2015-2016年江西省宜春市丰城中学八年级(上)期末数学试卷和解析答案
2015-2016人教版八年级数学第一学期期末考试试卷及答案
2015-2016学年度第一学期八年级数学期末考试试卷一、精心选一选(本大题共8小题。
每小题3分,共24分)下面每小题均给出四个选项,请将正确选项的代号填在题后的括号内. 1.下列运算中,计算结果正确的是( ).A. 236a a a ⋅=B. 235()a a =C. 2222()a b a b =D. 3332a a a += 2.23表示( ).A. 2×2×2B. 2×3C. 3×3D. 2+2+2 3.在平面直角坐标系中。
点P (-2,3)关于x 轴的对称点在( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是( ).A. 3B. 5C. 7D. 95.在如图中,AB = AC 。
BE ⊥AC 于E ,CF ⊥AB 于F ,BE 、CF 交于点D ,则下列结论中不正确的是( ). A. △ABE ≌△ACFB. 点D 在∠BAC 的平分线上C. △BDF ≌△CDED. 点D 是BE的中点 6.在以下四个图形中。
对称轴条数最多的一个图形是( ).7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是( ).D.C.B.A.8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是( ).FEDC BAA. B. C. D.二、细心填一填(本大题共6小题,每小题3分,共18分)9.若单项式23m a b 与n ab -是同类项,则22m n -= .l0.中国文字中有许多是轴对称图形,请你写出三个具有轴对称图形的汉字 . 11.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.12.如图,已知方格纸中的每个小方格都是相同的正方形.∠AOB 画在方格纸上,请在小方格的顶点上标出一个点P 。
使点P 落在∠AOB 的平分线上.BOA13.数的运算中有一些有趣的对称,请你仿照等式“12×231=132×21”的形式完成:(1)18×891 = × ;(2)24×231 = × .14.下列图案是由边长相等的灰白两色正方形瓷砖铺设的地面,则按此规律可以得到:(1)第4个图案中白色瓷砖块数是 ; (2)第n 个图案中白色瓷砖块数是 .第1个图案 第2个图案 第3个图案三、耐心求一求(本大题共4小题.每小题6分。
【期末试卷】江西省宜春市丰城市2015-2016学年八年级下期末数学试卷含答案解析
2015-2016学年江西省宜春市丰城市八年级(下)期末数学试卷一、精心选择,一锤定音(每小题3分共18分)1.下列二次根式中,最简二次根式是()A.B.C.D.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等3.三角形的三边长分别为a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列函数的图象中,不经过第一象限的是()A.y=x+3 B.y=x﹣3 C.y=﹣x+1 D.y=﹣x﹣15.某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分C.2200元、2200元D.2200元、2300元6.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.二、细心填一填(每小题3分共18分)7.函数y=中自变量x的取值范围是.8.若把一次函数y=2x﹣3,向上平移3个单位长度,得到图象解析式是.9.若x<2,化简+|3﹣x|的正确结果是.10.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为.11.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥0的解集为.12.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.三、用心做一做13.计算: +2﹣(﹣)14.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.15.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.16.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?17.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.四.本大题共四小题(每小题8分,共32分)18.如图,E、F分别是菱形ABCD的边AB、AC的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.19.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.20.“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,名选手的各项成绩见下表:()笔试成绩的极差是多少?(2)写出说课成绩的中位数、众数;(3)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?21.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两车同时到达B地.两车的速度始终保持不变,设两车出发xh后,甲、乙距离A地的距离分别为y1(km)和y2(km),它们的函数图象分别是折线OPQR和线段OR.(1)求A、C两地之间的距离;(2)甲、乙两车在途中相遇时,距离A地多少千米?五.本大题共二小题(22题10分,23题12分)22.现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上..思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为a,2a、a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:.探索创新:(3)若△ABC三边的长分别为、、2(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:.23.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.2015-2016学年江西省宜春市丰城市八年级(下)期末数学试卷参考答案与试题解析一、精心选择,一锤定音(每小题3分共18分)1.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、=,被开方数含分母,不是最简二次根式;故A选项错误;B、=,被开方数为小数,不是最简二次根式;故B选项错误;C、,是最简二次根式;故C选项正确;D.=5,被开方数,含能开得尽方的因数或因式,故D选项错误;故选C.2.矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等【考点】矩形的性质;菱形的性质.【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.3.三角形的三边长分别为a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】勾股定理的逆定理.【分析】因为a、b、c,为三角形的三边长,可化简:(a+b)2﹣c2=2ab,得到结论.【解答】解:∵(a+b)2﹣c2=2ab,∴a2+b2=c2.所以为直角三角形.故选B.4.下列函数的图象中,不经过第一象限的是()A.y=x+3 B.y=x﹣3 C.y=﹣x+1 D.y=﹣x﹣1【考点】一次函数图象与系数的关系.【分析】根据k,b的取值范围确定图象在坐标平面内的位置,从而求解.【解答】解:A、y=x+3经过第一、二、三象限,A不正确;B、y=x﹣3经过第一、三、三象限,B不正确;C、y=﹣x+1经过第一、二、四象限,C不正确;D、y=﹣x﹣1经过第二、三、四象限,D正确;故选:D.5.某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分C.2200元、2200元D.2200元、2300元【考点】众数;中位数.【分析】根据中位数和众数的定义求解即可;中位数是将一组数据从小到大重新排列,找出最中间的两个数的平均数,众数是一组数据中出现次数最多的数.【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是÷2=2400;故选A.6.均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.【考点】函数的图象.【分析】根据图象可得水面高度开始增加的慢,后来增加的快,从而可判断容器下面粗,上面细,结合选项即可得出答案.【解答】解:因为水面高度开始增加的慢,后来增加的快,所以容器下面粗,上面细.故选B.二、细心填一填(每小题3分共18分)7.函数y=中自变量x的取值范围是x≤1.5且x≠﹣1.【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:3﹣2x≥0且x+1≠0,解得:x≤1.5且x≠﹣1.故答案为x≤1.5且x≠﹣1.8.若把一次函数y=2x﹣3,向上平移3个单位长度,得到图象解析式是y=2x.【考点】一次函数图象与几何变换.【分析】根据平移法则上加下减可得出解析式.【解答】解:由题意得:平移后的解析式为:y=2x﹣3+3=2x.故答案为:y=2x.9.若x<2,化简+|3﹣x|的正确结果是5﹣2x.【考点】二次根式的性质与化简;绝对值.【分析】先根据x的取值范围,判断出x﹣2和3﹣x的符号,然后再将原式进行化简.【解答】解:∵x<2,∴x﹣2<0,3﹣x>0;∴+|3﹣x|=﹣(x﹣2)+(3﹣x)=﹣x+2+3﹣x=5﹣2x.10.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为3cm.【考点】三角形中位线定理;平行四边形的性质.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF是△OAB 的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3cm.11.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥0的解集为x≥﹣1.【考点】一次函数与一元一次不等式.【分析】观察函数图形得到当x≥﹣1时,一次函数y=ax+b的函数值不小于0,即ax+b≥0.【解答】解:根据题意得当x≥﹣1时,ax+b≥0,即不等式ax+b≥0的解集为x≥﹣1.故答案为:x≥﹣1.12.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(4,3)(1,3)(9,3).【考点】等腰三角形的判定;坐标与图形性质;矩形的性质.【分析】因为点D是OA的中点,所以OD=5,又因为△ODP是腰长为5的等腰三角形,过P作OD垂线,与OD交于Q点,则分两种情况讨论:OP=5或PD=5,再计算求得结果.【解答】解:由题意得:OD=5∵△ODP是腰长为5的等腰三角形∴OP=5或PD=5过P作OD垂线,与OD交于Q点∴PQ=OC=3∴如果OP=5,那么直角△OPQ的直角边OQ=4,则点P的坐标是(4,3);如果PD=5,那么QD=4,OQ=1,则点P的坐标是(1,3);如果PD=5,那么QD=4,OD=5,OQ=9,则点P的坐标是(9,3).三、用心做一做13.计算: +2﹣(﹣)【考点】二次根式的加减法.【分析】分别化简二次根式,进而合并求出即可.【解答】解: +2﹣(﹣)=2+2﹣3+=3﹣.14.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.【考点】作图—复杂作图.【分析】连结AC和BD,它们相交于点O,连结OM、ON,则△OMN为等腰三角形,如图1;连结AN和BM,它们相交于点O,则△OMN为等腰三角形,如图2.【解答】解:如图1、2,△OMN为所作.15.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.则S四边形ABCD故四边形ABCD的面积是36.16.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?【考点】待定系数法求一次函数解析式;一次函数的图象.【分析】(1)设一次函数解析式为y=kx+b,将已知两点坐标代入求出k与b的值,即可确定出解析式;(2)做出函数图象,如图所示,根据增减性即可得到结果.【解答】解:(1)设一次函数解析式为y=kx+b,将(1,1)与(﹣1,﹣3)代入得,解得:k=2,b=﹣1,则一次函数解析式为y=2x﹣1;(2)如图所示,y随着x的增大而增大.17.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA,判定△AOE≌△COF,继而证得OE=OF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.四.本大题共四小题(每小题8分,共32分)18.如图,E、F分别是菱形ABCD的边AB、AC的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.【考点】菱形的判定与性质;勾股定理.【分析】(1)利用菱形的性质结合勾股定理得出OB的长即可得出DB的长;(2)利用三角形中位线定理进而得出四边形AEOF是平行四边形,再利用菱形的判定方法得出即可.【解答】(1)解:∵四边形ABCD是菱形,∴AC⊥DB,AO=AC,BO=DB,∵AC=6,∴AO=3,∵AB=5,∴OB==4,∴DB=8;(2)证明:∵E,O分别是BA,BD中点,∴OE AD,同理可得:AF AD,∴四边形AEOF是平行四边形,又∵AB=AD,∴AE=AF,∴平行四边形AEOF是菱形.19.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【考点】待定系数法求一次函数解析式;一次函数与一元一次不等式;两条直线相交或平行问题.【分析】(1)利用待定系数法把点A(5,0),B(1,4)代入y=kx+b可得关于k、b得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可;(3)根据C点坐标可直接得到答案.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.20.“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,66名选手的各项成绩见下表:(2)写出说课成绩的中位数、众数;(3)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?【考点】加权平均数;中位数;众数;极差.【分析】(1)根据极差的公式:极差=最大值﹣最小值求解即可.(2)根据中位数和众数的概念求解即可;(3)根据加权平均数的计算方法求出5号和6号选手的成绩,进行比较即可.【解答】解:(1)笔试成绩的最高分是90,最低分是64,∴极差=90﹣64=26.(2)将说课成绩按从小到大的顺序排列:78、85、85、86、88、94,∴中位数是(85+86)÷2=85.5,85出现的次数最多,∴众数是85.(3)5号选手的成绩为:65×0.2+88×0.3+94×0.5=86.4分;6号选手的成绩为:84×0.2+92×0.3+85×0.5=86.9分.∵序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,∴3号选手和6号选手,应被录取.21.已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两车同时到达B地.两车的速度始终保持不变,设两车出发xh后,甲、乙距离A地的距离分别为y1(km)和y2(km),它们的函数图象分别是折线OPQR和线段OR.(1)求A、C两地之间的距离;(2)甲、乙两车在途中相遇时,距离A地多少千米?【考点】一次函数的应用.【分析】(1)由图象和题意可得,甲行驶的总的路程,从而可以求得甲接到电话返回C处的距离,从而可以得到A、C两地之间的距离;(2)根据题意和图象,可以得到PQ的解析式和OR的解析式,从而可以求得两车相遇时的时间和距离A地的距离.【解答】解:(1)由图象可知,甲车2h行驶的路程是180km,可以得到甲行驶的速度是180÷2=90km/h,甲行驶的总路程是:90×5=450km,故甲从接到电话到返回C处的路程是:÷2=75km,故A、C两地之间的距离是:180﹣75=105km,即A、C两地之间的距离是105km;(2)由图象和题意可得,甲从接到电话返回C处用的时间为:(5﹣)÷2=小时,故点Q的坐标为(,105),设过点P(2,180),Q(,105)的直线解析式为y=kx+b,则解得,即直线PQ的解析式为y=﹣90x+360,设过点O(0,0),R(5,300)的直线的解析式为y=mx,则300=5m,得m=60,即直线OR的解析式为y=60x,则,解得.即甲、乙两车在途中相遇时,距离A地144千米.五.本大题共二小题(22题10分,23题12分)22.现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上. 2.5.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为a,2a、a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:3a2.探索创新:(3)若△ABC三边的长分别为、、2(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:3mn.【考点】作图—应用与设计作图;勾股定理.【分析】(1)把△ABC所在长方形画出来,再用矩形的面积减去周围多余三角形的面积即可;(2)a是直角边长为a、a的直角三角形的斜边;2a是直角边长为4a,2a的直角三角形的斜边;a是直角边长为a,5a的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;(3)结合(1),(2)易得此三角形的三边分别是直角边长为n,4m的直角三角形的斜边;直角边长为2m,2n的直角三角形的斜边;直角边长为2m,n的直角三角形的斜边.同样把它整理为一个矩形的面积减去三个直角三角形的面积.【解答】解:(1)S△ABC=4×2﹣×4×1﹣×1×1﹣×2×3=2.5,故答案为:2.5;(2)如图所示:S△ABC=5a×2a﹣×a×a﹣×2a×4a﹣×a×5a=3a2,故答案为:3a2;(3)如图所示:S△ABC=4m×2n﹣×2m×2n﹣×2m×n﹣×4m×n=3mn,故答案为:3mn.23.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.【考点】四边形综合题.【分析】(1)作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;(2)同(1)的方法判断出△ADE≌△CDG得到CG=AE,即:CE+CG=CE+AE=AC=4;(3)由正方形的性质得到∠DAE=45°,表示出AM=EM,再表示出DM,再用勾股定理求出DE2.【解答】解:(1)如图,作EM⊥BC,EN⊥CD∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,在△DEM和△FEM中,,∴△DEM≌△FEM,∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为4,∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,∴△ADE≌△CDG,∴AE=CE.∴CE+CG=VE+AE=AC=AB=×2=4,(3)如图,∵正方形ABCD中,AB=2,∴AC=4,过点E作EM⊥AD,∴∠DAE=45°,∵AE=x,∴AM=EM=x,在Rt△DME中,DM=AD﹣AM=4﹣x,EM=x,根据勾股定理得,DE2=DM2+EM2=(4﹣x)2+(x)2=x2﹣4x+16,∵四边形DEFG为正方形,=DE2=x2﹣4x+16.∴S=S正方形DEFG2016年7月30日。
2015-2016学年江西省宜春市丰城中学八年级上学期期末数学试卷(带解析)
