21五年级奥数题:变换和操作(B)
(完整版)五年级奥数.图形变换求面积问题
图形变换求面积问题一、平移:将图形沿着一个方向移动一段距离。
平移变换 把图形中的某一个线段或者一个角移动到一个新的位置,使图形中分散的条件紧密地结合到一起。
一般有2种方法:1.平移已知条件2.平移所求问题,把所求问题转化,其实就是逆向证明。
几何题多数都是逆向思考的。
二、旋转:将某图形绕着一个固定点转动到另一个位置,以此重新组合图形。
旋转变换把平面图形绕旋转中心,旋转一个定角,使分散的条件集中在一起。
在遇到关于等腰三角形、正三角形、正方形等问题时,是经常用到的思维途径三、对称(也可理解为翻折):某图形对于某条线对称的图形通过作关于某一直线或一点的对称图,把图形中的图形对称到另一个位置上,使分散的条件集中在一起。
当出现以下两种情况时,经常考虑用此变换:1.出现了明显的轴对称、中心对称条件时。
2.出现了明显的垂线条件时。
【例 1】右图是一块长方形草地,长方形的长是16,宽是10.中间有两条道路,一条是长方形,一条是平行四边形,它们的宽都是2,求草地部分的面积(阴影部分)有多大?【巩固】如图所示,一个正十二边形的边长是1厘米,空白部分是等边三角形,一共有12个.请算出阴影部分的面积.【例 2】如图所示,梯形中,平行于,又,,.试求梯形ABCD AB CD 4BD =3AC =5AB CD +=D CBA【巩固】如下图,六边形中,,,,且有平行于,平行ABCDEF AB ED =AF CD =BC EF =AB ED AF 于,平行于,对角线垂直于,已知厘米,厘米,请问六边形CD BC EF FD BD 24FD =18BD =的面积是多少平方厘米?ABCDEF【例 3】如图2,六边形为正六边形,为对角线上一点,若、的面积为与,ABCDEF P CF PBC PEF 34则正六边形的面积是_____________。
ABCDEF Eeo df o【巩固】正六边形的面积是2009平方厘米,分别是正六边形各边的123456A A A A A A 123456B B B B B B 、、、、、中点;那么图中阴影六边形的面积是____________平方厘米。
五年级奥数—操作与策略(含解析)
1. 通过实际操作寻找题目中蕴含的数学规律2. 在操作和体会数学规律的过程中,设计最优的策略和方案实际操作与策略问题这类题目能够很好的提高学生思考问题的能力,激发学生探索数学规律的兴趣,并通过寻找最佳策略过程,培养学生的创造性思维能力,这也是各类考试命题者青睐的这类题目的原因,因此在历届的杯赛中时常出现,尤其是在华杯、迎春杯中,常考查学生的动手能力【例 1】 (全国华罗庚杯少年数学邀请赛)如图,将正方形纸片由下往上对折,再由左向右对折,称为完成一次操作.按上述规则完成五次操作以后,剪去所得小正方形的左下角.问:当展开这张正方形纸片后,一共有多少个小洞孔?【分析】 一次操作后,层数由1变为4,若剪去所得小正方形左下角,展开后只有1个小洞孔,恰是大正方形的中心.连续两次操作后,折纸层数为24,剪去所得小正方形左下角,展开后在大正方形上留有211444-==(个)小洞孔.连续三次操作后,折纸层数为34,剪去所得小正方形左下角,展开后大正方形留有3124416-==(个)小洞孔.按上述规律不难断定:连续五次操作后,折纸层数为54,剪去所得小正方形左下角,展开后大正方形纸片上共留有51444256-==(个)小洞孔.[巩固] 向电脑输入汉字,每个页面最多可输入1677个五号字.现在页面中有1个五号字,将它复制后操作与优化设计探索与操作粘贴到该面上,就得到2个字;再将这2个字复制后粘贴到该页面,就得到4个字.每次复制和粘贴为1次操作,要使整个页面都排满五号字,至少需要操作次.[分析]每次操作页面上的字数就增加一倍,第一次操作后页面上有2个字,第2次操作后页面上有2=(个)字,…,则第10次操作后页面上有102个字,=(个)字,第3次操作后页面上有32824由于1011=<<=,因此使整个页面排满,至少需要操作11次.21024167722048【例 2】(第二届两岸四地“华罗庚金杯”少年数学精英邀请赛)有足够多的盒子依次编号0,1,2,…,只有0号是黑盒,其余的都是白盒.开始时把10个球放入白盒中,允许进行这样的操作:如果k号白盒中恰有k个球,可将这k个球取出,并给0号、1号、…,(1)k-号盒中各放1个.如果经过有限次这样的操作后,最终把10个球全放入黑盒中,那么4号盒中原有个球.【分析】使用倒推法.最终各盒中依次有球(10,0,0,0,…),前一次必然分的是1号盒中的球,否则1号盒中最终至少有1个球.所以,倒数第一次分前盒中依次有球(9,1,0,0,…).依次倒推,为:(10,0,0,0,…)←(9,1,0,0,…)←(8,0,2,0,0,…)←(7,1,2,0,0,…)←(6,0,1,3,0,…)←(5,1,1,3,0,…)←(4,0,0,2,4,…)←(3,1,0,2,4,…)←(2,0,2,2,4,…)←(1,1,2,2,4,…)←(0,0,1,1,3,5…),0号盒中此时为0个球,不能再倒推.所以,4号盒中原有3个球.[巩固](圣彼得堡数学奥林匹克)尤拉想出一个数,将它乘以13,删去乘积的末位数,将所得的数再乘以7,再删去乘积的末位数,最终得到的数为21.问:尤拉最初所想的是哪一个数?[分析]解法1(从分析结果入手)在第二次删去末位数之前,尤拉面临的是一个三位数,其值在210至219之间.在这些数中,只有两个数是7的倍数:210730=⨯.这就意味着在乘=⨯和217731以7之前,尤拉的数是30或31.因而在第一次删去末位数之前,尤拉所面临的数为300到319之间的一个三位数.在这些数中只有一个数是13的倍数:3122413=⨯,所以尤拉最初所想出的数是24.解法2(利用单调性)容易看出,如果增大一开始的数,发现最终所得的数不会减小,这是因为无论是乘法运算,还是删去末位数的操作,都具有“非降性”.如果开始所想的数是25,那么运算过程如下:25→325→32→224→22.综合上述两方面,即知尤拉最初所想的数是24.【例 3】(北大附中“资优博雅杯”数学竞赛)一个盒子里有400枚棋子,其中黑色和白色的棋子各200枚,我们对这些棋子做如下操作:每次拿出2枚棋子,如果颜色相同,就补1枚黑色棋子回去;如果颜色不同,就补1枚白色的棋子回去.这样的操作,实际上就是每次都少了1枚棋子,那么,经过399次操作后,最后剩下的棋子是颜色(填黑或者白)【分析】由于起初白子200枚是偶数,若同色,补黑子1枚,白子仍为偶数;若异色,补白子1枚,白子仍为偶数.因此最后1枚不可能是白子,故应是黑子.【例 4】(北大附中“资优博雅杯”数学竞赛)有一只小猴子在深山中发现了一片野香蕉园,它一共摘了300根香蕉,然后要走1000米才能到家,如果它每次最多只能背100根香蕉,并且它每走10米就要吃掉一根香蕉,那么,它最多可以把根香蕉带回家?【分析】首先,猴子背着100根香蕉直接回家,会怎样?在到家的时候,猴子刚好吃完最后一根香蕉,其他200根香蕉白白浪费了!折返,求最值问题,我们需要设计出一个最优方案.3001003÷=.猴子必然要折返3次来拿香蕉.我们为猴子想到一个绝妙的主意:在半路上储存一部分香蕉.猴子的路线:家y储存点B 储存点A野香蕉园x这两个储存点A 与B 就是猴子放置香蕉的地方,怎么选呢?最好的情况是:(一)当猴子第①③④次回去时,都能在这里拿到足够到野香蕉园的香蕉.(二)当猴子第②④次到达储存点时,都能将之前路上消耗的香蕉补充好(即身上还有100个)(三)B 点同上.XA 的距离为10x ,路上消耗x 个香蕉.AB 的距离为10y ,路上消耗y 个香蕉.猴子第一次到达A 点,还有(100)x -个香蕉,回去又要消耗x 个,只能留下1002x -个香蕉.这(1002)x -个香蕉将为猴子补充②③④次路过时的消耗和需求,每次都是x 个,则1002320x x x -=⇒=.200XA ⇒=米,猴子将在A 留下60个香蕉.那么当猴子②次到达A 时,身上又有了100个香蕉,到⑤时还有100y -个,从⑤回③需要y 个,可在B 留下(1002)y -个,用于⑥时补充从④到⑥的消耗y 个.则:10010023y y y -=⇒=. 至此,猴子到家时所剩的香蕉为:100013004253103x y ---=. 因为猴子每走10米才吃一个香蕉,走到家时最后一个10米才走了23,所以还没有吃香蕉,应该还剩下54个香蕉.【例 5】 (武汉“明星奥数挑战赛”)设有25个标号筹码,其中每个筹码都标有从1到49中的一个不同的奇数,两个人轮流选取筹码.当一个人选取了标号为x 的筹码时,另一个人必须选取标号为99x -的最大奇因数的筹码.如果第一个被选取的筹码的编号为5,那么当游戏结束时还剩 个筹码.【分析】 解若 x 99x -5 4747 1313 4343 77 2323 1919 5当一个人拿到19时,下一个人就要拿5了,故游戏结束,拿了7个.剩25718-=(个).