中装有15个小球,其中彩色球有:n个红色球,5个蓝色球,6个黄色球,其余为白色球.已知从袋中取出3个都是相同颜色彩球(无白色球)的概率为31455.求(Ⅰ)袋中有多少个红色球?(Ⅱ)从袋中随机取3个球,若取得蓝色球得1分,取得黄色球扣1分,取得红色球或白色球不得分也不扣分,求得正分的概率.26.(本小题满分9分)某士兵在射击100米远处的靶子时,命中的概率为0.6.(Ⅰ)该士兵射击3次,求至少命中一次的概率;(Ⅱ)已知该士兵命中靶子的概率与他与靶子的距离成反比,现在他向距离其100米、150米、200米远处的靶子各射击1次,求三次中恰有一次命中的概率.27.(本题满分10分)一个同心圆形花坛,分为两部分,中间小圆部分种植草坪和绿色灌木,周围的圆环分为n ( n≥3,n N ) 等份,种植红、黄、蓝三色不同的花,要求相邻两部分种植不同颜色的花.⑴如图1,圆环分成的3等份为321,,a a a ,有多少不同的种植方法?如图2,圆环分成的4等份为4321,,,a a a a ,有多少不同的种植方法?⑵如图3,圆环分成的n 等份为321,,a a a ,……,a n ,有多少不同的种植方法?训练与测试七 排列组合、二项式定理、概率与统计综合1.C 2.C 3.C 4.D 5.D 6.D 7.C 8.C 9.B 10.C 11.B12.B 13.A 14.D 15.D 16.D17.7 18.Nm n 19.240 20.411 21.112 22.119120 23.4725024.解:-x =120∑i =15x i P i ,s 2=120∑i =15(x i --x )2P i .其中x i 为组中值,P i 为相应频数. -x =120(2.5×4+7.5×8+12.5×5+17.5×2+22.5×1)=9.5(min) s 2=120[(2.5-9.5)2×4+(7.5-9.5)2×8+(12.5-9.5)2×5+(17.5-9.5)2×2+(22.5-9.5)2×1]=28.5 s =28.5≈5.34(min)25.解:(Ⅰ)取得3个都是蓝色球的概率为35315C C ,取得3个都是黄色球的概率为36315C C .∵35315C C +3531530455C C =,故331513455n C n C =⇒=.即袋中有3个红色球.(Ⅱ)若得分为3分,则取得的3个球全为蓝色球,其概率为35315C C ;若得分为2分,则取得2个蓝色球,1个红色球或白色球,概率为2154315C C C ;若得分为1分,则取得2个蓝色球,1个黄色球或1个蓝色球,其余2个为红色球或白色球,概率为21125654315C C C C C +.∴得正分的概率为p=32121125545654315140445513C C C C C C C C +++==. 26.解:(Ⅰ)射击3次均未命中的概率为:(1 - 0.6)3 = 0.064.∴至少有一次命中的概率为 1-(1 - 0.6)3 =0.936.(Ⅱ)由题意,设命中概率为k p s=,将s=100,p=0.6代入,得k=60.则当s=150时,p=0.4,当s=200时, p=0.3.士兵第一次命中而后两次未命中,概率为p 1=0.252;士兵第二次命中而其余两次未命中,概率为p 2=0.112;士兵第三次命中而前两次未命中,概率为p 3=0.072.则三次中恰有一次命中的概率为123p p p ++=0.436.27.解:(1)如图1,先对a 1部分种植,有3种不同的种法,再对a 2、a 3种植,因为a 2、a 3与a 1不同颜色,a 2、a 3也不同. 所以S (3)=3×2=6(种)如图2,S (4)=3×2×2×2-S (3)=18(种)⑵如图3,圆环分为n 等份,对a 1有3种不同的种法,对a 2、a 3、…、a n 都有两种不同的种法,但这样的种法只能保证a 1与a i (i =2、3、……、n -1)不同颜色,但不能保证a 1与a n 不同颜色.于是一类是a n 与a 1不同色的种法,这是符合要求的种法,记为)3)((≥n n S 种. 另一类是a n 与a 1同色的种法,这时可以把a n 与a 1看成一部分,这样的种法相当于对n -1部分符合要求的种法,记为)1(-n S .共有3×2n -1种种法.这样就有123)1()(-⨯=-+n n S n S .即]2)1([2)(1----=-n n n S n S ,则数列)3}(2)({≥-n n S n 是首项为32)3(-S 公比为-1的等比数列.则).3()1](2)3([2)(33≥--=--n S n S n n由(1)知:6)3(=S 3)1)(86(2)(---=-∴n n n S .3)1(22)(--⋅-=∴n n n S .答:符合要求的不同种法有).3()1(223≥-⋅--n n n 种。