绝密★启用前2015-2016学年江西省宜春市丰城中学八年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:129分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、直线y=﹣x+3向上平移m 个单位后,与直线y=﹣2x+4的交点在第一象限,则m 的取值范围( ) A .﹣2<m <1B .m >﹣1C .﹣1<m <1D .m <12、下列定义一种关于n 的运算:①当n 是奇数时,结果为3n+5 ②n 为偶数时结果是(其中k 是使是奇数的正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是( ) A .1B .2C .7D .83、一次函数y=mx+n 与y=mnx (mn≠0),在同一平面直角坐标系的图象是( )A .B .C .D .4、若顺次连接四边形ABCD 各边的中点所得四边形是矩形,则四边形ABCD 一定是( ) A .矩形 B .菱形C .对角线互相垂直的四边形D .对角线相等的四边形5、如图所示,在Rt △ABC 中,∠A=90°,BD 平分∠ABC ,交AC 于点D ,且AB=4,BD=5,则点D 到BC 的距离是( )A .2B .3C .4D .56、若实数a 满足|a|=﹣a ,则一定等于() A .2aB .0C .﹣2aD .﹣a第II卷(非选择题)二、填空题(题型注释)7、Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD的长为.8、设,其中a为正整数,b在0,1之间,则= .9、如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B 点,则最少要爬行 cm.10、一次函数y=mx+n的图象经过一、三、四象限,则化简+所得的结果.11、如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为 cm2.12、如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC 于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.13、已知x=,y=,则x 2y+xy 2= .14、已知函数y=,则自变量x 的取值范围是 .三、计算题(题型注释)15、某超市计划购进一批甲、乙两种玩具,若甲种玩具的进价为每件30元,乙种玩具的进价为每件27元;(1)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受七折优惠;若购进x (x >0)件甲种玩具需要花费y 元,请你求出y 与x 的函数关系;(2)在(1)的条件下,超市决定在甲、乙两种玩具中选购一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.16、已知直线y=﹣3x+6与x 轴交于A 点,与y 轴交于B 点. (1)求A ,B 两点的坐标;(2)求直线y=﹣3x+6与坐标轴围成的三角形的面积.17、计算:.四、解答题(题型注释)18、如图所示,在平面直角坐标系中,已知一次函数y=x+1的图象与x 轴,y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD .(1)求边AB 的长; (2)求点C ,D 的坐标;(3)在x 轴上是否存在点M ,使△MDB 的周长最小?若存在,请求出点M 的坐标;若不存在,请说明理由.19、准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上的M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上的N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 的面积.20、化简+﹣.21、如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有 条面积等分线,平行四边形有 条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等分线; (3)如图②,四边形ABCD 中,AB 与CD 不平行,AB≠CD ,且S △ABC <S △ACD ,过点A 画出四边形ABCD 的面积等分线,并写出理由.22、已知a ,b ,c 是△ABC 的三边,且a 2+b 2+c 2﹣12a ﹣16b ﹣20c+200=0,试判断△ABC 的形状.23、《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70km/h”,一辆小汽车在一条城市街道上由西向东行驶,在距路边25m 处有“车速检测仪O”,测得该车从北偏西60°的A 点行驶到北偏西30°的B 点,所用时间为1.5s .(1)试求该车从A 点到B 点的平均速度; (2)试说明该车是否超过限速.24、如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF=DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.参考答案1、C2、D3、C4、C5、B6、C7、BD的长等于4或2或.8、6﹣7.9、510、m﹣2n.11、4012、313、2.14、x≥﹣且x≠2.15、(1)y=;(2)购买数量为30件时,甲乙玩具花钱一样多;购买数量在20到30件时,选乙种玩具;购买数量超过30件时,选甲种玩具16、(1)A(2,0),B(0,6);(2)6.17、.18、(1);(2)C(﹣1,3),D(﹣3,2);(3)M(﹣1,0).19、(1)见解析;(2).20、见解析21、(1)无数;无数;(2)见解析;(3)见解析22、△ABC是直角三角形.23、(1)(m/s).(2)小汽车没有超过限速.24、(1)见解析;(2)平行四边形ADCF是菱形.【解析】1、试题分析:画出直线y=﹣x+3和直线y=﹣2x+4的图象,再由交点在第一象限,得出m的取值范围.解:如图所示:把直线y=﹣x+3向上平移m个单位后,与直线y=﹣2x+4的交点在第一象限,则m的取值范围是:﹣1<m<1.故选:C.考点:一次函数图象与几何变换.2、试题分析:把n值代入进行计算第一次,结果是1352,第二次,所以k=3,结果是169,以此类推,第三次代入计算结果是512,第四次代入k只能等于9,计算结果是1,第五次代入计算结果是8,第六次是1,此后计算结果8和1循环.解:第一次:3×449+5=1352,第二次:,根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.故选D.考点:代数式求值.3、试题分析:由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.考点:一次函数的图象.4、试题分析:此题要根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.考点:矩形的判定;三角形中位线定理.5、试题分析:过E作DE⊥BC于E,根据勾股定理求出AD,根据角平分线性质求出AD=DE=3,即可得出答案.解:如图:过E作DE⊥BC于E,∵∠A=90°,BD平分∠ABC,∴AD=DE,∵在Rt△ABC中,∠A=90°,AB=4,BD=5,由勾股定理得:AD=3,∴DE=3,即点D到BC的距离是3,故选B.考点:角平分线的性质;勾股定理.6、试题分析:根据|a|=﹣a,即可确定a的范围,再根据二次根式的性质即可化简.解:因为|a|=﹣a,所以a≤0,故|a﹣|=|a﹣(﹣a)|=|2a|=﹣2a.故选:C.考点:二次根式的性质与化简.7、试题分析:分情况讨论,①以A为直角顶点,向外作等腰直角三角形DAC;②以C 为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.解:①以A为直角顶点,向外作等腰直角三角形DAC,∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°,又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2×=,在Rt△BAC中,BC==2,∴BD===2;③以AC为斜边,向外作等腰直角三角形ADC,∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=ACsin45°=2×=,又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°,又∵在Rt△ABC中,BC==2,∴BD===.故BD的长等于4或2或.考点:勾股定理.8、试题分析:先把化简求出a+b的值,再根据a为正整数,b在0,1之间求出符合条件的a的值,求出对应的b的值,代入原式进行计算即可.解:∵===5﹣.∴a+b=5﹣.∵a为正整数,b在0,1之间,∴a=3,b=2﹣,∴==6﹣7.故答案为:6﹣7.考点:二次根式的化简求值.9、试题分析:要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.解:将圆柱展开,侧面为矩形,如图所示:∵底面⊙O的周长为6cm,∴AC=3cm,∵高BC=4cm,∴AB==5cm.故答案为:5.考点:平面展开-最短路径问题.10、试题分析:根据题意可得m>0,n<0,再进行化简即可.解:∵一次函数y=mx+n的图象经过一、三、四象限,∴m>0,n<0,∴m﹣n>0,∴+=|m﹣n|+|n|=m﹣n﹣n=m﹣2n.故答案是:m﹣2n.考点:一次函数图象与系数的关系.11、试题分析:由▱ABCD的周长为36cm,可得AB+BC=18cm①,又由过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,由等积法,可得4AB=5BC②,继而求得答案.解:∵▱ABCD的周长为36cm,∴AB+BC=18cm①,∵过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,∴4AB=5BC②,由①②得:AB=10cm,BC=8cm,∴▱ABCD的面积为:AB•DE=40(cm2).故答案为:40.考点:平行四边形的性质.12、试题分析:根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.考点:矩形的性质.13、试题分析:首先把所求的式子分解因式,然后代入数值计算即可.解:原式=xy(x+y)=(+)(﹣)×2=2.故答案是:2.考点:二次根式的化简求值;因式分解-提公因式法.14、试题分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解:根据题意得,2x+1≥0且x﹣2≠0,解得x≥﹣且x≠2.故答案为:x≥﹣且x≠2.考点:函数自变量的取值范围.15、试题分析:(1)分两种情况:不超过20件时,每件30元可列表达式;超过20件时,总花费=前20件的总费用+超出部分的费用,列式即可;(2)由(1)知,超过20件时选购甲的费用为21x+180,选购乙的费用为27x,比较大小可得x的取值情况.解:(1)当0<x≤20时,y=30x,当x>20时,y=30×20+30×0.7(x﹣20)=21x+180,即y=;(2)根据题意,购买x件甲玩具需(21x+180)元,购买x件乙玩具需27x元,若21x+180<27x,即x>30时,选甲玩具;若21x+180=27x,即x=30时,甲、乙玩具花钱一样多;若21x+180>27x,即x<30时,选乙玩具;综上,购买数量为30件时,甲乙玩具花钱一样多;购买数量在20到30件时,选乙种玩具;购买数量超过30件时,选甲种玩具;考点:一次函数的应用.16、试题分析:(1)分别令x=0、y=0求解即可得到与坐标轴的交点;(2)根据三角形的面积公式列式计算即可得解.解:(1)当x=0时,y=﹣3x+6=6,当y=0时,0=﹣3x+6,x=2.所以A(2,0),B(0,6);(2)直线与坐标轴围成的三角形的面积=S△ABO=×2×6=6.考点:一次函数图象上点的坐标特征.17、试题分析:先把二次根式化简后再计算.解:原式=4+2﹣﹣,=.考点:实数的运算.18、试题分析:(1)在直角三角形AOB中,由OA与OB的长,利用勾股定理求出AB的长即可;(2)过C作y轴垂线,过D作x轴垂线,分别交于点E,F,可得三角形CBE与三角形ADF与三角形AOB全等,利用全等三角形对应边相等,确定出C与D坐标即可;(3)作出B关于x轴的对称点B′,连接B′D,与x轴交于点M,连接BD,BM,此时△MDB周长最小,求出此时M的坐标即可.解:(1)对于直线y=x+1,令x=0,得到y=1;令y=0,得到x=﹣2,∴A(﹣2,0),B(0,1),在Rt△AOB中,OA=2,OB=1,根据勾股定理得:AB==;(2)作CE⊥y轴,DF⊥x轴,可得∠CEB=∠AFD=∠AOB=90°,∵正方形ABCD,∴BC=AB=AD,∠DAB=∠ABC=90°,∴∠DAF+∠BAO=90°,∠ABO+∠CBE=90°,∵∠DAF+∠ADF=90°,∠BAO+∠ABO=90°,∴∠BAO=∠ADF=∠CBE,∴△BCE≌△DAF≌ABO,∴BE=DF=OA=2,CE=AF=OB=1,∴OE=OB+BE=2+1=3,OF=OA+AF=2+1=3,∴C(﹣1,3),D(﹣3,2);(3)找出B关于x轴的对称点B′,连接B′D,与x轴交于点M,此时△BMD周长最小,∵B(0,1),∴B′(0,﹣1),设直线B′D的解析式为y=kx+b,把B′与D坐标代入得:,解得:,即直线B′D的解析式为y=﹣x﹣1,令y=0,得到x=﹣1,即M(﹣1,0).考点:一次函数综合题.19、试题分析:(1)根据四边形ABCD是矩形和折叠的性质可得EB∥DF,DE∥BF,根据平行四边形判定推出即可.(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,再根据菱形的面积计算即可求出答案.(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠ABD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)解:∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,故菱形BFDE的面积为:×2=.考点:翻折变换(折叠问题);平行四边形的判定;菱形的性质.20、试题分析:根据二次根式的性质把原式变形,分x<﹣3、﹣3≤x≤1、1<x≤2、x>2四种情况,根据绝对值的性质计算即可.解:原式=+﹣=|x+3|+|x﹣1|+|x﹣2|,当x<﹣3时,原式=﹣(x+3)﹣(x﹣1)+(x﹣2)=﹣x﹣4,当﹣3≤x≤1时,原式=(x+3)﹣(x﹣1)+(x﹣2)=﹣x+2,当1<x≤2时,原式=(x+3)+(x﹣1)+(x﹣2)=3x,当x>2时,原式=(x+3)+(x﹣1)﹣(x﹣2)=x+4.考点:二次根式的性质与化简.21、试题分析:(1)读懂面积等分线的定义,得出三角形的面积等分线;平行四边形的一条对角线所在的直线就是平行四边形的一条面积等分线;(2)由(1)知,矩形的一条对角线所在的直线就是矩形的一条面积等分线;(3)能.过点B作BE∥AC交DC的延长线于点E,连接AE.根据“△ABC和△AEC 的公共边AC上的高也相等”推知S△ABC=S△AEC;然后由“割补法”可以求得S四边形=S△ACD+S△ABC=S△ACD+S△AEC=S△AED.ABCD解:(1)在△ABC中,做BC的中线AD,在这BC上任意取一点E,并将其与顶点A 相连,过中点D做它的平行线,交AC与点F,连接EF,即是△ABC的面积等分线.因为连接EF,设EF与AD交于点O,作中线后,△ABD与△ACD的面积相等,即S四边+S△EOD=S△AFO+S四边形FODC.作平行线后,连接EF,设EF与AD交于点O,则△AOF 形ABEO与△EOD面积相等,那么S四边形ABEO+S△AFO=S△EOD+S四边形FODC,即S四边形ABEF=S△EFC,因此直线EF将△ABC分成了面积相等的两部分,是三角形的面积等分线.因此,按这样的做法,可以作无数条三角形的面积等分线;对于平行四边形应该有无数条,只要过两条对角线的交点的直线都可以把平行四边形的面积分成2个相等的部分;故答案是:无数;无数;(2)如图①所示:连接2个矩形的对角线的交点的直线即把这个图形分成2个相等的部分.即OO′为这个图形的一条面积等分线;(3)如图②所示.能,过点B作BE∥AC交DC的延长线于点E,连接AE.∵BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴有S△ABC=S△AEC,∴S四边形ABCD=S△ACD+S△ABC=S△ACD+S△AEC=S△AED;∵S△ACD>S△ABC,所以面积等分线必与CD相交,取DE中点F,则直线AF即为要求作的四边形ABCD 的面积等分线.考点:面积及等积变换;平行线之间的距离;三角形的面积;平行四边形的性质;矩形的性质.22、试题分析:通过对式子分组分解因式,整理得到a、b、c的值,根据勾股定理的逆定理判定三角形的形状.解:∵a2+b2+c2﹣12a﹣16b﹣20c+200=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴(a﹣6)=0,(b﹣8)=0,(c﹣10)=0,∴a=6,b=8,c=10,∵62+82=102,∴a2+b2=c2,∴△ABC是直角三角形.考点:因式分解的应用.23、试题分析:(1)分别在Rt△AOC、Rt△BOC中,求得AC、BC的长,从而求得AB的长.已知时间则可以根据路程公式求得其速度.(2)将限速与其速度进行比较,若大于限速则超速,否则没有超速.此时注意单位的换算.解:(1)在Rt△AOC中,AC=OC•tan∠AOC=25×tan60°=25m,在Rt△BOC中,BC=OC•tan∠BOC=25×tan30°=m,∴AB=AC﹣BC=(m).∴小汽车从A到B的速度为÷=(m/s).(2)∵70km/h=m/s=m/s,又∵≈<,∴小汽车没有超过限速.考点:解直角三角形的应用-方向角问题.24、试题分析:(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.考点:全等三角形的判定与性质;直角三角形斜边上的中线;菱形的判定.。
2015-2016学年度第一学期期末八年级数学试题(含答案)
2015—2016学年度第一学期期末考试八 年 级 数 学 试 卷试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分,考试时间100分钟。
答题前,学生务必将自己的姓名和学校、班级、学号等填写在答题卷上;答案必须写在答题卷各题目指定区域内的相应位置上;考试结束后,只需将答题卷交回。
第Ⅰ卷(选择题)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项正确) 1、9的平方根是( ).A .3B .-3C .±3D .±32、将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是( ).A .1、2、3B . 2、3、4C . 3、4、5D .4、5、63、下列说法:①实数与数轴上的点一一对应;②2a 没有平方根;③任何实数的立方根有且只有一个;④平方根与立方根相同的数是0和1.其中正确的有( ) A .1个 B .2个 C .3个 D .4个4、下列各组图形,可以经过平移变换由一个图形得到另一个图形的是( ).A B C D5、若一个多边形的内角和等于720°,则这个多边形的边数是( ). A .5 B .6 C .7 D .86、为筹备本班元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( ) A .中位数 B .平均数 C .加权平均数 D .众数7、如图,已知棋子“车”的坐标为(-2,3),棋子“马” 的坐标为 (1,3),则棋子“炮”的坐标为( ).A .(3,1)B .(2,2)C .(3,2)D .(-2,2)8.下列一次函数中,y 的值随着x 值的增大而减小的是( ). A .y =x B .y =-x C .y =x +1 D .y = x -19、如图所示,两张等宽的纸条交叉重叠在一起,则重叠部分ABCD 一定是( ). A .菱形 B .矩形 C .正方形 D .梯形10、一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩下的水的立方数Q (m 3)与放水时间t (时)的函数关系用图表示为( )A B C D(第9题图)(第7题图)第Ⅱ卷(非选择题)二、填空题(本大题共5小题,每小题3分,共15分,将答案填写在题中横线上) 11、比较大小:3(填“>”、“<”、或“=”).12、写出一个你所学过的既是轴对称又是中心对称图形的四边形: .13、如图,是用形状、大小完全相同的等腰梯形密铺成的图案,则这个图案中的等腰梯形的底角(指锐角)是 度.14、 如图,若直线l 1:32-=x y 与l 2:3+-=x y 相交于点P ,则根据图象可得,二元一次方程组⎩⎨⎧=+=-332y x y x 的解是 . 15、 如图,在直角坐标平面内的△ABC 中,点A 的坐标为(0,2),点C 的坐标为(5,5),要使以A 、B 、 C 、D 为顶点的四边形是平行四边形,且点D 坐标在第一象限,那么点D 的坐标是 .三、解答题(本大题共10小题,共75分。
(2021年整理)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】
(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015--2016学年八年级上册期末考试数学试题及答案【新课标人教版】的全部内容。
2015—2016学年度第一学期末测试一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个. A 。
1 B2 C.3 D.4 2。
与3—2相等的是( )A.91B.91- C.9D.-9 3。
当分式21-x 有意义时,x 的取值范围是( )A.x <2 B 。
x >2 C.x ≠2 D 。
x ≥2 4.下列长度的各种线段,可以组成三角形的是( ) A 。
1,2,3B.1,5,5 C 。
3,3,6 D 。
4,5,6 5.下列式子一定成立的是( )A 。
3232a a a =+B 。
632a a a =• C. ()623a a = D 。
326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B 。
7 C.8 D 。
97。
空气质量检测数据pm2。
5是值环境空气中,直径小于等于2。
5微米的颗粒物,已知1微米=0。
000001米,2。
5微米用科学记数法可表示为( )米。
A 。
2。
5×106B.2.5×105C 。
2.5×10—5D 。
2.5×10-68。
已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。
2015-2016学年度上学期期末考试八年级数学试卷(含答案)
2015—2016学年度上学期期末考试八年级数学试题注意事项:1.本卷满分120分,考试时间120分钟。
2.本卷是试题卷,不能答题。
答题必须写在答题卡上。
解题中的辅助线和需标注的角、字母、符号等务必添在答题卡的图形上。
3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答。
