电路理论第1章
《电路理论基础》学习指导(李晓滨) 第1章
电荷由a点移动到b点所发生的能量的变化称为两点间的电压。
电压的正极性:高电位指向低电位,即电位降落的方向。 电压的参考极性:人为假定的电压正极性。 功率:某二端电路的电功率(简称功率)是该二端电路吸 收或产生电能的速率。
第1章 电路模型和基尔霍夫定律 3. 基尔霍夫定律
第1章 电路模型和基尔霍夫定律
图 1-4
第1章 电路模型和基尔霍夫定律
1.2 重点、难点
1. 吸收功率、产生功率
根据关联参考方向计算功率的公式为
P(t)=u(t)i(t) 若P(t)>0 则真正吸收功率; 若 P(t)<0 则实际放出(产生)功率。 根据非关联参考方向计算功率的公式为 P(t)=u(t)i(t)
可见,P发出=P吸收,满足功率平衡。
第1章 电路模型和基尔霍夫定律 (2) 在图1-7(b)中,设各支路电流分别为i1,i2,i3,其参
考方向如图1-8(b)所示。由元件约束关系有
2 1 1 i1 0.5A, i2 1A 2 1
节点A的KCL方程: i3=i2-i1=1-0.5=0.5 A
的元件。它是集总(集中)参数元件。
常用理想元件:电阻、电感、电容、电压源、电流源、 受控源等。
第1章 电路模型和基尔霍夫定律 2. 电路变量 电流:带电粒子的定向移动形成电流。电流的大小用电 流强度来衡量。 电流强度:单位时间内通过导体横截面的电荷量。 电流方向:正电荷移动的方向。
电流参考方向:人为假定的电流正方向。只有数值而无
图 1-10
第1章 电路模型和基尔霍夫定律 【解题指南与点评】 在图1-9(a)中,i1的值只与10 V电
大学电路理论第1章
电路的基本概念和基本定律
本章学习中的基本问题
什么叫电路、电路元件? 电路模型的意义? 本章涉及到的基本定律是什么? 其内涵? 本章涉及到的基本元件有哪些?其基本性质?
1.1 实际电路与电路模型 1.2 电路的基本物理量
1.3 基尔霍夫定律
1.4 电路的基本元件及方程 1.5 应用
思考
? a.
+ 3 _ 设各元件为 基本单位。
1 1 1 a
i=? b
1 + 1 1 2 _
i=0
b. + 3 _
1 1 1 d
i3 i = ? 1
e + 1 1 2 _ f i4
i=0
3、基尔霍夫电压定律 (KVL)
在任一时刻,沿任一闭合路径( 按固定绕向 ), 各支路 电压的代数和为零。 即 u(t ) 0
推论: 电路中任意两点间的电压等于两点间任一条路径
经过的各元件电压的代数和。 元件电压方向与路径绕行方向一致时取正号,相反取负号。 A
A + US1 _ l2 1
2 U2
I2
l1
U3 U1
3
I3
B
UAB (沿l1)=UAB (沿l2) 电位/电压单值性
I1
_
I4 U4
US4+
4 B
U AB U 2 U 3
1.4.1 电阻元件 ( Resistive Element )
线性电阻
1. 符号
R
2. 方程--欧姆定律 (Ohm’s Law)
电压与电流的参考方向一致时 i R
uRi
+
u (Ohm,欧姆)
R 称为电阻, 基本单位: (欧)
电路理论(第一章)16
I R 与 U R 的方向一致
b
a
R
UR
U R IR R
假设: I R 与 UR 的方向相反 b
+
U I
关联参考方向
+
U I
非关联参考方向
a
IR
R
UR
U R I R R
27
(4) 参考方向也称为假定正方向,以后讨论均在参考方向下进 行,不考虑实际方向。
28
四、电位 所谓电位是指电路中某一点相对于参考点而言的电压。
问题?
电流方向 A B? 电流方向 B A?