[拓展] (武汉“明星奥数挑战赛”)有依次排列的3个数:2,0,5,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,2-,0,5,5,这称为第一次操作,第二次同样的操作后也可产生一个新数串:2,4-,2-,2,0,5,5,0,5.继续依次操作下去.问:从新数串2,0,5开始操作,第100次后产生的那个新数串的所有数之和是多少?[分析] 观察操作次数: 开始 第一次 第二次 第三次 …总 和: 7 10 13 16 …易发现每操作一次总和增加3.因此操作100次后产生的新数串所有数之和为73100307+⨯=.【例 6】 (武汉“明星奥数挑战赛”)将两个不同的自然数中较大数换成这两个数之差,称为一次操作.如对18和42可连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,.直到两数相同为止.试给出和最小的两个四位数,按照以上操作,最后得到的相同的数是15.这两个四位数是 与 .【分析】 由题意,我们可以多给几组数按题目所给操作方法进行操作,从中找出规律.例如:136,63→…→1,136,27→…→9,984,36→…→12,12考察操作后所得结果,不难发现每次所得的最终结果是开始两数的最大公约数,因此我们只需找到两个尽量小的四位数,他们都是15的倍数,可得1005和1020.[铺垫] (武汉“明星奥数挑战赛”)对任意两个不同的自然数,将其中较大数换成这两数之差,称为一次变换.如对18和42可作这样的连续变换:18,42→18,24→18,6→12,6→6,6直到两数相同为止.问:对1234和4321作这样的连续变换最后得到的两个相同的数是 .[分析] 操作如下:1234,4321→1234,3087→1234,1853→1234,619→615,619→615,44714243前一数每次减少→…→,4→3,4→3,1→2,1→1,1实际上按此法操作最后所得两相同的数为开始两数的最大公约数.即1234与4321的最大公约数为1.此法也称为辗转相减法求最大公约数.[拓展] (全国华罗庚金杯少年数学邀请赛)将两个不同的自然数中较大的数换成这两个数之差,称为一次操作.例如:对18和42连续进行这样的操作,则有:18,42→18,24→18,6→12,6→6,6.试给出和最小的两个五位数,按照以上操作,直到两数相同为止,如果最后得到的相同的数是15,这两个五位数是 与 .[分析] 观察题目中的例子,(18,42)=(18,24)=(18,6)=(12,6)=(6,6)=6,将会发现:将两个不同的自然数中较大的数换成这两个数之差会得到两个新的自然数,它们的最大公约数和初始的两个数的最大公约数相同,最后得到的是两个相同的自然数,是初始的两个数的最大公约数,所以,题目就是去求和最小的两个五位数,它们的最大公约数是15,即求两个能被3和5整除的和最小的两个五位数,1000566715=⨯和1002066815=⨯为所求.点评 题中操作的本质上是辗转相除法,最后所得到的相同的数是最初两个数的最大公约数,即(18,42)=6.实际上,这道试题是一个求最大公约数的反问题,即已知(X ,Y )=15,求X 和Y .但是,以15为最大公约数的数对有很多,应该选取哪一对呢?这就要求答案必须还满足其他的条件,本题要求解答最小的两个五位数.如果要求是最大的两个五位数,答案是什么?【例 7】 黑板上写着一个形如777…77的数,每次擦掉一个末位数,把前面的数乘以3,然后再加上刚才擦掉的数字.对所得的新数继续这样操作下去,证明:最后必获得数7.【分析】 黑板上起初数是777…77,每次操作后就变出一个新数.不妨设这个数的末位数为b ,前面的数为a ,所以就是形为10a b +的数.每次操作后,黑板上就成为3a b +,它比原数少了7a .由此可知:⑴每次操作将使原数逐步变小;⑵如果原数能被7整除,那么所得新数仍能被7整除.所以黑板上最后必将变成7,例如当原数为777时,就有777→238→77→28→14→7.【例 8】 (北京“数学解题能力展示”读者评选活动)在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 .【分析】 第一轮:分33次划1~9,后面写上6,15,24,…,294共33个数.第二轮:分11次划去这33个数,后面写上45,126,207,…,855,共11个数.之后的操作一次减少2个数,故还需操作5次.设这11个数为:1a ,2a ,…,11a .则接下去的数是:123()a a a ++,456()a a a ++,789()a a a ++,1011123()a a a a a ++++,4567891011123()a a a a a a a a a a a ++++++++++.因此最后一数为:1231112994950a a a a ++++=+++=L L .[拓展] (第六届“华杯赛”决赛)圆周上放有N 枚棋子,如右图所示,B 点的一枚棋子紧邻A 点的棋子。
五年级奥数题:变换和操作
十七变换和操作(B)年级班姓名得分一、填空题1.对于324和612,把第一个数加上3,同时把第二个数减3,这算一次操作,操作_____次后两个数相等.2. 对自然数n,作如下操作:各位数字相加,得另一自然数,若新的自然数为一位数,那么操作停止,若新的自然数不是一位数,那么对新的自然数继续上面的操作,当得到一个一位数为止,现对1,2,3…,1998如此操作,最后得到的一位数是7的数一共有_____个.3. 在1,2,3,4,5,…,59,60这60个数中,第一次从左向右划去奇数位上的数;第二次在剩下的数中,再从左向右划去奇数位上的数;如此继续下去,最后剩下一个数时,这个数是_____.4. 把写有1,2,3,…,25的25张卡片按顺序叠齐,写有1的卡片放在最上面,下面进行这样的操作:把第一张卡片放到最下面,把第二张卡片扔掉;再把第一张卡片放到最下面,把第二张卡片扔掉;…按同样的方法,反复进行多次操作,当剩下最后一张卡片时,卡片上写的是_____.5. 一副扑克共54张,最上面的一张是红桃K.如果每次把最上面的4张牌,移到最下面而不改变它们的顺序及朝向,那么,至少经过_____次移动,红桃K才会出现在最上面.6. 写出一个自然数A,把A的十位数字与百位数字相加,再乘以个位数字,把所得之积的个位数字续写在A的末尾,称为一次操作.如果开始时A=1999,对1999进行一次操作得到19992,再对19992进行一次操作得到199926,如此进行下去直到得出一个1999位数为止,这个1999位数的各位数字之和是_____.7. 黑板上写有1987个数:1,2,3,…,1986,1987.任意擦去若干个数,并添上被擦去的这些数的和被7除的余数,称为一个操作.如果经过若干次这种操作,黑板上只剩下了两个数,一个是987,那么,另一个数是_____.8.下图中有5个围棋子围成一圈.现在将同色的两子之间放入一个白子,在异色的两子之间放入一个黑子,然后将原来的5个拿掉,剩下新放入的5个子中最多能有_____个黑子.9. 在圆周上写上数1,2,4然后在每两个相邻的数之间写上它们的和(于是共得到6个数:1,3,2,6,4,5)再重复这一过程5次,圆周上共出现192个数,则所有这些数的和是_____.10. 在黑板上任意写一个自然数,然后用与这个自然数互质并且大于1的最小自然数替换这个数,称为一次操作,那么最多经过_____次操作,黑板上就会出现2.二、解答题11.甲盒中放有1993个白球和1994个黑球,乙盒中放有足够多个黑球.现在每次从甲盒中任取两球放在外面,但当被取出的两球同色时,需从乙盒中取出一个黑球放入甲盒;当被取出的两球异色时,便将其中的白球再放回甲盒,这样经过3985次取、放之后,甲盒中剩下几个球?各是什么颜色的球?12.如图是一个圆盘,中心轴固定在黑板上,开始时,圆盘上每个数字所对应的黑板处均写着0,然后转动圆盘,每次可以转动︒90的任意整数倍,圆盘上的四个数将分别正对着黑板上写数的位置.将圆盘上的数加到黑板上对应位置的数上,问:经过若干次后,黑板上的四个数是否可能都是1999?13. 有三堆石子,每次允许由每堆中拿掉一个或相同数目的石子(每次这个数目不一定相同),或由任一堆中取一半石子(如果这堆石子是偶数个)放入另外任一堆中,开始时三堆石子数分别为1989,989,89.如按上述方式进行操作,能否把这三堆石子都取光?如行,请设计一种取石子的方案,如不行,说明理由.14. 如图,圆周上顺次排列着1、2、3、……、12这十二个数,我们规定:相邻的四个数a 1、a 2、a 3、a 4顺序颠倒为a 4、a 3、a 2、a 1,称为一次“变换”(如:1、2、3、4变为4、3、2、1,又如:11、12、1、2变为2、1、12、11).能否经过有限次“变换”,将十二个数的顺序变为9、1、2、3、……8、10、11、12(如图)?请说明理由.———————————————答 案——————————————————————1. 48每操作一次,两个数的差减少6,经(612-324)÷6=48次操作后两个数相等.2. 