★祝考试顺利★一、选择题(每小题3分,共30分)1.下列图形中轴对称图形是()ABCD2,.已知三角形的三边长分别是3,8,x,若x的值为偶数,则x的值有( )A.6个B.5个C.4个D.3个3.一个多边形截去一个角后,形成的多边形的内角和是2520°,则原多边形的边数是( )A.15或16B.16或17C.15或17D.15.16或174.如图,△ACB≌△A'CB',∠BCB'=30°,则∠ACA'的度数为( )A.20°B.30°C.35°D.40°5, 等腰三角形的两边长分别为5cm 和10cm,则此三角形的周长是()A.15cmB. 20cmC. 25cmD.20cm或25cm6.如图,已知∠CAB=∠DAB,则添加下列一个条件不能使△ABC≌△ABD的是( )A.AC=ADB.BC=BDC.∠C=∠DD.∠ABC=∠ABD7.如图,已知在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于( )A.10B.7C.5D.4第9题图 8.若()22316m x x+-+是完全平方式,则m 的值等于( )A. 3B. -5C.7D. 7或-19.如图,在△ABC 中,AB =AC ,BE=CD ,BD =CF ,则∠EDF 的度数为 ( ) A .1452A ︒-∠ B .1902A ︒-∠ C .90A ︒-∠ D .180A ︒-∠第10题 10.如上图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;④ AE =32EC ;⑤ AE =NC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共24分)11.计算:()()312360.1250.2522⨯-⨯⨯- = 12,在实数范围内分解因式:3234a ab - = 13.若2,3,mn xx ==则2m nx+=14.若A (x ,3)关于y 轴的对称点是B (﹣2,y ),则x=__________,y=__________,点A 关于x 轴的对称点的坐标是__________.15,如图,△ABC 中,DE 是AC 的垂直平分线,AE =3 cm ,△ABD 的周长是13 cm ,则△ABC 的周长为 _________第15题图 第17题图16,已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,求此等腰三角形的顶角为17.如图,∠AOB =30°,点P 为∠AOB 内一点,OP =8.点M 、N 分别在OA 、OB 上,则△PMN 周长的最小值为__________2第18题图18. 如图所示,在△ABC 中,∠A =80°,延长BC 到D ,∠ABC 与∠ACD 的平分线相交于A 1点,∠A 1BC 与∠A 1CD 的平分线相交于A 2点,依此类推,∠A 4BC 与∠A 4CD 的平分线相交于A 5点,则∠A 5的度数是 。
2015—2016学年度第一学期初二期末质量检测数学试卷附答案
2015—2016学年度第一学期初二期末质量检测数学试卷2016.1考生须知1.本试卷共6页,共三道大题,30道小题,满分120分.考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4. 在答题卡上,选择题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5. 考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.9的算术平方根是 A .3B .-3C .±3D .±312. 若2x -表示二次根式,则x 的取值范围是 A .x ≤2 B. x ≥ 2 C. x <2 D.x >2 3.若分式21+-x x 的值为0,则x 的值是 A .-2 B .-1 C . 0 D .14.剪纸是我国最古老的民间艺术之一,被列入第四批《人类非物质文化遗产代表作名录》,下列剪纸作品中,是轴对称图形的为5.在下列二次根式中是最简二次根式的是 A.12B.4C. 3D. 86.下列各式计算正确的是A .235+=B .43331-=C .233363⨯=D .2733÷=7.在一个不透明的箱子里,装有3个黄球、5个白球、2个黑球,它们除了颜色之外没有其他区别. 从箱子里随意摸出1个球,则摸出白球的可能性大小为A.0.2B.0.5C. 0.6D. 0.88.如图,一块三角形玻璃损坏后,只剩下如图所示的残片,对图中的哪些A B C D尺规作图:作一个角等于已知角. 已知:∠AO B.求作:一个角,使它等于∠AO B.数据测量后就可到建材部门割取符合规格的三角形玻璃 A .∠A ,∠B ,∠C B .∠A ,线段AB ,∠BC .∠A ,∠C ,线段ABD .∠B ,∠C ,线段AD9.右图是由线段AB ,CD ,DF ,BF ,CA 组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F 的度数为 A .62°B .152°C .208°D .236°10.如图,直线L 上有三个正方形a b c ,,,若a c ,的面积分别为1和9,则b 的面积为A .8B .9 C.10 D.11二、填空题(本题共21分,每小题3分) 11.如果分式23x +有意义,那么x 的取值范围是____________. 12.若实数x y ,满足2-2(3)0x y +-=,则代数式+x y 的值是 .13.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________. 14.若a <1,化简2(1)1a --等于____________.15.已知112x y -=,则分式3232x xy yx xy y+---的值等于____________. 16.如图,在△ABC 中,AB =4,AC =3,AD 是△ABC 的角平分线,则△ABD 与△ACD 的面积之比是 .17.阅读下面材料:在数学课上,老师提出如下问题:G FEDCB Acb aLDCBA ODCBA(1)作射线O ′A ′;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ; (3)以O ′为圆心,OC 为半径作弧C ′E ′,交O ′A ′于C ′; (4)以C ′为圆心,CD 为半径作弧,交弧C ′E ′于D ′; (5)过点D ′作射线O ′B ′.所以∠A ′O ′B ′就是所求作的角.小强的作法如下:老师说:“小强的作法正确.”请回答:小强用直尺和圆规作图'''A O B AOB ∠=∠,根据三角形全等的判定方法中的_______,得出△'''D O C ≌△DOC ,才能证明'''A O B AOB ∠=∠.三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分)18.计算:03982-3-2-+-().19.计算:18312-2⨯÷.20.计算:(21)(63)+⨯-.21.计算: 11(1)1a a a a+-+⋅+.22.如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 边上,且△ABD 是等边三角形.若AB =2,求BC 的长.E'O'D'C'B'A'23.解方程:12211x x x +=-+.24.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.25. 先化简:22211a a a a a a --⎛⎫-÷ ⎪+⎝⎭,然后从-1,0,1,2中选一个你认为合适的a 值,代入求值.26.小红家最近新盖了房子,室内装修时,木工师傅让小红爸爸去建材市场买一块长3m ,宽2.2m 的薄木板用来做家居面,到了市场爸爸看到满足这个尺寸的木板有点大,买还是不买爸爸犹豫了,因为他知道他家门框高只有2m,宽只有1m ,他不知道这块木板买回家后能不能完整的通过自家门框.请你替小红爸爸解决一下难题,帮他算一算要买的木板能否通过自家门框进入室内.(备用图可供做题参考,薄木板厚度可以忽略不计)27.列方程解应用题李明和王军相约周末去怀柔图书馆看书,请根据他们的微信聊天内容求李明乘公交、王军骑自行车每小时各行多少公里?FED CBA 备用图HGF EDCBA门框薄木板28.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且BE AC⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)判断AC与图中的那条线段相等,并证明你的结论;(2)若CE 的长为3,求BG的长.29.已知:在△ABC中,D为BC边上一点,B,C两点到直线AD的距离相等.(1)如图1,若△ABC是等腰三角形,AB=AC,则点D的位置在;(2)如图2,若△ABC是任意一个锐角三角形,猜想点D的位置是否发生变化,请补全图形并加以证明;(3)如图3,当△ABC是直角三角形,∠A=90°,并且点D满足(2)的位置条件,用等式表示线段AB,AC,AD之间的数量关系并加以证明.CBA图1AB C图2AB C图3HG F EDCBA图3lC ABP A 'D30.请阅读下列材料:问题:如图1,点,A B 在直线l 的同侧,在直线l 上找一点P ,使得AP BP +的值最小.小明的思路是:如图2所示,先做点A 关于直线l 的对称点A ',使点',A B 分别位于直线l 的两侧,再连接A B ',根据“两点之间线段最短”可知A B '与直线l 的交点P 即为所求.A 'P BAll图2图1AB请你参考小明同学的思路,探究并解决下列问题: (1)如图3,在图2的基础上,设AA '与直线l 的交点为C ,过点B 作BD ⊥l ,垂足为D . 若1CP =,1AC =,2PD =,直接写出AP BP +的值; (2)将(1)中的条件“1AC =”去掉,换成“4BD AC =-”,其它条件不变,直接写出此时AP BP +的值;(3)请结合图形,求()()223194m m -++-+的最小值.数学试卷答案及评分参考2016.1一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 题 号 1 2 3 4 5 6 7 8 9 10 答 案 ABDBCDBBCC二、填空题(本题共21分,每小题3分) 题 号11121314151617答 案3x ≠-2+323cm -a 143SSS三、解答题(本题共69分,第18-27题,每小题5分,第28题6分,第29题7分,第30题6分) 18.解:原式=3-22-1+………………4分 =2………………………………5分19.解:原式=22412-2÷………………3分 =12-22………………………………4分 =122………………………………5分 20.解:原式=12663-+-………………3分=123-……………………………4分 =233-=3………………………………5分21.解:原式=211a a a-+…………………………3分=2a a…………………………4分a =…………………………5分22.解:∵△ABD 是等边三角形,∴∠B =∠BAD =∠AD B =60°, ∵AB =2,∴BD=AD=2.………………………2分∵∠BAC =90°,∴∠DA C =90°﹣60°=30°.………………………3分∵∠AD B =60°,∴∠C =30°.………………………4分 ∴AD =DC=2,∴B C=BD+DC=2+2=4. ∴BC 的长为4.………………………5分23.解:(1)2(1)2(1)(1)x x x x x ++-=+-. ················································· 2分 2212222x x x x ++-=-. ·························································· 3分 3x =. ································································ 4分 经检验3x =是原方程的解. 所以原方程的解是3x =. ····························································· 5分24.证明:∵AB ∥DE ∴∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分∴BC=DE. …………………………………5分25.解:原式=a 2-2a +1a ÷ 1-a 2a 2+a………………………………1分=(a -1)2a ·a (a +1)(1-a ) (a +1) …………………………3分=1-a …………………………………………………4分 当a=2时,原式=1-a=1-2=-1………………………5分26.解:连结HF ,…………..…………………1分 依题意∵FG=1,GH=2,∴在Rt △FGH 中,根据勾股定理:FH=2222=1+2=5FG HG +…………..…………………2分又∵BC=2.2= 4.84,…………..…………………3分 ∴FH >BC ,…………..…………………4分∴小红爸爸要买的木板能通过自家门框进入室内 …………..…………………5分 27.列方程解应用题解:设王军骑自行车的速度为每小时x 千米,则李明乘车的速度为每小时3x 千米. ………..…………………1分 根据题意,得3012032x x+=………..…………………3分解方程,得20x =………..…………………4分经检验,20x =是所列方程的解,并且符合实际问题的意义. 当20x =时,332060.x =⨯=答:王军骑自行车的速度为每小时20千米,李明乘车的速度为每小时60千米. ………..…5分28.(1)证明:CD AB ⊥∵,∴90BDC ∠=°, ∵45ABC ∠=°,BCD ∴△是等腰直角三角形.BD CD =∴.………..…………………2分 ∵BE AC ⊥于E ,∴90BEC ∠=°,FED CBA 薄木板门框ABCDEF GH备用图ABCDEFGH∵BFD EFC ∠=∠,DBF DCA ∠=∠∴. Rt Rt DFB DAC ∴△≌△.BF AC =∴.………..…………………3分(2)解:BE ∵平分ABC ∠,22.5ABE CBE ∠=∠=︒∴. ∵BE AC ⊥于E ,∴90BEA BEC ∠=∠=°, 又∵BE=BE,Rt Rt BEA BEC ∴△≌△. CE AE =∴.………..…………………4分连结CG .BCD ∵△是等腰直角三角形,BD CD =∴. 又H 是BC 边的中点,C ⊥∴DH B DH ∴垂直平分BC ,BG CG =∴. 22.5EBC ∠=︒ ,22.5GCB ∴∠=︒∴45EGC ∠=°,∴Rt CEG △是等腰直角三角形, ∵CE 的长为3,∴EG=3,利用勾股定理得:222CE GE GC +=,∴222(3)(3)GC +=, ∴6GC =,∴BG 的长为6.………..…………………6分 29.解:(1)BC 边的中点. ………..…………………1分 (2)点D 的位置没有发生变化. ………..…………………2分 证明:如图,∵BE AD ⊥于点E ,CF AD ⊥于点F , ∴∠3=∠4=90°.又∵∠1=∠2,BE=CF,BED CFD ∴△≌△.∴BD=DC.即点D 是BC 边的中点 ………..…………………4分.(3)AB ,AC ,AD 之间的数量关系为2224AC AB AD +=..………..…………………5分 证明:延长AD 到点H 使DH=AD ,连接HC. ∵点D 是BC 边的中点,∴BD=DC. 又∵DH=AD ,∠4=∠5,ABD HCD ∴△≌△.∴∠1=∠3,AB=CH.∵∠A=90°,∴∠1+∠2=90°.∴∠2+∠3=90°.∴∠ACH=90°.∴222AC CH AH +=. 又∵DH=AD ,∴222(2)AC AB AD +=.∴2224AC AB AD +=.………..…………………7分4321FED CBA54321HA BCD30.(1)32;(2)5;(3)解:设1AC =,CP=m-3, ∵A A ′⊥L 于点C ,∴AP=()231m -+,设2BD =,DP=9-m, ∵BD ⊥L 于点D ,∴BP=2(9)4m -+,∴()()223194m m -++-+的最小值即为A ′B 的长.即:A ′B=()()223194m m -++-+的最小值.如图,过A ′作A ′E ⊥BD 的延长线于点E. ∵A ′E=CD=CP+PD= m-3+9-m=6, BE=BD+DE=2+1=3, ∴A ′B=()()223194m m -++-+的最小值=22BE A E '+ =936+ =35 ∴()()223194m m -++-+的最小值为35.EA'LPD C BA。
2015——2016学年度第一学期期末教学质量测试八年级数学试卷附答案
2015——2016学年度第一学期期末教学质量测试八年级数学试卷一.选择题(每小题2分,共20分)1.下列各数中,属于无理数的是( )(A )﹣1 (B )3.1415 (C )12(D 2. 若一个有理数的平方根与立方根是相等的,则这个有理数一定是 ( ) (A) 0 (B) 1 (C) 0或1 (D) 0和±1 3.下列命题中,逆命题是真命题的是( )(A )直角三角形的两锐角互余. (B )对顶角相等. (C )若两直线垂直,则两直线有交点. (D )若21,1x x ==则.4.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )(A )40°. (B )100°. (C )50°或70°. (D )40°或100°. 5.如图,图中的尺规作图是作( )(A )线段的垂直平分线. (B )一条线段等于已知线段. (C )一个角等于已知角. (D )角平分线.6.如图,将△ABC 沿直线DE 折叠后,使得点B 与点A 重合,已知AC=5cm, △ADC 的周长为17cm,则BC 的长为( )(A )7cm (B )10cm (C )12cm (D )22cm5题图 6题图 7题图7.如图是某手机店今年1—5月份音乐手机销售额统计图。
根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是( )(A )1月至2月 (B )2月至3月 (C )3月至4月 (D )4月至5月8. 若b 为常数,要使16x 2+bx+1成为完全平方式,那么b 的值是 ( )(A) 4 (B) 8 (C) ±4 (D) ±89题图 10题图9.如图,正方形网格中有△ABC ,若小方格边长为1,则△ABC 是( )(A )直角三角形. (B )锐角三角形. (C )钝角三角形. (D )以上都不对. 10.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )(A )48. (B )60. (C )76. (D )80.二、填空题(每小题2分,共18分)11.计算:25a a ⋅= .12.因式分解:24x y y -=__________________.13. 如图将4个长、宽分别均为a 、b 的长方形,摆成了一个大的正方形.利用面积的不同表示方法写出一个代数恒等式是__________________.13题图 14题图14.将一张长方形的纸片ABCD 按如图所示方式折叠,使C 点落在/C 处,/BC 交AD 于点E ,则△EBD 的形状是__________________.15.某校对1200名女生的身高进行了测量,身高在 1.58m ~1.63m 这一小组的频率为0.25,则该组共有_________人16. 如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A、B两点,若再以A为圆心,以OA长为半径画弧,与弧AB交于点C,则∠AOC=_________度16题图 17题图17.如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为_________cm18.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
2015-2016学年新课标人教版八年级上期末数学试卷(有答案)