+ E _
I R
A
大小
IR R
B
电流(代数量) 方向
+ E1 _
+ E2 _
17
18
3
解决方法
(1) 在解题前先设定一个正方向,作为参考方向; (2) 根据电路的定律、定理,列出物理量间相互关 系的代数表达式; (3) 根据计算结果确定实际方向: 若计算结果为正,则实际方向与假设方向一致; 若计算结果为负,则实际方向与假设方向相反。
36
6
例:计算图示电路各元件吸收或产生的功率。
c.上述功率计算不仅适用于元件,也适用于任意二端 网络。 d.电阻元件在电路中总是消耗(吸收)功率,而电源在电 路中可能吸收,也可能发出功率。
结论
解:(a)、(b) 电路中U、I 为关联方向,则 (a) P = U I = 6×1 = 6 W (吸收功率) (产生功率) (b) P = U I = 6×(-1 ) =-6 W
41
1-4-1 基尔霍夫电流定律 (KCL): 在集中电路中,任何时刻,对任何节点,所有支 路电流的代数和恒等于零。或者说,在任何时刻流 入节点的电流等于由节点流出的电流。
电路理论第一章
电压的参考方向和电压值的正负共同决定电压的实际方向。
例1. 图中 u(t ) 220 2 sin(314t 30 )V,试说明 t 0
1 s 两个时刻电压的真实方向。 和t 60
+
解: u(0) 220 2 sin30 110 2V 0
t=0时真实方向与参考方向相同。
u
-
《电路理论》课程介绍
一、为什么学? 二、学什么? 三、怎样学?
一、课程性质和目的 —为什么要学这门课
电路理论:电子与电气信息类专业的 重要技术基础课 •基础性:理论严密、逻辑性强 •应用性:有广阔的工程背景
二、课程内容 (学什么?)
电路理论:电路基本概念、电路基本规律、 电路基本分析方法 教材:《电路基础理论》
电容元件:表示产生电场,储存电场能量的元件。 电压源和电流源:表示将其他形式的能量转变成电能的元件。
在电路图中,各电路元件都用规定的图形符号表示。
1.1.2 理想电路元件和电路模型
4、电路模型
开关 白炽灯
E Ro +
10BASE-T wall plate
I + U –
S
电 池 导线
–
RL
由理想电路元件互相联接组成的电路称为电路模型 电路模型是由理想电路元件构成。 电路理论研究的对象不是实际电路器件,而是电路模型
R1
U
a
R2 R4
b
R3 R5 U2
R1
R2
U1
参考方向——事先假定的正电荷定向移动的方向。 参考方向的表示方法:
i
i 0 ——实际方向与参考方向相同 i 0 ——实际方向与参考方向相反
1 1 180 u ( ) 220 2 sin(314 30 ) 60 60
电路理论基础(哈尔滨工业大学陈希有第3版) 第1章-第5章
a 电位: 任选一点p作为电位参考点,电路中某点与参考点之间的电压称为该点的电 位,用 表示。有了电位的概念,两点之间的电压便等于这两点的电位之差。
uab Ec dl
a A
(a)
a A
(b)
u ab
u ba
A
(c)
a uA
b
b
b
电压参考方向的表示法
一个元件上的电压和电流的参考方向取成相同的,并称为关联参考方向。
2 基尔霍夫电流定律
基尔霍夫电流定律(Kirchhoff's Current Law,简称KCL)表述为:在集中 参数电路中,任一时刻流出(或流入)任一节点的支路电流代数和等于零, 即
i
k
0
( ik 表示第 k 条支路电流)
规定: ik 参考方向为流出节点时, ik 前面 取“+”号; 流入节点时, ik 前面取“-”号。
i1
A
i2
1、在集中参数电路中,任一时刻流出(或流入) 任一闭合边界 S 的支路电流代数和等于零。
KCL的其它表述
2、任一时刻,流出任一节点(或闭合边界)电 流的代数和等于流入该节点电流的代数和。
根据右图,列写KCL方程 1)基本表述方 式——对节点
3 i3
④
S
4 i4 i6 7 i7 ③
节点① :
① u1 1
u
电压降
= u电压升
6 ③ u6 l1 5 u5 l2 7 u7 ⑤ 基尔霍夫电压定律示例
u2
l3 ②
2
说明:平面电路网孔上的KVL方程是一组独立方程。设电路有b个支路n个节 点,可以证明:平面电路的网孔数即独立KVL方程的个数等于b-(n-1)。当然 取网孔列方程只是获得独立KVL方程的充分条件,而不是必要条件。
现代电路理论第一章
Success
任课教师
夏银水,研究员, 信息楼206,电话: 692379(短号)
Email:
作业上缴:每周一上交,下周一前课代表 去办公室领回本子。