222由于操作后所得到的数与原数被9除所得的余数相同,因此操作最后为7的0 0 10 0 2 3 4 93 2数一定是原数除以9余7的数,即7,16,25,…,1996,一共有(1996-7)÷9+1=222(个)3. 32第一次操作后,剩下2,4,6,…,60这30个偶数;第二次操作后,剩下4,8,12,…,60这15个数(都是4的倍数);第三次操作后,剩下8,16,24,…,56这7个数(都是8的倍数);第四次操作后,剩下16,32,48这3个数;第五次操作后,剩下一个数,是32.4. 19第一轮操作,保留1,3,5,…,25共13张卡片;第二轮保留3,7,11,15,19,23这6张卡片;第三轮保留3,11,19这3张卡片;接着扔掉11,3;最后剩下的一张卡片是19.5. 27次因为[54,4]=108,所以移动108张牌,又回到原来的状况.又因为每次移动4张牌,所以至少移动108÷4=27(次).6. 66按照操作的规则,寻找规律知,A=1999时得到的1999位数为:1999266864600…0.其各位数字和为1+9+9+9+2+6+6+8+6+4 +6=667. 0黑板上的数的和除以7的余数始终不变.(1+2+3+…+1987)÷7=282154又1+2+3+ (1987)219881987⨯=1987⨯994=1987⨯142⨯7是7的倍数.所以黑板上剩下的两个数之和为7的倍数.又987=7⨯141是7的倍数,所以剩下的另一个数也应是7的倍数,又这个数是某些数的和除以7的余数,故这个数只能是0.8. 4个提示:因为5个子不可能黑白相间,所以永远不会得到5个全是黑子.9. 5103记第i次操作后,圆周上所有数的和为a i,依题意,得a i+1=2a i+a i=3a i.又原来三数的和为a0=1+2+4=7,所以a1=3a=21,a2=3a1=63,a3=3a2=189,a4=3a3=567,a5=3a4=1701,a6=3a5=5103,即所有数的和为5103.10. 2如果写的是奇数,只需1次操作;如果写的是大于2的偶数,经过1次操作变为奇数,再操作1次变为2.11. 由操作规则知,每次操作后,甲盒中球数减少一个,因此经过3985次操作后,甲盒中剩下1993+1994-3985=2个球.每次操作白球数要么不变,要么减少2个.因此,每次操作后甲盒中白球数的奇偶性不变;即白球数为奇数.因此最后剩下的2个球中,白球1个,故另一个必为黑球.12. 每次加上的数之和是1+2+3+4=10,所以黑板上的四个数之和永远是10的整数倍.因此,无论如何操作,黑板上的四个数不可能都是1999.13. 要把三堆石子都取光是不可能的.按操作规则,每次拿出去的石子总和是3的倍数,即不改变石子总数被3除的余数.而1989+989+89=3067被3除余1,三堆石子取光时总和被3除余0.所以,三堆石子都取光是办不到的.14. 能解:如上图所示,经过两次变换,10、11、12三个数被顺时针移动了两个位置.仿此,再经过3次这样的两次变换,10、11、12三个数又被顺时针移动了六个位置,变为下图,图中十二个数的顺序符合题意.6。
五年级数学下册数学变换专项练习题
五年级数学下册数学变换专项练习题一、图形的旋转1. 将图形A绕顺时针旋转90度,得到图形B。
请画出图形B。
- 图形A:<img src="图形A.png" width="100">- 图形B:(请自行画出)2. 将图形C绕逆时针旋转180度,得到图形D。
请画出图形D。
- 图形C:<img src="图形C.png" width="100">- 图形D:(请自行画出)二、图形的翻转1. 图形E关于直线a对称,得到图形F。
请画出图形F。
- 图形E:<img src="图形E.png" width="100">- 图形F:(请自行画出)2. 图形G关于点b对称,得到图形H。
请画出图形H。
- 图形G:<img src="图形G.png" width="100">- 图形H:(请自行画出)三、图形的平移1. 图形I向左平移3个单位,得到图形J。
请画出图形J。
- 图形I:<img src="图形I.png" width="100">- 图形J:(请自行画出)2. 图形K向下平移4个单位,得到图形L。
请画出图形L。
- 图形K:<img src="图形K.png" width="100">- 图形L:(请自行画出)四、图形的缩放1. 图形M沿着中心点O缩小一半,得到图形N。
请画出图形N。
- 图形M:<img src="图形M.png" width="100">- 图形N:(请自行画出)2. 图形P沿着中心点O放大2倍,得到图形Q。
请画出图形Q。
- 图形P:<img src="图形P.png" width="100">- 图形Q:(请自行画出)以上是五年级数学下册数学变换专项练习题,请同学们根据题目要求进行练习,并在纸上进行作答。
五年级奥数专题 等积变换、切割、平移、旋转(学生版)
学科培优数学等积变换、切割、平移、旋转学生姓名授课日期教师姓名授课时长知识定位本讲是几何知识体系中的一个基石同时也是一个升华,等积变换试平面几何的基础,解决三角形问题几乎无处不在,切割、平移、旋转是解决个性问题的个性思想,在几何中举足轻重,能使复杂的问题巧妙化解。
所以本讲是非常重要的一讲,也是竞赛常考的知识板块。
重点难点:1. 等积变换中等地等高三角形的寻找。
2.化未知图形为已知图形。
3. 合理做辅助线4. 平移、旋转、切割等知识的适用范围主要考点:1. 面积和边的比例关系2. 利用平移、旋转解复杂问题知识梳理常见图形面积的解题方法我们已经知道三角形面积的计算公式:三角形面积=底×高÷2从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积.如果三角形的底不变,高越大(小),三角形面积也就越大(小);如果三角形的高不变,底越大(小),三角形面积也就越大(小);这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1/3,则三角形面积与原来的一样。
这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状.在实际问题的研究中,我们还会常常用到以下结论: 1、等底等高的两个三角形面积相等.2、若两个三角形的高相等,其中一个三角形的底是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.若两个三角形的底相等,其中一个三角形的高是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍. 3、夹在一组平行线之间的等积变形,如下图,和夹在一组平行线之间,且有公共底边那么;反之,如果,则可知直线平行于。
4、把未知图形转化为三角形、长方形、正方形来求解。
小学五年级奥数题大全及答案(更新版)
小学五年级奥数题大全及答案五年级奥数1、小数的巧算2、数的整除性3、质数与合数4、约数与倍数5、带余数除法6、中国剩余定理7、奇数与偶数8、周期性问题9、图形的计数10、图形的切拼11、图形与面积12、观察与归纳13、数列的求和14、数列的分组15、相遇问题16、追及问题17、变换和操作18、逻辑推理19、逆推法20、分数问题1.1小数的巧算(一)年级班姓名得分一、填空题1、计算 1.135+3.346+5.557+7.768+9.979=_____.2、计算 1.996+19.97+199.8=_____.3、计算 9.8+99.8+999.8+9999.8+99999.8=_____.4、计算6.11+9.22+8.33+7.44+5.55+4.56+3.67+2.78 +1.89=_____.5、计算1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____.6、计算 2.89⨯4.68+4.68⨯6.11+4.68=_____.7、计算 17.48⨯37-17.48⨯19+17.48⨯82=_____.8、计算 1.25⨯0.32⨯2.5=_____.9、计算 75⨯4.7+15.9⨯25=_____.10、计算 28.67⨯67+32⨯286.7+573.4⨯0.05=_____.二、解答题11、计算 172.4⨯6.2+2724⨯0.3812、计算 0.00...0181⨯0.00 (011)963个0 1028个013、计算12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.2314、下面有两个小数:a=0.00...0105 b=0.00 (019)1994个0 1996个0求a+b,a-b,a⨯b,a÷b.1.2小数的巧算(二)年级班姓名得分一、真空题1、计算 4.75-9.64+8.25-1.36=_____.2、计算 3.17-2.74+4.7+5.29-0.26+6.3=_____.3、计算 (5.25+0.125+5.75)⨯8=_____.4、计算 34.5⨯8.23-34.5+2.77⨯34.5=_____.5、计算 6.25⨯0.16+264⨯0.0625+5.2⨯6.25+0.625⨯20=_____.6、计算 0.035⨯935+0.035+3⨯0.035+0.07⨯61⨯0.5=_____.7、计算 19.98⨯37-199.8⨯1.9+1998⨯0.82=_____.8、计算 13.5⨯9.9+6.5⨯10.1=_____.9、计算 0.125⨯0.25⨯0.5⨯64=_____.10、计算 11.8⨯43-860⨯0.09=_____.