2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)55.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足__________.12.已知一个n边形的内角和是其外角和的5倍,则n=__________.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于__________度.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于__________度.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=__________cm.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号__________.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.2015-2016学年八年级(上)期末数学试卷一、选择题(本题共有10小题,每小题3分,共30分,每小题有四个选项,其中有几个选项符合题意,选错、不选、多选或涂改不清的均不给分)1.在下列四个轴对称图形中,对称轴的条数最多的是( )A.等腰三角形B.等边三角形C.圆D.正方形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、有1条对称轴;B、有3条对称轴;C、有无数条对称轴;D、有4条对称轴.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下面有4个汽车标志图案,其中不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选D.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.若分式的值为零,则x的值为( )A.±1 B.﹣1 C.1 D.不存在【考点】分式的值为零的条件.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得,|x|﹣1=0,且x﹣1≠0,解得x=﹣1.故选:B.【点评】本题考查了分式为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.下列运算错误的是( )A.x2•x4=x6B.(﹣b)2•(﹣b)4=﹣b6C.x•x3•x5=x9D.(a+1)2(a+1)3=(a+1)5【考点】同底数幂的乘法.【分析】根据同底数幂的乘法,底数不变指数相加,可得答案.【解答】解:A、底数不变指数相加,故A正确;B、底数不变指数相加,故B错误;C、底数不变指数相加,故C正确;D、底数不变指数相加,故D正确;故选:B.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加是解题关键.5.下列各因式分解中,结论正确的是( )A.x2﹣5x﹣6=(x﹣2)(x﹣3)B.x2+x﹣6=(x+2)(x﹣3)C.ax+ay+1=a(x+y)+1 D.ma2b+mab2+ab=ab(ma+mb+1)【考点】因式分解-十字相乘法等;因式分解-提公因式法.【专题】计算题.【分析】原式各项分解因式得到结果,即可做出判断.【解答】解:A、原式=(x﹣6)(x+1),错误;B、原式=(x﹣2)(x+3),错误;C、原式不能分解,错误;D、原式=ab(ma+mb+1),正确,故选D【点评】此题考查了因式分解﹣十字相乘法与提公因式法,熟练掌握因式分解的方法是解本题的关键.6.如图,在△ABC中,若AB=AC,∠A=30°,DE垂直平分AC,则∠BCD的度数是( )A.45°B.40°C.35°D.30°【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.故选A.【点评】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.7.到三角形三条边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线的交点【考点】角平分线的性质.【专题】几何图形问题.【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.【点评】该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点,易错选项为C.8.若等腰三角形的两条边的长分别为3cm和7cm,则它的周长是( )A.10cm B.13cm C.17cm D.13cm或17cm【考点】等腰三角形的性质;三角形三边关系.【分析】等腰三角形两边的长为3cm和7cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是3cm,底边是7cm时:不满足三角形的三边关系,因此舍去.②当底边是3cm,腰长是7cm时,能构成三角形,则其周长=3+7+7=17(cm).故选C.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.9.如图,若AB=AC,BE=CF,CF⊥AB,BE⊥AC,则图中全等的三角形共有( )对.A.5对B.4对C.3对D.2对【考点】全等三角形的判定.【分析】利用全等三角形的判定方法,利用HL、ASA进而判断即可.【解答】解:由题意可得出:△ABE≌△ACF(HL),△ADF≌△ADE(HL),△ABD≌△ACD (SAS),△BFD≌△CED(ASA).故选:B.【点评】本题考查三角形全等的判定方法及等腰三角形的性质;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图是屋架设计图的一部分,点D是斜梁AB的AB的中点,立柱BC、DE垂直于横梁AF.已知AB=12m,∠ADE=60°,则DE等于( )A.3m B.2m C.1m D.4m【考点】含30度角的直角三角形.【专题】应用题.【分析】由于BC、DE垂直于横梁AC,可得BC∥DE,而D是AB中点,可知AB=BD,利用平行线分线段成比例定理可得AE:CE=AD:BD,从而有AE=CE,即可证DE是△ABC的中位线,可得DE=BC,在Rt△ABC中易求BC,进而可求DE.【解答】解:如右图所示,∵立柱BC、DE垂直于横梁AC,∴BC∥DE,∵D是AB中点,∴AD=BD,∴AE:CE=AD:BD,∴AE=CE,∴DE是△ABC的中位线,∴DE=BC,在Rt△ABC中,∵∠ADE=60°,∴∠A=30°,∴BC=AB=6m,∴DE=3m.故选A.【点评】本题考查了平行线分线段成比例定理、三角形中位线定理、直角三角形30°的角所对的边等于斜边的一半.解题的关键是证明DE是△ABC的中位线.二、填空题(本题共有6小题,每小题3分,共18分)11.要使分式有意义,那么x必须满足x≠2.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣2≠0,解得x≠2.故答案为:x≠2.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.已知一个n边形的内角和是其外角和的5倍,则n=12.【考点】多边形内角与外角.【分析】利用多边形的内角和公式和外角和公式,根据一个n边形的内角和是其外角和的5倍列出方程求解即可.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=360°×5,解得n=12.故答案为:12.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,已知△ABC≌△AFE,若∠ACB=65°,则∠EAC等于50度.【考点】全等三角形的性质.【分析】根据全等三角形对应角相等可得∠ACB=∠AEF=65°,然后在△EAC中利用三角形内角和定理即可求出求出∠EAC的度数.【解答】解:∵△ABC≌△AFE,∴∠ACB=∠AEF=65°,∴∠EAC=180°﹣∠ACB﹣∠AEF=50°.故答案为50.【点评】本题考查了全等三角形的性质,三角形内角和定理,熟记性质并准确识图是解题的关键.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于80度.【考点】全等三角形的判定与性质.【分析】根据SSS证△BAD≌△CAD,根据全等得出∠BAD=∠CAD,∠B=∠C=20°,根据三角形的外角性质得出∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,求出∠BDC=∠B+∠C+∠BAC,代入求出即可.【解答】解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是求出∠BDC=∠B+∠C+∠BAC和∠C的度数,难度适中.15.如图,已知BD是∠ABC的角平分线,DE⊥AB于E点,AB=6cm,BC=4cm,S△ABC=10cm2,则DE=2cm.【考点】角平分线的性质.【分析】过D作DF⊥BC于F,根据角平分线性质求出DE=DF,根据三角形的面积公式得出关于DE的方程,求出方程的解即可.【解答】解:过D作DF⊥BC于F,∵BD是∠ABC的角平分线,DE⊥AB,∴DF=DE,∵S△ABC=10cm2,AB=6cm,BC=4cm,∴×BC×DF+×AB×DE=10,∴×4×DE+×6×DE=10,∴DE=2,故答案为:2.【点评】本题考查了三角形的面积,角平分线性质的应用,注意:角平分线上的点到角的两边的距离相等.16.如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号①②④.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.【考点】角平分线的性质;全等三角形的判定与性质.【分析】由射线OC上的任意一点到∠AOB的两边的距离都相等,根据角平分线的判定定理可知OC平分∠AOB.要得到OE=OF,就要让△ODE≌△ODF,①②④都行,只有③ED=FD不行,因为证明三角形全等没有边边角定理.【解答】解:∵射线OC上的任意一点到∠AOB的两边的距离都相等,∴OC平分∠AOB.①若①∠ODE=∠ODF,根据ASA定理可求出△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;②若∠OED=∠OFD,根据AAS定理可得△ODE≌△ODF,由三角形全等的性质可知OE=OF.正确;③若ED=FD条件不能得出.错误;④若EF⊥OC,根据ASA定理可求出△OGE≌△OGF,由三角形全等的性质可知OE=OF.正确.故答案为①②④.【点评】本题主要考查了角平分线的判定,三角形全等的判定与性质;由求线段相等转化为添加条件使三角形全等是正确解答本题的关键.三、解答题(本题共有7小题,共72分)17.完成下列运算(1)计算:7a2•(﹣2a)2+a•(﹣3a)3(2)计算:(a+b+1)(a﹣b+1)+b2﹣2a.【考点】整式的混合运算.【分析】(1)先算乘方,再算乘法,最后算加减,合并同类项即可;(2)先用平方差公式计算,再用完全平方公式计算,然后合并同类项即可.【解答】解:(1)原式=7a2•4a2+a•(﹣27a3)=28a4﹣27a4=a4;(2)原式=(a+1)2﹣b2+b2﹣2a=a2+2a+1﹣2a=a2+1.【点评】本题考查了整式的混合运算:先算乘方,再算乘法,最后算加减;注意乘法公式的运用.18.(14分)完成下列运算(1)先化简,再求值:(2x﹣y)(y+2x)﹣(2y+x)(2y﹣x),其中x=1,y=2(2)先化简,再求值:,其中x=1,y=3.【考点】分式的化简求值;整式的混合运算—化简求值.【分析】(1)先根据整式混合运算的法则把原式进行化简,再把x=1,y=2代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x=1,y=3代入进行计算即可.【解答】解:(1)原式=4x2﹣y2﹣4y2+x2=5(x2﹣y2),当x=1,y=2时,原式=5×(1﹣4)=﹣15;(2)原式=﹣•=+===,当x=1,y=3,∴原式=3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,在△ABC中,AC=BC,AD平分∠BAC,∠ADC=60°,求∠C的度数.【考点】等腰三角形的性质.【分析】设∠BAD=x.由AD平分∠BAC,得出∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.由AC=BC,得出∠B=∠BAC=2x.根据三角形外角的性质得出∠ADC=∠B+∠BAD=60°,即2x+x=60°,求得x=20°,那么∠B=∠BAC=40°.然后在△ABC中,根据三角形内角和定理得出∠C=180°﹣∠B﹣∠BAC=100°.【解答】解:设∠BAD=x.∵AD平分∠BAC,∴∠CAD=∠BAD=x,∠BAC=2∠BAD=2x.∵AC=BC,∴∠B=∠BAC=2x.∵∠ADC=∠B+∠BAD=60°,∴2x+x=60°,∴x=20°,∴∠B=∠BAC=40°.在△ABC中,∵∠BAC+∠B+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=100°.【点评】本题考查了等腰三角形的性质,角平分线定义,三角形内角和定理,三角形外角的性质,难度适中.设∠BAD=x,利用∠ADC=60°列出关于x的方程是解题的关键.20.如图,已知AB=AC,D是BC边的中点,DE和DF分别平分∠ADB和∠ADC,求证:DE=DF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】利用等腰三角形的性质和全等三角形的判定定理ASA证得△AED≌△AFD,则由该全等三角形的对应边相等得到DE=DF.【解答】证明:∵AB=AC,D是BC边的中点,∴AD⊥BC,∠EAD=∠FAD.又∵DE和DF分别平分∠ADB和∠ADC,∴∠EDA=∠FDA=45°.在△AED与△AFD中,,∴△AED≌△AFD(ASA),∴DE=DF.【点评】本题考查了全等三角形的判定与性质和等腰三角形的性质.此题利用了等腰三角形“三线合一”的性质推知来证明三角形全等的对应角.21.客车和货车同时分别从甲乙两城沿同一公路相向而行,相遇时客车比货车多行驶了180千米,相遇后,客车再经过4小时到达乙城,货车再经过9小时到达甲城,求客车、货车的速度和甲乙两城间的路程.【考点】分式方程的应用.【分析】可设客车的速度是x千米/小时,则货车的速度是千米/小时,以相遇时时间相等作为等量关系,列出方程求解即可.【解答】解:设客车的速度是x千米/小时,则货车的速度是千米/小时,依题意有=,解得x1=90,x2=﹣18(不合题意舍去),经检验,x=90是原方程的解,==60,90×4+60×9=360+540=900(千米).答:客车的速度是90千米/小时,则货车的速度是60千米/小时,甲乙两城间的路程是900千米.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.注意分式方程要验根.22.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】在AB上取一点F,使A F=AC,连结EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行线的性质就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在证明△BEF≌△BED就可以得出BF=BD,进而就可以得出结论.【解答】证明:在AB上取一点F,使AF=AC,连结EF.∵EA、EB分别平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.【点评】本题考查了平行线的性质的运用,角平分线的性质的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是关键.23.在等腰直角三角形AOB中,已知AO⊥OB,点P、D分别在AB、OB上,(1)如图1中,若PO=PD,∠OPD=45°,证明△BOP是等腰三角形.(2)如图2中,若AB=10,点P在AB上移动,且满足PO=PD,DE⊥AB于点E,试问:此时PE的长度是否变化?若变化,说明理由;若不变,请予以证明.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.【专题】证明题;探究型.【分析】(1)由PO=PD,利用等边对等角和三角形内角和定理可求得∠POD=67.5°,∠OPB=67.5°,然后利用等角对等边可得出结论;(2)过点O作OC⊥AB于C,首先利用等腰直角三角形的性质可以得到∠COB=∠B=45°,OC=5,然后证得∠POC=∠DPE,进而利用AAS证明△POC≌△DPE,再根据全等三角形的性质可得OC=PE.【解答】(1)证明:∵PO=PD,∠OPD=45°,∴∠POD=∠PDO==67.5°,∵等腰直角三角形AOB中,AO⊥OB,∴∠B=45°,∴∠OPB=180°﹣∠POB﹣∠B=67.5°,∴∠POD=∠OPB,∴BP=BO,即△BOP是等腰三角形;(2)解:PE的值不变,为PE=5,证明如下:如图,过点O作OC⊥AB于C,∵∠AOB=90°,AO=BO,∴△BOC是等腰直角三角形,∠COB=∠B=45°,点C为AB的中点,∴OC=AB=5,∵PO=PD,∴∠POD=∠PDO,又∵∠POD=∠COD+∠POC=45°+∠POC,∠PDO=∠B+∠DPE=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,,∴△POC≌△DPE(AAS),∴OC=PE=5,∴PE的值不变,为5.【点评】本题考查了等腰三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形等知识,解答(2)的关键是正确作出辅助线,并利用AAS证得△POC≌△DPE.。
2015-2016学年初二第一学期期末答案
初二数学期末学业水平质量检测参考答案一、选择题:(每题只有一个正确答案,共10道小题,每小题2分,共20分)1. C,2. D,3.A,4. D,5. C ,6.B,7. D,8. A,9.D, 10. C二、填空题:(共6道小题,第11~14小题,每小题3分,第15~16小题,每小题4分,共20分)11.2; 12.2)(3a b -; 13.360º; 14.③;15.1或3;16.三边分别相等的两个三角形全等,全等三角形对应角相等;3 .三、解答题(共11道小题,第17~24小题,每小题5分,第25~26小题,每小题6分,第27小题8分,共60分)17.23423)7(2102⨯+-+--⎪⎭⎫ ⎝⎛-π 解:原式=323214+-+-………………………………..(4分)=35+ ………………………………..(5分)18.计算:()()()3232322-+-- 解:原式=323622+-+-………………………………..(4分) =626-………………………………..(5分)19.计算:21422++-m m 解:原式=)2)(2(2)2)(2(2-+-+-+m m m m m …………………………..(2分) =)2)(2(22-+-+m m m ………………………………..(4分) =)2)(2(-+m m m ………………………………..(5分)20.解方程:116112=---+x x x 解: 1)1)(1(611=-++-+x x x x ………………………………..(1分) )1)(1(6)1(2-+=++x x x ……..(2分)161222-=+++x x x ………………………………..(3分)82-=x4-=x ………………………………..(4分)检验:把4-=x 带入最简公分母)1)(1(-+x x 中,最简公分母值不为零.∴4-=x 是原方程的解. ………………………………..(5分)21.已知:0232=-+x x ,求代数式)225(4232---÷--x x x x x 的值. 解:原式=)2425()2(232----÷--x x x x x x………………………………..(1分) =2)3)(3()2(23--+÷--x x x x x x ………………………………..(2分) =)3)(3(2)2(23x x x x x x -+-⋅-- =)3(21x x +………………………………..(3分) =)3(212x x + ………………………………..(4分) 0232=-+x x∴232=+x x原式=41 ………………………………..(5分)22.解: 第一个盒子摸出白球的可能性为531061==p ………………..(2分) 第二个盒子摸出白球的可能性为211262==p ………………..(3分) 21p p >………………..(4分)∴第一个盒子摸出白球的可能性大. ………………..(5分)23. 证明: DE BC //E ACB ∠=∠∴………………..(1分)在△ABC 和△DCE 中⎪⎩⎪⎨⎧=∠=∠=CD BC E ACB DE AC ∴△ABC ≅△DCE (SAS )………………..(4分) ∴ AB =CD ………………..(5分)24.解:设新购买的纯电动汽车每行驶1千米所需电费为x 元, 根据题意得:27108= ………………..(3分)25.(1)Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形………………..(2分)B(2)证明: Rt △C AB '是Rt △ABC 关于直线l 轴对称的图形∴AC 垂直平分B B '………………………………..(3分)∴'AB AB =,'21BB BC =︒=∠30BAC∴︒=∠60B ∴△'ABB 为等边三角形………………………………..(5分) ∴'BB AB = '21BB BC =∴AB BC 21=………………………………..(6分)26.(1)l 即为所求作的直线………………………………..(2分)(2)①︒45≤ABC ∠<︒90………………………………..(3分)②图形在(1)的基础上完成………………………………..(4分) 证明: 线段AB 的垂直平分线为l∴ AB CD ⊥BE AE ⊥ ∴︒=∠=∠90BDC AEB∴︒=∠+∠=∠+∠90B BCD B BAE∴BCD BAE ∠=∠………………………………..(6分)27.(1)①……………………………..(1分)②垂直,相等.……………………………..(3分)(2)①……………………………..(4分)图2 图3②如图2成立,如图3不成立.证明: EF CD ⊥∴ ︒=∠90DCF︒=∠90ACB∴BCD ACB BCD DCF ∠+∠=∠+∠即BCF ACD ∠=∠………………………………..(6分)CF CD AC BC ==,∴△ACD ≅△BCF (SAS )∴ BF AD =,FBC BAC ∠=∠∴︒=∠+∠=∠+∠=∠90BAC ABC FBC ABC ABF即AD BF ⊥……………………………..(8分)A A。
江西省宜春市2015-2016学年八年级上学期期末考试数学试题解析(解析版)