课代表:***,短号:
第1章 基本概念
本章内容
1.1 电阻元件 1.2 电容元件 1.3 电感元件 1.4 电路的线性和非线性
k
K’
第二节 电容元件
一、二端电容元件
f(q,v)0
1.二端压控电容
q f (v)
2.二端荷控电容
vg(q)
3.二端既压控也荷控 单调电容
二、多端电容元件
F(qv,)0
4.线性时变电容
qf(v)C (t)v
5.线性时不变电容
qf(v)Cv
MOS电容
第三节 电感元件
一、二端电感元件
数学描述:用微分方程描述。
二、离散时间系统 系统的输入输出都是离散时间信号。 例:数字计算机是一个离散时间系统。 数学描述:差分方程描述。
求解:知道输入信号和初始条件。
三、混合时间系统 输入时连续时间信号,输出是离散时间信号。 例:电视机是混合时间系统。
作业: 1.阅读文章。 2. 1-2,1-3
由U与Y间的可加性:
N(1,U Y1)0 N(2,U Y2)0 时必有 N1 (U U 1 ,Y 1 Y 2) 0
网络N线性(叠加原理)
N(1,U Y1)0 N(2,U Y2)0 时必有
N U 1 (U 1 ,Y 1 Y 2 ) 0
回转三器、(回G转yra器tor)的是现代网络理论中损性定义
W ( ) W () v T ()i()d 0
v() 0 ,i() 0
电路理论
由电磁感应律:u d L
dt
线性电感电压: u L di dt
线性电感电流: i
1 L
udt
或定积分形式:
i 1
tud 1
t0 ud 1
t
ud
L
L
L t0
i(t0)
1 L
t
ud
t0
17
线性电感电压: u L di dt
电感功率: p ui Lidi dt
受控电源反映电路中某处电压(或电流)控制另一处电压(或 电流)的现象。也是表示一处电路变量与另一处电路变量之间 的耦合关系。
22
例:1-3
求图示电路中的电流 i,已知u2=0.5u1, iS=2A,
i
iS
+
5 u1
-
+ u2 2 -
解 i : u 20 .5 u 10 .5 1 02 .5A 22 2
u(t)
C
u()d(u)1C2u(t)1C2u( )
u( )
2
2
若在 t = -时电容未储能,则:
WC
1Cu2(t) 2
从 t1 到 t2 ,电容元件的电场能:
W C C u u ( ( t 1 t2 ) )u d 1 2 C 2 u ( t2 ) u 1 2 C 2 ( t 1 ) u W C ( t2 ) W C ( t 1 )
10
1-4 电路元件
电路元件是电路中的最基本的组成单元 分为:二端、三端、四端、多端元件;有源元件、无源元件
线性元件、非线性元件; 时不变元件、时变元件等
常用的理想元件符号
理想电压源 理想电流源 电阻
电工电子技术基础第1章 电路的基本理论及基本分析方法
-
电流源模型
实际电源可用一个电流为IS的理想电流源与电阻并 联的电路作为实际电源的电路模型,称为电流源模型。
其中
IS
U0 R0
称为短路电流
实际电源内阻R0越大,越接近于理想电流源。
第1章 电路的基本理论及基本分析方法
3.实际电源模型的等效变换
R0 + US -
等效电压源模型
IS
US R0
US R0IS
2.理想电流源:理想电流源是从实际电流源抽象出来的 理想二端元件,流过它的电流总保持恒定,与其端电压 无关。理想电流源简称电流源。 电流源的两个基本性质
①电流是给定值或给定的时间函数,与电压无关;
②电压是与相连的外电路共同决定的。
IS或iS
+ U或i
-
电流源的图形符号
电流源的伏安关系
i IS
o
u
直流电流源伏安特性
uR( i 关联u ) R( 或 i 非关联)
电阻参数R:表示电阻元件特性的参数。 线性非时变电阻:R为常数;简称为线性电阻。
第1章 电路的基本理论及基本分析方法
应当注意,非线性电阻不满足欧姆定律。
单位:SI单位是欧[姆](Ω)。计量大电阻时,以千欧 (KΩ)、兆欧(MΩ)为单位。
电阻的参数也可以用电导表示,其SI单位是西[门 子](S)。线性电阻用电导表示时,伏安关系为
②箭头,如图(a) i。
参考方向的意义:若电流的参考方向和实际方向一致, 则电流取正值,反之则取负值。如图(a)、(b)所示。
第1章 电路的基本理论及基本分析方法
二、电压、电位、电动势及其参考方向
1. 电压、电位、电动势
⑴电压
1.电路基本概念
+
或
i Gu
2. 电压与电流取非关联参考方向
i
R
u
电导 (S) 或 i – Gu
+
u – Ri
★ 公式必须和参考方向配套使用!