二、解答题11、计算32.14+64.28⨯0.5378⨯0.25+0.5378⨯64.28⨯0.75-8⨯64.28⨯0.125⨯0.537812、计算 0.888⨯125⨯73+999⨯313、计算 1998+199.8+19.98+1.99814、下面有两个小数:a=0.00...0125 b=0.00 (08)1996个0 2000个0试求a+b, a-b, a⨯b, a÷b.2.1数的整除性(一)年级班姓名得分一、填空题1、四位数“3AA1”是9的倍数,那么A=_____.2、在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____.3、能同时被2、3、5整除的最大三位数是_____.4、能同时被2、5、7整除的最大五位数是_____.5、1至100以内所有不能被3整除的数的和是_____.6、所有能被3整除的两位数的和是______.7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____.8、如果六位数1992□□能被105整除,那么它的最后两位数是_____.9、42□28□是99的倍数,这个数除以99所得的商是_____.10、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.二、解答题1、173□是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?13、在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将100张黄油票换成100张香肠票,并且在整个交换过程中刚好出手了1991张票券?14、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.2.2数的整除性(二)年级班姓名得分一、填空题1、一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.2、123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.3、下面一个1983位数33…3□44…4中间漏写了一个数字(方框),已知这991个 991个个多位数被7整除,那么中间方框内的数字是_____.4、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.5、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.6、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.7、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.8、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.9、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.10、所有数字都是2且能被66……6整除的最小自然数是_____位数.100个二、解答题11、找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?12、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?13、500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?14、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.3.1质数与合数(一)年级班姓名得分一、填空题1在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2、最小的质数与最接近100的质数的乘积是_____.3、两个自然数的和与差的积是41,那么这两个自然数的积是_____.4、在下式样□中分别填入三个质数,使等式成立.□+□+□=505、三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6、找出1992所有的不同质因数,它们的和是_____.7、如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8、9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9、从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10、今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11、2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12、把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13、学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14、四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以及油的重量之和均为质数,求最重的两瓶内有多少油?3.2质数与合数(二)年级班姓名得分一、填空题1、在1~100里最小的质数与最大的质数的和是_____.2、小明写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.3、把232323的全部质因数的和表示为AB,那么A⨯B⨯AB=_____.4、有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.5、两个数的和是107,它们的乘积是1992,这两个数分别是_____和_____.6、如果两个数之和是64,两数的积可以整除4875,那么这两数之差是_____.7、某一个数,与它自己相加、相减、相乘、相除,得到的和、差、积、商之和为256.这个数是_____.8、有10个数:21、22、34、39、44、45、65、76、133和153.把它们编成两组,每组5个数,要求这组5个数的乘积等于那组5个数的乘积.第一组数____________;第二组数是____________.9、有_____个两位数,在它的十位数字与个位数字之间写一个零,得到的三位数能被原两位数整除.10、主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰好是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案。
小学五年级奥数题(含答案)
小学五年级奥数题(含答案)1.小学五年级奥数题(含答案) 篇一1、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。
现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。
求乙绕城一周所需要的时间?解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7 那么4小时就是行全程的4/7所以乙行一周用的时间=4/(4/7)=7小时2、甲乙两人同时从A地步行走向B地,当甲走了全程的14时,乙离B地还有640米,当甲走余下的56时,乙走完全程的710,求AB两地距离是多少米?解:甲走完1/4后余下1-1/4=3/4那么余下的5/6是3/4×5/6=5/8此时甲一共走了1/4+5/8=7/8那么甲乙的路程比=7/8:7/10=5:4所以甲走全程的1/4时,乙走了全程的1/4×4/5=1/5那么AB距离=640/(1-1/5)=800米2.小学五年级奥数题(含答案) 篇二一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。
这时拿出1副同色的后4个抽屉中还剩3只手套。
再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。
把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。