江西省宜春市2015-2016学年八年级上学期期末考试数学试题一、选择题:本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.以下列各组线段长为边能组成三角形的是( )A.1cm 2cm 4cmB.8cm 6cm 4cmC.12cm 5cm 6cmD.2cm 3cm 6cm【答案】B.【解析】试题分析:三角形两边之和大于第三边.A 项1+24,<B 项4+68,>C 项5+611,<D 项2+36,<只有B 项符合题意.故选B.考点:三角形三边关系.2.下面的图形是天气预报使用的图标,从左到右分别代表“霾”、“大雪”、“扬沙”和“阴”, 其中是轴对称图形的是( )A.B. C. D.【答案】A.【解析】 试题分析:A 项是轴对称图形,B 项不是轴对称图形,C 项不是轴对称图形,D 项不是轴对称图形.故选A. 考点:轴对称图形.3.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学计数法表示为( )A .5045610-⋅⨯B .645610-⋅⨯C .745610-⋅⨯D .745610-⋅⨯【答案】B.【解析】试题分析:科学计数法:10(110)n a a ⨯≤<,60.00000456 4.5610-=⨯.故选B.考点:科学计数法.4.下列计算中正确的是( )A .235()x x =B .3262(3)9x y x y -=-C .632,x x x ÷=D .23x x x ⋅= 【答案】D.【解析】试题分析:()326.,A x x =()2362.39,B x y x y -=633.,C x x x ÷=23..D x x x ⋅=只有D 项正确,故选D. 考点:1、乘方;2、整式乘法;3、整式除法.5.如图,已知在△ABC 中,CD 是AB 边上的高线, BE 平分∠ABC ,交CD 于点E ,BC =5,DE =2,则△BCE 的面积等于( )A .10B .7C .5D .4【答案】C.【解析】试题分析:作EF BC ⊥于F ,BE 平分,,,ABC DE AB EF BC ∠⊥⊥2,EF DE ∴==1152 5.22ABC S BC EF ∴=⋅=⨯⨯=故选C.考点:角平分线的性质.6.电子跳蚤游戏盘是如图所示的△ABC ,AB =8,AC =9,BC =10,如果跳蚤开始时在BC 边的点P 0处, BP 0=4.跳蚤第一步从P 0跳到AC 边的P 1(第1次落点)处,且CP 1=CP 0;第二步从P 1跳到AB 边的P 2(第2次落点)处,且AP 2=AP 1;第三步从P 2跳到BC 边的P 3(第3次落点)处,且BP 3=BP 2;跳蚤按上述规则一直跳下去,第n 次落点为Pn (n 为正整数),则点P 2015与A 间的距离为( )A .3B .4C .5D .6●●●●第6题图AB P 2CP 1P 0P 3【答案】B.二、填空题(每题3分,满分24分,将答案填在答题纸上)7.若分式 112+-x x 的值为0,则实数x 的值为 . 【答案】1.【解析】试题分析:分式 211x x -+的值为0,则210,1x x -=+21010.x x ⎧-=∴⎨+≠⎩,解得 1.x = 考点:分式的性质.8.等腰三角形的一个外角是140°,则其底角是 .【答案】70°或 40°.【解析】试题分析:(1)若140°的外角是此等腰三角形的顶角的邻角,则此顶角为:18014040,-=则其底角为(18040)270,-÷=(2)若140°的外角是此等腰三角形的底角的邻角,则其底角为18014040.-= 考点:等腰三角形的性质.9.已知点P ()1,2a a -+关于y 轴的对称点在第二象限,则a 的取值范围是 .【答案】21a -<<.【解析】试题分析:点P (1,2)a a -+关于y 轴的对称点在第二象限,在P 在第一象限,则10,20a a ->⎧⎨+>⎩2 1.a ∴-<< 考点:关于x 轴、y 轴对称的点的坐标. 10.分解因式:314ax y axy -= . 【答案】11()()22axy x x +-. 【解析】 试题分析:321111()()().4422ax y axy axy x axy x x -=-=+- 考点:因式分解.11.若249x mx ++是完全平方式,则m 的值为 .【答案】±12.【解析】试题分析:249x mx ++是完全平方式,则(223)12.m =±⨯⨯=±考点:完全平方式.12.如图,在△ABC 中,∠A =36°,AB =AC ,BD 是∠ABC 的角分线.若在边AB 上截取BE =BC ,连接DE ,则图中共有 个等腰三角形.【答案】5.【解析】试题分析:根据题意可知,,,,,ABC ADE BCD BDE ABD 是等腰三角形,共5个.考点:等腰三角形的判定与性质.13.古希腊数学家把1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第 个三角形数是55,第n 个三角形 数是 .【答案】10 、1(1)2n n + . 【解析】试题分析:123,123=6,123+4=10,+=++++∴第n 个三角形数是1(1),2n n +令1(1)55,2n n +=解得10.n =考点:规律型——数字的变化类.14.如图,以△ABC 的三边为边分别作等边△ACD 、△ABE 、△BCF,则下列结论:①BE =FD ;②∠BFE =∠CFD ;③△EBF ≌△DFC .其中正确的结论是 (请写出正确结论的序号).【答案】○1○3 .【解析】试题分析:,ABC BCF 为等边三角形,,,AB BE AE BC CF FB ∴====60,ABC CBF ∠=∠=,ABE ABF FBC ABF ∠-∠=∠-∠即,CBA FBE ∠=∠在ABC 和BEF 中,AB EB CBA FBE BC BF =⎧⎪∠=∠⎨⎪=⎩,().ABC BEF SAS ∴≅同理可得,ABC DFC ≅,BEF FDC ∴≅,.BE DF BFE FCD ∴=∠=∠故正确的结论为 .考点:1、全等三角形的判定与性质;2、等边三角形的性质.三、解答题 (本大题共4小题,共20分.解答应写出文字说明、证明过程或演算步骤.)15.如图,在△AEC 和△DBF 中,∠E =∠F ,点A 、B 、C 、D 在同一条直线上, AB =CD 、CE ∥BF. 求证:△AEC ≌△DBF 。
【数学】2015-2016年江西省宜春市丰城市八年级下学期数学期末试卷和答案解析PDF
2015-2016学年江西省宜春市丰城市八年级(下)期末数学试卷一、精心选择,一锤定音(每小题3分共18分)1.(3分)下列二次根式中,最简二次根式的是()A.B.C.D.2.(3分)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等3.(3分)三角形的三边长分别为a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.(3分)下列函数的图象中,不经过第一象限的是()A.y=x+3 B.y=x﹣3 C.y=﹣x+1 D.y=﹣x﹣15.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元6.(3分)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.二、细心填一填(每小题3分共18分)7.(3分)函数y=中自变量x的取值范围是.8.(3分)若把一次函数y=2x﹣3,向上平移3个单位长度,得到图象解析式是.9.(3分)若x<2,化简+|3﹣x|的正确结果是.10.(3分)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为.11.(3分)已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b ≥0的解集为.12.(3分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是.三、用心做一做13.计算:+2﹣(﹣)14.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.15.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.16.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?17.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.四.本大题共四小题(每小题8分,共32分)18.(8分)如图,E、F分别是菱形ABCD的边AB、AD的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.19.(8分)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.20.(8分)“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:序号123456笔试成绩669086646584专业技能测试成绩959293808892说课成绩857886889485(1)笔试成绩的极差是多少?(2)写出说课成绩的中位数、众数;(3)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?21.(8分)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两车同时到达B地.两车的速度始终保持不变,设两车出发xh后,甲、乙距离A地的距离分别为y1(km)和y2(km),它们的函数图象分别是折线OPQR和线段OR.(1)求A、C两地之间的距离;(2)甲、乙两车在途中相遇时,距离A地多少千米?五.本大题共二小题(22题10分,23题12分)22.(10分)现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上..思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为a,2a、a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:.探索创新:(3)若△ABC三边的长分别为、、2(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:.23.(10分)如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.2015-2016学年江西省宜春市丰城市八年级(下)期末数学试卷参考答案与试题解析一、精心选择,一锤定音(每小题3分共18分)1.(3分)下列二次根式中,最简二次根式的是()A.B.C.D.【解答】解:A、中被开方数是分数,故不是最简二次根式;B、中被开方数是分数,故不是最简二次根式;C、中被开方数不含分母,不含能开得尽方的因数,故是最简二次根式;D、中含能开得尽方的因数,故不是最简二次根式;故选:C.2.(3分)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选:B.3.(3分)三角形的三边长分别为a、b、c,且满足等式:(a+b)2﹣c2=2ab,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【解答】解:∵(a+b)2﹣c2=2ab,∴a2+b2=c2.所以为直角三角形.故选:B.4.(3分)下列函数的图象中,不经过第一象限的是()A.y=x+3 B.y=x﹣3 C.y=﹣x+1 D.y=﹣x﹣1【解答】解:A、y=x+3经过第一、二、三象限,A不正确;B、y=x﹣3经过第一、三、三象限,B不正确;C、y=﹣x+1经过第一、二、四象限,C不正确;D、y=﹣x﹣1经过第二、三、四象限,D正确;故选:D.5.(3分)某公司10名职工5月份工资统计如下,该公司10名职工5月份工资的众数和中位数分别是()工资(元)2000220024002600人数(人)1342A.2400元、2400元B.2400元、2300元C.2200元、2200元D.2200元、2300元【解答】解:∵2400出现了4次,出现的次数最多,∴众数是2400;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(2400+2400)÷2=2400;故选:A.6.(3分)均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()A.B.C.D.【解答】解:因为水面高度开始增加的慢,后来增加的快,所以容器下面粗,上面细.二、细心填一填(每小题3分共18分)7.(3分)函数y=中自变量x的取值范围是x≤1.5且x≠﹣1.【解答】解:根据题意得:3﹣2x≥0且x+1≠0,解得:x≤1.5且x≠﹣1.故答案为x≤1.5且x≠﹣1.8.(3分)若把一次函数y=2x﹣3,向上平移3个单位长度,得到图象解析式是y=2x.【解答】解:由题意得:平移后的解析式为:y=2x﹣3+3=2x.故答案为:y=2x.9.(3分)若x<2,化简+|3﹣x|的正确结果是5﹣2x.【解答】解:∵x<2,∴x﹣2<0,3﹣x>0;∴+|3﹣x|=﹣(x﹣2)+(3﹣x)=﹣x+2+3﹣x=5﹣2x.10.(3分)如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24cm,△OAB的周长是18cm,则EF的长为3cm.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3cm.11.(3分)已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b ≥0的解集为x≥﹣1.【解答】解:根据题意得当x≥﹣1时,ax+b≥0,即不等式ax+b≥0的解集为x≥﹣1.故答案为:x≥﹣1.12.(3分)如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是(4,3)或(1,3)或(9,3).【解答】解:由题意得:OD=5∵△ODP是腰长为5的等腰三角形∴OP=5或PD=5过P作OD垂线,与OD交于Q点∴PQ=OC=3∴如果OP=5,那么直角△OPQ的直角边OQ=4,则点P的坐标是(4,3);如果PD=5,那么QD=4,OQ=1,则点P的坐标是(1,3);如果PD=5,那么QD=4,OD=5,OQ=9,则点P的坐标是(9,3).故答案为:(4,3)或(1,3)或(9,3).三、用心做一做13.计算:+2﹣(﹣)【解答】解:+2﹣(﹣)=2+2﹣3+=3﹣.14.已知正方形ABCD如图所示,M、N在直线BC上,MB=NC,试分别在图1、图2中仅用无刻度的直尺画出一个不同的等腰三角形OMN.【解答】解:如图1、2,△OMN为所作.15.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,则S=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.四边形ABCD故四边形ABCD的面积是36.16.已知一次函数的图象经过点(1,1)和点(﹣1,﹣3).(1)求这个一次函数的解析式;(2)在给定的直角坐标系xOy中画出这个一次函数的图象,并指出当x增大时y如何变化?【解答】解:(1)设一次函数解析式为y=kx+b,将(1,1)与(﹣1,﹣3)代入得,解得:k=2,b=﹣1,则一次函数解析式为y=2x﹣1;(2)如图所示,y随着x的增大而增大.17.如图,四边形ABCD是平行四边形,对角线AC,BD交于点O,过点O画直线EF分别交AD,BC于点E,F,求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.四.本大题共四小题(每小题8分,共32分)18.(8分)如图,E、F分别是菱形ABCD的边AB、AD的中点,且AB=5,AC=6.(1)求对角线BD的长;(2)求证:四边形AEOF为菱形.【解答】(1)解:∵四边形ABCD是菱形,∴AC⊥DB,AO=AC,BO=DB,∵AC=6,∴AO=3,∵AB=5,∴OB==4,∴DB=8;(2)证明:∵E,O分别是BA,BD中点,∴OE AD,同理可得:AF AD,∴四边形AEOF是平行四边形,又∵AB=AD,∴AE=AF,∴平行四边形AEOF是菱形.19.(8分)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.【解答】解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图象可得x>3.20.(8分)“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:序号123456笔试成绩669086646584专业技能测试成绩959293808892说课成绩857886889485(1)笔试成绩的极差是多少?(2)写出说课成绩的中位数、众数;(3)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?【解答】解:(1)笔试成绩的最高分是90,最低分是64,∴极差=90﹣64=26.(2)将说课成绩按从小到大的顺序排列:78、85、85、86、88、94,∴中位数是(85+86)÷2=85.5,85出现的次数最多,∴众数是85.(3)5号选手的成绩为:65×0.2+88×0.3+94×0.5=86.4分;6号选手的成绩为:84×0.2+92×0.3+85×0.5=86.9分.∵序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,∴3号选手和6号选手,应被录取.21.(8分)已知A,B两地公路长300km,甲、乙两车同时从A地出发沿同一公路驶往B地,2小时后,甲车接到电话需返回这条公路上的C处取回货物,于是甲车立即原路返回C地,取了货物又立即赶往B地(取货物的时间忽略不计),结果两车同时到达B地.两车的速度始终保持不变,设两车出发xh后,甲、乙距离A地的距离分别为y1(km)和y2(km),它们的函数图象分别是折线OPQR 和线段OR.(1)求A、C两地之间的距离;(2)甲、乙两车在途中相遇时,距离A地多少千米?【解答】解:(1)由图象可知,甲车2h行驶的路程是180km,可以得到甲行驶的速度是180÷2=90km/h,甲行驶的总路程是:90×5=450km,故甲从接到电话到返回C处的路程是:(450﹣300)÷2=75km,故A、C两地之间的距离是:180﹣75=105km,即A、C两地之间的距离是105km;(2)由图象和题意可得,甲从接到电话返回C处用的时间为:(5﹣)÷2=小时,故点Q的坐标为(,105),设过点P(2,180),Q(,105)的直线解析式为y=kx+b,则解得,即直线PQ的解析式为y=﹣90x+360,设过点O(0,0),R(5,300)的直线的解析式为y=mx,则300=5m,得m=60,即直线OR的解析式为y=60x,则,解得.即甲、乙两车在途中相遇时,距离A地144千米.五.本大题共二小题(22题10分,23题12分)22.(10分)现场学习题问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示,这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你将△ABC的面积直接填写在横线上. 2.5.思维拓展:(2)我们把上述求△ABC面积的方法叫做构图法,若△ABC三边的长分别为a,2a、a(a>0),请利用图2的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积是:3a2.探索创新:(3)若△ABC三边的长分别为、、2(m>0,n>0,m≠n),请运用构图法在图3指定区域内画出示意图,并求出△ABC的面积为:3mn.【解答】解:(1)S=4×2﹣×4×1﹣×1×1﹣×2×3=2.5,△ABC故答案为:2.5;(2)如图所示:S △ABC=5a×2a﹣×a×a﹣×2a×4a﹣×a×5a=3a2,故答案为:3a2;(3)如图所示:S△ABC=4m×2n﹣×2m×2n﹣×2m×n﹣×4m×n=3mn,故答案为:3mn.23.(10分)如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由;(3)设AE=x,四边形DEFG的面积为S,求出S与x的函数关系式.【解答】解:(1)如图,作EM⊥BC,EN⊥CD∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF,在△DEN和△FEM中,,∴△DEN≌△FEM,∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)CE+CG的值是定值,定值为4,∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,∴△ADE≌△CDG,∴AE=CG.∴CE+CG=CE+AE=AC=AB=×2=4,(3)如图,∵正方形ABCD中,AB=2,∴AC=4,过点E作EM⊥AD,∴∠DAE=45°,∵AE=x,∴AM=EM=x,在Rt△DME中,DM=AD﹣AM=2﹣x,EM=x,根据勾股定理得,DE2=DM2+EM2=(2﹣x)2+(x)2=x2﹣4x+8,∵四边形DEFG为正方形,=DE2=x2﹣∴S=S正方形DEFG4x+8.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +bx -b-ab 45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa +bx -b-ab a45°ABE挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.ABFEDCF。
江西省宜春市2015-2016学年八年级上学期期末考试数学试题(扫描版)
宜春市2015—2016学年第一学期初中期末质量监测八年级数学参考答案一、选择题(本大题共有6个小题,每题3分,共18分)每小题只有一个正确选项二、填空题(本大题共有8个小题,每题3分,共24分)7、1 ; 8、70°或 40°; 9、21a -<<; 10、11()()22axy x x +-; 11、±12; 12、5; 13、10 、 1(1)2n n + ; 14、○1○3三、解答题(本大题共4小题,每小题5分共20分) 15、(5分) 证明:∵ AB=CD ∴ AB+BC=CD+BC 即 AC=DB …………1分 ∵ CE ∥ BF ∴∠ECA=∠FBD ∴∠A=∠D …………2分 在∆AEC 和∆DFB 中⎪⎩⎪⎨⎧=∠=∠∠=∠DB AC F E D A ∴∆AEC ≌∆DFB第15题图16、(5分)解:(1)略 …………3分 (2)S △A1B1C1=5 …………2分17(5分)解:)2)(2()2)(2(2b a b a b a b a -+-+-22222(242)(4)a ab ab b a b =+---- …………2分22224644a ab b a b =---+ …………3分 243ab b =-- …………5分18、(5分)解:设普通列车的平均速度是每小时x 千米,则高速列车的平均速度是每小时3x 千米,根据题意得:24018023x x -= …………2分解得:x =90 …………3分 经检验x =90是原方程的解 …………4分 ∴3x =270千米答:高速列车的平均速度是每小时270千米. …………5分四、解答题(本大题共3小题,每小题7分共21分) 19、(7分)第16题图解:220151(1)121a a a a ÷+-+- 2201511()(1)11a a a a a -=÷+--- 220151(1)a a a a -=⨯-20151a =- …………4分由题意得ɑ≠1和0 ,则ɑ=-1 …………6分∴ɑ=-1时,原式=20152-…………7分20、(7分) ∵AC=BC ∴∠CAB =∠CBA ∵∠CAD =∠CBE ∴∠DAB =∠EBA∴FA=FB 又∵AC=BC ∴CF 是AB 的中垂线 ∴P 是AB 的中点21、(7分)(1)2、2 …………2分第20题图(2)23 …………4分 (3)∵0132=+-a a∴2310a a a a -+=∴130a a-+= ∴13a a += …………6分 ∴2217a a+= …………7分五、(本题共2小题,第22题8分,第23题9分,共17分) 22、(8分)(1)∵AB =AC,∠BAC =50° ∴∠ACB =∠ABC =65° ∴∠ACE =115°∵BD 、CD 分别平分∠EBA 、∠ECA ∴∠DBC =12∠ABC = 32.5°,∠DCE =12∠ACE = 57.5° ∴∠BDC =∠DCE-∠DBC =25° …………3分 (2) ∠BAC =2∠BDC ,(或∠BDC =12∠BAC) …………4分 (3)过点D 作DN ⊥BA,DK ⊥AC,DM ⊥BC,垂足分别为点N 、K 、M 。