电阻元件(3)
不管电压、电流是否为关联参考方向,都有 功率: p=i2R=u2/R i (p始终为正)
R
u
p –ui –(–R i ) i i 2 R
结论:电感为储能元件,具有存储磁场能量的作用
常用元件---电容、电感的串、并联
电容串联
C1 Ck Cn
Ceq
等效
电容并联
C1 Ck
1/Ceq= 1/C1+1/C2+…+1/Cn
Ceq
Cn 等效
Ceq=C1+C2+…+Ck+…+Cn
电感串、并联 电感串并联时等效电感的求解方法与电容相反
{end}
电容 C 的SI单位:F (法) (Farad,法拉)
常用单位:F(10-6F),nF(10-9F),pF(10-12F)
常用元件---电容元件(2)
符号: 伏安关系
C
i C + u –
电容对直流 相当于开路
设为关联参考方向
则
dq du C 微分关系: i dt dt t 1 u(t) idt 积分关系: C
P W 0 U1 U1I 10
P W 0 U2 U2 I 5
P 0
-----功率平衡
电路的基本物理量—电功率(4)
在右图2个电路中,若IAB均为1A,则有关功率描述正确的 是 ( )。
A.两元件发出的功率都为2W B.两元件吸收的功率相等 C.两元件的功率不等 D.无法比较两元件的功率
第1章电路模型和电路理论
1.4电路元件 电路元件
1.4.1电阻元件 电阻元件 1) 金属导体的电阻 导体对电流呈现一定的阻碍作用。这种阻碍作用被称为 电阻,用字母R来表示。 导体的电阻值R与导体的长度l成正比,与导体的横截面 积s成反比,并与导体材料的性质有关,用公式表示为
l R=ρ s
1
电路理论-太湖学院机电系电路理论-太湖学院机电系-S.L
对于线性定常电感器,其特性方程为ϕ=Li,则从 时间t0到t电感器所储存的能量
WM (t0 , t ) = ∫
φ (t )
0
i dφ (t ) = ∫
φ
φ
0
1 φ2 1 2 dφ = = Li L 2 L 2
1
电路理论-太湖学院机电系电路理论-太湖学院机电系-S.L
贴片型功率电感
贴片电感
1
电路理论-太湖学院机电系电路理论-太湖学院机电系-S.L
P =U4I2 = (−4) ×1 = −4W(发出) 4
P = U5I3 = 7×(−1) = −7W(发出) 5
P =U6I3 = (−3) × (−1) = 3W( 收 吸 ) 6
注意
对一完整的电路,满足:发出的功率= 对一完整的电路,满足:发出的功率=吸收的功率
1
电路理论-太湖学院机电系电路理论-太湖学院机电系-S.L
NEXT
1
电路理论-太湖学院机电系电路理论-太湖学院机电系-S.L
重点: 重点: 电压、 1. 电压、电流的参考方向 2. 电阻、电容、电感和电源元件的特性 电阻、电容、 3. 基尔霍夫定律
1
电路理论-太湖学院机电系电路理论-太湖学院机电系-S.L
1.1 电路和电 路 模 型
1.1.1 实际电路组成
电路分析第1章 电路的基本概念与理论 89页PPT文档
a 水流
b
水塔
重力场
图1-6 水流与电流的类比
a
电场 电 流
b
1.2 电流、电位和电压
1.2.2 电位与电压
电压,也称为电势差或电位差,是衡量单位电荷在静电场中由于电势 不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作 用从a点移动到b点所做的功,或者是a点与b点的电位差。
电压的方向规定为从高电位指向低电位的方向(电压降),即有
负载/元器件
a I /i
b
(b) 非关联方向
图1-7 电压与电流的关联方向
1.3 直流电和交流电
1.3.1 直流电
把方向和大小都不随时间变化的电流或电压称为“直流电”,用字符 “DC-Direct Current”表示。
I /U 10
I /U 10
0
t
(a)直流电流/电压
0
t
(b)脉动电流/电压
图1-8 直流电与脉动电示意图
6.根据元件特性的不同,分为线性电路与非线性电路。
1.1电路
1.1.2 电路的分类
综上所述,尽管各种电路的构成不尽相同,功能千差万别,但有三个主 要角色——电阻、电感和电容却是每个电路不可或缺的组成部件。对由 它们构成的电路的研究,是分析其它电路的前提和基础,因此,“电路 分析”课程的主要内容就是介绍由基本电路元件电阻、电感和电容构成 的线性电路的分析方法。
1.4 电阻、电感、电容及其模型
1.4.1 电阻器及其模型
电阻在电路中主要用于: 限流、分压、分流、阻抗变换、电流信号和电压信号的相互转换等。