这时拿出1副同色的后,4个抽屉中还剩下3只手套。
根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。
以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)答:最少要摸出9只手套,才能保证有3副同色的。
3.小学五年级奥数题(含答案) 篇三分母不大于60,分子小于6的最简真分数有____个?答案与解析:分类讨论:(1)分子是1,分母是2~60的最简真分数有59个:(2)分子是2,分母是3~60,其中非2、的倍数有58-58÷2=29(个)。
2019年五年级数学 奥数练习17 变换和操作(A)
2019年五年级数学奥数练习17 变换和操作(A)一、填空题1. 黑板上写着8,9,10,11,12,13,14七个数,每次任意擦去两个数,再写上这两个数的和减 1.例如,擦掉9和13,要写上21.经过几次后,黑板上就会只剩下一个数,这个数是_____.2. 口袋里装有99张小纸片,上面分别写着1~99.从袋中任意摸出若干张小纸片,然后算出这些纸片上各数的和,再将这个和的后两位数写在一张新纸片上放入袋中.经过若干次这样的操作后,袋中还剩下一张纸片,这张纸片上的数是_____.3. 用1~10十个数随意排成一排.如果相邻两个数中,前面的大于后面的,就将它们变换位置.如此操作直到前面的数都小于后面的数为止.已知10在这列数中的第6位,那么最少要实行_____次交换.最多要实行_____次交换.4. 一个自然数,把它的各位数字加起来得到一个新数,称为一次变换,例如自然数5636,各位数字之和为5+6+3+6=20,对20再作这样的变换得2+0=2.可以证明进行这种变换的最后结果是将这个自然数,变成一个一位数.对数123456789101112…272829作连续变换,最终得到的一位数是_____.5. 5个自然数和为100,对这5个自然数进行如下变换,找出一个最小数加上2,找出一个最大数减2.连续进行这种变换,直至5个数不发生变化为止,最后的5个数可能是_____.6. 在黑板上写两个不同的自然数,擦去较大数,换成这两个数的差,我们称之为一次变换.比如(15,40),40-15=25,擦去40,写上25,两个数变成(15,25),对得到的两个数仍然可以继续作这样的变换,直到两个数变得相同为止,比如对(15,40)作这样的连续变换: (15,40) (15,25) (15,10) (5,10) (5,5).对(1024,111…1)作这样的连续变换,最后得到的两个相同的20个1数是_____.7. 在一块长黑板上写着450位数123456789123456789…(将123456789重复50次).删去这个数中所有位于奇数位上的数字:再删去所得的数中所有位于奇数位上的数字:再删去…,并如此一直删下去.最后删去的数字是_____.8. 将100以内的质数从小到大排成一个数字串,依次完成以下五项工作叫做一次操作:①将左边第一个数码移到数字串的最右边;②从左到右两位一节组成若干这两位数;③划去这些两位数中的合数;④所剩的两位质数中有相同者,保留左边的一个,其余划去;⑤所余的两位质数保持数码次序又组成一个新的数字串。
五年级奥数题:变换和操作(B)
1 2 3 4 5 6 78 9七 奇数与偶数(B) 年级 班 姓名 得分一、填空题1.五个连续奇数的和是85,其中最大的数是_____,最小的数是_____.2. 三个质数 、 、 ,如果 > >1, + = ,那么 =_____.3. 已知a 、b 、c 都是质数,且a +b =c ,那么a ⨯b ⨯c 的最小值是_____.4. 已知a 、b 、c 、d 都是不同的质数,a +b +c =d ,那么a ⨯b ⨯c ⨯d 的最小值是_____.5. a 、b 、c 都是质数,c 是一位数,且a ⨯b +c =1993,那么a +b +c =_____.6. 三个质数之积恰好等于它们和的7倍,则这三个质数为_____.7. 如果两个两位数的差是30,下面第_____种说法有可能是对的.(1)这两个数的和是57.(2)这两个数的四个数字之和是19.(3)这两个数的四个数字之和是14.8. 一本书共186页,那么数字1,3,5,7,9在页码中一共出现了_____次.9. 筐中有60个苹果,将它们全部取出来,分成偶数堆,使得每堆的个数相同,则有_____种分法.10. 从1至9这九个数字中挑出六个不同的数,填在下图所示的六个圆圈内,使任意相邻两个圆圈内数字之和都是质数.那么最多能找出_____种不同的挑法来.(六个数字相同,排列次序不同算同一种)二、解答题11. 在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a =5+3=8.问:填入的81个数字中,奇数多还是偶数多?1 2 3 4 5 6 7 8 912. 能不能在下式:1 2 3 4 5 6 7 8 9=10的每个方框中,分别填入加号或减号,使等式成立?13. 在八个房间中,有七个房间开着灯,一个房间关着灯.如果每次同时拨动四个房间的开关,能不能把全部房间的灯关上?为什么?14. 一个工人将零件装进两种盒子中,每个大盒子装12只零件,每个小盒子装5只零件,恰好装完.如果零件一共是99只,盒子个数大于10,这两种盒子各有多少个?———————————————答案——————————————————————1. 21,13这五个数的中间数85÷5=17,可知最大数是21,最小数是13.2. 2因为 > >1, + = ,所以 > > .这里的关键是明确质数除2以外都是奇数,假如不等于2,则它一定是奇数,那么 + =偶数,显然这个偶数不会是质数.所以, 一定等于2.3. 30因为所有的质数除2以外都是奇数,题中a+b=c,仿上题,由数的奇偶性可以推知a=2,b,c都是质数,根据a⨯b⨯c的值最小的条件,可推知b=3,c=5,所以a⨯b⨯c的最小值是2⨯3⨯5=30.4. 3135在所有质数中除2是偶数以外,其余的都是奇数,如果a,b,c,d中有一个为2,不妨设a=2,则b,c,d均为奇数,从而a+b+c为偶数,不符合条件a+b+c=d,所以a,b,c,d都是奇数.再根据a⨯b⨯c⨯d的值最小的条件,可推知a=3,b=5,c=11,d=19.因此a⨯b⨯c⨯d的最小值为3⨯5⨯11⨯19=3135.5. 194由a⨯b+c=1993知,a⨯b与c奇偶性不同.当a⨯b为偶数,c为奇数时,c的值为3、5或7,不妨设b为2,则a的值为995,994或993.因为995、994、993都不是质数,所以不合题意舍去.当a⨯b为奇数,c为偶数时,c=2,a⨯b=1991,1991=11⨯181,从而a的值是11(或181),b的值是181(或11).2、11、181均为质数符合题意.所以a+b+c=2+11+181=194.6. 3,5,7依题意,设三个质数为X,Y,Z,则X+Y+Z=7Z ⨯⨯YX,这样三个质数必定有一个质数是7.如果X=7,则Y⨯Z=Y+Z+7,即Y⨯Z-(Y+Z)=7.根据数的奇偶性:偶-奇=奇;奇-偶=奇,进行讨论.当Y⨯Z为偶数, Y+Z为奇数时,则Y(或Z)必定是2,从而有2⨯3-(2+3)=1,2⨯5-(2+5)=3,2⨯11-(2+11)=9,……均不符合条件.当Y⨯Z为奇数, Y+Z为偶数时,则Y、Z均为奇数.若Y=3,Z=5,则3⨯5-(3+5)=7,符合条件.所以,这三个质数分别是3,5和7.[注]以上五题(题2—题6)都是质数与奇偶数的性质求解“小、巧、活”的例子.尤其要注意2是所有质数中唯一的偶数这一特征.命题者常在此涉足.7. (2)因为两个两位数的差是30,所以这两个两位数一定都是奇数,或都是偶数(因为只有偶数-偶数=偶数、奇数-奇数=偶数),且偶数+偶数=偶数,奇数+奇数=偶数,所以第(1)种说法显然不对.因为差是30,所以它们的个位数字相同,那么相加一定是偶数;又差的十位数字是奇数,故两个两位数的十位数字一定是一奇一偶.通过以个分析,可得出:两个两位数的四个数字相加之和肯定是奇数,而不是偶数,所以第(3)种说法也是错的.第(2)种说法有可能对.[注]在排除第一种说法不对时,也可直接运用整数的奇偶性质:两个整数的和与差有相同的奇偶性,即设a,b为整数,那么a+b与a-b有相同的奇偶性.证明(a+b)+(a-b)=2a为一偶数,所以a+b与a-b的奇偶性相同.这条性质在处理奇偶性问题中用途很广.8. 270因为1,3,5,7,9为连续奇数,分别算出186页总页码中个位、十位、百位上出现的奇数次数,再相加后所得的奇数总和即为数字1,3,5,7,9在页码中一共出现的总次数.从1—186,个位上出现的奇数为186÷2=93(次);从10—186,十位上出现的奇数为10⨯9=90(次);从100—186,百位上出现的奇数为186-100+1=87(次).所以,186页书中1,3,5,7,9在页码中一共出现了93+90+87=270(次)9. 8由于“每堆个数相同”且“分成偶数堆”知本题是要求60的偶因子的个数,因为每个偶因子对应于一种符合条件的分法,60的偶因子有:2,4,6,10,12,20,30和60,所以有8种分法.10. 17在所有质数中,除2是偶数外,其余是奇数.由所给出的数字,根据数的奇偶性质可知,六个数必定三偶三奇间隔排列。