2015-2016八年级期末答案
答案 八 年级 数学 试题一、选择题(本大题共 11小题,每小题3 分,共 33分.) 1、下列方程是关于x 的一元二次方程的是( )D A ax 2+bx+c=0 B |a |x 2+bx+c=0Ca x 2+bx+c=0 D (a 2+1)x 2+bx+c=02、 如果关于x 的方程012=-+x ax 有实数根,则a 的取值范围是( )B A .41->a B .41-≥a C .041≠->a a 且 D .041≠-≥a a 且 3. 某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均 增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A A .144)1(1002=+x B .144)1(1002=-x C .100)1(1442=+x D .100)1(1442=-x4.平行四边形的一边长是5cm ,则这个平行四边形的两条对角线的长可以是( )D A. 2cm 和3cm B. 3cm 和4cm C. 4cm 和5cm D. 5cm 和6cm5.在四边形ABCD 中,对角线AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是菱形, 则这个条件可以是( )BA .∠ABC =90°B .AC ⊥BD C .AB =CD D .AB ∥CD 6. 观察下列图案,既是中心对称图形又是轴对称图形的是( )CA .B .C .D .7. 分式方程=有增根,则m 的值为( )BA .0和3B .3C .1和﹣2D .18.已知1x ,2x 是关于x 的一元二次方程022=-+-m mx x 的两个实数根,是否存在实数m 使01121=+x x 成立?则下列结论中,正确的是结论是( )A A .m =0时成立 B .m =2时成立 C .m =0或2时成立 D .不存在9.若反比例函数的图象经过点A (,﹣2),则一次函数y=﹣kx+k 与在同一坐标系中的大致图象是( )DA .B .C .D .10.点(x 1,y 1)、(x 2,y 2)、(x 3,y 3)在反比例函数的图象上,且x 1<0<x 2<x 3,则有( )B A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 2<y 111.如图,两个反比例函数和(其中k 1>k 2>0)在第一象限内的图象依次是C 1和C 2,设点P在C 1上,PC ⊥x 轴于点C ,交C 2于点A ,PD ⊥y 轴于点D ,交C 2于点B ,下列说法正确的是(A )①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积等于k 2﹣k 1;③当点A 是PC 的中点时,点B 一定是PD 的中点. ④PA 与PB 始终相等;A .①③B .①②④C .①④D .①③④二、填空题(本大题共 小题,每小题3分,共 分.) 12.方程x x 22=的根是_________________.12. 2,021==x x13.如图,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144s s s ===,,,则4s = .13. 16914. 某商品的标价比成本高p%,当该商品降价出售时,为了不亏本,降价幅度不得超过d%,若用p 表示d ,则d= .15. .阅读材料:的解为;则方程的解x 1=2009,x 2= ﹣.S 4S 3S 2S 1O 1 2 3 4 x(第20题)16若分式方程的解为正数,则的取值范围是 .16.<8且≠4 解析:解分式方程,得,得=8-.∵ >0,且-4≠0,∴ 8->0且8--4≠0,∴ <8且≠4.17如图,将两张长为8宽为2的矩形纸条交叉,使重叠部分呈一个菱形,求菱形周长的最大值 17 . 18.如图(1),平行四边形纸片的面积为,,.沿两条对角线将四边形剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(、重合)形成对称图形戊,如图(2)所示,则图形戊的两条对角线长度之和是___ .18. 解析:因为,平行四边形的面积是,所以边上的高是.所以要求的两条对角线长度之和是19、如图,A 、B 、C 、D 为矩形的四个顶点,AB=16cm ,BC=6cm ,动点P 、Q 分别从点A 、C 出发,点P 以3cm/s 的速度向点B 移动,一直到达B 为止;点Q 以2cm/s 的速度向点D 移动。
2015-2016学年八年级上学期期末考试数学试题带答案
2015学年度第一学期期末初二质量调研 数 学 试 卷(2016.1)(时间90分钟,满分100分)一、填空题(本大题共有14题,每题2分,满分28分) 1.化简:()=>0182x x . 2.方程022=-x x 的根是 . 3.函数2-=x y 的定义域是 .4.某件商品原价为100元,经过两次促销降价后的价格为64元,如果连续两次降价的百分率相同,那么这件商品降价的百分率是 .5.在实数范围内分解因式:1322--x x = . 6.如果函数()12+=x x f ,那么()3f = .7.已知关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,那么k 的取值范围是 .8.正比例函数x a y )12(-=的图像经过第二、四象限,那么a 的取值范围是 . 9.已知点),(11y x A 和点),(22y x B 在反比例函数xky =的图像上,如果当210x x <<,可得1y >2y ,那么0______k .(填“>”、“=”、“<”)10.经过定点A 且半径为2cm 的圆的圆心的轨迹是 . 11.请写出“等腰三角形的两个底角相等”的逆命题: . 12.如图1,在△ABC 中,︒=∠90C ,∠CAB 的平分线AD 交BC 于点D ,BC =8,BD =5,那么点D 到AB 的距离等于 .13.如果点A 的坐标为(3-,1),点B 的坐标为(1,4),那么线段AB 的长等于____________.学校_______________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图114.在Rt △ABC 中,︒=∠90C ,将这个三角形折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N ,如果AC BN 2=,那么=∠B 度. 二、选择题(本大题共有4题,每题3分,满分12分)15.下列方程中,是一元二次方程的是 ……………………………………………………( ) (A )y x 342=; (B )15)1(2-=+x x x ; (C )6532-=-x x ; (D )01312=-+x x. 16.已知等腰三角形的周长等于20,那么底边长y 与腰长x 的函数解析式和定义域分别是…( )(A )x y 220-=)200(<<x ; (B )x y 220-=)100(<<x ; (C )x y 220-=)105(<<x ; (D )220xy -=)105(<<x . 17.下列问题中,两个变量成正比例的是………………………………………………… ( ) (A )圆的面积S 与它的半径r ; (B )正方形的周长C 与它的边长a ;(C )三角形面积一定时,它的底边a 和底边上的高h ;(D )路程不变时,匀速通过全程所需要的时间t 与运动的速度v .18.如图2,在△ABC 中,AB=AC ,∠A =120°,如果D 是BC 的中点,DE ⊥AB ,垂足是E ,那么 AE ︰BE 的值等于………………………………………………………………… ( ) (A )31; (B )33; (C )41; (D )51.三、(本大题共有7题,满分60分) 19.(本题满分7分)计算:)7581()3165.0(---.图220.(本题满分7分)用配方法解方程:01632=-+x x .21.(本题满分7分)已知21y y y +=,并且1y 与x 成正比例,2y 与x -2成反比例. 当1=x 时,1-=y ; 当3=x 时,5=y .求y 关于x 的函数解析式.……………………密○………………………………………封○…………………………………○线………………………………………………22.(本题满分8分)已知:如图3,在△ABC 中,45ACB ∠=︒,AD 是边BC 上的高,G 是AD 上一点,联结CG ,点E 、F 分别是AB 、CG 的中点,且DE DF =.求证:△ABD ≌△CGD .23.(本题满分8分)已知:如图4,在△ABC 中,∠ACB =90°, AD 为△ABC 的外角平分线,交BC 的 延长线于点D ,且∠B=2∠D . 求证:AB+AC=CD .图 3DCBA图424.(本题满分11分)如图5,在平面直角坐标系xOy 中,已知直线x y 3=与反比例函数)0(≠=k xky 的图像交于点A ,且点A 的横坐标为1,点B 是x 轴正半轴上一点,且AB ⊥OA . (1)求反比例函数的解析式; (2)求点B 的坐标;(3)先在AOB ∠的内部求作点P ,使点P 到AOB ∠的两边OA 、OB 的距离相等,且PA PB =;再写出点P 的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P )学校_____________________ 班级__________ 学号_________ 姓名______________……………………密○………………………………………封○………………………………………○线………………………………………………图525.(本题满分12分)如图6,在△ABC 中,D 是AB 的中点,E 是边AC 上一动点,联结DE ,过点D 作DF ⊥DE 交边BC 于点F (点F 与点B 、C 不重合),延长FD 到点G ,使DF DG =,联结EF 、AG ,已知10=AB ,6=BC ,8=AC . (1)求证: AG AC ⊥;(2)设x AE =,y CF =,求y 与x 的函数解析式,并写出定义域; (3)当△BDF 是以BF 为腰的等腰三角形时,求AE 的长.GFEDCBA 图62015学年度第一学期期末初二质量调研数学试卷参考答案一、填空题(本大题共14题,每题2分,满分28分) 1.x 23; 2.21,021==x x ; 3.x ≥2; 4.20%; 5.)4173)(4173(2--+-x x ; 6.13-; 7.41<k 且0≠k ;8.a <21; 9.>; 10.以点A 为圆心,2cm 为半径的圆; 11.有两个角相等的三角形是等腰三角形(写两个“底角”相等不给分); 12.3; 13.5; 14.15二、选择题(本大题共4题,每题3分,满分12分)15.B ; 16.C ; 17.B ; 18.A .三、简答题(本大题共5题,每题7分,满分35分) 19.解:原式= )3542()3222(---················································· (4分) =35423222+-- ······················································· (1分) =3342+. ···································································· (2分) 20.解:移项,得1632=+x x . ································································· (1分) 二次项系数化为1,得3122=+x x . ················································ (1分) 配方,得131122+=++x x , 34)1(2=+x . ······························································· (2分)利用开平方法,得3321±=+x .解得 33211+-=x ,33211--=x . ··············································· (2分) 所以,原方程的根是33211+-=x ,33211--=x . ··························· (1分)21.解:由1y 与x 成正比例,可设111(0)y k x k =≠··········································· (1分) 由2y 与x -2成反比例,可设222(0)2k y k x =≠-. ································· (1分) ∵21y y y +=,∴221-+=x k x k y . ··············································· (1分) 把1=x ,1-=y 和3=x ,5=y 分别代入上式,得 ⎩⎨⎧=+-=-.53,12121k k k k ······································································ (1分)解得⎩⎨⎧==.2,121k k ··········································································· (2分)所以 y 关于x 的函数解析式是22-+=x x y . ·································· (1分)22.证明:∵AD ⊥BC ,E 是AB 的中点,∴AB DE 21=(直角三角形斜边上的中线等于斜边的一半). ··········· (2分) 同理:CG DF 21=. ······························································· (1分)∵ DF DE =,∴ CG AB =. ·················································· (1分) ∵AD ⊥BC ,︒=∠45ACB ,∴︒=∠45DAC . ·························· (1分) ∴DAC ACD ∠=∠. ································································ (1分) ∴ CD AD = . ······································································· (1分) 在Rt △ABD 和Rt △CGD 中,⎩⎨⎧==.,CG AB CD AD∴Rt △ABD ≌Rt △CGD (H .L ). ············································· (1分)23.证明:过点D 作DE ⊥AB ,垂足为点E . ················································ (1分)又∵∠ACB =90°(已知)∴DE =DC (在角的平分线上的点到这个角的两边的距离相等). ········ (2分) 在Rt △ACD 和Rt △AED 中DE =DC (已证) AD =AD (公共边)∴Rt △ACD ≌Rt △AED (H.L ). ··················································· (1分) ∴AC =AE ,∠CDA=∠EDA . ······················································· (1分) ∵∠B=2∠D (已知),∴∠B=∠BDE . ············································ (1分) ∴BE =DE . ·············································································· (1分) 又∵AB +AE =BE ,∴AB+AC=CD .········································································ (1分)24. 解:(1)由题意,设点A 的坐标为(1,m ),∵点A 在正比例函数x y 3=的图像上,∴3=m . ∴点A 的坐标为)3,1(. ········································ (1分) ∵点A 在反比例函数xky =的图像上, ∴13k=,解得3=k . ······················································ (1分) ∴反比例函数的解析式为xy 3=. ············································· (1分) (2)过点A 作AC ⊥OB ,垂足为点C ,可得1=OC ,3=AC .∵AC ⊥OB ,∴∠90=ACO °.由勾股定理,得2=AO . ······················································· (1分) ∴AO OC 21=. ∴∠30=OAC °.∴∠60=AOC °.∵AB ⊥OA ,∴∠90=OAB °.∴∠30=ABO °. ································································ (1分) ∴OA OB 2=.∴4=OB . ·········································································· (1分) ∴点B 的坐标是)0,4(. ··························································· (1分) 【说明】其他方法相应给分.(3)作图略. ··············································································· (2分) 点P的坐标是3(. ····························································· (2分) 25.(1)证明:∵6=BC ,8=AC ,∴100643622=+=+AC BC .∵1002=AB , ∴222AB AC BC =+.∴△ABC 是直角三角形,且∠ACB =90°(勾股定理的逆定理). ·· (1分)∵D 是AB 的中点,∴BD AD =.在△ADG 和△BDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF DG BDF ADG BD AD∴△ADG ≌△BDF (S.A.S ).∴B GAB ∠=∠. ································································· (1分) ∵︒=∠90ACB ,∴︒=∠+∠90B CAB (直角三角形的两个锐角互余). ················· (1分) ∴︒=∠+∠90GAB CAB .∴︒=∠90EAG . ···························· (1分) 即:AG AC ⊥.(2)联结EG .∵x AE =,8=AC ,∴x EC -=8.∵︒=∠90ACB ,由勾股定理,得222)8(y x EF +-=. ···································· (1分) ∵△ADG ≌△BDF ,∴BF AG =.∵y CF =,6=BC ,∴y BF AG -==6.∵︒=∠90EAG ,由勾股定理,得222)6(y x EG -+=. ···································· (1分)∵DF DG =,DF ⊥DE ,∴EG EF =.∴22)8(y x +-22)6(y x -+=. ············································· (1分) ∴374-=x y ,定义域:74<x <254. ································· (1+1分) (3)1°当DB BF =时,56=-y ,∴1=y .∴3741-=x .∴25=x .即25=AE . ····································· (1分) 2°当FB DF =时,联结DC ,过点D 作FB DH ⊥,垂足为点H . 可得y FB DF -==6.∵︒=∠90ACB ,D 是AB 的中点,∴5==DB DC .∵FB DH ⊥,6=BC ,∴3==HB CH .∴y FH -=3.∵FB DH ⊥,由勾股定理,得4=DH .在Rt △DHF 中,可得222)3(4)6(y y -+=-.解得611=y . ··································································· (1分) ∴374611-=x .解得825=x ,即825=AE . ··············································· (1分) 综上所述,AE 的长度是25,825.。
江西省丰城中学2015年初中数学毕业生考试题