无论是在直流电路还是交流电路中,当电流流过电阻时,电阻都会通 过发热的形式消耗电能,因此,它也是一个耗能元件,
电路理论课后答案,带步骤
,
原电路可变换成图(a)
2-6题图2-6所示电路,试证明当 时, ,并求此时的电压比 。
题图2-6题图2-6(b)
(1)证明:将 型电路变换为Y型网络,其等效电路如图b所示。
则: , ----------------------------(1)
------------------------------(2)
解:由题图知,
开关S接1时,能测量1mA电流,故:
mA,
开关S接2时,能测量10 mA电流,故:
mA,
开关S接3时,能测量100 mA电流,故:题图2-4
mA,
解得: , ,
2-5对题图2-5所示电桥电路,应用Y- 等效变换求Uab。
题图2-5题图2-5(a)
解:对由1,2,3构成的T型网络进行 型变换有:
对左边网孔由KVL, ,
联立解得: V, A,
W。
受控源上的电压、电流为关联参考方向,
所以发出的功率为 W。题图1-7
1-8题图1-8所示电路,若要使Uab=0,求电源电压Us。
题图1-8
解:设电路中各支路电流如图所示,
对节点A、B由KCL:
, 。
对网孔 、 、 由KVL:
,
,
,
联立解得: A, A, A, A, V。
2-1求题图2-1所示电路各端口的伏安关系。
(a)(b)
题图2-1
(a)解:设电路中电流如图所示,对节点A、B,由KCL:
,
解得:
对回路由KVL:
(b)解:对回路由KVL: ,
整理得:
2-2求题图2-2所示电路的输入电阻Ri。
(a)(b)
题图2-2
第一章电路模型和电路理论
在实际应用中感到这些 SI 单位太大或太小时,可以加上 表1-4中的国际单位制的词头,构成SI的十进倍数或分数单位。
例如
2mA 2103 A
2μ s 2106s
8kW 8103 W
Electrical Analogies (Physical)
Electrical
Hydraulic
Base
Charge (q)
当u、i参考方向不一致时,表示发出功率。
0 p(t) u(t)i(t)
0
实际发出功率 实际吸收功率
例. 已知元件的电流、电压,试确定元件吸 收或释放功率
1.
2.
解: 1. p ui (1) 2 2W 0
2. p ui 1 2 2W 0
表1-3 列出部分国际单位制的单位,称为SI单位。
注意:一个实际电路的电路模型并不唯一,在不同条件 下,不同应用情况,模型不一样。
例:晶体管低频用H参数模型,高 电流与电压的参考方向
一. 电流的定义及其参考方向
大小:单位时间通过导体截面的电荷数。
电荷:带电粒子所带的电荷数。Q(恒定)、q(t)(时变)单位:库仑(c)。
例. 正弦交流电流i(t)=Asinwt
二. 电压的定义及其参考方向
大小:单位正电荷作功的能力
u dw dq
单位:V、mV、μV。
实际方向:电位降低的方向
电压:是电场力对单位正电荷作功的表征量,其数值为电场力把单位正 电荷从a点移到b点所作的功。Uab=Ua-Ub U(直流)、u(t)_交流)单 位:伏特(V)
p(t) Ri 2 (t) 0
W[t0 ,t]
t p(t)dt R t i 2 (t)dt 0
t0
第1章 电路的基本概念与基本定理
第1章电路的基本概念与基本定理电路理论是电工与电子技术的基本理论。
本章着重介绍电流和电压的参考方向、基尔霍夫定律及电路等效原理等。
通过本章内容的学习可了解和掌握电路中的基本概念和定律,为后续分析复杂电路打下一个基础。
1.1电路的基本概念在高中,我们学过电压、电流、电动势、功率以及欧姆定律等电路的基本概念。
但高中所学的这些电路理论往往解决不了一些复杂电路。
本节将进一步讲解其有关知识。
1.1.1电路的组成人们在日常生活中广泛地使用着各种电器,如热水器、电扇等。
要用电首先要有电源,然后用导线、开关和用电设备或用电器连接起来,构成一个电流流通的闭合路径。
这个电流通过的路径就叫电路。
电路的形式是多种多样的,但从电路的本质来说,其组成都有电源、负载、中间环节三个最基本的部分。
其中电源的作用是为电路提供能量,如发电机利用机械能或核能转化为电能,蓄电池利用化学能转化为电能,光电池利用光能转化为电能等;负载则将电能转化为其他形式的能量加以利用,如电动机将电能转化为机械能,电炉将电能转化为热能等;中间环节用作电源和负载的联接体,包括导线、开关、控制线路中的保护设备等。
图1-1所示的手电筒电路中,电池作电源,灯作负载,导线和开关作为中间环节将灯和电池连接起来。
1.1.2 电路模型实际电路由各种作用不同的电路元件或器件所组成。