五年级数学测试掌握形的变换
五年级数学测试掌握形的变换数学是一门重要的学科,对于学生来说,掌握形的变换是数学学习中的基础内容之一。
形的变换可以帮助学生理解几何图形的性质和特点,提升他们的空间想象和逻辑推理能力。
在这篇文章中,我将为大家介绍五年级数学测试中关于形的变换的内容要点,帮助大家更好地掌握这一知识。
一、平移平移是将一个图形按照一定方向和距离进行移动。
在平移过程中,图形的大小、形状、内部角度不变。
平移的基本要点是确定平移的方向和距离。
常见的平移方法有使用绳子或纸片等辅助工具进行。
例如,下面是一道关于平移的测试题目:题目:将图形A沿向右平移5个单位长度,得到图形B。
请写出图形B的坐标。
解答:平移是将图形整体向右移动,因此,图形B的坐标是在图形A的基础上在横坐标上加5。
图形A:(x, y) → 图形B:(x + 5, y)二、旋转旋转是将图形按照某个中心点进行旋转。
旋转的基本要点是确定旋转中心和旋转的角度。
在平面几何中,常见的旋转角度有90度、180度、270度等。
题目:将图形A按照顺时针方向旋转90度,得到图形B。
请写出图形B的坐标。
解答:顺时针旋转90度意味着将图形A按照旋转中心逆时针方向旋转90度。
在平面几何中,顺时针旋转90度可以通过对图形A的横坐标和纵坐标进行交换,并将纵坐标符号取负来实现。
图形A:(x, y) → 图形B:(y, -x)三、对称对称是指图形相对于某一直线对称,对称后的图形与原图形错位重合。
常见的对称轴有水平对称轴和垂直对称轴。
例如,下面是一道关于对称的测试题目:题目:将图形A按照垂直对称轴进行对称,得到图形B。
请写出图形B的坐标。
解答:对于图形A按照垂直对称轴进行对称,可以将图形A的横坐标取负,而纵坐标保持不变。
图形A:(x, y) → 图形B:(-x, y)四、缩放缩放是指将图形按照一定比例进行放大或缩小。
在缩放过程中,图形的形状和内部角度保持不变。
缩放的基本要点是确定缩放的中心和缩放的比例。
五年级奥数题教学
五年级奥数题教学一、平均数问题。
1. 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。
一箱苹果多少个?- 解析:- 因为苹果、梨、橘子平均每箱42个,所以苹果 + 梨+橘子 = 42×3 = 126(个);- 梨、橘子、桃平均每箱36个,所以梨 + 橘子+桃 = 36×3 = 108(个);- 苹果和桃平均每箱37个,所以苹果+桃 = 37×2 = 74(个)。
- 用(苹果 + 梨+橘子)-(梨 + 橘子+桃)=苹果 - 桃 = 126 - 108 = 18(个)。
- 又因为苹果+桃 = 74(个),根据和差问题公式,较大数=(和 + 差)÷2,苹果=(74 + 18)÷2 = 46(个)。
2. 一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。
问:甲、丁各得多少分?- 解析:- 甲、乙、丙三人总分:91×3 = 273(分);- 乙、丙、丁三人总分:89×3 = 267(分);- 甲、丁二人总分:95×2 = 190(分)。
- 把前面三个算式相加,得到2(甲+乙 + 丙+丁)=273 + 267+190 = 730,所以甲+乙+丙 + 丁 = 365(分)。
- 用这个和减去乙、丙、丁的总分,得到甲的分数:365 - 267 = 98(分)。
- 丁的分数=190 - 98 = 92(分)。
二、行程问题。
3. 甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。
求A、B两地间的距离是多少千米?- 解析:- 两车在离中点32千米处相遇,说明甲车比乙车多行了32×2 = 64(千米)。
- 甲车每小时比乙车多行56 - 48 = 8(千米)。
- 那么相遇时间为64÷8 = 8(小时)。
小学五年级奥数题和答案解析
小学五年级奥数题和答案解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(小学五年级奥数题和答案解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为小学五年级奥数题和答案解析的全部内容。
小学五年级经典奥数题题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有18车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0。
3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?一、填空题(每小题5分,共60分)1、(1 +2 +8 )÷(1 +2 +8 )=2、奥运吉祥物中的5个“福娃”取“北京欢迎您”的谐音:贝贝、京京、欢欢、迎迎、妮妮。
10题小学五年级奥数题
10题小学五年级奥数题
1.甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有
30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。
问:A、B相距多少米?
2.有甲、乙、丙三个小朋友玩捉迷藏,甲从10张牌中抽一张,乙和丙分别从20张牌
中抽一张,问:他们抽到王的可能性谁最大?
3.爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别
是你的5倍、4倍、3倍、2倍。
”你知道爷爷和小明现在的年龄吗?
4.两个数的差是18,一个数是60,另一个数是多少?
5.一个长方形的长是宽的3倍,求这个长方形的周长。
6.一个数的平方是1600,求这个数。
7.一个数的3倍减去2等于10,求这个数。
8.一个圆柱的高是10厘米,底面半径是2厘米,求这个圆柱的表面积。
9.一个正方形的面积是25平方厘米,求这个正方形的边长。
10.一个组合图形的面积是200平方厘米,由两个三角形组成,每个三角形的底和高都
相等,求这个组合图形的边长。
五年级奥数置换问题
五年级奥数置换问题篇一:五年级奥数置换环境问题五年级奥数:置换问题专题分析:置换问题主要研究把数量关系的两种数量转换成一种数量,从而帮助我们解题方法的一类典型的应用题。
“鸡兔同笼”问题就是一种非常典型的置换问题,解答置换切换问题一般用转换和假设这两种数学思维方法。
解答置换问题应警觉重新排列下面两点:1、根据数量关系把两种数量转换成某种数量,从而找出解题方法。
2、把五种数量假设为一种纯粹数量,从而找出解题方法。
例1、20千克苹果与30千克梨共计132元,2千克苹果的价钱与2.5千克梨的价钱相等。
求苹果和梨的单价。
思路:2千克苹果的价钱与2.5千克梨的价钱相等,则20千克苹果相当于25千克梨,这样几种就把两种数量转化为一种数量了,先计算梨的单价是:132÷(25+30)=2.4(元),其余的计算就难了。
练习:1、6只鸡和8只羊共重78千克,已知5只鸡的重量和2只羊的重量相等。
求每只鸡和每只羊的配重。
2、商店里有甲种钢笔和乙种圆珠笔,已知2支钢笔的价钱与15支圆珠笔的价钱相等。
老师买了4支钢笔和6支圆珠笔共付了72元。
求钢笔和圆珠笔的单价。
3、用两种汽车运货,如果2辆有大上海汽车汽车的载重量正好等于3辆小汽车的载重量,且5辆大汽车和6辆小汽车一次共运54吨货。
求每辆大汽车比小汽车多装几吨货?例2、中华学校买来史地书、技术开发书和文艺书共456本。
其中科技书是史地书的的1.2倍,文艺家书比科技书多31本。
三种书各买了多少本?思路:先用教育学书代换科技书,科技书加上31本又是文艺书,这样三种书都可称民族学成史地书,则史地书为:(456-31)÷(1+1.2+1.2)=125(本)。
其他书的计算就简单了。
练习:1、北站某菜站运来西红柿和黄瓜共重1660千克,已知运来的的重量比黄瓜重量的3倍少60千克,菜站运来的西红柿和黄瓜各多少千克?2、一条公路长72千米,由甲乙丙三个修路队乙丙共同修完。
五年级奥数---等积变换
五年级奥数---等积变换第二十一讲等积变换一个量可以用它的等量来代替;被减数和减数都增加(或减少)同一个数,它们的差不变。
前者是等量公理,后者是减法的差不变性质。
这两个性质在解几何题时有很重要的作用,它能将求一个图形的面积转化为求另一个图形的面积,或将两个图形的面积差转化为另两个图形的面积差,从而使隐蔽的关系明朗化,找到解题思路。
例题1:两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。
解:因为三角形ABC与三角形DEF完全相同,都减去三角形DOC 后,根据差不变性质,差应相等,即阴影部分与直角梯形OEFC面积相等,所以求阴影部分的面积就转化为求直角梯形OEFC的面积。