江西省丰城中学2015年初中数学毕业生考试题考生须知:1. 全卷共4页,有3大题,24小题. 满分为120分.考试时间120分钟.2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.3. 请考生将姓名、准考证号填写在答题纸对应位置上,并认真核准条形码姓名、准考证号.4. 作图时,可先使用2B 铅笔,确定后必须使用0.5毫米及以上的黑色签字笔涂黑.5. 本次考试不能使用计算器.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标是)442(2ab ac a b --,. 卷 Ⅰ说明:本卷共有1大题,10小题,每小题3分,共30分.一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.2015-的相反数是A 2015B 20151C 20151- D 2015-2.下列运算正确的是A .6a -5a=1B .(a 2)3=a 5C .a 6÷a 3=a 2D .a 2·a 3=a 53.钓鱼岛自古以来就是中国的固有领土,在“百度”搜索引擎中输入“钓鱼岛最新消息”,能搜索到与之相关的结果个数约为4640000,这个数用科学记数法表示为A . 464×104B .46.4×106C .4.64×106D .0.464×1074.下图中几何体的左视图是5. 如果分式12-x 与33+x 的值相等,则x 的值是 A .9 B .7 C .5 D .36.一个正多边形的每个内角都为140°,那么这个正多边形的边数为A. 11B.10C.9D.87.若x >y ,则下列式子中错误的是A .x ﹣3>y ﹣ 3B .>C .x +3>y +3D .﹣3x >﹣3y8.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为A.12B.20C. 16D. 20或169. 矩形具有而菱形不具有的性质是A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等 10.如图,D 为△ABC 内部一点,E 、F 两点分别在 AB 、BC 上,且四边形DEBF 为矩形,直线CD 交正面AC BDAB 于G 点.若CF =6,BF =9,AG =8,则△ADC的面积为A .16B .24C .36D .54 卷 Ⅱ说明:本卷共有2大题,14小题,共90分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:x xy 42-= ▲ .12.有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1 只杯子,恰好是一等品的概率是 ▲ .13.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了 张.14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:则关于这若干户家庭的月用水量,中位数是 ▲ 吨,月平均用水 ▲ 吨.15.定义:我们把二次函数y 友好函数 16.如图,A 是反比例函数y =一点,且OC :OA=1:3,做CD DC 交反比例函数图象于点B ,(1)点A 与点B (2)k 的值为 ▲ .三、解答题(本题有8 第20、21题每题8分,第17.计算: 2︒45sin +-818.先化简后求值:ab b b a a 22422-+-,其中1000=a ,15=b19.如图,AB 是半圆O 的直径,C 、D 是半圆O 上的两点, 且OD ∥BC ,OD 与AC 交于点E . (1)若∠B =70°,求∠CAB 的度数; (2)若AC =8,OE =3,求AB 的长.20.某中学为合理安排体育活动,在全校喜欢乒乓球、排球、羽毛球、足球、篮球五种球类运动的1000名学生中,随机抽取了若干名学生进行调查,了解学生最喜爱的一种球类运动,每人只能在这五种球类运动中选择一种,调查结果统计如下:By)(元)解答下列问题:(1)求a 与b 的值;(2)试估计上述1000名学生中最喜欢羽毛球运动的人数. 21.某销售公司推销一种产品,设x (件)是推销产品的数量,y (元)是付给推销员的月报酬.公司付给推销员的月报酬的两种方案如图所示,推销员可以任选一种与公司签订合同.看图解答下列问题: (1)求每种付酬方案y 关于x 的函数表达式; (2)当选择方案一所得报酬高于选择方案二所得报酬时,求x 的取值范围.22.2015年4月19日,若顶棚顶端D 与看台底端A 连线和地面垂直,测得看台 30=∠BAC , 45=∠ACD .(1)求看台高BC 的长(2)求顶棚顶端D 到地面的距离AD 的长.(取7.13=)23.在△ABC 中,∠ACB =45°,点D 为射线BC 上一动点(与点B 、C 不重合),连接AD ,以AD 为一边在AD 右侧作正方形ADEF .(1)如果AB =AC ,如图1,且点D 在线段BC 上运动,判断∠BAD ▲ ∠CAF (填 “=”或“≠”),并证明:CF ⊥BD ;(2)如果AB ≠AC ,且点D 在线段BC 的延长线上运动,请在图②中画出相应的示意图, 此时(1)中的结论是否成立?请说明理由;(温馨提示:作图时,先使用2B 铅笔,再 使用0.5毫米及以上的黑色签字笔涂黑).(3)设正方形ADEF 的边DE 所在直线与直线CF 相交于点P ,若AC =42,CD =2,求线段CP 的长.24.如图,四边形OABC 是平行四边形,点)0,2(-A ,点)32,0(B ,动点P 从点O 出发以A B C D E FAB 图1 图2每秒3个单位长度的速度沿射线OB 方向匀速运动,同时动点Q 从点B 出发以每秒2个单位长度的速度沿射线BA 方向匀速运动,连结CP ,CQ ,设运动时间为t 秒. (1)求点C 的坐标和OCB ∠的度数; (2)请用含t 的代数式表示动点P 和动点Q 的坐标; (3)①当BCQ BCP ∠=∠时,求t 的值; ②当30≤∠-∠BCP BCQ 时, 求t 的取值范围(只要写出直接答案).参考答案及评分标准 一、选择题 DDCAA CDBBB 二、填空题11.)2)(2(+-y y x 12.8513.20 14.4.5;4.6 (一个对二分,二个对三分) 15.略 (二个对才能得三分 ) 16.(1) 1:3 (一分) (2) 9(二分) 三、解答题 17.原式=1222222-+-⨯……………………(每个一分)4分 =21- ……………………6分18.原式=b a b b a a ---22422……………………2分=ba b a --2422=b a +2……………………4分代入得,原式=2015……………………6分19.(1)20=∠CAB ……………………(看答案)3分 (2)10=AB ……………………6分 20.(1)30=a ……………………3分 24=b ……………………6分(2)300人……………………8分21.(1)方案一:x y 40=……………………2分 方案二:60020+=x y ……………………4分 (2)6002040+>x x ……………………6分 ∴30>x ……………………8分 22.(1)75.6=BC ……………………5分 (2)过点D 作AC DE ⊥于E ∵ 45=∠ACD , 30=∠BAC ∴ 45=∠CDE , 60=∠EAD 设x AE = ∴x DE CE 3==∴5.137.23==+=x x x AC∴5=x ∴AD =10米 ……………………10分B23.(1)CF ⊥BD ……………1分 证明:∵∠ACB =45°,AB =AC∴∠ABC =∠ACB =45°,∴∠BAC =90°∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90° ∵∠BAD =∠BAC -∠DAC ,∠CAF =∠DAF -∠DAC ∴∠BAD =∠CAF ,∴△BAD ≌△CAF∴∠ACF =∠ABD =45°,∴∠ACF +∠ACB =90° ∴CF ⊥BD ……………3分 (2)如图所示,(1)中的结论仍然成立 证明:过A 作AG ⊥AC 交BC 于G ∵∠ACB =45°,∴∠AGC =45°∴∠GAC =90°,AG =AC∵四边形ADEF 是正方形,∴AD =AF ,∠DAF =90° ∵∠GAD =∠GAC +∠DAC ,∠CAF =∠DAF +∠DAC ∴∠GAD =∠CAF ,∴△GAD ≌△CAF∴∠ACF =∠AGD =45°,∴∠ACF +∠ACB =90° ∴CF ⊥BD ……………6分G EFAB CDAEF(3)作AH ⊥BD 于H∵∠ACB =45°,∴△AHC 是等腰直角三角形 ∴AH =HC =2 2 AC =22×42=4 ∵AH ⊥BD ,CF ⊥BD ,∠ADE =90° ∴△ADH ∽△DPC ,∴CP CD =DHAH……………8分 当点D 在线段BC 上时DH =HC -CD =4-2=2 ∴CP2=24,∴CP =1……………9分 当点D 在线段BC 的延长线上时 DH =HC +CD =4+2=6 ∴CP2=64,∴CP =3……………10分 24.(1))32,2(C ,60=∠OCB ……………………2分 (2))3,0(t P ,)332,(t t Q --……………………6分 (3)①当点P 在线段OB 上时: 过点Q 作OB QD ⊥于D ∴PQD ∆∽PCB ∆ ∴BPDPBC DQ = ∴tt t 33232322--=∴15-=t ……………………8分当点P 在线段OB 的延长线上时:过点Q 作OB QD ⊥于D ,作P 关于BC 的对称点'P ∵BCQ BCP ∠=∠ ∴点'P 在CQ 上 ∴QD P '∆∽CB P '∆∴''BP DP BC DQ = ∴323322-=t t ∴15+=t ……………………9分ABC DEFHPx② 697174+≤≤t 或6735+≥t ……………………12分。
初中-初二丰中试卷
丰城中学2015-2016学年上学期初二数学期中考试试卷一、选择题:(每题只有一个正确的答案,每题3分,共18分) 1.下列各式变形中,是因式分解的是( )A . a 2﹣2ab+b 2﹣1=(a ﹣b )2﹣1B . 2x 2+2x=2x 2(1+)C . (x+2)(x ﹣2)=x 2﹣4D . x 4﹣1=(x 2+1)(x+1)(x ﹣1) 2.若分式的值为零,则x 等于( )A .﹣1 B 1 C .﹣1或1 D 1或23、如果2592++kx x 是一个完全平方式,那么k 的值是( )A 、30B 、±30C 、15D ±15 4、张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是:( )(A )1515112x x -=+ (B )1515112x x -=+(C )1515112x x -=-(D )1515112x x -=-5.如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作等边三角形ABC 和等边三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .则四个结论:①AD=BE ;②∠OED=∠EAD ;③∠AOB=60°; ④DE=DP 中错误的是( ) A . ① B . ② C . ③ D . ④6.已知等腰△ABC 腰AB 上的高CD 与另一腰AC 的夹角为30°,则其顶角的度数为( ) A .60° B .120° C .60或150° D .60°或120° 二、填空题(每题只有一个正确的答案,每题3分,共24分)7.若113x y -=,则232x xy y x xy y+---= .8.如图,△ABC 中,∠A=65°,∠B=75°,将△ABC 沿EF 对折,使C 点与C ′点重合.当∠1=45°时,∠2= °.9.如图,△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABD 的周长为12,AE=5,则△ABC 的周长为 . 10.分解因式:x 3﹣4x 2﹣12x= _________ . 11.若分式方程:有增根,则k= _________ .12.已知x 2+x ﹣1=0,则x 3+x 2﹣x+3的值为 .13. 如果三角形的两边长分别为3和5,则周长L 的取值范围是 .14、如图a 是长方形纸带,20DEF ∠=°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是 .A BCD EFA BCDEFG ABCDEFG 图a 图b图c三.解答题(共4小题,,每小题6分,满分24分)15.先化简代数式,再从﹣2,2,0三个数中选一个恰当的数作为a 的值代入求值.16.2163524245--+=--x x x x17、先化简,再求值。
江西丰城中学2022-2023学年八年级上学期期末考试数学试卷(含解析)
2022-2023学年江西省宜春市丰城中学八年级第一学期期末数学试卷一.选择题(本大题共6小题,每小题3分,共18分)1.下列计算中正确的是( )A.B.C.D.解:∵4﹣3=,∴A选项的结论不正确;∵与不是同类二次根式,不能合并,∴B选项的结论不正确;∵+=+2=3,∴C选项的结论正确;∵2与3不是同类二次根式,不能合并,∴D选项的结论不正确.综上,计算正确的是:C.故选:C.2.下列线段a,b,c能组成直角三角形的是( )A.a=2,b=3,c=4B.a=4,b=5,c=6C.a=1,b=,c=D.a=,b=,c=解:A、22+32≠42,不能组成直角三角形,不符合题意;B、42+52≠62,不能组成直角三角形,不符合题意;C、12+()2=()2,能组成直角三角形,符合题意;D、()2+()2≠()2,不能组成直角三角形,不符合题意;故选:C.3.直角三角形的两边长分别为6和10,那么它的第三边的长度为( )A.8B.10C.8或2D.10或2解:当10为斜边时,第三边为=8,当第三边为斜边时,第三边为==,∴第三边为8或.故选:C.4.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD 是平行四边形的是( )A.AB=CD B.AD∥BC C.OA=OC D.AD=BC解:A、∵AB∥CD、AB=CD,∴四边形ABCD是平行四边形;B、∵AB∥CD、AD∥BC,∴四边形ABCD是平行四边形;C、∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO.在△ABO和△CDO中,,∴△ABO≌△CDO(AAS),∴AB=CD,∴四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.故选:D.5.如图,菱形ABCD中对角线相交于点O,AB=AC,则∠ADB的度数是( )A.30°B.40°C.50°D.60°解:在菱形ABCD中,AB=BC,∠ADC=∠ABC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=∠ADC=60°,在菱形ABCD中,∠ADB=∠CDB,∴∠ADB=30°,故选:A.6.在矩形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,连接OE,则下面的结论:其中正确的结论有( )①△DOC是等边三角形;②△BOE是等腰三角形;③BC=2AB;④∠AOE=150°;⑤S△AOE=S△COE.A.2 个B.3个C.4 个D.5个解:∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=45°,∴△ABE是等腰直角三角形,∴AB=BE,∵∠CAE=15°,∴∠ACE=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=90°﹣30°=60°,∵矩形ABCD中:OA=OB=OC=OD,∴△ABO是等边三角形,△COD是等边三角形,故①正确;∴OB=AB,∠ABO=∠AOB=60°,∴OB=BE,∴△BOE是等腰三角形,故②正确;∵∠OBE=∠ABC﹣∠ABO=90°﹣60°=30°=∠ACB,∴∠BOE=(180°﹣30°)=75°,BC=AB,故③错误;∴∠AOE=∠AOB+∠BOE=60°+75°=135°,故④错误;∵AO=CO,∴S△AOE=S△COE,故⑤正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分)7.化简:= π﹣3 .解:==π﹣3.故答案是:π﹣3.8.一个正方形的对角线长为2,则其面积为 2 .解:方法一:∵四边形ABCD是正方形,∴AO=BO=AC=1,∠AOB=90°,由勾股定理得,AB=,S正=()2=2.方法二:因为正方形的对角线长为2,所以面积为:2×2=2.故答案为:2.9.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E= 15 度.解:连接AC,∵四边形ABCD是矩形,∴AD∥BE,AC=BD,且∠ADB=∠CAD=30°,∴∠E=∠DAE,又∵BD=CE,∴CE=CA,∴∠E=∠CAE,∵∠CAD=∠CAE+∠DAE,∴∠E+∠E=30°,即∠E=15°,故答案为:15.10.某会展中心在会展期间准备将高5m、长13m、宽2m的楼道铺上地毯,已知地毯每平方米20元,请你帮助计算一下,铺完这个楼道至少需要 680 元.解:由勾股定理得AB===12(m),则地毯总长为12+5=17(m),则地毯的总面积为17×2=34(平方米),所以铺完这个楼道至少需要34×20=680(元).故答案为:680.11.如图,平行四边形ABCD中,对角线AC、BD相交于点O,直线EF过O点,若AB=2,BC=4,∠ABC =60°,则图中阴影部分的面积是 .解:∵平行四边形ABCD中,对角线AC、BD相交于点O,∴S△AEO=S△CFO,∴阴影部分面积等于△BCD的面积,即为▱ABCD面积的,过点C作CP⊥AD于点P,∵CD=AB=2,∠ADC=60°,∴DP=1,CP=,∴S平行四边形ABCD=BC•CP=4,∴阴影部分面积为,故答案为:.12.如图,四边形ABCD中,AD∥BC,AD=8cm,BC=12cm,M是BC上一点,且BM=9cm,点E从点A出发以1cm/s的速度向点D运动,点F从点C出发,以3cm/s的速度向点B运动,当其中一点到达终点,另一点也随之停止,设运动时间为t,则当以A、M、E、F为顶点的四边形是平行四边形时,t= 或 解:①当点F在线段BM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=9+3t﹣12,解得t=,②当F在线段CM上,AE=FM时,以A、M、E、F为顶点的四边形是平行四边形,则有t=12﹣9﹣3t,解得t=,综上所述,t=或s时,以A、M、E、F为顶点的四边形是平行四边形.故答案为:或三.(本大题5小题,每小题6分,共30分)13.计算:(1);(2)(+1)(3﹣)﹣.解:(1)原式=3﹣+4+4=7+3;(2)原式=3﹣5+3﹣﹣2=﹣2.14.如图,在平行四边形ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE∥DF.解析:证明:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC,∵AE=CF,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∴BE∥DF.15.先化简,再求值:a+,其中a=2020.如图是小亮和小芳的解答过程.(1) 小亮 的解法是错误的;错误的原因在于未能正确地运用二次根式的性质: =|a| ;(2)先化简,再求值:a+2,其中a=﹣2.解:(1)小亮的解法是错误的,错误的原因在于未能正确地运用二次根式的性质:=|a|,故答案为:小亮;=|a|;(2)原式=a+2=a+2|a﹣3|,∵a=﹣2<3,∴原式=a+2(3﹣a)=a+6﹣2a=6﹣a=8.16.若x,y是实数,且y=++3,求3的值.解:由题意得,4x﹣1≥0,1﹣4x≥0,解得,x=,则y=3,则3=3×=.17.如图,在每个小正方形的边长都为1的方格纸中有线段AB,点A、B均在小正方形的顶点上.(1)在方格纸中以AB为对角线画矩形ACBD,点C、D均在小正方形的顶点上,且点C在AB的右侧,该矩形的面积为4;(2)以AC为边画平行四边形ACEF(非矩形),点E、F均在小正方形的顶点上,且平行四边形ACEF 的面积为4.解:(1)矩形ACBD即为所求;(2)▱ACEF即为所求.四.(本大题3小题,每小题8分,共24分)18.先化简再求值,其中a=+1.解:原式=,=,=,当a=+1时,原式=.19.如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF.AE与BF交于点O.猜想:AE 与BF的关系,并给出证明.解:AE=BF且AE⊥BF,证明如下:∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠C=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS)∴AE=BF,∠BAE=∠CBF,∵∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,∴∠BOE=90°,即AE⊥BF.20.如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.解析:(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.五.(本大题2小题,每小题9分,共18分)21.如图,在△ABC中,∠C=90°,点D在斜边AB上,E、F分别在直角边CA、BC上,且DE⊥AC,DF ∥AC.(1)求证:四边形CEDF是矩形;(2)连接EF,若C到AB的距离是5,求EF的最小值.解析:(1)证明:∵DF∥AC,∠C=90°,∴∠DFB=∠C=90°,∴∠DFC=90°=∠C,∵DE⊥AC,∴∠DEC=90°=∠DFC=∠C,∴四边形CEDF是矩形;(2)解:连接CD,如图所示:由(1)可知,四边形CEDF是矩形,∴CD=EF,∴当CD有最小值时,EF的值最小,∵当CD⊥AB时,CD有最小值,∴CD⊥AB时,EF有最小值,∵C到AB的距离是5,即点C到AB的垂直距离为5,∴CD的最小值为5,∴EF的最小值为5.22.如图1,在矩形ABCD中,对角线AC,BD相交于点O,经过点O的任意一条直线分别交AD,BC于点E,F.