实际电路元件尽管外形和作用千差万别,种类繁多,但在电磁性质方面却可以归为几大类。
有的元件主要是提供电能的,如发电机、电池等;有的元件主要是消耗电能的,如各种电阻器、电灯、电炉等;有的元件主要是储存电场能量,如各种电容器;有的元件主要是储存磁场能量,如各种电感线圈。
为了便于对电路进行分析的计算,我们常把实际元件加以理想化,忽略其次要的因素用以反映它们主要物理性质的理想元件来代替。
这样由理想元件组成的电路就是实际电路的电路模型,简称电路。
手电筒电路的电路模型如图1-2所示。
用来表征上述物理性质的理想电路元件(今后理想两字常略去)分别称为恒压源U S 、恒流源I S 、电阻元件R 、电容元件C 、电感元件L 。
电路理论基础课后习题解析 第一章
电路理论基础
ux
ix uo 20KW 60KW i3
io
50KW 10KW
30KW uo
解 由题可知
u1=4mV
u1= u2=4mV
i1= i2=0,电压ux为 u2 4 10 3 3 3 ux (10 50) 60 10 24 10 3 10 10 10
a 6A I0 2W 1/4I0 I1 8W U 0
电路理论基础
解 对图中节点a利用 KCL可得 1 6 I 0 I 0 I1 0 4
对8W 、2W电阻由欧姆定律可得, I1 U 0 / 8 CCCS I0 U0 / 2 将I1、I2代入上述方程中解得: U0 8 V I0 4 A
电路理论基础
第一章 习 题 课
1、参考方向和实际方向
电路理论基础
例1-1 某二端元件两端电压的数值为10V,若 已知电流由元件的 b 端指向 a 端,元件获得能量。 试标出电压的实际方向,写出电压表达式。
a
i U=10V
b
思考
a i i
U=-10V
b U= ? b
若电压电流都取相反 擦靠方向,则 ?
例1-11 图示含有理想运算放大器电路,试求输出电 压U0。 I 5W 2 解 U A 1V
5W A I 5W 3
I1 B 5W I4 5W C I5 ∞
电路理论基础
Hale Waihona Puke U C 3VUA I1 0.2A Uo 5 1V 3V UC U A I2 0.4A 5 I 3 I 2 I1 0.4 0.2 0.2A U AB I 3 5 1V U BC 3 I4 0.6A U BC U AB U AC 3V 5 5
现代电路理论 第1章和第2章
何松柏 sbhe@ 028-61830238
第1章 绪论 章 4 课程教学要求 结合其它课程,成体系思考, 结合其它课程,成体系思考,阅读文献 5 教材及参考书目 非线性电路理论 刘小河 机械工业出版社 现代电路理论与设计 杨志民 清华大学出版社
何松柏 sbhe@ 028-61830238
何松柏 sbhe@ 028-61830238
二端集中参数电路元件的分类
何松柏 sbhe@ 028-61830238
多端电路元件
许多实用电路器件的引出端多于两个。 例如晶体管和场效应管是三端器件, 变压器、耦合电感、运算放大器等都是四端器件。 多于两个引出端子的器件称为多端器件。 多端器件的一个重要特征是各端钮之间的物理量常存 在一种耦合关系。一般地说,多端器件不能仅用二端 元件来造型。
何松柏 sbhe@ 028-61830238
(n+1)端元件和n端口元件
a) (n+1) 端元件
何松柏 sbhe@ 028-61830238
b) n 端口元件
(n+1)端元件转换为n端口
何松柏 sbhe@ 028-61830238
代数n端口
4种基本n端口元件的定义
何松柏 sbhe@ 028-61830238
理想变压器
u1 = nu2 1 i1 = − i2 n
何松柏 sbhe@ 028-61830238
线性而端口---回转器
a) 电路符号
b)回转特性
c)阻抗回转特性
i1 = Gu2 i2 = −Gu1
动态元件
dx = f ( x,η )内部状态方程 dt ξ = g ( x,η )外部端口方程
◆电阻型动态二端元件 ◆电感型动态二端元件 ◆ 电容型动态二端元件 ◆忆阻型动态二端元件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
元件(导线 中电流流动的实际方向有两种可能 元件 导线)中电流流动的实际方向有两种可能 导线 中电流流动的实际方向有两种可能: 实际方向
⊕
⊕
实际方向
参考方向:任意选定一个方向即为电流的参考方向。 参考方向:任意选定一个方向即为电流的参考方向。 i A 参考方向
电流(代数量 电流 代数量) 代数量
1-3