直角梯形OEFC的上底为10-3=7(厘米),面积为(7+10)×2÷2=17(厘米2)。
答:阴影部分的面积是17厘米2。
例题2:在右图中,平行四边形ABCD的边BC长10厘米,直角三角形ECB的直角边EC长8厘米。
已知阴影部分的总面积比三角形EFG的面积大10厘米2,求平行四边形ABCD的面积。
解:因为阴影部分比三角形EFG的面积大10厘米2,都加上梯形FGCB后,根据差不变性质,所得的两个新图形的面积差不变,即平行四边行ABCD比直角三角形ECB的面积大10厘米2,所以平行四边形ABCD的面积等于10×8÷2+10=50(厘米2)。
答:平行四边形ABCD的面积是50cm.例题3:在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。
求ED的长。
解:因为三角形AFB比三角形EFD的面积大18厘米2,这两个三角形都加上四边形FDCB后,其差不变,所以梯形ABCD比三角形ECB 的面积大18厘米2。
梯形ABCD面积=(8+4)×6÷2=36(厘米2),三角形ECB面积=36-18=18(厘米2),EC=18÷6×2=6(厘米),ED=6-4=2(厘米)。
五年级数学上册综合算式专项练习题算式变换与运算规律
五年级数学上册综合算式专项练习题算式变换与运算规律数学是一门广泛应用于各个领域的学科,对培养学生的逻辑思维和问题解决能力起着重要的作用。
在五年级的学习过程中,综合算式是一个关键的知识点。
本文将针对五年级数学上册的综合算式专项练习题,探讨算式的变换与运算规律。
算式变换是数学中常见的操作,通过变换可以改变算式的形式,从而更好地理解和解决问题。
在五年级的数学学习中,我们常见的算式变换包括以下几种:1. 代数式的等价变形代数式的等价变形是通过使用等式性质和基本运算法则,将一个代数式变换成另一个等价的代数式。
例如,将a+b+c扩展成a+c+b,或将2(a+b)化简成2a+2b。
这种变形方式可以帮助我们更好地理解代数式的结构,并且经常在解决实际问题时用到。
2. 运算律的应用运算律是指在数学中常见的运算规则,如加法交换律、加法结合律、乘法分配律等。
通过合理应用这些运算律,我们可以方便地进行算式的变换和计算。
例如,根据加法交换律,我们可以将2+3变换为3+2,从而使得计算更加简洁。
3. 等式的运算等式的运算是指使用等式进行运算,从而达到变换算式的目的。
例如,如果有一个等式2x+5=15,我们可以通过等式两边减去5,然后再除以2,即可得到x=5的结果。
这种方法在解方程等问题时非常常见,可以帮助我们找到未知数的值。
在数学的综合算式练习中,我们还需要掌握不同运算规律,以便更好地解题和计算。
以下是常见的运算规律:1. 乘法运算规律乘法运算规律包括分配律、结合律和交换律。
分配律指的是对于任意三个数a、b、c,有a(b+c)=ab+ac和(a+b)c=ac+bc。
结合律是指对于任意三个数a、b、c,有a(bc)=(ab)c。
交换律是指对于任意两个数a、b,有ab=ba。
掌握这些运算规律可以帮助我们更快地进行乘法运算。
2. 加法运算规律加法运算规律包括加法交换律和加法结合律。
加法交换律是指对于任意两个数a、b,有a+b=b+a。
五年级奥数专题-置换问题
五年级奥数专题-置换问题【专题导引】置换问题主要是研究把有数量关系的两种数量转换成一种数量,从而帮助我们找到解题方法的一类典型的应用题.“鸡兔同笼”问题就是一种比较典型的置换问题,解答置换问题一般用转换和假设这两种数学思维方法.解答置换总是应注意下面两点:1、根据数量关系把两种数量转换成一种数量,从而找出解题方法.2、把两种数量假设为一种数量,从而找出解题方法.【预备思考题1】如果△+△+○=25,○=△+△+△;那么△=_________,○=____________.【预备思考题2】已知20只鸡可以换2条狗,6条狗可换2头猪,那么4头猪可换多少只鸡?【典型例题】【例1】20千克苹果与30千克梨共计132元,2千克苹果的价钱与2.5千克的梨的价钱相等,求苹果和梨的单价.【试一试】1、6只鸡和8只小羊共重78千克,已知5只鸡的重量等于2只小羊的重量,求每只鸡和每只小羊的重量.2、商店里卖钢笔和圆珠笔,已知2支钢笔的价钱与15支圆珠笔的价钱相等.老师买了4支钢笔和6只圆珠笔,共付72元,每支钢笔和每支圆珠笔各多少元?【例2】中华学校买来史地书、科技书、文艺书共456本.其中科技书是史地书的1.2倍,文艺书比科技书多31本.三种书各买了多少本?【试一试】1、某菜站运来西红柿和黄瓜共重1660千克,已知运来的西红柿的重量比黄瓜重量的3倍少60千克,菜站运来的西红柿和黄瓜各多少千克?2、一条公路长72千米,由甲、乙、丙三个修路队共同修完,甲队修的千米数是乙队的2倍,丙队修的千米数比甲队少3千米,甲、乙、丙三队各修多少千米?【例3】一件工作,甲做5小时以后由乙来做,3小时可以完成;乙做9小时以后由甲来做,也是3小时可以完成.那么甲做1小时以后由乙来做几小时可以完成?【试一试】1、小明去买同一样笔和同一样橡皮,所带的钱能买8支笔和4块橡皮,或买6支笔和12块橡皮.如果他用这些钱全部买笔,请问他能买几支?2、一辆卡车最多能载40袋大米和40袋面粉,或者载10袋大米和100袋面粉.现在卡车上已载有20袋大米,最多还能载多少袋面粉?【例4】5辆玩具汽车与3架玩具飞机的价钱相等,每架玩具飞机比每辆玩具汽车贵8元.这两种玩具的单价各是多少元?【试一试】1、2支钢笔的价钱和3支圆珠笔的价钱相等,一支圆珠笔比一支钢笔便宜6元钱,两种笔的单价各是多少元?2、师、徒二人加工同样多的零件,师傅用了3小时,徒弟用了5小时,已知师傅每小时比徒弟多做6个零件.问:师徒二人各做了多少个零件?【﹡例5】慧月和慧琴上街买铅笔和练一练本.慧月买6支铅笔和7本练一练本,共用去2.37元.问铅笔和练一练本的单价是多少元?【﹡试一试】1、2份点心和1杯饮料共26元;1份点心和3杯饮料共18元.1份点心和1杯饮料各需多少元?2、甲、乙两人加工某种零件,甲做15小时,乙做8小时,共加工1600个;甲做10小时,乙做7小时,共加工1100个.甲、乙两人每小时各加工多少个零件?课外作业家长签名:1、○+○+○+△+△=14,△=○+○;那么○=_________,△=__________2、2支钢笔的价钱与3支圆珠笔的价钱相等,2支圆珠笔的价钱与8支铅笔的价钱相等,那么买16支铅笔的钱可买多少支钢笔?3、用两种汽车运货,如果2辆大汽车的载重正好等于3辆小汽车的载重,且5辆大汽车和6辆小汽车一次共运54吨货.求每辆大汽车比每辆小汽车多装几吨货?4、糖果店卖的水果糖、奶糖、巧克力糖有下列关系:买1.5千克奶糖的钱和买2.4千克水果糖的钱相等;买2千克巧克力糖的钱与买3千克奶糖的钱相等.如果用买4.5千克巧克力糖的钱,可买水果糖多少千克?5、买2条床单和三条毛巾只用210元,买同样的3条床单和2条毛巾只用280元.买一条床单用多少钱?买一条毛巾用多少钱?6、汽车从甲地开往乙地,行完全程用了3小时,返回时用了4小时,已知这辆汽车去时比返回时每小时快12千米.甲、乙两地相距多少千米?﹡7、加工10件同样的上衣和4条同样的裤子需用布19.4米,加工6件同样的上衣和5条同样的裤子需用布14.5米,加工一件上衣和一条裤子各需用布多少米?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2 3 4 5 6 7
8 9
七 奇数与偶数(B) 年级 班 姓名 得分
一、填空题
1.五个连续奇数的和是85,其中最大的数是_____,最小的数是_____.
2. 三个质数 、 、 ,如果 > >1, + = ,那么 =_____.
3. 已知a 、b 、c 都是质数,且a +b =c ,那么a ⨯b ⨯c 的最小值是_____.
4. 已知a 、b 、c 、d 都是不同的质数,a +b +c =d ,那么a ⨯b ⨯c ⨯d 的最小值是_____.
5. a 、b 、c 都是质数,c 是一位数,且a ⨯b +c =1993,那么a +b +c =_____.
6. 三个质数之积恰好等于它们和的7倍,则这三个质数为_____.
7. 如果两个两位数的差是30,下面第_____种说法有可能是对的.
(1)这两个数的和是57.
(2)这两个数的四个数字之和是19.
(3)这两个数的四个数字之和是14.
8. 一本书共186页,那么数字1,3,5,7,9在页码中一共出现了_____次.
9. 筐中有60个苹果,将它们全部取出来,分成偶数堆,使得每堆的个数相同,则有_____种分法.
10. 从1至9这九个数字中挑出六个不同的数,填在下图所示的六个圆圈内,使任意相邻两个圆圈内数字之和都是质数.那么最多能找出_____种不同的挑法来.(六个数字相同,排列次序不同算同一种)
二、解答题
11. 在一张9行9列的方格纸上,把每个方格所在的行数和列数加起来,填在这个方格中,例如a =5+3=8.问:填入的81个数字中,奇数多还是偶数多?