(1)求证:OE=OF;(2)如图2,如果点E,F分别是AD,BC的中点,AB=5,BC=12.在对角线AC上是否存在点P,使∠EPF=90°?如果存在,请求出AP的长;如果不存在,请说明理由.解析:证明:∵▱ABCD的对角线AC,BD交于点O,∴AO=CO,AD∥BC,∴∠EAC=∠FCO,在△AOE和△COF中,∴△AOE≌△COF(ASA),∴OE=OF;(2)存在,由(1)可知,OE=OF,AO=CO,∵∠EPF=90°,∴OP=EF,∵AE∥BF,AE=BF,∠B=90°,∴四边形ABFE是矩形,∴EF=AB=5,∴OP=EF=2.5,在Rt△ABC中,AC=,∴AO=CO=AC=6.5,∴AP'=AO﹣OP'=6.5﹣2.5=4,AP″=AO+OP″=6.5+2.5=9,∴AP的长为4或9.六、解答题(本小题12分)23.在进行二次根式简化时,我们有时会碰上如,,一样的式子,其实我们还可将其进一步简化:=;(一)==;(二)===;(三)以上这种化简的步骤叫做分母有理化还可以用以下方法化简:===;(四)(1)化简= = (2)请用不同的方法化简.①参照(三)式得= ﹣ ②步骤(四)式得= ﹣ (3)化简:+++…+.解:(1)==,==.故答案为:,;(2)①原式==﹣.故答案为:﹣;②原式===﹣.故答案为:﹣;(3)原式=+++…+==.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江西省宜春市丰城中学八年级(上)期末数学试卷一、选择题:(每小题3分,共18分)1.(3分)若实数a满足|a|=﹣a,则一定等于()A.2a B.0 C.﹣2a D.﹣a2.(3分)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC地距离是()A.2 B.3 C.4 D.53.(3分)若顺次连接四边形ABCD各边地中点所得四边形是矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线互相垂直地四边形D.对角线相等地四边形4.(3分)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系地图象是()A. B. C. D.5.(3分)下列定义一种关于n地运算:①当n是奇数时,结果为3n+5 ②n为偶数时结果是(其中k是使是奇数地正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.86.(3分)直线y=﹣x+3向上平移m个单位后,与直线y=﹣2x+4地交点在第一象限,则m地取值范围()A.﹣2<m<1 B.m>﹣1 C.﹣1<m<1 D.m<1二、填空题:(每小题3分,共24分)7.(3分)已知函数y=,则自变量x地取值范围是.8.(3分)已知x=,y=,则x2y+xy2=.9.(3分)如图,矩形ABCD地对角线AC和BD相交于点O,过点O地直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分地面积为.10.(3分)如图,若▱ABCD地周长为36cm,过点D分别作AB,BC边上地高DE,DF,且DE=4cm,DF=5cm,▱ABCD地面积为cm2.11.(3分)一次函数y=mx+n地图象经过一、三、四象限,则化简+所得地结果.12.(3分)如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行cm.13.(3分)设,其中a为正整数,b在0,1之间,则=.14.(3分)Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD地长为.三、(本大题共4小题,每小题6分,共24分)15.(6分)计算:.16.(6分)已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点地坐标;(2)求直线y=﹣3x+6与坐标轴围成地三角形地面积.17.(6分)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上地行驶速度不得超过70km/h”,一辆小汽车在一条城市街道上由西向东行驶,在距路边25m处有“车速检测仪O”,测得该车从北偏西60°地A点行驶到北偏西30°地B点,所用时间为1.5s.(1)试求该车从A点到B点地平均速度;(2)试说明该车是否超过限速.18.(6分)已知a,b,c是△ABC地三边,且a2+b2+c2﹣12a﹣16b﹣20c+200=0,试判断△ABC地形状.四、(共4小题,每小题8分,共32分)19.(8分)如图,在△ABC中,AD是BC边上地中线,E是AD地中点,过点A 作BC地平行线交BE地延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF地形状,并证明你地结论.20.(8分)某超市计划购进一批甲、乙两种玩具,若甲种玩具地进价为每件30元,乙种玩具地进价为每件27元;(1)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受七折优惠;若购进x(x>0)件甲种玩具需要花费y元,请你求出y 与x地函数关系;(2)在(1)地条件下,超市决定在甲、乙两种玩具中选购一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.21.(8分)如果一条直线把一个平面图形地面积分成相等地两部分,我们把这条直线称为这个平面图形地一条面积等分线.(1)三角形有 条面积等分线,平行四边形有 条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形地一条面积等分线;(3)如图②,四边形ABCD 中,AB 与CD 不平行,AB ≠CD ,且S △ABC <S △ACD ,过点A 画出四边形ABCD 地面积等分线,并写出理由.22.(8分)化简+﹣.五、(本大题1小题,共10分)23.(10分)准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上地M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上地N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 地面积.六、(本大题共1小题,12分)24.(12分)如图所示,在平面直角坐标系中,已知一次函数y=x +1地图象与x 轴,y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD .(1)求边AB 地长;(2)求点C ,D 地坐标;(3)在x 轴上是否存在点M ,使△MDB 地周长最小?若存在,请求出点M 地坐标;若不存在,请说明理由.2015-2016学年江西省宜春市丰城中学八年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共18分)1.(3分)若实数a满足|a|=﹣a,则一定等于()A.2a B.0 C.﹣2a D.﹣a【解答】解:因为|a|=﹣a,所以a≤0,故|a﹣|=|a﹣(﹣a)|=|2a|=﹣2a.故选:C.2.(3分)如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC地距离是()A.2 B.3 C.4 D.5【解答】解:如图:过E作DE⊥BC于E,∵∠A=90°,BD平分∠ABC,∴AD=DE,∵在Rt△ABC中,∠A=90°,AB=4,BD=5,由勾股定理得:AD=3,∴DE=3,即点D到BC地距离是3,故选B.3.(3分)若顺次连接四边形ABCD各边地中点所得四边形是矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线互相垂直地四边形D.对角线相等地四边形【解答】解:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD地中点,求证:四边形ABCD是对角线垂直地四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD地中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:C.4.(3分)一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系地图象是()A. B. C. D.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n地图象一、二、三象限,正比例函数y=mnx地图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n地图象一、三、四象限,正比例函数y=mnx地图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n地图象二、三、四象限,正比例函数y=mnx地图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n地图象一、二、四象限,正比例函数y=mnx地图象过二、四象限,无符合项.故选C.5.(3分)下列定义一种关于n地运算:①当n是奇数时,结果为3n+5 ②n为偶数时结果是(其中k是使是奇数地正整数),并且运算重复进行.例如:取n=26,则…,若n=449,则第449次运算结果是()A.1 B.2 C.7 D.8【解答】解:第一次:3×449+5=1352,第二次:,根据题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2地9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:,因为8是2地3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为449是奇数,所以第449次运算结果是8.故选D.6.(3分)直线y=﹣x+3向上平移m个单位后,与直线y=﹣2x+4地交点在第一象限,则m地取值范围()A.﹣2<m<1 B.m>﹣1 C.﹣1<m<1 D.m<1【解答】解:如图所示:把直线y=﹣x+3向上平移m个单位后,与直线y=﹣2x+4地交点在第一象限,则m地取值范围是:﹣1<m<1.故选:C.二、填空题:(每小题3分,共24分)7.(3分)已知函数y=,则自变量x地取值范围是x≥﹣且x≠2.【解答】解:根据题意得,2x+1≥0且x﹣2≠0,解得x≥﹣且x≠2.故答案为:x≥﹣且x≠2.8.(3分)已知x=,y=,则x2y+xy2=2.【解答】解:原式=xy(x+y)=(+)(﹣)×2=2.故答案是:2.9.(3分)如图,矩形ABCD地对角线AC和BD相交于点O,过点O地直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分地面积为3.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,=S△COF,∴S△AOE∴图中阴影部分地面积就是△BCD 地面积.S △BCD =BC ×CD=×2×3=3.故答案为:3.10.(3分)如图,若▱ABCD 地周长为36cm ,过点D 分别作AB ,BC 边上地高DE ,DF ,且DE=4cm ,DF=5cm ,▱ABCD 地面积为 40 cm 2.【解答】解:∵▱ABCD 地周长为36cm ,∴AB +BC=18cm ①,∵过点D 分别作AB ,BC 边上地高DE ,DF ,且DE=4cm ,DF=5cm ,∴4AB=5BC ②,由①②得:AB=10cm ,BC=8cm ,∴▱ABCD 地面积为:AB•DE=40(cm 2).故答案为:40.11.(3分)一次函数y=mx +n 地图象经过一、三、四象限,则化简+所得地结果 m ﹣2n .【解答】解:∵一次函数y=mx +n 地图象经过一、三、四象限,∴m >0,n <0,∴m ﹣n >0, ∴+=|m ﹣n |+|n |=m ﹣n ﹣n=m ﹣2n . 故答案是:m ﹣2n .12.(3分)如图,一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 5 cm .【解答】解:将圆柱展开,侧面为矩形,如图所示:∵底面⊙O地周长为6cm,∴AC=3cm,∵高BC=4cm,∴AB==5cm.故答案为:5.13.(3分)设,其中a为正整数,b在0,1之间,则=6﹣7.【解答】解:∵===5﹣.∴a+b=5﹣.∵a为正整数,b在0,1之间,∴a=3,b=2﹣,∴==6﹣7.故答案为:6﹣7.14.(3分)Rt△ABC中,∠BAC=90°,AB=AC=2.以AC为一边,在△ABC外部作等腰直角三角形ACD,则线段BD地长为4或2或.【解答】解:①以A为直角顶点,向外作等腰直角三角形DAC,∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,连接BD,过点D作DE⊥BC,交BC地延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°,又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2×=,在Rt△BAC中,BC==2,∴BD===2;③以AC为斜边,向外作等腰直角三角形ADC,∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=ACsin45°=2×=,又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°,又∵在Rt△ABC中,BC==2,∴BD===.故BD地长等于4或2或.三、(本大题共4小题,每小题6分,共24分)15.(6分)计算:.【解答】解:原式=4+2﹣﹣,=.16.(6分)已知直线y=﹣3x+6与x轴交于A点,与y轴交于B点.(1)求A,B两点地坐标;(2)求直线y=﹣3x+6与坐标轴围成地三角形地面积.【解答】解:(1)当x=0时,y=﹣3x+6=6,当y=0时,0=﹣3x+6,x=2.所以A(2,0),B(0,6);=×2×6=6.(2)直线与坐标轴围成地三角形地面积=S△ABO17.(6分)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上地行驶速度不得超过70km/h”,一辆小汽车在一条城市街道上由西向东行驶,在距路边25m处有“车速检测仪O”,测得该车从北偏西60°地A点行驶到北偏西30°地B点,所用时间为1.5s.(1)试求该车从A点到B点地平均速度;(2)试说明该车是否超过限速.【解答】解:(1)在Rt△AOC中,AC=OC•tan∠AOC=25×tan60°=25m,在Rt△BOC中,BC=OC•tan∠BOC=25×tan30°=m,∴AB=AC﹣BC=(m).∴小汽车从A到B地速度为÷=(m/s).(2)∵70km/h=m/s=m/s,又∵≈<,∴小汽车没有超过限速.18.(6分)已知a,b,c是△ABC地三边,且a2+b2+c2﹣12a﹣16b﹣20c+200=0,试判断△ABC地形状.【解答】解:∵a2+b2+c2﹣12a﹣16b﹣20c+200=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴(a﹣6)=0,(b﹣8)=0,(c﹣10)=0,∴a=6,b=8,c=10,∵62+82=102,∴a2+b2=c2,∴△ABC是直角三角形.四、(共4小题,每小题8分,共32分)19.(8分)如图,在△ABC中,AD是BC边上地中线,E是AD地中点,过点A 作BC地平行线交BE地延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF地形状,并证明你地结论.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD地中点,AD是BC边上地中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC地中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.20.(8分)某超市计划购进一批甲、乙两种玩具,若甲种玩具地进价为每件30元,乙种玩具地进价为每件27元;(1)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受七折优惠;若购进x(x>0)件甲种玩具需要花费y元,请你求出y 与x地函数关系;(2)在(1)地条件下,超市决定在甲、乙两种玩具中选购一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.【解答】解:(1)当0<x≤20时,y=30x,当x>20时,y=30×20+30×0.7(x﹣20)=21x+180,即y=;(2)根据题意,购买x件甲玩具需(21x+180)元,购买x件乙玩具需27x元,若21x+180<27x,即x>30时,选甲玩具;若21x+180=27x,即x=30时,甲、乙玩具花钱一样多;若21x+180>27x,即x<30时,选乙玩具;综上,购买数量为30件时,甲乙玩具花钱一样多;购买数量在20到30件时,选乙种玩具;购买数量超过30件时,选甲种玩具;21.(8分)如果一条直线把一个平面图形地面积分成相等地两部分,我们把这条直线称为这个平面图形地一条面积等分线.(1)三角形有 无数 条面积等分线,平行四边形有 无数 条面积等分线; (2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形地一条面积等分线;(3)如图②,四边形ABCD 中,AB 与CD 不平行,AB ≠CD ,且S △ABC <S △ACD ,过点A 画出四边形ABCD 地面积等分线,并写出理由.【解答】解:(1)在△ABC 中,做BC 地中线AD ,在这BC 上任意取一点E ,并将其与顶点A 相连,过中点D 做它地平行线,交AC 与点F ,连接EF ,即是△ABC 地面积等分线.因为连接EF ,设EF 与AD 交于点O ,作中线后,△ABD 与△ACD 地面积相等,即S四边形ABEO+S △EOD =S △AFO +S四边形FODC.作平行线后,连接EF ,设EF与AD 交于点O ,则△AOF 与△EOD 面积相等,那么S 四边形ABEO +S △AFO =S △EOD +S 四边形FODC ,即S四边形ABEF=S △EFC ,因此直线EF 将△ABC 分成了面积相等地两部分,是三角形地面积等分线.因此,按这样地做法,可以作无数条三角形地面积等分线;对于平行四边形应该有无数条,只要过两条对角线地交点地直线都可以把平行四边形地面积分成2个相等地部分; 故答案是:无数;无数;(2)如图①所示:连接2个矩形地对角线地交点地直线即把这个图形分成2个相等地部分.即OO′为这个图形地一条面积等分线;(3)如图②所示.能,过点B 作BE ∥AC 交DC 地延长线于点E ,连接AE . ∵BE ∥AC ,∴△ABC 和△AEC 地公共边AC 上地高也相等, ∴有S △ABC =S △AEC ,∴S 四边形ABCD =S △ACD +S △ABC =S △ACD +S △AEC =S △AED ; ∵S △ACD >S △ABC ,所以面积等分线必与CD 相交,取DE 中点F ,则直线AF 即为要求作地四边形ABCD 地面积等分线.22.(8分)化简+﹣.【解答】解:原式=+﹣=|x +3|+|x ﹣1|+|x ﹣2|,当x <﹣3时,原式=﹣(x +3)﹣(x ﹣1)+(x ﹣2)=﹣x ﹣4, 当﹣3≤x ≤1时,原式=(x +3)﹣(x ﹣1)+(x ﹣2)=﹣x +2, 当1<x ≤2时,原式=(x +3)+(x ﹣1)+(x ﹣2)=3x , 当x >2时,原式=(x +3)+(x ﹣1)﹣(x ﹣2)=x +4.五、(本大题1小题,共10分)23.(10分)准备一张矩形纸片,按如图操作:将△ABE 沿BE 翻折,使点A 落在对角线BD 上地M 点,将△CDF 沿DF 翻折,使点C 落在对角线BD 上地N 点.(1)求证:四边形BFDE 是平行四边形;(2)若四边形BFDE 是菱形,AB=2,求菱形BFDE 地面积.【解答】(1)证明:∵四边形ABCD 是矩形, ∴∠A=∠C=90°,AB=CD ,AB ∥CD , ∴∠ABD=∠CDB ,∴∠EBD=∠ABD=∠FDB , ∴EB ∥DF , ∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)解:∵四边形BFDE 为菱形, ∴BE=ED ,∠EBD=∠FBD=∠ABE ,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,故菱形BFDE地面积为:×2=.六、(本大题共1小题,12分)24.(12分)如图所示,在平面直角坐标系中,已知一次函数y=x+1地图象与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作正方形ABCD.(1)求边AB地长;(2)求点C,D地坐标;(3)在x轴上是否存在点M,使△MDB地周长最小?若存在,请求出点M地坐标;若不存在,请说明理由.【解答】解:(1)对于直线y=x+1,令x=0,得到y=1;令y=0,得到x=﹣2,∴A(﹣2,0),B(0,1),在Rt△AOB中,OA=2,OB=1,根据勾股定理得:AB==;(2)作CE⊥y轴,DF⊥x轴,可得∠CEB=∠AFD=∠AOB=90°,∵正方形ABCD,∴BC=AB=AD,∠DAB=∠ABC=90°,∴∠DAF+∠BAO=90°,∠ABO+∠CBE=90°,∵∠DAF+∠ADF=90°,∠BAO+∠ABO=90°,∴∠BAO=∠ADF=∠CBE,∴△BCE≌△DAF≌ABO,∴BE=DF=OA=2,CE=AF=OB=1,∴OE=OB+BE=2+1=3,OF=OA+AF=2+1=3,∴C(﹣1,3),D(﹣3,2);(3)找出B关于x轴地对称点B′,连接B′D,与x轴交于点M,此时△BMD周长最小,∵B(0,1),∴B′(0,﹣1),设直线B′D地解析式为y=kx+b,把B′与D坐标代入得:,解得:,即直线B′D地解析式为y=﹣x﹣1,令y=0,得到x=﹣1,即M(﹣1,0).赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。