电路理论的体系 电路分析(analysis): 在给定的激励(excitation)下 电路分析 : 在给定的激励 下 ,求结构已知的电路的响应 (response)。 。 激励给定 电 路 响应待求 e 已知 r 电路综合(synthesis):在特定的激励下,为了得到 :在特定的激励下, 电路综合 预期的响应而研究如何构成所 需的电路。 需的电路。 激励已知 电 路 目标给定 e 未知 r
1-9
2. 电路模型:由理想元件及其组合代表实际电路元件,与 电路模型:由理想元件及其组合代表实际电路元件, 实际电路具有基本相同的电磁性质,称其为电路模型。 实际电路具有基本相同的电磁性质,称其为电路模型。 * 电路模型是由理想电路元件构成的。 电路模型是由理想电路元件构成的。 例. 开关
10BASE-T wall plate
1-5
…
主 要 内 容
基本概念与基本定律 电阻电路的分析方法与电路定理 动态电路 一阶电路和二阶电路 正弦稳态电路分析及其推广 正弦稳态三相电路 二端口网络
1-6
第1章 电路的基本概念和基本定律 章
1.1 电路与电路模型 1.2 电流与电压的参考方向 1.3 电功率 1.4 电阻元件 1.5 独立电源 1.6 受控电源 1.7 基尔霍夫定律
d
a=Uac, b=Ubc, d=Udc
c
1-16
两点间电压与电位的关系: 两点间电压与电位的关系: 前例 a b 仍设c点为电位参考点, 仍设 点为电位参考点, c=0 点为电位参考点 Uac = a , Udc = d d c Uad= Uac –Udc= a–d
结论:电路中任意两点间的电压等于该两点间的 结论: 电位之差。 电位之差。
1-7
1.1
1.1.1电路 电路
电路与电路模型(model) )
电路:电工设备构成的整体,它为电流的流通提供路径。 电工设备构成的整体,它为电流的流通提供路径。
电路主要由电源、负载、连接导线及开关等构成。 电路主要由电源、负载、连接导线及开关等构成。 电源(source):提供能量或信号. :提供能量或信号 电源 负载(load):将电能转化为其它形式的能量,或对 :将电能转化为其它形式的能量, 负载 信号进行处理. 信号进行处理 导线(line)、开关(switch)等:将电源与负载接成通路 导线 、开关( 等 将电源与负载接成通路.
+
A
U
(3) 用双下标表示:如 UAB , 由A指向 的方向为电压 用双下标表示: 指向B的方向为电压 指向 (降)的参考方向 降 的参考方向
UAB
B
1-23
小结: 小结: (1) 电压和电流的参考方向是任意假定的。分析电路前 电压和电流的参考方向是任意假定的。 必须标明。 (2) 参考方向一经假定,必须在图中相应位置标注 (包 参考方向一经假定, 包 括方向和符号),在计算过程中不得任意改变 符号),在计算过程中不得任意改变。 括方向和符号),在计算过程中不得任意改变。参 考方向不同时,其表达式符号也不同, 考方向不同时,其表达式符号也不同,但实际方向 不变。 不变。 i i R R + u u = Ri – + u u = –Ri
1-8
1.1.2理想电路元件和电路模型 (circuit model) 理想电路元件和电路模型
理想电路元件: 1. 理想电路元件:根据实际电路元件所具备的电磁性 质所设想的具有某种单一电磁性质的元件, 质所设想的具有某种单一电磁性质的元件,其u,i , 关系可用简单的数学式子严格表示。 关系可用简单的数学式子严格表示。 几种基本的电路元件: 几种基本的电路元件: 电阻元件: 电阻元件:表示消耗电能的元件 电感元件:表示各种电感线圈产生磁场, 电感元件:表示各种电感线圈产生磁场,储存电能的作用 电容元件:表示各种电容器产生电场, 电容元件:表示各种电容器产生电场,储存电能的作用 电源元件: 电源元件:表示各种将其它形式的能量转变成电能的元件
U
BA
W AB = = U q
AB
1-15
电位:电路中为分析的方便, 电位:电路中为分析的方便,常在电路中选某一点为参考 点,把任一点到参考点的电压称为该点的电位。 把任一点到参考点的电压称为该点的电位。 参考点的电位一般选为零 所以, 参考点的电位一般选为零,所以,参考点也称为零电位 点。 表示,单位与电压相同,也是V(伏 。 电位用表示,单位与电压相同,也是 伏)。 a b 点为电位参考点, 设c点为电位参考点,则 c=0 点为电位参考点
1-12
1.2 电流与电压的参考方向 (reference direction)