1 2 3 4 5 6 7 8 9
12. 能不能在下式:
1 2 3 4 5 6 7 8 9=10的每个方框中,分别填入加号或
减号,使等式成立?
13. 在八个房间中,有七个房间开着灯,一个房间关着灯.如果每次同时拨动四个房间的开关,能不能把全部房间的灯关上?为什么?
14. 一个工人将零件装进两种盒子中,每个大盒子装12只零件,每个小盒子装5只零件,恰好装完.如果零件一共是99只,盒子个数大于10,这两种盒子各有多少个?
———————————————答案——————————————————————
1. 21,13
这五个数的中间数85÷5=17,可知最大数是21,最小数是13.
2. 2
因为 > >1, + = ,所以 > > .这里的关键是明确质数除
2以外都是奇数,假如不等于2,则它一定是奇数,那么 + =偶数,显然这个偶数不会是质数.所以, 一定等于2.
3. 30
因为所有的质数除2以外都是奇数,题中a+b=c,仿上题,由数的奇偶性可以推知a=2,b,c都是质数,根据a⨯b⨯c的值最小的条件,可推知b=3,c=5,所以
a⨯b⨯c的最小值是2⨯3⨯5=30.
4. 3135
在所有质数中除2是偶数以外,其余的都是奇数,如果a,b,c,d中有一个为2,不妨设a=2,则b,c,d均为奇数,从而a+b+c为偶数,不符合条件a+b+c=d,所以a,b,c,d都是奇数.再根据a⨯b⨯c⨯d的值最小的条件,可推知a=3,b=5,c=11,d=19.因此a⨯b⨯c⨯d的最小值为
3⨯5⨯11⨯19=3135.
5. 194
由a⨯b+c=1993知,a⨯b与c奇偶性不同.当a⨯b为偶数,c为奇数时,c的值为3、5或7,不妨设b为2,则a的值为995,994或993.因为995、994、993都不是质数,所以不合题意舍去.当a⨯b为奇数,c为偶数
时,c=2,a⨯b=1991,1991=11⨯181,从而a的值是11(或181),b的值是181(或11).2、11、181均为质数符合题意.所以a+b+c=2+11+181=194.
6. 3,5,7
依题意,设三个质数为X,Y,Z,则X+Y+Z=
7
Z ⨯
⨯Y
X
,这样三个质数必定有一个质数是7.如果X=7,则Y⨯Z=Y+Z+7,即Y⨯Z-(Y+Z)=7.
根据数的奇偶性:偶-奇=奇;奇-偶=奇,进行讨论.
当Y⨯Z为偶数, Y+Z为奇数时,则Y(或Z)必定是2,从而有
2⨯3-(2+3)=1,2⨯5-(2+5)=3,2⨯11-(2+11)=9,……均不符合条件.
当Y⨯Z为奇数, Y+Z为偶数时,则Y、Z均为奇数.若Y=3,Z=5,则3⨯5-(3+5)=7,符合条件.
所以,这三个质数分别是3,5和7.
[注]以上五题(题2—题6)都是质数与奇偶数的性质求解“小、巧、活”的例子.尤其要注意2是所有质数中唯一的偶数这一特征.命题者常在此涉足.
7. (2)
因为两个两位数的差是30,所以这两个两位数一定都是奇数,或都是偶数(因为只有偶数-偶数=偶数、奇数-奇数=偶数),且偶数+偶数=偶数,奇数+奇数=偶数,所以第(1)种说法显然不对.因为差是30,所以它们的个位数字相同,那么相加一定是偶数;又差的十位数字是奇数,故两个两位数的十位数字一定是一奇一偶.通过以个分析,可得出:两个两位数的四个数字相加之和肯定是奇数,而不是偶数,所以第(3)种说法也是错的.第(2)种说法有可能对.
[注]在排除第一种说法不对时,也可直接运用整数的奇偶性质:两个整数的和与差有相同的奇偶性,即
设a,b为整数,那么a+b与a-b有相同的奇偶性.
证明(a+b)+(a-b)=2a为一偶数,所以a+b与a-b的奇偶性相同.
这条性质在处理奇偶性问题中用途很广.
8. 270
因为1,3,5,7,9为连续奇数,分别算出186页总页码中个位、十位、百位上出现的奇数次数,再相加后所得的奇数总和即为数字1,3,5,7,9在页码中一共出现的总次数.
从1—186,个位上出现的奇数为186÷2=93(次);
从10—186,十位上出现的奇数为10⨯9=90(次);
从100—186,百位上出现的奇数为186-100+1=87(次).
所以,186页书中1,3,5,7,9在页码中一共出现了
93+90+87=270(次)
9. 8
由于“每堆个数相同”且“分成偶数堆”知本题是要求60的偶因子的个数,因为每个偶因子对应于一种符合条件的分法,60的偶因子有:2,4,6,10,12,20,30和60,所以有8种分法.
10. 17
在所有质数中,除2是偶数外,其余是奇数.由所给出的数字,根据数的奇偶性质可知,六个数必定三偶三奇间隔排列。
这样,按三个偶数的4种排列列举如下:
2
2
2
4 4
4
6
2___4___6___: 2,1,4,7,6,5, 2,3,4,1,6,5, 2,3,4,7,6,5,
2,3,4,7,6,1, 2,9,4,1,6,5, 2,9,4,7,6,1, 2,9,4,7,6,5,共七种; 2 4 8___: 2,1,4,3,8,5, 2,1,4,3,8,9, 2,1,4,9,8,5,
2,3,4,9,8,5共四种;
2___6___8___: 2,1,6,5,8,3, 2,1,6,5,8,9两种;
4___6___8___: 4,1,6,5,8,3, 4,1,6,5,8,9,
4,7,6,5,8,3, 4,7,6,5,8,9共四种.
所以,最多能找出17种不同的排列.
[注]也可以按照三个奇数的10种排列(例如:1___3___5___,1___3___7___,
1___3___9___,……)将偶数2,4,6,8填入空位,同样也有17种不同的排列.实质上,我们只要把上述的17种排列的每一种,按适当的轮换方法即得.例如, 2,1,4,3,8,5 1,4,3,8,5,2.
11. 根据自然数和的奇偶性:
奇数+奇数=偶数,
偶数+偶数=偶数,
奇数+偶数=奇数,
知,第一行填的数中偶数比奇数多1个,
第二行填的数中偶数比奇数少1个,
第三得填的数中偶数比奇数多1个,
第四行填的数中偶数比奇数少1个,
……
可见,前8行中奇数和偶数的个数一样多,而第九行中偶数多。
所以,81个数字中偶数多。
12. 由题7评注知,在一个只有加减法运算的自然数式子中,如果把式子中减法运算改成加法运算,那么所得结果的奇偶性不变.因此无论在给出的式子每个方框中怎样填加减号,所得结果的奇偶性,与在每个方框中都填入加号所得结果的奇偶性一样.但是,每个方框中都填入加号所得结果是45,是个奇数.而式子的右边是10,是个偶数.也就是说从奇偶性上判断,要使题中式子成立是不可能的.
13. 不能.
先看亮着灯的房间,每个房间的开关拨奇数次为关灯,奇数个奇数之和为奇数,需拨奇数次.
再看关着灯的那个房间,需拨偶数次为关灯.
所以,为使全部房间关灯,拨动开关总次数为奇数.
现在每次只能拨动四只开关(偶数次),所以,拨动的总次数只能为偶数. 综合以上两方面知,不能把全部房间的灯关上.
14. 根据每个大盒子装12只零件,不管大盒子个数是奇数还是偶数,由12⨯偶=偶,12⨯奇=偶,可知大盒子所装零件总只数是偶数,根据99-大盒子所装零件总只数=小盒子所装零件总只数可知,小盒子所装零件总只数是奇数,且能被5整除.
6 6
8 8 8
这样,小盒子所装零件总只数的个位数必定是5,则大盒子所装零件总只数的个位数必定是4,由2⨯2=4,2⨯7=14,那么大盒子个数是2个或7个两种可能,相应小盒子个数是15或3个.
因为7+3=10(不合题意舍去),所以这个工人用了2个大盒子,15个小盒子.。