电路中的主要物理量有电压、电流、电荷、磁链等。 电路中的主要物理量有电压、电流、电荷、磁链等。在线 性电路分析中常用电流、电压、电位等。 性电路分析中常用电流、电压、电位等。
1. 2.1电流 电流
电流 (current):带电质点的运动形成电流。 :带电质点的运动形成电流。 电流的大小用电流强度表示: 单位时间内通过导体截 电流的大小用电流强度表示 电流强度表示: 面的电荷量。 面的电荷量。
吉 兆 千 厘
毫 微
数量 1012 109 106 103 10–2 10–3 10–6 10–9 10–12
1-14
1. 2.2电压 电压
间的电压(降 电压 (voltage):电场中某两点 、B间的电压 降)UAB :电场中某两点A、 间的电压 电荷q的比值, 电荷 的比值,即 的比值
def
等
电 池 导线
1-10
3. 集中参数元件与集中参数电路 集中参数元件: 集中参数元件:每一个具有两个端钮的元件中有确 定的电流,端钮间有确定的电压。 定的电流,端钮间有确定的电压。 集中参数电路:由集中参数元件构成的电路。 集中参数电路:由集中参数元件构成的电路。 U、I是时间 的函数 描述电路的一般方程是常微分方程。 、 是时间 的函数,描述电路的一般方程是常微分方程 是时间t的函数 描述电路的一般方程是常微分方程。 一个实际电路要能用集中参数电路近似, 一个实际电路要能用集中参数电路近似,要满足如 下条件: 下条件 : 即 实际电路的尺寸必须远小于电路工作频率下 的电磁波的波长。 的电磁波的波长。d<0.01λ λ 分布参数电路:电路中的电磁量是时间和空间坐标。 分布参数电路:电路中的电磁量是时间和空间坐标。 的函数,描述电路的一般方程是偏微分方程。 ≥ 的函数 描述电路的一般方程是偏微分方程。d≥0.01λ 描述电路的一般方程是偏微分方程 λ
1-4
电路分析的过程: 电路分析的过程:
实际电路 电路模型 电路分析 分析结果
电路的分类: 电路的分类: (1) 线性 线性(linear)电路与非线性 电路与非线性(nonlinear)电路 电路与非线性 电路 (2) 时变(time-varying)与时不变(定常)(time-invariance)电路 时变(time-varying)与时不变 定常)(time-invariance)电路 与时不变(定常 (3) 稳态 稳态(steady state)和暂态 和暂态(transient state)电路 和暂态 电路 (4) 集 中 参 数 (lumped parameter) 和 分 布 参 数 (distributed parameter)电路 电路 本课程研究的主要对象:线性、时不变、集中参数电路。 本课程研究的主要对象:线性、时不变、集中参数电路。
1-21
2. 电压 降)的参考方向 电压(降 的参考方向
+
实际方向
实际方向
+
+
参考方向 U 实际方向 U> 0
–
+
参考方向 U 实际方向 U<0
–
+
+
1-22
电压参考方向的三种表示方式: (1) 用箭头表示:箭头指向为电压(降)的参考方向 用箭头表示:箭头指向为电压(
U
(2) 用正负极性表示:由正极指向负极的方向为电压 用正负极性表示: (降低 的参考方向 降低)的参考方向 降低
电路理论
主讲 陈明辉
1-1
引言
Introduction
1-2
电路理论概貌 经典电路理论: 经典电路理论:1930’s 近代电路理论: 近代电路理论:1960’s 电路的功能
近代电路理论 电路与系统理论
(1) 进行能量的传送和转换。 进行能量的传送和转换。 (2) 进行信号的传递和处理。 进行信号的传递和处理。
大小 方向
B
1-19
电流的参考方向与实际方向的关系: 电流的参考方向与实际方向的关系:
i
参考方向 实际方向
i
参考方向 实际方向
i>0
电流参考方向的两种表示:
i<0
用箭头表示:箭头的指向为电流的参考方向 电流的参考方向。 用箭头表示:箭头的指向为电流的参考方向。 用双下标表示:如 iAB , 电流的参考方向由A指向 。 用双下标表示: 电流的参考方向由 指向B。 指向
于将点电荷q从 点移至 点电场力所做的功W 点移至B点电场力所做的功 于将点电荷 从 A点移至 点电场力所做的功 AB 与该点
U AB
W AB = q
dw u= dq
def
单位: 伏 (Volt,伏特 单位:V (伏) ,伏特) 当把点电荷q由 移至 移至A时 当把点电荷 由B移至 时,需外力克服电场力做同样的功 WAB=WBA , 此时可等效视为电场力做了负功 AB , 则 B 此时可等效视为电场力做了负功–W 到A的电压为 的电压为